/spare/repo/libata-dev branch 'iomap-try3'
[deliverable/linux.git] / sound / pci / hda / hda_codec.c
1 /*
2 * Universal Interface for Intel High Definition Audio Codec
3 *
4 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
5 *
6 *
7 * This driver is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This driver is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 #include <sound/driver.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/pci.h>
27 #include <linux/moduleparam.h>
28 #include <sound/core.h>
29 #include "hda_codec.h"
30 #include <sound/asoundef.h>
31 #include <sound/initval.h>
32 #include "hda_local.h"
33
34
35 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
36 MODULE_DESCRIPTION("Universal interface for High Definition Audio Codec");
37 MODULE_LICENSE("GPL");
38
39
40 /*
41 * vendor / preset table
42 */
43
44 struct hda_vendor_id {
45 unsigned int id;
46 const char *name;
47 };
48
49 /* codec vendor labels */
50 static struct hda_vendor_id hda_vendor_ids[] = {
51 { 0x10ec, "Realtek" },
52 { 0x11d4, "Analog Devices" },
53 { 0x13f6, "C-Media" },
54 { 0x434d, "C-Media" },
55 { 0x8384, "SigmaTel" },
56 {} /* terminator */
57 };
58
59 /* codec presets */
60 #include "hda_patch.h"
61
62
63 /**
64 * snd_hda_codec_read - send a command and get the response
65 * @codec: the HDA codec
66 * @nid: NID to send the command
67 * @direct: direct flag
68 * @verb: the verb to send
69 * @parm: the parameter for the verb
70 *
71 * Send a single command and read the corresponding response.
72 *
73 * Returns the obtained response value, or -1 for an error.
74 */
75 unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid, int direct,
76 unsigned int verb, unsigned int parm)
77 {
78 unsigned int res;
79 down(&codec->bus->cmd_mutex);
80 if (! codec->bus->ops.command(codec, nid, direct, verb, parm))
81 res = codec->bus->ops.get_response(codec);
82 else
83 res = (unsigned int)-1;
84 up(&codec->bus->cmd_mutex);
85 return res;
86 }
87
88 /**
89 * snd_hda_codec_write - send a single command without waiting for response
90 * @codec: the HDA codec
91 * @nid: NID to send the command
92 * @direct: direct flag
93 * @verb: the verb to send
94 * @parm: the parameter for the verb
95 *
96 * Send a single command without waiting for response.
97 *
98 * Returns 0 if successful, or a negative error code.
99 */
100 int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
101 unsigned int verb, unsigned int parm)
102 {
103 int err;
104 down(&codec->bus->cmd_mutex);
105 err = codec->bus->ops.command(codec, nid, direct, verb, parm);
106 up(&codec->bus->cmd_mutex);
107 return err;
108 }
109
110 /**
111 * snd_hda_sequence_write - sequence writes
112 * @codec: the HDA codec
113 * @seq: VERB array to send
114 *
115 * Send the commands sequentially from the given array.
116 * The array must be terminated with NID=0.
117 */
118 void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
119 {
120 for (; seq->nid; seq++)
121 snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
122 }
123
124 /**
125 * snd_hda_get_sub_nodes - get the range of sub nodes
126 * @codec: the HDA codec
127 * @nid: NID to parse
128 * @start_id: the pointer to store the start NID
129 *
130 * Parse the NID and store the start NID of its sub-nodes.
131 * Returns the number of sub-nodes.
132 */
133 int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *start_id)
134 {
135 unsigned int parm;
136
137 parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
138 *start_id = (parm >> 16) & 0x7fff;
139 return (int)(parm & 0x7fff);
140 }
141
142 /**
143 * snd_hda_get_connections - get connection list
144 * @codec: the HDA codec
145 * @nid: NID to parse
146 * @conn_list: connection list array
147 * @max_conns: max. number of connections to store
148 *
149 * Parses the connection list of the given widget and stores the list
150 * of NIDs.
151 *
152 * Returns the number of connections, or a negative error code.
153 */
154 int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
155 hda_nid_t *conn_list, int max_conns)
156 {
157 unsigned int parm;
158 int i, j, conn_len, num_tupples, conns;
159 unsigned int shift, num_elems, mask;
160
161 snd_assert(conn_list && max_conns > 0, return -EINVAL);
162
163 parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
164 if (parm & AC_CLIST_LONG) {
165 /* long form */
166 shift = 16;
167 num_elems = 2;
168 } else {
169 /* short form */
170 shift = 8;
171 num_elems = 4;
172 }
173 conn_len = parm & AC_CLIST_LENGTH;
174 num_tupples = num_elems / 2;
175 mask = (1 << (shift-1)) - 1;
176
177 if (! conn_len)
178 return 0; /* no connection */
179
180 if (conn_len == 1) {
181 /* single connection */
182 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, 0);
183 conn_list[0] = parm & mask;
184 return 1;
185 }
186
187 /* multi connection */
188 conns = 0;
189 for (i = 0; i < conn_len; i += num_elems) {
190 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, i);
191 for (j = 0; j < num_tupples; j++) {
192 int range_val;
193 hda_nid_t val1, val2, n;
194 range_val = parm & (1 << (shift-1)); /* ranges */
195 val1 = parm & mask;
196 parm >>= shift;
197 val2 = parm & mask;
198 parm >>= shift;
199 if (range_val) {
200 /* ranges between val1 and val2 */
201 if (val1 > val2) {
202 snd_printk(KERN_WARNING "hda_codec: invalid dep_range_val %x:%x\n", val1, val2);
203 continue;
204 }
205 for (n = val1; n <= val2; n++) {
206 if (conns >= max_conns)
207 return -EINVAL;
208 conn_list[conns++] = n;
209 }
210 } else {
211 if (! val1)
212 break;
213 if (conns >= max_conns)
214 return -EINVAL;
215 conn_list[conns++] = val1;
216 if (! val2)
217 break;
218 if (conns >= max_conns)
219 return -EINVAL;
220 conn_list[conns++] = val2;
221 }
222 }
223 }
224 return conns;
225 }
226
227
228 /**
229 * snd_hda_queue_unsol_event - add an unsolicited event to queue
230 * @bus: the BUS
231 * @res: unsolicited event (lower 32bit of RIRB entry)
232 * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
233 *
234 * Adds the given event to the queue. The events are processed in
235 * the workqueue asynchronously. Call this function in the interrupt
236 * hanlder when RIRB receives an unsolicited event.
237 *
238 * Returns 0 if successful, or a negative error code.
239 */
240 int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
241 {
242 struct hda_bus_unsolicited *unsol;
243 unsigned int wp;
244
245 if ((unsol = bus->unsol) == NULL)
246 return 0;
247
248 wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
249 unsol->wp = wp;
250
251 wp <<= 1;
252 unsol->queue[wp] = res;
253 unsol->queue[wp + 1] = res_ex;
254
255 queue_work(unsol->workq, &unsol->work);
256
257 return 0;
258 }
259
260 /*
261 * process queueud unsolicited events
262 */
263 static void process_unsol_events(void *data)
264 {
265 struct hda_bus *bus = data;
266 struct hda_bus_unsolicited *unsol = bus->unsol;
267 struct hda_codec *codec;
268 unsigned int rp, caddr, res;
269
270 while (unsol->rp != unsol->wp) {
271 rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
272 unsol->rp = rp;
273 rp <<= 1;
274 res = unsol->queue[rp];
275 caddr = unsol->queue[rp + 1];
276 if (! (caddr & (1 << 4))) /* no unsolicited event? */
277 continue;
278 codec = bus->caddr_tbl[caddr & 0x0f];
279 if (codec && codec->patch_ops.unsol_event)
280 codec->patch_ops.unsol_event(codec, res);
281 }
282 }
283
284 /*
285 * initialize unsolicited queue
286 */
287 static int init_unsol_queue(struct hda_bus *bus)
288 {
289 struct hda_bus_unsolicited *unsol;
290
291 unsol = kcalloc(1, sizeof(*unsol), GFP_KERNEL);
292 if (! unsol) {
293 snd_printk(KERN_ERR "hda_codec: can't allocate unsolicited queue\n");
294 return -ENOMEM;
295 }
296 unsol->workq = create_workqueue("hda_codec");
297 if (! unsol->workq) {
298 snd_printk(KERN_ERR "hda_codec: can't create workqueue\n");
299 kfree(unsol);
300 return -ENOMEM;
301 }
302 INIT_WORK(&unsol->work, process_unsol_events, bus);
303 bus->unsol = unsol;
304 return 0;
305 }
306
307 /*
308 * destructor
309 */
310 static void snd_hda_codec_free(struct hda_codec *codec);
311
312 static int snd_hda_bus_free(struct hda_bus *bus)
313 {
314 struct list_head *p, *n;
315
316 if (! bus)
317 return 0;
318 if (bus->unsol) {
319 destroy_workqueue(bus->unsol->workq);
320 kfree(bus->unsol);
321 }
322 list_for_each_safe(p, n, &bus->codec_list) {
323 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
324 snd_hda_codec_free(codec);
325 }
326 if (bus->ops.private_free)
327 bus->ops.private_free(bus);
328 kfree(bus);
329 return 0;
330 }
331
332 static int snd_hda_bus_dev_free(snd_device_t *device)
333 {
334 struct hda_bus *bus = device->device_data;
335 return snd_hda_bus_free(bus);
336 }
337
338 /**
339 * snd_hda_bus_new - create a HDA bus
340 * @card: the card entry
341 * @temp: the template for hda_bus information
342 * @busp: the pointer to store the created bus instance
343 *
344 * Returns 0 if successful, or a negative error code.
345 */
346 int snd_hda_bus_new(snd_card_t *card, const struct hda_bus_template *temp,
347 struct hda_bus **busp)
348 {
349 struct hda_bus *bus;
350 int err;
351 static snd_device_ops_t dev_ops = {
352 .dev_free = snd_hda_bus_dev_free,
353 };
354
355 snd_assert(temp, return -EINVAL);
356 snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
357
358 if (busp)
359 *busp = NULL;
360
361 bus = kcalloc(1, sizeof(*bus), GFP_KERNEL);
362 if (bus == NULL) {
363 snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
364 return -ENOMEM;
365 }
366
367 bus->card = card;
368 bus->private_data = temp->private_data;
369 bus->pci = temp->pci;
370 bus->modelname = temp->modelname;
371 bus->ops = temp->ops;
372
373 init_MUTEX(&bus->cmd_mutex);
374 INIT_LIST_HEAD(&bus->codec_list);
375
376 init_unsol_queue(bus);
377
378 if ((err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops)) < 0) {
379 snd_hda_bus_free(bus);
380 return err;
381 }
382 if (busp)
383 *busp = bus;
384 return 0;
385 }
386
387
388 /*
389 * find a matching codec preset
390 */
391 static const struct hda_codec_preset *find_codec_preset(struct hda_codec *codec)
392 {
393 const struct hda_codec_preset **tbl, *preset;
394
395 for (tbl = hda_preset_tables; *tbl; tbl++) {
396 for (preset = *tbl; preset->id; preset++) {
397 u32 mask = preset->mask;
398 if (! mask)
399 mask = ~0;
400 if (preset->id == (codec->vendor_id & mask))
401 return preset;
402 }
403 }
404 return NULL;
405 }
406
407 /*
408 * snd_hda_get_codec_name - store the codec name
409 */
410 void snd_hda_get_codec_name(struct hda_codec *codec,
411 char *name, int namelen)
412 {
413 const struct hda_vendor_id *c;
414 const char *vendor = NULL;
415 u16 vendor_id = codec->vendor_id >> 16;
416 char tmp[16];
417
418 for (c = hda_vendor_ids; c->id; c++) {
419 if (c->id == vendor_id) {
420 vendor = c->name;
421 break;
422 }
423 }
424 if (! vendor) {
425 sprintf(tmp, "Generic %04x", vendor_id);
426 vendor = tmp;
427 }
428 if (codec->preset && codec->preset->name)
429 snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
430 else
431 snprintf(name, namelen, "%s ID %x", vendor, codec->vendor_id & 0xffff);
432 }
433
434 /*
435 * look for an AFG and MFG nodes
436 */
437 static void setup_fg_nodes(struct hda_codec *codec)
438 {
439 int i, total_nodes;
440 hda_nid_t nid;
441
442 total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
443 for (i = 0; i < total_nodes; i++, nid++) {
444 switch((snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE) & 0xff)) {
445 case AC_GRP_AUDIO_FUNCTION:
446 codec->afg = nid;
447 break;
448 case AC_GRP_MODEM_FUNCTION:
449 codec->mfg = nid;
450 break;
451 default:
452 break;
453 }
454 }
455 }
456
457 /*
458 * codec destructor
459 */
460 static void snd_hda_codec_free(struct hda_codec *codec)
461 {
462 if (! codec)
463 return;
464 list_del(&codec->list);
465 codec->bus->caddr_tbl[codec->addr] = NULL;
466 if (codec->patch_ops.free)
467 codec->patch_ops.free(codec);
468 kfree(codec);
469 }
470
471 static void init_amp_hash(struct hda_codec *codec);
472
473 /**
474 * snd_hda_codec_new - create a HDA codec
475 * @bus: the bus to assign
476 * @codec_addr: the codec address
477 * @codecp: the pointer to store the generated codec
478 *
479 * Returns 0 if successful, or a negative error code.
480 */
481 int snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
482 struct hda_codec **codecp)
483 {
484 struct hda_codec *codec;
485 char component[13];
486 int err;
487
488 snd_assert(bus, return -EINVAL);
489 snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
490
491 if (bus->caddr_tbl[codec_addr]) {
492 snd_printk(KERN_ERR "hda_codec: address 0x%x is already occupied\n", codec_addr);
493 return -EBUSY;
494 }
495
496 codec = kcalloc(1, sizeof(*codec), GFP_KERNEL);
497 if (codec == NULL) {
498 snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
499 return -ENOMEM;
500 }
501
502 codec->bus = bus;
503 codec->addr = codec_addr;
504 init_MUTEX(&codec->spdif_mutex);
505 init_amp_hash(codec);
506
507 list_add_tail(&codec->list, &bus->codec_list);
508 bus->caddr_tbl[codec_addr] = codec;
509
510 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_VENDOR_ID);
511 codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_SUBSYSTEM_ID);
512 codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_REV_ID);
513
514 setup_fg_nodes(codec);
515 if (! codec->afg && ! codec->mfg) {
516 snd_printdd("hda_codec: no AFG or MFG node found\n");
517 snd_hda_codec_free(codec);
518 return -ENODEV;
519 }
520
521 codec->preset = find_codec_preset(codec);
522 if (! *bus->card->mixername)
523 snd_hda_get_codec_name(codec, bus->card->mixername,
524 sizeof(bus->card->mixername));
525
526 if (codec->preset && codec->preset->patch)
527 err = codec->preset->patch(codec);
528 else
529 err = snd_hda_parse_generic_codec(codec);
530 if (err < 0) {
531 snd_hda_codec_free(codec);
532 return err;
533 }
534
535 snd_hda_codec_proc_new(codec);
536
537 sprintf(component, "HDA:%08x", codec->vendor_id);
538 snd_component_add(codec->bus->card, component);
539
540 if (codecp)
541 *codecp = codec;
542 return 0;
543 }
544
545 /**
546 * snd_hda_codec_setup_stream - set up the codec for streaming
547 * @codec: the CODEC to set up
548 * @nid: the NID to set up
549 * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
550 * @channel_id: channel id to pass, zero based.
551 * @format: stream format.
552 */
553 void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid, u32 stream_tag,
554 int channel_id, int format)
555 {
556 if (! nid)
557 return;
558
559 snd_printdd("hda_codec_setup_stream: NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
560 nid, stream_tag, channel_id, format);
561 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
562 (stream_tag << 4) | channel_id);
563 msleep(1);
564 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
565 }
566
567
568 /*
569 * amp access functions
570 */
571
572 /* FIXME: more better hash key? */
573 #define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
574 #define INFO_AMP_CAPS (1<<0)
575 #define INFO_AMP_VOL(ch) (1 << (1 + (ch)))
576
577 /* initialize the hash table */
578 static void init_amp_hash(struct hda_codec *codec)
579 {
580 memset(codec->amp_hash, 0xff, sizeof(codec->amp_hash));
581 codec->num_amp_entries = 0;
582 }
583
584 /* query the hash. allocate an entry if not found. */
585 static struct hda_amp_info *get_alloc_amp_hash(struct hda_codec *codec, u32 key)
586 {
587 u16 idx = key % (u16)ARRAY_SIZE(codec->amp_hash);
588 u16 cur = codec->amp_hash[idx];
589 struct hda_amp_info *info;
590
591 while (cur != 0xffff) {
592 info = &codec->amp_info[cur];
593 if (info->key == key)
594 return info;
595 cur = info->next;
596 }
597
598 /* add a new hash entry */
599 if (codec->num_amp_entries >= ARRAY_SIZE(codec->amp_info)) {
600 snd_printk(KERN_ERR "hda_codec: Tooooo many amps!\n");
601 return NULL;
602 }
603 cur = codec->num_amp_entries++;
604 info = &codec->amp_info[cur];
605 info->key = key;
606 info->status = 0; /* not initialized yet */
607 info->next = codec->amp_hash[idx];
608 codec->amp_hash[idx] = cur;
609
610 return info;
611 }
612
613 /*
614 * query AMP capabilities for the given widget and direction
615 */
616 static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
617 {
618 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
619
620 if (! info)
621 return 0;
622 if (! (info->status & INFO_AMP_CAPS)) {
623 if (!(snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_AMP_OVRD))
624 nid = codec->afg;
625 info->amp_caps = snd_hda_param_read(codec, nid, direction == HDA_OUTPUT ?
626 AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP);
627 info->status |= INFO_AMP_CAPS;
628 }
629 return info->amp_caps;
630 }
631
632 /*
633 * read the current volume to info
634 * if the cache exists, read the cache value.
635 */
636 static unsigned int get_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
637 hda_nid_t nid, int ch, int direction, int index)
638 {
639 u32 val, parm;
640
641 if (info->status & INFO_AMP_VOL(ch))
642 return info->vol[ch];
643
644 parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
645 parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
646 parm |= index;
647 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE, parm);
648 info->vol[ch] = val & 0xff;
649 info->status |= INFO_AMP_VOL(ch);
650 return info->vol[ch];
651 }
652
653 /*
654 * write the current volume in info to the h/w and update the cache
655 */
656 static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
657 hda_nid_t nid, int ch, int direction, int index, int val)
658 {
659 u32 parm;
660
661 parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
662 parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
663 parm |= index << AC_AMP_SET_INDEX_SHIFT;
664 parm |= val;
665 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
666 info->vol[ch] = val;
667 }
668
669 /*
670 * read AMP value. The volume is between 0 to 0x7f, 0x80 = mute bit.
671 */
672 static int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int index)
673 {
674 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
675 if (! info)
676 return 0;
677 return get_vol_mute(codec, info, nid, ch, direction, index);
678 }
679
680 /*
681 * update the AMP value, mask = bit mask to set, val = the value
682 */
683 static int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int idx, int mask, int val)
684 {
685 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
686
687 if (! info)
688 return 0;
689 val &= mask;
690 val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
691 if (info->vol[ch] == val && ! codec->in_resume)
692 return 0;
693 put_vol_mute(codec, info, nid, ch, direction, idx, val);
694 return 1;
695 }
696
697
698 /*
699 * AMP control callbacks
700 */
701 /* retrieve parameters from private_value */
702 #define get_amp_nid(kc) ((kc)->private_value & 0xffff)
703 #define get_amp_channels(kc) (((kc)->private_value >> 16) & 0x3)
704 #define get_amp_direction(kc) (((kc)->private_value >> 18) & 0x1)
705 #define get_amp_index(kc) (((kc)->private_value >> 19) & 0xf)
706
707 /* volume */
708 int snd_hda_mixer_amp_volume_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
709 {
710 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
711 u16 nid = get_amp_nid(kcontrol);
712 u8 chs = get_amp_channels(kcontrol);
713 int dir = get_amp_direction(kcontrol);
714 u32 caps;
715
716 caps = query_amp_caps(codec, nid, dir);
717 caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; /* num steps */
718 if (! caps) {
719 printk(KERN_WARNING "hda_codec: num_steps = 0 for NID=0x%x\n", nid);
720 return -EINVAL;
721 }
722 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
723 uinfo->count = chs == 3 ? 2 : 1;
724 uinfo->value.integer.min = 0;
725 uinfo->value.integer.max = caps;
726 return 0;
727 }
728
729 int snd_hda_mixer_amp_volume_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
730 {
731 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
732 hda_nid_t nid = get_amp_nid(kcontrol);
733 int chs = get_amp_channels(kcontrol);
734 int dir = get_amp_direction(kcontrol);
735 int idx = get_amp_index(kcontrol);
736 long *valp = ucontrol->value.integer.value;
737
738 if (chs & 1)
739 *valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
740 if (chs & 2)
741 *valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
742 return 0;
743 }
744
745 int snd_hda_mixer_amp_volume_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
746 {
747 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
748 hda_nid_t nid = get_amp_nid(kcontrol);
749 int chs = get_amp_channels(kcontrol);
750 int dir = get_amp_direction(kcontrol);
751 int idx = get_amp_index(kcontrol);
752 long *valp = ucontrol->value.integer.value;
753 int change = 0;
754
755 if (chs & 1) {
756 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
757 0x7f, *valp);
758 valp++;
759 }
760 if (chs & 2)
761 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
762 0x7f, *valp);
763 return change;
764 }
765
766 /* switch */
767 int snd_hda_mixer_amp_switch_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
768 {
769 int chs = get_amp_channels(kcontrol);
770
771 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
772 uinfo->count = chs == 3 ? 2 : 1;
773 uinfo->value.integer.min = 0;
774 uinfo->value.integer.max = 1;
775 return 0;
776 }
777
778 int snd_hda_mixer_amp_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
779 {
780 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
781 hda_nid_t nid = get_amp_nid(kcontrol);
782 int chs = get_amp_channels(kcontrol);
783 int dir = get_amp_direction(kcontrol);
784 int idx = get_amp_index(kcontrol);
785 long *valp = ucontrol->value.integer.value;
786
787 if (chs & 1)
788 *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x80) ? 0 : 1;
789 if (chs & 2)
790 *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x80) ? 0 : 1;
791 return 0;
792 }
793
794 int snd_hda_mixer_amp_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
795 {
796 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
797 hda_nid_t nid = get_amp_nid(kcontrol);
798 int chs = get_amp_channels(kcontrol);
799 int dir = get_amp_direction(kcontrol);
800 int idx = get_amp_index(kcontrol);
801 long *valp = ucontrol->value.integer.value;
802 int change = 0;
803
804 if (chs & 1) {
805 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
806 0x80, *valp ? 0 : 0x80);
807 valp++;
808 }
809 if (chs & 2)
810 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
811 0x80, *valp ? 0 : 0x80);
812
813 return change;
814 }
815
816 /*
817 * SPDIF out controls
818 */
819
820 static int snd_hda_spdif_mask_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
821 {
822 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
823 uinfo->count = 1;
824 return 0;
825 }
826
827 static int snd_hda_spdif_cmask_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
828 {
829 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
830 IEC958_AES0_NONAUDIO |
831 IEC958_AES0_CON_EMPHASIS_5015 |
832 IEC958_AES0_CON_NOT_COPYRIGHT;
833 ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
834 IEC958_AES1_CON_ORIGINAL;
835 return 0;
836 }
837
838 static int snd_hda_spdif_pmask_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
839 {
840 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
841 IEC958_AES0_NONAUDIO |
842 IEC958_AES0_PRO_EMPHASIS_5015;
843 return 0;
844 }
845
846 static int snd_hda_spdif_default_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
847 {
848 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
849
850 ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
851 ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
852 ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
853 ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
854
855 return 0;
856 }
857
858 /* convert from SPDIF status bits to HDA SPDIF bits
859 * bit 0 (DigEn) is always set zero (to be filled later)
860 */
861 static unsigned short convert_from_spdif_status(unsigned int sbits)
862 {
863 unsigned short val = 0;
864
865 if (sbits & IEC958_AES0_PROFESSIONAL)
866 val |= 1 << 6;
867 if (sbits & IEC958_AES0_NONAUDIO)
868 val |= 1 << 5;
869 if (sbits & IEC958_AES0_PROFESSIONAL) {
870 if ((sbits & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015)
871 val |= 1 << 3;
872 } else {
873 if ((sbits & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015)
874 val |= 1 << 3;
875 if (! (sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
876 val |= 1 << 4;
877 if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
878 val |= 1 << 7;
879 val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
880 }
881 return val;
882 }
883
884 /* convert to SPDIF status bits from HDA SPDIF bits
885 */
886 static unsigned int convert_to_spdif_status(unsigned short val)
887 {
888 unsigned int sbits = 0;
889
890 if (val & (1 << 5))
891 sbits |= IEC958_AES0_NONAUDIO;
892 if (val & (1 << 6))
893 sbits |= IEC958_AES0_PROFESSIONAL;
894 if (sbits & IEC958_AES0_PROFESSIONAL) {
895 if (sbits & (1 << 3))
896 sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
897 } else {
898 if (val & (1 << 3))
899 sbits |= IEC958_AES0_CON_EMPHASIS_5015;
900 if (! (val & (1 << 4)))
901 sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
902 if (val & (1 << 7))
903 sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
904 sbits |= val & (0x7f << 8);
905 }
906 return sbits;
907 }
908
909 static int snd_hda_spdif_default_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
910 {
911 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
912 hda_nid_t nid = kcontrol->private_value;
913 unsigned short val;
914 int change;
915
916 down(&codec->spdif_mutex);
917 codec->spdif_status = ucontrol->value.iec958.status[0] |
918 ((unsigned int)ucontrol->value.iec958.status[1] << 8) |
919 ((unsigned int)ucontrol->value.iec958.status[2] << 16) |
920 ((unsigned int)ucontrol->value.iec958.status[3] << 24);
921 val = convert_from_spdif_status(codec->spdif_status);
922 val |= codec->spdif_ctls & 1;
923 change = codec->spdif_ctls != val;
924 codec->spdif_ctls = val;
925
926 if (change || codec->in_resume) {
927 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
928 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_2, val >> 8);
929 }
930
931 up(&codec->spdif_mutex);
932 return change;
933 }
934
935 static int snd_hda_spdif_out_switch_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
936 {
937 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
938 uinfo->count = 1;
939 uinfo->value.integer.min = 0;
940 uinfo->value.integer.max = 1;
941 return 0;
942 }
943
944 static int snd_hda_spdif_out_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
945 {
946 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
947
948 ucontrol->value.integer.value[0] = codec->spdif_ctls & 1;
949 return 0;
950 }
951
952 static int snd_hda_spdif_out_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
953 {
954 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
955 hda_nid_t nid = kcontrol->private_value;
956 unsigned short val;
957 int change;
958
959 down(&codec->spdif_mutex);
960 val = codec->spdif_ctls & ~1;
961 if (ucontrol->value.integer.value[0])
962 val |= 1;
963 change = codec->spdif_ctls != val;
964 if (change || codec->in_resume) {
965 codec->spdif_ctls = val;
966 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
967 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE,
968 AC_AMP_SET_RIGHT | AC_AMP_SET_LEFT |
969 AC_AMP_SET_OUTPUT | ((val & 1) ? 0 : 0x80));
970 }
971 up(&codec->spdif_mutex);
972 return change;
973 }
974
975 static snd_kcontrol_new_t dig_mixes[] = {
976 {
977 .access = SNDRV_CTL_ELEM_ACCESS_READ,
978 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
979 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
980 .info = snd_hda_spdif_mask_info,
981 .get = snd_hda_spdif_cmask_get,
982 },
983 {
984 .access = SNDRV_CTL_ELEM_ACCESS_READ,
985 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
986 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
987 .info = snd_hda_spdif_mask_info,
988 .get = snd_hda_spdif_pmask_get,
989 },
990 {
991 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
992 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
993 .info = snd_hda_spdif_mask_info,
994 .get = snd_hda_spdif_default_get,
995 .put = snd_hda_spdif_default_put,
996 },
997 {
998 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
999 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
1000 .info = snd_hda_spdif_out_switch_info,
1001 .get = snd_hda_spdif_out_switch_get,
1002 .put = snd_hda_spdif_out_switch_put,
1003 },
1004 { } /* end */
1005 };
1006
1007 /**
1008 * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1009 * @codec: the HDA codec
1010 * @nid: audio out widget NID
1011 *
1012 * Creates controls related with the SPDIF output.
1013 * Called from each patch supporting the SPDIF out.
1014 *
1015 * Returns 0 if successful, or a negative error code.
1016 */
1017 int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
1018 {
1019 int err;
1020 snd_kcontrol_t *kctl;
1021 snd_kcontrol_new_t *dig_mix;
1022
1023 for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1024 kctl = snd_ctl_new1(dig_mix, codec);
1025 kctl->private_value = nid;
1026 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1027 return err;
1028 }
1029 codec->spdif_ctls = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1030 codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1031 return 0;
1032 }
1033
1034 /*
1035 * SPDIF input
1036 */
1037
1038 #define snd_hda_spdif_in_switch_info snd_hda_spdif_out_switch_info
1039
1040 static int snd_hda_spdif_in_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1041 {
1042 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1043
1044 ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1045 return 0;
1046 }
1047
1048 static int snd_hda_spdif_in_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1049 {
1050 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1051 hda_nid_t nid = kcontrol->private_value;
1052 unsigned int val = !!ucontrol->value.integer.value[0];
1053 int change;
1054
1055 down(&codec->spdif_mutex);
1056 change = codec->spdif_in_enable != val;
1057 if (change || codec->in_resume) {
1058 codec->spdif_in_enable = val;
1059 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val);
1060 }
1061 up(&codec->spdif_mutex);
1062 return change;
1063 }
1064
1065 static int snd_hda_spdif_in_status_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1066 {
1067 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1068 hda_nid_t nid = kcontrol->private_value;
1069 unsigned short val;
1070 unsigned int sbits;
1071
1072 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1073 sbits = convert_to_spdif_status(val);
1074 ucontrol->value.iec958.status[0] = sbits;
1075 ucontrol->value.iec958.status[1] = sbits >> 8;
1076 ucontrol->value.iec958.status[2] = sbits >> 16;
1077 ucontrol->value.iec958.status[3] = sbits >> 24;
1078 return 0;
1079 }
1080
1081 static snd_kcontrol_new_t dig_in_ctls[] = {
1082 {
1083 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1084 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1085 .info = snd_hda_spdif_in_switch_info,
1086 .get = snd_hda_spdif_in_switch_get,
1087 .put = snd_hda_spdif_in_switch_put,
1088 },
1089 {
1090 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1091 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1092 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1093 .info = snd_hda_spdif_mask_info,
1094 .get = snd_hda_spdif_in_status_get,
1095 },
1096 { } /* end */
1097 };
1098
1099 /**
1100 * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1101 * @codec: the HDA codec
1102 * @nid: audio in widget NID
1103 *
1104 * Creates controls related with the SPDIF input.
1105 * Called from each patch supporting the SPDIF in.
1106 *
1107 * Returns 0 if successful, or a negative error code.
1108 */
1109 int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
1110 {
1111 int err;
1112 snd_kcontrol_t *kctl;
1113 snd_kcontrol_new_t *dig_mix;
1114
1115 for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1116 kctl = snd_ctl_new1(dig_mix, codec);
1117 kctl->private_value = nid;
1118 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1119 return err;
1120 }
1121 codec->spdif_in_enable = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) & 1;
1122 return 0;
1123 }
1124
1125
1126 /**
1127 * snd_hda_build_controls - build mixer controls
1128 * @bus: the BUS
1129 *
1130 * Creates mixer controls for each codec included in the bus.
1131 *
1132 * Returns 0 if successful, otherwise a negative error code.
1133 */
1134 int snd_hda_build_controls(struct hda_bus *bus)
1135 {
1136 struct list_head *p;
1137
1138 /* build controls */
1139 list_for_each(p, &bus->codec_list) {
1140 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1141 int err;
1142 if (! codec->patch_ops.build_controls)
1143 continue;
1144 err = codec->patch_ops.build_controls(codec);
1145 if (err < 0)
1146 return err;
1147 }
1148
1149 /* initialize */
1150 list_for_each(p, &bus->codec_list) {
1151 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1152 int err;
1153 if (! codec->patch_ops.init)
1154 continue;
1155 err = codec->patch_ops.init(codec);
1156 if (err < 0)
1157 return err;
1158 }
1159 return 0;
1160 }
1161
1162
1163 /*
1164 * stream formats
1165 */
1166 struct hda_rate_tbl {
1167 unsigned int hz;
1168 unsigned int alsa_bits;
1169 unsigned int hda_fmt;
1170 };
1171
1172 static struct hda_rate_tbl rate_bits[] = {
1173 /* rate in Hz, ALSA rate bitmask, HDA format value */
1174
1175 /* autodetected value used in snd_hda_query_supported_pcm */
1176 { 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1177 { 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1178 { 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1179 { 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1180 { 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1181 { 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1182 { 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1183 { 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1184 { 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1185 { 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1186 { 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1187
1188 /* not autodetected value */
1189 { 9600, SNDRV_PCM_RATE_KNOT, 0x0400 }, /* 1/5 x 48 */
1190
1191 { 0 } /* terminator */
1192 };
1193
1194 /**
1195 * snd_hda_calc_stream_format - calculate format bitset
1196 * @rate: the sample rate
1197 * @channels: the number of channels
1198 * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1199 * @maxbps: the max. bps
1200 *
1201 * Calculate the format bitset from the given rate, channels and th PCM format.
1202 *
1203 * Return zero if invalid.
1204 */
1205 unsigned int snd_hda_calc_stream_format(unsigned int rate,
1206 unsigned int channels,
1207 unsigned int format,
1208 unsigned int maxbps)
1209 {
1210 int i;
1211 unsigned int val = 0;
1212
1213 for (i = 0; rate_bits[i].hz; i++)
1214 if (rate_bits[i].hz == rate) {
1215 val = rate_bits[i].hda_fmt;
1216 break;
1217 }
1218 if (! rate_bits[i].hz) {
1219 snd_printdd("invalid rate %d\n", rate);
1220 return 0;
1221 }
1222
1223 if (channels == 0 || channels > 8) {
1224 snd_printdd("invalid channels %d\n", channels);
1225 return 0;
1226 }
1227 val |= channels - 1;
1228
1229 switch (snd_pcm_format_width(format)) {
1230 case 8: val |= 0x00; break;
1231 case 16: val |= 0x10; break;
1232 case 20:
1233 case 24:
1234 case 32:
1235 if (maxbps >= 32)
1236 val |= 0x40;
1237 else if (maxbps >= 24)
1238 val |= 0x30;
1239 else
1240 val |= 0x20;
1241 break;
1242 default:
1243 snd_printdd("invalid format width %d\n", snd_pcm_format_width(format));
1244 return 0;
1245 }
1246
1247 return val;
1248 }
1249
1250 /**
1251 * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1252 * @codec: the HDA codec
1253 * @nid: NID to query
1254 * @ratesp: the pointer to store the detected rate bitflags
1255 * @formatsp: the pointer to store the detected formats
1256 * @bpsp: the pointer to store the detected format widths
1257 *
1258 * Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp
1259 * or @bsps argument is ignored.
1260 *
1261 * Returns 0 if successful, otherwise a negative error code.
1262 */
1263 int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1264 u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1265 {
1266 int i;
1267 unsigned int val, streams;
1268
1269 val = 0;
1270 if (nid != codec->afg &&
1271 snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_FORMAT_OVRD) {
1272 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1273 if (val == -1)
1274 return -EIO;
1275 }
1276 if (! val)
1277 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1278
1279 if (ratesp) {
1280 u32 rates = 0;
1281 for (i = 0; rate_bits[i].hz; i++) {
1282 if (val & (1 << i))
1283 rates |= rate_bits[i].alsa_bits;
1284 }
1285 *ratesp = rates;
1286 }
1287
1288 if (formatsp || bpsp) {
1289 u64 formats = 0;
1290 unsigned int bps;
1291 unsigned int wcaps;
1292
1293 wcaps = snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP);
1294 streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1295 if (streams == -1)
1296 return -EIO;
1297 if (! streams) {
1298 streams = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1299 if (streams == -1)
1300 return -EIO;
1301 }
1302
1303 bps = 0;
1304 if (streams & AC_SUPFMT_PCM) {
1305 if (val & AC_SUPPCM_BITS_8) {
1306 formats |= SNDRV_PCM_FMTBIT_U8;
1307 bps = 8;
1308 }
1309 if (val & AC_SUPPCM_BITS_16) {
1310 formats |= SNDRV_PCM_FMTBIT_S16_LE;
1311 bps = 16;
1312 }
1313 if (wcaps & AC_WCAP_DIGITAL) {
1314 if (val & AC_SUPPCM_BITS_32)
1315 formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
1316 if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
1317 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1318 if (val & AC_SUPPCM_BITS_24)
1319 bps = 24;
1320 else if (val & AC_SUPPCM_BITS_20)
1321 bps = 20;
1322 } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|AC_SUPPCM_BITS_32)) {
1323 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1324 if (val & AC_SUPPCM_BITS_32)
1325 bps = 32;
1326 else if (val & AC_SUPPCM_BITS_20)
1327 bps = 20;
1328 else if (val & AC_SUPPCM_BITS_24)
1329 bps = 24;
1330 }
1331 }
1332 else if (streams == AC_SUPFMT_FLOAT32) { /* should be exclusive */
1333 formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
1334 bps = 32;
1335 } else if (streams == AC_SUPFMT_AC3) { /* should be exclusive */
1336 /* temporary hack: we have still no proper support
1337 * for the direct AC3 stream...
1338 */
1339 formats |= SNDRV_PCM_FMTBIT_U8;
1340 bps = 8;
1341 }
1342 if (formatsp)
1343 *formatsp = formats;
1344 if (bpsp)
1345 *bpsp = bps;
1346 }
1347
1348 return 0;
1349 }
1350
1351 /**
1352 * snd_hda_is_supported_format - check whether the given node supports the format val
1353 *
1354 * Returns 1 if supported, 0 if not.
1355 */
1356 int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
1357 unsigned int format)
1358 {
1359 int i;
1360 unsigned int val = 0, rate, stream;
1361
1362 if (nid != codec->afg &&
1363 snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_FORMAT_OVRD) {
1364 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1365 if (val == -1)
1366 return 0;
1367 }
1368 if (! val) {
1369 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1370 if (val == -1)
1371 return 0;
1372 }
1373
1374 rate = format & 0xff00;
1375 for (i = 0; rate_bits[i].hz; i++)
1376 if (rate_bits[i].hda_fmt == rate) {
1377 if (val & (1 << i))
1378 break;
1379 return 0;
1380 }
1381 if (! rate_bits[i].hz)
1382 return 0;
1383
1384 stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1385 if (stream == -1)
1386 return 0;
1387 if (! stream && nid != codec->afg)
1388 stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1389 if (! stream || stream == -1)
1390 return 0;
1391
1392 if (stream & AC_SUPFMT_PCM) {
1393 switch (format & 0xf0) {
1394 case 0x00:
1395 if (! (val & AC_SUPPCM_BITS_8))
1396 return 0;
1397 break;
1398 case 0x10:
1399 if (! (val & AC_SUPPCM_BITS_16))
1400 return 0;
1401 break;
1402 case 0x20:
1403 if (! (val & AC_SUPPCM_BITS_20))
1404 return 0;
1405 break;
1406 case 0x30:
1407 if (! (val & AC_SUPPCM_BITS_24))
1408 return 0;
1409 break;
1410 case 0x40:
1411 if (! (val & AC_SUPPCM_BITS_32))
1412 return 0;
1413 break;
1414 default:
1415 return 0;
1416 }
1417 } else {
1418 /* FIXME: check for float32 and AC3? */
1419 }
1420
1421 return 1;
1422 }
1423
1424 /*
1425 * PCM stuff
1426 */
1427 static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
1428 struct hda_codec *codec,
1429 snd_pcm_substream_t *substream)
1430 {
1431 return 0;
1432 }
1433
1434 static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
1435 struct hda_codec *codec,
1436 unsigned int stream_tag,
1437 unsigned int format,
1438 snd_pcm_substream_t *substream)
1439 {
1440 snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
1441 return 0;
1442 }
1443
1444 static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
1445 struct hda_codec *codec,
1446 snd_pcm_substream_t *substream)
1447 {
1448 snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
1449 return 0;
1450 }
1451
1452 static int set_pcm_default_values(struct hda_codec *codec, struct hda_pcm_stream *info)
1453 {
1454 if (info->nid) {
1455 /* query support PCM information from the given NID */
1456 if (! info->rates || ! info->formats)
1457 snd_hda_query_supported_pcm(codec, info->nid,
1458 info->rates ? NULL : &info->rates,
1459 info->formats ? NULL : &info->formats,
1460 info->maxbps ? NULL : &info->maxbps);
1461 }
1462 if (info->ops.open == NULL)
1463 info->ops.open = hda_pcm_default_open_close;
1464 if (info->ops.close == NULL)
1465 info->ops.close = hda_pcm_default_open_close;
1466 if (info->ops.prepare == NULL) {
1467 snd_assert(info->nid, return -EINVAL);
1468 info->ops.prepare = hda_pcm_default_prepare;
1469 }
1470 if (info->ops.cleanup == NULL) {
1471 snd_assert(info->nid, return -EINVAL);
1472 info->ops.cleanup = hda_pcm_default_cleanup;
1473 }
1474 return 0;
1475 }
1476
1477 /**
1478 * snd_hda_build_pcms - build PCM information
1479 * @bus: the BUS
1480 *
1481 * Create PCM information for each codec included in the bus.
1482 *
1483 * The build_pcms codec patch is requested to set up codec->num_pcms and
1484 * codec->pcm_info properly. The array is referred by the top-level driver
1485 * to create its PCM instances.
1486 * The allocated codec->pcm_info should be released in codec->patch_ops.free
1487 * callback.
1488 *
1489 * At least, substreams, channels_min and channels_max must be filled for
1490 * each stream. substreams = 0 indicates that the stream doesn't exist.
1491 * When rates and/or formats are zero, the supported values are queried
1492 * from the given nid. The nid is used also by the default ops.prepare
1493 * and ops.cleanup callbacks.
1494 *
1495 * The driver needs to call ops.open in its open callback. Similarly,
1496 * ops.close is supposed to be called in the close callback.
1497 * ops.prepare should be called in the prepare or hw_params callback
1498 * with the proper parameters for set up.
1499 * ops.cleanup should be called in hw_free for clean up of streams.
1500 *
1501 * This function returns 0 if successfull, or a negative error code.
1502 */
1503 int snd_hda_build_pcms(struct hda_bus *bus)
1504 {
1505 struct list_head *p;
1506
1507 list_for_each(p, &bus->codec_list) {
1508 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1509 unsigned int pcm, s;
1510 int err;
1511 if (! codec->patch_ops.build_pcms)
1512 continue;
1513 err = codec->patch_ops.build_pcms(codec);
1514 if (err < 0)
1515 return err;
1516 for (pcm = 0; pcm < codec->num_pcms; pcm++) {
1517 for (s = 0; s < 2; s++) {
1518 struct hda_pcm_stream *info;
1519 info = &codec->pcm_info[pcm].stream[s];
1520 if (! info->substreams)
1521 continue;
1522 err = set_pcm_default_values(codec, info);
1523 if (err < 0)
1524 return err;
1525 }
1526 }
1527 }
1528 return 0;
1529 }
1530
1531
1532 /**
1533 * snd_hda_check_board_config - compare the current codec with the config table
1534 * @codec: the HDA codec
1535 * @tbl: configuration table, terminated by null entries
1536 *
1537 * Compares the modelname or PCI subsystem id of the current codec with the
1538 * given configuration table. If a matching entry is found, returns its
1539 * config value (supposed to be 0 or positive).
1540 *
1541 * If no entries are matching, the function returns a negative value.
1542 */
1543 int snd_hda_check_board_config(struct hda_codec *codec, const struct hda_board_config *tbl)
1544 {
1545 const struct hda_board_config *c;
1546
1547 if (codec->bus->modelname) {
1548 for (c = tbl; c->modelname || c->pci_subvendor; c++) {
1549 if (c->modelname &&
1550 ! strcmp(codec->bus->modelname, c->modelname)) {
1551 snd_printd(KERN_INFO "hda_codec: model '%s' is selected\n", c->modelname);
1552 return c->config;
1553 }
1554 }
1555 }
1556
1557 if (codec->bus->pci) {
1558 u16 subsystem_vendor, subsystem_device;
1559 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_VENDOR_ID, &subsystem_vendor);
1560 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_ID, &subsystem_device);
1561 for (c = tbl; c->modelname || c->pci_subvendor; c++) {
1562 if (c->pci_subvendor == subsystem_vendor &&
1563 (! c->pci_subdevice /* all match */||
1564 (c->pci_subdevice == subsystem_device))) {
1565 snd_printdd(KERN_INFO "hda_codec: PCI %x:%x, codec config %d is selected\n",
1566 subsystem_vendor, subsystem_device, c->config);
1567 return c->config;
1568 }
1569 }
1570 }
1571 return -1;
1572 }
1573
1574 /**
1575 * snd_hda_add_new_ctls - create controls from the array
1576 * @codec: the HDA codec
1577 * @knew: the array of snd_kcontrol_new_t
1578 *
1579 * This helper function creates and add new controls in the given array.
1580 * The array must be terminated with an empty entry as terminator.
1581 *
1582 * Returns 0 if successful, or a negative error code.
1583 */
1584 int snd_hda_add_new_ctls(struct hda_codec *codec, snd_kcontrol_new_t *knew)
1585 {
1586 int err;
1587
1588 for (; knew->name; knew++) {
1589 err = snd_ctl_add(codec->bus->card, snd_ctl_new1(knew, codec));
1590 if (err < 0)
1591 return err;
1592 }
1593 return 0;
1594 }
1595
1596
1597 /*
1598 * input MUX helper
1599 */
1600 int snd_hda_input_mux_info(const struct hda_input_mux *imux, snd_ctl_elem_info_t *uinfo)
1601 {
1602 unsigned int index;
1603
1604 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1605 uinfo->count = 1;
1606 uinfo->value.enumerated.items = imux->num_items;
1607 index = uinfo->value.enumerated.item;
1608 if (index >= imux->num_items)
1609 index = imux->num_items - 1;
1610 strcpy(uinfo->value.enumerated.name, imux->items[index].label);
1611 return 0;
1612 }
1613
1614 int snd_hda_input_mux_put(struct hda_codec *codec, const struct hda_input_mux *imux,
1615 snd_ctl_elem_value_t *ucontrol, hda_nid_t nid,
1616 unsigned int *cur_val)
1617 {
1618 unsigned int idx;
1619
1620 idx = ucontrol->value.enumerated.item[0];
1621 if (idx >= imux->num_items)
1622 idx = imux->num_items - 1;
1623 if (*cur_val == idx && ! codec->in_resume)
1624 return 0;
1625 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
1626 imux->items[idx].index);
1627 *cur_val = idx;
1628 return 1;
1629 }
1630
1631
1632 /*
1633 * Multi-channel / digital-out PCM helper functions
1634 */
1635
1636 /*
1637 * open the digital out in the exclusive mode
1638 */
1639 int snd_hda_multi_out_dig_open(struct hda_codec *codec, struct hda_multi_out *mout)
1640 {
1641 down(&codec->spdif_mutex);
1642 if (mout->dig_out_used) {
1643 up(&codec->spdif_mutex);
1644 return -EBUSY; /* already being used */
1645 }
1646 mout->dig_out_used = HDA_DIG_EXCLUSIVE;
1647 up(&codec->spdif_mutex);
1648 return 0;
1649 }
1650
1651 /*
1652 * release the digital out
1653 */
1654 int snd_hda_multi_out_dig_close(struct hda_codec *codec, struct hda_multi_out *mout)
1655 {
1656 down(&codec->spdif_mutex);
1657 mout->dig_out_used = 0;
1658 up(&codec->spdif_mutex);
1659 return 0;
1660 }
1661
1662 /*
1663 * set up more restrictions for analog out
1664 */
1665 int snd_hda_multi_out_analog_open(struct hda_codec *codec, struct hda_multi_out *mout,
1666 snd_pcm_substream_t *substream)
1667 {
1668 substream->runtime->hw.channels_max = mout->max_channels;
1669 return snd_pcm_hw_constraint_step(substream->runtime, 0,
1670 SNDRV_PCM_HW_PARAM_CHANNELS, 2);
1671 }
1672
1673 /*
1674 * set up the i/o for analog out
1675 * when the digital out is available, copy the front out to digital out, too.
1676 */
1677 int snd_hda_multi_out_analog_prepare(struct hda_codec *codec, struct hda_multi_out *mout,
1678 unsigned int stream_tag,
1679 unsigned int format,
1680 snd_pcm_substream_t *substream)
1681 {
1682 hda_nid_t *nids = mout->dac_nids;
1683 int chs = substream->runtime->channels;
1684 int i;
1685
1686 down(&codec->spdif_mutex);
1687 if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
1688 if (chs == 2 &&
1689 snd_hda_is_supported_format(codec, mout->dig_out_nid, format) &&
1690 ! (codec->spdif_status & IEC958_AES0_NONAUDIO)) {
1691 mout->dig_out_used = HDA_DIG_ANALOG_DUP;
1692 /* setup digital receiver */
1693 snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
1694 stream_tag, 0, format);
1695 } else {
1696 mout->dig_out_used = 0;
1697 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1698 }
1699 }
1700 up(&codec->spdif_mutex);
1701
1702 /* front */
1703 snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag, 0, format);
1704 if (mout->hp_nid)
1705 /* headphone out will just decode front left/right (stereo) */
1706 snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag, 0, format);
1707 /* surrounds */
1708 for (i = 1; i < mout->num_dacs; i++) {
1709 if (chs >= (i + 1) * 2) /* independent out */
1710 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, i * 2,
1711 format);
1712 else /* copy front */
1713 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, 0,
1714 format);
1715 }
1716 return 0;
1717 }
1718
1719 /*
1720 * clean up the setting for analog out
1721 */
1722 int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec, struct hda_multi_out *mout)
1723 {
1724 hda_nid_t *nids = mout->dac_nids;
1725 int i;
1726
1727 for (i = 0; i < mout->num_dacs; i++)
1728 snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
1729 if (mout->hp_nid)
1730 snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
1731 down(&codec->spdif_mutex);
1732 if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
1733 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1734 mout->dig_out_used = 0;
1735 }
1736 up(&codec->spdif_mutex);
1737 return 0;
1738 }
1739
1740 /*
1741 * Helper for automatic ping configuration
1742 */
1743 /* parse all pin widgets and store the useful pin nids to cfg */
1744 int snd_hda_parse_pin_def_config(struct hda_codec *codec, struct auto_pin_cfg *cfg)
1745 {
1746 hda_nid_t nid, nid_start;
1747 int i, j, nodes;
1748 short seq, sequences[4], assoc_line_out;
1749
1750 memset(cfg, 0, sizeof(*cfg));
1751
1752 memset(sequences, 0, sizeof(sequences));
1753 assoc_line_out = 0;
1754
1755 nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid_start);
1756 for (nid = nid_start; nid < nodes + nid_start; nid++) {
1757 unsigned int wid_caps = snd_hda_param_read(codec, nid,
1758 AC_PAR_AUDIO_WIDGET_CAP);
1759 unsigned int wid_type = (wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
1760 unsigned int def_conf;
1761 short assoc, loc;
1762
1763 /* read all default configuration for pin complex */
1764 if (wid_type != AC_WID_PIN)
1765 continue;
1766 def_conf = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONFIG_DEFAULT, 0);
1767 if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
1768 continue;
1769 loc = get_defcfg_location(def_conf);
1770 switch (get_defcfg_device(def_conf)) {
1771 case AC_JACK_LINE_OUT:
1772 case AC_JACK_SPEAKER:
1773 seq = get_defcfg_sequence(def_conf);
1774 assoc = get_defcfg_association(def_conf);
1775 if (! assoc)
1776 continue;
1777 if (! assoc_line_out)
1778 assoc_line_out = assoc;
1779 else if (assoc_line_out != assoc)
1780 continue;
1781 if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
1782 continue;
1783 cfg->line_out_pins[cfg->line_outs] = nid;
1784 sequences[cfg->line_outs] = seq;
1785 cfg->line_outs++;
1786 break;
1787 case AC_JACK_HP_OUT:
1788 cfg->hp_pin = nid;
1789 break;
1790 case AC_JACK_MIC_IN:
1791 if (loc == AC_JACK_LOC_FRONT)
1792 cfg->input_pins[AUTO_PIN_FRONT_MIC] = nid;
1793 else
1794 cfg->input_pins[AUTO_PIN_MIC] = nid;
1795 break;
1796 case AC_JACK_LINE_IN:
1797 if (loc == AC_JACK_LOC_FRONT)
1798 cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
1799 else
1800 cfg->input_pins[AUTO_PIN_LINE] = nid;
1801 break;
1802 case AC_JACK_CD:
1803 cfg->input_pins[AUTO_PIN_CD] = nid;
1804 break;
1805 case AC_JACK_AUX:
1806 cfg->input_pins[AUTO_PIN_AUX] = nid;
1807 break;
1808 case AC_JACK_SPDIF_OUT:
1809 cfg->dig_out_pin = nid;
1810 break;
1811 case AC_JACK_SPDIF_IN:
1812 cfg->dig_in_pin = nid;
1813 break;
1814 }
1815 }
1816
1817 /* sort by sequence */
1818 for (i = 0; i < cfg->line_outs; i++)
1819 for (j = i + 1; j < cfg->line_outs; j++)
1820 if (sequences[i] > sequences[j]) {
1821 seq = sequences[i];
1822 sequences[i] = sequences[j];
1823 sequences[j] = seq;
1824 nid = cfg->line_out_pins[i];
1825 cfg->line_out_pins[i] = cfg->line_out_pins[j];
1826 cfg->line_out_pins[j] = nid;
1827 }
1828
1829 /* Reorder the surround channels
1830 * ALSA sequence is front/surr/clfe/side
1831 * HDA sequence is:
1832 * 4-ch: front/surr => OK as it is
1833 * 6-ch: front/clfe/surr
1834 * 8-ch: front/clfe/side/surr
1835 */
1836 switch (cfg->line_outs) {
1837 case 3:
1838 nid = cfg->line_out_pins[1];
1839 cfg->line_out_pins[1] = cfg->line_out_pins[2];
1840 cfg->line_out_pins[2] = nid;
1841 break;
1842 case 4:
1843 nid = cfg->line_out_pins[1];
1844 cfg->line_out_pins[1] = cfg->line_out_pins[3];
1845 cfg->line_out_pins[3] = cfg->line_out_pins[2];
1846 cfg->line_out_pins[2] = nid;
1847 break;
1848 }
1849
1850 return 0;
1851 }
1852
1853 #ifdef CONFIG_PM
1854 /*
1855 * power management
1856 */
1857
1858 /**
1859 * snd_hda_suspend - suspend the codecs
1860 * @bus: the HDA bus
1861 * @state: suspsend state
1862 *
1863 * Returns 0 if successful.
1864 */
1865 int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
1866 {
1867 struct list_head *p;
1868
1869 /* FIXME: should handle power widget capabilities */
1870 list_for_each(p, &bus->codec_list) {
1871 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1872 if (codec->patch_ops.suspend)
1873 codec->patch_ops.suspend(codec, state);
1874 }
1875 return 0;
1876 }
1877
1878 /**
1879 * snd_hda_resume - resume the codecs
1880 * @bus: the HDA bus
1881 * @state: resume state
1882 *
1883 * Returns 0 if successful.
1884 */
1885 int snd_hda_resume(struct hda_bus *bus)
1886 {
1887 struct list_head *p;
1888
1889 list_for_each(p, &bus->codec_list) {
1890 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1891 if (codec->patch_ops.resume)
1892 codec->patch_ops.resume(codec);
1893 }
1894 return 0;
1895 }
1896
1897 /**
1898 * snd_hda_resume_ctls - resume controls in the new control list
1899 * @codec: the HDA codec
1900 * @knew: the array of snd_kcontrol_new_t
1901 *
1902 * This function resumes the mixer controls in the snd_kcontrol_new_t array,
1903 * originally for snd_hda_add_new_ctls().
1904 * The array must be terminated with an empty entry as terminator.
1905 */
1906 int snd_hda_resume_ctls(struct hda_codec *codec, snd_kcontrol_new_t *knew)
1907 {
1908 snd_ctl_elem_value_t *val;
1909
1910 val = kmalloc(sizeof(*val), GFP_KERNEL);
1911 if (! val)
1912 return -ENOMEM;
1913 codec->in_resume = 1;
1914 for (; knew->name; knew++) {
1915 int i, count;
1916 count = knew->count ? knew->count : 1;
1917 for (i = 0; i < count; i++) {
1918 memset(val, 0, sizeof(*val));
1919 val->id.iface = knew->iface;
1920 val->id.device = knew->device;
1921 val->id.subdevice = knew->subdevice;
1922 strcpy(val->id.name, knew->name);
1923 val->id.index = knew->index ? knew->index : i;
1924 /* Assume that get callback reads only from cache,
1925 * not accessing to the real hardware
1926 */
1927 if (snd_ctl_elem_read(codec->bus->card, val) < 0)
1928 continue;
1929 snd_ctl_elem_write(codec->bus->card, NULL, val);
1930 }
1931 }
1932 codec->in_resume = 0;
1933 kfree(val);
1934 return 0;
1935 }
1936
1937 /**
1938 * snd_hda_resume_spdif_out - resume the digital out
1939 * @codec: the HDA codec
1940 */
1941 int snd_hda_resume_spdif_out(struct hda_codec *codec)
1942 {
1943 return snd_hda_resume_ctls(codec, dig_mixes);
1944 }
1945
1946 /**
1947 * snd_hda_resume_spdif_in - resume the digital in
1948 * @codec: the HDA codec
1949 */
1950 int snd_hda_resume_spdif_in(struct hda_codec *codec)
1951 {
1952 return snd_hda_resume_ctls(codec, dig_in_ctls);
1953 }
1954 #endif
1955
1956 /*
1957 * symbols exported for controller modules
1958 */
1959 EXPORT_SYMBOL(snd_hda_codec_read);
1960 EXPORT_SYMBOL(snd_hda_codec_write);
1961 EXPORT_SYMBOL(snd_hda_sequence_write);
1962 EXPORT_SYMBOL(snd_hda_get_sub_nodes);
1963 EXPORT_SYMBOL(snd_hda_queue_unsol_event);
1964 EXPORT_SYMBOL(snd_hda_bus_new);
1965 EXPORT_SYMBOL(snd_hda_codec_new);
1966 EXPORT_SYMBOL(snd_hda_codec_setup_stream);
1967 EXPORT_SYMBOL(snd_hda_calc_stream_format);
1968 EXPORT_SYMBOL(snd_hda_build_pcms);
1969 EXPORT_SYMBOL(snd_hda_build_controls);
1970 #ifdef CONFIG_PM
1971 EXPORT_SYMBOL(snd_hda_suspend);
1972 EXPORT_SYMBOL(snd_hda_resume);
1973 #endif
1974
1975 /*
1976 * INIT part
1977 */
1978
1979 static int __init alsa_hda_init(void)
1980 {
1981 return 0;
1982 }
1983
1984 static void __exit alsa_hda_exit(void)
1985 {
1986 }
1987
1988 module_init(alsa_hda_init)
1989 module_exit(alsa_hda_exit)
This page took 0.073166 seconds and 6 git commands to generate.