25 #include "targ-vals.h"
27 #include "libiberty.h"
30 #if !defined(__GO32__) && !defined(_WIN32)
32 #include <sys/times.h>
36 /* This is an array of the bit positions of registers r20 .. r31 in
37 that order in a prepare/dispose instruction. */
38 int type1_regs
[12] = { 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 0, 21 };
39 /* This is an array of the bit positions of registers r16 .. r31 in
40 that order in a push/pop instruction. */
41 int type2_regs
[16] = { 3, 2, 1, 0, 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 20, 21};
42 /* This is an array of the bit positions of registers r1 .. r15 in
43 that order in a push/pop instruction. */
44 int type3_regs
[15] = { 2, 1, 0, 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 20, 21};
47 #ifndef SIZE_INSTRUCTION
48 #define SIZE_INSTRUCTION 18
52 #define SIZE_VALUES 11
56 unsigned32 trace_values
[3];
59 const char *trace_name
;
64 trace_input (name
, type
, size
)
70 if (!TRACE_ALU_P (STATE_CPU (simulator
, 0)))
75 trace_module
= TRACE_ALU_IDX
;
88 trace_values
[0] = State
.regs
[OP
[0]];
95 trace_values
[0] = State
.regs
[OP
[1]];
96 trace_values
[1] = State
.regs
[OP
[0]];
102 trace_values
[0] = SEXT5 (OP
[0]);
103 trace_values
[1] = OP
[1];
104 trace_num_values
= 2;
107 case OP_IMM_REG_MOVE
:
108 trace_values
[0] = SEXT5 (OP
[0]);
109 trace_num_values
= 1;
113 trace_values
[0] = State
.pc
;
114 trace_values
[1] = SEXT9 (OP
[0]);
115 trace_values
[2] = PSW
;
116 trace_num_values
= 3;
120 trace_values
[0] = OP
[1] * size
;
121 trace_values
[1] = State
.regs
[30];
122 trace_num_values
= 2;
126 trace_values
[0] = State
.regs
[OP
[0]];
127 trace_values
[1] = OP
[1] * size
;
128 trace_values
[2] = State
.regs
[30];
129 trace_num_values
= 3;
133 trace_values
[0] = EXTEND16 (OP
[2]);
134 trace_values
[1] = State
.regs
[OP
[0]];
135 trace_num_values
= 2;
139 trace_values
[0] = State
.regs
[OP
[1]];
140 trace_values
[1] = EXTEND16 (OP
[2]);
141 trace_values
[2] = State
.regs
[OP
[0]];
142 trace_num_values
= 3;
146 trace_values
[0] = SEXT22 (OP
[0]);
147 trace_values
[1] = State
.pc
;
148 trace_num_values
= 2;
152 trace_values
[0] = EXTEND16 (OP
[0]) << size
;
153 trace_values
[1] = State
.regs
[OP
[1]];
154 trace_num_values
= 2;
157 case OP_IMM16_REG_REG
:
158 trace_values
[0] = EXTEND16 (OP
[2]) << size
;
159 trace_values
[1] = State
.regs
[OP
[1]];
160 trace_num_values
= 2;
163 case OP_UIMM_REG_REG
:
164 trace_values
[0] = (OP
[0] & 0xffff) << size
;
165 trace_values
[1] = State
.regs
[OP
[1]];
166 trace_num_values
= 2;
169 case OP_UIMM16_REG_REG
:
170 trace_values
[0] = (OP
[2]) << size
;
171 trace_values
[1] = State
.regs
[OP
[1]];
172 trace_num_values
= 2;
176 trace_num_values
= 0;
180 trace_values
[0] = PSW
;
181 trace_num_values
= 1;
185 trace_num_values
= 0;
189 trace_values
[0] = State
.regs
[OP
[0]];
190 trace_num_values
= 1;
194 trace_values
[0] = State
.sregs
[OP
[1]];
195 trace_num_values
= 1;
201 trace_result (int has_result
, unsigned32 result
)
209 /* write out the values saved during the trace_input call */
212 for (i
= 0; i
< trace_num_values
; i
++)
214 sprintf (chp
, "%*s0x%.8lx", SIZE_VALUES
- 10, "", trace_values
[i
]);
215 chp
= strchr (chp
, '\0');
219 sprintf (chp
, "%*s", SIZE_VALUES
, "");
220 chp
= strchr (chp
, '\0');
224 /* append any result to the end of the buffer */
226 sprintf (chp
, " :: 0x%.8lx", (unsigned long)result
);
228 trace_generic (simulator
, STATE_CPU (simulator
, 0), trace_module
, buf
);
232 trace_output (result
)
233 enum op_types result
;
235 if (!TRACE_ALU_P (STATE_CPU (simulator
, 0)))
257 trace_result (1, State
.regs
[OP
[0]]);
261 case OP_REG_REG_MOVE
:
263 case OP_IMM_REG_MOVE
:
266 trace_result (1, State
.regs
[OP
[1]]);
270 case OP_UIMM_REG_REG
:
271 case OP_IMM16_REG_REG
:
272 case OP_UIMM16_REG_REG
:
273 trace_result (1, State
.regs
[OP
[1]]);
278 trace_result (1, State
.regs
[OP
[1]]);
284 trace_result (1, State
.sregs
[OP
[1]]);
291 /* Returns 1 if the specific condition is met, returns 0 otherwise. */
293 condition_met (unsigned code
)
295 unsigned int psw
= PSW
;
299 case 0x0: return ((psw
& PSW_OV
) != 0);
300 case 0x1: return ((psw
& PSW_CY
) != 0);
301 case 0x2: return ((psw
& PSW_Z
) != 0);
302 case 0x3: return ((((psw
& PSW_CY
) != 0) | ((psw
& PSW_Z
) != 0)) != 0);
303 case 0x4: return ((psw
& PSW_S
) != 0);
304 /*case 0x5: return 1;*/
305 case 0x6: return ((((psw
& PSW_S
) != 0) ^ ((psw
& PSW_OV
) != 0)) != 0);
306 case 0x7: return (((((psw
& PSW_S
) != 0) ^ ((psw
& PSW_OV
) != 0)) || ((psw
& PSW_Z
) != 0)) != 0);
307 case 0x8: return ((psw
& PSW_OV
) == 0);
308 case 0x9: return ((psw
& PSW_CY
) == 0);
309 case 0xa: return ((psw
& PSW_Z
) == 0);
310 case 0xb: return ((((psw
& PSW_CY
) != 0) | ((psw
& PSW_Z
) != 0)) == 0);
311 case 0xc: return ((psw
& PSW_S
) == 0);
312 case 0xd: return ((psw
& PSW_SAT
) != 0);
313 case 0xe: return ((((psw
& PSW_S
) != 0) ^ ((psw
& PSW_OV
) != 0)) == 0);
314 case 0xf: return (((((psw
& PSW_S
) != 0) ^ ((psw
& PSW_OV
) != 0)) || ((psw
& PSW_Z
) != 0)) == 0);
321 Add32 (unsigned long a1
, unsigned long a2
, int * carry
)
323 unsigned long result
= (a1
+ a2
);
325 * carry
= (result
< a1
);
331 Multiply64 (boolean sign
, unsigned long op0
)
342 op1
= State
.regs
[ OP
[1] ];
346 /* Compute sign of result and adjust operands if necessary. */
348 sign
= (op0
^ op1
) & 0x80000000;
350 if (((signed long) op0
) < 0)
353 if (((signed long) op1
) < 0)
357 /* We can split the 32x32 into four 16x16 operations. This ensures
358 that we do not lose precision on 32bit only hosts: */
359 lo
= ( (op0
& 0xFFFF) * (op1
& 0xFFFF));
360 mid1
= ( (op0
& 0xFFFF) * ((op1
>> 16) & 0xFFFF));
361 mid2
= (((op0
>> 16) & 0xFFFF) * (op1
& 0xFFFF));
362 hi
= (((op0
>> 16) & 0xFFFF) * ((op1
>> 16) & 0xFFFF));
364 /* We now need to add all of these results together, taking care
365 to propogate the carries from the additions: */
366 RdLo
= Add32 (lo
, (mid1
<< 16), & carry
);
368 RdLo
= Add32 (RdLo
, (mid2
<< 16), & carry
);
369 RdHi
+= (carry
+ ((mid1
>> 16) & 0xFFFF) + ((mid2
>> 16) & 0xFFFF) + hi
);
373 /* Negate result if necessary. */
377 if (RdLo
== 0xFFFFFFFF)
386 /* Don't store into register 0. */
388 State
.regs
[ OP
[1] ] = RdLo
;
390 State
.regs
[ OP
[2] >> 11 ] = RdHi
;
396 /* Read a null terminated string from memory, return in a buffer */
404 while (sim_core_read_1 (STATE_CPU (sd
, 0),
405 PC
, read_map
, addr
+ nr
) != 0)
407 buf
= NZALLOC (char, nr
+ 1);
408 sim_read (simulator
, addr
, buf
, nr
);
412 /* Read a null terminated argument vector from memory, return in a
415 fetch_argv (sd
, addr
)
421 char **buf
= xmalloc (max_nr
* sizeof (char*));
424 unsigned32 a
= sim_core_read_4 (STATE_CPU (sd
, 0),
425 PC
, read_map
, addr
+ nr
* 4);
427 buf
[nr
] = fetch_str (sd
, a
);
429 if (nr
== max_nr
- 1)
432 buf
= xrealloc (buf
, max_nr
* sizeof (char*));
444 trace_input ("sst.b", OP_STORE16
, 1);
446 store_mem (State
.regs
[30] + (OP
[3] & 0x7f), 1, State
.regs
[ OP
[1] ]);
448 trace_output (OP_STORE16
);
457 trace_input ("sst.h", OP_STORE16
, 2);
459 store_mem (State
.regs
[30] + ((OP
[3] & 0x7f) << 1), 2, State
.regs
[ OP
[1] ]);
461 trace_output (OP_STORE16
);
470 trace_input ("sst.w", OP_STORE16
, 4);
472 store_mem (State
.regs
[30] + ((OP
[3] & 0x7e) << 1), 4, State
.regs
[ OP
[1] ]);
474 trace_output (OP_STORE16
);
485 trace_input ("ld.b", OP_LOAD32
, 1);
487 adr
= State
.regs
[ OP
[0] ] + EXTEND16 (OP
[2]);
489 State
.regs
[ OP
[1] ] = EXTEND8 (load_mem (adr
, 1));
491 trace_output (OP_LOAD32
);
502 trace_input ("ld.h", OP_LOAD32
, 2);
504 adr
= State
.regs
[ OP
[0] ] + EXTEND16 (OP
[2]);
507 State
.regs
[ OP
[1] ] = EXTEND16 (load_mem (adr
, 2));
509 trace_output (OP_LOAD32
);
520 trace_input ("ld.w", OP_LOAD32
, 4);
522 adr
= State
.regs
[ OP
[0] ] + EXTEND16 (OP
[2] & ~1);
525 State
.regs
[ OP
[1] ] = load_mem (adr
, 4);
527 trace_output (OP_LOAD32
);
536 trace_input ("st.b", OP_STORE32
, 1);
538 store_mem (State
.regs
[ OP
[0] ] + EXTEND16 (OP
[2]), 1, State
.regs
[ OP
[1] ]);
540 trace_output (OP_STORE32
);
551 trace_input ("st.h", OP_STORE32
, 2);
553 adr
= State
.regs
[ OP
[0] ] + EXTEND16 (OP
[2]);
556 store_mem (adr
, 2, State
.regs
[ OP
[1] ]);
558 trace_output (OP_STORE32
);
569 trace_input ("st.w", OP_STORE32
, 4);
571 adr
= State
.regs
[ OP
[0] ] + EXTEND16 (OP
[2] & ~1);
574 store_mem (adr
, 4, State
.regs
[ OP
[1] ]);
576 trace_output (OP_STORE32
);
585 unsigned int op0
, op1
, result
, z
, s
, cy
, ov
;
587 trace_input ("add", OP_REG_REG
, 0);
589 /* Compute the result. */
591 op0
= State
.regs
[ OP
[0] ];
592 op1
= State
.regs
[ OP
[1] ];
596 /* Compute the condition codes. */
598 s
= (result
& 0x80000000);
599 cy
= (result
< op0
|| result
< op1
);
600 ov
= ((op0
& 0x80000000) == (op1
& 0x80000000)
601 && (op0
& 0x80000000) != (result
& 0x80000000));
603 /* Store the result and condition codes. */
604 State
.regs
[OP
[1]] = result
;
605 PSW
&= ~(PSW_Z
| PSW_S
| PSW_CY
| PSW_OV
);
606 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0)
607 | (cy
? PSW_CY
: 0) | (ov
? PSW_OV
: 0));
608 trace_output (OP_REG_REG
);
613 /* add sign_extend(imm5), reg */
617 unsigned int op0
, op1
, result
, z
, s
, cy
, ov
;
620 trace_input ("add", OP_IMM_REG
, 0);
622 /* Compute the result. */
623 temp
= SEXT5 (OP
[0]);
625 op1
= State
.regs
[OP
[1]];
628 /* Compute the condition codes. */
630 s
= (result
& 0x80000000);
631 cy
= (result
< op0
|| result
< op1
);
632 ov
= ((op0
& 0x80000000) == (op1
& 0x80000000)
633 && (op0
& 0x80000000) != (result
& 0x80000000));
635 /* Store the result and condition codes. */
636 State
.regs
[OP
[1]] = result
;
637 PSW
&= ~(PSW_Z
| PSW_S
| PSW_CY
| PSW_OV
);
638 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0)
639 | (cy
? PSW_CY
: 0) | (ov
? PSW_OV
: 0));
640 trace_output (OP_IMM_REG
);
645 /* addi sign_extend(imm16), reg, reg */
649 unsigned int op0
, op1
, result
, z
, s
, cy
, ov
;
651 trace_input ("addi", OP_IMM16_REG_REG
, 0);
653 /* Compute the result. */
655 op0
= EXTEND16 (OP
[2]);
656 op1
= State
.regs
[ OP
[0] ];
659 /* Compute the condition codes. */
661 s
= (result
& 0x80000000);
662 cy
= (result
< op0
|| result
< op1
);
663 ov
= ((op0
& 0x80000000) == (op1
& 0x80000000)
664 && (op0
& 0x80000000) != (result
& 0x80000000));
666 /* Store the result and condition codes. */
667 State
.regs
[OP
[1]] = result
;
668 PSW
&= ~(PSW_Z
| PSW_S
| PSW_CY
| PSW_OV
);
669 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0)
670 | (cy
? PSW_CY
: 0) | (ov
? PSW_OV
: 0));
671 trace_output (OP_IMM16_REG_REG
);
680 unsigned int op0
, op1
, result
, z
, s
, cy
, ov
;
682 trace_input ("sub", OP_REG_REG
, 0);
683 /* Compute the result. */
684 op0
= State
.regs
[ OP
[0] ];
685 op1
= State
.regs
[ OP
[1] ];
688 /* Compute the condition codes. */
690 s
= (result
& 0x80000000);
692 ov
= ((op1
& 0x80000000) != (op0
& 0x80000000)
693 && (op1
& 0x80000000) != (result
& 0x80000000));
695 /* Store the result and condition codes. */
696 State
.regs
[OP
[1]] = result
;
697 PSW
&= ~(PSW_Z
| PSW_S
| PSW_CY
| PSW_OV
);
698 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0)
699 | (cy
? PSW_CY
: 0) | (ov
? PSW_OV
: 0));
700 trace_output (OP_REG_REG
);
705 /* subr reg1, reg2 */
709 unsigned int op0
, op1
, result
, z
, s
, cy
, ov
;
711 trace_input ("subr", OP_REG_REG
, 0);
712 /* Compute the result. */
713 op0
= State
.regs
[ OP
[0] ];
714 op1
= State
.regs
[ OP
[1] ];
717 /* Compute the condition codes. */
719 s
= (result
& 0x80000000);
721 ov
= ((op0
& 0x80000000) != (op1
& 0x80000000)
722 && (op0
& 0x80000000) != (result
& 0x80000000));
724 /* Store the result and condition codes. */
725 State
.regs
[OP
[1]] = result
;
726 PSW
&= ~(PSW_Z
| PSW_S
| PSW_CY
| PSW_OV
);
727 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0)
728 | (cy
? PSW_CY
: 0) | (ov
? PSW_OV
: 0));
729 trace_output (OP_REG_REG
);
738 trace_input ("mulh", OP_REG_REG
, 0);
740 State
.regs
[ OP
[1] ] = (EXTEND16 (State
.regs
[ OP
[1] ]) * EXTEND16 (State
.regs
[ OP
[0] ]));
742 trace_output (OP_REG_REG
);
747 /* mulh sign_extend(imm5), reg2 */
751 trace_input ("mulh", OP_IMM_REG
, 0);
753 State
.regs
[ OP
[1] ] = EXTEND16 (State
.regs
[ OP
[1] ]) * SEXT5 (OP
[0]);
755 trace_output (OP_IMM_REG
);
760 /* mulhi imm16, reg1, reg2 */
764 trace_input ("mulhi", OP_IMM16_REG_REG
, 0);
766 State
.regs
[ OP
[1] ] = EXTEND16 (State
.regs
[ OP
[0] ]) * EXTEND16 (OP
[2]);
768 trace_output (OP_IMM16_REG_REG
);
773 /* divh reg1, reg2 */
777 unsigned int op0
, op1
, result
, ov
, s
, z
;
780 trace_input ("divh", OP_REG_REG
, 0);
782 /* Compute the result. */
783 temp
= EXTEND16 (State
.regs
[ OP
[0] ]);
785 op1
= State
.regs
[OP
[1]];
787 if (op0
== 0xffffffff && op1
== 0x80000000)
803 /* Compute the condition codes. */
805 s
= (result
& 0x80000000);
807 /* Store the result and condition codes. */
808 State
.regs
[OP
[1]] = result
;
809 PSW
&= ~(PSW_Z
| PSW_S
| PSW_OV
);
810 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0)
811 | (ov
? PSW_OV
: 0));
812 trace_output (OP_REG_REG
);
821 unsigned int op0
, op1
, result
, z
, s
, cy
, ov
;
823 trace_input ("cmp", OP_REG_REG_CMP
, 0);
824 /* Compute the result. */
825 op0
= State
.regs
[ OP
[0] ];
826 op1
= State
.regs
[ OP
[1] ];
829 /* Compute the condition codes. */
831 s
= (result
& 0x80000000);
833 ov
= ((op1
& 0x80000000) != (op0
& 0x80000000)
834 && (op1
& 0x80000000) != (result
& 0x80000000));
836 /* Set condition codes. */
837 PSW
&= ~(PSW_Z
| PSW_S
| PSW_CY
| PSW_OV
);
838 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0)
839 | (cy
? PSW_CY
: 0) | (ov
? PSW_OV
: 0));
840 trace_output (OP_REG_REG_CMP
);
845 /* cmp sign_extend(imm5), reg */
849 unsigned int op0
, op1
, result
, z
, s
, cy
, ov
;
852 /* Compute the result. */
853 trace_input ("cmp", OP_IMM_REG_CMP
, 0);
854 temp
= SEXT5 (OP
[0]);
856 op1
= State
.regs
[OP
[1]];
859 /* Compute the condition codes. */
861 s
= (result
& 0x80000000);
863 ov
= ((op1
& 0x80000000) != (op0
& 0x80000000)
864 && (op1
& 0x80000000) != (result
& 0x80000000));
866 /* Set condition codes. */
867 PSW
&= ~(PSW_Z
| PSW_S
| PSW_CY
| PSW_OV
);
868 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0)
869 | (cy
? PSW_CY
: 0) | (ov
? PSW_OV
: 0));
870 trace_output (OP_IMM_REG_CMP
);
879 trace_input ("setf", OP_EX1
, 0);
881 State
.regs
[ OP
[1] ] = condition_met (OP
[0]);
883 trace_output (OP_EX1
);
892 unsigned int op0
, op1
, result
, z
, s
, cy
, ov
, sat
;
894 trace_input ("satadd", OP_REG_REG
, 0);
895 /* Compute the result. */
896 op0
= State
.regs
[ OP
[0] ];
897 op1
= State
.regs
[ OP
[1] ];
900 /* Compute the condition codes. */
902 s
= (result
& 0x80000000);
903 cy
= (result
< op0
|| result
< op1
);
904 ov
= ((op0
& 0x80000000) == (op1
& 0x80000000)
905 && (op0
& 0x80000000) != (result
& 0x80000000));
908 /* Store the result and condition codes. */
909 State
.regs
[OP
[1]] = result
;
910 PSW
&= ~(PSW_Z
| PSW_S
| PSW_CY
| PSW_OV
);
911 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0)
912 | (cy
? PSW_CY
: 0) | (ov
? PSW_OV
: 0)
913 | (sat
? PSW_SAT
: 0));
915 /* Handle saturated results. */
917 State
.regs
[OP
[1]] = 0x80000000;
919 State
.regs
[OP
[1]] = 0x7fffffff;
920 trace_output (OP_REG_REG
);
925 /* satadd sign_extend(imm5), reg */
929 unsigned int op0
, op1
, result
, z
, s
, cy
, ov
, sat
;
933 trace_input ("satadd", OP_IMM_REG
, 0);
935 /* Compute the result. */
936 temp
= SEXT5 (OP
[0]);
938 op1
= State
.regs
[OP
[1]];
941 /* Compute the condition codes. */
943 s
= (result
& 0x80000000);
944 cy
= (result
< op0
|| result
< op1
);
945 ov
= ((op0
& 0x80000000) == (op1
& 0x80000000)
946 && (op0
& 0x80000000) != (result
& 0x80000000));
949 /* Store the result and condition codes. */
950 State
.regs
[OP
[1]] = result
;
951 PSW
&= ~(PSW_Z
| PSW_S
| PSW_CY
| PSW_OV
);
952 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0)
953 | (cy
? PSW_CY
: 0) | (ov
? PSW_OV
: 0)
954 | (sat
? PSW_SAT
: 0));
956 /* Handle saturated results. */
958 State
.regs
[OP
[1]] = 0x80000000;
960 State
.regs
[OP
[1]] = 0x7fffffff;
961 trace_output (OP_IMM_REG
);
966 /* satsub reg1, reg2 */
970 unsigned int op0
, op1
, result
, z
, s
, cy
, ov
, sat
;
972 trace_input ("satsub", OP_REG_REG
, 0);
974 /* Compute the result. */
975 op0
= State
.regs
[ OP
[0] ];
976 op1
= State
.regs
[ OP
[1] ];
979 /* Compute the condition codes. */
981 s
= (result
& 0x80000000);
983 ov
= ((op1
& 0x80000000) != (op0
& 0x80000000)
984 && (op1
& 0x80000000) != (result
& 0x80000000));
987 /* Store the result and condition codes. */
988 State
.regs
[OP
[1]] = result
;
989 PSW
&= ~(PSW_Z
| PSW_S
| PSW_CY
| PSW_OV
);
990 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0)
991 | (cy
? PSW_CY
: 0) | (ov
? PSW_OV
: 0)
992 | (sat
? PSW_SAT
: 0));
994 /* Handle saturated results. */
996 State
.regs
[OP
[1]] = 0x80000000;
998 State
.regs
[OP
[1]] = 0x7fffffff;
999 trace_output (OP_REG_REG
);
1003 /* satsubi sign_extend(imm16), reg */
1007 unsigned int op0
, op1
, result
, z
, s
, cy
, ov
, sat
;
1010 trace_input ("satsubi", OP_IMM_REG
, 0);
1012 /* Compute the result. */
1013 temp
= EXTEND16 (OP
[2]);
1015 op1
= State
.regs
[ OP
[0] ];
1018 /* Compute the condition codes. */
1020 s
= (result
& 0x80000000);
1022 ov
= ((op1
& 0x80000000) != (op0
& 0x80000000)
1023 && (op1
& 0x80000000) != (result
& 0x80000000));
1026 /* Store the result and condition codes. */
1027 State
.regs
[OP
[1]] = result
;
1028 PSW
&= ~(PSW_Z
| PSW_S
| PSW_CY
| PSW_OV
);
1029 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0)
1030 | (cy
? PSW_CY
: 0) | (ov
? PSW_OV
: 0)
1031 | (sat
? PSW_SAT
: 0));
1033 /* Handle saturated results. */
1035 State
.regs
[OP
[1]] = 0x80000000;
1037 State
.regs
[OP
[1]] = 0x7fffffff;
1038 trace_output (OP_IMM_REG
);
1043 /* satsubr reg,reg */
1047 unsigned int op0
, op1
, result
, z
, s
, cy
, ov
, sat
;
1049 trace_input ("satsubr", OP_REG_REG
, 0);
1051 /* Compute the result. */
1052 op0
= State
.regs
[ OP
[0] ];
1053 op1
= State
.regs
[ OP
[1] ];
1056 /* Compute the condition codes. */
1058 s
= (result
& 0x80000000);
1059 cy
= (result
< op0
);
1060 ov
= ((op1
& 0x80000000) != (op0
& 0x80000000)
1061 && (op1
& 0x80000000) != (result
& 0x80000000));
1064 /* Store the result and condition codes. */
1065 State
.regs
[OP
[1]] = result
;
1066 PSW
&= ~(PSW_Z
| PSW_S
| PSW_CY
| PSW_OV
);
1067 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0)
1068 | (cy
? PSW_CY
: 0) | (ov
? PSW_OV
: 0)
1069 | (sat
? PSW_SAT
: 0));
1071 /* Handle saturated results. */
1073 State
.regs
[OP
[1]] = 0x80000000;
1075 State
.regs
[OP
[1]] = 0x7fffffff;
1076 trace_output (OP_REG_REG
);
1085 unsigned int op0
, op1
, result
, z
, s
;
1087 trace_input ("tst", OP_REG_REG_CMP
, 0);
1089 /* Compute the result. */
1090 op0
= State
.regs
[ OP
[0] ];
1091 op1
= State
.regs
[ OP
[1] ];
1094 /* Compute the condition codes. */
1096 s
= (result
& 0x80000000);
1098 /* Store the condition codes. */
1099 PSW
&= ~(PSW_Z
| PSW_S
| PSW_OV
);
1100 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0));
1101 trace_output (OP_REG_REG_CMP
);
1106 /* mov sign_extend(imm5), reg */
1110 int value
= SEXT5 (OP
[0]);
1112 trace_input ("mov", OP_IMM_REG_MOVE
, 0);
1114 State
.regs
[ OP
[1] ] = value
;
1116 trace_output (OP_IMM_REG_MOVE
);
1121 /* movhi imm16, reg, reg */
1125 trace_input ("movhi", OP_UIMM16_REG_REG
, 16);
1127 State
.regs
[ OP
[1] ] = State
.regs
[ OP
[0] ] + (OP
[2] << 16);
1129 trace_output (OP_UIMM16_REG_REG
);
1134 /* sar zero_extend(imm5),reg1 */
1138 unsigned int op0
, op1
, result
, z
, s
, cy
;
1140 trace_input ("sar", OP_IMM_REG
, 0);
1142 op1
= State
.regs
[ OP
[1] ];
1143 result
= (signed)op1
>> op0
;
1145 /* Compute the condition codes. */
1147 s
= (result
& 0x80000000);
1148 cy
= (op1
& (1 << (op0
- 1)));
1150 /* Store the result and condition codes. */
1151 State
.regs
[ OP
[1] ] = result
;
1152 PSW
&= ~(PSW_Z
| PSW_S
| PSW_OV
| PSW_CY
);
1153 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0)
1154 | (cy
? PSW_CY
: 0));
1155 trace_output (OP_IMM_REG
);
1160 /* sar reg1, reg2 */
1164 unsigned int op0
, op1
, result
, z
, s
, cy
;
1166 trace_input ("sar", OP_REG_REG
, 0);
1168 op0
= State
.regs
[ OP
[0] ] & 0x1f;
1169 op1
= State
.regs
[ OP
[1] ];
1170 result
= (signed)op1
>> op0
;
1172 /* Compute the condition codes. */
1174 s
= (result
& 0x80000000);
1175 cy
= (op1
& (1 << (op0
- 1)));
1177 /* Store the result and condition codes. */
1178 State
.regs
[OP
[1]] = result
;
1179 PSW
&= ~(PSW_Z
| PSW_S
| PSW_OV
| PSW_CY
);
1180 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0)
1181 | (cy
? PSW_CY
: 0));
1182 trace_output (OP_REG_REG
);
1187 /* shl zero_extend(imm5),reg1 */
1191 unsigned int op0
, op1
, result
, z
, s
, cy
;
1193 trace_input ("shl", OP_IMM_REG
, 0);
1195 op1
= State
.regs
[ OP
[1] ];
1196 result
= op1
<< op0
;
1198 /* Compute the condition codes. */
1200 s
= (result
& 0x80000000);
1201 cy
= (op1
& (1 << (32 - op0
)));
1203 /* Store the result and condition codes. */
1204 State
.regs
[OP
[1]] = result
;
1205 PSW
&= ~(PSW_Z
| PSW_S
| PSW_OV
| PSW_CY
);
1206 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0)
1207 | (cy
? PSW_CY
: 0));
1208 trace_output (OP_IMM_REG
);
1213 /* shl reg1, reg2 */
1217 unsigned int op0
, op1
, result
, z
, s
, cy
;
1219 trace_input ("shl", OP_REG_REG
, 0);
1220 op0
= State
.regs
[ OP
[0] ] & 0x1f;
1221 op1
= State
.regs
[ OP
[1] ];
1222 result
= op1
<< op0
;
1224 /* Compute the condition codes. */
1226 s
= (result
& 0x80000000);
1227 cy
= (op1
& (1 << (32 - op0
)));
1229 /* Store the result and condition codes. */
1230 State
.regs
[OP
[1]] = result
;
1231 PSW
&= ~(PSW_Z
| PSW_S
| PSW_OV
| PSW_CY
);
1232 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0)
1233 | (cy
? PSW_CY
: 0));
1234 trace_output (OP_REG_REG
);
1239 /* shr zero_extend(imm5),reg1 */
1243 unsigned int op0
, op1
, result
, z
, s
, cy
;
1245 trace_input ("shr", OP_IMM_REG
, 0);
1247 op1
= State
.regs
[ OP
[1] ];
1248 result
= op1
>> op0
;
1250 /* Compute the condition codes. */
1252 s
= (result
& 0x80000000);
1253 cy
= (op1
& (1 << (op0
- 1)));
1255 /* Store the result and condition codes. */
1256 State
.regs
[OP
[1]] = result
;
1257 PSW
&= ~(PSW_Z
| PSW_S
| PSW_OV
| PSW_CY
);
1258 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0)
1259 | (cy
? PSW_CY
: 0));
1260 trace_output (OP_IMM_REG
);
1265 /* shr reg1, reg2 */
1269 unsigned int op0
, op1
, result
, z
, s
, cy
;
1271 trace_input ("shr", OP_REG_REG
, 0);
1272 op0
= State
.regs
[ OP
[0] ] & 0x1f;
1273 op1
= State
.regs
[ OP
[1] ];
1274 result
= op1
>> op0
;
1276 /* Compute the condition codes. */
1278 s
= (result
& 0x80000000);
1279 cy
= (op1
& (1 << (op0
- 1)));
1281 /* Store the result and condition codes. */
1282 State
.regs
[OP
[1]] = result
;
1283 PSW
&= ~(PSW_Z
| PSW_S
| PSW_OV
| PSW_CY
);
1284 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0)
1285 | (cy
? PSW_CY
: 0));
1286 trace_output (OP_REG_REG
);
1295 unsigned int op0
, op1
, result
, z
, s
;
1297 trace_input ("or", OP_REG_REG
, 0);
1299 /* Compute the result. */
1300 op0
= State
.regs
[ OP
[0] ];
1301 op1
= State
.regs
[ OP
[1] ];
1304 /* Compute the condition codes. */
1306 s
= (result
& 0x80000000);
1308 /* Store the result and condition codes. */
1309 State
.regs
[OP
[1]] = result
;
1310 PSW
&= ~(PSW_Z
| PSW_S
| PSW_OV
);
1311 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0));
1312 trace_output (OP_REG_REG
);
1317 /* ori zero_extend(imm16), reg, reg */
1321 unsigned int op0
, op1
, result
, z
, s
;
1323 trace_input ("ori", OP_UIMM16_REG_REG
, 0);
1325 op1
= State
.regs
[ OP
[0] ];
1328 /* Compute the condition codes. */
1330 s
= (result
& 0x80000000);
1332 /* Store the result and condition codes. */
1333 State
.regs
[OP
[1]] = result
;
1334 PSW
&= ~(PSW_Z
| PSW_S
| PSW_OV
);
1335 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0));
1336 trace_output (OP_UIMM16_REG_REG
);
1345 unsigned int op0
, op1
, result
, z
, s
;
1347 trace_input ("and", OP_REG_REG
, 0);
1349 /* Compute the result. */
1350 op0
= State
.regs
[ OP
[0] ];
1351 op1
= State
.regs
[ OP
[1] ];
1354 /* Compute the condition codes. */
1356 s
= (result
& 0x80000000);
1358 /* Store the result and condition codes. */
1359 State
.regs
[OP
[1]] = result
;
1360 PSW
&= ~(PSW_Z
| PSW_S
| PSW_OV
);
1361 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0));
1362 trace_output (OP_REG_REG
);
1367 /* andi zero_extend(imm16), reg, reg */
1371 unsigned int result
, z
;
1373 trace_input ("andi", OP_UIMM16_REG_REG
, 0);
1375 result
= OP
[2] & State
.regs
[ OP
[0] ];
1377 /* Compute the condition codes. */
1380 /* Store the result and condition codes. */
1381 State
.regs
[ OP
[1] ] = result
;
1383 PSW
&= ~(PSW_Z
| PSW_S
| PSW_OV
);
1384 PSW
|= (z
? PSW_Z
: 0);
1386 trace_output (OP_UIMM16_REG_REG
);
1395 unsigned int op0
, op1
, result
, z
, s
;
1397 trace_input ("xor", OP_REG_REG
, 0);
1399 /* Compute the result. */
1400 op0
= State
.regs
[ OP
[0] ];
1401 op1
= State
.regs
[ OP
[1] ];
1404 /* Compute the condition codes. */
1406 s
= (result
& 0x80000000);
1408 /* Store the result and condition codes. */
1409 State
.regs
[OP
[1]] = result
;
1410 PSW
&= ~(PSW_Z
| PSW_S
| PSW_OV
);
1411 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0));
1412 trace_output (OP_REG_REG
);
1417 /* xori zero_extend(imm16), reg, reg */
1421 unsigned int op0
, op1
, result
, z
, s
;
1423 trace_input ("xori", OP_UIMM16_REG_REG
, 0);
1425 op1
= State
.regs
[ OP
[0] ];
1428 /* Compute the condition codes. */
1430 s
= (result
& 0x80000000);
1432 /* Store the result and condition codes. */
1433 State
.regs
[OP
[1]] = result
;
1434 PSW
&= ~(PSW_Z
| PSW_S
| PSW_OV
);
1435 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0));
1436 trace_output (OP_UIMM16_REG_REG
);
1441 /* not reg1, reg2 */
1445 unsigned int op0
, result
, z
, s
;
1447 trace_input ("not", OP_REG_REG_MOVE
, 0);
1448 /* Compute the result. */
1449 op0
= State
.regs
[ OP
[0] ];
1452 /* Compute the condition codes. */
1454 s
= (result
& 0x80000000);
1456 /* Store the result and condition codes. */
1457 State
.regs
[OP
[1]] = result
;
1458 PSW
&= ~(PSW_Z
| PSW_S
| PSW_OV
);
1459 PSW
|= ((z
? PSW_Z
: 0) | (s
? PSW_S
: 0));
1460 trace_output (OP_REG_REG_MOVE
);
1469 unsigned int op0
, op1
, op2
;
1472 trace_input ("set1", OP_BIT
, 0);
1473 op0
= State
.regs
[ OP
[0] ];
1475 temp
= EXTEND16 (OP
[2]);
1477 temp
= load_mem (op0
+ op2
, 1);
1479 if ((temp
& (1 << op1
)) == 0)
1482 store_mem (op0
+ op2
, 1, temp
);
1483 trace_output (OP_BIT
);
1492 unsigned int op0
, op1
, op2
;
1495 trace_input ("not1", OP_BIT
, 0);
1496 op0
= State
.regs
[ OP
[0] ];
1498 temp
= EXTEND16 (OP
[2]);
1500 temp
= load_mem (op0
+ op2
, 1);
1502 if ((temp
& (1 << op1
)) == 0)
1505 store_mem (op0
+ op2
, 1, temp
);
1506 trace_output (OP_BIT
);
1515 unsigned int op0
, op1
, op2
;
1518 trace_input ("clr1", OP_BIT
, 0);
1519 op0
= State
.regs
[ OP
[0] ];
1521 temp
= EXTEND16 (OP
[2]);
1523 temp
= load_mem (op0
+ op2
, 1);
1525 if ((temp
& (1 << op1
)) == 0)
1527 temp
&= ~(1 << op1
);
1528 store_mem (op0
+ op2
, 1, temp
);
1529 trace_output (OP_BIT
);
1538 unsigned int op0
, op1
, op2
;
1541 trace_input ("tst1", OP_BIT
, 0);
1542 op0
= State
.regs
[ OP
[0] ];
1544 temp
= EXTEND16 (OP
[2]);
1546 temp
= load_mem (op0
+ op2
, 1);
1548 if ((temp
& (1 << op1
)) == 0)
1550 trace_output (OP_BIT
);
1559 trace_input ("di", OP_NONE
, 0);
1561 trace_output (OP_NONE
);
1570 trace_input ("ei", OP_NONE
, 0);
1572 trace_output (OP_NONE
);
1581 trace_input ("halt", OP_NONE
, 0);
1582 /* FIXME this should put processor into a mode where NMI still handled */
1583 trace_output (OP_NONE
);
1584 sim_engine_halt (simulator
, STATE_CPU (simulator
, 0), NULL
, PC
,
1585 sim_stopped
, SIM_SIGTRAP
);
1593 trace_input ("trap", OP_TRAP
, 0);
1594 trace_output (OP_TRAP
);
1596 /* Trap 31 is used for simulating OS I/O functions */
1600 int save_errno
= errno
;
1603 /* Registers passed to trap 0 */
1605 #define FUNC State.regs[6] /* function number, return value */
1606 #define PARM1 State.regs[7] /* optional parm 1 */
1607 #define PARM2 State.regs[8] /* optional parm 2 */
1608 #define PARM3 State.regs[9] /* optional parm 3 */
1610 /* Registers set by trap 0 */
1612 #define RETVAL State.regs[10] /* return value */
1613 #define RETERR State.regs[11] /* return error code */
1615 /* Turn a pointer in a register into a pointer into real memory. */
1617 #define MEMPTR(x) (map (x))
1623 #ifdef TARGET_SYS_fork
1624 case TARGET_SYS_fork
:
1631 #ifdef TARGET_SYS_execv
1632 case TARGET_SYS_execve
:
1634 char *path
= fetch_str (simulator
, PARM1
);
1635 char **argv
= fetch_argv (simulator
, PARM2
);
1636 char **envp
= fetch_argv (simulator
, PARM3
);
1637 RETVAL
= execve (path
, argv
, envp
);
1647 #ifdef TARGET_SYS_execv
1648 case TARGET_SYS_execv
:
1650 char *path
= fetch_str (simulator
, PARM1
);
1651 char **argv
= fetch_argv (simulator
, PARM2
);
1652 RETVAL
= execv (path
, argv
);
1661 #ifdef TARGET_SYS_pipe
1662 case TARGET_SYS_pipe
:
1668 RETVAL
= pipe (host_fd
);
1669 SW (buf
, host_fd
[0]);
1670 buf
+= sizeof(uint16
);
1671 SW (buf
, host_fd
[1]);
1678 #ifdef TARGET_SYS_wait
1679 case TARGET_SYS_wait
:
1683 RETVAL
= wait (&status
);
1690 #ifdef TARGET_SYS_read
1691 case TARGET_SYS_read
:
1693 char *buf
= zalloc (PARM3
);
1694 RETVAL
= sim_io_read (simulator
, PARM1
, buf
, PARM3
);
1695 sim_write (simulator
, PARM2
, buf
, PARM3
);
1701 #ifdef TARGET_SYS_write
1702 case TARGET_SYS_write
:
1704 char *buf
= zalloc (PARM3
);
1705 sim_read (simulator
, PARM2
, buf
, PARM3
);
1707 RETVAL
= sim_io_write_stdout (simulator
, buf
, PARM3
);
1709 RETVAL
= sim_io_write (simulator
, PARM1
, buf
, PARM3
);
1715 #ifdef TARGET_SYS_lseek
1716 case TARGET_SYS_lseek
:
1717 RETVAL
= sim_io_lseek (simulator
, PARM1
, PARM2
, PARM3
);
1721 #ifdef TARGET_SYS_close
1722 case TARGET_SYS_close
:
1723 RETVAL
= sim_io_close (simulator
, PARM1
);
1727 #ifdef TARGET_SYS_open
1728 case TARGET_SYS_open
:
1730 char *buf
= fetch_str (simulator
, PARM1
);
1731 RETVAL
= sim_io_open (simulator
, buf
, PARM2
);
1737 #ifdef TARGET_SYS_exit
1738 case TARGET_SYS_exit
:
1739 if ((PARM1
& 0xffff0000) == 0xdead0000 && (PARM1
& 0xffff) != 0)
1740 /* get signal encoded by kill */
1741 sim_engine_halt (simulator
, STATE_CPU (simulator
, 0), NULL
, PC
,
1742 sim_signalled
, PARM1
& 0xffff);
1743 else if (PARM1
== 0xdead)
1745 sim_engine_halt (simulator
, STATE_CPU (simulator
, 0), NULL
, PC
,
1746 sim_stopped
, SIM_SIGABRT
);
1748 /* PARM1 has exit status */
1749 sim_engine_halt (simulator
, STATE_CPU (simulator
, 0), NULL
, PC
,
1754 #if !defined(__GO32__) && !defined(_WIN32)
1755 #ifdef TARGET_SYS_stat
1756 case TARGET_SYS_stat
: /* added at hmsi */
1757 /* stat system call */
1759 struct stat host_stat
;
1761 char *path
= fetch_str (simulator
, PARM1
);
1763 RETVAL
= stat (path
, &host_stat
);
1768 /* Just wild-assed guesses. */
1769 store_mem (buf
, 2, host_stat
.st_dev
);
1770 store_mem (buf
+ 2, 2, host_stat
.st_ino
);
1771 store_mem (buf
+ 4, 4, host_stat
.st_mode
);
1772 store_mem (buf
+ 8, 2, host_stat
.st_nlink
);
1773 store_mem (buf
+ 10, 2, host_stat
.st_uid
);
1774 store_mem (buf
+ 12, 2, host_stat
.st_gid
);
1775 store_mem (buf
+ 14, 2, host_stat
.st_rdev
);
1776 store_mem (buf
+ 16, 4, host_stat
.st_size
);
1777 store_mem (buf
+ 20, 4, host_stat
.st_atime
);
1778 store_mem (buf
+ 28, 4, host_stat
.st_mtime
);
1779 store_mem (buf
+ 36, 4, host_stat
.st_ctime
);
1786 #ifdef TARGET_SYS_chown
1787 case TARGET_SYS_chown
:
1789 char *path
= fetch_str (simulator
, PARM1
);
1790 RETVAL
= chown (path
, PARM2
, PARM3
);
1798 #ifdef TARGET_SYS_chmod
1799 case TARGET_SYS_chmod
:
1801 char *path
= fetch_str (simulator
, PARM1
);
1802 RETVAL
= chmod (path
, PARM2
);
1809 #ifdef TARGET_SYS_time
1811 case TARGET_SYS_time
:
1814 RETVAL
= time (&now
);
1815 store_mem (PARM1
, 4, now
);
1821 #if !defined(__GO32__) && !defined(_WIN32)
1822 #ifdef TARGET_SYS_times
1823 case TARGET_SYS_times
:
1826 RETVAL
= times (&tms
);
1827 store_mem (PARM1
, 4, tms
.tms_utime
);
1828 store_mem (PARM1
+ 4, 4, tms
.tms_stime
);
1829 store_mem (PARM1
+ 8, 4, tms
.tms_cutime
);
1830 store_mem (PARM1
+ 12, 4, tms
.tms_cstime
);
1836 #ifdef TARGET_SYS_gettimeofday
1837 #if !defined(__GO32__) && !defined(_WIN32)
1838 case TARGET_SYS_gettimeofday
:
1842 RETVAL
= gettimeofday (&t
, &tz
);
1843 store_mem (PARM1
, 4, t
.tv_sec
);
1844 store_mem (PARM1
+ 4, 4, t
.tv_usec
);
1845 store_mem (PARM2
, 4, tz
.tz_minuteswest
);
1846 store_mem (PARM2
+ 4, 4, tz
.tz_dsttime
);
1852 #ifdef TARGET_SYS_utime
1854 case TARGET_SYS_utime
:
1856 /* Cast the second argument to void *, to avoid type mismatch
1857 if a prototype is present. */
1858 sim_io_error (simulator
, "Utime not supported");
1859 /* RETVAL = utime (path, (void *) MEMPTR (PARM2)); */
1874 { /* Trap 0 -> 30 */
1879 ECR
|= 0x40 + OP
[0];
1880 /* Flag that we are now doing exception processing. */
1881 PSW
|= PSW_EP
| PSW_ID
;
1882 PC
= ((OP
[0] < 0x10) ? 0x40 : 0x50) - 4;
1888 /* tst1 reg2, [reg1] */
1894 trace_input ("tst1", OP_BIT
, 1);
1896 temp
= load_mem (State
.regs
[ OP
[0] ], 1);
1899 if ((temp
& (1 << State
.regs
[ OP
[1] & 0x7 ])) == 0)
1902 trace_output (OP_BIT
);
1907 /* mulu reg1, reg2, reg3 */
1911 trace_input ("mulu", OP_REG_REG_REG
, 0);
1913 Multiply64 (false, State
.regs
[ OP
[0] ]);
1915 trace_output (OP_REG_REG_REG
);
1920 #define BIT_CHANGE_OP( name, binop ) \
1922 unsigned int temp; \
1924 trace_input (name, OP_BIT_CHANGE, 0); \
1926 bit = 1 << State.regs[ OP[1] & 0x7 ]; \
1927 temp = load_mem (State.regs[ OP[0] ], 1); \
1930 if ((temp & bit) == 0) \
1934 store_mem (State.regs[ OP[0] ], 1, temp); \
1936 trace_output (OP_BIT_CHANGE); \
1940 /* clr1 reg2, [reg1] */
1944 BIT_CHANGE_OP ("clr1", &= ~ );
1947 /* not1 reg2, [reg1] */
1951 BIT_CHANGE_OP ("not1", ^= );
1958 BIT_CHANGE_OP ("set1", |= );
1965 trace_input ("sasf", OP_EX1
, 0);
1967 State
.regs
[ OP
[1] ] = (State
.regs
[ OP
[1] ] << 1) | condition_met (OP
[0]);
1969 trace_output (OP_EX1
);
1974 /* This function is courtesy of Sugimoto at NEC, via Seow Tan
1975 (Soew_Tan@el.nec.com) */
1980 unsigned long int als
,
1981 unsigned long int sfi
,
1982 unsigned32
/*unsigned long int*/ * quotient_ptr
,
1983 unsigned32
/*unsigned long int*/ * remainder_ptr
,
1984 boolean
* overflow_ptr
1987 unsigned long ald
= sfi
>> (N
- 1);
1988 unsigned long alo
= als
;
1993 unsigned int R1
= 1;
1994 unsigned int DBZ
= (als
== 0) ? 1 : 0;
1995 unsigned long alt
= Q
? ~als
: als
;
1998 alo
= ald
+ alt
+ Q
;
1999 C
= (((alt
>> 31) & (ald
>> 31))
2000 | (((alt
>> 31) ^ (ald
>> 31)) & (~alo
>> 31)));
2003 R1
= (alo
== 0) ? 0 : (R1
& Q
);
2004 if ((S
^ (alo
>>31)) && !C
)
2009 sfi
= (sfi
<< (32-N
+1)) | Q
;
2010 ald
= (alo
<< 1) | (sfi
>> 31);
2012 /* 2nd - N-1th Loop */
2013 for (i
= 2; i
< N
; i
++)
2015 alt
= Q
? ~als
: als
;
2016 alo
= ald
+ alt
+ Q
;
2017 C
= (((alt
>> 31) & (ald
>> 31))
2018 | (((alt
>> 31) ^ (ald
>> 31)) & (~alo
>> 31)));
2021 R1
= (alo
== 0) ? 0 : (R1
& Q
);
2022 if ((S
^ (alo
>>31)) && !C
&& !DBZ
)
2027 sfi
= (sfi
<< 1) | Q
;
2028 ald
= (alo
<< 1) | (sfi
>> 31);
2032 alt
= Q
? ~als
: als
;
2033 alo
= ald
+ alt
+ Q
;
2034 C
= (((alt
>> 31) & (ald
>> 31))
2035 | (((alt
>> 31) ^ (ald
>> 31)) & (~alo
>> 31)));
2038 R1
= (alo
== 0) ? 0 : (R1
& Q
);
2039 if ((S
^ (alo
>>31)) && !C
)
2044 * quotient_ptr
= (sfi
<< 1) | Q
;
2045 * remainder_ptr
= Q
? alo
: (alo
+ als
);
2046 * overflow_ptr
= DBZ
| R1
;
2049 /* This function is courtesy of Sugimoto at NEC, via Seow Tan (Soew_Tan@el.nec.com) */
2054 unsigned long int als
,
2055 unsigned long int sfi
,
2056 signed32
/*signed long int*/ * quotient_ptr
,
2057 signed32
/*signed long int*/ * remainder_ptr
,
2058 boolean
* overflow_ptr
2061 unsigned long ald
= (signed long) sfi
>> (N
- 1);
2062 unsigned long alo
= als
;
2063 unsigned int SS
= als
>> 31;
2064 unsigned int SD
= sfi
>> 31;
2065 unsigned int R1
= 1;
2067 unsigned int DBZ
= als
== 0 ? 1 : 0;
2068 unsigned int Q
= ~(SS
^ SD
) & 1;
2072 unsigned long alt
= Q
? ~als
: als
;
2077 alo
= ald
+ alt
+ Q
;
2078 C
= (((alt
>> 31) & (ald
>> 31))
2079 | (((alt
>> 31) ^ (ald
>> 31)) & (~alo
>> 31)));
2081 R1
= (alo
== 0) ? 0 : (R1
& (Q
^ (SS
^ SD
)));
2083 sfi
= (sfi
<< (32-N
+1)) | Q
;
2084 ald
= (alo
<< 1) | (sfi
>> 31);
2085 if ((alo
>> 31) ^ (ald
>> 31))
2090 /* 2nd - N-1th Loop */
2092 for (i
= 2; i
< N
; i
++)
2094 alt
= Q
? ~als
: als
;
2095 alo
= ald
+ alt
+ Q
;
2096 C
= (((alt
>> 31) & (ald
>> 31))
2097 | (((alt
>> 31) ^ (ald
>> 31)) & (~alo
>> 31)));
2099 R1
= (alo
== 0) ? 0 : (R1
& (Q
^ (SS
^ SD
)));
2101 sfi
= (sfi
<< 1) | Q
;
2102 ald
= (alo
<< 1) | (sfi
>> 31);
2103 if ((alo
>> 31) ^ (ald
>> 31))
2110 alt
= Q
? ~als
: als
;
2111 alo
= ald
+ alt
+ Q
;
2112 C
= (((alt
>> 31) & (ald
>> 31))
2113 | (((alt
>> 31) ^ (ald
>> 31)) & (~alo
>> 31)));
2115 R1
= (alo
== 0) ? 0 : (R1
& (Q
^ (SS
^ SD
)));
2116 sfi
= (sfi
<< (32-N
+1));
2122 alt
= Q
? ~als
: als
;
2123 alo
= ald
+ alt
+ Q
;
2125 R1
= R1
& ((~alo
>> 31) ^ SD
);
2126 if ((alo
!= 0) && ((Q
^ (SS
^ SD
)) ^ R1
)) alo
= ald
;
2128 ald
= sfi
= (long) ((sfi
>> 1) | (SS
^ SD
) << 31) >> (32-N
-1) | Q
;
2130 ald
= sfi
= sfi
| Q
;
2132 OV
= DBZ
| ((alo
== 0) ? 0 : R1
);
2134 * remainder_ptr
= alo
;
2137 if (((alo
!= 0) && ((SS
^ SD
) ^ R1
))
2138 || ((alo
== 0) && (SS
^ R1
)))
2143 OV
= (DBZ
| R1
) ? OV
: ((alo
>> 31) & (~ald
>> 31));
2145 * quotient_ptr
= alo
;
2146 * overflow_ptr
= OV
;
2149 /* sdivun imm5, reg1, reg2, reg3 */
2153 unsigned32
/*unsigned long int*/ quotient
;
2154 unsigned32
/*unsigned long int*/ remainder
;
2155 unsigned long int divide_by
;
2156 unsigned long int divide_this
;
2157 boolean overflow
= false;
2160 trace_input ("sdivun", OP_IMM_REG_REG_REG
, 0);
2162 imm5
= 32 - ((OP
[3] & 0x3c0000) >> 17);
2164 divide_by
= State
.regs
[ OP
[0] ];
2165 divide_this
= State
.regs
[ OP
[1] ] << imm5
;
2167 divun (imm5
, divide_by
, divide_this
, & quotient
, & remainder
, & overflow
);
2169 State
.regs
[ OP
[1] ] = quotient
;
2170 State
.regs
[ OP
[2] >> 11 ] = remainder
;
2172 /* Set condition codes. */
2173 PSW
&= ~(PSW_Z
| PSW_S
| PSW_OV
);
2175 if (overflow
) PSW
|= PSW_OV
;
2176 if (quotient
== 0) PSW
|= PSW_Z
;
2177 if (quotient
& 0x80000000) PSW
|= PSW_S
;
2179 trace_output (OP_IMM_REG_REG_REG
);
2184 /* sdivn imm5, reg1, reg2, reg3 */
2188 signed32
/*signed long int*/ quotient
;
2189 signed32
/*signed long int*/ remainder
;
2190 signed long int divide_by
;
2191 signed long int divide_this
;
2192 boolean overflow
= false;
2195 trace_input ("sdivn", OP_IMM_REG_REG_REG
, 0);
2197 imm5
= 32 - ((OP
[3] & 0x3c0000) >> 17);
2199 divide_by
= State
.regs
[ OP
[0] ];
2200 divide_this
= State
.regs
[ OP
[1] ] << imm5
;
2202 divn (imm5
, divide_by
, divide_this
, & quotient
, & remainder
, & overflow
);
2204 State
.regs
[ OP
[1] ] = quotient
;
2205 State
.regs
[ OP
[2] >> 11 ] = remainder
;
2207 /* Set condition codes. */
2208 PSW
&= ~(PSW_Z
| PSW_S
| PSW_OV
);
2210 if (overflow
) PSW
|= PSW_OV
;
2211 if (quotient
== 0) PSW
|= PSW_Z
;
2212 if (quotient
< 0) PSW
|= PSW_S
;
2214 trace_output (OP_IMM_REG_REG_REG
);
2219 /* sdivhun imm5, reg1, reg2, reg3 */
2223 unsigned32
/*unsigned long int*/ quotient
;
2224 unsigned32
/*unsigned long int*/ remainder
;
2225 unsigned long int divide_by
;
2226 unsigned long int divide_this
;
2227 boolean overflow
= false;
2230 trace_input ("sdivhun", OP_IMM_REG_REG_REG
, 0);
2232 imm5
= 32 - ((OP
[3] & 0x3c0000) >> 17);
2234 divide_by
= State
.regs
[ OP
[0] ] & 0xffff;
2235 divide_this
= State
.regs
[ OP
[1] ] << imm5
;
2237 divun (imm5
, divide_by
, divide_this
, & quotient
, & remainder
, & overflow
);
2239 State
.regs
[ OP
[1] ] = quotient
;
2240 State
.regs
[ OP
[2] >> 11 ] = remainder
;
2242 /* Set condition codes. */
2243 PSW
&= ~(PSW_Z
| PSW_S
| PSW_OV
);
2245 if (overflow
) PSW
|= PSW_OV
;
2246 if (quotient
== 0) PSW
|= PSW_Z
;
2247 if (quotient
& 0x80000000) PSW
|= PSW_S
;
2249 trace_output (OP_IMM_REG_REG_REG
);
2254 /* sdivhn imm5, reg1, reg2, reg3 */
2258 signed32
/*signed long int*/ quotient
;
2259 signed32
/*signed long int*/ remainder
;
2260 signed long int divide_by
;
2261 signed long int divide_this
;
2262 boolean overflow
= false;
2265 trace_input ("sdivhn", OP_IMM_REG_REG_REG
, 0);
2267 imm5
= 32 - ((OP
[3] & 0x3c0000) >> 17);
2269 divide_by
= EXTEND16 (State
.regs
[ OP
[0] ]);
2270 divide_this
= State
.regs
[ OP
[1] ] << imm5
;
2272 divn (imm5
, divide_by
, divide_this
, & quotient
, & remainder
, & overflow
);
2274 State
.regs
[ OP
[1] ] = quotient
;
2275 State
.regs
[ OP
[2] >> 11 ] = remainder
;
2277 /* Set condition codes. */
2278 PSW
&= ~(PSW_Z
| PSW_S
| PSW_OV
);
2280 if (overflow
) PSW
|= PSW_OV
;
2281 if (quotient
== 0) PSW
|= PSW_Z
;
2282 if (quotient
< 0) PSW
|= PSW_S
;
2284 trace_output (OP_IMM_REG_REG_REG
);
2289 /* divu reg1, reg2, reg3 */
2293 unsigned long int quotient
;
2294 unsigned long int remainder
;
2295 unsigned long int divide_by
;
2296 unsigned long int divide_this
;
2297 boolean overflow
= false;
2299 trace_input ("divu", OP_REG_REG_REG
, 0);
2301 /* Compute the result. */
2303 divide_by
= State
.regs
[ OP
[0] ];
2304 divide_this
= State
.regs
[ OP
[1] ];
2312 State
.regs
[ OP
[1] ] = quotient
= divide_this
/ divide_by
;
2313 State
.regs
[ OP
[2] >> 11 ] = remainder
= divide_this
% divide_by
;
2315 /* Set condition codes. */
2316 PSW
&= ~(PSW_Z
| PSW_S
| PSW_OV
);
2318 if (overflow
) PSW
|= PSW_OV
;
2319 if (quotient
== 0) PSW
|= PSW_Z
;
2320 if (quotient
& 0x80000000) PSW
|= PSW_S
;
2322 trace_output (OP_REG_REG_REG
);
2327 /* div reg1, reg2, reg3 */
2331 signed long int quotient
;
2332 signed long int remainder
;
2333 signed long int divide_by
;
2334 signed long int divide_this
;
2335 boolean overflow
= false;
2337 trace_input ("div", OP_REG_REG_REG
, 0);
2339 /* Compute the result. */
2341 divide_by
= State
.regs
[ OP
[0] ];
2342 divide_this
= State
.regs
[ OP
[1] ];
2344 if (divide_by
== 0 || (divide_by
== -1 && divide_this
== (1 << 31)))
2350 State
.regs
[ OP
[1] ] = quotient
= divide_this
/ divide_by
;
2351 State
.regs
[ OP
[2] >> 11 ] = remainder
= divide_this
% divide_by
;
2353 /* Set condition codes. */
2354 PSW
&= ~(PSW_Z
| PSW_S
| PSW_OV
);
2356 if (overflow
) PSW
|= PSW_OV
;
2357 if (quotient
== 0) PSW
|= PSW_Z
;
2358 if (quotient
< 0) PSW
|= PSW_S
;
2360 trace_output (OP_REG_REG_REG
);
2365 /* divhu reg1, reg2, reg3 */
2369 unsigned long int quotient
;
2370 unsigned long int remainder
;
2371 unsigned long int divide_by
;
2372 unsigned long int divide_this
;
2373 boolean overflow
= false;
2375 trace_input ("divhu", OP_REG_REG_REG
, 0);
2377 /* Compute the result. */
2379 divide_by
= State
.regs
[ OP
[0] ] & 0xffff;
2380 divide_this
= State
.regs
[ OP
[1] ];
2388 State
.regs
[ OP
[1] ] = quotient
= divide_this
/ divide_by
;
2389 State
.regs
[ OP
[2] >> 11 ] = remainder
= divide_this
% divide_by
;
2391 /* Set condition codes. */
2392 PSW
&= ~(PSW_Z
| PSW_S
| PSW_OV
);
2394 if (overflow
) PSW
|= PSW_OV
;
2395 if (quotient
== 0) PSW
|= PSW_Z
;
2396 if (quotient
& 0x80000000) PSW
|= PSW_S
;
2398 trace_output (OP_REG_REG_REG
);
2403 /* divh reg1, reg2, reg3 */
2407 signed long int quotient
;
2408 signed long int remainder
;
2409 signed long int divide_by
;
2410 signed long int divide_this
;
2411 boolean overflow
= false;
2413 trace_input ("divh", OP_REG_REG_REG
, 0);
2415 /* Compute the result. */
2417 divide_by
= State
.regs
[ OP
[0] ];
2418 divide_this
= EXTEND16 (State
.regs
[ OP
[1] ]);
2420 if (divide_by
== 0 || (divide_by
== -1 && divide_this
== (1 << 31)))
2426 State
.regs
[ OP
[1] ] = quotient
= divide_this
/ divide_by
;
2427 State
.regs
[ OP
[2] >> 11 ] = remainder
= divide_this
% divide_by
;
2429 /* Set condition codes. */
2430 PSW
&= ~(PSW_Z
| PSW_S
| PSW_OV
);
2432 if (overflow
) PSW
|= PSW_OV
;
2433 if (quotient
== 0) PSW
|= PSW_Z
;
2434 if (quotient
< 0) PSW
|= PSW_S
;
2436 trace_output (OP_REG_REG_REG
);
2441 /* mulu imm9, reg2, reg3 */
2445 trace_input ("mulu", OP_IMM_REG_REG
, 0);
2447 Multiply64 (false, (OP
[3] & 0x1f) | ((OP
[3] >> 13) & 0x1e0));
2449 trace_output (OP_IMM_REG_REG
);
2454 /* mul imm9, reg2, reg3 */
2458 trace_input ("mul", OP_IMM_REG_REG
, 0);
2460 Multiply64 (true, (OP
[3] & 0x1f) | ((OP
[3] >> 13) & 0x1e0));
2462 trace_output (OP_IMM_REG_REG
);
2473 trace_input ("ld.hu", OP_LOAD32
, 2);
2475 adr
= State
.regs
[ OP
[0] ] + EXTEND16 (OP
[2] & ~1);
2478 State
.regs
[ OP
[1] ] = load_mem (adr
, 2);
2480 trace_output (OP_LOAD32
);
2492 trace_input ("ld.bu", OP_LOAD32
, 1);
2494 adr
= (State
.regs
[ OP
[0] ]
2495 + (EXTEND16 (OP
[2] & ~1) | ((OP
[3] >> 5) & 1)));
2497 State
.regs
[ OP
[1] ] = load_mem (adr
, 1);
2499 trace_output (OP_LOAD32
);
2504 /* prepare list12, imm5, imm32 */
2510 trace_input ("prepare", OP_PUSHPOP1
, 0);
2512 /* Store the registers with lower number registers being placed at higher addresses. */
2513 for (i
= 0; i
< 12; i
++)
2514 if ((OP
[3] & (1 << type1_regs
[ i
])))
2517 store_mem (SP
, 4, State
.regs
[ 20 + i
]);
2520 SP
-= (OP
[3] & 0x3e) << 1;
2522 EP
= load_mem (PC
+ 4, 4);
2524 trace_output (OP_PUSHPOP1
);
2529 /* prepare list12, imm5, imm16-32 */
2535 trace_input ("prepare", OP_PUSHPOP1
, 0);
2537 /* Store the registers with lower number registers being placed at higher addresses. */
2538 for (i
= 0; i
< 12; i
++)
2539 if ((OP
[3] & (1 << type1_regs
[ i
])))
2542 store_mem (SP
, 4, State
.regs
[ 20 + i
]);
2545 SP
-= (OP
[3] & 0x3e) << 1;
2547 EP
= load_mem (PC
+ 4, 2) << 16;
2549 trace_output (OP_PUSHPOP1
);
2554 /* prepare list12, imm5, imm16 */
2560 trace_input ("prepare", OP_PUSHPOP1
, 0);
2562 /* Store the registers with lower number registers being placed at higher addresses. */
2563 for (i
= 0; i
< 12; i
++)
2564 if ((OP
[3] & (1 << type1_regs
[ i
])))
2567 store_mem (SP
, 4, State
.regs
[ 20 + i
]);
2570 SP
-= (OP
[3] & 0x3e) << 1;
2572 EP
= EXTEND16 (load_mem (PC
+ 4, 2));
2574 trace_output (OP_PUSHPOP1
);
2579 /* prepare list12, imm5, sp */
2585 trace_input ("prepare", OP_PUSHPOP1
, 0);
2587 /* Store the registers with lower number registers being placed at higher addresses. */
2588 for (i
= 0; i
< 12; i
++)
2589 if ((OP
[3] & (1 << type1_regs
[ i
])))
2592 store_mem (SP
, 4, State
.regs
[ 20 + i
]);
2595 SP
-= (OP
[3] & 0x3e) << 1;
2599 trace_output (OP_PUSHPOP1
);
2604 /* mul reg1, reg2, reg3 */
2608 trace_input ("mul", OP_REG_REG_REG
, 0);
2610 Multiply64 (true, State
.regs
[ OP
[0] ]);
2612 trace_output (OP_REG_REG_REG
);
2623 trace_input ("popmh", OP_PUSHPOP2
, 0);
2625 if (OP
[3] & (1 << 19))
2627 if ((PSW
& PSW_NP
) && ((PSW
& PSW_EP
) == 0))
2629 FEPSW
= load_mem ( SP
& ~ 3, 4);
2630 FEPC
= load_mem ((SP
+ 4) & ~ 3, 4);
2634 EIPSW
= load_mem ( SP
& ~ 3, 4);
2635 EIPC
= load_mem ((SP
+ 4) & ~ 3, 4);
2641 /* Load the registers with lower number registers being retrieved from higher addresses. */
2643 if ((OP
[3] & (1 << type2_regs
[ i
])))
2645 State
.regs
[ i
+ 16 ] = load_mem (SP
& ~ 3, 4);
2649 trace_output (OP_PUSHPOP2
);
2660 trace_input ("popml", OP_PUSHPOP3
, 0);
2662 if (OP
[3] & (1 << 19))
2664 if ((PSW
& PSW_NP
) && ((PSW
& PSW_EP
) == 0))
2666 FEPSW
= load_mem ( SP
& ~ 3, 4);
2667 FEPC
= load_mem ((SP
+ 4) & ~ 3, 4);
2671 EIPSW
= load_mem ( SP
& ~ 3, 4);
2672 EIPC
= load_mem ((SP
+ 4) & ~ 3, 4);
2678 if (OP
[3] & (1 << 3))
2680 PSW
= load_mem (SP
& ~ 3, 4);
2684 /* Load the registers with lower number registers being retrieved from higher addresses. */
2686 if ((OP
[3] & (1 << type3_regs
[ i
])))
2688 State
.regs
[ i
+ 1 ] = load_mem (SP
& ~ 3, 4);
2692 trace_output (OP_PUSHPOP2
);
2703 trace_input ("pushmh", OP_PUSHPOP2
, 0);
2705 /* Store the registers with lower number registers being placed at higher addresses. */
2706 for (i
= 0; i
< 16; i
++)
2707 if ((OP
[3] & (1 << type2_regs
[ i
])))
2710 store_mem (SP
& ~ 3, 4, State
.regs
[ i
+ 16 ]);
2713 if (OP
[3] & (1 << 19))
2717 if ((PSW
& PSW_NP
) && ((PSW
& PSW_EP
) == 0))
2719 store_mem ((SP
+ 4) & ~ 3, 4, FEPC
);
2720 store_mem ( SP
& ~ 3, 4, FEPSW
);
2724 store_mem ((SP
+ 4) & ~ 3, 4, EIPC
);
2725 store_mem ( SP
& ~ 3, 4, EIPSW
);
2729 trace_output (OP_PUSHPOP2
);
This page took 0.125583 seconds and 4 git commands to generate.