[PATCH] powerpc: Kill _machine and hard-coded platform numbers
[deliverable/linux.git] / sound / ppc / pmac.c
1 /*
2 * PMac DBDMA lowlevel functions
3 *
4 * Copyright (c) by Takashi Iwai <tiwai@suse.de>
5 * code based on dmasound.c.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22
23 #include <sound/driver.h>
24 #include <asm/io.h>
25 #include <asm/irq.h>
26 #include <linux/init.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/pci.h>
31 #include <linux/dma-mapping.h>
32 #include <sound/core.h>
33 #include "pmac.h"
34 #include <sound/pcm_params.h>
35 #include <asm/pmac_feature.h>
36 #include <asm/pci-bridge.h>
37
38
39 /* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */
40 static int awacs_freqs[8] = {
41 44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350
42 };
43 /* fixed frequency table for tumbler */
44 static int tumbler_freqs[1] = {
45 44100
46 };
47
48 /*
49 * allocate DBDMA command arrays
50 */
51 static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size)
52 {
53 unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1);
54
55 rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize,
56 &rec->dma_base, GFP_KERNEL);
57 if (rec->space == NULL)
58 return -ENOMEM;
59 rec->size = size;
60 memset(rec->space, 0, rsize);
61 rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space);
62 rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space);
63
64 return 0;
65 }
66
67 static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec)
68 {
69 if (rec->space) {
70 unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1);
71
72 dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base);
73 }
74 }
75
76
77 /*
78 * pcm stuff
79 */
80
81 /*
82 * look up frequency table
83 */
84
85 unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate)
86 {
87 int i, ok, found;
88
89 ok = rec->cur_freqs;
90 if (rate > chip->freq_table[0])
91 return 0;
92 found = 0;
93 for (i = 0; i < chip->num_freqs; i++, ok >>= 1) {
94 if (! (ok & 1)) continue;
95 found = i;
96 if (rate >= chip->freq_table[i])
97 break;
98 }
99 return found;
100 }
101
102 /*
103 * check whether another stream is active
104 */
105 static inline int another_stream(int stream)
106 {
107 return (stream == SNDRV_PCM_STREAM_PLAYBACK) ?
108 SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
109 }
110
111 /*
112 * allocate buffers
113 */
114 static int snd_pmac_pcm_hw_params(struct snd_pcm_substream *subs,
115 struct snd_pcm_hw_params *hw_params)
116 {
117 return snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw_params));
118 }
119
120 /*
121 * release buffers
122 */
123 static int snd_pmac_pcm_hw_free(struct snd_pcm_substream *subs)
124 {
125 snd_pcm_lib_free_pages(subs);
126 return 0;
127 }
128
129 /*
130 * get a stream of the opposite direction
131 */
132 static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream)
133 {
134 switch (stream) {
135 case SNDRV_PCM_STREAM_PLAYBACK:
136 return &chip->playback;
137 case SNDRV_PCM_STREAM_CAPTURE:
138 return &chip->capture;
139 default:
140 snd_BUG();
141 return NULL;
142 }
143 }
144
145 /*
146 * wait while run status is on
147 */
148 static inline void
149 snd_pmac_wait_ack(struct pmac_stream *rec)
150 {
151 int timeout = 50000;
152 while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0)
153 udelay(1);
154 }
155
156 /*
157 * set the format and rate to the chip.
158 * call the lowlevel function if defined (e.g. for AWACS).
159 */
160 static void snd_pmac_pcm_set_format(struct snd_pmac *chip)
161 {
162 /* set up frequency and format */
163 out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8));
164 out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0);
165 if (chip->set_format)
166 chip->set_format(chip);
167 }
168
169 /*
170 * stop the DMA transfer
171 */
172 static inline void snd_pmac_dma_stop(struct pmac_stream *rec)
173 {
174 out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16);
175 snd_pmac_wait_ack(rec);
176 }
177
178 /*
179 * set the command pointer address
180 */
181 static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd)
182 {
183 out_le32(&rec->dma->cmdptr, cmd->addr);
184 }
185
186 /*
187 * start the DMA
188 */
189 static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status)
190 {
191 out_le32(&rec->dma->control, status | (status << 16));
192 }
193
194
195 /*
196 * prepare playback/capture stream
197 */
198 static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs)
199 {
200 int i;
201 volatile struct dbdma_cmd __iomem *cp;
202 struct snd_pcm_runtime *runtime = subs->runtime;
203 int rate_index;
204 long offset;
205 struct pmac_stream *astr;
206
207 rec->dma_size = snd_pcm_lib_buffer_bytes(subs);
208 rec->period_size = snd_pcm_lib_period_bytes(subs);
209 rec->nperiods = rec->dma_size / rec->period_size;
210 rec->cur_period = 0;
211 rate_index = snd_pmac_rate_index(chip, rec, runtime->rate);
212
213 /* set up constraints */
214 astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
215 if (! astr)
216 return -EINVAL;
217 astr->cur_freqs = 1 << rate_index;
218 astr->cur_formats = 1 << runtime->format;
219 chip->rate_index = rate_index;
220 chip->format = runtime->format;
221
222 /* We really want to execute a DMA stop command, after the AWACS
223 * is initialized.
224 * For reasons I don't understand, it stops the hissing noise
225 * common to many PowerBook G3 systems and random noise otherwise
226 * captured on iBook2's about every third time. -ReneR
227 */
228 spin_lock_irq(&chip->reg_lock);
229 snd_pmac_dma_stop(rec);
230 st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
231 snd_pmac_dma_set_command(rec, &chip->extra_dma);
232 snd_pmac_dma_run(rec, RUN);
233 spin_unlock_irq(&chip->reg_lock);
234 mdelay(5);
235 spin_lock_irq(&chip->reg_lock);
236 /* continuous DMA memory type doesn't provide the physical address,
237 * so we need to resolve the address here...
238 */
239 offset = runtime->dma_addr;
240 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) {
241 st_le32(&cp->phy_addr, offset);
242 st_le16(&cp->req_count, rec->period_size);
243 /*st_le16(&cp->res_count, 0);*/
244 st_le16(&cp->xfer_status, 0);
245 offset += rec->period_size;
246 }
247 /* make loop */
248 st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
249 st_le32(&cp->cmd_dep, rec->cmd.addr);
250
251 snd_pmac_dma_stop(rec);
252 snd_pmac_dma_set_command(rec, &rec->cmd);
253 spin_unlock_irq(&chip->reg_lock);
254
255 return 0;
256 }
257
258
259 /*
260 * PCM trigger/stop
261 */
262 static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec,
263 struct snd_pcm_substream *subs, int cmd)
264 {
265 volatile struct dbdma_cmd __iomem *cp;
266 int i, command;
267
268 switch (cmd) {
269 case SNDRV_PCM_TRIGGER_START:
270 case SNDRV_PCM_TRIGGER_RESUME:
271 if (rec->running)
272 return -EBUSY;
273 command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ?
274 OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS;
275 spin_lock(&chip->reg_lock);
276 snd_pmac_beep_stop(chip);
277 snd_pmac_pcm_set_format(chip);
278 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
279 out_le16(&cp->command, command);
280 snd_pmac_dma_set_command(rec, &rec->cmd);
281 (void)in_le32(&rec->dma->status);
282 snd_pmac_dma_run(rec, RUN|WAKE);
283 rec->running = 1;
284 spin_unlock(&chip->reg_lock);
285 break;
286
287 case SNDRV_PCM_TRIGGER_STOP:
288 case SNDRV_PCM_TRIGGER_SUSPEND:
289 spin_lock(&chip->reg_lock);
290 rec->running = 0;
291 /*printk("stopped!!\n");*/
292 snd_pmac_dma_stop(rec);
293 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
294 out_le16(&cp->command, DBDMA_STOP);
295 spin_unlock(&chip->reg_lock);
296 break;
297
298 default:
299 return -EINVAL;
300 }
301
302 return 0;
303 }
304
305 /*
306 * return the current pointer
307 */
308 inline
309 static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip,
310 struct pmac_stream *rec,
311 struct snd_pcm_substream *subs)
312 {
313 int count = 0;
314
315 #if 1 /* hmm.. how can we get the current dma pointer?? */
316 int stat;
317 volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period];
318 stat = ld_le16(&cp->xfer_status);
319 if (stat & (ACTIVE|DEAD)) {
320 count = in_le16(&cp->res_count);
321 if (count)
322 count = rec->period_size - count;
323 }
324 #endif
325 count += rec->cur_period * rec->period_size;
326 /*printk("pointer=%d\n", count);*/
327 return bytes_to_frames(subs->runtime, count);
328 }
329
330 /*
331 * playback
332 */
333
334 static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs)
335 {
336 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
337 return snd_pmac_pcm_prepare(chip, &chip->playback, subs);
338 }
339
340 static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs,
341 int cmd)
342 {
343 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
344 return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd);
345 }
346
347 static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs)
348 {
349 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
350 return snd_pmac_pcm_pointer(chip, &chip->playback, subs);
351 }
352
353
354 /*
355 * capture
356 */
357
358 static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs)
359 {
360 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
361 return snd_pmac_pcm_prepare(chip, &chip->capture, subs);
362 }
363
364 static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs,
365 int cmd)
366 {
367 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
368 return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd);
369 }
370
371 static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs)
372 {
373 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
374 return snd_pmac_pcm_pointer(chip, &chip->capture, subs);
375 }
376
377
378 /*
379 * update playback/capture pointer from interrupts
380 */
381 static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec)
382 {
383 volatile struct dbdma_cmd __iomem *cp;
384 int c;
385 int stat;
386
387 spin_lock(&chip->reg_lock);
388 if (rec->running) {
389 cp = &rec->cmd.cmds[rec->cur_period];
390 for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */
391 stat = ld_le16(&cp->xfer_status);
392 if (! (stat & ACTIVE))
393 break;
394 /*printk("update frag %d\n", rec->cur_period);*/
395 st_le16(&cp->xfer_status, 0);
396 st_le16(&cp->req_count, rec->period_size);
397 /*st_le16(&cp->res_count, 0);*/
398 rec->cur_period++;
399 if (rec->cur_period >= rec->nperiods) {
400 rec->cur_period = 0;
401 cp = rec->cmd.cmds;
402 } else
403 cp++;
404 spin_unlock(&chip->reg_lock);
405 snd_pcm_period_elapsed(rec->substream);
406 spin_lock(&chip->reg_lock);
407 }
408 }
409 spin_unlock(&chip->reg_lock);
410 }
411
412
413 /*
414 * hw info
415 */
416
417 static struct snd_pcm_hardware snd_pmac_playback =
418 {
419 .info = (SNDRV_PCM_INFO_INTERLEAVED |
420 SNDRV_PCM_INFO_MMAP |
421 SNDRV_PCM_INFO_MMAP_VALID |
422 SNDRV_PCM_INFO_RESUME),
423 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
424 .rates = SNDRV_PCM_RATE_8000_44100,
425 .rate_min = 7350,
426 .rate_max = 44100,
427 .channels_min = 2,
428 .channels_max = 2,
429 .buffer_bytes_max = 131072,
430 .period_bytes_min = 256,
431 .period_bytes_max = 16384,
432 .periods_min = 3,
433 .periods_max = PMAC_MAX_FRAGS,
434 };
435
436 static struct snd_pcm_hardware snd_pmac_capture =
437 {
438 .info = (SNDRV_PCM_INFO_INTERLEAVED |
439 SNDRV_PCM_INFO_MMAP |
440 SNDRV_PCM_INFO_MMAP_VALID |
441 SNDRV_PCM_INFO_RESUME),
442 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
443 .rates = SNDRV_PCM_RATE_8000_44100,
444 .rate_min = 7350,
445 .rate_max = 44100,
446 .channels_min = 2,
447 .channels_max = 2,
448 .buffer_bytes_max = 131072,
449 .period_bytes_min = 256,
450 .period_bytes_max = 16384,
451 .periods_min = 3,
452 .periods_max = PMAC_MAX_FRAGS,
453 };
454
455
456 #if 0 // NYI
457 static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params,
458 struct snd_pcm_hw_rule *rule)
459 {
460 struct snd_pmac *chip = rule->private;
461 struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
462 int i, freq_table[8], num_freqs;
463
464 if (! rec)
465 return -EINVAL;
466 num_freqs = 0;
467 for (i = chip->num_freqs - 1; i >= 0; i--) {
468 if (rec->cur_freqs & (1 << i))
469 freq_table[num_freqs++] = chip->freq_table[i];
470 }
471
472 return snd_interval_list(hw_param_interval(params, rule->var),
473 num_freqs, freq_table, 0);
474 }
475
476 static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params,
477 struct snd_pcm_hw_rule *rule)
478 {
479 struct snd_pmac *chip = rule->private;
480 struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
481
482 if (! rec)
483 return -EINVAL;
484 return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT),
485 rec->cur_formats);
486 }
487 #endif // NYI
488
489 static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec,
490 struct snd_pcm_substream *subs)
491 {
492 struct snd_pcm_runtime *runtime = subs->runtime;
493 int i, j, fflags;
494 static int typical_freqs[] = {
495 44100,
496 22050,
497 11025,
498 0,
499 };
500 static int typical_freq_flags[] = {
501 SNDRV_PCM_RATE_44100,
502 SNDRV_PCM_RATE_22050,
503 SNDRV_PCM_RATE_11025,
504 0,
505 };
506
507 /* look up frequency table and fill bit mask */
508 runtime->hw.rates = 0;
509 fflags = chip->freqs_ok;
510 for (i = 0; typical_freqs[i]; i++) {
511 for (j = 0; j < chip->num_freqs; j++) {
512 if ((chip->freqs_ok & (1 << j)) &&
513 chip->freq_table[j] == typical_freqs[i]) {
514 runtime->hw.rates |= typical_freq_flags[i];
515 fflags &= ~(1 << j);
516 break;
517 }
518 }
519 }
520 if (fflags) /* rest */
521 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
522
523 /* check for minimum and maximum rates */
524 for (i = 0; i < chip->num_freqs; i++) {
525 if (chip->freqs_ok & (1 << i)) {
526 runtime->hw.rate_max = chip->freq_table[i];
527 break;
528 }
529 }
530 for (i = chip->num_freqs - 1; i >= 0; i--) {
531 if (chip->freqs_ok & (1 << i)) {
532 runtime->hw.rate_min = chip->freq_table[i];
533 break;
534 }
535 }
536 runtime->hw.formats = chip->formats_ok;
537 if (chip->can_capture) {
538 if (! chip->can_duplex)
539 runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX;
540 runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX;
541 }
542 runtime->private_data = rec;
543 rec->substream = subs;
544
545 #if 0 /* FIXME: still under development.. */
546 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
547 snd_pmac_hw_rule_rate, chip, rec->stream, -1);
548 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
549 snd_pmac_hw_rule_format, chip, rec->stream, -1);
550 #endif
551
552 runtime->hw.periods_max = rec->cmd.size - 1;
553
554 if (chip->can_duplex)
555 snd_pcm_set_sync(subs);
556
557 /* constraints to fix choppy sound */
558 snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
559 return 0;
560 }
561
562 static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec,
563 struct snd_pcm_substream *subs)
564 {
565 struct pmac_stream *astr;
566
567 snd_pmac_dma_stop(rec);
568
569 astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
570 if (! astr)
571 return -EINVAL;
572
573 /* reset constraints */
574 astr->cur_freqs = chip->freqs_ok;
575 astr->cur_formats = chip->formats_ok;
576
577 return 0;
578 }
579
580 static int snd_pmac_playback_open(struct snd_pcm_substream *subs)
581 {
582 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
583
584 subs->runtime->hw = snd_pmac_playback;
585 return snd_pmac_pcm_open(chip, &chip->playback, subs);
586 }
587
588 static int snd_pmac_capture_open(struct snd_pcm_substream *subs)
589 {
590 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
591
592 subs->runtime->hw = snd_pmac_capture;
593 return snd_pmac_pcm_open(chip, &chip->capture, subs);
594 }
595
596 static int snd_pmac_playback_close(struct snd_pcm_substream *subs)
597 {
598 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
599
600 return snd_pmac_pcm_close(chip, &chip->playback, subs);
601 }
602
603 static int snd_pmac_capture_close(struct snd_pcm_substream *subs)
604 {
605 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
606
607 return snd_pmac_pcm_close(chip, &chip->capture, subs);
608 }
609
610 /*
611 */
612
613 static struct snd_pcm_ops snd_pmac_playback_ops = {
614 .open = snd_pmac_playback_open,
615 .close = snd_pmac_playback_close,
616 .ioctl = snd_pcm_lib_ioctl,
617 .hw_params = snd_pmac_pcm_hw_params,
618 .hw_free = snd_pmac_pcm_hw_free,
619 .prepare = snd_pmac_playback_prepare,
620 .trigger = snd_pmac_playback_trigger,
621 .pointer = snd_pmac_playback_pointer,
622 };
623
624 static struct snd_pcm_ops snd_pmac_capture_ops = {
625 .open = snd_pmac_capture_open,
626 .close = snd_pmac_capture_close,
627 .ioctl = snd_pcm_lib_ioctl,
628 .hw_params = snd_pmac_pcm_hw_params,
629 .hw_free = snd_pmac_pcm_hw_free,
630 .prepare = snd_pmac_capture_prepare,
631 .trigger = snd_pmac_capture_trigger,
632 .pointer = snd_pmac_capture_pointer,
633 };
634
635 int __init snd_pmac_pcm_new(struct snd_pmac *chip)
636 {
637 struct snd_pcm *pcm;
638 int err;
639 int num_captures = 1;
640
641 if (! chip->can_capture)
642 num_captures = 0;
643 err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm);
644 if (err < 0)
645 return err;
646
647 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops);
648 if (chip->can_capture)
649 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops);
650
651 pcm->private_data = chip;
652 pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
653 strcpy(pcm->name, chip->card->shortname);
654 chip->pcm = pcm;
655
656 chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE;
657 if (chip->can_byte_swap)
658 chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE;
659
660 chip->playback.cur_formats = chip->formats_ok;
661 chip->capture.cur_formats = chip->formats_ok;
662 chip->playback.cur_freqs = chip->freqs_ok;
663 chip->capture.cur_freqs = chip->freqs_ok;
664
665 /* preallocate 64k buffer */
666 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
667 &chip->pdev->dev,
668 64 * 1024, 64 * 1024);
669
670 return 0;
671 }
672
673
674 static void snd_pmac_dbdma_reset(struct snd_pmac *chip)
675 {
676 out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
677 snd_pmac_wait_ack(&chip->playback);
678 out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
679 snd_pmac_wait_ack(&chip->capture);
680 }
681
682
683 /*
684 * handling beep
685 */
686 void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed)
687 {
688 struct pmac_stream *rec = &chip->playback;
689
690 snd_pmac_dma_stop(rec);
691 st_le16(&chip->extra_dma.cmds->req_count, bytes);
692 st_le16(&chip->extra_dma.cmds->xfer_status, 0);
693 st_le32(&chip->extra_dma.cmds->cmd_dep, chip->extra_dma.addr);
694 st_le32(&chip->extra_dma.cmds->phy_addr, addr);
695 st_le16(&chip->extra_dma.cmds->command, OUTPUT_MORE + BR_ALWAYS);
696 out_le32(&chip->awacs->control,
697 (in_le32(&chip->awacs->control) & ~0x1f00)
698 | (speed << 8));
699 out_le32(&chip->awacs->byteswap, 0);
700 snd_pmac_dma_set_command(rec, &chip->extra_dma);
701 snd_pmac_dma_run(rec, RUN);
702 }
703
704 void snd_pmac_beep_dma_stop(struct snd_pmac *chip)
705 {
706 snd_pmac_dma_stop(&chip->playback);
707 st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
708 snd_pmac_pcm_set_format(chip); /* reset format */
709 }
710
711
712 /*
713 * interrupt handlers
714 */
715 static irqreturn_t
716 snd_pmac_tx_intr(int irq, void *devid, struct pt_regs *regs)
717 {
718 struct snd_pmac *chip = devid;
719 snd_pmac_pcm_update(chip, &chip->playback);
720 return IRQ_HANDLED;
721 }
722
723
724 static irqreturn_t
725 snd_pmac_rx_intr(int irq, void *devid, struct pt_regs *regs)
726 {
727 struct snd_pmac *chip = devid;
728 snd_pmac_pcm_update(chip, &chip->capture);
729 return IRQ_HANDLED;
730 }
731
732
733 static irqreturn_t
734 snd_pmac_ctrl_intr(int irq, void *devid, struct pt_regs *regs)
735 {
736 struct snd_pmac *chip = devid;
737 int ctrl = in_le32(&chip->awacs->control);
738
739 /*printk("pmac: control interrupt.. 0x%x\n", ctrl);*/
740 if (ctrl & MASK_PORTCHG) {
741 /* do something when headphone is plugged/unplugged? */
742 if (chip->update_automute)
743 chip->update_automute(chip, 1);
744 }
745 if (ctrl & MASK_CNTLERR) {
746 int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16;
747 if (err && chip->model <= PMAC_SCREAMER)
748 snd_printk(KERN_DEBUG "error %x\n", err);
749 }
750 /* Writing 1s to the CNTLERR and PORTCHG bits clears them... */
751 out_le32(&chip->awacs->control, ctrl);
752 return IRQ_HANDLED;
753 }
754
755
756 /*
757 * a wrapper to feature call for compatibility
758 */
759 static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable)
760 {
761 if (ppc_md.feature_call)
762 ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable);
763 }
764
765 /*
766 * release resources
767 */
768
769 static int snd_pmac_free(struct snd_pmac *chip)
770 {
771 /* stop sounds */
772 if (chip->initialized) {
773 snd_pmac_dbdma_reset(chip);
774 /* disable interrupts from awacs interface */
775 out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff);
776 }
777
778 snd_pmac_sound_feature(chip, 0);
779
780 /* clean up mixer if any */
781 if (chip->mixer_free)
782 chip->mixer_free(chip);
783
784 snd_pmac_detach_beep(chip);
785
786 /* release resources */
787 if (chip->irq >= 0)
788 free_irq(chip->irq, (void*)chip);
789 if (chip->tx_irq >= 0)
790 free_irq(chip->tx_irq, (void*)chip);
791 if (chip->rx_irq >= 0)
792 free_irq(chip->rx_irq, (void*)chip);
793 snd_pmac_dbdma_free(chip, &chip->playback.cmd);
794 snd_pmac_dbdma_free(chip, &chip->capture.cmd);
795 snd_pmac_dbdma_free(chip, &chip->extra_dma);
796 if (chip->macio_base)
797 iounmap(chip->macio_base);
798 if (chip->latch_base)
799 iounmap(chip->latch_base);
800 if (chip->awacs)
801 iounmap(chip->awacs);
802 if (chip->playback.dma)
803 iounmap(chip->playback.dma);
804 if (chip->capture.dma)
805 iounmap(chip->capture.dma);
806
807 if (chip->node) {
808 int i;
809 for (i = 0; i < 3; i++) {
810 if (chip->requested & (1 << i))
811 release_mem_region(chip->rsrc[i].start,
812 chip->rsrc[i].end -
813 chip->rsrc[i].start + 1);
814 }
815 }
816
817 if (chip->pdev)
818 pci_dev_put(chip->pdev);
819 kfree(chip);
820 return 0;
821 }
822
823
824 /*
825 * free the device
826 */
827 static int snd_pmac_dev_free(struct snd_device *device)
828 {
829 struct snd_pmac *chip = device->device_data;
830 return snd_pmac_free(chip);
831 }
832
833
834 /*
835 * check the machine support byteswap (little-endian)
836 */
837
838 static void __init detect_byte_swap(struct snd_pmac *chip)
839 {
840 struct device_node *mio;
841
842 /* if seems that Keylargo can't byte-swap */
843 for (mio = chip->node->parent; mio; mio = mio->parent) {
844 if (strcmp(mio->name, "mac-io") == 0) {
845 if (device_is_compatible(mio, "Keylargo"))
846 chip->can_byte_swap = 0;
847 break;
848 }
849 }
850
851 /* it seems the Pismo & iBook can't byte-swap in hardware. */
852 if (machine_is_compatible("PowerBook3,1") ||
853 machine_is_compatible("PowerBook2,1"))
854 chip->can_byte_swap = 0 ;
855
856 if (machine_is_compatible("PowerBook2,1"))
857 chip->can_duplex = 0;
858 }
859
860
861 /*
862 * detect a sound chip
863 */
864 static int __init snd_pmac_detect(struct snd_pmac *chip)
865 {
866 struct device_node *sound = NULL;
867 unsigned int *prop, l;
868 struct macio_chip* macio;
869
870 u32 layout_id = 0;
871
872 if (!machine_is(powermac))
873 return -ENODEV;
874
875 chip->subframe = 0;
876 chip->revision = 0;
877 chip->freqs_ok = 0xff; /* all ok */
878 chip->model = PMAC_AWACS;
879 chip->can_byte_swap = 1;
880 chip->can_duplex = 1;
881 chip->can_capture = 1;
882 chip->num_freqs = ARRAY_SIZE(awacs_freqs);
883 chip->freq_table = awacs_freqs;
884 chip->pdev = NULL;
885
886 chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */
887
888 /* check machine type */
889 if (machine_is_compatible("AAPL,3400/2400")
890 || machine_is_compatible("AAPL,3500"))
891 chip->is_pbook_3400 = 1;
892 else if (machine_is_compatible("PowerBook1,1")
893 || machine_is_compatible("AAPL,PowerBook1998"))
894 chip->is_pbook_G3 = 1;
895 chip->node = find_devices("awacs");
896 if (chip->node)
897 sound = chip->node;
898
899 /*
900 * powermac G3 models have a node called "davbus"
901 * with a child called "sound".
902 */
903 if (!chip->node)
904 chip->node = find_devices("davbus");
905 /*
906 * if we didn't find a davbus device, try 'i2s-a' since
907 * this seems to be what iBooks have
908 */
909 if (! chip->node) {
910 chip->node = find_devices("i2s-a");
911 if (chip->node && chip->node->parent &&
912 chip->node->parent->parent) {
913 if (device_is_compatible(chip->node->parent->parent,
914 "K2-Keylargo"))
915 chip->is_k2 = 1;
916 }
917 }
918 if (! chip->node)
919 return -ENODEV;
920
921 if (!sound) {
922 sound = find_devices("sound");
923 while (sound && sound->parent != chip->node)
924 sound = sound->next;
925 }
926 if (! sound)
927 return -ENODEV;
928 prop = (unsigned int *) get_property(sound, "sub-frame", NULL);
929 if (prop && *prop < 16)
930 chip->subframe = *prop;
931 prop = (unsigned int *) get_property(sound, "layout-id", NULL);
932 if (prop)
933 layout_id = *prop;
934 /* This should be verified on older screamers */
935 if (device_is_compatible(sound, "screamer")) {
936 chip->model = PMAC_SCREAMER;
937 // chip->can_byte_swap = 0; /* FIXME: check this */
938 }
939 if (device_is_compatible(sound, "burgundy")) {
940 chip->model = PMAC_BURGUNDY;
941 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
942 }
943 if (device_is_compatible(sound, "daca")) {
944 chip->model = PMAC_DACA;
945 chip->can_capture = 0; /* no capture */
946 chip->can_duplex = 0;
947 // chip->can_byte_swap = 0; /* FIXME: check this */
948 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
949 }
950 if (device_is_compatible(sound, "tumbler")) {
951 chip->model = PMAC_TUMBLER;
952 chip->can_capture = 0; /* no capture */
953 chip->can_duplex = 0;
954 // chip->can_byte_swap = 0; /* FIXME: check this */
955 chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
956 chip->freq_table = tumbler_freqs;
957 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
958 }
959 if (device_is_compatible(sound, "snapper")) {
960 chip->model = PMAC_SNAPPER;
961 // chip->can_byte_swap = 0; /* FIXME: check this */
962 chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
963 chip->freq_table = tumbler_freqs;
964 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
965 }
966 if (device_is_compatible(sound, "AOAKeylargo") ||
967 device_is_compatible(sound, "AOAbase") ||
968 device_is_compatible(sound, "AOAK2")) {
969 /* For now, only support very basic TAS3004 based machines with
970 * single frequency until proper i2s control is implemented
971 */
972 switch(layout_id) {
973 case 0x24:
974 case 0x29:
975 case 0x33:
976 case 0x46:
977 case 0x48:
978 case 0x50:
979 case 0x5c:
980 chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
981 chip->model = PMAC_SNAPPER;
982 chip->can_byte_swap = 0; /* FIXME: check this */
983 chip->control_mask = MASK_IEPC | 0x11;/* disable IEE */
984 break;
985 case 0x3a:
986 chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
987 chip->model = PMAC_TOONIE;
988 chip->can_byte_swap = 0; /* FIXME: check this */
989 chip->control_mask = MASK_IEPC | 0x11;/* disable IEE */
990 break;
991 default:
992 printk(KERN_ERR "snd: Unknown layout ID 0x%x\n",
993 layout_id);
994 return -ENODEV;
995
996 }
997 }
998 prop = (unsigned int *)get_property(sound, "device-id", NULL);
999 if (prop)
1000 chip->device_id = *prop;
1001 chip->has_iic = (find_devices("perch") != NULL);
1002
1003 /* We need the PCI device for DMA allocations, let's use a crude method
1004 * for now ...
1005 */
1006 macio = macio_find(chip->node, macio_unknown);
1007 if (macio == NULL)
1008 printk(KERN_WARNING "snd-powermac: can't locate macio !\n");
1009 else {
1010 struct pci_dev *pdev = NULL;
1011
1012 for_each_pci_dev(pdev) {
1013 struct device_node *np = pci_device_to_OF_node(pdev);
1014 if (np && np == macio->of_node) {
1015 chip->pdev = pdev;
1016 break;
1017 }
1018 }
1019 }
1020 if (chip->pdev == NULL)
1021 printk(KERN_WARNING "snd-powermac: can't locate macio PCI"
1022 " device !\n");
1023
1024 detect_byte_swap(chip);
1025
1026 /* look for a property saying what sample rates
1027 are available */
1028 prop = (unsigned int *) get_property(sound, "sample-rates", &l);
1029 if (! prop)
1030 prop = (unsigned int *) get_property(sound,
1031 "output-frame-rates", &l);
1032 if (prop) {
1033 int i;
1034 chip->freqs_ok = 0;
1035 for (l /= sizeof(int); l > 0; --l) {
1036 unsigned int r = *prop++;
1037 /* Apple 'Fixed' format */
1038 if (r >= 0x10000)
1039 r >>= 16;
1040 for (i = 0; i < chip->num_freqs; ++i) {
1041 if (r == chip->freq_table[i]) {
1042 chip->freqs_ok |= (1 << i);
1043 break;
1044 }
1045 }
1046 }
1047 } else {
1048 /* assume only 44.1khz */
1049 chip->freqs_ok = 1;
1050 }
1051
1052 return 0;
1053 }
1054
1055 /*
1056 * exported - boolean info callbacks for ease of programming
1057 */
1058 int snd_pmac_boolean_stereo_info(struct snd_kcontrol *kcontrol,
1059 struct snd_ctl_elem_info *uinfo)
1060 {
1061 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1062 uinfo->count = 2;
1063 uinfo->value.integer.min = 0;
1064 uinfo->value.integer.max = 1;
1065 return 0;
1066 }
1067
1068 int snd_pmac_boolean_mono_info(struct snd_kcontrol *kcontrol,
1069 struct snd_ctl_elem_info *uinfo)
1070 {
1071 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1072 uinfo->count = 1;
1073 uinfo->value.integer.min = 0;
1074 uinfo->value.integer.max = 1;
1075 return 0;
1076 }
1077
1078 #ifdef PMAC_SUPPORT_AUTOMUTE
1079 /*
1080 * auto-mute
1081 */
1082 static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol,
1083 struct snd_ctl_elem_value *ucontrol)
1084 {
1085 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1086 ucontrol->value.integer.value[0] = chip->auto_mute;
1087 return 0;
1088 }
1089
1090 static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol,
1091 struct snd_ctl_elem_value *ucontrol)
1092 {
1093 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1094 if (ucontrol->value.integer.value[0] != chip->auto_mute) {
1095 chip->auto_mute = ucontrol->value.integer.value[0];
1096 if (chip->update_automute)
1097 chip->update_automute(chip, 1);
1098 return 1;
1099 }
1100 return 0;
1101 }
1102
1103 static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol,
1104 struct snd_ctl_elem_value *ucontrol)
1105 {
1106 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1107 if (chip->detect_headphone)
1108 ucontrol->value.integer.value[0] = chip->detect_headphone(chip);
1109 else
1110 ucontrol->value.integer.value[0] = 0;
1111 return 0;
1112 }
1113
1114 static struct snd_kcontrol_new auto_mute_controls[] __initdata = {
1115 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1116 .name = "Auto Mute Switch",
1117 .info = snd_pmac_boolean_mono_info,
1118 .get = pmac_auto_mute_get,
1119 .put = pmac_auto_mute_put,
1120 },
1121 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1122 .name = "Headphone Detection",
1123 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1124 .info = snd_pmac_boolean_mono_info,
1125 .get = pmac_hp_detect_get,
1126 },
1127 };
1128
1129 int __init snd_pmac_add_automute(struct snd_pmac *chip)
1130 {
1131 int err;
1132 chip->auto_mute = 1;
1133 err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip));
1134 if (err < 0) {
1135 printk(KERN_ERR "snd-powermac: Failed to add automute control\n");
1136 return err;
1137 }
1138 chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip);
1139 return snd_ctl_add(chip->card, chip->hp_detect_ctl);
1140 }
1141 #endif /* PMAC_SUPPORT_AUTOMUTE */
1142
1143 /*
1144 * create and detect a pmac chip record
1145 */
1146 int __init snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return)
1147 {
1148 struct snd_pmac *chip;
1149 struct device_node *np;
1150 int i, err;
1151 unsigned long ctrl_addr, txdma_addr, rxdma_addr;
1152 static struct snd_device_ops ops = {
1153 .dev_free = snd_pmac_dev_free,
1154 };
1155
1156 *chip_return = NULL;
1157
1158 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1159 if (chip == NULL)
1160 return -ENOMEM;
1161 chip->card = card;
1162
1163 spin_lock_init(&chip->reg_lock);
1164 chip->irq = chip->tx_irq = chip->rx_irq = -1;
1165
1166 chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK;
1167 chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE;
1168
1169 if ((err = snd_pmac_detect(chip)) < 0)
1170 goto __error;
1171
1172 if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1173 snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1174 snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0) {
1175 err = -ENOMEM;
1176 goto __error;
1177 }
1178
1179 np = chip->node;
1180 chip->requested = 0;
1181 if (chip->is_k2) {
1182 static char *rnames[] = {
1183 "Sound Control", "Sound DMA" };
1184 if (np->n_intrs < 3) {
1185 err = -ENODEV;
1186 goto __error;
1187 }
1188 for (i = 0; i < 2; i ++) {
1189 if (of_address_to_resource(np->parent, i,
1190 &chip->rsrc[i])) {
1191 printk(KERN_ERR "snd: can't translate rsrc "
1192 " %d (%s)\n", i, rnames[i]);
1193 err = -ENODEV;
1194 goto __error;
1195 }
1196 if (request_mem_region(chip->rsrc[i].start,
1197 chip->rsrc[i].end -
1198 chip->rsrc[i].start + 1,
1199 rnames[i]) == NULL) {
1200 printk(KERN_ERR "snd: can't request rsrc "
1201 " %d (%s: 0x%08lx:%08lx)\n",
1202 i, rnames[i], chip->rsrc[i].start,
1203 chip->rsrc[i].end);
1204 err = -ENODEV;
1205 goto __error;
1206 }
1207 chip->requested |= (1 << i);
1208 }
1209 ctrl_addr = chip->rsrc[0].start;
1210 txdma_addr = chip->rsrc[1].start;
1211 rxdma_addr = txdma_addr + 0x100;
1212 } else {
1213 static char *rnames[] = {
1214 "Sound Control", "Sound Tx DMA", "Sound Rx DMA" };
1215 if (np->n_intrs < 3) {
1216 err = -ENODEV;
1217 goto __error;
1218 }
1219 for (i = 0; i < 3; i ++) {
1220 if (of_address_to_resource(np, i,
1221 &chip->rsrc[i])) {
1222 printk(KERN_ERR "snd: can't translate rsrc "
1223 " %d (%s)\n", i, rnames[i]);
1224 err = -ENODEV;
1225 goto __error;
1226 }
1227 if (request_mem_region(chip->rsrc[i].start,
1228 chip->rsrc[i].end -
1229 chip->rsrc[i].start + 1,
1230 rnames[i]) == NULL) {
1231 printk(KERN_ERR "snd: can't request rsrc "
1232 " %d (%s: 0x%08lx:%08lx)\n",
1233 i, rnames[i], chip->rsrc[i].start,
1234 chip->rsrc[i].end);
1235 err = -ENODEV;
1236 goto __error;
1237 }
1238 chip->requested |= (1 << i);
1239 }
1240 ctrl_addr = chip->rsrc[0].start;
1241 txdma_addr = chip->rsrc[1].start;
1242 rxdma_addr = chip->rsrc[2].start;
1243 }
1244
1245 chip->awacs = ioremap(ctrl_addr, 0x1000);
1246 chip->playback.dma = ioremap(txdma_addr, 0x100);
1247 chip->capture.dma = ioremap(rxdma_addr, 0x100);
1248 if (chip->model <= PMAC_BURGUNDY) {
1249 if (request_irq(np->intrs[0].line, snd_pmac_ctrl_intr, 0,
1250 "PMac", (void*)chip)) {
1251 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[0].line);
1252 err = -EBUSY;
1253 goto __error;
1254 }
1255 chip->irq = np->intrs[0].line;
1256 }
1257 if (request_irq(np->intrs[1].line, snd_pmac_tx_intr, 0,
1258 "PMac Output", (void*)chip)) {
1259 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[1].line);
1260 err = -EBUSY;
1261 goto __error;
1262 }
1263 chip->tx_irq = np->intrs[1].line;
1264 if (request_irq(np->intrs[2].line, snd_pmac_rx_intr, 0,
1265 "PMac Input", (void*)chip)) {
1266 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[2].line);
1267 err = -EBUSY;
1268 goto __error;
1269 }
1270 chip->rx_irq = np->intrs[2].line;
1271
1272 snd_pmac_sound_feature(chip, 1);
1273
1274 /* reset */
1275 if (chip->model == PMAC_AWACS)
1276 out_le32(&chip->awacs->control, 0x11);
1277
1278 /* Powerbooks have odd ways of enabling inputs such as
1279 an expansion-bay CD or sound from an internal modem
1280 or a PC-card modem. */
1281 if (chip->is_pbook_3400) {
1282 /* Enable CD and PC-card sound inputs. */
1283 /* This is done by reading from address
1284 * f301a000, + 0x10 to enable the expansion-bay
1285 * CD sound input, + 0x80 to enable the PC-card
1286 * sound input. The 0x100 enables the SCSI bus
1287 * terminator power.
1288 */
1289 chip->latch_base = ioremap (0xf301a000, 0x1000);
1290 in_8(chip->latch_base + 0x190);
1291 } else if (chip->is_pbook_G3) {
1292 struct device_node* mio;
1293 for (mio = chip->node->parent; mio; mio = mio->parent) {
1294 if (strcmp(mio->name, "mac-io") == 0) {
1295 struct resource r;
1296 if (of_address_to_resource(mio, 0, &r) == 0)
1297 chip->macio_base =
1298 ioremap(r.start, 0x40);
1299 break;
1300 }
1301 }
1302 /* Enable CD sound input. */
1303 /* The relevant bits for writing to this byte are 0x8f.
1304 * I haven't found out what the 0x80 bit does.
1305 * For the 0xf bits, writing 3 or 7 enables the CD
1306 * input, any other value disables it. Values
1307 * 1, 3, 5, 7 enable the microphone. Values 0, 2,
1308 * 4, 6, 8 - f enable the input from the modem.
1309 */
1310 if (chip->macio_base)
1311 out_8(chip->macio_base + 0x37, 3);
1312 }
1313
1314 /* Reset dbdma channels */
1315 snd_pmac_dbdma_reset(chip);
1316
1317 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0)
1318 goto __error;
1319
1320 *chip_return = chip;
1321 return 0;
1322
1323 __error:
1324 if (chip->pdev)
1325 pci_dev_put(chip->pdev);
1326 snd_pmac_free(chip);
1327 return err;
1328 }
1329
1330
1331 /*
1332 * sleep notify for powerbook
1333 */
1334
1335 #ifdef CONFIG_PM
1336
1337 /*
1338 * Save state when going to sleep, restore it afterwards.
1339 */
1340
1341 void snd_pmac_suspend(struct snd_pmac *chip)
1342 {
1343 unsigned long flags;
1344
1345 snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot);
1346 if (chip->suspend)
1347 chip->suspend(chip);
1348 snd_pcm_suspend_all(chip->pcm);
1349 spin_lock_irqsave(&chip->reg_lock, flags);
1350 snd_pmac_beep_stop(chip);
1351 spin_unlock_irqrestore(&chip->reg_lock, flags);
1352 if (chip->irq >= 0)
1353 disable_irq(chip->irq);
1354 if (chip->tx_irq >= 0)
1355 disable_irq(chip->tx_irq);
1356 if (chip->rx_irq >= 0)
1357 disable_irq(chip->rx_irq);
1358 snd_pmac_sound_feature(chip, 0);
1359 }
1360
1361 void snd_pmac_resume(struct snd_pmac *chip)
1362 {
1363 snd_pmac_sound_feature(chip, 1);
1364 if (chip->resume)
1365 chip->resume(chip);
1366 /* enable CD sound input */
1367 if (chip->macio_base && chip->is_pbook_G3)
1368 out_8(chip->macio_base + 0x37, 3);
1369 else if (chip->is_pbook_3400)
1370 in_8(chip->latch_base + 0x190);
1371
1372 snd_pmac_pcm_set_format(chip);
1373
1374 if (chip->irq >= 0)
1375 enable_irq(chip->irq);
1376 if (chip->tx_irq >= 0)
1377 enable_irq(chip->tx_irq);
1378 if (chip->rx_irq >= 0)
1379 enable_irq(chip->rx_irq);
1380
1381 snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0);
1382 }
1383
1384 #endif /* CONFIG_PM */
1385
This page took 0.08652 seconds and 5 git commands to generate.