Merge tag 'for-linus-20150901' of git://git.infradead.org/linux-mtd
[deliverable/linux.git] / sound / core / pcm_lib.c
1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
34
35 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
36 #define CREATE_TRACE_POINTS
37 #include "pcm_trace.h"
38 #else
39 #define trace_hwptr(substream, pos, in_interrupt)
40 #define trace_xrun(substream)
41 #define trace_hw_ptr_error(substream, reason)
42 #endif
43
44 /*
45 * fill ring buffer with silence
46 * runtime->silence_start: starting pointer to silence area
47 * runtime->silence_filled: size filled with silence
48 * runtime->silence_threshold: threshold from application
49 * runtime->silence_size: maximal size from application
50 *
51 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
52 */
53 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
54 {
55 struct snd_pcm_runtime *runtime = substream->runtime;
56 snd_pcm_uframes_t frames, ofs, transfer;
57
58 if (runtime->silence_size < runtime->boundary) {
59 snd_pcm_sframes_t noise_dist, n;
60 if (runtime->silence_start != runtime->control->appl_ptr) {
61 n = runtime->control->appl_ptr - runtime->silence_start;
62 if (n < 0)
63 n += runtime->boundary;
64 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
65 runtime->silence_filled -= n;
66 else
67 runtime->silence_filled = 0;
68 runtime->silence_start = runtime->control->appl_ptr;
69 }
70 if (runtime->silence_filled >= runtime->buffer_size)
71 return;
72 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
73 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
74 return;
75 frames = runtime->silence_threshold - noise_dist;
76 if (frames > runtime->silence_size)
77 frames = runtime->silence_size;
78 } else {
79 if (new_hw_ptr == ULONG_MAX) { /* initialization */
80 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
81 if (avail > runtime->buffer_size)
82 avail = runtime->buffer_size;
83 runtime->silence_filled = avail > 0 ? avail : 0;
84 runtime->silence_start = (runtime->status->hw_ptr +
85 runtime->silence_filled) %
86 runtime->boundary;
87 } else {
88 ofs = runtime->status->hw_ptr;
89 frames = new_hw_ptr - ofs;
90 if ((snd_pcm_sframes_t)frames < 0)
91 frames += runtime->boundary;
92 runtime->silence_filled -= frames;
93 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
94 runtime->silence_filled = 0;
95 runtime->silence_start = new_hw_ptr;
96 } else {
97 runtime->silence_start = ofs;
98 }
99 }
100 frames = runtime->buffer_size - runtime->silence_filled;
101 }
102 if (snd_BUG_ON(frames > runtime->buffer_size))
103 return;
104 if (frames == 0)
105 return;
106 ofs = runtime->silence_start % runtime->buffer_size;
107 while (frames > 0) {
108 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
109 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
110 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
111 if (substream->ops->silence) {
112 int err;
113 err = substream->ops->silence(substream, -1, ofs, transfer);
114 snd_BUG_ON(err < 0);
115 } else {
116 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
117 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
118 }
119 } else {
120 unsigned int c;
121 unsigned int channels = runtime->channels;
122 if (substream->ops->silence) {
123 for (c = 0; c < channels; ++c) {
124 int err;
125 err = substream->ops->silence(substream, c, ofs, transfer);
126 snd_BUG_ON(err < 0);
127 }
128 } else {
129 size_t dma_csize = runtime->dma_bytes / channels;
130 for (c = 0; c < channels; ++c) {
131 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
132 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
133 }
134 }
135 }
136 runtime->silence_filled += transfer;
137 frames -= transfer;
138 ofs = 0;
139 }
140 }
141
142 #ifdef CONFIG_SND_DEBUG
143 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
144 char *name, size_t len)
145 {
146 snprintf(name, len, "pcmC%dD%d%c:%d",
147 substream->pcm->card->number,
148 substream->pcm->device,
149 substream->stream ? 'c' : 'p',
150 substream->number);
151 }
152 EXPORT_SYMBOL(snd_pcm_debug_name);
153 #endif
154
155 #define XRUN_DEBUG_BASIC (1<<0)
156 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
157 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
158
159 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
160
161 #define xrun_debug(substream, mask) \
162 ((substream)->pstr->xrun_debug & (mask))
163 #else
164 #define xrun_debug(substream, mask) 0
165 #endif
166
167 #define dump_stack_on_xrun(substream) do { \
168 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
169 dump_stack(); \
170 } while (0)
171
172 static void xrun(struct snd_pcm_substream *substream)
173 {
174 struct snd_pcm_runtime *runtime = substream->runtime;
175
176 trace_xrun(substream);
177 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
178 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
179 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
180 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
181 char name[16];
182 snd_pcm_debug_name(substream, name, sizeof(name));
183 pcm_warn(substream->pcm, "XRUN: %s\n", name);
184 dump_stack_on_xrun(substream);
185 }
186 }
187
188 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
189 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
190 do { \
191 trace_hw_ptr_error(substream, reason); \
192 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
193 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
194 (in_interrupt) ? 'Q' : 'P', ##args); \
195 dump_stack_on_xrun(substream); \
196 } \
197 } while (0)
198
199 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
200
201 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
202
203 #endif
204
205 int snd_pcm_update_state(struct snd_pcm_substream *substream,
206 struct snd_pcm_runtime *runtime)
207 {
208 snd_pcm_uframes_t avail;
209
210 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
211 avail = snd_pcm_playback_avail(runtime);
212 else
213 avail = snd_pcm_capture_avail(runtime);
214 if (avail > runtime->avail_max)
215 runtime->avail_max = avail;
216 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
217 if (avail >= runtime->buffer_size) {
218 snd_pcm_drain_done(substream);
219 return -EPIPE;
220 }
221 } else {
222 if (avail >= runtime->stop_threshold) {
223 xrun(substream);
224 return -EPIPE;
225 }
226 }
227 if (runtime->twake) {
228 if (avail >= runtime->twake)
229 wake_up(&runtime->tsleep);
230 } else if (avail >= runtime->control->avail_min)
231 wake_up(&runtime->sleep);
232 return 0;
233 }
234
235 static void update_audio_tstamp(struct snd_pcm_substream *substream,
236 struct timespec *curr_tstamp,
237 struct timespec *audio_tstamp)
238 {
239 struct snd_pcm_runtime *runtime = substream->runtime;
240 u64 audio_frames, audio_nsecs;
241 struct timespec driver_tstamp;
242
243 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
244 return;
245
246 if (!(substream->ops->get_time_info) ||
247 (runtime->audio_tstamp_report.actual_type ==
248 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
249
250 /*
251 * provide audio timestamp derived from pointer position
252 * add delay only if requested
253 */
254
255 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
256
257 if (runtime->audio_tstamp_config.report_delay) {
258 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
259 audio_frames -= runtime->delay;
260 else
261 audio_frames += runtime->delay;
262 }
263 audio_nsecs = div_u64(audio_frames * 1000000000LL,
264 runtime->rate);
265 *audio_tstamp = ns_to_timespec(audio_nsecs);
266 }
267 runtime->status->audio_tstamp = *audio_tstamp;
268 runtime->status->tstamp = *curr_tstamp;
269
270 /*
271 * re-take a driver timestamp to let apps detect if the reference tstamp
272 * read by low-level hardware was provided with a delay
273 */
274 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
275 runtime->driver_tstamp = driver_tstamp;
276 }
277
278 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
279 unsigned int in_interrupt)
280 {
281 struct snd_pcm_runtime *runtime = substream->runtime;
282 snd_pcm_uframes_t pos;
283 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
284 snd_pcm_sframes_t hdelta, delta;
285 unsigned long jdelta;
286 unsigned long curr_jiffies;
287 struct timespec curr_tstamp;
288 struct timespec audio_tstamp;
289 int crossed_boundary = 0;
290
291 old_hw_ptr = runtime->status->hw_ptr;
292
293 /*
294 * group pointer, time and jiffies reads to allow for more
295 * accurate correlations/corrections.
296 * The values are stored at the end of this routine after
297 * corrections for hw_ptr position
298 */
299 pos = substream->ops->pointer(substream);
300 curr_jiffies = jiffies;
301 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
302 if ((substream->ops->get_time_info) &&
303 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
304 substream->ops->get_time_info(substream, &curr_tstamp,
305 &audio_tstamp,
306 &runtime->audio_tstamp_config,
307 &runtime->audio_tstamp_report);
308
309 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
310 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
311 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
312 } else
313 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
314 }
315
316 if (pos == SNDRV_PCM_POS_XRUN) {
317 xrun(substream);
318 return -EPIPE;
319 }
320 if (pos >= runtime->buffer_size) {
321 if (printk_ratelimit()) {
322 char name[16];
323 snd_pcm_debug_name(substream, name, sizeof(name));
324 pcm_err(substream->pcm,
325 "BUG: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
326 name, pos, runtime->buffer_size,
327 runtime->period_size);
328 }
329 pos = 0;
330 }
331 pos -= pos % runtime->min_align;
332 trace_hwptr(substream, pos, in_interrupt);
333 hw_base = runtime->hw_ptr_base;
334 new_hw_ptr = hw_base + pos;
335 if (in_interrupt) {
336 /* we know that one period was processed */
337 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
338 delta = runtime->hw_ptr_interrupt + runtime->period_size;
339 if (delta > new_hw_ptr) {
340 /* check for double acknowledged interrupts */
341 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
342 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
343 hw_base += runtime->buffer_size;
344 if (hw_base >= runtime->boundary) {
345 hw_base = 0;
346 crossed_boundary++;
347 }
348 new_hw_ptr = hw_base + pos;
349 goto __delta;
350 }
351 }
352 }
353 /* new_hw_ptr might be lower than old_hw_ptr in case when */
354 /* pointer crosses the end of the ring buffer */
355 if (new_hw_ptr < old_hw_ptr) {
356 hw_base += runtime->buffer_size;
357 if (hw_base >= runtime->boundary) {
358 hw_base = 0;
359 crossed_boundary++;
360 }
361 new_hw_ptr = hw_base + pos;
362 }
363 __delta:
364 delta = new_hw_ptr - old_hw_ptr;
365 if (delta < 0)
366 delta += runtime->boundary;
367
368 if (runtime->no_period_wakeup) {
369 snd_pcm_sframes_t xrun_threshold;
370 /*
371 * Without regular period interrupts, we have to check
372 * the elapsed time to detect xruns.
373 */
374 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
375 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
376 goto no_delta_check;
377 hdelta = jdelta - delta * HZ / runtime->rate;
378 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
379 while (hdelta > xrun_threshold) {
380 delta += runtime->buffer_size;
381 hw_base += runtime->buffer_size;
382 if (hw_base >= runtime->boundary) {
383 hw_base = 0;
384 crossed_boundary++;
385 }
386 new_hw_ptr = hw_base + pos;
387 hdelta -= runtime->hw_ptr_buffer_jiffies;
388 }
389 goto no_delta_check;
390 }
391
392 /* something must be really wrong */
393 if (delta >= runtime->buffer_size + runtime->period_size) {
394 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
395 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
396 substream->stream, (long)pos,
397 (long)new_hw_ptr, (long)old_hw_ptr);
398 return 0;
399 }
400
401 /* Do jiffies check only in xrun_debug mode */
402 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
403 goto no_jiffies_check;
404
405 /* Skip the jiffies check for hardwares with BATCH flag.
406 * Such hardware usually just increases the position at each IRQ,
407 * thus it can't give any strange position.
408 */
409 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
410 goto no_jiffies_check;
411 hdelta = delta;
412 if (hdelta < runtime->delay)
413 goto no_jiffies_check;
414 hdelta -= runtime->delay;
415 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
416 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
417 delta = jdelta /
418 (((runtime->period_size * HZ) / runtime->rate)
419 + HZ/100);
420 /* move new_hw_ptr according jiffies not pos variable */
421 new_hw_ptr = old_hw_ptr;
422 hw_base = delta;
423 /* use loop to avoid checks for delta overflows */
424 /* the delta value is small or zero in most cases */
425 while (delta > 0) {
426 new_hw_ptr += runtime->period_size;
427 if (new_hw_ptr >= runtime->boundary) {
428 new_hw_ptr -= runtime->boundary;
429 crossed_boundary--;
430 }
431 delta--;
432 }
433 /* align hw_base to buffer_size */
434 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
435 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
436 (long)pos, (long)hdelta,
437 (long)runtime->period_size, jdelta,
438 ((hdelta * HZ) / runtime->rate), hw_base,
439 (unsigned long)old_hw_ptr,
440 (unsigned long)new_hw_ptr);
441 /* reset values to proper state */
442 delta = 0;
443 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
444 }
445 no_jiffies_check:
446 if (delta > runtime->period_size + runtime->period_size / 2) {
447 hw_ptr_error(substream, in_interrupt,
448 "Lost interrupts?",
449 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
450 substream->stream, (long)delta,
451 (long)new_hw_ptr,
452 (long)old_hw_ptr);
453 }
454
455 no_delta_check:
456 if (runtime->status->hw_ptr == new_hw_ptr) {
457 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
458 return 0;
459 }
460
461 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
462 runtime->silence_size > 0)
463 snd_pcm_playback_silence(substream, new_hw_ptr);
464
465 if (in_interrupt) {
466 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
467 if (delta < 0)
468 delta += runtime->boundary;
469 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
470 runtime->hw_ptr_interrupt += delta;
471 if (runtime->hw_ptr_interrupt >= runtime->boundary)
472 runtime->hw_ptr_interrupt -= runtime->boundary;
473 }
474 runtime->hw_ptr_base = hw_base;
475 runtime->status->hw_ptr = new_hw_ptr;
476 runtime->hw_ptr_jiffies = curr_jiffies;
477 if (crossed_boundary) {
478 snd_BUG_ON(crossed_boundary != 1);
479 runtime->hw_ptr_wrap += runtime->boundary;
480 }
481
482 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
483
484 return snd_pcm_update_state(substream, runtime);
485 }
486
487 /* CAUTION: call it with irq disabled */
488 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
489 {
490 return snd_pcm_update_hw_ptr0(substream, 0);
491 }
492
493 /**
494 * snd_pcm_set_ops - set the PCM operators
495 * @pcm: the pcm instance
496 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
497 * @ops: the operator table
498 *
499 * Sets the given PCM operators to the pcm instance.
500 */
501 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
502 const struct snd_pcm_ops *ops)
503 {
504 struct snd_pcm_str *stream = &pcm->streams[direction];
505 struct snd_pcm_substream *substream;
506
507 for (substream = stream->substream; substream != NULL; substream = substream->next)
508 substream->ops = ops;
509 }
510
511 EXPORT_SYMBOL(snd_pcm_set_ops);
512
513 /**
514 * snd_pcm_sync - set the PCM sync id
515 * @substream: the pcm substream
516 *
517 * Sets the PCM sync identifier for the card.
518 */
519 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
520 {
521 struct snd_pcm_runtime *runtime = substream->runtime;
522
523 runtime->sync.id32[0] = substream->pcm->card->number;
524 runtime->sync.id32[1] = -1;
525 runtime->sync.id32[2] = -1;
526 runtime->sync.id32[3] = -1;
527 }
528
529 EXPORT_SYMBOL(snd_pcm_set_sync);
530
531 /*
532 * Standard ioctl routine
533 */
534
535 static inline unsigned int div32(unsigned int a, unsigned int b,
536 unsigned int *r)
537 {
538 if (b == 0) {
539 *r = 0;
540 return UINT_MAX;
541 }
542 *r = a % b;
543 return a / b;
544 }
545
546 static inline unsigned int div_down(unsigned int a, unsigned int b)
547 {
548 if (b == 0)
549 return UINT_MAX;
550 return a / b;
551 }
552
553 static inline unsigned int div_up(unsigned int a, unsigned int b)
554 {
555 unsigned int r;
556 unsigned int q;
557 if (b == 0)
558 return UINT_MAX;
559 q = div32(a, b, &r);
560 if (r)
561 ++q;
562 return q;
563 }
564
565 static inline unsigned int mul(unsigned int a, unsigned int b)
566 {
567 if (a == 0)
568 return 0;
569 if (div_down(UINT_MAX, a) < b)
570 return UINT_MAX;
571 return a * b;
572 }
573
574 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
575 unsigned int c, unsigned int *r)
576 {
577 u_int64_t n = (u_int64_t) a * b;
578 if (c == 0) {
579 snd_BUG_ON(!n);
580 *r = 0;
581 return UINT_MAX;
582 }
583 n = div_u64_rem(n, c, r);
584 if (n >= UINT_MAX) {
585 *r = 0;
586 return UINT_MAX;
587 }
588 return n;
589 }
590
591 /**
592 * snd_interval_refine - refine the interval value of configurator
593 * @i: the interval value to refine
594 * @v: the interval value to refer to
595 *
596 * Refines the interval value with the reference value.
597 * The interval is changed to the range satisfying both intervals.
598 * The interval status (min, max, integer, etc.) are evaluated.
599 *
600 * Return: Positive if the value is changed, zero if it's not changed, or a
601 * negative error code.
602 */
603 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
604 {
605 int changed = 0;
606 if (snd_BUG_ON(snd_interval_empty(i)))
607 return -EINVAL;
608 if (i->min < v->min) {
609 i->min = v->min;
610 i->openmin = v->openmin;
611 changed = 1;
612 } else if (i->min == v->min && !i->openmin && v->openmin) {
613 i->openmin = 1;
614 changed = 1;
615 }
616 if (i->max > v->max) {
617 i->max = v->max;
618 i->openmax = v->openmax;
619 changed = 1;
620 } else if (i->max == v->max && !i->openmax && v->openmax) {
621 i->openmax = 1;
622 changed = 1;
623 }
624 if (!i->integer && v->integer) {
625 i->integer = 1;
626 changed = 1;
627 }
628 if (i->integer) {
629 if (i->openmin) {
630 i->min++;
631 i->openmin = 0;
632 }
633 if (i->openmax) {
634 i->max--;
635 i->openmax = 0;
636 }
637 } else if (!i->openmin && !i->openmax && i->min == i->max)
638 i->integer = 1;
639 if (snd_interval_checkempty(i)) {
640 snd_interval_none(i);
641 return -EINVAL;
642 }
643 return changed;
644 }
645
646 EXPORT_SYMBOL(snd_interval_refine);
647
648 static int snd_interval_refine_first(struct snd_interval *i)
649 {
650 if (snd_BUG_ON(snd_interval_empty(i)))
651 return -EINVAL;
652 if (snd_interval_single(i))
653 return 0;
654 i->max = i->min;
655 i->openmax = i->openmin;
656 if (i->openmax)
657 i->max++;
658 return 1;
659 }
660
661 static int snd_interval_refine_last(struct snd_interval *i)
662 {
663 if (snd_BUG_ON(snd_interval_empty(i)))
664 return -EINVAL;
665 if (snd_interval_single(i))
666 return 0;
667 i->min = i->max;
668 i->openmin = i->openmax;
669 if (i->openmin)
670 i->min--;
671 return 1;
672 }
673
674 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
675 {
676 if (a->empty || b->empty) {
677 snd_interval_none(c);
678 return;
679 }
680 c->empty = 0;
681 c->min = mul(a->min, b->min);
682 c->openmin = (a->openmin || b->openmin);
683 c->max = mul(a->max, b->max);
684 c->openmax = (a->openmax || b->openmax);
685 c->integer = (a->integer && b->integer);
686 }
687
688 /**
689 * snd_interval_div - refine the interval value with division
690 * @a: dividend
691 * @b: divisor
692 * @c: quotient
693 *
694 * c = a / b
695 *
696 * Returns non-zero if the value is changed, zero if not changed.
697 */
698 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
699 {
700 unsigned int r;
701 if (a->empty || b->empty) {
702 snd_interval_none(c);
703 return;
704 }
705 c->empty = 0;
706 c->min = div32(a->min, b->max, &r);
707 c->openmin = (r || a->openmin || b->openmax);
708 if (b->min > 0) {
709 c->max = div32(a->max, b->min, &r);
710 if (r) {
711 c->max++;
712 c->openmax = 1;
713 } else
714 c->openmax = (a->openmax || b->openmin);
715 } else {
716 c->max = UINT_MAX;
717 c->openmax = 0;
718 }
719 c->integer = 0;
720 }
721
722 /**
723 * snd_interval_muldivk - refine the interval value
724 * @a: dividend 1
725 * @b: dividend 2
726 * @k: divisor (as integer)
727 * @c: result
728 *
729 * c = a * b / k
730 *
731 * Returns non-zero if the value is changed, zero if not changed.
732 */
733 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
734 unsigned int k, struct snd_interval *c)
735 {
736 unsigned int r;
737 if (a->empty || b->empty) {
738 snd_interval_none(c);
739 return;
740 }
741 c->empty = 0;
742 c->min = muldiv32(a->min, b->min, k, &r);
743 c->openmin = (r || a->openmin || b->openmin);
744 c->max = muldiv32(a->max, b->max, k, &r);
745 if (r) {
746 c->max++;
747 c->openmax = 1;
748 } else
749 c->openmax = (a->openmax || b->openmax);
750 c->integer = 0;
751 }
752
753 /**
754 * snd_interval_mulkdiv - refine the interval value
755 * @a: dividend 1
756 * @k: dividend 2 (as integer)
757 * @b: divisor
758 * @c: result
759 *
760 * c = a * k / b
761 *
762 * Returns non-zero if the value is changed, zero if not changed.
763 */
764 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
765 const struct snd_interval *b, struct snd_interval *c)
766 {
767 unsigned int r;
768 if (a->empty || b->empty) {
769 snd_interval_none(c);
770 return;
771 }
772 c->empty = 0;
773 c->min = muldiv32(a->min, k, b->max, &r);
774 c->openmin = (r || a->openmin || b->openmax);
775 if (b->min > 0) {
776 c->max = muldiv32(a->max, k, b->min, &r);
777 if (r) {
778 c->max++;
779 c->openmax = 1;
780 } else
781 c->openmax = (a->openmax || b->openmin);
782 } else {
783 c->max = UINT_MAX;
784 c->openmax = 0;
785 }
786 c->integer = 0;
787 }
788
789 /* ---- */
790
791
792 /**
793 * snd_interval_ratnum - refine the interval value
794 * @i: interval to refine
795 * @rats_count: number of ratnum_t
796 * @rats: ratnum_t array
797 * @nump: pointer to store the resultant numerator
798 * @denp: pointer to store the resultant denominator
799 *
800 * Return: Positive if the value is changed, zero if it's not changed, or a
801 * negative error code.
802 */
803 int snd_interval_ratnum(struct snd_interval *i,
804 unsigned int rats_count, struct snd_ratnum *rats,
805 unsigned int *nump, unsigned int *denp)
806 {
807 unsigned int best_num, best_den;
808 int best_diff;
809 unsigned int k;
810 struct snd_interval t;
811 int err;
812 unsigned int result_num, result_den;
813 int result_diff;
814
815 best_num = best_den = best_diff = 0;
816 for (k = 0; k < rats_count; ++k) {
817 unsigned int num = rats[k].num;
818 unsigned int den;
819 unsigned int q = i->min;
820 int diff;
821 if (q == 0)
822 q = 1;
823 den = div_up(num, q);
824 if (den < rats[k].den_min)
825 continue;
826 if (den > rats[k].den_max)
827 den = rats[k].den_max;
828 else {
829 unsigned int r;
830 r = (den - rats[k].den_min) % rats[k].den_step;
831 if (r != 0)
832 den -= r;
833 }
834 diff = num - q * den;
835 if (diff < 0)
836 diff = -diff;
837 if (best_num == 0 ||
838 diff * best_den < best_diff * den) {
839 best_diff = diff;
840 best_den = den;
841 best_num = num;
842 }
843 }
844 if (best_den == 0) {
845 i->empty = 1;
846 return -EINVAL;
847 }
848 t.min = div_down(best_num, best_den);
849 t.openmin = !!(best_num % best_den);
850
851 result_num = best_num;
852 result_diff = best_diff;
853 result_den = best_den;
854 best_num = best_den = best_diff = 0;
855 for (k = 0; k < rats_count; ++k) {
856 unsigned int num = rats[k].num;
857 unsigned int den;
858 unsigned int q = i->max;
859 int diff;
860 if (q == 0) {
861 i->empty = 1;
862 return -EINVAL;
863 }
864 den = div_down(num, q);
865 if (den > rats[k].den_max)
866 continue;
867 if (den < rats[k].den_min)
868 den = rats[k].den_min;
869 else {
870 unsigned int r;
871 r = (den - rats[k].den_min) % rats[k].den_step;
872 if (r != 0)
873 den += rats[k].den_step - r;
874 }
875 diff = q * den - num;
876 if (diff < 0)
877 diff = -diff;
878 if (best_num == 0 ||
879 diff * best_den < best_diff * den) {
880 best_diff = diff;
881 best_den = den;
882 best_num = num;
883 }
884 }
885 if (best_den == 0) {
886 i->empty = 1;
887 return -EINVAL;
888 }
889 t.max = div_up(best_num, best_den);
890 t.openmax = !!(best_num % best_den);
891 t.integer = 0;
892 err = snd_interval_refine(i, &t);
893 if (err < 0)
894 return err;
895
896 if (snd_interval_single(i)) {
897 if (best_diff * result_den < result_diff * best_den) {
898 result_num = best_num;
899 result_den = best_den;
900 }
901 if (nump)
902 *nump = result_num;
903 if (denp)
904 *denp = result_den;
905 }
906 return err;
907 }
908
909 EXPORT_SYMBOL(snd_interval_ratnum);
910
911 /**
912 * snd_interval_ratden - refine the interval value
913 * @i: interval to refine
914 * @rats_count: number of struct ratden
915 * @rats: struct ratden array
916 * @nump: pointer to store the resultant numerator
917 * @denp: pointer to store the resultant denominator
918 *
919 * Return: Positive if the value is changed, zero if it's not changed, or a
920 * negative error code.
921 */
922 static int snd_interval_ratden(struct snd_interval *i,
923 unsigned int rats_count, struct snd_ratden *rats,
924 unsigned int *nump, unsigned int *denp)
925 {
926 unsigned int best_num, best_diff, best_den;
927 unsigned int k;
928 struct snd_interval t;
929 int err;
930
931 best_num = best_den = best_diff = 0;
932 for (k = 0; k < rats_count; ++k) {
933 unsigned int num;
934 unsigned int den = rats[k].den;
935 unsigned int q = i->min;
936 int diff;
937 num = mul(q, den);
938 if (num > rats[k].num_max)
939 continue;
940 if (num < rats[k].num_min)
941 num = rats[k].num_max;
942 else {
943 unsigned int r;
944 r = (num - rats[k].num_min) % rats[k].num_step;
945 if (r != 0)
946 num += rats[k].num_step - r;
947 }
948 diff = num - q * den;
949 if (best_num == 0 ||
950 diff * best_den < best_diff * den) {
951 best_diff = diff;
952 best_den = den;
953 best_num = num;
954 }
955 }
956 if (best_den == 0) {
957 i->empty = 1;
958 return -EINVAL;
959 }
960 t.min = div_down(best_num, best_den);
961 t.openmin = !!(best_num % best_den);
962
963 best_num = best_den = best_diff = 0;
964 for (k = 0; k < rats_count; ++k) {
965 unsigned int num;
966 unsigned int den = rats[k].den;
967 unsigned int q = i->max;
968 int diff;
969 num = mul(q, den);
970 if (num < rats[k].num_min)
971 continue;
972 if (num > rats[k].num_max)
973 num = rats[k].num_max;
974 else {
975 unsigned int r;
976 r = (num - rats[k].num_min) % rats[k].num_step;
977 if (r != 0)
978 num -= r;
979 }
980 diff = q * den - num;
981 if (best_num == 0 ||
982 diff * best_den < best_diff * den) {
983 best_diff = diff;
984 best_den = den;
985 best_num = num;
986 }
987 }
988 if (best_den == 0) {
989 i->empty = 1;
990 return -EINVAL;
991 }
992 t.max = div_up(best_num, best_den);
993 t.openmax = !!(best_num % best_den);
994 t.integer = 0;
995 err = snd_interval_refine(i, &t);
996 if (err < 0)
997 return err;
998
999 if (snd_interval_single(i)) {
1000 if (nump)
1001 *nump = best_num;
1002 if (denp)
1003 *denp = best_den;
1004 }
1005 return err;
1006 }
1007
1008 /**
1009 * snd_interval_list - refine the interval value from the list
1010 * @i: the interval value to refine
1011 * @count: the number of elements in the list
1012 * @list: the value list
1013 * @mask: the bit-mask to evaluate
1014 *
1015 * Refines the interval value from the list.
1016 * When mask is non-zero, only the elements corresponding to bit 1 are
1017 * evaluated.
1018 *
1019 * Return: Positive if the value is changed, zero if it's not changed, or a
1020 * negative error code.
1021 */
1022 int snd_interval_list(struct snd_interval *i, unsigned int count,
1023 const unsigned int *list, unsigned int mask)
1024 {
1025 unsigned int k;
1026 struct snd_interval list_range;
1027
1028 if (!count) {
1029 i->empty = 1;
1030 return -EINVAL;
1031 }
1032 snd_interval_any(&list_range);
1033 list_range.min = UINT_MAX;
1034 list_range.max = 0;
1035 for (k = 0; k < count; k++) {
1036 if (mask && !(mask & (1 << k)))
1037 continue;
1038 if (!snd_interval_test(i, list[k]))
1039 continue;
1040 list_range.min = min(list_range.min, list[k]);
1041 list_range.max = max(list_range.max, list[k]);
1042 }
1043 return snd_interval_refine(i, &list_range);
1044 }
1045
1046 EXPORT_SYMBOL(snd_interval_list);
1047
1048 /**
1049 * snd_interval_ranges - refine the interval value from the list of ranges
1050 * @i: the interval value to refine
1051 * @count: the number of elements in the list of ranges
1052 * @ranges: the ranges list
1053 * @mask: the bit-mask to evaluate
1054 *
1055 * Refines the interval value from the list of ranges.
1056 * When mask is non-zero, only the elements corresponding to bit 1 are
1057 * evaluated.
1058 *
1059 * Return: Positive if the value is changed, zero if it's not changed, or a
1060 * negative error code.
1061 */
1062 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1063 const struct snd_interval *ranges, unsigned int mask)
1064 {
1065 unsigned int k;
1066 struct snd_interval range_union;
1067 struct snd_interval range;
1068
1069 if (!count) {
1070 snd_interval_none(i);
1071 return -EINVAL;
1072 }
1073 snd_interval_any(&range_union);
1074 range_union.min = UINT_MAX;
1075 range_union.max = 0;
1076 for (k = 0; k < count; k++) {
1077 if (mask && !(mask & (1 << k)))
1078 continue;
1079 snd_interval_copy(&range, &ranges[k]);
1080 if (snd_interval_refine(&range, i) < 0)
1081 continue;
1082 if (snd_interval_empty(&range))
1083 continue;
1084
1085 if (range.min < range_union.min) {
1086 range_union.min = range.min;
1087 range_union.openmin = 1;
1088 }
1089 if (range.min == range_union.min && !range.openmin)
1090 range_union.openmin = 0;
1091 if (range.max > range_union.max) {
1092 range_union.max = range.max;
1093 range_union.openmax = 1;
1094 }
1095 if (range.max == range_union.max && !range.openmax)
1096 range_union.openmax = 0;
1097 }
1098 return snd_interval_refine(i, &range_union);
1099 }
1100 EXPORT_SYMBOL(snd_interval_ranges);
1101
1102 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1103 {
1104 unsigned int n;
1105 int changed = 0;
1106 n = i->min % step;
1107 if (n != 0 || i->openmin) {
1108 i->min += step - n;
1109 i->openmin = 0;
1110 changed = 1;
1111 }
1112 n = i->max % step;
1113 if (n != 0 || i->openmax) {
1114 i->max -= n;
1115 i->openmax = 0;
1116 changed = 1;
1117 }
1118 if (snd_interval_checkempty(i)) {
1119 i->empty = 1;
1120 return -EINVAL;
1121 }
1122 return changed;
1123 }
1124
1125 /* Info constraints helpers */
1126
1127 /**
1128 * snd_pcm_hw_rule_add - add the hw-constraint rule
1129 * @runtime: the pcm runtime instance
1130 * @cond: condition bits
1131 * @var: the variable to evaluate
1132 * @func: the evaluation function
1133 * @private: the private data pointer passed to function
1134 * @dep: the dependent variables
1135 *
1136 * Return: Zero if successful, or a negative error code on failure.
1137 */
1138 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1139 int var,
1140 snd_pcm_hw_rule_func_t func, void *private,
1141 int dep, ...)
1142 {
1143 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1144 struct snd_pcm_hw_rule *c;
1145 unsigned int k;
1146 va_list args;
1147 va_start(args, dep);
1148 if (constrs->rules_num >= constrs->rules_all) {
1149 struct snd_pcm_hw_rule *new;
1150 unsigned int new_rules = constrs->rules_all + 16;
1151 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1152 if (!new) {
1153 va_end(args);
1154 return -ENOMEM;
1155 }
1156 if (constrs->rules) {
1157 memcpy(new, constrs->rules,
1158 constrs->rules_num * sizeof(*c));
1159 kfree(constrs->rules);
1160 }
1161 constrs->rules = new;
1162 constrs->rules_all = new_rules;
1163 }
1164 c = &constrs->rules[constrs->rules_num];
1165 c->cond = cond;
1166 c->func = func;
1167 c->var = var;
1168 c->private = private;
1169 k = 0;
1170 while (1) {
1171 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1172 va_end(args);
1173 return -EINVAL;
1174 }
1175 c->deps[k++] = dep;
1176 if (dep < 0)
1177 break;
1178 dep = va_arg(args, int);
1179 }
1180 constrs->rules_num++;
1181 va_end(args);
1182 return 0;
1183 }
1184
1185 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1186
1187 /**
1188 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1189 * @runtime: PCM runtime instance
1190 * @var: hw_params variable to apply the mask
1191 * @mask: the bitmap mask
1192 *
1193 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1194 *
1195 * Return: Zero if successful, or a negative error code on failure.
1196 */
1197 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1198 u_int32_t mask)
1199 {
1200 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1201 struct snd_mask *maskp = constrs_mask(constrs, var);
1202 *maskp->bits &= mask;
1203 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1204 if (*maskp->bits == 0)
1205 return -EINVAL;
1206 return 0;
1207 }
1208
1209 /**
1210 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1211 * @runtime: PCM runtime instance
1212 * @var: hw_params variable to apply the mask
1213 * @mask: the 64bit bitmap mask
1214 *
1215 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1216 *
1217 * Return: Zero if successful, or a negative error code on failure.
1218 */
1219 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1220 u_int64_t mask)
1221 {
1222 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1223 struct snd_mask *maskp = constrs_mask(constrs, var);
1224 maskp->bits[0] &= (u_int32_t)mask;
1225 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1226 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1227 if (! maskp->bits[0] && ! maskp->bits[1])
1228 return -EINVAL;
1229 return 0;
1230 }
1231 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1232
1233 /**
1234 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1235 * @runtime: PCM runtime instance
1236 * @var: hw_params variable to apply the integer constraint
1237 *
1238 * Apply the constraint of integer to an interval parameter.
1239 *
1240 * Return: Positive if the value is changed, zero if it's not changed, or a
1241 * negative error code.
1242 */
1243 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1244 {
1245 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1246 return snd_interval_setinteger(constrs_interval(constrs, var));
1247 }
1248
1249 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1250
1251 /**
1252 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1253 * @runtime: PCM runtime instance
1254 * @var: hw_params variable to apply the range
1255 * @min: the minimal value
1256 * @max: the maximal value
1257 *
1258 * Apply the min/max range constraint to an interval parameter.
1259 *
1260 * Return: Positive if the value is changed, zero if it's not changed, or a
1261 * negative error code.
1262 */
1263 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1264 unsigned int min, unsigned int max)
1265 {
1266 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1267 struct snd_interval t;
1268 t.min = min;
1269 t.max = max;
1270 t.openmin = t.openmax = 0;
1271 t.integer = 0;
1272 return snd_interval_refine(constrs_interval(constrs, var), &t);
1273 }
1274
1275 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1276
1277 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1278 struct snd_pcm_hw_rule *rule)
1279 {
1280 struct snd_pcm_hw_constraint_list *list = rule->private;
1281 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1282 }
1283
1284
1285 /**
1286 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1287 * @runtime: PCM runtime instance
1288 * @cond: condition bits
1289 * @var: hw_params variable to apply the list constraint
1290 * @l: list
1291 *
1292 * Apply the list of constraints to an interval parameter.
1293 *
1294 * Return: Zero if successful, or a negative error code on failure.
1295 */
1296 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1297 unsigned int cond,
1298 snd_pcm_hw_param_t var,
1299 const struct snd_pcm_hw_constraint_list *l)
1300 {
1301 return snd_pcm_hw_rule_add(runtime, cond, var,
1302 snd_pcm_hw_rule_list, (void *)l,
1303 var, -1);
1304 }
1305
1306 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1307
1308 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1309 struct snd_pcm_hw_rule *rule)
1310 {
1311 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1312 return snd_interval_ranges(hw_param_interval(params, rule->var),
1313 r->count, r->ranges, r->mask);
1314 }
1315
1316
1317 /**
1318 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1319 * @runtime: PCM runtime instance
1320 * @cond: condition bits
1321 * @var: hw_params variable to apply the list of range constraints
1322 * @r: ranges
1323 *
1324 * Apply the list of range constraints to an interval parameter.
1325 *
1326 * Return: Zero if successful, or a negative error code on failure.
1327 */
1328 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1329 unsigned int cond,
1330 snd_pcm_hw_param_t var,
1331 const struct snd_pcm_hw_constraint_ranges *r)
1332 {
1333 return snd_pcm_hw_rule_add(runtime, cond, var,
1334 snd_pcm_hw_rule_ranges, (void *)r,
1335 var, -1);
1336 }
1337 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1338
1339 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1340 struct snd_pcm_hw_rule *rule)
1341 {
1342 struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1343 unsigned int num = 0, den = 0;
1344 int err;
1345 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1346 r->nrats, r->rats, &num, &den);
1347 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1348 params->rate_num = num;
1349 params->rate_den = den;
1350 }
1351 return err;
1352 }
1353
1354 /**
1355 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1356 * @runtime: PCM runtime instance
1357 * @cond: condition bits
1358 * @var: hw_params variable to apply the ratnums constraint
1359 * @r: struct snd_ratnums constriants
1360 *
1361 * Return: Zero if successful, or a negative error code on failure.
1362 */
1363 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1364 unsigned int cond,
1365 snd_pcm_hw_param_t var,
1366 struct snd_pcm_hw_constraint_ratnums *r)
1367 {
1368 return snd_pcm_hw_rule_add(runtime, cond, var,
1369 snd_pcm_hw_rule_ratnums, r,
1370 var, -1);
1371 }
1372
1373 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1374
1375 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1376 struct snd_pcm_hw_rule *rule)
1377 {
1378 struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1379 unsigned int num = 0, den = 0;
1380 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1381 r->nrats, r->rats, &num, &den);
1382 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1383 params->rate_num = num;
1384 params->rate_den = den;
1385 }
1386 return err;
1387 }
1388
1389 /**
1390 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1391 * @runtime: PCM runtime instance
1392 * @cond: condition bits
1393 * @var: hw_params variable to apply the ratdens constraint
1394 * @r: struct snd_ratdens constriants
1395 *
1396 * Return: Zero if successful, or a negative error code on failure.
1397 */
1398 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1399 unsigned int cond,
1400 snd_pcm_hw_param_t var,
1401 struct snd_pcm_hw_constraint_ratdens *r)
1402 {
1403 return snd_pcm_hw_rule_add(runtime, cond, var,
1404 snd_pcm_hw_rule_ratdens, r,
1405 var, -1);
1406 }
1407
1408 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1409
1410 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1411 struct snd_pcm_hw_rule *rule)
1412 {
1413 unsigned int l = (unsigned long) rule->private;
1414 int width = l & 0xffff;
1415 unsigned int msbits = l >> 16;
1416 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1417
1418 if (!snd_interval_single(i))
1419 return 0;
1420
1421 if ((snd_interval_value(i) == width) ||
1422 (width == 0 && snd_interval_value(i) > msbits))
1423 params->msbits = min_not_zero(params->msbits, msbits);
1424
1425 return 0;
1426 }
1427
1428 /**
1429 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1430 * @runtime: PCM runtime instance
1431 * @cond: condition bits
1432 * @width: sample bits width
1433 * @msbits: msbits width
1434 *
1435 * This constraint will set the number of most significant bits (msbits) if a
1436 * sample format with the specified width has been select. If width is set to 0
1437 * the msbits will be set for any sample format with a width larger than the
1438 * specified msbits.
1439 *
1440 * Return: Zero if successful, or a negative error code on failure.
1441 */
1442 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1443 unsigned int cond,
1444 unsigned int width,
1445 unsigned int msbits)
1446 {
1447 unsigned long l = (msbits << 16) | width;
1448 return snd_pcm_hw_rule_add(runtime, cond, -1,
1449 snd_pcm_hw_rule_msbits,
1450 (void*) l,
1451 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1452 }
1453
1454 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1455
1456 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1457 struct snd_pcm_hw_rule *rule)
1458 {
1459 unsigned long step = (unsigned long) rule->private;
1460 return snd_interval_step(hw_param_interval(params, rule->var), step);
1461 }
1462
1463 /**
1464 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1465 * @runtime: PCM runtime instance
1466 * @cond: condition bits
1467 * @var: hw_params variable to apply the step constraint
1468 * @step: step size
1469 *
1470 * Return: Zero if successful, or a negative error code on failure.
1471 */
1472 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1473 unsigned int cond,
1474 snd_pcm_hw_param_t var,
1475 unsigned long step)
1476 {
1477 return snd_pcm_hw_rule_add(runtime, cond, var,
1478 snd_pcm_hw_rule_step, (void *) step,
1479 var, -1);
1480 }
1481
1482 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1483
1484 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1485 {
1486 static unsigned int pow2_sizes[] = {
1487 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1488 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1489 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1490 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1491 };
1492 return snd_interval_list(hw_param_interval(params, rule->var),
1493 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1494 }
1495
1496 /**
1497 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1498 * @runtime: PCM runtime instance
1499 * @cond: condition bits
1500 * @var: hw_params variable to apply the power-of-2 constraint
1501 *
1502 * Return: Zero if successful, or a negative error code on failure.
1503 */
1504 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1505 unsigned int cond,
1506 snd_pcm_hw_param_t var)
1507 {
1508 return snd_pcm_hw_rule_add(runtime, cond, var,
1509 snd_pcm_hw_rule_pow2, NULL,
1510 var, -1);
1511 }
1512
1513 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1514
1515 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1516 struct snd_pcm_hw_rule *rule)
1517 {
1518 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1519 struct snd_interval *rate;
1520
1521 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1522 return snd_interval_list(rate, 1, &base_rate, 0);
1523 }
1524
1525 /**
1526 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1527 * @runtime: PCM runtime instance
1528 * @base_rate: the rate at which the hardware does not resample
1529 *
1530 * Return: Zero if successful, or a negative error code on failure.
1531 */
1532 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1533 unsigned int base_rate)
1534 {
1535 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1536 SNDRV_PCM_HW_PARAM_RATE,
1537 snd_pcm_hw_rule_noresample_func,
1538 (void *)(uintptr_t)base_rate,
1539 SNDRV_PCM_HW_PARAM_RATE, -1);
1540 }
1541 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1542
1543 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1544 snd_pcm_hw_param_t var)
1545 {
1546 if (hw_is_mask(var)) {
1547 snd_mask_any(hw_param_mask(params, var));
1548 params->cmask |= 1 << var;
1549 params->rmask |= 1 << var;
1550 return;
1551 }
1552 if (hw_is_interval(var)) {
1553 snd_interval_any(hw_param_interval(params, var));
1554 params->cmask |= 1 << var;
1555 params->rmask |= 1 << var;
1556 return;
1557 }
1558 snd_BUG();
1559 }
1560
1561 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1562 {
1563 unsigned int k;
1564 memset(params, 0, sizeof(*params));
1565 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1566 _snd_pcm_hw_param_any(params, k);
1567 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1568 _snd_pcm_hw_param_any(params, k);
1569 params->info = ~0U;
1570 }
1571
1572 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1573
1574 /**
1575 * snd_pcm_hw_param_value - return @params field @var value
1576 * @params: the hw_params instance
1577 * @var: parameter to retrieve
1578 * @dir: pointer to the direction (-1,0,1) or %NULL
1579 *
1580 * Return: The value for field @var if it's fixed in configuration space
1581 * defined by @params. -%EINVAL otherwise.
1582 */
1583 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1584 snd_pcm_hw_param_t var, int *dir)
1585 {
1586 if (hw_is_mask(var)) {
1587 const struct snd_mask *mask = hw_param_mask_c(params, var);
1588 if (!snd_mask_single(mask))
1589 return -EINVAL;
1590 if (dir)
1591 *dir = 0;
1592 return snd_mask_value(mask);
1593 }
1594 if (hw_is_interval(var)) {
1595 const struct snd_interval *i = hw_param_interval_c(params, var);
1596 if (!snd_interval_single(i))
1597 return -EINVAL;
1598 if (dir)
1599 *dir = i->openmin;
1600 return snd_interval_value(i);
1601 }
1602 return -EINVAL;
1603 }
1604
1605 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1606
1607 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1608 snd_pcm_hw_param_t var)
1609 {
1610 if (hw_is_mask(var)) {
1611 snd_mask_none(hw_param_mask(params, var));
1612 params->cmask |= 1 << var;
1613 params->rmask |= 1 << var;
1614 } else if (hw_is_interval(var)) {
1615 snd_interval_none(hw_param_interval(params, var));
1616 params->cmask |= 1 << var;
1617 params->rmask |= 1 << var;
1618 } else {
1619 snd_BUG();
1620 }
1621 }
1622
1623 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1624
1625 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1626 snd_pcm_hw_param_t var)
1627 {
1628 int changed;
1629 if (hw_is_mask(var))
1630 changed = snd_mask_refine_first(hw_param_mask(params, var));
1631 else if (hw_is_interval(var))
1632 changed = snd_interval_refine_first(hw_param_interval(params, var));
1633 else
1634 return -EINVAL;
1635 if (changed) {
1636 params->cmask |= 1 << var;
1637 params->rmask |= 1 << var;
1638 }
1639 return changed;
1640 }
1641
1642
1643 /**
1644 * snd_pcm_hw_param_first - refine config space and return minimum value
1645 * @pcm: PCM instance
1646 * @params: the hw_params instance
1647 * @var: parameter to retrieve
1648 * @dir: pointer to the direction (-1,0,1) or %NULL
1649 *
1650 * Inside configuration space defined by @params remove from @var all
1651 * values > minimum. Reduce configuration space accordingly.
1652 *
1653 * Return: The minimum, or a negative error code on failure.
1654 */
1655 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1656 struct snd_pcm_hw_params *params,
1657 snd_pcm_hw_param_t var, int *dir)
1658 {
1659 int changed = _snd_pcm_hw_param_first(params, var);
1660 if (changed < 0)
1661 return changed;
1662 if (params->rmask) {
1663 int err = snd_pcm_hw_refine(pcm, params);
1664 if (snd_BUG_ON(err < 0))
1665 return err;
1666 }
1667 return snd_pcm_hw_param_value(params, var, dir);
1668 }
1669
1670 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1671
1672 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1673 snd_pcm_hw_param_t var)
1674 {
1675 int changed;
1676 if (hw_is_mask(var))
1677 changed = snd_mask_refine_last(hw_param_mask(params, var));
1678 else if (hw_is_interval(var))
1679 changed = snd_interval_refine_last(hw_param_interval(params, var));
1680 else
1681 return -EINVAL;
1682 if (changed) {
1683 params->cmask |= 1 << var;
1684 params->rmask |= 1 << var;
1685 }
1686 return changed;
1687 }
1688
1689
1690 /**
1691 * snd_pcm_hw_param_last - refine config space and return maximum value
1692 * @pcm: PCM instance
1693 * @params: the hw_params instance
1694 * @var: parameter to retrieve
1695 * @dir: pointer to the direction (-1,0,1) or %NULL
1696 *
1697 * Inside configuration space defined by @params remove from @var all
1698 * values < maximum. Reduce configuration space accordingly.
1699 *
1700 * Return: The maximum, or a negative error code on failure.
1701 */
1702 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1703 struct snd_pcm_hw_params *params,
1704 snd_pcm_hw_param_t var, int *dir)
1705 {
1706 int changed = _snd_pcm_hw_param_last(params, var);
1707 if (changed < 0)
1708 return changed;
1709 if (params->rmask) {
1710 int err = snd_pcm_hw_refine(pcm, params);
1711 if (snd_BUG_ON(err < 0))
1712 return err;
1713 }
1714 return snd_pcm_hw_param_value(params, var, dir);
1715 }
1716
1717 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1718
1719 /**
1720 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1721 * @pcm: PCM instance
1722 * @params: the hw_params instance
1723 *
1724 * Choose one configuration from configuration space defined by @params.
1725 * The configuration chosen is that obtained fixing in this order:
1726 * first access, first format, first subformat, min channels,
1727 * min rate, min period time, max buffer size, min tick time
1728 *
1729 * Return: Zero if successful, or a negative error code on failure.
1730 */
1731 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1732 struct snd_pcm_hw_params *params)
1733 {
1734 static int vars[] = {
1735 SNDRV_PCM_HW_PARAM_ACCESS,
1736 SNDRV_PCM_HW_PARAM_FORMAT,
1737 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1738 SNDRV_PCM_HW_PARAM_CHANNELS,
1739 SNDRV_PCM_HW_PARAM_RATE,
1740 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1741 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1742 SNDRV_PCM_HW_PARAM_TICK_TIME,
1743 -1
1744 };
1745 int err, *v;
1746
1747 for (v = vars; *v != -1; v++) {
1748 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1749 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1750 else
1751 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1752 if (snd_BUG_ON(err < 0))
1753 return err;
1754 }
1755 return 0;
1756 }
1757
1758 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1759 void *arg)
1760 {
1761 struct snd_pcm_runtime *runtime = substream->runtime;
1762 unsigned long flags;
1763 snd_pcm_stream_lock_irqsave(substream, flags);
1764 if (snd_pcm_running(substream) &&
1765 snd_pcm_update_hw_ptr(substream) >= 0)
1766 runtime->status->hw_ptr %= runtime->buffer_size;
1767 else {
1768 runtime->status->hw_ptr = 0;
1769 runtime->hw_ptr_wrap = 0;
1770 }
1771 snd_pcm_stream_unlock_irqrestore(substream, flags);
1772 return 0;
1773 }
1774
1775 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1776 void *arg)
1777 {
1778 struct snd_pcm_channel_info *info = arg;
1779 struct snd_pcm_runtime *runtime = substream->runtime;
1780 int width;
1781 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1782 info->offset = -1;
1783 return 0;
1784 }
1785 width = snd_pcm_format_physical_width(runtime->format);
1786 if (width < 0)
1787 return width;
1788 info->offset = 0;
1789 switch (runtime->access) {
1790 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1791 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1792 info->first = info->channel * width;
1793 info->step = runtime->channels * width;
1794 break;
1795 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1796 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1797 {
1798 size_t size = runtime->dma_bytes / runtime->channels;
1799 info->first = info->channel * size * 8;
1800 info->step = width;
1801 break;
1802 }
1803 default:
1804 snd_BUG();
1805 break;
1806 }
1807 return 0;
1808 }
1809
1810 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1811 void *arg)
1812 {
1813 struct snd_pcm_hw_params *params = arg;
1814 snd_pcm_format_t format;
1815 int channels;
1816 ssize_t frame_size;
1817
1818 params->fifo_size = substream->runtime->hw.fifo_size;
1819 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1820 format = params_format(params);
1821 channels = params_channels(params);
1822 frame_size = snd_pcm_format_size(format, channels);
1823 if (frame_size > 0)
1824 params->fifo_size /= (unsigned)frame_size;
1825 }
1826 return 0;
1827 }
1828
1829 /**
1830 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1831 * @substream: the pcm substream instance
1832 * @cmd: ioctl command
1833 * @arg: ioctl argument
1834 *
1835 * Processes the generic ioctl commands for PCM.
1836 * Can be passed as the ioctl callback for PCM ops.
1837 *
1838 * Return: Zero if successful, or a negative error code on failure.
1839 */
1840 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1841 unsigned int cmd, void *arg)
1842 {
1843 switch (cmd) {
1844 case SNDRV_PCM_IOCTL1_INFO:
1845 return 0;
1846 case SNDRV_PCM_IOCTL1_RESET:
1847 return snd_pcm_lib_ioctl_reset(substream, arg);
1848 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1849 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1850 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1851 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1852 }
1853 return -ENXIO;
1854 }
1855
1856 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1857
1858 /**
1859 * snd_pcm_period_elapsed - update the pcm status for the next period
1860 * @substream: the pcm substream instance
1861 *
1862 * This function is called from the interrupt handler when the
1863 * PCM has processed the period size. It will update the current
1864 * pointer, wake up sleepers, etc.
1865 *
1866 * Even if more than one periods have elapsed since the last call, you
1867 * have to call this only once.
1868 */
1869 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1870 {
1871 struct snd_pcm_runtime *runtime;
1872 unsigned long flags;
1873
1874 if (PCM_RUNTIME_CHECK(substream))
1875 return;
1876 runtime = substream->runtime;
1877
1878 if (runtime->transfer_ack_begin)
1879 runtime->transfer_ack_begin(substream);
1880
1881 snd_pcm_stream_lock_irqsave(substream, flags);
1882 if (!snd_pcm_running(substream) ||
1883 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1884 goto _end;
1885
1886 if (substream->timer_running)
1887 snd_timer_interrupt(substream->timer, 1);
1888 _end:
1889 snd_pcm_stream_unlock_irqrestore(substream, flags);
1890 if (runtime->transfer_ack_end)
1891 runtime->transfer_ack_end(substream);
1892 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1893 }
1894
1895 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1896
1897 /*
1898 * Wait until avail_min data becomes available
1899 * Returns a negative error code if any error occurs during operation.
1900 * The available space is stored on availp. When err = 0 and avail = 0
1901 * on the capture stream, it indicates the stream is in DRAINING state.
1902 */
1903 static int wait_for_avail(struct snd_pcm_substream *substream,
1904 snd_pcm_uframes_t *availp)
1905 {
1906 struct snd_pcm_runtime *runtime = substream->runtime;
1907 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1908 wait_queue_t wait;
1909 int err = 0;
1910 snd_pcm_uframes_t avail = 0;
1911 long wait_time, tout;
1912
1913 init_waitqueue_entry(&wait, current);
1914 set_current_state(TASK_INTERRUPTIBLE);
1915 add_wait_queue(&runtime->tsleep, &wait);
1916
1917 if (runtime->no_period_wakeup)
1918 wait_time = MAX_SCHEDULE_TIMEOUT;
1919 else {
1920 wait_time = 10;
1921 if (runtime->rate) {
1922 long t = runtime->period_size * 2 / runtime->rate;
1923 wait_time = max(t, wait_time);
1924 }
1925 wait_time = msecs_to_jiffies(wait_time * 1000);
1926 }
1927
1928 for (;;) {
1929 if (signal_pending(current)) {
1930 err = -ERESTARTSYS;
1931 break;
1932 }
1933
1934 /*
1935 * We need to check if space became available already
1936 * (and thus the wakeup happened already) first to close
1937 * the race of space already having become available.
1938 * This check must happen after been added to the waitqueue
1939 * and having current state be INTERRUPTIBLE.
1940 */
1941 if (is_playback)
1942 avail = snd_pcm_playback_avail(runtime);
1943 else
1944 avail = snd_pcm_capture_avail(runtime);
1945 if (avail >= runtime->twake)
1946 break;
1947 snd_pcm_stream_unlock_irq(substream);
1948
1949 tout = schedule_timeout(wait_time);
1950
1951 snd_pcm_stream_lock_irq(substream);
1952 set_current_state(TASK_INTERRUPTIBLE);
1953 switch (runtime->status->state) {
1954 case SNDRV_PCM_STATE_SUSPENDED:
1955 err = -ESTRPIPE;
1956 goto _endloop;
1957 case SNDRV_PCM_STATE_XRUN:
1958 err = -EPIPE;
1959 goto _endloop;
1960 case SNDRV_PCM_STATE_DRAINING:
1961 if (is_playback)
1962 err = -EPIPE;
1963 else
1964 avail = 0; /* indicate draining */
1965 goto _endloop;
1966 case SNDRV_PCM_STATE_OPEN:
1967 case SNDRV_PCM_STATE_SETUP:
1968 case SNDRV_PCM_STATE_DISCONNECTED:
1969 err = -EBADFD;
1970 goto _endloop;
1971 case SNDRV_PCM_STATE_PAUSED:
1972 continue;
1973 }
1974 if (!tout) {
1975 pcm_dbg(substream->pcm,
1976 "%s write error (DMA or IRQ trouble?)\n",
1977 is_playback ? "playback" : "capture");
1978 err = -EIO;
1979 break;
1980 }
1981 }
1982 _endloop:
1983 set_current_state(TASK_RUNNING);
1984 remove_wait_queue(&runtime->tsleep, &wait);
1985 *availp = avail;
1986 return err;
1987 }
1988
1989 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1990 unsigned int hwoff,
1991 unsigned long data, unsigned int off,
1992 snd_pcm_uframes_t frames)
1993 {
1994 struct snd_pcm_runtime *runtime = substream->runtime;
1995 int err;
1996 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1997 if (substream->ops->copy) {
1998 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1999 return err;
2000 } else {
2001 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2002 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2003 return -EFAULT;
2004 }
2005 return 0;
2006 }
2007
2008 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
2009 unsigned long data, unsigned int off,
2010 snd_pcm_uframes_t size);
2011
2012 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
2013 unsigned long data,
2014 snd_pcm_uframes_t size,
2015 int nonblock,
2016 transfer_f transfer)
2017 {
2018 struct snd_pcm_runtime *runtime = substream->runtime;
2019 snd_pcm_uframes_t xfer = 0;
2020 snd_pcm_uframes_t offset = 0;
2021 snd_pcm_uframes_t avail;
2022 int err = 0;
2023
2024 if (size == 0)
2025 return 0;
2026
2027 snd_pcm_stream_lock_irq(substream);
2028 switch (runtime->status->state) {
2029 case SNDRV_PCM_STATE_PREPARED:
2030 case SNDRV_PCM_STATE_RUNNING:
2031 case SNDRV_PCM_STATE_PAUSED:
2032 break;
2033 case SNDRV_PCM_STATE_XRUN:
2034 err = -EPIPE;
2035 goto _end_unlock;
2036 case SNDRV_PCM_STATE_SUSPENDED:
2037 err = -ESTRPIPE;
2038 goto _end_unlock;
2039 default:
2040 err = -EBADFD;
2041 goto _end_unlock;
2042 }
2043
2044 runtime->twake = runtime->control->avail_min ? : 1;
2045 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2046 snd_pcm_update_hw_ptr(substream);
2047 avail = snd_pcm_playback_avail(runtime);
2048 while (size > 0) {
2049 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2050 snd_pcm_uframes_t cont;
2051 if (!avail) {
2052 if (nonblock) {
2053 err = -EAGAIN;
2054 goto _end_unlock;
2055 }
2056 runtime->twake = min_t(snd_pcm_uframes_t, size,
2057 runtime->control->avail_min ? : 1);
2058 err = wait_for_avail(substream, &avail);
2059 if (err < 0)
2060 goto _end_unlock;
2061 }
2062 frames = size > avail ? avail : size;
2063 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2064 if (frames > cont)
2065 frames = cont;
2066 if (snd_BUG_ON(!frames)) {
2067 runtime->twake = 0;
2068 snd_pcm_stream_unlock_irq(substream);
2069 return -EINVAL;
2070 }
2071 appl_ptr = runtime->control->appl_ptr;
2072 appl_ofs = appl_ptr % runtime->buffer_size;
2073 snd_pcm_stream_unlock_irq(substream);
2074 err = transfer(substream, appl_ofs, data, offset, frames);
2075 snd_pcm_stream_lock_irq(substream);
2076 if (err < 0)
2077 goto _end_unlock;
2078 switch (runtime->status->state) {
2079 case SNDRV_PCM_STATE_XRUN:
2080 err = -EPIPE;
2081 goto _end_unlock;
2082 case SNDRV_PCM_STATE_SUSPENDED:
2083 err = -ESTRPIPE;
2084 goto _end_unlock;
2085 default:
2086 break;
2087 }
2088 appl_ptr += frames;
2089 if (appl_ptr >= runtime->boundary)
2090 appl_ptr -= runtime->boundary;
2091 runtime->control->appl_ptr = appl_ptr;
2092 if (substream->ops->ack)
2093 substream->ops->ack(substream);
2094
2095 offset += frames;
2096 size -= frames;
2097 xfer += frames;
2098 avail -= frames;
2099 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2100 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2101 err = snd_pcm_start(substream);
2102 if (err < 0)
2103 goto _end_unlock;
2104 }
2105 }
2106 _end_unlock:
2107 runtime->twake = 0;
2108 if (xfer > 0 && err >= 0)
2109 snd_pcm_update_state(substream, runtime);
2110 snd_pcm_stream_unlock_irq(substream);
2111 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2112 }
2113
2114 /* sanity-check for read/write methods */
2115 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2116 {
2117 struct snd_pcm_runtime *runtime;
2118 if (PCM_RUNTIME_CHECK(substream))
2119 return -ENXIO;
2120 runtime = substream->runtime;
2121 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2122 return -EINVAL;
2123 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2124 return -EBADFD;
2125 return 0;
2126 }
2127
2128 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2129 {
2130 struct snd_pcm_runtime *runtime;
2131 int nonblock;
2132 int err;
2133
2134 err = pcm_sanity_check(substream);
2135 if (err < 0)
2136 return err;
2137 runtime = substream->runtime;
2138 nonblock = !!(substream->f_flags & O_NONBLOCK);
2139
2140 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2141 runtime->channels > 1)
2142 return -EINVAL;
2143 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2144 snd_pcm_lib_write_transfer);
2145 }
2146
2147 EXPORT_SYMBOL(snd_pcm_lib_write);
2148
2149 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2150 unsigned int hwoff,
2151 unsigned long data, unsigned int off,
2152 snd_pcm_uframes_t frames)
2153 {
2154 struct snd_pcm_runtime *runtime = substream->runtime;
2155 int err;
2156 void __user **bufs = (void __user **)data;
2157 int channels = runtime->channels;
2158 int c;
2159 if (substream->ops->copy) {
2160 if (snd_BUG_ON(!substream->ops->silence))
2161 return -EINVAL;
2162 for (c = 0; c < channels; ++c, ++bufs) {
2163 if (*bufs == NULL) {
2164 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2165 return err;
2166 } else {
2167 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2168 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2169 return err;
2170 }
2171 }
2172 } else {
2173 /* default transfer behaviour */
2174 size_t dma_csize = runtime->dma_bytes / channels;
2175 for (c = 0; c < channels; ++c, ++bufs) {
2176 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2177 if (*bufs == NULL) {
2178 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2179 } else {
2180 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2181 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2182 return -EFAULT;
2183 }
2184 }
2185 }
2186 return 0;
2187 }
2188
2189 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2190 void __user **bufs,
2191 snd_pcm_uframes_t frames)
2192 {
2193 struct snd_pcm_runtime *runtime;
2194 int nonblock;
2195 int err;
2196
2197 err = pcm_sanity_check(substream);
2198 if (err < 0)
2199 return err;
2200 runtime = substream->runtime;
2201 nonblock = !!(substream->f_flags & O_NONBLOCK);
2202
2203 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2204 return -EINVAL;
2205 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2206 nonblock, snd_pcm_lib_writev_transfer);
2207 }
2208
2209 EXPORT_SYMBOL(snd_pcm_lib_writev);
2210
2211 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2212 unsigned int hwoff,
2213 unsigned long data, unsigned int off,
2214 snd_pcm_uframes_t frames)
2215 {
2216 struct snd_pcm_runtime *runtime = substream->runtime;
2217 int err;
2218 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2219 if (substream->ops->copy) {
2220 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2221 return err;
2222 } else {
2223 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2224 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2225 return -EFAULT;
2226 }
2227 return 0;
2228 }
2229
2230 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2231 unsigned long data,
2232 snd_pcm_uframes_t size,
2233 int nonblock,
2234 transfer_f transfer)
2235 {
2236 struct snd_pcm_runtime *runtime = substream->runtime;
2237 snd_pcm_uframes_t xfer = 0;
2238 snd_pcm_uframes_t offset = 0;
2239 snd_pcm_uframes_t avail;
2240 int err = 0;
2241
2242 if (size == 0)
2243 return 0;
2244
2245 snd_pcm_stream_lock_irq(substream);
2246 switch (runtime->status->state) {
2247 case SNDRV_PCM_STATE_PREPARED:
2248 if (size >= runtime->start_threshold) {
2249 err = snd_pcm_start(substream);
2250 if (err < 0)
2251 goto _end_unlock;
2252 }
2253 break;
2254 case SNDRV_PCM_STATE_DRAINING:
2255 case SNDRV_PCM_STATE_RUNNING:
2256 case SNDRV_PCM_STATE_PAUSED:
2257 break;
2258 case SNDRV_PCM_STATE_XRUN:
2259 err = -EPIPE;
2260 goto _end_unlock;
2261 case SNDRV_PCM_STATE_SUSPENDED:
2262 err = -ESTRPIPE;
2263 goto _end_unlock;
2264 default:
2265 err = -EBADFD;
2266 goto _end_unlock;
2267 }
2268
2269 runtime->twake = runtime->control->avail_min ? : 1;
2270 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2271 snd_pcm_update_hw_ptr(substream);
2272 avail = snd_pcm_capture_avail(runtime);
2273 while (size > 0) {
2274 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2275 snd_pcm_uframes_t cont;
2276 if (!avail) {
2277 if (runtime->status->state ==
2278 SNDRV_PCM_STATE_DRAINING) {
2279 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2280 goto _end_unlock;
2281 }
2282 if (nonblock) {
2283 err = -EAGAIN;
2284 goto _end_unlock;
2285 }
2286 runtime->twake = min_t(snd_pcm_uframes_t, size,
2287 runtime->control->avail_min ? : 1);
2288 err = wait_for_avail(substream, &avail);
2289 if (err < 0)
2290 goto _end_unlock;
2291 if (!avail)
2292 continue; /* draining */
2293 }
2294 frames = size > avail ? avail : size;
2295 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2296 if (frames > cont)
2297 frames = cont;
2298 if (snd_BUG_ON(!frames)) {
2299 runtime->twake = 0;
2300 snd_pcm_stream_unlock_irq(substream);
2301 return -EINVAL;
2302 }
2303 appl_ptr = runtime->control->appl_ptr;
2304 appl_ofs = appl_ptr % runtime->buffer_size;
2305 snd_pcm_stream_unlock_irq(substream);
2306 err = transfer(substream, appl_ofs, data, offset, frames);
2307 snd_pcm_stream_lock_irq(substream);
2308 if (err < 0)
2309 goto _end_unlock;
2310 switch (runtime->status->state) {
2311 case SNDRV_PCM_STATE_XRUN:
2312 err = -EPIPE;
2313 goto _end_unlock;
2314 case SNDRV_PCM_STATE_SUSPENDED:
2315 err = -ESTRPIPE;
2316 goto _end_unlock;
2317 default:
2318 break;
2319 }
2320 appl_ptr += frames;
2321 if (appl_ptr >= runtime->boundary)
2322 appl_ptr -= runtime->boundary;
2323 runtime->control->appl_ptr = appl_ptr;
2324 if (substream->ops->ack)
2325 substream->ops->ack(substream);
2326
2327 offset += frames;
2328 size -= frames;
2329 xfer += frames;
2330 avail -= frames;
2331 }
2332 _end_unlock:
2333 runtime->twake = 0;
2334 if (xfer > 0 && err >= 0)
2335 snd_pcm_update_state(substream, runtime);
2336 snd_pcm_stream_unlock_irq(substream);
2337 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2338 }
2339
2340 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2341 {
2342 struct snd_pcm_runtime *runtime;
2343 int nonblock;
2344 int err;
2345
2346 err = pcm_sanity_check(substream);
2347 if (err < 0)
2348 return err;
2349 runtime = substream->runtime;
2350 nonblock = !!(substream->f_flags & O_NONBLOCK);
2351 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2352 return -EINVAL;
2353 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2354 }
2355
2356 EXPORT_SYMBOL(snd_pcm_lib_read);
2357
2358 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2359 unsigned int hwoff,
2360 unsigned long data, unsigned int off,
2361 snd_pcm_uframes_t frames)
2362 {
2363 struct snd_pcm_runtime *runtime = substream->runtime;
2364 int err;
2365 void __user **bufs = (void __user **)data;
2366 int channels = runtime->channels;
2367 int c;
2368 if (substream->ops->copy) {
2369 for (c = 0; c < channels; ++c, ++bufs) {
2370 char __user *buf;
2371 if (*bufs == NULL)
2372 continue;
2373 buf = *bufs + samples_to_bytes(runtime, off);
2374 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2375 return err;
2376 }
2377 } else {
2378 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2379 for (c = 0; c < channels; ++c, ++bufs) {
2380 char *hwbuf;
2381 char __user *buf;
2382 if (*bufs == NULL)
2383 continue;
2384
2385 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2386 buf = *bufs + samples_to_bytes(runtime, off);
2387 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2388 return -EFAULT;
2389 }
2390 }
2391 return 0;
2392 }
2393
2394 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2395 void __user **bufs,
2396 snd_pcm_uframes_t frames)
2397 {
2398 struct snd_pcm_runtime *runtime;
2399 int nonblock;
2400 int err;
2401
2402 err = pcm_sanity_check(substream);
2403 if (err < 0)
2404 return err;
2405 runtime = substream->runtime;
2406 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2407 return -EBADFD;
2408
2409 nonblock = !!(substream->f_flags & O_NONBLOCK);
2410 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2411 return -EINVAL;
2412 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2413 }
2414
2415 EXPORT_SYMBOL(snd_pcm_lib_readv);
2416
2417 /*
2418 * standard channel mapping helpers
2419 */
2420
2421 /* default channel maps for multi-channel playbacks, up to 8 channels */
2422 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2423 { .channels = 1,
2424 .map = { SNDRV_CHMAP_MONO } },
2425 { .channels = 2,
2426 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2427 { .channels = 4,
2428 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2429 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2430 { .channels = 6,
2431 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2432 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2433 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2434 { .channels = 8,
2435 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2436 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2437 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2438 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2439 { }
2440 };
2441 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2442
2443 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2444 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2445 { .channels = 1,
2446 .map = { SNDRV_CHMAP_MONO } },
2447 { .channels = 2,
2448 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2449 { .channels = 4,
2450 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2451 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2452 { .channels = 6,
2453 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2454 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2455 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2456 { .channels = 8,
2457 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2458 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2459 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2460 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2461 { }
2462 };
2463 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2464
2465 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2466 {
2467 if (ch > info->max_channels)
2468 return false;
2469 return !info->channel_mask || (info->channel_mask & (1U << ch));
2470 }
2471
2472 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2473 struct snd_ctl_elem_info *uinfo)
2474 {
2475 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2476
2477 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2478 uinfo->count = 0;
2479 uinfo->count = info->max_channels;
2480 uinfo->value.integer.min = 0;
2481 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2482 return 0;
2483 }
2484
2485 /* get callback for channel map ctl element
2486 * stores the channel position firstly matching with the current channels
2487 */
2488 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2489 struct snd_ctl_elem_value *ucontrol)
2490 {
2491 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2492 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2493 struct snd_pcm_substream *substream;
2494 const struct snd_pcm_chmap_elem *map;
2495
2496 if (snd_BUG_ON(!info->chmap))
2497 return -EINVAL;
2498 substream = snd_pcm_chmap_substream(info, idx);
2499 if (!substream)
2500 return -ENODEV;
2501 memset(ucontrol->value.integer.value, 0,
2502 sizeof(ucontrol->value.integer.value));
2503 if (!substream->runtime)
2504 return 0; /* no channels set */
2505 for (map = info->chmap; map->channels; map++) {
2506 int i;
2507 if (map->channels == substream->runtime->channels &&
2508 valid_chmap_channels(info, map->channels)) {
2509 for (i = 0; i < map->channels; i++)
2510 ucontrol->value.integer.value[i] = map->map[i];
2511 return 0;
2512 }
2513 }
2514 return -EINVAL;
2515 }
2516
2517 /* tlv callback for channel map ctl element
2518 * expands the pre-defined channel maps in a form of TLV
2519 */
2520 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2521 unsigned int size, unsigned int __user *tlv)
2522 {
2523 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2524 const struct snd_pcm_chmap_elem *map;
2525 unsigned int __user *dst;
2526 int c, count = 0;
2527
2528 if (snd_BUG_ON(!info->chmap))
2529 return -EINVAL;
2530 if (size < 8)
2531 return -ENOMEM;
2532 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2533 return -EFAULT;
2534 size -= 8;
2535 dst = tlv + 2;
2536 for (map = info->chmap; map->channels; map++) {
2537 int chs_bytes = map->channels * 4;
2538 if (!valid_chmap_channels(info, map->channels))
2539 continue;
2540 if (size < 8)
2541 return -ENOMEM;
2542 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2543 put_user(chs_bytes, dst + 1))
2544 return -EFAULT;
2545 dst += 2;
2546 size -= 8;
2547 count += 8;
2548 if (size < chs_bytes)
2549 return -ENOMEM;
2550 size -= chs_bytes;
2551 count += chs_bytes;
2552 for (c = 0; c < map->channels; c++) {
2553 if (put_user(map->map[c], dst))
2554 return -EFAULT;
2555 dst++;
2556 }
2557 }
2558 if (put_user(count, tlv + 1))
2559 return -EFAULT;
2560 return 0;
2561 }
2562
2563 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2564 {
2565 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2566 info->pcm->streams[info->stream].chmap_kctl = NULL;
2567 kfree(info);
2568 }
2569
2570 /**
2571 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2572 * @pcm: the assigned PCM instance
2573 * @stream: stream direction
2574 * @chmap: channel map elements (for query)
2575 * @max_channels: the max number of channels for the stream
2576 * @private_value: the value passed to each kcontrol's private_value field
2577 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2578 *
2579 * Create channel-mapping control elements assigned to the given PCM stream(s).
2580 * Return: Zero if successful, or a negative error value.
2581 */
2582 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2583 const struct snd_pcm_chmap_elem *chmap,
2584 int max_channels,
2585 unsigned long private_value,
2586 struct snd_pcm_chmap **info_ret)
2587 {
2588 struct snd_pcm_chmap *info;
2589 struct snd_kcontrol_new knew = {
2590 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2591 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2592 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2593 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2594 .info = pcm_chmap_ctl_info,
2595 .get = pcm_chmap_ctl_get,
2596 .tlv.c = pcm_chmap_ctl_tlv,
2597 };
2598 int err;
2599
2600 info = kzalloc(sizeof(*info), GFP_KERNEL);
2601 if (!info)
2602 return -ENOMEM;
2603 info->pcm = pcm;
2604 info->stream = stream;
2605 info->chmap = chmap;
2606 info->max_channels = max_channels;
2607 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2608 knew.name = "Playback Channel Map";
2609 else
2610 knew.name = "Capture Channel Map";
2611 knew.device = pcm->device;
2612 knew.count = pcm->streams[stream].substream_count;
2613 knew.private_value = private_value;
2614 info->kctl = snd_ctl_new1(&knew, info);
2615 if (!info->kctl) {
2616 kfree(info);
2617 return -ENOMEM;
2618 }
2619 info->kctl->private_free = pcm_chmap_ctl_private_free;
2620 err = snd_ctl_add(pcm->card, info->kctl);
2621 if (err < 0)
2622 return err;
2623 pcm->streams[stream].chmap_kctl = info->kctl;
2624 if (info_ret)
2625 *info_ret = info;
2626 return 0;
2627 }
2628 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
This page took 0.125683 seconds and 5 git commands to generate.