Merge tag 'mac80211-next-for-davem-2015-10-05' of git://git.kernel.org/pub/scm/linux...
[deliverable/linux.git] / sound / soc / codecs / sta350.c
1 /*
2 * Codec driver for ST STA350 2.1-channel high-efficiency digital audio system
3 *
4 * Copyright: 2014 Raumfeld GmbH
5 * Author: Sven Brandau <info@brandau.biz>
6 *
7 * based on code from:
8 * Raumfeld GmbH
9 * Johannes Stezenbach <js@sig21.net>
10 * Wolfson Microelectronics PLC.
11 * Mark Brown <broonie@opensource.wolfsonmicro.com>
12 * Freescale Semiconductor, Inc.
13 * Timur Tabi <timur@freescale.com>
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 */
20
21 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
22
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/pm.h>
28 #include <linux/i2c.h>
29 #include <linux/of_device.h>
30 #include <linux/of_gpio.h>
31 #include <linux/regmap.h>
32 #include <linux/regulator/consumer.h>
33 #include <linux/gpio/consumer.h>
34 #include <linux/slab.h>
35 #include <sound/core.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/soc.h>
39 #include <sound/soc-dapm.h>
40 #include <sound/initval.h>
41 #include <sound/tlv.h>
42
43 #include <sound/sta350.h>
44 #include "sta350.h"
45
46 #define STA350_RATES (SNDRV_PCM_RATE_32000 | \
47 SNDRV_PCM_RATE_44100 | \
48 SNDRV_PCM_RATE_48000 | \
49 SNDRV_PCM_RATE_88200 | \
50 SNDRV_PCM_RATE_96000 | \
51 SNDRV_PCM_RATE_176400 | \
52 SNDRV_PCM_RATE_192000)
53
54 #define STA350_FORMATS \
55 (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE | \
56 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \
57 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \
58 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \
59 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE | \
60 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE)
61
62 /* Power-up register defaults */
63 static const struct reg_default sta350_regs[] = {
64 { 0x0, 0x63 },
65 { 0x1, 0x80 },
66 { 0x2, 0xdf },
67 { 0x3, 0x40 },
68 { 0x4, 0xc2 },
69 { 0x5, 0x5c },
70 { 0x6, 0x00 },
71 { 0x7, 0xff },
72 { 0x8, 0x60 },
73 { 0x9, 0x60 },
74 { 0xa, 0x60 },
75 { 0xb, 0x00 },
76 { 0xc, 0x00 },
77 { 0xd, 0x00 },
78 { 0xe, 0x00 },
79 { 0xf, 0x40 },
80 { 0x10, 0x80 },
81 { 0x11, 0x77 },
82 { 0x12, 0x6a },
83 { 0x13, 0x69 },
84 { 0x14, 0x6a },
85 { 0x15, 0x69 },
86 { 0x16, 0x00 },
87 { 0x17, 0x00 },
88 { 0x18, 0x00 },
89 { 0x19, 0x00 },
90 { 0x1a, 0x00 },
91 { 0x1b, 0x00 },
92 { 0x1c, 0x00 },
93 { 0x1d, 0x00 },
94 { 0x1e, 0x00 },
95 { 0x1f, 0x00 },
96 { 0x20, 0x00 },
97 { 0x21, 0x00 },
98 { 0x22, 0x00 },
99 { 0x23, 0x00 },
100 { 0x24, 0x00 },
101 { 0x25, 0x00 },
102 { 0x26, 0x00 },
103 { 0x27, 0x2a },
104 { 0x28, 0xc0 },
105 { 0x29, 0xf3 },
106 { 0x2a, 0x33 },
107 { 0x2b, 0x00 },
108 { 0x2c, 0x0c },
109 { 0x31, 0x00 },
110 { 0x36, 0x00 },
111 { 0x37, 0x00 },
112 { 0x38, 0x00 },
113 { 0x39, 0x01 },
114 { 0x3a, 0xee },
115 { 0x3b, 0xff },
116 { 0x3c, 0x7e },
117 { 0x3d, 0xc0 },
118 { 0x3e, 0x26 },
119 { 0x3f, 0x00 },
120 { 0x48, 0x00 },
121 { 0x49, 0x00 },
122 { 0x4a, 0x00 },
123 { 0x4b, 0x04 },
124 { 0x4c, 0x00 },
125 };
126
127 static const struct regmap_range sta350_write_regs_range[] = {
128 regmap_reg_range(STA350_CONFA, STA350_AUTO2),
129 regmap_reg_range(STA350_C1CFG, STA350_FDRC2),
130 regmap_reg_range(STA350_EQCFG, STA350_EVOLRES),
131 regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
132 };
133
134 static const struct regmap_range sta350_read_regs_range[] = {
135 regmap_reg_range(STA350_CONFA, STA350_AUTO2),
136 regmap_reg_range(STA350_C1CFG, STA350_STATUS),
137 regmap_reg_range(STA350_EQCFG, STA350_EVOLRES),
138 regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
139 };
140
141 static const struct regmap_range sta350_volatile_regs_range[] = {
142 regmap_reg_range(STA350_CFADDR2, STA350_CFUD),
143 regmap_reg_range(STA350_STATUS, STA350_STATUS),
144 };
145
146 static const struct regmap_access_table sta350_write_regs = {
147 .yes_ranges = sta350_write_regs_range,
148 .n_yes_ranges = ARRAY_SIZE(sta350_write_regs_range),
149 };
150
151 static const struct regmap_access_table sta350_read_regs = {
152 .yes_ranges = sta350_read_regs_range,
153 .n_yes_ranges = ARRAY_SIZE(sta350_read_regs_range),
154 };
155
156 static const struct regmap_access_table sta350_volatile_regs = {
157 .yes_ranges = sta350_volatile_regs_range,
158 .n_yes_ranges = ARRAY_SIZE(sta350_volatile_regs_range),
159 };
160
161 /* regulator power supply names */
162 static const char * const sta350_supply_names[] = {
163 "vdd-dig", /* digital supply, 3.3V */
164 "vdd-pll", /* pll supply, 3.3V */
165 "vcc" /* power amp supply, 5V - 26V */
166 };
167
168 /* codec private data */
169 struct sta350_priv {
170 struct regmap *regmap;
171 struct regulator_bulk_data supplies[ARRAY_SIZE(sta350_supply_names)];
172 struct sta350_platform_data *pdata;
173
174 unsigned int mclk;
175 unsigned int format;
176
177 u32 coef_shadow[STA350_COEF_COUNT];
178 int shutdown;
179
180 struct gpio_desc *gpiod_nreset;
181 struct gpio_desc *gpiod_power_down;
182
183 struct mutex coeff_lock;
184 };
185
186 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12750, 50, 1);
187 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
188 static const DECLARE_TLV_DB_SCALE(tone_tlv, -1200, 200, 0);
189
190 static const char * const sta350_drc_ac[] = {
191 "Anti-Clipping", "Dynamic Range Compression"
192 };
193 static const char * const sta350_auto_gc_mode[] = {
194 "User", "AC no clipping", "AC limited clipping (10%)",
195 "DRC nighttime listening mode"
196 };
197 static const char * const sta350_auto_xo_mode[] = {
198 "User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz",
199 "200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz",
200 "340Hz", "360Hz"
201 };
202 static const char * const sta350_binary_output[] = {
203 "FFX 3-state output - normal operation", "Binary output"
204 };
205 static const char * const sta350_limiter_select[] = {
206 "Limiter Disabled", "Limiter #1", "Limiter #2"
207 };
208 static const char * const sta350_limiter_attack_rate[] = {
209 "3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
210 "0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
211 "0.0645", "0.0564", "0.0501", "0.0451"
212 };
213 static const char * const sta350_limiter_release_rate[] = {
214 "0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
215 "0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
216 "0.0134", "0.0117", "0.0110", "0.0104"
217 };
218 static const char * const sta350_noise_shaper_type[] = {
219 "Third order", "Fourth order"
220 };
221
222 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_attack_tlv,
223 0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
224 8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
225 );
226
227 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_release_tlv,
228 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
229 1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
230 2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
231 3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
232 8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
233 );
234
235 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_attack_tlv,
236 0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
237 8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
238 14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
239 );
240
241 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_release_tlv,
242 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
243 1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
244 3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
245 5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
246 13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
247 );
248
249 static SOC_ENUM_SINGLE_DECL(sta350_drc_ac_enum,
250 STA350_CONFD, STA350_CONFD_DRC_SHIFT,
251 sta350_drc_ac);
252 static SOC_ENUM_SINGLE_DECL(sta350_noise_shaper_enum,
253 STA350_CONFE, STA350_CONFE_NSBW_SHIFT,
254 sta350_noise_shaper_type);
255 static SOC_ENUM_SINGLE_DECL(sta350_auto_gc_enum,
256 STA350_AUTO1, STA350_AUTO1_AMGC_SHIFT,
257 sta350_auto_gc_mode);
258 static SOC_ENUM_SINGLE_DECL(sta350_auto_xo_enum,
259 STA350_AUTO2, STA350_AUTO2_XO_SHIFT,
260 sta350_auto_xo_mode);
261 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch1_enum,
262 STA350_C1CFG, STA350_CxCFG_BO_SHIFT,
263 sta350_binary_output);
264 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch2_enum,
265 STA350_C2CFG, STA350_CxCFG_BO_SHIFT,
266 sta350_binary_output);
267 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch3_enum,
268 STA350_C3CFG, STA350_CxCFG_BO_SHIFT,
269 sta350_binary_output);
270 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch1_enum,
271 STA350_C1CFG, STA350_CxCFG_LS_SHIFT,
272 sta350_limiter_select);
273 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch2_enum,
274 STA350_C2CFG, STA350_CxCFG_LS_SHIFT,
275 sta350_limiter_select);
276 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch3_enum,
277 STA350_C3CFG, STA350_CxCFG_LS_SHIFT,
278 sta350_limiter_select);
279 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_attack_rate_enum,
280 STA350_L1AR, STA350_LxA_SHIFT,
281 sta350_limiter_attack_rate);
282 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_attack_rate_enum,
283 STA350_L2AR, STA350_LxA_SHIFT,
284 sta350_limiter_attack_rate);
285 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_release_rate_enum,
286 STA350_L1AR, STA350_LxR_SHIFT,
287 sta350_limiter_release_rate);
288 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_release_rate_enum,
289 STA350_L2AR, STA350_LxR_SHIFT,
290 sta350_limiter_release_rate);
291
292 /*
293 * byte array controls for setting biquad, mixer, scaling coefficients;
294 * for biquads all five coefficients need to be set in one go,
295 * mixer and pre/postscale coefs can be set individually;
296 * each coef is 24bit, the bytes are ordered in the same way
297 * as given in the STA350 data sheet (big endian; b1, b2, a1, a2, b0)
298 */
299
300 static int sta350_coefficient_info(struct snd_kcontrol *kcontrol,
301 struct snd_ctl_elem_info *uinfo)
302 {
303 int numcoef = kcontrol->private_value >> 16;
304 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
305 uinfo->count = 3 * numcoef;
306 return 0;
307 }
308
309 static int sta350_coefficient_get(struct snd_kcontrol *kcontrol,
310 struct snd_ctl_elem_value *ucontrol)
311 {
312 struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
313 struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
314 int numcoef = kcontrol->private_value >> 16;
315 int index = kcontrol->private_value & 0xffff;
316 unsigned int cfud, val;
317 int i, ret = 0;
318
319 mutex_lock(&sta350->coeff_lock);
320
321 /* preserve reserved bits in STA350_CFUD */
322 regmap_read(sta350->regmap, STA350_CFUD, &cfud);
323 cfud &= 0xf0;
324 /*
325 * chip documentation does not say if the bits are self clearing,
326 * so do it explicitly
327 */
328 regmap_write(sta350->regmap, STA350_CFUD, cfud);
329
330 regmap_write(sta350->regmap, STA350_CFADDR2, index);
331 if (numcoef == 1) {
332 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x04);
333 } else if (numcoef == 5) {
334 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x08);
335 } else {
336 ret = -EINVAL;
337 goto exit_unlock;
338 }
339
340 for (i = 0; i < 3 * numcoef; i++) {
341 regmap_read(sta350->regmap, STA350_B1CF1 + i, &val);
342 ucontrol->value.bytes.data[i] = val;
343 }
344
345 exit_unlock:
346 mutex_unlock(&sta350->coeff_lock);
347
348 return ret;
349 }
350
351 static int sta350_coefficient_put(struct snd_kcontrol *kcontrol,
352 struct snd_ctl_elem_value *ucontrol)
353 {
354 struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
355 struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
356 int numcoef = kcontrol->private_value >> 16;
357 int index = kcontrol->private_value & 0xffff;
358 unsigned int cfud;
359 int i;
360
361 /* preserve reserved bits in STA350_CFUD */
362 regmap_read(sta350->regmap, STA350_CFUD, &cfud);
363 cfud &= 0xf0;
364 /*
365 * chip documentation does not say if the bits are self clearing,
366 * so do it explicitly
367 */
368 regmap_write(sta350->regmap, STA350_CFUD, cfud);
369
370 regmap_write(sta350->regmap, STA350_CFADDR2, index);
371 for (i = 0; i < numcoef && (index + i < STA350_COEF_COUNT); i++)
372 sta350->coef_shadow[index + i] =
373 (ucontrol->value.bytes.data[3 * i] << 16)
374 | (ucontrol->value.bytes.data[3 * i + 1] << 8)
375 | (ucontrol->value.bytes.data[3 * i + 2]);
376 for (i = 0; i < 3 * numcoef; i++)
377 regmap_write(sta350->regmap, STA350_B1CF1 + i,
378 ucontrol->value.bytes.data[i]);
379 if (numcoef == 1)
380 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
381 else if (numcoef == 5)
382 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x02);
383 else
384 return -EINVAL;
385
386 return 0;
387 }
388
389 static int sta350_sync_coef_shadow(struct snd_soc_codec *codec)
390 {
391 struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
392 unsigned int cfud;
393 int i;
394
395 /* preserve reserved bits in STA350_CFUD */
396 regmap_read(sta350->regmap, STA350_CFUD, &cfud);
397 cfud &= 0xf0;
398
399 for (i = 0; i < STA350_COEF_COUNT; i++) {
400 regmap_write(sta350->regmap, STA350_CFADDR2, i);
401 regmap_write(sta350->regmap, STA350_B1CF1,
402 (sta350->coef_shadow[i] >> 16) & 0xff);
403 regmap_write(sta350->regmap, STA350_B1CF2,
404 (sta350->coef_shadow[i] >> 8) & 0xff);
405 regmap_write(sta350->regmap, STA350_B1CF3,
406 (sta350->coef_shadow[i]) & 0xff);
407 /*
408 * chip documentation does not say if the bits are
409 * self-clearing, so do it explicitly
410 */
411 regmap_write(sta350->regmap, STA350_CFUD, cfud);
412 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
413 }
414 return 0;
415 }
416
417 static int sta350_cache_sync(struct snd_soc_codec *codec)
418 {
419 struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
420 unsigned int mute;
421 int rc;
422
423 /* mute during register sync */
424 regmap_read(sta350->regmap, STA350_CFUD, &mute);
425 regmap_write(sta350->regmap, STA350_MMUTE, mute | STA350_MMUTE_MMUTE);
426 sta350_sync_coef_shadow(codec);
427 rc = regcache_sync(sta350->regmap);
428 regmap_write(sta350->regmap, STA350_MMUTE, mute);
429 return rc;
430 }
431
432 #define SINGLE_COEF(xname, index) \
433 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
434 .info = sta350_coefficient_info, \
435 .get = sta350_coefficient_get,\
436 .put = sta350_coefficient_put, \
437 .private_value = index | (1 << 16) }
438
439 #define BIQUAD_COEFS(xname, index) \
440 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
441 .info = sta350_coefficient_info, \
442 .get = sta350_coefficient_get,\
443 .put = sta350_coefficient_put, \
444 .private_value = index | (5 << 16) }
445
446 static const struct snd_kcontrol_new sta350_snd_controls[] = {
447 SOC_SINGLE_TLV("Master Volume", STA350_MVOL, 0, 0xff, 1, mvol_tlv),
448 /* VOL */
449 SOC_SINGLE_TLV("Ch1 Volume", STA350_C1VOL, 0, 0xff, 1, chvol_tlv),
450 SOC_SINGLE_TLV("Ch2 Volume", STA350_C2VOL, 0, 0xff, 1, chvol_tlv),
451 SOC_SINGLE_TLV("Ch3 Volume", STA350_C3VOL, 0, 0xff, 1, chvol_tlv),
452 /* CONFD */
453 SOC_SINGLE("High Pass Filter Bypass Switch",
454 STA350_CONFD, STA350_CONFD_HPB_SHIFT, 1, 1),
455 SOC_SINGLE("De-emphasis Filter Switch",
456 STA350_CONFD, STA350_CONFD_DEMP_SHIFT, 1, 0),
457 SOC_SINGLE("DSP Bypass Switch",
458 STA350_CONFD, STA350_CONFD_DSPB_SHIFT, 1, 0),
459 SOC_SINGLE("Post-scale Link Switch",
460 STA350_CONFD, STA350_CONFD_PSL_SHIFT, 1, 0),
461 SOC_SINGLE("Biquad Coefficient Link Switch",
462 STA350_CONFD, STA350_CONFD_BQL_SHIFT, 1, 0),
463 SOC_ENUM("Compressor/Limiter Switch", sta350_drc_ac_enum),
464 SOC_ENUM("Noise Shaper Bandwidth", sta350_noise_shaper_enum),
465 SOC_SINGLE("Zero-detect Mute Enable Switch",
466 STA350_CONFD, STA350_CONFD_ZDE_SHIFT, 1, 0),
467 SOC_SINGLE("Submix Mode Switch",
468 STA350_CONFD, STA350_CONFD_SME_SHIFT, 1, 0),
469 /* CONFE */
470 SOC_SINGLE("Zero Cross Switch", STA350_CONFE, STA350_CONFE_ZCE_SHIFT, 1, 0),
471 SOC_SINGLE("Soft Ramp Switch", STA350_CONFE, STA350_CONFE_SVE_SHIFT, 1, 0),
472 /* MUTE */
473 SOC_SINGLE("Master Switch", STA350_MMUTE, STA350_MMUTE_MMUTE_SHIFT, 1, 1),
474 SOC_SINGLE("Ch1 Switch", STA350_MMUTE, STA350_MMUTE_C1M_SHIFT, 1, 1),
475 SOC_SINGLE("Ch2 Switch", STA350_MMUTE, STA350_MMUTE_C2M_SHIFT, 1, 1),
476 SOC_SINGLE("Ch3 Switch", STA350_MMUTE, STA350_MMUTE_C3M_SHIFT, 1, 1),
477 /* AUTOx */
478 SOC_ENUM("Automode GC", sta350_auto_gc_enum),
479 SOC_ENUM("Automode XO", sta350_auto_xo_enum),
480 /* CxCFG */
481 SOC_SINGLE("Ch1 Tone Control Bypass Switch",
482 STA350_C1CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
483 SOC_SINGLE("Ch2 Tone Control Bypass Switch",
484 STA350_C2CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
485 SOC_SINGLE("Ch1 EQ Bypass Switch",
486 STA350_C1CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
487 SOC_SINGLE("Ch2 EQ Bypass Switch",
488 STA350_C2CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
489 SOC_SINGLE("Ch1 Master Volume Bypass Switch",
490 STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
491 SOC_SINGLE("Ch2 Master Volume Bypass Switch",
492 STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
493 SOC_SINGLE("Ch3 Master Volume Bypass Switch",
494 STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
495 SOC_ENUM("Ch1 Binary Output Select", sta350_binary_output_ch1_enum),
496 SOC_ENUM("Ch2 Binary Output Select", sta350_binary_output_ch2_enum),
497 SOC_ENUM("Ch3 Binary Output Select", sta350_binary_output_ch3_enum),
498 SOC_ENUM("Ch1 Limiter Select", sta350_limiter_ch1_enum),
499 SOC_ENUM("Ch2 Limiter Select", sta350_limiter_ch2_enum),
500 SOC_ENUM("Ch3 Limiter Select", sta350_limiter_ch3_enum),
501 /* TONE */
502 SOC_SINGLE_RANGE_TLV("Bass Tone Control Volume",
503 STA350_TONE, STA350_TONE_BTC_SHIFT, 1, 13, 0, tone_tlv),
504 SOC_SINGLE_RANGE_TLV("Treble Tone Control Volume",
505 STA350_TONE, STA350_TONE_TTC_SHIFT, 1, 13, 0, tone_tlv),
506 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta350_limiter1_attack_rate_enum),
507 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta350_limiter2_attack_rate_enum),
508 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta350_limiter1_release_rate_enum),
509 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta350_limiter2_release_rate_enum),
510
511 /*
512 * depending on mode, the attack/release thresholds have
513 * two different enum definitions; provide both
514 */
515 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)",
516 STA350_L1ATRT, STA350_LxA_SHIFT,
517 16, 0, sta350_limiter_ac_attack_tlv),
518 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)",
519 STA350_L2ATRT, STA350_LxA_SHIFT,
520 16, 0, sta350_limiter_ac_attack_tlv),
521 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)",
522 STA350_L1ATRT, STA350_LxR_SHIFT,
523 16, 0, sta350_limiter_ac_release_tlv),
524 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)",
525 STA350_L2ATRT, STA350_LxR_SHIFT,
526 16, 0, sta350_limiter_ac_release_tlv),
527 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)",
528 STA350_L1ATRT, STA350_LxA_SHIFT,
529 16, 0, sta350_limiter_drc_attack_tlv),
530 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)",
531 STA350_L2ATRT, STA350_LxA_SHIFT,
532 16, 0, sta350_limiter_drc_attack_tlv),
533 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)",
534 STA350_L1ATRT, STA350_LxR_SHIFT,
535 16, 0, sta350_limiter_drc_release_tlv),
536 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)",
537 STA350_L2ATRT, STA350_LxR_SHIFT,
538 16, 0, sta350_limiter_drc_release_tlv),
539
540 BIQUAD_COEFS("Ch1 - Biquad 1", 0),
541 BIQUAD_COEFS("Ch1 - Biquad 2", 5),
542 BIQUAD_COEFS("Ch1 - Biquad 3", 10),
543 BIQUAD_COEFS("Ch1 - Biquad 4", 15),
544 BIQUAD_COEFS("Ch2 - Biquad 1", 20),
545 BIQUAD_COEFS("Ch2 - Biquad 2", 25),
546 BIQUAD_COEFS("Ch2 - Biquad 3", 30),
547 BIQUAD_COEFS("Ch2 - Biquad 4", 35),
548 BIQUAD_COEFS("High-pass", 40),
549 BIQUAD_COEFS("Low-pass", 45),
550 SINGLE_COEF("Ch1 - Prescale", 50),
551 SINGLE_COEF("Ch2 - Prescale", 51),
552 SINGLE_COEF("Ch1 - Postscale", 52),
553 SINGLE_COEF("Ch2 - Postscale", 53),
554 SINGLE_COEF("Ch3 - Postscale", 54),
555 SINGLE_COEF("Thermal warning - Postscale", 55),
556 SINGLE_COEF("Ch1 - Mix 1", 56),
557 SINGLE_COEF("Ch1 - Mix 2", 57),
558 SINGLE_COEF("Ch2 - Mix 1", 58),
559 SINGLE_COEF("Ch2 - Mix 2", 59),
560 SINGLE_COEF("Ch3 - Mix 1", 60),
561 SINGLE_COEF("Ch3 - Mix 2", 61),
562 };
563
564 static const struct snd_soc_dapm_widget sta350_dapm_widgets[] = {
565 SND_SOC_DAPM_DAC("DAC", NULL, SND_SOC_NOPM, 0, 0),
566 SND_SOC_DAPM_OUTPUT("LEFT"),
567 SND_SOC_DAPM_OUTPUT("RIGHT"),
568 SND_SOC_DAPM_OUTPUT("SUB"),
569 };
570
571 static const struct snd_soc_dapm_route sta350_dapm_routes[] = {
572 { "LEFT", NULL, "DAC" },
573 { "RIGHT", NULL, "DAC" },
574 { "SUB", NULL, "DAC" },
575 { "DAC", NULL, "Playback" },
576 };
577
578 /* MCLK interpolation ratio per fs */
579 static struct {
580 int fs;
581 int ir;
582 } interpolation_ratios[] = {
583 { 32000, 0 },
584 { 44100, 0 },
585 { 48000, 0 },
586 { 88200, 1 },
587 { 96000, 1 },
588 { 176400, 2 },
589 { 192000, 2 },
590 };
591
592 /* MCLK to fs clock ratios */
593 static int mcs_ratio_table[3][6] = {
594 { 768, 512, 384, 256, 128, 576 },
595 { 384, 256, 192, 128, 64, 0 },
596 { 192, 128, 96, 64, 32, 0 },
597 };
598
599 /**
600 * sta350_set_dai_sysclk - configure MCLK
601 * @codec_dai: the codec DAI
602 * @clk_id: the clock ID (ignored)
603 * @freq: the MCLK input frequency
604 * @dir: the clock direction (ignored)
605 *
606 * The value of MCLK is used to determine which sample rates are supported
607 * by the STA350, based on the mcs_ratio_table.
608 *
609 * This function must be called by the machine driver's 'startup' function,
610 * otherwise the list of supported sample rates will not be available in
611 * time for ALSA.
612 */
613 static int sta350_set_dai_sysclk(struct snd_soc_dai *codec_dai,
614 int clk_id, unsigned int freq, int dir)
615 {
616 struct snd_soc_codec *codec = codec_dai->codec;
617 struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
618
619 dev_dbg(codec->dev, "mclk=%u\n", freq);
620 sta350->mclk = freq;
621
622 return 0;
623 }
624
625 /**
626 * sta350_set_dai_fmt - configure the codec for the selected audio format
627 * @codec_dai: the codec DAI
628 * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
629 *
630 * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
631 * codec accordingly.
632 */
633 static int sta350_set_dai_fmt(struct snd_soc_dai *codec_dai,
634 unsigned int fmt)
635 {
636 struct snd_soc_codec *codec = codec_dai->codec;
637 struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
638 unsigned int confb = 0;
639
640 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
641 case SND_SOC_DAIFMT_CBS_CFS:
642 break;
643 default:
644 return -EINVAL;
645 }
646
647 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
648 case SND_SOC_DAIFMT_I2S:
649 case SND_SOC_DAIFMT_RIGHT_J:
650 case SND_SOC_DAIFMT_LEFT_J:
651 sta350->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
652 break;
653 default:
654 return -EINVAL;
655 }
656
657 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
658 case SND_SOC_DAIFMT_NB_NF:
659 confb |= STA350_CONFB_C2IM;
660 break;
661 case SND_SOC_DAIFMT_NB_IF:
662 confb |= STA350_CONFB_C1IM;
663 break;
664 default:
665 return -EINVAL;
666 }
667
668 return regmap_update_bits(sta350->regmap, STA350_CONFB,
669 STA350_CONFB_C1IM | STA350_CONFB_C2IM, confb);
670 }
671
672 /**
673 * sta350_hw_params - program the STA350 with the given hardware parameters.
674 * @substream: the audio stream
675 * @params: the hardware parameters to set
676 * @dai: the SOC DAI (ignored)
677 *
678 * This function programs the hardware with the values provided.
679 * Specifically, the sample rate and the data format.
680 */
681 static int sta350_hw_params(struct snd_pcm_substream *substream,
682 struct snd_pcm_hw_params *params,
683 struct snd_soc_dai *dai)
684 {
685 struct snd_soc_codec *codec = dai->codec;
686 struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
687 int i, mcs = -EINVAL, ir = -EINVAL;
688 unsigned int confa, confb;
689 unsigned int rate, ratio;
690 int ret;
691
692 if (!sta350->mclk) {
693 dev_err(codec->dev,
694 "sta350->mclk is unset. Unable to determine ratio\n");
695 return -EIO;
696 }
697
698 rate = params_rate(params);
699 ratio = sta350->mclk / rate;
700 dev_dbg(codec->dev, "rate: %u, ratio: %u\n", rate, ratio);
701
702 for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
703 if (interpolation_ratios[i].fs == rate) {
704 ir = interpolation_ratios[i].ir;
705 break;
706 }
707 }
708
709 if (ir < 0) {
710 dev_err(codec->dev, "Unsupported samplerate: %u\n", rate);
711 return -EINVAL;
712 }
713
714 for (i = 0; i < 6; i++) {
715 if (mcs_ratio_table[ir][i] == ratio) {
716 mcs = i;
717 break;
718 }
719 }
720
721 if (mcs < 0) {
722 dev_err(codec->dev, "Unresolvable ratio: %u\n", ratio);
723 return -EINVAL;
724 }
725
726 confa = (ir << STA350_CONFA_IR_SHIFT) |
727 (mcs << STA350_CONFA_MCS_SHIFT);
728 confb = 0;
729
730 switch (params_width(params)) {
731 case 24:
732 dev_dbg(codec->dev, "24bit\n");
733 /* fall through */
734 case 32:
735 dev_dbg(codec->dev, "24bit or 32bit\n");
736 switch (sta350->format) {
737 case SND_SOC_DAIFMT_I2S:
738 confb |= 0x0;
739 break;
740 case SND_SOC_DAIFMT_LEFT_J:
741 confb |= 0x1;
742 break;
743 case SND_SOC_DAIFMT_RIGHT_J:
744 confb |= 0x2;
745 break;
746 }
747
748 break;
749 case 20:
750 dev_dbg(codec->dev, "20bit\n");
751 switch (sta350->format) {
752 case SND_SOC_DAIFMT_I2S:
753 confb |= 0x4;
754 break;
755 case SND_SOC_DAIFMT_LEFT_J:
756 confb |= 0x5;
757 break;
758 case SND_SOC_DAIFMT_RIGHT_J:
759 confb |= 0x6;
760 break;
761 }
762
763 break;
764 case 18:
765 dev_dbg(codec->dev, "18bit\n");
766 switch (sta350->format) {
767 case SND_SOC_DAIFMT_I2S:
768 confb |= 0x8;
769 break;
770 case SND_SOC_DAIFMT_LEFT_J:
771 confb |= 0x9;
772 break;
773 case SND_SOC_DAIFMT_RIGHT_J:
774 confb |= 0xa;
775 break;
776 }
777
778 break;
779 case 16:
780 dev_dbg(codec->dev, "16bit\n");
781 switch (sta350->format) {
782 case SND_SOC_DAIFMT_I2S:
783 confb |= 0x0;
784 break;
785 case SND_SOC_DAIFMT_LEFT_J:
786 confb |= 0xd;
787 break;
788 case SND_SOC_DAIFMT_RIGHT_J:
789 confb |= 0xe;
790 break;
791 }
792
793 break;
794 default:
795 return -EINVAL;
796 }
797
798 ret = regmap_update_bits(sta350->regmap, STA350_CONFA,
799 STA350_CONFA_MCS_MASK | STA350_CONFA_IR_MASK,
800 confa);
801 if (ret < 0)
802 return ret;
803
804 ret = regmap_update_bits(sta350->regmap, STA350_CONFB,
805 STA350_CONFB_SAI_MASK | STA350_CONFB_SAIFB,
806 confb);
807 if (ret < 0)
808 return ret;
809
810 return 0;
811 }
812
813 static int sta350_startup_sequence(struct sta350_priv *sta350)
814 {
815 if (sta350->gpiod_power_down)
816 gpiod_set_value(sta350->gpiod_power_down, 1);
817
818 if (sta350->gpiod_nreset) {
819 gpiod_set_value(sta350->gpiod_nreset, 0);
820 mdelay(1);
821 gpiod_set_value(sta350->gpiod_nreset, 1);
822 mdelay(1);
823 }
824
825 return 0;
826 }
827
828 /**
829 * sta350_set_bias_level - DAPM callback
830 * @codec: the codec device
831 * @level: DAPM power level
832 *
833 * This is called by ALSA to put the codec into low power mode
834 * or to wake it up. If the codec is powered off completely
835 * all registers must be restored after power on.
836 */
837 static int sta350_set_bias_level(struct snd_soc_codec *codec,
838 enum snd_soc_bias_level level)
839 {
840 struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
841 int ret;
842
843 dev_dbg(codec->dev, "level = %d\n", level);
844 switch (level) {
845 case SND_SOC_BIAS_ON:
846 break;
847
848 case SND_SOC_BIAS_PREPARE:
849 /* Full power on */
850 regmap_update_bits(sta350->regmap, STA350_CONFF,
851 STA350_CONFF_PWDN | STA350_CONFF_EAPD,
852 STA350_CONFF_PWDN | STA350_CONFF_EAPD);
853 break;
854
855 case SND_SOC_BIAS_STANDBY:
856 if (snd_soc_codec_get_bias_level(codec) == SND_SOC_BIAS_OFF) {
857 ret = regulator_bulk_enable(
858 ARRAY_SIZE(sta350->supplies),
859 sta350->supplies);
860 if (ret < 0) {
861 dev_err(codec->dev,
862 "Failed to enable supplies: %d\n",
863 ret);
864 return ret;
865 }
866 sta350_startup_sequence(sta350);
867 sta350_cache_sync(codec);
868 }
869
870 /* Power down */
871 regmap_update_bits(sta350->regmap, STA350_CONFF,
872 STA350_CONFF_PWDN | STA350_CONFF_EAPD,
873 0);
874
875 break;
876
877 case SND_SOC_BIAS_OFF:
878 /* The chip runs through the power down sequence for us */
879 regmap_update_bits(sta350->regmap, STA350_CONFF,
880 STA350_CONFF_PWDN | STA350_CONFF_EAPD, 0);
881
882 /* power down: low */
883 if (sta350->gpiod_power_down)
884 gpiod_set_value(sta350->gpiod_power_down, 0);
885
886 if (sta350->gpiod_nreset)
887 gpiod_set_value(sta350->gpiod_nreset, 0);
888
889 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies),
890 sta350->supplies);
891 break;
892 }
893 return 0;
894 }
895
896 static const struct snd_soc_dai_ops sta350_dai_ops = {
897 .hw_params = sta350_hw_params,
898 .set_sysclk = sta350_set_dai_sysclk,
899 .set_fmt = sta350_set_dai_fmt,
900 };
901
902 static struct snd_soc_dai_driver sta350_dai = {
903 .name = "sta350-hifi",
904 .playback = {
905 .stream_name = "Playback",
906 .channels_min = 2,
907 .channels_max = 2,
908 .rates = STA350_RATES,
909 .formats = STA350_FORMATS,
910 },
911 .ops = &sta350_dai_ops,
912 };
913
914 static int sta350_probe(struct snd_soc_codec *codec)
915 {
916 struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
917 struct sta350_platform_data *pdata = sta350->pdata;
918 int i, ret = 0, thermal = 0;
919
920 ret = regulator_bulk_enable(ARRAY_SIZE(sta350->supplies),
921 sta350->supplies);
922 if (ret < 0) {
923 dev_err(codec->dev, "Failed to enable supplies: %d\n", ret);
924 return ret;
925 }
926
927 ret = sta350_startup_sequence(sta350);
928 if (ret < 0) {
929 dev_err(codec->dev, "Failed to startup device\n");
930 return ret;
931 }
932
933 /* CONFA */
934 if (!pdata->thermal_warning_recovery)
935 thermal |= STA350_CONFA_TWAB;
936 if (!pdata->thermal_warning_adjustment)
937 thermal |= STA350_CONFA_TWRB;
938 if (!pdata->fault_detect_recovery)
939 thermal |= STA350_CONFA_FDRB;
940 regmap_update_bits(sta350->regmap, STA350_CONFA,
941 STA350_CONFA_TWAB | STA350_CONFA_TWRB |
942 STA350_CONFA_FDRB,
943 thermal);
944
945 /* CONFC */
946 regmap_update_bits(sta350->regmap, STA350_CONFC,
947 STA350_CONFC_OM_MASK,
948 pdata->ffx_power_output_mode
949 << STA350_CONFC_OM_SHIFT);
950 regmap_update_bits(sta350->regmap, STA350_CONFC,
951 STA350_CONFC_CSZ_MASK,
952 pdata->drop_compensation_ns
953 << STA350_CONFC_CSZ_SHIFT);
954 regmap_update_bits(sta350->regmap,
955 STA350_CONFC,
956 STA350_CONFC_OCRB,
957 pdata->oc_warning_adjustment ?
958 STA350_CONFC_OCRB : 0);
959
960 /* CONFE */
961 regmap_update_bits(sta350->regmap, STA350_CONFE,
962 STA350_CONFE_MPCV,
963 pdata->max_power_use_mpcc ?
964 STA350_CONFE_MPCV : 0);
965 regmap_update_bits(sta350->regmap, STA350_CONFE,
966 STA350_CONFE_MPC,
967 pdata->max_power_correction ?
968 STA350_CONFE_MPC : 0);
969 regmap_update_bits(sta350->regmap, STA350_CONFE,
970 STA350_CONFE_AME,
971 pdata->am_reduction_mode ?
972 STA350_CONFE_AME : 0);
973 regmap_update_bits(sta350->regmap, STA350_CONFE,
974 STA350_CONFE_PWMS,
975 pdata->odd_pwm_speed_mode ?
976 STA350_CONFE_PWMS : 0);
977 regmap_update_bits(sta350->regmap, STA350_CONFE,
978 STA350_CONFE_DCCV,
979 pdata->distortion_compensation ?
980 STA350_CONFE_DCCV : 0);
981 /* CONFF */
982 regmap_update_bits(sta350->regmap, STA350_CONFF,
983 STA350_CONFF_IDE,
984 pdata->invalid_input_detect_mute ?
985 STA350_CONFF_IDE : 0);
986 regmap_update_bits(sta350->regmap, STA350_CONFF,
987 STA350_CONFF_OCFG_MASK,
988 pdata->output_conf
989 << STA350_CONFF_OCFG_SHIFT);
990
991 /* channel to output mapping */
992 regmap_update_bits(sta350->regmap, STA350_C1CFG,
993 STA350_CxCFG_OM_MASK,
994 pdata->ch1_output_mapping
995 << STA350_CxCFG_OM_SHIFT);
996 regmap_update_bits(sta350->regmap, STA350_C2CFG,
997 STA350_CxCFG_OM_MASK,
998 pdata->ch2_output_mapping
999 << STA350_CxCFG_OM_SHIFT);
1000 regmap_update_bits(sta350->regmap, STA350_C3CFG,
1001 STA350_CxCFG_OM_MASK,
1002 pdata->ch3_output_mapping
1003 << STA350_CxCFG_OM_SHIFT);
1004
1005 /* miscellaneous registers */
1006 regmap_update_bits(sta350->regmap, STA350_MISC1,
1007 STA350_MISC1_CPWMEN,
1008 pdata->activate_mute_output ?
1009 STA350_MISC1_CPWMEN : 0);
1010 regmap_update_bits(sta350->regmap, STA350_MISC1,
1011 STA350_MISC1_BRIDGOFF,
1012 pdata->bridge_immediate_off ?
1013 STA350_MISC1_BRIDGOFF : 0);
1014 regmap_update_bits(sta350->regmap, STA350_MISC1,
1015 STA350_MISC1_NSHHPEN,
1016 pdata->noise_shape_dc_cut ?
1017 STA350_MISC1_NSHHPEN : 0);
1018 regmap_update_bits(sta350->regmap, STA350_MISC1,
1019 STA350_MISC1_RPDNEN,
1020 pdata->powerdown_master_vol ?
1021 STA350_MISC1_RPDNEN: 0);
1022
1023 regmap_update_bits(sta350->regmap, STA350_MISC2,
1024 STA350_MISC2_PNDLSL_MASK,
1025 pdata->powerdown_delay_divider
1026 << STA350_MISC2_PNDLSL_SHIFT);
1027
1028 /* initialize coefficient shadow RAM with reset values */
1029 for (i = 4; i <= 49; i += 5)
1030 sta350->coef_shadow[i] = 0x400000;
1031 for (i = 50; i <= 54; i++)
1032 sta350->coef_shadow[i] = 0x7fffff;
1033 sta350->coef_shadow[55] = 0x5a9df7;
1034 sta350->coef_shadow[56] = 0x7fffff;
1035 sta350->coef_shadow[59] = 0x7fffff;
1036 sta350->coef_shadow[60] = 0x400000;
1037 sta350->coef_shadow[61] = 0x400000;
1038
1039 snd_soc_codec_force_bias_level(codec, SND_SOC_BIAS_STANDBY);
1040 /* Bias level configuration will have done an extra enable */
1041 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1042
1043 return 0;
1044 }
1045
1046 static int sta350_remove(struct snd_soc_codec *codec)
1047 {
1048 struct sta350_priv *sta350 = snd_soc_codec_get_drvdata(codec);
1049
1050 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1051
1052 return 0;
1053 }
1054
1055 static const struct snd_soc_codec_driver sta350_codec = {
1056 .probe = sta350_probe,
1057 .remove = sta350_remove,
1058 .set_bias_level = sta350_set_bias_level,
1059 .suspend_bias_off = true,
1060 .controls = sta350_snd_controls,
1061 .num_controls = ARRAY_SIZE(sta350_snd_controls),
1062 .dapm_widgets = sta350_dapm_widgets,
1063 .num_dapm_widgets = ARRAY_SIZE(sta350_dapm_widgets),
1064 .dapm_routes = sta350_dapm_routes,
1065 .num_dapm_routes = ARRAY_SIZE(sta350_dapm_routes),
1066 };
1067
1068 static const struct regmap_config sta350_regmap = {
1069 .reg_bits = 8,
1070 .val_bits = 8,
1071 .max_register = STA350_MISC2,
1072 .reg_defaults = sta350_regs,
1073 .num_reg_defaults = ARRAY_SIZE(sta350_regs),
1074 .cache_type = REGCACHE_RBTREE,
1075 .wr_table = &sta350_write_regs,
1076 .rd_table = &sta350_read_regs,
1077 .volatile_table = &sta350_volatile_regs,
1078 };
1079
1080 #ifdef CONFIG_OF
1081 static const struct of_device_id st350_dt_ids[] = {
1082 { .compatible = "st,sta350", },
1083 { }
1084 };
1085 MODULE_DEVICE_TABLE(of, st350_dt_ids);
1086
1087 static const char * const sta350_ffx_modes[] = {
1088 [STA350_FFX_PM_DROP_COMP] = "drop-compensation",
1089 [STA350_FFX_PM_TAPERED_COMP] = "tapered-compensation",
1090 [STA350_FFX_PM_FULL_POWER] = "full-power-mode",
1091 [STA350_FFX_PM_VARIABLE_DROP_COMP] = "variable-drop-compensation",
1092 };
1093
1094 static int sta350_probe_dt(struct device *dev, struct sta350_priv *sta350)
1095 {
1096 struct device_node *np = dev->of_node;
1097 struct sta350_platform_data *pdata;
1098 const char *ffx_power_mode;
1099 u16 tmp;
1100 u8 tmp8;
1101
1102 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1103 if (!pdata)
1104 return -ENOMEM;
1105
1106 of_property_read_u8(np, "st,output-conf",
1107 &pdata->output_conf);
1108 of_property_read_u8(np, "st,ch1-output-mapping",
1109 &pdata->ch1_output_mapping);
1110 of_property_read_u8(np, "st,ch2-output-mapping",
1111 &pdata->ch2_output_mapping);
1112 of_property_read_u8(np, "st,ch3-output-mapping",
1113 &pdata->ch3_output_mapping);
1114
1115 if (of_get_property(np, "st,thermal-warning-recovery", NULL))
1116 pdata->thermal_warning_recovery = 1;
1117 if (of_get_property(np, "st,thermal-warning-adjustment", NULL))
1118 pdata->thermal_warning_adjustment = 1;
1119 if (of_get_property(np, "st,fault-detect-recovery", NULL))
1120 pdata->fault_detect_recovery = 1;
1121
1122 pdata->ffx_power_output_mode = STA350_FFX_PM_VARIABLE_DROP_COMP;
1123 if (!of_property_read_string(np, "st,ffx-power-output-mode",
1124 &ffx_power_mode)) {
1125 int i, mode = -EINVAL;
1126
1127 for (i = 0; i < ARRAY_SIZE(sta350_ffx_modes); i++)
1128 if (!strcasecmp(ffx_power_mode, sta350_ffx_modes[i]))
1129 mode = i;
1130
1131 if (mode < 0)
1132 dev_warn(dev, "Unsupported ffx output mode: %s\n",
1133 ffx_power_mode);
1134 else
1135 pdata->ffx_power_output_mode = mode;
1136 }
1137
1138 tmp = 140;
1139 of_property_read_u16(np, "st,drop-compensation-ns", &tmp);
1140 pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20;
1141
1142 if (of_get_property(np, "st,overcurrent-warning-adjustment", NULL))
1143 pdata->oc_warning_adjustment = 1;
1144
1145 /* CONFE */
1146 if (of_get_property(np, "st,max-power-use-mpcc", NULL))
1147 pdata->max_power_use_mpcc = 1;
1148
1149 if (of_get_property(np, "st,max-power-correction", NULL))
1150 pdata->max_power_correction = 1;
1151
1152 if (of_get_property(np, "st,am-reduction-mode", NULL))
1153 pdata->am_reduction_mode = 1;
1154
1155 if (of_get_property(np, "st,odd-pwm-speed-mode", NULL))
1156 pdata->odd_pwm_speed_mode = 1;
1157
1158 if (of_get_property(np, "st,distortion-compensation", NULL))
1159 pdata->distortion_compensation = 1;
1160
1161 /* CONFF */
1162 if (of_get_property(np, "st,invalid-input-detect-mute", NULL))
1163 pdata->invalid_input_detect_mute = 1;
1164
1165 /* MISC */
1166 if (of_get_property(np, "st,activate-mute-output", NULL))
1167 pdata->activate_mute_output = 1;
1168
1169 if (of_get_property(np, "st,bridge-immediate-off", NULL))
1170 pdata->bridge_immediate_off = 1;
1171
1172 if (of_get_property(np, "st,noise-shape-dc-cut", NULL))
1173 pdata->noise_shape_dc_cut = 1;
1174
1175 if (of_get_property(np, "st,powerdown-master-volume", NULL))
1176 pdata->powerdown_master_vol = 1;
1177
1178 if (!of_property_read_u8(np, "st,powerdown-delay-divider", &tmp8)) {
1179 if (is_power_of_2(tmp8) && tmp8 >= 1 && tmp8 <= 128)
1180 pdata->powerdown_delay_divider = ilog2(tmp8);
1181 else
1182 dev_warn(dev, "Unsupported powerdown delay divider %d\n",
1183 tmp8);
1184 }
1185
1186 sta350->pdata = pdata;
1187
1188 return 0;
1189 }
1190 #endif
1191
1192 static int sta350_i2c_probe(struct i2c_client *i2c,
1193 const struct i2c_device_id *id)
1194 {
1195 struct device *dev = &i2c->dev;
1196 struct sta350_priv *sta350;
1197 int ret, i;
1198
1199 sta350 = devm_kzalloc(dev, sizeof(struct sta350_priv), GFP_KERNEL);
1200 if (!sta350)
1201 return -ENOMEM;
1202
1203 mutex_init(&sta350->coeff_lock);
1204 sta350->pdata = dev_get_platdata(dev);
1205
1206 #ifdef CONFIG_OF
1207 if (dev->of_node) {
1208 ret = sta350_probe_dt(dev, sta350);
1209 if (ret < 0)
1210 return ret;
1211 }
1212 #endif
1213
1214 /* GPIOs */
1215 sta350->gpiod_nreset = devm_gpiod_get_optional(dev, "reset",
1216 GPIOD_OUT_LOW);
1217 if (IS_ERR(sta350->gpiod_nreset))
1218 return PTR_ERR(sta350->gpiod_nreset);
1219
1220 sta350->gpiod_power_down = devm_gpiod_get_optional(dev, "power-down",
1221 GPIOD_OUT_LOW);
1222 if (IS_ERR(sta350->gpiod_power_down))
1223 return PTR_ERR(sta350->gpiod_power_down);
1224
1225 /* regulators */
1226 for (i = 0; i < ARRAY_SIZE(sta350->supplies); i++)
1227 sta350->supplies[i].supply = sta350_supply_names[i];
1228
1229 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(sta350->supplies),
1230 sta350->supplies);
1231 if (ret < 0) {
1232 dev_err(dev, "Failed to request supplies: %d\n", ret);
1233 return ret;
1234 }
1235
1236 sta350->regmap = devm_regmap_init_i2c(i2c, &sta350_regmap);
1237 if (IS_ERR(sta350->regmap)) {
1238 ret = PTR_ERR(sta350->regmap);
1239 dev_err(dev, "Failed to init regmap: %d\n", ret);
1240 return ret;
1241 }
1242
1243 i2c_set_clientdata(i2c, sta350);
1244
1245 ret = snd_soc_register_codec(dev, &sta350_codec, &sta350_dai, 1);
1246 if (ret < 0)
1247 dev_err(dev, "Failed to register codec (%d)\n", ret);
1248
1249 return ret;
1250 }
1251
1252 static int sta350_i2c_remove(struct i2c_client *client)
1253 {
1254 snd_soc_unregister_codec(&client->dev);
1255 return 0;
1256 }
1257
1258 static const struct i2c_device_id sta350_i2c_id[] = {
1259 { "sta350", 0 },
1260 { }
1261 };
1262 MODULE_DEVICE_TABLE(i2c, sta350_i2c_id);
1263
1264 static struct i2c_driver sta350_i2c_driver = {
1265 .driver = {
1266 .name = "sta350",
1267 .of_match_table = of_match_ptr(st350_dt_ids),
1268 },
1269 .probe = sta350_i2c_probe,
1270 .remove = sta350_i2c_remove,
1271 .id_table = sta350_i2c_id,
1272 };
1273
1274 module_i2c_driver(sta350_i2c_driver);
1275
1276 MODULE_DESCRIPTION("ASoC STA350 driver");
1277 MODULE_AUTHOR("Sven Brandau <info@brandau.biz>");
1278 MODULE_LICENSE("GPL");
This page took 0.171798 seconds and 6 git commands to generate.