[ALSA] Clean up with common snd_ctl_boolean_*_info callbacks
[deliverable/linux.git] / sound / pci / hda / hda_codec.c
1 /*
2 * Universal Interface for Intel High Definition Audio Codec
3 *
4 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
5 *
6 *
7 * This driver is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This driver is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 #include <sound/driver.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/pci.h>
27 #include <linux/mutex.h>
28 #include <sound/core.h>
29 #include "hda_codec.h"
30 #include <sound/asoundef.h>
31 #include <sound/tlv.h>
32 #include <sound/initval.h>
33 #include "hda_local.h"
34
35
36 /*
37 * vendor / preset table
38 */
39
40 struct hda_vendor_id {
41 unsigned int id;
42 const char *name;
43 };
44
45 /* codec vendor labels */
46 static struct hda_vendor_id hda_vendor_ids[] = {
47 { 0x10ec, "Realtek" },
48 { 0x1057, "Motorola" },
49 { 0x1106, "VIA" },
50 { 0x11d4, "Analog Devices" },
51 { 0x13f6, "C-Media" },
52 { 0x14f1, "Conexant" },
53 { 0x434d, "C-Media" },
54 { 0x8384, "SigmaTel" },
55 {} /* terminator */
56 };
57
58 /* codec presets */
59 #include "hda_patch.h"
60
61
62 /**
63 * snd_hda_codec_read - send a command and get the response
64 * @codec: the HDA codec
65 * @nid: NID to send the command
66 * @direct: direct flag
67 * @verb: the verb to send
68 * @parm: the parameter for the verb
69 *
70 * Send a single command and read the corresponding response.
71 *
72 * Returns the obtained response value, or -1 for an error.
73 */
74 unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid,
75 int direct,
76 unsigned int verb, unsigned int parm)
77 {
78 unsigned int res;
79 mutex_lock(&codec->bus->cmd_mutex);
80 if (!codec->bus->ops.command(codec, nid, direct, verb, parm))
81 res = codec->bus->ops.get_response(codec);
82 else
83 res = (unsigned int)-1;
84 mutex_unlock(&codec->bus->cmd_mutex);
85 return res;
86 }
87
88 /**
89 * snd_hda_codec_write - send a single command without waiting for response
90 * @codec: the HDA codec
91 * @nid: NID to send the command
92 * @direct: direct flag
93 * @verb: the verb to send
94 * @parm: the parameter for the verb
95 *
96 * Send a single command without waiting for response.
97 *
98 * Returns 0 if successful, or a negative error code.
99 */
100 int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
101 unsigned int verb, unsigned int parm)
102 {
103 int err;
104 mutex_lock(&codec->bus->cmd_mutex);
105 err = codec->bus->ops.command(codec, nid, direct, verb, parm);
106 mutex_unlock(&codec->bus->cmd_mutex);
107 return err;
108 }
109
110 /**
111 * snd_hda_sequence_write - sequence writes
112 * @codec: the HDA codec
113 * @seq: VERB array to send
114 *
115 * Send the commands sequentially from the given array.
116 * The array must be terminated with NID=0.
117 */
118 void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
119 {
120 for (; seq->nid; seq++)
121 snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
122 }
123
124 /**
125 * snd_hda_get_sub_nodes - get the range of sub nodes
126 * @codec: the HDA codec
127 * @nid: NID to parse
128 * @start_id: the pointer to store the start NID
129 *
130 * Parse the NID and store the start NID of its sub-nodes.
131 * Returns the number of sub-nodes.
132 */
133 int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid,
134 hda_nid_t *start_id)
135 {
136 unsigned int parm;
137
138 parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
139 *start_id = (parm >> 16) & 0x7fff;
140 return (int)(parm & 0x7fff);
141 }
142
143 /**
144 * snd_hda_get_connections - get connection list
145 * @codec: the HDA codec
146 * @nid: NID to parse
147 * @conn_list: connection list array
148 * @max_conns: max. number of connections to store
149 *
150 * Parses the connection list of the given widget and stores the list
151 * of NIDs.
152 *
153 * Returns the number of connections, or a negative error code.
154 */
155 int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
156 hda_nid_t *conn_list, int max_conns)
157 {
158 unsigned int parm;
159 int i, conn_len, conns;
160 unsigned int shift, num_elems, mask;
161 hda_nid_t prev_nid;
162
163 snd_assert(conn_list && max_conns > 0, return -EINVAL);
164
165 parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
166 if (parm & AC_CLIST_LONG) {
167 /* long form */
168 shift = 16;
169 num_elems = 2;
170 } else {
171 /* short form */
172 shift = 8;
173 num_elems = 4;
174 }
175 conn_len = parm & AC_CLIST_LENGTH;
176 mask = (1 << (shift-1)) - 1;
177
178 if (!conn_len)
179 return 0; /* no connection */
180
181 if (conn_len == 1) {
182 /* single connection */
183 parm = snd_hda_codec_read(codec, nid, 0,
184 AC_VERB_GET_CONNECT_LIST, 0);
185 conn_list[0] = parm & mask;
186 return 1;
187 }
188
189 /* multi connection */
190 conns = 0;
191 prev_nid = 0;
192 for (i = 0; i < conn_len; i++) {
193 int range_val;
194 hda_nid_t val, n;
195
196 if (i % num_elems == 0)
197 parm = snd_hda_codec_read(codec, nid, 0,
198 AC_VERB_GET_CONNECT_LIST, i);
199 range_val = !!(parm & (1 << (shift-1))); /* ranges */
200 val = parm & mask;
201 parm >>= shift;
202 if (range_val) {
203 /* ranges between the previous and this one */
204 if (!prev_nid || prev_nid >= val) {
205 snd_printk(KERN_WARNING "hda_codec: "
206 "invalid dep_range_val %x:%x\n",
207 prev_nid, val);
208 continue;
209 }
210 for (n = prev_nid + 1; n <= val; n++) {
211 if (conns >= max_conns) {
212 snd_printk(KERN_ERR
213 "Too many connections\n");
214 return -EINVAL;
215 }
216 conn_list[conns++] = n;
217 }
218 } else {
219 if (conns >= max_conns) {
220 snd_printk(KERN_ERR "Too many connections\n");
221 return -EINVAL;
222 }
223 conn_list[conns++] = val;
224 }
225 prev_nid = val;
226 }
227 return conns;
228 }
229
230
231 /**
232 * snd_hda_queue_unsol_event - add an unsolicited event to queue
233 * @bus: the BUS
234 * @res: unsolicited event (lower 32bit of RIRB entry)
235 * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
236 *
237 * Adds the given event to the queue. The events are processed in
238 * the workqueue asynchronously. Call this function in the interrupt
239 * hanlder when RIRB receives an unsolicited event.
240 *
241 * Returns 0 if successful, or a negative error code.
242 */
243 int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
244 {
245 struct hda_bus_unsolicited *unsol;
246 unsigned int wp;
247
248 unsol = bus->unsol;
249 if (!unsol)
250 return 0;
251
252 wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
253 unsol->wp = wp;
254
255 wp <<= 1;
256 unsol->queue[wp] = res;
257 unsol->queue[wp + 1] = res_ex;
258
259 schedule_work(&unsol->work);
260
261 return 0;
262 }
263
264 /*
265 * process queueud unsolicited events
266 */
267 static void process_unsol_events(struct work_struct *work)
268 {
269 struct hda_bus_unsolicited *unsol =
270 container_of(work, struct hda_bus_unsolicited, work);
271 struct hda_bus *bus = unsol->bus;
272 struct hda_codec *codec;
273 unsigned int rp, caddr, res;
274
275 while (unsol->rp != unsol->wp) {
276 rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
277 unsol->rp = rp;
278 rp <<= 1;
279 res = unsol->queue[rp];
280 caddr = unsol->queue[rp + 1];
281 if (!(caddr & (1 << 4))) /* no unsolicited event? */
282 continue;
283 codec = bus->caddr_tbl[caddr & 0x0f];
284 if (codec && codec->patch_ops.unsol_event)
285 codec->patch_ops.unsol_event(codec, res);
286 }
287 }
288
289 /*
290 * initialize unsolicited queue
291 */
292 static int __devinit init_unsol_queue(struct hda_bus *bus)
293 {
294 struct hda_bus_unsolicited *unsol;
295
296 if (bus->unsol) /* already initialized */
297 return 0;
298
299 unsol = kzalloc(sizeof(*unsol), GFP_KERNEL);
300 if (!unsol) {
301 snd_printk(KERN_ERR "hda_codec: "
302 "can't allocate unsolicited queue\n");
303 return -ENOMEM;
304 }
305 INIT_WORK(&unsol->work, process_unsol_events);
306 unsol->bus = bus;
307 bus->unsol = unsol;
308 return 0;
309 }
310
311 /*
312 * destructor
313 */
314 static void snd_hda_codec_free(struct hda_codec *codec);
315
316 static int snd_hda_bus_free(struct hda_bus *bus)
317 {
318 struct hda_codec *codec, *n;
319
320 if (!bus)
321 return 0;
322 if (bus->unsol) {
323 flush_scheduled_work();
324 kfree(bus->unsol);
325 }
326 list_for_each_entry_safe(codec, n, &bus->codec_list, list) {
327 snd_hda_codec_free(codec);
328 }
329 if (bus->ops.private_free)
330 bus->ops.private_free(bus);
331 kfree(bus);
332 return 0;
333 }
334
335 static int snd_hda_bus_dev_free(struct snd_device *device)
336 {
337 struct hda_bus *bus = device->device_data;
338 return snd_hda_bus_free(bus);
339 }
340
341 /**
342 * snd_hda_bus_new - create a HDA bus
343 * @card: the card entry
344 * @temp: the template for hda_bus information
345 * @busp: the pointer to store the created bus instance
346 *
347 * Returns 0 if successful, or a negative error code.
348 */
349 int __devinit snd_hda_bus_new(struct snd_card *card,
350 const struct hda_bus_template *temp,
351 struct hda_bus **busp)
352 {
353 struct hda_bus *bus;
354 int err;
355 static struct snd_device_ops dev_ops = {
356 .dev_free = snd_hda_bus_dev_free,
357 };
358
359 snd_assert(temp, return -EINVAL);
360 snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
361
362 if (busp)
363 *busp = NULL;
364
365 bus = kzalloc(sizeof(*bus), GFP_KERNEL);
366 if (bus == NULL) {
367 snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
368 return -ENOMEM;
369 }
370
371 bus->card = card;
372 bus->private_data = temp->private_data;
373 bus->pci = temp->pci;
374 bus->modelname = temp->modelname;
375 bus->ops = temp->ops;
376
377 mutex_init(&bus->cmd_mutex);
378 INIT_LIST_HEAD(&bus->codec_list);
379
380 err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops);
381 if (err < 0) {
382 snd_hda_bus_free(bus);
383 return err;
384 }
385 if (busp)
386 *busp = bus;
387 return 0;
388 }
389
390 /*
391 * find a matching codec preset
392 */
393 static const struct hda_codec_preset __devinit *
394 find_codec_preset(struct hda_codec *codec)
395 {
396 const struct hda_codec_preset **tbl, *preset;
397
398 if (codec->bus->modelname && !strcmp(codec->bus->modelname, "generic"))
399 return NULL; /* use the generic parser */
400
401 for (tbl = hda_preset_tables; *tbl; tbl++) {
402 for (preset = *tbl; preset->id; preset++) {
403 u32 mask = preset->mask;
404 if (!mask)
405 mask = ~0;
406 if (preset->id == (codec->vendor_id & mask) &&
407 (!preset->rev ||
408 preset->rev == codec->revision_id))
409 return preset;
410 }
411 }
412 return NULL;
413 }
414
415 /*
416 * snd_hda_get_codec_name - store the codec name
417 */
418 void snd_hda_get_codec_name(struct hda_codec *codec,
419 char *name, int namelen)
420 {
421 const struct hda_vendor_id *c;
422 const char *vendor = NULL;
423 u16 vendor_id = codec->vendor_id >> 16;
424 char tmp[16];
425
426 for (c = hda_vendor_ids; c->id; c++) {
427 if (c->id == vendor_id) {
428 vendor = c->name;
429 break;
430 }
431 }
432 if (!vendor) {
433 sprintf(tmp, "Generic %04x", vendor_id);
434 vendor = tmp;
435 }
436 if (codec->preset && codec->preset->name)
437 snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
438 else
439 snprintf(name, namelen, "%s ID %x", vendor,
440 codec->vendor_id & 0xffff);
441 }
442
443 /*
444 * look for an AFG and MFG nodes
445 */
446 static void __devinit setup_fg_nodes(struct hda_codec *codec)
447 {
448 int i, total_nodes;
449 hda_nid_t nid;
450
451 total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
452 for (i = 0; i < total_nodes; i++, nid++) {
453 unsigned int func;
454 func = snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE);
455 switch (func & 0xff) {
456 case AC_GRP_AUDIO_FUNCTION:
457 codec->afg = nid;
458 break;
459 case AC_GRP_MODEM_FUNCTION:
460 codec->mfg = nid;
461 break;
462 default:
463 break;
464 }
465 }
466 }
467
468 /*
469 * read widget caps for each widget and store in cache
470 */
471 static int read_widget_caps(struct hda_codec *codec, hda_nid_t fg_node)
472 {
473 int i;
474 hda_nid_t nid;
475
476 codec->num_nodes = snd_hda_get_sub_nodes(codec, fg_node,
477 &codec->start_nid);
478 codec->wcaps = kmalloc(codec->num_nodes * 4, GFP_KERNEL);
479 if (!codec->wcaps)
480 return -ENOMEM;
481 nid = codec->start_nid;
482 for (i = 0; i < codec->num_nodes; i++, nid++)
483 codec->wcaps[i] = snd_hda_param_read(codec, nid,
484 AC_PAR_AUDIO_WIDGET_CAP);
485 return 0;
486 }
487
488
489 /*
490 * codec destructor
491 */
492 static void snd_hda_codec_free(struct hda_codec *codec)
493 {
494 if (!codec)
495 return;
496 list_del(&codec->list);
497 codec->bus->caddr_tbl[codec->addr] = NULL;
498 if (codec->patch_ops.free)
499 codec->patch_ops.free(codec);
500 kfree(codec->amp_info);
501 kfree(codec->wcaps);
502 kfree(codec);
503 }
504
505 static void init_amp_hash(struct hda_codec *codec);
506
507 /**
508 * snd_hda_codec_new - create a HDA codec
509 * @bus: the bus to assign
510 * @codec_addr: the codec address
511 * @codecp: the pointer to store the generated codec
512 *
513 * Returns 0 if successful, or a negative error code.
514 */
515 int __devinit snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
516 struct hda_codec **codecp)
517 {
518 struct hda_codec *codec;
519 char component[13];
520 int err;
521
522 snd_assert(bus, return -EINVAL);
523 snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
524
525 if (bus->caddr_tbl[codec_addr]) {
526 snd_printk(KERN_ERR "hda_codec: "
527 "address 0x%x is already occupied\n", codec_addr);
528 return -EBUSY;
529 }
530
531 codec = kzalloc(sizeof(*codec), GFP_KERNEL);
532 if (codec == NULL) {
533 snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
534 return -ENOMEM;
535 }
536
537 codec->bus = bus;
538 codec->addr = codec_addr;
539 mutex_init(&codec->spdif_mutex);
540 init_amp_hash(codec);
541
542 list_add_tail(&codec->list, &bus->codec_list);
543 bus->caddr_tbl[codec_addr] = codec;
544
545 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
546 AC_PAR_VENDOR_ID);
547 if (codec->vendor_id == -1)
548 /* read again, hopefully the access method was corrected
549 * in the last read...
550 */
551 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
552 AC_PAR_VENDOR_ID);
553 codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT,
554 AC_PAR_SUBSYSTEM_ID);
555 codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT,
556 AC_PAR_REV_ID);
557
558 setup_fg_nodes(codec);
559 if (!codec->afg && !codec->mfg) {
560 snd_printdd("hda_codec: no AFG or MFG node found\n");
561 snd_hda_codec_free(codec);
562 return -ENODEV;
563 }
564
565 if (read_widget_caps(codec, codec->afg ? codec->afg : codec->mfg) < 0) {
566 snd_printk(KERN_ERR "hda_codec: cannot malloc\n");
567 snd_hda_codec_free(codec);
568 return -ENOMEM;
569 }
570
571 if (!codec->subsystem_id) {
572 hda_nid_t nid = codec->afg ? codec->afg : codec->mfg;
573 codec->subsystem_id =
574 snd_hda_codec_read(codec, nid, 0,
575 AC_VERB_GET_SUBSYSTEM_ID, 0);
576 }
577
578 codec->preset = find_codec_preset(codec);
579 /* audio codec should override the mixer name */
580 if (codec->afg || !*bus->card->mixername)
581 snd_hda_get_codec_name(codec, bus->card->mixername,
582 sizeof(bus->card->mixername));
583
584 if (codec->preset && codec->preset->patch)
585 err = codec->preset->patch(codec);
586 else
587 err = snd_hda_parse_generic_codec(codec);
588 if (err < 0) {
589 snd_hda_codec_free(codec);
590 return err;
591 }
592
593 if (codec->patch_ops.unsol_event)
594 init_unsol_queue(bus);
595
596 snd_hda_codec_proc_new(codec);
597
598 sprintf(component, "HDA:%08x", codec->vendor_id);
599 snd_component_add(codec->bus->card, component);
600
601 if (codecp)
602 *codecp = codec;
603 return 0;
604 }
605
606 /**
607 * snd_hda_codec_setup_stream - set up the codec for streaming
608 * @codec: the CODEC to set up
609 * @nid: the NID to set up
610 * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
611 * @channel_id: channel id to pass, zero based.
612 * @format: stream format.
613 */
614 void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid,
615 u32 stream_tag,
616 int channel_id, int format)
617 {
618 if (!nid)
619 return;
620
621 snd_printdd("hda_codec_setup_stream: "
622 "NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
623 nid, stream_tag, channel_id, format);
624 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
625 (stream_tag << 4) | channel_id);
626 msleep(1);
627 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
628 }
629
630 /*
631 * amp access functions
632 */
633
634 /* FIXME: more better hash key? */
635 #define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
636 #define INFO_AMP_CAPS (1<<0)
637 #define INFO_AMP_VOL(ch) (1 << (1 + (ch)))
638
639 /* initialize the hash table */
640 static void __devinit init_amp_hash(struct hda_codec *codec)
641 {
642 memset(codec->amp_hash, 0xff, sizeof(codec->amp_hash));
643 codec->num_amp_entries = 0;
644 codec->amp_info_size = 0;
645 codec->amp_info = NULL;
646 }
647
648 /* query the hash. allocate an entry if not found. */
649 static struct hda_amp_info *get_alloc_amp_hash(struct hda_codec *codec, u32 key)
650 {
651 u16 idx = key % (u16)ARRAY_SIZE(codec->amp_hash);
652 u16 cur = codec->amp_hash[idx];
653 struct hda_amp_info *info;
654
655 while (cur != 0xffff) {
656 info = &codec->amp_info[cur];
657 if (info->key == key)
658 return info;
659 cur = info->next;
660 }
661
662 /* add a new hash entry */
663 if (codec->num_amp_entries >= codec->amp_info_size) {
664 /* reallocate the array */
665 int new_size = codec->amp_info_size + 64;
666 struct hda_amp_info *new_info;
667 new_info = kcalloc(new_size, sizeof(struct hda_amp_info),
668 GFP_KERNEL);
669 if (!new_info) {
670 snd_printk(KERN_ERR "hda_codec: "
671 "can't malloc amp_info\n");
672 return NULL;
673 }
674 if (codec->amp_info) {
675 memcpy(new_info, codec->amp_info,
676 codec->amp_info_size *
677 sizeof(struct hda_amp_info));
678 kfree(codec->amp_info);
679 }
680 codec->amp_info_size = new_size;
681 codec->amp_info = new_info;
682 }
683 cur = codec->num_amp_entries++;
684 info = &codec->amp_info[cur];
685 info->key = key;
686 info->status = 0; /* not initialized yet */
687 info->next = codec->amp_hash[idx];
688 codec->amp_hash[idx] = cur;
689
690 return info;
691 }
692
693 /*
694 * query AMP capabilities for the given widget and direction
695 */
696 static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
697 {
698 struct hda_amp_info *info;
699
700 info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
701 if (!info)
702 return 0;
703 if (!(info->status & INFO_AMP_CAPS)) {
704 if (!(get_wcaps(codec, nid) & AC_WCAP_AMP_OVRD))
705 nid = codec->afg;
706 info->amp_caps = snd_hda_param_read(codec, nid,
707 direction == HDA_OUTPUT ?
708 AC_PAR_AMP_OUT_CAP :
709 AC_PAR_AMP_IN_CAP);
710 if (info->amp_caps)
711 info->status |= INFO_AMP_CAPS;
712 }
713 return info->amp_caps;
714 }
715
716 int snd_hda_override_amp_caps(struct hda_codec *codec, hda_nid_t nid, int dir,
717 unsigned int caps)
718 {
719 struct hda_amp_info *info;
720
721 info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, dir, 0));
722 if (!info)
723 return -EINVAL;
724 info->amp_caps = caps;
725 info->status |= INFO_AMP_CAPS;
726 return 0;
727 }
728
729 /*
730 * read the current volume to info
731 * if the cache exists, read the cache value.
732 */
733 static unsigned int get_vol_mute(struct hda_codec *codec,
734 struct hda_amp_info *info, hda_nid_t nid,
735 int ch, int direction, int index)
736 {
737 u32 val, parm;
738
739 if (info->status & INFO_AMP_VOL(ch))
740 return info->vol[ch];
741
742 parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
743 parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
744 parm |= index;
745 val = snd_hda_codec_read(codec, nid, 0,
746 AC_VERB_GET_AMP_GAIN_MUTE, parm);
747 info->vol[ch] = val & 0xff;
748 info->status |= INFO_AMP_VOL(ch);
749 return info->vol[ch];
750 }
751
752 /*
753 * write the current volume in info to the h/w and update the cache
754 */
755 static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
756 hda_nid_t nid, int ch, int direction, int index,
757 int val)
758 {
759 u32 parm;
760
761 parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
762 parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
763 parm |= index << AC_AMP_SET_INDEX_SHIFT;
764 parm |= val;
765 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
766 info->vol[ch] = val;
767 }
768
769 /*
770 * read AMP value. The volume is between 0 to 0x7f, 0x80 = mute bit.
771 */
772 int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch,
773 int direction, int index)
774 {
775 struct hda_amp_info *info;
776 info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
777 if (!info)
778 return 0;
779 return get_vol_mute(codec, info, nid, ch, direction, index);
780 }
781
782 /*
783 * update the AMP value, mask = bit mask to set, val = the value
784 */
785 int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch,
786 int direction, int idx, int mask, int val)
787 {
788 struct hda_amp_info *info;
789
790 info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
791 if (!info)
792 return 0;
793 val &= mask;
794 val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
795 if (info->vol[ch] == val && !codec->in_resume)
796 return 0;
797 put_vol_mute(codec, info, nid, ch, direction, idx, val);
798 return 1;
799 }
800
801
802 /*
803 * AMP control callbacks
804 */
805 /* retrieve parameters from private_value */
806 #define get_amp_nid(kc) ((kc)->private_value & 0xffff)
807 #define get_amp_channels(kc) (((kc)->private_value >> 16) & 0x3)
808 #define get_amp_direction(kc) (((kc)->private_value >> 18) & 0x1)
809 #define get_amp_index(kc) (((kc)->private_value >> 19) & 0xf)
810
811 /* volume */
812 int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol,
813 struct snd_ctl_elem_info *uinfo)
814 {
815 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
816 u16 nid = get_amp_nid(kcontrol);
817 u8 chs = get_amp_channels(kcontrol);
818 int dir = get_amp_direction(kcontrol);
819 u32 caps;
820
821 caps = query_amp_caps(codec, nid, dir);
822 /* num steps */
823 caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
824 if (!caps) {
825 printk(KERN_WARNING "hda_codec: "
826 "num_steps = 0 for NID=0x%x\n", nid);
827 return -EINVAL;
828 }
829 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
830 uinfo->count = chs == 3 ? 2 : 1;
831 uinfo->value.integer.min = 0;
832 uinfo->value.integer.max = caps;
833 return 0;
834 }
835
836 int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol,
837 struct snd_ctl_elem_value *ucontrol)
838 {
839 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
840 hda_nid_t nid = get_amp_nid(kcontrol);
841 int chs = get_amp_channels(kcontrol);
842 int dir = get_amp_direction(kcontrol);
843 int idx = get_amp_index(kcontrol);
844 long *valp = ucontrol->value.integer.value;
845
846 if (chs & 1)
847 *valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
848 if (chs & 2)
849 *valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
850 return 0;
851 }
852
853 int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol,
854 struct snd_ctl_elem_value *ucontrol)
855 {
856 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
857 hda_nid_t nid = get_amp_nid(kcontrol);
858 int chs = get_amp_channels(kcontrol);
859 int dir = get_amp_direction(kcontrol);
860 int idx = get_amp_index(kcontrol);
861 long *valp = ucontrol->value.integer.value;
862 int change = 0;
863
864 if (chs & 1) {
865 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
866 0x7f, *valp);
867 valp++;
868 }
869 if (chs & 2)
870 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
871 0x7f, *valp);
872 return change;
873 }
874
875 int snd_hda_mixer_amp_tlv(struct snd_kcontrol *kcontrol, int op_flag,
876 unsigned int size, unsigned int __user *_tlv)
877 {
878 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
879 hda_nid_t nid = get_amp_nid(kcontrol);
880 int dir = get_amp_direction(kcontrol);
881 u32 caps, val1, val2;
882
883 if (size < 4 * sizeof(unsigned int))
884 return -ENOMEM;
885 caps = query_amp_caps(codec, nid, dir);
886 val2 = (caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT;
887 val2 = (val2 + 1) * 25;
888 val1 = -((caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT);
889 val1 = ((int)val1) * ((int)val2);
890 if (put_user(SNDRV_CTL_TLVT_DB_SCALE, _tlv))
891 return -EFAULT;
892 if (put_user(2 * sizeof(unsigned int), _tlv + 1))
893 return -EFAULT;
894 if (put_user(val1, _tlv + 2))
895 return -EFAULT;
896 if (put_user(val2, _tlv + 3))
897 return -EFAULT;
898 return 0;
899 }
900
901 /* switch */
902 int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol,
903 struct snd_ctl_elem_info *uinfo)
904 {
905 int chs = get_amp_channels(kcontrol);
906
907 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
908 uinfo->count = chs == 3 ? 2 : 1;
909 uinfo->value.integer.min = 0;
910 uinfo->value.integer.max = 1;
911 return 0;
912 }
913
914 int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol,
915 struct snd_ctl_elem_value *ucontrol)
916 {
917 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
918 hda_nid_t nid = get_amp_nid(kcontrol);
919 int chs = get_amp_channels(kcontrol);
920 int dir = get_amp_direction(kcontrol);
921 int idx = get_amp_index(kcontrol);
922 long *valp = ucontrol->value.integer.value;
923
924 if (chs & 1)
925 *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) &
926 0x80) ? 0 : 1;
927 if (chs & 2)
928 *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) &
929 0x80) ? 0 : 1;
930 return 0;
931 }
932
933 int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol,
934 struct snd_ctl_elem_value *ucontrol)
935 {
936 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
937 hda_nid_t nid = get_amp_nid(kcontrol);
938 int chs = get_amp_channels(kcontrol);
939 int dir = get_amp_direction(kcontrol);
940 int idx = get_amp_index(kcontrol);
941 long *valp = ucontrol->value.integer.value;
942 int change = 0;
943
944 if (chs & 1) {
945 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
946 0x80, *valp ? 0 : 0x80);
947 valp++;
948 }
949 if (chs & 2)
950 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
951 0x80, *valp ? 0 : 0x80);
952
953 return change;
954 }
955
956 /*
957 * bound volume controls
958 *
959 * bind multiple volumes (# indices, from 0)
960 */
961
962 #define AMP_VAL_IDX_SHIFT 19
963 #define AMP_VAL_IDX_MASK (0x0f<<19)
964
965 int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol,
966 struct snd_ctl_elem_value *ucontrol)
967 {
968 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
969 unsigned long pval;
970 int err;
971
972 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
973 pval = kcontrol->private_value;
974 kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
975 err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
976 kcontrol->private_value = pval;
977 mutex_unlock(&codec->spdif_mutex);
978 return err;
979 }
980
981 int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol,
982 struct snd_ctl_elem_value *ucontrol)
983 {
984 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
985 unsigned long pval;
986 int i, indices, err = 0, change = 0;
987
988 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
989 pval = kcontrol->private_value;
990 indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
991 for (i = 0; i < indices; i++) {
992 kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) |
993 (i << AMP_VAL_IDX_SHIFT);
994 err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
995 if (err < 0)
996 break;
997 change |= err;
998 }
999 kcontrol->private_value = pval;
1000 mutex_unlock(&codec->spdif_mutex);
1001 return err < 0 ? err : change;
1002 }
1003
1004 /*
1005 * SPDIF out controls
1006 */
1007
1008 static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol,
1009 struct snd_ctl_elem_info *uinfo)
1010 {
1011 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1012 uinfo->count = 1;
1013 return 0;
1014 }
1015
1016 static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol,
1017 struct snd_ctl_elem_value *ucontrol)
1018 {
1019 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
1020 IEC958_AES0_NONAUDIO |
1021 IEC958_AES0_CON_EMPHASIS_5015 |
1022 IEC958_AES0_CON_NOT_COPYRIGHT;
1023 ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
1024 IEC958_AES1_CON_ORIGINAL;
1025 return 0;
1026 }
1027
1028 static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol,
1029 struct snd_ctl_elem_value *ucontrol)
1030 {
1031 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
1032 IEC958_AES0_NONAUDIO |
1033 IEC958_AES0_PRO_EMPHASIS_5015;
1034 return 0;
1035 }
1036
1037 static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol,
1038 struct snd_ctl_elem_value *ucontrol)
1039 {
1040 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1041
1042 ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
1043 ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
1044 ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
1045 ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
1046
1047 return 0;
1048 }
1049
1050 /* convert from SPDIF status bits to HDA SPDIF bits
1051 * bit 0 (DigEn) is always set zero (to be filled later)
1052 */
1053 static unsigned short convert_from_spdif_status(unsigned int sbits)
1054 {
1055 unsigned short val = 0;
1056
1057 if (sbits & IEC958_AES0_PROFESSIONAL)
1058 val |= AC_DIG1_PROFESSIONAL;
1059 if (sbits & IEC958_AES0_NONAUDIO)
1060 val |= AC_DIG1_NONAUDIO;
1061 if (sbits & IEC958_AES0_PROFESSIONAL) {
1062 if ((sbits & IEC958_AES0_PRO_EMPHASIS) ==
1063 IEC958_AES0_PRO_EMPHASIS_5015)
1064 val |= AC_DIG1_EMPHASIS;
1065 } else {
1066 if ((sbits & IEC958_AES0_CON_EMPHASIS) ==
1067 IEC958_AES0_CON_EMPHASIS_5015)
1068 val |= AC_DIG1_EMPHASIS;
1069 if (!(sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
1070 val |= AC_DIG1_COPYRIGHT;
1071 if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
1072 val |= AC_DIG1_LEVEL;
1073 val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
1074 }
1075 return val;
1076 }
1077
1078 /* convert to SPDIF status bits from HDA SPDIF bits
1079 */
1080 static unsigned int convert_to_spdif_status(unsigned short val)
1081 {
1082 unsigned int sbits = 0;
1083
1084 if (val & AC_DIG1_NONAUDIO)
1085 sbits |= IEC958_AES0_NONAUDIO;
1086 if (val & AC_DIG1_PROFESSIONAL)
1087 sbits |= IEC958_AES0_PROFESSIONAL;
1088 if (sbits & IEC958_AES0_PROFESSIONAL) {
1089 if (sbits & AC_DIG1_EMPHASIS)
1090 sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
1091 } else {
1092 if (val & AC_DIG1_EMPHASIS)
1093 sbits |= IEC958_AES0_CON_EMPHASIS_5015;
1094 if (!(val & AC_DIG1_COPYRIGHT))
1095 sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
1096 if (val & AC_DIG1_LEVEL)
1097 sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
1098 sbits |= val & (0x7f << 8);
1099 }
1100 return sbits;
1101 }
1102
1103 static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol,
1104 struct snd_ctl_elem_value *ucontrol)
1105 {
1106 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1107 hda_nid_t nid = kcontrol->private_value;
1108 unsigned short val;
1109 int change;
1110
1111 mutex_lock(&codec->spdif_mutex);
1112 codec->spdif_status = ucontrol->value.iec958.status[0] |
1113 ((unsigned int)ucontrol->value.iec958.status[1] << 8) |
1114 ((unsigned int)ucontrol->value.iec958.status[2] << 16) |
1115 ((unsigned int)ucontrol->value.iec958.status[3] << 24);
1116 val = convert_from_spdif_status(codec->spdif_status);
1117 val |= codec->spdif_ctls & 1;
1118 change = codec->spdif_ctls != val;
1119 codec->spdif_ctls = val;
1120
1121 if (change || codec->in_resume) {
1122 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
1123 val & 0xff);
1124 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_2,
1125 val >> 8);
1126 }
1127
1128 mutex_unlock(&codec->spdif_mutex);
1129 return change;
1130 }
1131
1132 #define snd_hda_spdif_out_switch_info snd_ctl_boolean_mono_info
1133
1134 static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol,
1135 struct snd_ctl_elem_value *ucontrol)
1136 {
1137 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1138
1139 ucontrol->value.integer.value[0] = codec->spdif_ctls & AC_DIG1_ENABLE;
1140 return 0;
1141 }
1142
1143 static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol,
1144 struct snd_ctl_elem_value *ucontrol)
1145 {
1146 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1147 hda_nid_t nid = kcontrol->private_value;
1148 unsigned short val;
1149 int change;
1150
1151 mutex_lock(&codec->spdif_mutex);
1152 val = codec->spdif_ctls & ~AC_DIG1_ENABLE;
1153 if (ucontrol->value.integer.value[0])
1154 val |= AC_DIG1_ENABLE;
1155 change = codec->spdif_ctls != val;
1156 if (change || codec->in_resume) {
1157 codec->spdif_ctls = val;
1158 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
1159 val & 0xff);
1160 /* unmute amp switch (if any) */
1161 if ((get_wcaps(codec, nid) & AC_WCAP_OUT_AMP) &&
1162 (val & AC_DIG1_ENABLE))
1163 snd_hda_codec_write(codec, nid, 0,
1164 AC_VERB_SET_AMP_GAIN_MUTE,
1165 AC_AMP_SET_RIGHT | AC_AMP_SET_LEFT |
1166 AC_AMP_SET_OUTPUT);
1167 }
1168 mutex_unlock(&codec->spdif_mutex);
1169 return change;
1170 }
1171
1172 static struct snd_kcontrol_new dig_mixes[] = {
1173 {
1174 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1175 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1176 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1177 .info = snd_hda_spdif_mask_info,
1178 .get = snd_hda_spdif_cmask_get,
1179 },
1180 {
1181 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1182 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1183 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
1184 .info = snd_hda_spdif_mask_info,
1185 .get = snd_hda_spdif_pmask_get,
1186 },
1187 {
1188 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1189 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1190 .info = snd_hda_spdif_mask_info,
1191 .get = snd_hda_spdif_default_get,
1192 .put = snd_hda_spdif_default_put,
1193 },
1194 {
1195 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1196 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
1197 .info = snd_hda_spdif_out_switch_info,
1198 .get = snd_hda_spdif_out_switch_get,
1199 .put = snd_hda_spdif_out_switch_put,
1200 },
1201 { } /* end */
1202 };
1203
1204 /**
1205 * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1206 * @codec: the HDA codec
1207 * @nid: audio out widget NID
1208 *
1209 * Creates controls related with the SPDIF output.
1210 * Called from each patch supporting the SPDIF out.
1211 *
1212 * Returns 0 if successful, or a negative error code.
1213 */
1214 int __devinit snd_hda_create_spdif_out_ctls(struct hda_codec *codec,
1215 hda_nid_t nid)
1216 {
1217 int err;
1218 struct snd_kcontrol *kctl;
1219 struct snd_kcontrol_new *dig_mix;
1220
1221 for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1222 kctl = snd_ctl_new1(dig_mix, codec);
1223 kctl->private_value = nid;
1224 err = snd_ctl_add(codec->bus->card, kctl);
1225 if (err < 0)
1226 return err;
1227 }
1228 codec->spdif_ctls =
1229 snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1230 codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1231 return 0;
1232 }
1233
1234 /*
1235 * SPDIF input
1236 */
1237
1238 #define snd_hda_spdif_in_switch_info snd_hda_spdif_out_switch_info
1239
1240 static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol,
1241 struct snd_ctl_elem_value *ucontrol)
1242 {
1243 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1244
1245 ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1246 return 0;
1247 }
1248
1249 static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol,
1250 struct snd_ctl_elem_value *ucontrol)
1251 {
1252 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1253 hda_nid_t nid = kcontrol->private_value;
1254 unsigned int val = !!ucontrol->value.integer.value[0];
1255 int change;
1256
1257 mutex_lock(&codec->spdif_mutex);
1258 change = codec->spdif_in_enable != val;
1259 if (change || codec->in_resume) {
1260 codec->spdif_in_enable = val;
1261 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
1262 val);
1263 }
1264 mutex_unlock(&codec->spdif_mutex);
1265 return change;
1266 }
1267
1268 static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol,
1269 struct snd_ctl_elem_value *ucontrol)
1270 {
1271 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1272 hda_nid_t nid = kcontrol->private_value;
1273 unsigned short val;
1274 unsigned int sbits;
1275
1276 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1277 sbits = convert_to_spdif_status(val);
1278 ucontrol->value.iec958.status[0] = sbits;
1279 ucontrol->value.iec958.status[1] = sbits >> 8;
1280 ucontrol->value.iec958.status[2] = sbits >> 16;
1281 ucontrol->value.iec958.status[3] = sbits >> 24;
1282 return 0;
1283 }
1284
1285 static struct snd_kcontrol_new dig_in_ctls[] = {
1286 {
1287 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1288 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1289 .info = snd_hda_spdif_in_switch_info,
1290 .get = snd_hda_spdif_in_switch_get,
1291 .put = snd_hda_spdif_in_switch_put,
1292 },
1293 {
1294 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1295 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1296 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1297 .info = snd_hda_spdif_mask_info,
1298 .get = snd_hda_spdif_in_status_get,
1299 },
1300 { } /* end */
1301 };
1302
1303 /**
1304 * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1305 * @codec: the HDA codec
1306 * @nid: audio in widget NID
1307 *
1308 * Creates controls related with the SPDIF input.
1309 * Called from each patch supporting the SPDIF in.
1310 *
1311 * Returns 0 if successful, or a negative error code.
1312 */
1313 int __devinit snd_hda_create_spdif_in_ctls(struct hda_codec *codec,
1314 hda_nid_t nid)
1315 {
1316 int err;
1317 struct snd_kcontrol *kctl;
1318 struct snd_kcontrol_new *dig_mix;
1319
1320 for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1321 kctl = snd_ctl_new1(dig_mix, codec);
1322 kctl->private_value = nid;
1323 err = snd_ctl_add(codec->bus->card, kctl);
1324 if (err < 0)
1325 return err;
1326 }
1327 codec->spdif_in_enable =
1328 snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) &
1329 AC_DIG1_ENABLE;
1330 return 0;
1331 }
1332
1333
1334 /*
1335 * set power state of the codec
1336 */
1337 static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
1338 unsigned int power_state)
1339 {
1340 hda_nid_t nid, nid_start;
1341 int nodes;
1342
1343 snd_hda_codec_write(codec, fg, 0, AC_VERB_SET_POWER_STATE,
1344 power_state);
1345
1346 nodes = snd_hda_get_sub_nodes(codec, fg, &nid_start);
1347 for (nid = nid_start; nid < nodes + nid_start; nid++) {
1348 if (get_wcaps(codec, nid) & AC_WCAP_POWER)
1349 snd_hda_codec_write(codec, nid, 0,
1350 AC_VERB_SET_POWER_STATE,
1351 power_state);
1352 }
1353
1354 if (power_state == AC_PWRST_D0)
1355 msleep(10);
1356 }
1357
1358
1359 /**
1360 * snd_hda_build_controls - build mixer controls
1361 * @bus: the BUS
1362 *
1363 * Creates mixer controls for each codec included in the bus.
1364 *
1365 * Returns 0 if successful, otherwise a negative error code.
1366 */
1367 int __devinit snd_hda_build_controls(struct hda_bus *bus)
1368 {
1369 struct hda_codec *codec;
1370
1371 /* build controls */
1372 list_for_each_entry(codec, &bus->codec_list, list) {
1373 int err;
1374 if (!codec->patch_ops.build_controls)
1375 continue;
1376 err = codec->patch_ops.build_controls(codec);
1377 if (err < 0)
1378 return err;
1379 }
1380
1381 /* initialize */
1382 list_for_each_entry(codec, &bus->codec_list, list) {
1383 int err;
1384 hda_set_power_state(codec,
1385 codec->afg ? codec->afg : codec->mfg,
1386 AC_PWRST_D0);
1387 if (!codec->patch_ops.init)
1388 continue;
1389 err = codec->patch_ops.init(codec);
1390 if (err < 0)
1391 return err;
1392 }
1393 return 0;
1394 }
1395
1396 /*
1397 * stream formats
1398 */
1399 struct hda_rate_tbl {
1400 unsigned int hz;
1401 unsigned int alsa_bits;
1402 unsigned int hda_fmt;
1403 };
1404
1405 static struct hda_rate_tbl rate_bits[] = {
1406 /* rate in Hz, ALSA rate bitmask, HDA format value */
1407
1408 /* autodetected value used in snd_hda_query_supported_pcm */
1409 { 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1410 { 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1411 { 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1412 { 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1413 { 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1414 { 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1415 { 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1416 { 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1417 { 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1418 { 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1419 { 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1420 #define AC_PAR_PCM_RATE_BITS 11
1421 /* up to bits 10, 384kHZ isn't supported properly */
1422
1423 /* not autodetected value */
1424 { 9600, SNDRV_PCM_RATE_KNOT, 0x0400 }, /* 1/5 x 48 */
1425
1426 { 0 } /* terminator */
1427 };
1428
1429 /**
1430 * snd_hda_calc_stream_format - calculate format bitset
1431 * @rate: the sample rate
1432 * @channels: the number of channels
1433 * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1434 * @maxbps: the max. bps
1435 *
1436 * Calculate the format bitset from the given rate, channels and th PCM format.
1437 *
1438 * Return zero if invalid.
1439 */
1440 unsigned int snd_hda_calc_stream_format(unsigned int rate,
1441 unsigned int channels,
1442 unsigned int format,
1443 unsigned int maxbps)
1444 {
1445 int i;
1446 unsigned int val = 0;
1447
1448 for (i = 0; rate_bits[i].hz; i++)
1449 if (rate_bits[i].hz == rate) {
1450 val = rate_bits[i].hda_fmt;
1451 break;
1452 }
1453 if (!rate_bits[i].hz) {
1454 snd_printdd("invalid rate %d\n", rate);
1455 return 0;
1456 }
1457
1458 if (channels == 0 || channels > 8) {
1459 snd_printdd("invalid channels %d\n", channels);
1460 return 0;
1461 }
1462 val |= channels - 1;
1463
1464 switch (snd_pcm_format_width(format)) {
1465 case 8: val |= 0x00; break;
1466 case 16: val |= 0x10; break;
1467 case 20:
1468 case 24:
1469 case 32:
1470 if (maxbps >= 32)
1471 val |= 0x40;
1472 else if (maxbps >= 24)
1473 val |= 0x30;
1474 else
1475 val |= 0x20;
1476 break;
1477 default:
1478 snd_printdd("invalid format width %d\n",
1479 snd_pcm_format_width(format));
1480 return 0;
1481 }
1482
1483 return val;
1484 }
1485
1486 /**
1487 * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1488 * @codec: the HDA codec
1489 * @nid: NID to query
1490 * @ratesp: the pointer to store the detected rate bitflags
1491 * @formatsp: the pointer to store the detected formats
1492 * @bpsp: the pointer to store the detected format widths
1493 *
1494 * Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp
1495 * or @bsps argument is ignored.
1496 *
1497 * Returns 0 if successful, otherwise a negative error code.
1498 */
1499 int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1500 u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1501 {
1502 int i;
1503 unsigned int val, streams;
1504
1505 val = 0;
1506 if (nid != codec->afg &&
1507 (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1508 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1509 if (val == -1)
1510 return -EIO;
1511 }
1512 if (!val)
1513 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1514
1515 if (ratesp) {
1516 u32 rates = 0;
1517 for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++) {
1518 if (val & (1 << i))
1519 rates |= rate_bits[i].alsa_bits;
1520 }
1521 *ratesp = rates;
1522 }
1523
1524 if (formatsp || bpsp) {
1525 u64 formats = 0;
1526 unsigned int bps;
1527 unsigned int wcaps;
1528
1529 wcaps = get_wcaps(codec, nid);
1530 streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1531 if (streams == -1)
1532 return -EIO;
1533 if (!streams) {
1534 streams = snd_hda_param_read(codec, codec->afg,
1535 AC_PAR_STREAM);
1536 if (streams == -1)
1537 return -EIO;
1538 }
1539
1540 bps = 0;
1541 if (streams & AC_SUPFMT_PCM) {
1542 if (val & AC_SUPPCM_BITS_8) {
1543 formats |= SNDRV_PCM_FMTBIT_U8;
1544 bps = 8;
1545 }
1546 if (val & AC_SUPPCM_BITS_16) {
1547 formats |= SNDRV_PCM_FMTBIT_S16_LE;
1548 bps = 16;
1549 }
1550 if (wcaps & AC_WCAP_DIGITAL) {
1551 if (val & AC_SUPPCM_BITS_32)
1552 formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
1553 if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
1554 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1555 if (val & AC_SUPPCM_BITS_24)
1556 bps = 24;
1557 else if (val & AC_SUPPCM_BITS_20)
1558 bps = 20;
1559 } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|
1560 AC_SUPPCM_BITS_32)) {
1561 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1562 if (val & AC_SUPPCM_BITS_32)
1563 bps = 32;
1564 else if (val & AC_SUPPCM_BITS_24)
1565 bps = 24;
1566 else if (val & AC_SUPPCM_BITS_20)
1567 bps = 20;
1568 }
1569 }
1570 else if (streams == AC_SUPFMT_FLOAT32) {
1571 /* should be exclusive */
1572 formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
1573 bps = 32;
1574 } else if (streams == AC_SUPFMT_AC3) {
1575 /* should be exclusive */
1576 /* temporary hack: we have still no proper support
1577 * for the direct AC3 stream...
1578 */
1579 formats |= SNDRV_PCM_FMTBIT_U8;
1580 bps = 8;
1581 }
1582 if (formatsp)
1583 *formatsp = formats;
1584 if (bpsp)
1585 *bpsp = bps;
1586 }
1587
1588 return 0;
1589 }
1590
1591 /**
1592 * snd_hda_is_supported_format - check whether the given node supports
1593 * the format val
1594 *
1595 * Returns 1 if supported, 0 if not.
1596 */
1597 int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
1598 unsigned int format)
1599 {
1600 int i;
1601 unsigned int val = 0, rate, stream;
1602
1603 if (nid != codec->afg &&
1604 (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1605 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1606 if (val == -1)
1607 return 0;
1608 }
1609 if (!val) {
1610 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1611 if (val == -1)
1612 return 0;
1613 }
1614
1615 rate = format & 0xff00;
1616 for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++)
1617 if (rate_bits[i].hda_fmt == rate) {
1618 if (val & (1 << i))
1619 break;
1620 return 0;
1621 }
1622 if (i >= AC_PAR_PCM_RATE_BITS)
1623 return 0;
1624
1625 stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1626 if (stream == -1)
1627 return 0;
1628 if (!stream && nid != codec->afg)
1629 stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1630 if (!stream || stream == -1)
1631 return 0;
1632
1633 if (stream & AC_SUPFMT_PCM) {
1634 switch (format & 0xf0) {
1635 case 0x00:
1636 if (!(val & AC_SUPPCM_BITS_8))
1637 return 0;
1638 break;
1639 case 0x10:
1640 if (!(val & AC_SUPPCM_BITS_16))
1641 return 0;
1642 break;
1643 case 0x20:
1644 if (!(val & AC_SUPPCM_BITS_20))
1645 return 0;
1646 break;
1647 case 0x30:
1648 if (!(val & AC_SUPPCM_BITS_24))
1649 return 0;
1650 break;
1651 case 0x40:
1652 if (!(val & AC_SUPPCM_BITS_32))
1653 return 0;
1654 break;
1655 default:
1656 return 0;
1657 }
1658 } else {
1659 /* FIXME: check for float32 and AC3? */
1660 }
1661
1662 return 1;
1663 }
1664
1665 /*
1666 * PCM stuff
1667 */
1668 static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
1669 struct hda_codec *codec,
1670 struct snd_pcm_substream *substream)
1671 {
1672 return 0;
1673 }
1674
1675 static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
1676 struct hda_codec *codec,
1677 unsigned int stream_tag,
1678 unsigned int format,
1679 struct snd_pcm_substream *substream)
1680 {
1681 snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
1682 return 0;
1683 }
1684
1685 static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
1686 struct hda_codec *codec,
1687 struct snd_pcm_substream *substream)
1688 {
1689 snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
1690 return 0;
1691 }
1692
1693 static int __devinit set_pcm_default_values(struct hda_codec *codec,
1694 struct hda_pcm_stream *info)
1695 {
1696 /* query support PCM information from the given NID */
1697 if (info->nid && (!info->rates || !info->formats)) {
1698 snd_hda_query_supported_pcm(codec, info->nid,
1699 info->rates ? NULL : &info->rates,
1700 info->formats ? NULL : &info->formats,
1701 info->maxbps ? NULL : &info->maxbps);
1702 }
1703 if (info->ops.open == NULL)
1704 info->ops.open = hda_pcm_default_open_close;
1705 if (info->ops.close == NULL)
1706 info->ops.close = hda_pcm_default_open_close;
1707 if (info->ops.prepare == NULL) {
1708 snd_assert(info->nid, return -EINVAL);
1709 info->ops.prepare = hda_pcm_default_prepare;
1710 }
1711 if (info->ops.cleanup == NULL) {
1712 snd_assert(info->nid, return -EINVAL);
1713 info->ops.cleanup = hda_pcm_default_cleanup;
1714 }
1715 return 0;
1716 }
1717
1718 /**
1719 * snd_hda_build_pcms - build PCM information
1720 * @bus: the BUS
1721 *
1722 * Create PCM information for each codec included in the bus.
1723 *
1724 * The build_pcms codec patch is requested to set up codec->num_pcms and
1725 * codec->pcm_info properly. The array is referred by the top-level driver
1726 * to create its PCM instances.
1727 * The allocated codec->pcm_info should be released in codec->patch_ops.free
1728 * callback.
1729 *
1730 * At least, substreams, channels_min and channels_max must be filled for
1731 * each stream. substreams = 0 indicates that the stream doesn't exist.
1732 * When rates and/or formats are zero, the supported values are queried
1733 * from the given nid. The nid is used also by the default ops.prepare
1734 * and ops.cleanup callbacks.
1735 *
1736 * The driver needs to call ops.open in its open callback. Similarly,
1737 * ops.close is supposed to be called in the close callback.
1738 * ops.prepare should be called in the prepare or hw_params callback
1739 * with the proper parameters for set up.
1740 * ops.cleanup should be called in hw_free for clean up of streams.
1741 *
1742 * This function returns 0 if successfull, or a negative error code.
1743 */
1744 int __devinit snd_hda_build_pcms(struct hda_bus *bus)
1745 {
1746 struct hda_codec *codec;
1747
1748 list_for_each_entry(codec, &bus->codec_list, list) {
1749 unsigned int pcm, s;
1750 int err;
1751 if (!codec->patch_ops.build_pcms)
1752 continue;
1753 err = codec->patch_ops.build_pcms(codec);
1754 if (err < 0)
1755 return err;
1756 for (pcm = 0; pcm < codec->num_pcms; pcm++) {
1757 for (s = 0; s < 2; s++) {
1758 struct hda_pcm_stream *info;
1759 info = &codec->pcm_info[pcm].stream[s];
1760 if (!info->substreams)
1761 continue;
1762 err = set_pcm_default_values(codec, info);
1763 if (err < 0)
1764 return err;
1765 }
1766 }
1767 }
1768 return 0;
1769 }
1770
1771 /**
1772 * snd_hda_check_board_config - compare the current codec with the config table
1773 * @codec: the HDA codec
1774 * @num_configs: number of config enums
1775 * @models: array of model name strings
1776 * @tbl: configuration table, terminated by null entries
1777 *
1778 * Compares the modelname or PCI subsystem id of the current codec with the
1779 * given configuration table. If a matching entry is found, returns its
1780 * config value (supposed to be 0 or positive).
1781 *
1782 * If no entries are matching, the function returns a negative value.
1783 */
1784 int __devinit snd_hda_check_board_config(struct hda_codec *codec,
1785 int num_configs, const char **models,
1786 const struct snd_pci_quirk *tbl)
1787 {
1788 if (codec->bus->modelname && models) {
1789 int i;
1790 for (i = 0; i < num_configs; i++) {
1791 if (models[i] &&
1792 !strcmp(codec->bus->modelname, models[i])) {
1793 snd_printd(KERN_INFO "hda_codec: model '%s' is "
1794 "selected\n", models[i]);
1795 return i;
1796 }
1797 }
1798 }
1799
1800 if (!codec->bus->pci || !tbl)
1801 return -1;
1802
1803 tbl = snd_pci_quirk_lookup(codec->bus->pci, tbl);
1804 if (!tbl)
1805 return -1;
1806 if (tbl->value >= 0 && tbl->value < num_configs) {
1807 #ifdef CONFIG_SND_DEBUG_DETECT
1808 char tmp[10];
1809 const char *model = NULL;
1810 if (models)
1811 model = models[tbl->value];
1812 if (!model) {
1813 sprintf(tmp, "#%d", tbl->value);
1814 model = tmp;
1815 }
1816 snd_printdd(KERN_INFO "hda_codec: model '%s' is selected "
1817 "for config %x:%x (%s)\n",
1818 model, tbl->subvendor, tbl->subdevice,
1819 (tbl->name ? tbl->name : "Unknown device"));
1820 #endif
1821 return tbl->value;
1822 }
1823 return -1;
1824 }
1825
1826 /**
1827 * snd_hda_add_new_ctls - create controls from the array
1828 * @codec: the HDA codec
1829 * @knew: the array of struct snd_kcontrol_new
1830 *
1831 * This helper function creates and add new controls in the given array.
1832 * The array must be terminated with an empty entry as terminator.
1833 *
1834 * Returns 0 if successful, or a negative error code.
1835 */
1836 int __devinit snd_hda_add_new_ctls(struct hda_codec *codec,
1837 struct snd_kcontrol_new *knew)
1838 {
1839 int err;
1840
1841 for (; knew->name; knew++) {
1842 struct snd_kcontrol *kctl;
1843 kctl = snd_ctl_new1(knew, codec);
1844 if (!kctl)
1845 return -ENOMEM;
1846 err = snd_ctl_add(codec->bus->card, kctl);
1847 if (err < 0) {
1848 if (!codec->addr)
1849 return err;
1850 kctl = snd_ctl_new1(knew, codec);
1851 if (!kctl)
1852 return -ENOMEM;
1853 kctl->id.device = codec->addr;
1854 err = snd_ctl_add(codec->bus->card, kctl);
1855 if (err < 0)
1856 return err;
1857 }
1858 }
1859 return 0;
1860 }
1861
1862
1863 /*
1864 * Channel mode helper
1865 */
1866 int snd_hda_ch_mode_info(struct hda_codec *codec,
1867 struct snd_ctl_elem_info *uinfo,
1868 const struct hda_channel_mode *chmode,
1869 int num_chmodes)
1870 {
1871 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1872 uinfo->count = 1;
1873 uinfo->value.enumerated.items = num_chmodes;
1874 if (uinfo->value.enumerated.item >= num_chmodes)
1875 uinfo->value.enumerated.item = num_chmodes - 1;
1876 sprintf(uinfo->value.enumerated.name, "%dch",
1877 chmode[uinfo->value.enumerated.item].channels);
1878 return 0;
1879 }
1880
1881 int snd_hda_ch_mode_get(struct hda_codec *codec,
1882 struct snd_ctl_elem_value *ucontrol,
1883 const struct hda_channel_mode *chmode,
1884 int num_chmodes,
1885 int max_channels)
1886 {
1887 int i;
1888
1889 for (i = 0; i < num_chmodes; i++) {
1890 if (max_channels == chmode[i].channels) {
1891 ucontrol->value.enumerated.item[0] = i;
1892 break;
1893 }
1894 }
1895 return 0;
1896 }
1897
1898 int snd_hda_ch_mode_put(struct hda_codec *codec,
1899 struct snd_ctl_elem_value *ucontrol,
1900 const struct hda_channel_mode *chmode,
1901 int num_chmodes,
1902 int *max_channelsp)
1903 {
1904 unsigned int mode;
1905
1906 mode = ucontrol->value.enumerated.item[0];
1907 snd_assert(mode < num_chmodes, return -EINVAL);
1908 if (*max_channelsp == chmode[mode].channels && !codec->in_resume)
1909 return 0;
1910 /* change the current channel setting */
1911 *max_channelsp = chmode[mode].channels;
1912 if (chmode[mode].sequence)
1913 snd_hda_sequence_write(codec, chmode[mode].sequence);
1914 return 1;
1915 }
1916
1917 /*
1918 * input MUX helper
1919 */
1920 int snd_hda_input_mux_info(const struct hda_input_mux *imux,
1921 struct snd_ctl_elem_info *uinfo)
1922 {
1923 unsigned int index;
1924
1925 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1926 uinfo->count = 1;
1927 uinfo->value.enumerated.items = imux->num_items;
1928 index = uinfo->value.enumerated.item;
1929 if (index >= imux->num_items)
1930 index = imux->num_items - 1;
1931 strcpy(uinfo->value.enumerated.name, imux->items[index].label);
1932 return 0;
1933 }
1934
1935 int snd_hda_input_mux_put(struct hda_codec *codec,
1936 const struct hda_input_mux *imux,
1937 struct snd_ctl_elem_value *ucontrol,
1938 hda_nid_t nid,
1939 unsigned int *cur_val)
1940 {
1941 unsigned int idx;
1942
1943 idx = ucontrol->value.enumerated.item[0];
1944 if (idx >= imux->num_items)
1945 idx = imux->num_items - 1;
1946 if (*cur_val == idx && !codec->in_resume)
1947 return 0;
1948 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
1949 imux->items[idx].index);
1950 *cur_val = idx;
1951 return 1;
1952 }
1953
1954
1955 /*
1956 * Multi-channel / digital-out PCM helper functions
1957 */
1958
1959 /* setup SPDIF output stream */
1960 static void setup_dig_out_stream(struct hda_codec *codec, hda_nid_t nid,
1961 unsigned int stream_tag, unsigned int format)
1962 {
1963 /* turn off SPDIF once; otherwise the IEC958 bits won't be updated */
1964 if (codec->spdif_ctls & AC_DIG1_ENABLE)
1965 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
1966 codec->spdif_ctls & ~AC_DIG1_ENABLE & 0xff);
1967 snd_hda_codec_setup_stream(codec, nid, stream_tag, 0, format);
1968 /* turn on again (if needed) */
1969 if (codec->spdif_ctls & AC_DIG1_ENABLE)
1970 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
1971 codec->spdif_ctls & 0xff);
1972 }
1973
1974 /*
1975 * open the digital out in the exclusive mode
1976 */
1977 int snd_hda_multi_out_dig_open(struct hda_codec *codec,
1978 struct hda_multi_out *mout)
1979 {
1980 mutex_lock(&codec->spdif_mutex);
1981 if (mout->dig_out_used == HDA_DIG_ANALOG_DUP)
1982 /* already opened as analog dup; reset it once */
1983 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1984 mout->dig_out_used = HDA_DIG_EXCLUSIVE;
1985 mutex_unlock(&codec->spdif_mutex);
1986 return 0;
1987 }
1988
1989 int snd_hda_multi_out_dig_prepare(struct hda_codec *codec,
1990 struct hda_multi_out *mout,
1991 unsigned int stream_tag,
1992 unsigned int format,
1993 struct snd_pcm_substream *substream)
1994 {
1995 mutex_lock(&codec->spdif_mutex);
1996 setup_dig_out_stream(codec, mout->dig_out_nid, stream_tag, format);
1997 mutex_unlock(&codec->spdif_mutex);
1998 return 0;
1999 }
2000
2001 /*
2002 * release the digital out
2003 */
2004 int snd_hda_multi_out_dig_close(struct hda_codec *codec,
2005 struct hda_multi_out *mout)
2006 {
2007 mutex_lock(&codec->spdif_mutex);
2008 mout->dig_out_used = 0;
2009 mutex_unlock(&codec->spdif_mutex);
2010 return 0;
2011 }
2012
2013 /*
2014 * set up more restrictions for analog out
2015 */
2016 int snd_hda_multi_out_analog_open(struct hda_codec *codec,
2017 struct hda_multi_out *mout,
2018 struct snd_pcm_substream *substream)
2019 {
2020 substream->runtime->hw.channels_max = mout->max_channels;
2021 return snd_pcm_hw_constraint_step(substream->runtime, 0,
2022 SNDRV_PCM_HW_PARAM_CHANNELS, 2);
2023 }
2024
2025 /*
2026 * set up the i/o for analog out
2027 * when the digital out is available, copy the front out to digital out, too.
2028 */
2029 int snd_hda_multi_out_analog_prepare(struct hda_codec *codec,
2030 struct hda_multi_out *mout,
2031 unsigned int stream_tag,
2032 unsigned int format,
2033 struct snd_pcm_substream *substream)
2034 {
2035 hda_nid_t *nids = mout->dac_nids;
2036 int chs = substream->runtime->channels;
2037 int i;
2038
2039 mutex_lock(&codec->spdif_mutex);
2040 if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
2041 if (chs == 2 &&
2042 snd_hda_is_supported_format(codec, mout->dig_out_nid,
2043 format) &&
2044 !(codec->spdif_status & IEC958_AES0_NONAUDIO)) {
2045 mout->dig_out_used = HDA_DIG_ANALOG_DUP;
2046 setup_dig_out_stream(codec, mout->dig_out_nid,
2047 stream_tag, format);
2048 } else {
2049 mout->dig_out_used = 0;
2050 snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
2051 0, 0, 0);
2052 }
2053 }
2054 mutex_unlock(&codec->spdif_mutex);
2055
2056 /* front */
2057 snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag,
2058 0, format);
2059 if (mout->hp_nid && mout->hp_nid != nids[HDA_FRONT])
2060 /* headphone out will just decode front left/right (stereo) */
2061 snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag,
2062 0, format);
2063 /* extra outputs copied from front */
2064 for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
2065 if (mout->extra_out_nid[i])
2066 snd_hda_codec_setup_stream(codec,
2067 mout->extra_out_nid[i],
2068 stream_tag, 0, format);
2069
2070 /* surrounds */
2071 for (i = 1; i < mout->num_dacs; i++) {
2072 if (chs >= (i + 1) * 2) /* independent out */
2073 snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
2074 i * 2, format);
2075 else /* copy front */
2076 snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
2077 0, format);
2078 }
2079 return 0;
2080 }
2081
2082 /*
2083 * clean up the setting for analog out
2084 */
2085 int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec,
2086 struct hda_multi_out *mout)
2087 {
2088 hda_nid_t *nids = mout->dac_nids;
2089 int i;
2090
2091 for (i = 0; i < mout->num_dacs; i++)
2092 snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
2093 if (mout->hp_nid)
2094 snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
2095 for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
2096 if (mout->extra_out_nid[i])
2097 snd_hda_codec_setup_stream(codec,
2098 mout->extra_out_nid[i],
2099 0, 0, 0);
2100 mutex_lock(&codec->spdif_mutex);
2101 if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
2102 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
2103 mout->dig_out_used = 0;
2104 }
2105 mutex_unlock(&codec->spdif_mutex);
2106 return 0;
2107 }
2108
2109 /*
2110 * Helper for automatic ping configuration
2111 */
2112
2113 static int __devinit is_in_nid_list(hda_nid_t nid, hda_nid_t *list)
2114 {
2115 for (; *list; list++)
2116 if (*list == nid)
2117 return 1;
2118 return 0;
2119 }
2120
2121
2122 /*
2123 * Sort an associated group of pins according to their sequence numbers.
2124 */
2125 static void sort_pins_by_sequence(hda_nid_t * pins, short * sequences,
2126 int num_pins)
2127 {
2128 int i, j;
2129 short seq;
2130 hda_nid_t nid;
2131
2132 for (i = 0; i < num_pins; i++) {
2133 for (j = i + 1; j < num_pins; j++) {
2134 if (sequences[i] > sequences[j]) {
2135 seq = sequences[i];
2136 sequences[i] = sequences[j];
2137 sequences[j] = seq;
2138 nid = pins[i];
2139 pins[i] = pins[j];
2140 pins[j] = nid;
2141 }
2142 }
2143 }
2144 }
2145
2146
2147 /*
2148 * Parse all pin widgets and store the useful pin nids to cfg
2149 *
2150 * The number of line-outs or any primary output is stored in line_outs,
2151 * and the corresponding output pins are assigned to line_out_pins[],
2152 * in the order of front, rear, CLFE, side, ...
2153 *
2154 * If more extra outputs (speaker and headphone) are found, the pins are
2155 * assisnged to hp_pins[] and speaker_pins[], respectively. If no line-out jack
2156 * is detected, one of speaker of HP pins is assigned as the primary
2157 * output, i.e. to line_out_pins[0]. So, line_outs is always positive
2158 * if any analog output exists.
2159 *
2160 * The analog input pins are assigned to input_pins array.
2161 * The digital input/output pins are assigned to dig_in_pin and dig_out_pin,
2162 * respectively.
2163 */
2164 int __devinit snd_hda_parse_pin_def_config(struct hda_codec *codec,
2165 struct auto_pin_cfg *cfg,
2166 hda_nid_t *ignore_nids)
2167 {
2168 hda_nid_t nid, nid_start;
2169 int nodes;
2170 short seq, assoc_line_out, assoc_speaker;
2171 short sequences_line_out[ARRAY_SIZE(cfg->line_out_pins)];
2172 short sequences_speaker[ARRAY_SIZE(cfg->speaker_pins)];
2173
2174 memset(cfg, 0, sizeof(*cfg));
2175
2176 memset(sequences_line_out, 0, sizeof(sequences_line_out));
2177 memset(sequences_speaker, 0, sizeof(sequences_speaker));
2178 assoc_line_out = assoc_speaker = 0;
2179
2180 nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid_start);
2181 for (nid = nid_start; nid < nodes + nid_start; nid++) {
2182 unsigned int wid_caps = get_wcaps(codec, nid);
2183 unsigned int wid_type =
2184 (wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
2185 unsigned int def_conf;
2186 short assoc, loc;
2187
2188 /* read all default configuration for pin complex */
2189 if (wid_type != AC_WID_PIN)
2190 continue;
2191 /* ignore the given nids (e.g. pc-beep returns error) */
2192 if (ignore_nids && is_in_nid_list(nid, ignore_nids))
2193 continue;
2194
2195 def_conf = snd_hda_codec_read(codec, nid, 0,
2196 AC_VERB_GET_CONFIG_DEFAULT, 0);
2197 if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
2198 continue;
2199 loc = get_defcfg_location(def_conf);
2200 switch (get_defcfg_device(def_conf)) {
2201 case AC_JACK_LINE_OUT:
2202 seq = get_defcfg_sequence(def_conf);
2203 assoc = get_defcfg_association(def_conf);
2204 if (!assoc)
2205 continue;
2206 if (!assoc_line_out)
2207 assoc_line_out = assoc;
2208 else if (assoc_line_out != assoc)
2209 continue;
2210 if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
2211 continue;
2212 cfg->line_out_pins[cfg->line_outs] = nid;
2213 sequences_line_out[cfg->line_outs] = seq;
2214 cfg->line_outs++;
2215 break;
2216 case AC_JACK_SPEAKER:
2217 seq = get_defcfg_sequence(def_conf);
2218 assoc = get_defcfg_association(def_conf);
2219 if (! assoc)
2220 continue;
2221 if (! assoc_speaker)
2222 assoc_speaker = assoc;
2223 else if (assoc_speaker != assoc)
2224 continue;
2225 if (cfg->speaker_outs >= ARRAY_SIZE(cfg->speaker_pins))
2226 continue;
2227 cfg->speaker_pins[cfg->speaker_outs] = nid;
2228 sequences_speaker[cfg->speaker_outs] = seq;
2229 cfg->speaker_outs++;
2230 break;
2231 case AC_JACK_HP_OUT:
2232 if (cfg->hp_outs >= ARRAY_SIZE(cfg->hp_pins))
2233 continue;
2234 cfg->hp_pins[cfg->hp_outs] = nid;
2235 cfg->hp_outs++;
2236 break;
2237 case AC_JACK_MIC_IN: {
2238 int preferred, alt;
2239 if (loc == AC_JACK_LOC_FRONT) {
2240 preferred = AUTO_PIN_FRONT_MIC;
2241 alt = AUTO_PIN_MIC;
2242 } else {
2243 preferred = AUTO_PIN_MIC;
2244 alt = AUTO_PIN_FRONT_MIC;
2245 }
2246 if (!cfg->input_pins[preferred])
2247 cfg->input_pins[preferred] = nid;
2248 else if (!cfg->input_pins[alt])
2249 cfg->input_pins[alt] = nid;
2250 break;
2251 }
2252 case AC_JACK_LINE_IN:
2253 if (loc == AC_JACK_LOC_FRONT)
2254 cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
2255 else
2256 cfg->input_pins[AUTO_PIN_LINE] = nid;
2257 break;
2258 case AC_JACK_CD:
2259 cfg->input_pins[AUTO_PIN_CD] = nid;
2260 break;
2261 case AC_JACK_AUX:
2262 cfg->input_pins[AUTO_PIN_AUX] = nid;
2263 break;
2264 case AC_JACK_SPDIF_OUT:
2265 cfg->dig_out_pin = nid;
2266 break;
2267 case AC_JACK_SPDIF_IN:
2268 cfg->dig_in_pin = nid;
2269 break;
2270 }
2271 }
2272
2273 /* sort by sequence */
2274 sort_pins_by_sequence(cfg->line_out_pins, sequences_line_out,
2275 cfg->line_outs);
2276 sort_pins_by_sequence(cfg->speaker_pins, sequences_speaker,
2277 cfg->speaker_outs);
2278
2279 /*
2280 * FIX-UP: if no line-outs are detected, try to use speaker or HP pin
2281 * as a primary output
2282 */
2283 if (!cfg->line_outs) {
2284 if (cfg->speaker_outs) {
2285 cfg->line_outs = cfg->speaker_outs;
2286 memcpy(cfg->line_out_pins, cfg->speaker_pins,
2287 sizeof(cfg->speaker_pins));
2288 cfg->speaker_outs = 0;
2289 memset(cfg->speaker_pins, 0, sizeof(cfg->speaker_pins));
2290 cfg->line_out_type = AUTO_PIN_SPEAKER_OUT;
2291 } else if (cfg->hp_outs) {
2292 cfg->line_outs = cfg->hp_outs;
2293 memcpy(cfg->line_out_pins, cfg->hp_pins,
2294 sizeof(cfg->hp_pins));
2295 cfg->hp_outs = 0;
2296 memset(cfg->hp_pins, 0, sizeof(cfg->hp_pins));
2297 cfg->line_out_type = AUTO_PIN_HP_OUT;
2298 }
2299 }
2300
2301 /* Reorder the surround channels
2302 * ALSA sequence is front/surr/clfe/side
2303 * HDA sequence is:
2304 * 4-ch: front/surr => OK as it is
2305 * 6-ch: front/clfe/surr
2306 * 8-ch: front/clfe/rear/side|fc
2307 */
2308 switch (cfg->line_outs) {
2309 case 3:
2310 case 4:
2311 nid = cfg->line_out_pins[1];
2312 cfg->line_out_pins[1] = cfg->line_out_pins[2];
2313 cfg->line_out_pins[2] = nid;
2314 break;
2315 }
2316
2317 /*
2318 * debug prints of the parsed results
2319 */
2320 snd_printd("autoconfig: line_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2321 cfg->line_outs, cfg->line_out_pins[0], cfg->line_out_pins[1],
2322 cfg->line_out_pins[2], cfg->line_out_pins[3],
2323 cfg->line_out_pins[4]);
2324 snd_printd(" speaker_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2325 cfg->speaker_outs, cfg->speaker_pins[0],
2326 cfg->speaker_pins[1], cfg->speaker_pins[2],
2327 cfg->speaker_pins[3], cfg->speaker_pins[4]);
2328 snd_printd(" hp_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2329 cfg->hp_outs, cfg->hp_pins[0],
2330 cfg->hp_pins[1], cfg->hp_pins[2],
2331 cfg->hp_pins[3], cfg->hp_pins[4]);
2332 snd_printd(" inputs: mic=0x%x, fmic=0x%x, line=0x%x, fline=0x%x,"
2333 " cd=0x%x, aux=0x%x\n",
2334 cfg->input_pins[AUTO_PIN_MIC],
2335 cfg->input_pins[AUTO_PIN_FRONT_MIC],
2336 cfg->input_pins[AUTO_PIN_LINE],
2337 cfg->input_pins[AUTO_PIN_FRONT_LINE],
2338 cfg->input_pins[AUTO_PIN_CD],
2339 cfg->input_pins[AUTO_PIN_AUX]);
2340
2341 return 0;
2342 }
2343
2344 /* labels for input pins */
2345 const char *auto_pin_cfg_labels[AUTO_PIN_LAST] = {
2346 "Mic", "Front Mic", "Line", "Front Line", "CD", "Aux"
2347 };
2348
2349
2350 #ifdef CONFIG_PM
2351 /*
2352 * power management
2353 */
2354
2355 /**
2356 * snd_hda_suspend - suspend the codecs
2357 * @bus: the HDA bus
2358 * @state: suspsend state
2359 *
2360 * Returns 0 if successful.
2361 */
2362 int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
2363 {
2364 struct hda_codec *codec;
2365
2366 /* FIXME: should handle power widget capabilities */
2367 list_for_each_entry(codec, &bus->codec_list, list) {
2368 if (codec->patch_ops.suspend)
2369 codec->patch_ops.suspend(codec, state);
2370 hda_set_power_state(codec,
2371 codec->afg ? codec->afg : codec->mfg,
2372 AC_PWRST_D3);
2373 }
2374 return 0;
2375 }
2376
2377 /**
2378 * snd_hda_resume - resume the codecs
2379 * @bus: the HDA bus
2380 * @state: resume state
2381 *
2382 * Returns 0 if successful.
2383 */
2384 int snd_hda_resume(struct hda_bus *bus)
2385 {
2386 struct hda_codec *codec;
2387
2388 list_for_each_entry(codec, &bus->codec_list, list) {
2389 hda_set_power_state(codec,
2390 codec->afg ? codec->afg : codec->mfg,
2391 AC_PWRST_D0);
2392 if (codec->patch_ops.resume)
2393 codec->patch_ops.resume(codec);
2394 }
2395 return 0;
2396 }
2397
2398 /**
2399 * snd_hda_resume_ctls - resume controls in the new control list
2400 * @codec: the HDA codec
2401 * @knew: the array of struct snd_kcontrol_new
2402 *
2403 * This function resumes the mixer controls in the struct snd_kcontrol_new array,
2404 * originally for snd_hda_add_new_ctls().
2405 * The array must be terminated with an empty entry as terminator.
2406 */
2407 int snd_hda_resume_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
2408 {
2409 struct snd_ctl_elem_value *val;
2410
2411 val = kmalloc(sizeof(*val), GFP_KERNEL);
2412 if (!val)
2413 return -ENOMEM;
2414 codec->in_resume = 1;
2415 for (; knew->name; knew++) {
2416 int i, count;
2417 count = knew->count ? knew->count : 1;
2418 for (i = 0; i < count; i++) {
2419 memset(val, 0, sizeof(*val));
2420 val->id.iface = knew->iface;
2421 val->id.device = knew->device;
2422 val->id.subdevice = knew->subdevice;
2423 strcpy(val->id.name, knew->name);
2424 val->id.index = knew->index ? knew->index : i;
2425 /* Assume that get callback reads only from cache,
2426 * not accessing to the real hardware
2427 */
2428 if (snd_ctl_elem_read(codec->bus->card, val) < 0)
2429 continue;
2430 snd_ctl_elem_write(codec->bus->card, NULL, val);
2431 }
2432 }
2433 codec->in_resume = 0;
2434 kfree(val);
2435 return 0;
2436 }
2437
2438 /**
2439 * snd_hda_resume_spdif_out - resume the digital out
2440 * @codec: the HDA codec
2441 */
2442 int snd_hda_resume_spdif_out(struct hda_codec *codec)
2443 {
2444 return snd_hda_resume_ctls(codec, dig_mixes);
2445 }
2446
2447 /**
2448 * snd_hda_resume_spdif_in - resume the digital in
2449 * @codec: the HDA codec
2450 */
2451 int snd_hda_resume_spdif_in(struct hda_codec *codec)
2452 {
2453 return snd_hda_resume_ctls(codec, dig_in_ctls);
2454 }
2455 #endif
This page took 0.132514 seconds and 5 git commands to generate.