ALSA: hda - delayed ELD repoll
[deliverable/linux.git] / sound / soc / codecs / tlv320aic3x.c
1 /*
2 * ALSA SoC TLV320AIC3X codec driver
3 *
4 * Author: Vladimir Barinov, <vbarinov@embeddedalley.com>
5 * Copyright: (C) 2007 MontaVista Software, Inc., <source@mvista.com>
6 *
7 * Based on sound/soc/codecs/wm8753.c by Liam Girdwood
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * Notes:
14 * The AIC3X is a driver for a low power stereo audio
15 * codecs aic31, aic32, aic33, aic3007.
16 *
17 * It supports full aic33 codec functionality.
18 * The compatibility with aic32, aic31 and aic3007 is as follows:
19 * aic32/aic3007 | aic31
20 * ---------------------------------------
21 * MONO_LOUT -> N/A | MONO_LOUT -> N/A
22 * | IN1L -> LINE1L
23 * | IN1R -> LINE1R
24 * | IN2L -> LINE2L
25 * | IN2R -> LINE2R
26 * | MIC3L/R -> N/A
27 * truncated internal functionality in
28 * accordance with documentation
29 * ---------------------------------------
30 *
31 * Hence the machine layer should disable unsupported inputs/outputs by
32 * snd_soc_dapm_disable_pin(codec, "MONO_LOUT"), etc.
33 */
34
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/init.h>
38 #include <linux/delay.h>
39 #include <linux/pm.h>
40 #include <linux/i2c.h>
41 #include <linux/gpio.h>
42 #include <linux/regulator/consumer.h>
43 #include <linux/platform_device.h>
44 #include <linux/slab.h>
45 #include <sound/core.h>
46 #include <sound/pcm.h>
47 #include <sound/pcm_params.h>
48 #include <sound/soc.h>
49 #include <sound/initval.h>
50 #include <sound/tlv.h>
51 #include <sound/tlv320aic3x.h>
52
53 #include "tlv320aic3x.h"
54
55 #define AIC3X_NUM_SUPPLIES 4
56 static const char *aic3x_supply_names[AIC3X_NUM_SUPPLIES] = {
57 "IOVDD", /* I/O Voltage */
58 "DVDD", /* Digital Core Voltage */
59 "AVDD", /* Analog DAC Voltage */
60 "DRVDD", /* ADC Analog and Output Driver Voltage */
61 };
62
63 static LIST_HEAD(reset_list);
64
65 struct aic3x_priv;
66
67 struct aic3x_disable_nb {
68 struct notifier_block nb;
69 struct aic3x_priv *aic3x;
70 };
71
72 /* codec private data */
73 struct aic3x_priv {
74 struct snd_soc_codec *codec;
75 struct regulator_bulk_data supplies[AIC3X_NUM_SUPPLIES];
76 struct aic3x_disable_nb disable_nb[AIC3X_NUM_SUPPLIES];
77 enum snd_soc_control_type control_type;
78 struct aic3x_setup_data *setup;
79 unsigned int sysclk;
80 struct list_head list;
81 int master;
82 int gpio_reset;
83 int power;
84 #define AIC3X_MODEL_3X 0
85 #define AIC3X_MODEL_33 1
86 #define AIC3X_MODEL_3007 2
87 u16 model;
88 };
89
90 /*
91 * AIC3X register cache
92 * We can't read the AIC3X register space when we are
93 * using 2 wire for device control, so we cache them instead.
94 * There is no point in caching the reset register
95 */
96 static const u8 aic3x_reg[AIC3X_CACHEREGNUM] = {
97 0x00, 0x00, 0x00, 0x10, /* 0 */
98 0x04, 0x00, 0x00, 0x00, /* 4 */
99 0x00, 0x00, 0x00, 0x01, /* 8 */
100 0x00, 0x00, 0x00, 0x80, /* 12 */
101 0x80, 0xff, 0xff, 0x78, /* 16 */
102 0x78, 0x78, 0x78, 0x78, /* 20 */
103 0x78, 0x00, 0x00, 0xfe, /* 24 */
104 0x00, 0x00, 0xfe, 0x00, /* 28 */
105 0x18, 0x18, 0x00, 0x00, /* 32 */
106 0x00, 0x00, 0x00, 0x00, /* 36 */
107 0x00, 0x00, 0x00, 0x80, /* 40 */
108 0x80, 0x00, 0x00, 0x00, /* 44 */
109 0x00, 0x00, 0x00, 0x04, /* 48 */
110 0x00, 0x00, 0x00, 0x00, /* 52 */
111 0x00, 0x00, 0x04, 0x00, /* 56 */
112 0x00, 0x00, 0x00, 0x00, /* 60 */
113 0x00, 0x04, 0x00, 0x00, /* 64 */
114 0x00, 0x00, 0x00, 0x00, /* 68 */
115 0x04, 0x00, 0x00, 0x00, /* 72 */
116 0x00, 0x00, 0x00, 0x00, /* 76 */
117 0x00, 0x00, 0x00, 0x00, /* 80 */
118 0x00, 0x00, 0x00, 0x00, /* 84 */
119 0x00, 0x00, 0x00, 0x00, /* 88 */
120 0x00, 0x00, 0x00, 0x00, /* 92 */
121 0x00, 0x00, 0x00, 0x00, /* 96 */
122 0x00, 0x00, 0x02, /* 100 */
123 };
124
125 /*
126 * read from the aic3x register space. Only use for this function is if
127 * wanting to read volatile bits from those registers that has both read-only
128 * and read/write bits. All other cases should use snd_soc_read.
129 */
130 static int aic3x_read(struct snd_soc_codec *codec, unsigned int reg,
131 u8 *value)
132 {
133 u8 *cache = codec->reg_cache;
134
135 if (codec->cache_only)
136 return -EINVAL;
137 if (reg >= AIC3X_CACHEREGNUM)
138 return -1;
139
140 codec->cache_bypass = 1;
141 *value = snd_soc_read(codec, reg);
142 codec->cache_bypass = 0;
143
144 cache[reg] = *value;
145
146 return 0;
147 }
148
149 #define SOC_DAPM_SINGLE_AIC3X(xname, reg, shift, mask, invert) \
150 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
151 .info = snd_soc_info_volsw, \
152 .get = snd_soc_dapm_get_volsw, .put = snd_soc_dapm_put_volsw_aic3x, \
153 .private_value = SOC_SINGLE_VALUE(reg, shift, mask, invert) }
154
155 /*
156 * All input lines are connected when !0xf and disconnected with 0xf bit field,
157 * so we have to use specific dapm_put call for input mixer
158 */
159 static int snd_soc_dapm_put_volsw_aic3x(struct snd_kcontrol *kcontrol,
160 struct snd_ctl_elem_value *ucontrol)
161 {
162 struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol);
163 struct snd_soc_dapm_widget *widget = wlist->widgets[0];
164 struct soc_mixer_control *mc =
165 (struct soc_mixer_control *)kcontrol->private_value;
166 unsigned int reg = mc->reg;
167 unsigned int shift = mc->shift;
168 int max = mc->max;
169 unsigned int mask = (1 << fls(max)) - 1;
170 unsigned int invert = mc->invert;
171 unsigned short val, val_mask;
172 int ret;
173 struct snd_soc_dapm_path *path;
174 int found = 0;
175
176 val = (ucontrol->value.integer.value[0] & mask);
177
178 mask = 0xf;
179 if (val)
180 val = mask;
181
182 if (invert)
183 val = mask - val;
184 val_mask = mask << shift;
185 val = val << shift;
186
187 mutex_lock(&widget->codec->mutex);
188
189 if (snd_soc_test_bits(widget->codec, reg, val_mask, val)) {
190 /* find dapm widget path assoc with kcontrol */
191 list_for_each_entry(path, &widget->dapm->card->paths, list) {
192 if (path->kcontrol != kcontrol)
193 continue;
194
195 /* found, now check type */
196 found = 1;
197 if (val)
198 /* new connection */
199 path->connect = invert ? 0 : 1;
200 else
201 /* old connection must be powered down */
202 path->connect = invert ? 1 : 0;
203
204 dapm_mark_dirty(path->source, "tlv320aic3x source");
205 dapm_mark_dirty(path->sink, "tlv320aic3x sink");
206
207 break;
208 }
209
210 if (found)
211 snd_soc_dapm_sync(widget->dapm);
212 }
213
214 ret = snd_soc_update_bits(widget->codec, reg, val_mask, val);
215
216 mutex_unlock(&widget->codec->mutex);
217 return ret;
218 }
219
220 static const char *aic3x_left_dac_mux[] = { "DAC_L1", "DAC_L3", "DAC_L2" };
221 static const char *aic3x_right_dac_mux[] = { "DAC_R1", "DAC_R3", "DAC_R2" };
222 static const char *aic3x_left_hpcom_mux[] =
223 { "differential of HPLOUT", "constant VCM", "single-ended" };
224 static const char *aic3x_right_hpcom_mux[] =
225 { "differential of HPROUT", "constant VCM", "single-ended",
226 "differential of HPLCOM", "external feedback" };
227 static const char *aic3x_linein_mode_mux[] = { "single-ended", "differential" };
228 static const char *aic3x_adc_hpf[] =
229 { "Disabled", "0.0045xFs", "0.0125xFs", "0.025xFs" };
230
231 #define LDAC_ENUM 0
232 #define RDAC_ENUM 1
233 #define LHPCOM_ENUM 2
234 #define RHPCOM_ENUM 3
235 #define LINE1L_2_L_ENUM 4
236 #define LINE1L_2_R_ENUM 5
237 #define LINE1R_2_L_ENUM 6
238 #define LINE1R_2_R_ENUM 7
239 #define LINE2L_ENUM 8
240 #define LINE2R_ENUM 9
241 #define ADC_HPF_ENUM 10
242
243 static const struct soc_enum aic3x_enum[] = {
244 SOC_ENUM_SINGLE(DAC_LINE_MUX, 6, 3, aic3x_left_dac_mux),
245 SOC_ENUM_SINGLE(DAC_LINE_MUX, 4, 3, aic3x_right_dac_mux),
246 SOC_ENUM_SINGLE(HPLCOM_CFG, 4, 3, aic3x_left_hpcom_mux),
247 SOC_ENUM_SINGLE(HPRCOM_CFG, 3, 5, aic3x_right_hpcom_mux),
248 SOC_ENUM_SINGLE(LINE1L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
249 SOC_ENUM_SINGLE(LINE1L_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
250 SOC_ENUM_SINGLE(LINE1R_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
251 SOC_ENUM_SINGLE(LINE1R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
252 SOC_ENUM_SINGLE(LINE2L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
253 SOC_ENUM_SINGLE(LINE2R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
254 SOC_ENUM_DOUBLE(AIC3X_CODEC_DFILT_CTRL, 6, 4, 4, aic3x_adc_hpf),
255 };
256
257 /*
258 * DAC digital volumes. From -63.5 to 0 dB in 0.5 dB steps
259 */
260 static DECLARE_TLV_DB_SCALE(dac_tlv, -6350, 50, 0);
261 /* ADC PGA gain volumes. From 0 to 59.5 dB in 0.5 dB steps */
262 static DECLARE_TLV_DB_SCALE(adc_tlv, 0, 50, 0);
263 /*
264 * Output stage volumes. From -78.3 to 0 dB. Muted below -78.3 dB.
265 * Step size is approximately 0.5 dB over most of the scale but increasing
266 * near the very low levels.
267 * Define dB scale so that it is mostly correct for range about -55 to 0 dB
268 * but having increasing dB difference below that (and where it doesn't count
269 * so much). This setting shows -50 dB (actual is -50.3 dB) for register
270 * value 100 and -58.5 dB (actual is -78.3 dB) for register value 117.
271 */
272 static DECLARE_TLV_DB_SCALE(output_stage_tlv, -5900, 50, 1);
273
274 static const struct snd_kcontrol_new aic3x_snd_controls[] = {
275 /* Output */
276 SOC_DOUBLE_R_TLV("PCM Playback Volume",
277 LDAC_VOL, RDAC_VOL, 0, 0x7f, 1, dac_tlv),
278
279 /*
280 * Output controls that map to output mixer switches. Note these are
281 * only for swapped L-to-R and R-to-L routes. See below stereo controls
282 * for direct L-to-L and R-to-R routes.
283 */
284 SOC_SINGLE_TLV("Left Line Mixer Line2R Bypass Volume",
285 LINE2R_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
286 SOC_SINGLE_TLV("Left Line Mixer PGAR Bypass Volume",
287 PGAR_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
288 SOC_SINGLE_TLV("Left Line Mixer DACR1 Playback Volume",
289 DACR1_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
290
291 SOC_SINGLE_TLV("Right Line Mixer Line2L Bypass Volume",
292 LINE2L_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
293 SOC_SINGLE_TLV("Right Line Mixer PGAL Bypass Volume",
294 PGAL_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
295 SOC_SINGLE_TLV("Right Line Mixer DACL1 Playback Volume",
296 DACL1_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
297
298 SOC_SINGLE_TLV("Left HP Mixer Line2R Bypass Volume",
299 LINE2R_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
300 SOC_SINGLE_TLV("Left HP Mixer PGAR Bypass Volume",
301 PGAR_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
302 SOC_SINGLE_TLV("Left HP Mixer DACR1 Playback Volume",
303 DACR1_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
304
305 SOC_SINGLE_TLV("Right HP Mixer Line2L Bypass Volume",
306 LINE2L_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
307 SOC_SINGLE_TLV("Right HP Mixer PGAL Bypass Volume",
308 PGAL_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
309 SOC_SINGLE_TLV("Right HP Mixer DACL1 Playback Volume",
310 DACL1_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
311
312 SOC_SINGLE_TLV("Left HPCOM Mixer Line2R Bypass Volume",
313 LINE2R_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
314 SOC_SINGLE_TLV("Left HPCOM Mixer PGAR Bypass Volume",
315 PGAR_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
316 SOC_SINGLE_TLV("Left HPCOM Mixer DACR1 Playback Volume",
317 DACR1_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
318
319 SOC_SINGLE_TLV("Right HPCOM Mixer Line2L Bypass Volume",
320 LINE2L_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
321 SOC_SINGLE_TLV("Right HPCOM Mixer PGAL Bypass Volume",
322 PGAL_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
323 SOC_SINGLE_TLV("Right HPCOM Mixer DACL1 Playback Volume",
324 DACL1_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
325
326 /* Stereo output controls for direct L-to-L and R-to-R routes */
327 SOC_DOUBLE_R_TLV("Line Line2 Bypass Volume",
328 LINE2L_2_LLOPM_VOL, LINE2R_2_RLOPM_VOL,
329 0, 118, 1, output_stage_tlv),
330 SOC_DOUBLE_R_TLV("Line PGA Bypass Volume",
331 PGAL_2_LLOPM_VOL, PGAR_2_RLOPM_VOL,
332 0, 118, 1, output_stage_tlv),
333 SOC_DOUBLE_R_TLV("Line DAC Playback Volume",
334 DACL1_2_LLOPM_VOL, DACR1_2_RLOPM_VOL,
335 0, 118, 1, output_stage_tlv),
336
337 SOC_DOUBLE_R_TLV("Mono Line2 Bypass Volume",
338 LINE2L_2_MONOLOPM_VOL, LINE2R_2_MONOLOPM_VOL,
339 0, 118, 1, output_stage_tlv),
340 SOC_DOUBLE_R_TLV("Mono PGA Bypass Volume",
341 PGAL_2_MONOLOPM_VOL, PGAR_2_MONOLOPM_VOL,
342 0, 118, 1, output_stage_tlv),
343 SOC_DOUBLE_R_TLV("Mono DAC Playback Volume",
344 DACL1_2_MONOLOPM_VOL, DACR1_2_MONOLOPM_VOL,
345 0, 118, 1, output_stage_tlv),
346
347 SOC_DOUBLE_R_TLV("HP Line2 Bypass Volume",
348 LINE2L_2_HPLOUT_VOL, LINE2R_2_HPROUT_VOL,
349 0, 118, 1, output_stage_tlv),
350 SOC_DOUBLE_R_TLV("HP PGA Bypass Volume",
351 PGAL_2_HPLOUT_VOL, PGAR_2_HPROUT_VOL,
352 0, 118, 1, output_stage_tlv),
353 SOC_DOUBLE_R_TLV("HP DAC Playback Volume",
354 DACL1_2_HPLOUT_VOL, DACR1_2_HPROUT_VOL,
355 0, 118, 1, output_stage_tlv),
356
357 SOC_DOUBLE_R_TLV("HPCOM Line2 Bypass Volume",
358 LINE2L_2_HPLCOM_VOL, LINE2R_2_HPRCOM_VOL,
359 0, 118, 1, output_stage_tlv),
360 SOC_DOUBLE_R_TLV("HPCOM PGA Bypass Volume",
361 PGAL_2_HPLCOM_VOL, PGAR_2_HPRCOM_VOL,
362 0, 118, 1, output_stage_tlv),
363 SOC_DOUBLE_R_TLV("HPCOM DAC Playback Volume",
364 DACL1_2_HPLCOM_VOL, DACR1_2_HPRCOM_VOL,
365 0, 118, 1, output_stage_tlv),
366
367 /* Output pin mute controls */
368 SOC_DOUBLE_R("Line Playback Switch", LLOPM_CTRL, RLOPM_CTRL, 3,
369 0x01, 0),
370 SOC_SINGLE("Mono Playback Switch", MONOLOPM_CTRL, 3, 0x01, 0),
371 SOC_DOUBLE_R("HP Playback Switch", HPLOUT_CTRL, HPROUT_CTRL, 3,
372 0x01, 0),
373 SOC_DOUBLE_R("HPCOM Playback Switch", HPLCOM_CTRL, HPRCOM_CTRL, 3,
374 0x01, 0),
375
376 /*
377 * Note: enable Automatic input Gain Controller with care. It can
378 * adjust PGA to max value when ADC is on and will never go back.
379 */
380 SOC_DOUBLE_R("AGC Switch", LAGC_CTRL_A, RAGC_CTRL_A, 7, 0x01, 0),
381
382 /* Input */
383 SOC_DOUBLE_R_TLV("PGA Capture Volume", LADC_VOL, RADC_VOL,
384 0, 119, 0, adc_tlv),
385 SOC_DOUBLE_R("PGA Capture Switch", LADC_VOL, RADC_VOL, 7, 0x01, 1),
386
387 SOC_ENUM("ADC HPF Cut-off", aic3x_enum[ADC_HPF_ENUM]),
388 };
389
390 /*
391 * Class-D amplifier gain. From 0 to 18 dB in 6 dB steps
392 */
393 static DECLARE_TLV_DB_SCALE(classd_amp_tlv, 0, 600, 0);
394
395 static const struct snd_kcontrol_new aic3x_classd_amp_gain_ctrl =
396 SOC_DOUBLE_TLV("Class-D Amplifier Gain", CLASSD_CTRL, 6, 4, 3, 0, classd_amp_tlv);
397
398 /* Left DAC Mux */
399 static const struct snd_kcontrol_new aic3x_left_dac_mux_controls =
400 SOC_DAPM_ENUM("Route", aic3x_enum[LDAC_ENUM]);
401
402 /* Right DAC Mux */
403 static const struct snd_kcontrol_new aic3x_right_dac_mux_controls =
404 SOC_DAPM_ENUM("Route", aic3x_enum[RDAC_ENUM]);
405
406 /* Left HPCOM Mux */
407 static const struct snd_kcontrol_new aic3x_left_hpcom_mux_controls =
408 SOC_DAPM_ENUM("Route", aic3x_enum[LHPCOM_ENUM]);
409
410 /* Right HPCOM Mux */
411 static const struct snd_kcontrol_new aic3x_right_hpcom_mux_controls =
412 SOC_DAPM_ENUM("Route", aic3x_enum[RHPCOM_ENUM]);
413
414 /* Left Line Mixer */
415 static const struct snd_kcontrol_new aic3x_left_line_mixer_controls[] = {
416 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_LLOPM_VOL, 7, 1, 0),
417 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_LLOPM_VOL, 7, 1, 0),
418 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_LLOPM_VOL, 7, 1, 0),
419 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_LLOPM_VOL, 7, 1, 0),
420 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_LLOPM_VOL, 7, 1, 0),
421 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_LLOPM_VOL, 7, 1, 0),
422 };
423
424 /* Right Line Mixer */
425 static const struct snd_kcontrol_new aic3x_right_line_mixer_controls[] = {
426 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_RLOPM_VOL, 7, 1, 0),
427 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_RLOPM_VOL, 7, 1, 0),
428 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_RLOPM_VOL, 7, 1, 0),
429 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_RLOPM_VOL, 7, 1, 0),
430 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_RLOPM_VOL, 7, 1, 0),
431 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_RLOPM_VOL, 7, 1, 0),
432 };
433
434 /* Mono Mixer */
435 static const struct snd_kcontrol_new aic3x_mono_mixer_controls[] = {
436 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_MONOLOPM_VOL, 7, 1, 0),
437 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_MONOLOPM_VOL, 7, 1, 0),
438 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_MONOLOPM_VOL, 7, 1, 0),
439 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_MONOLOPM_VOL, 7, 1, 0),
440 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_MONOLOPM_VOL, 7, 1, 0),
441 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_MONOLOPM_VOL, 7, 1, 0),
442 };
443
444 /* Left HP Mixer */
445 static const struct snd_kcontrol_new aic3x_left_hp_mixer_controls[] = {
446 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPLOUT_VOL, 7, 1, 0),
447 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPLOUT_VOL, 7, 1, 0),
448 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPLOUT_VOL, 7, 1, 0),
449 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPLOUT_VOL, 7, 1, 0),
450 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPLOUT_VOL, 7, 1, 0),
451 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPLOUT_VOL, 7, 1, 0),
452 };
453
454 /* Right HP Mixer */
455 static const struct snd_kcontrol_new aic3x_right_hp_mixer_controls[] = {
456 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPROUT_VOL, 7, 1, 0),
457 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPROUT_VOL, 7, 1, 0),
458 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPROUT_VOL, 7, 1, 0),
459 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPROUT_VOL, 7, 1, 0),
460 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPROUT_VOL, 7, 1, 0),
461 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPROUT_VOL, 7, 1, 0),
462 };
463
464 /* Left HPCOM Mixer */
465 static const struct snd_kcontrol_new aic3x_left_hpcom_mixer_controls[] = {
466 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPLCOM_VOL, 7, 1, 0),
467 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPLCOM_VOL, 7, 1, 0),
468 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPLCOM_VOL, 7, 1, 0),
469 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPLCOM_VOL, 7, 1, 0),
470 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPLCOM_VOL, 7, 1, 0),
471 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPLCOM_VOL, 7, 1, 0),
472 };
473
474 /* Right HPCOM Mixer */
475 static const struct snd_kcontrol_new aic3x_right_hpcom_mixer_controls[] = {
476 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPRCOM_VOL, 7, 1, 0),
477 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPRCOM_VOL, 7, 1, 0),
478 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPRCOM_VOL, 7, 1, 0),
479 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPRCOM_VOL, 7, 1, 0),
480 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPRCOM_VOL, 7, 1, 0),
481 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPRCOM_VOL, 7, 1, 0),
482 };
483
484 /* Left PGA Mixer */
485 static const struct snd_kcontrol_new aic3x_left_pga_mixer_controls[] = {
486 SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_LADC_CTRL, 3, 1, 1),
487 SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_LADC_CTRL, 3, 1, 1),
488 SOC_DAPM_SINGLE_AIC3X("Line2L Switch", LINE2L_2_LADC_CTRL, 3, 1, 1),
489 SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_LADC_CTRL, 4, 1, 1),
490 SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_LADC_CTRL, 0, 1, 1),
491 };
492
493 /* Right PGA Mixer */
494 static const struct snd_kcontrol_new aic3x_right_pga_mixer_controls[] = {
495 SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_RADC_CTRL, 3, 1, 1),
496 SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_RADC_CTRL, 3, 1, 1),
497 SOC_DAPM_SINGLE_AIC3X("Line2R Switch", LINE2R_2_RADC_CTRL, 3, 1, 1),
498 SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_RADC_CTRL, 4, 1, 1),
499 SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_RADC_CTRL, 0, 1, 1),
500 };
501
502 /* Left Line1 Mux */
503 static const struct snd_kcontrol_new aic3x_left_line1l_mux_controls =
504 SOC_DAPM_ENUM("Route", aic3x_enum[LINE1L_2_L_ENUM]);
505 static const struct snd_kcontrol_new aic3x_right_line1l_mux_controls =
506 SOC_DAPM_ENUM("Route", aic3x_enum[LINE1L_2_R_ENUM]);
507
508 /* Right Line1 Mux */
509 static const struct snd_kcontrol_new aic3x_right_line1r_mux_controls =
510 SOC_DAPM_ENUM("Route", aic3x_enum[LINE1R_2_R_ENUM]);
511 static const struct snd_kcontrol_new aic3x_left_line1r_mux_controls =
512 SOC_DAPM_ENUM("Route", aic3x_enum[LINE1R_2_L_ENUM]);
513
514 /* Left Line2 Mux */
515 static const struct snd_kcontrol_new aic3x_left_line2_mux_controls =
516 SOC_DAPM_ENUM("Route", aic3x_enum[LINE2L_ENUM]);
517
518 /* Right Line2 Mux */
519 static const struct snd_kcontrol_new aic3x_right_line2_mux_controls =
520 SOC_DAPM_ENUM("Route", aic3x_enum[LINE2R_ENUM]);
521
522 static const struct snd_soc_dapm_widget aic3x_dapm_widgets[] = {
523 /* Left DAC to Left Outputs */
524 SND_SOC_DAPM_DAC("Left DAC", "Left Playback", DAC_PWR, 7, 0),
525 SND_SOC_DAPM_MUX("Left DAC Mux", SND_SOC_NOPM, 0, 0,
526 &aic3x_left_dac_mux_controls),
527 SND_SOC_DAPM_MUX("Left HPCOM Mux", SND_SOC_NOPM, 0, 0,
528 &aic3x_left_hpcom_mux_controls),
529 SND_SOC_DAPM_PGA("Left Line Out", LLOPM_CTRL, 0, 0, NULL, 0),
530 SND_SOC_DAPM_PGA("Left HP Out", HPLOUT_CTRL, 0, 0, NULL, 0),
531 SND_SOC_DAPM_PGA("Left HP Com", HPLCOM_CTRL, 0, 0, NULL, 0),
532
533 /* Right DAC to Right Outputs */
534 SND_SOC_DAPM_DAC("Right DAC", "Right Playback", DAC_PWR, 6, 0),
535 SND_SOC_DAPM_MUX("Right DAC Mux", SND_SOC_NOPM, 0, 0,
536 &aic3x_right_dac_mux_controls),
537 SND_SOC_DAPM_MUX("Right HPCOM Mux", SND_SOC_NOPM, 0, 0,
538 &aic3x_right_hpcom_mux_controls),
539 SND_SOC_DAPM_PGA("Right Line Out", RLOPM_CTRL, 0, 0, NULL, 0),
540 SND_SOC_DAPM_PGA("Right HP Out", HPROUT_CTRL, 0, 0, NULL, 0),
541 SND_SOC_DAPM_PGA("Right HP Com", HPRCOM_CTRL, 0, 0, NULL, 0),
542
543 /* Mono Output */
544 SND_SOC_DAPM_PGA("Mono Out", MONOLOPM_CTRL, 0, 0, NULL, 0),
545
546 /* Inputs to Left ADC */
547 SND_SOC_DAPM_ADC("Left ADC", "Left Capture", LINE1L_2_LADC_CTRL, 2, 0),
548 SND_SOC_DAPM_MIXER("Left PGA Mixer", SND_SOC_NOPM, 0, 0,
549 &aic3x_left_pga_mixer_controls[0],
550 ARRAY_SIZE(aic3x_left_pga_mixer_controls)),
551 SND_SOC_DAPM_MUX("Left Line1L Mux", SND_SOC_NOPM, 0, 0,
552 &aic3x_left_line1l_mux_controls),
553 SND_SOC_DAPM_MUX("Left Line1R Mux", SND_SOC_NOPM, 0, 0,
554 &aic3x_left_line1r_mux_controls),
555 SND_SOC_DAPM_MUX("Left Line2L Mux", SND_SOC_NOPM, 0, 0,
556 &aic3x_left_line2_mux_controls),
557
558 /* Inputs to Right ADC */
559 SND_SOC_DAPM_ADC("Right ADC", "Right Capture",
560 LINE1R_2_RADC_CTRL, 2, 0),
561 SND_SOC_DAPM_MIXER("Right PGA Mixer", SND_SOC_NOPM, 0, 0,
562 &aic3x_right_pga_mixer_controls[0],
563 ARRAY_SIZE(aic3x_right_pga_mixer_controls)),
564 SND_SOC_DAPM_MUX("Right Line1L Mux", SND_SOC_NOPM, 0, 0,
565 &aic3x_right_line1l_mux_controls),
566 SND_SOC_DAPM_MUX("Right Line1R Mux", SND_SOC_NOPM, 0, 0,
567 &aic3x_right_line1r_mux_controls),
568 SND_SOC_DAPM_MUX("Right Line2R Mux", SND_SOC_NOPM, 0, 0,
569 &aic3x_right_line2_mux_controls),
570
571 /*
572 * Not a real mic bias widget but similar function. This is for dynamic
573 * control of GPIO1 digital mic modulator clock output function when
574 * using digital mic.
575 */
576 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "GPIO1 dmic modclk",
577 AIC3X_GPIO1_REG, 4, 0xf,
578 AIC3X_GPIO1_FUNC_DIGITAL_MIC_MODCLK,
579 AIC3X_GPIO1_FUNC_DISABLED),
580
581 /*
582 * Also similar function like mic bias. Selects digital mic with
583 * configurable oversampling rate instead of ADC converter.
584 */
585 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 128",
586 AIC3X_ASD_INTF_CTRLA, 0, 3, 1, 0),
587 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 64",
588 AIC3X_ASD_INTF_CTRLA, 0, 3, 2, 0),
589 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 32",
590 AIC3X_ASD_INTF_CTRLA, 0, 3, 3, 0),
591
592 /* Mic Bias */
593 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias 2V",
594 MICBIAS_CTRL, 6, 3, 1, 0),
595 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias 2.5V",
596 MICBIAS_CTRL, 6, 3, 2, 0),
597 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias AVDD",
598 MICBIAS_CTRL, 6, 3, 3, 0),
599
600 /* Output mixers */
601 SND_SOC_DAPM_MIXER("Left Line Mixer", SND_SOC_NOPM, 0, 0,
602 &aic3x_left_line_mixer_controls[0],
603 ARRAY_SIZE(aic3x_left_line_mixer_controls)),
604 SND_SOC_DAPM_MIXER("Right Line Mixer", SND_SOC_NOPM, 0, 0,
605 &aic3x_right_line_mixer_controls[0],
606 ARRAY_SIZE(aic3x_right_line_mixer_controls)),
607 SND_SOC_DAPM_MIXER("Mono Mixer", SND_SOC_NOPM, 0, 0,
608 &aic3x_mono_mixer_controls[0],
609 ARRAY_SIZE(aic3x_mono_mixer_controls)),
610 SND_SOC_DAPM_MIXER("Left HP Mixer", SND_SOC_NOPM, 0, 0,
611 &aic3x_left_hp_mixer_controls[0],
612 ARRAY_SIZE(aic3x_left_hp_mixer_controls)),
613 SND_SOC_DAPM_MIXER("Right HP Mixer", SND_SOC_NOPM, 0, 0,
614 &aic3x_right_hp_mixer_controls[0],
615 ARRAY_SIZE(aic3x_right_hp_mixer_controls)),
616 SND_SOC_DAPM_MIXER("Left HPCOM Mixer", SND_SOC_NOPM, 0, 0,
617 &aic3x_left_hpcom_mixer_controls[0],
618 ARRAY_SIZE(aic3x_left_hpcom_mixer_controls)),
619 SND_SOC_DAPM_MIXER("Right HPCOM Mixer", SND_SOC_NOPM, 0, 0,
620 &aic3x_right_hpcom_mixer_controls[0],
621 ARRAY_SIZE(aic3x_right_hpcom_mixer_controls)),
622
623 SND_SOC_DAPM_OUTPUT("LLOUT"),
624 SND_SOC_DAPM_OUTPUT("RLOUT"),
625 SND_SOC_DAPM_OUTPUT("MONO_LOUT"),
626 SND_SOC_DAPM_OUTPUT("HPLOUT"),
627 SND_SOC_DAPM_OUTPUT("HPROUT"),
628 SND_SOC_DAPM_OUTPUT("HPLCOM"),
629 SND_SOC_DAPM_OUTPUT("HPRCOM"),
630
631 SND_SOC_DAPM_INPUT("MIC3L"),
632 SND_SOC_DAPM_INPUT("MIC3R"),
633 SND_SOC_DAPM_INPUT("LINE1L"),
634 SND_SOC_DAPM_INPUT("LINE1R"),
635 SND_SOC_DAPM_INPUT("LINE2L"),
636 SND_SOC_DAPM_INPUT("LINE2R"),
637
638 /*
639 * Virtual output pin to detection block inside codec. This can be
640 * used to keep codec bias on if gpio or detection features are needed.
641 * Force pin on or construct a path with an input jack and mic bias
642 * widgets.
643 */
644 SND_SOC_DAPM_OUTPUT("Detection"),
645 };
646
647 static const struct snd_soc_dapm_widget aic3007_dapm_widgets[] = {
648 /* Class-D outputs */
649 SND_SOC_DAPM_PGA("Left Class-D Out", CLASSD_CTRL, 3, 0, NULL, 0),
650 SND_SOC_DAPM_PGA("Right Class-D Out", CLASSD_CTRL, 2, 0, NULL, 0),
651
652 SND_SOC_DAPM_OUTPUT("SPOP"),
653 SND_SOC_DAPM_OUTPUT("SPOM"),
654 };
655
656 static const struct snd_soc_dapm_route intercon[] = {
657 /* Left Input */
658 {"Left Line1L Mux", "single-ended", "LINE1L"},
659 {"Left Line1L Mux", "differential", "LINE1L"},
660
661 {"Left Line2L Mux", "single-ended", "LINE2L"},
662 {"Left Line2L Mux", "differential", "LINE2L"},
663
664 {"Left PGA Mixer", "Line1L Switch", "Left Line1L Mux"},
665 {"Left PGA Mixer", "Line1R Switch", "Left Line1R Mux"},
666 {"Left PGA Mixer", "Line2L Switch", "Left Line2L Mux"},
667 {"Left PGA Mixer", "Mic3L Switch", "MIC3L"},
668 {"Left PGA Mixer", "Mic3R Switch", "MIC3R"},
669
670 {"Left ADC", NULL, "Left PGA Mixer"},
671 {"Left ADC", NULL, "GPIO1 dmic modclk"},
672
673 /* Right Input */
674 {"Right Line1R Mux", "single-ended", "LINE1R"},
675 {"Right Line1R Mux", "differential", "LINE1R"},
676
677 {"Right Line2R Mux", "single-ended", "LINE2R"},
678 {"Right Line2R Mux", "differential", "LINE2R"},
679
680 {"Right PGA Mixer", "Line1L Switch", "Right Line1L Mux"},
681 {"Right PGA Mixer", "Line1R Switch", "Right Line1R Mux"},
682 {"Right PGA Mixer", "Line2R Switch", "Right Line2R Mux"},
683 {"Right PGA Mixer", "Mic3L Switch", "MIC3L"},
684 {"Right PGA Mixer", "Mic3R Switch", "MIC3R"},
685
686 {"Right ADC", NULL, "Right PGA Mixer"},
687 {"Right ADC", NULL, "GPIO1 dmic modclk"},
688
689 /*
690 * Logical path between digital mic enable and GPIO1 modulator clock
691 * output function
692 */
693 {"GPIO1 dmic modclk", NULL, "DMic Rate 128"},
694 {"GPIO1 dmic modclk", NULL, "DMic Rate 64"},
695 {"GPIO1 dmic modclk", NULL, "DMic Rate 32"},
696
697 /* Left DAC Output */
698 {"Left DAC Mux", "DAC_L1", "Left DAC"},
699 {"Left DAC Mux", "DAC_L2", "Left DAC"},
700 {"Left DAC Mux", "DAC_L3", "Left DAC"},
701
702 /* Right DAC Output */
703 {"Right DAC Mux", "DAC_R1", "Right DAC"},
704 {"Right DAC Mux", "DAC_R2", "Right DAC"},
705 {"Right DAC Mux", "DAC_R3", "Right DAC"},
706
707 /* Left Line Output */
708 {"Left Line Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
709 {"Left Line Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
710 {"Left Line Mixer", "DACL1 Switch", "Left DAC Mux"},
711 {"Left Line Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
712 {"Left Line Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
713 {"Left Line Mixer", "DACR1 Switch", "Right DAC Mux"},
714
715 {"Left Line Out", NULL, "Left Line Mixer"},
716 {"Left Line Out", NULL, "Left DAC Mux"},
717 {"LLOUT", NULL, "Left Line Out"},
718
719 /* Right Line Output */
720 {"Right Line Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
721 {"Right Line Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
722 {"Right Line Mixer", "DACL1 Switch", "Left DAC Mux"},
723 {"Right Line Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
724 {"Right Line Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
725 {"Right Line Mixer", "DACR1 Switch", "Right DAC Mux"},
726
727 {"Right Line Out", NULL, "Right Line Mixer"},
728 {"Right Line Out", NULL, "Right DAC Mux"},
729 {"RLOUT", NULL, "Right Line Out"},
730
731 /* Mono Output */
732 {"Mono Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
733 {"Mono Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
734 {"Mono Mixer", "DACL1 Switch", "Left DAC Mux"},
735 {"Mono Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
736 {"Mono Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
737 {"Mono Mixer", "DACR1 Switch", "Right DAC Mux"},
738
739 {"Mono Out", NULL, "Mono Mixer"},
740 {"MONO_LOUT", NULL, "Mono Out"},
741
742 /* Left HP Output */
743 {"Left HP Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
744 {"Left HP Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
745 {"Left HP Mixer", "DACL1 Switch", "Left DAC Mux"},
746 {"Left HP Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
747 {"Left HP Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
748 {"Left HP Mixer", "DACR1 Switch", "Right DAC Mux"},
749
750 {"Left HP Out", NULL, "Left HP Mixer"},
751 {"Left HP Out", NULL, "Left DAC Mux"},
752 {"HPLOUT", NULL, "Left HP Out"},
753
754 /* Right HP Output */
755 {"Right HP Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
756 {"Right HP Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
757 {"Right HP Mixer", "DACL1 Switch", "Left DAC Mux"},
758 {"Right HP Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
759 {"Right HP Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
760 {"Right HP Mixer", "DACR1 Switch", "Right DAC Mux"},
761
762 {"Right HP Out", NULL, "Right HP Mixer"},
763 {"Right HP Out", NULL, "Right DAC Mux"},
764 {"HPROUT", NULL, "Right HP Out"},
765
766 /* Left HPCOM Output */
767 {"Left HPCOM Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
768 {"Left HPCOM Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
769 {"Left HPCOM Mixer", "DACL1 Switch", "Left DAC Mux"},
770 {"Left HPCOM Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
771 {"Left HPCOM Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
772 {"Left HPCOM Mixer", "DACR1 Switch", "Right DAC Mux"},
773
774 {"Left HPCOM Mux", "differential of HPLOUT", "Left HP Mixer"},
775 {"Left HPCOM Mux", "constant VCM", "Left HPCOM Mixer"},
776 {"Left HPCOM Mux", "single-ended", "Left HPCOM Mixer"},
777 {"Left HP Com", NULL, "Left HPCOM Mux"},
778 {"HPLCOM", NULL, "Left HP Com"},
779
780 /* Right HPCOM Output */
781 {"Right HPCOM Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
782 {"Right HPCOM Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
783 {"Right HPCOM Mixer", "DACL1 Switch", "Left DAC Mux"},
784 {"Right HPCOM Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
785 {"Right HPCOM Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
786 {"Right HPCOM Mixer", "DACR1 Switch", "Right DAC Mux"},
787
788 {"Right HPCOM Mux", "differential of HPROUT", "Right HP Mixer"},
789 {"Right HPCOM Mux", "constant VCM", "Right HPCOM Mixer"},
790 {"Right HPCOM Mux", "single-ended", "Right HPCOM Mixer"},
791 {"Right HPCOM Mux", "differential of HPLCOM", "Left HPCOM Mixer"},
792 {"Right HPCOM Mux", "external feedback", "Right HPCOM Mixer"},
793 {"Right HP Com", NULL, "Right HPCOM Mux"},
794 {"HPRCOM", NULL, "Right HP Com"},
795 };
796
797 static const struct snd_soc_dapm_route intercon_3007[] = {
798 /* Class-D outputs */
799 {"Left Class-D Out", NULL, "Left Line Out"},
800 {"Right Class-D Out", NULL, "Left Line Out"},
801 {"SPOP", NULL, "Left Class-D Out"},
802 {"SPOM", NULL, "Right Class-D Out"},
803 };
804
805 static int aic3x_add_widgets(struct snd_soc_codec *codec)
806 {
807 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
808 struct snd_soc_dapm_context *dapm = &codec->dapm;
809
810 snd_soc_dapm_new_controls(dapm, aic3x_dapm_widgets,
811 ARRAY_SIZE(aic3x_dapm_widgets));
812
813 /* set up audio path interconnects */
814 snd_soc_dapm_add_routes(dapm, intercon, ARRAY_SIZE(intercon));
815
816 if (aic3x->model == AIC3X_MODEL_3007) {
817 snd_soc_dapm_new_controls(dapm, aic3007_dapm_widgets,
818 ARRAY_SIZE(aic3007_dapm_widgets));
819 snd_soc_dapm_add_routes(dapm, intercon_3007,
820 ARRAY_SIZE(intercon_3007));
821 }
822
823 return 0;
824 }
825
826 static int aic3x_hw_params(struct snd_pcm_substream *substream,
827 struct snd_pcm_hw_params *params,
828 struct snd_soc_dai *dai)
829 {
830 struct snd_soc_pcm_runtime *rtd = substream->private_data;
831 struct snd_soc_codec *codec =rtd->codec;
832 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
833 int codec_clk = 0, bypass_pll = 0, fsref, last_clk = 0;
834 u8 data, j, r, p, pll_q, pll_p = 1, pll_r = 1, pll_j = 1;
835 u16 d, pll_d = 1;
836 u8 reg;
837 int clk;
838
839 /* select data word length */
840 data = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLB) & (~(0x3 << 4));
841 switch (params_format(params)) {
842 case SNDRV_PCM_FORMAT_S16_LE:
843 break;
844 case SNDRV_PCM_FORMAT_S20_3LE:
845 data |= (0x01 << 4);
846 break;
847 case SNDRV_PCM_FORMAT_S24_LE:
848 data |= (0x02 << 4);
849 break;
850 case SNDRV_PCM_FORMAT_S32_LE:
851 data |= (0x03 << 4);
852 break;
853 }
854 snd_soc_write(codec, AIC3X_ASD_INTF_CTRLB, data);
855
856 /* Fsref can be 44100 or 48000 */
857 fsref = (params_rate(params) % 11025 == 0) ? 44100 : 48000;
858
859 /* Try to find a value for Q which allows us to bypass the PLL and
860 * generate CODEC_CLK directly. */
861 for (pll_q = 2; pll_q < 18; pll_q++)
862 if (aic3x->sysclk / (128 * pll_q) == fsref) {
863 bypass_pll = 1;
864 break;
865 }
866
867 if (bypass_pll) {
868 pll_q &= 0xf;
869 snd_soc_write(codec, AIC3X_PLL_PROGA_REG, pll_q << PLLQ_SHIFT);
870 snd_soc_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_CLKDIV);
871 /* disable PLL if it is bypassed */
872 reg = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
873 snd_soc_write(codec, AIC3X_PLL_PROGA_REG, reg & ~PLL_ENABLE);
874
875 } else {
876 snd_soc_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_PLLDIV);
877 /* enable PLL when it is used */
878 reg = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
879 snd_soc_write(codec, AIC3X_PLL_PROGA_REG, reg | PLL_ENABLE);
880 }
881
882 /* Route Left DAC to left channel input and
883 * right DAC to right channel input */
884 data = (LDAC2LCH | RDAC2RCH);
885 data |= (fsref == 44100) ? FSREF_44100 : FSREF_48000;
886 if (params_rate(params) >= 64000)
887 data |= DUAL_RATE_MODE;
888 snd_soc_write(codec, AIC3X_CODEC_DATAPATH_REG, data);
889
890 /* codec sample rate select */
891 data = (fsref * 20) / params_rate(params);
892 if (params_rate(params) < 64000)
893 data /= 2;
894 data /= 5;
895 data -= 2;
896 data |= (data << 4);
897 snd_soc_write(codec, AIC3X_SAMPLE_RATE_SEL_REG, data);
898
899 if (bypass_pll)
900 return 0;
901
902 /* Use PLL, compute appropriate setup for j, d, r and p, the closest
903 * one wins the game. Try with d==0 first, next with d!=0.
904 * Constraints for j are according to the datasheet.
905 * The sysclk is divided by 1000 to prevent integer overflows.
906 */
907
908 codec_clk = (2048 * fsref) / (aic3x->sysclk / 1000);
909
910 for (r = 1; r <= 16; r++)
911 for (p = 1; p <= 8; p++) {
912 for (j = 4; j <= 55; j++) {
913 /* This is actually 1000*((j+(d/10000))*r)/p
914 * The term had to be converted to get
915 * rid of the division by 10000; d = 0 here
916 */
917 int tmp_clk = (1000 * j * r) / p;
918
919 /* Check whether this values get closer than
920 * the best ones we had before
921 */
922 if (abs(codec_clk - tmp_clk) <
923 abs(codec_clk - last_clk)) {
924 pll_j = j; pll_d = 0;
925 pll_r = r; pll_p = p;
926 last_clk = tmp_clk;
927 }
928
929 /* Early exit for exact matches */
930 if (tmp_clk == codec_clk)
931 goto found;
932 }
933 }
934
935 /* try with d != 0 */
936 for (p = 1; p <= 8; p++) {
937 j = codec_clk * p / 1000;
938
939 if (j < 4 || j > 11)
940 continue;
941
942 /* do not use codec_clk here since we'd loose precision */
943 d = ((2048 * p * fsref) - j * aic3x->sysclk)
944 * 100 / (aic3x->sysclk/100);
945
946 clk = (10000 * j + d) / (10 * p);
947
948 /* check whether this values get closer than the best
949 * ones we had before */
950 if (abs(codec_clk - clk) < abs(codec_clk - last_clk)) {
951 pll_j = j; pll_d = d; pll_r = 1; pll_p = p;
952 last_clk = clk;
953 }
954
955 /* Early exit for exact matches */
956 if (clk == codec_clk)
957 goto found;
958 }
959
960 if (last_clk == 0) {
961 printk(KERN_ERR "%s(): unable to setup PLL\n", __func__);
962 return -EINVAL;
963 }
964
965 found:
966 data = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
967 snd_soc_write(codec, AIC3X_PLL_PROGA_REG,
968 data | (pll_p << PLLP_SHIFT));
969 snd_soc_write(codec, AIC3X_OVRF_STATUS_AND_PLLR_REG,
970 pll_r << PLLR_SHIFT);
971 snd_soc_write(codec, AIC3X_PLL_PROGB_REG, pll_j << PLLJ_SHIFT);
972 snd_soc_write(codec, AIC3X_PLL_PROGC_REG,
973 (pll_d >> 6) << PLLD_MSB_SHIFT);
974 snd_soc_write(codec, AIC3X_PLL_PROGD_REG,
975 (pll_d & 0x3F) << PLLD_LSB_SHIFT);
976
977 return 0;
978 }
979
980 static int aic3x_mute(struct snd_soc_dai *dai, int mute)
981 {
982 struct snd_soc_codec *codec = dai->codec;
983 u8 ldac_reg = snd_soc_read(codec, LDAC_VOL) & ~MUTE_ON;
984 u8 rdac_reg = snd_soc_read(codec, RDAC_VOL) & ~MUTE_ON;
985
986 if (mute) {
987 snd_soc_write(codec, LDAC_VOL, ldac_reg | MUTE_ON);
988 snd_soc_write(codec, RDAC_VOL, rdac_reg | MUTE_ON);
989 } else {
990 snd_soc_write(codec, LDAC_VOL, ldac_reg);
991 snd_soc_write(codec, RDAC_VOL, rdac_reg);
992 }
993
994 return 0;
995 }
996
997 static int aic3x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
998 int clk_id, unsigned int freq, int dir)
999 {
1000 struct snd_soc_codec *codec = codec_dai->codec;
1001 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1002
1003 aic3x->sysclk = freq;
1004 return 0;
1005 }
1006
1007 static int aic3x_set_dai_fmt(struct snd_soc_dai *codec_dai,
1008 unsigned int fmt)
1009 {
1010 struct snd_soc_codec *codec = codec_dai->codec;
1011 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1012 u8 iface_areg, iface_breg;
1013 int delay = 0;
1014
1015 iface_areg = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLA) & 0x3f;
1016 iface_breg = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLB) & 0x3f;
1017
1018 /* set master/slave audio interface */
1019 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1020 case SND_SOC_DAIFMT_CBM_CFM:
1021 aic3x->master = 1;
1022 iface_areg |= BIT_CLK_MASTER | WORD_CLK_MASTER;
1023 break;
1024 case SND_SOC_DAIFMT_CBS_CFS:
1025 aic3x->master = 0;
1026 iface_areg &= ~(BIT_CLK_MASTER | WORD_CLK_MASTER);
1027 break;
1028 default:
1029 return -EINVAL;
1030 }
1031
1032 /*
1033 * match both interface format and signal polarities since they
1034 * are fixed
1035 */
1036 switch (fmt & (SND_SOC_DAIFMT_FORMAT_MASK |
1037 SND_SOC_DAIFMT_INV_MASK)) {
1038 case (SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF):
1039 break;
1040 case (SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_IB_NF):
1041 delay = 1;
1042 case (SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_IB_NF):
1043 iface_breg |= (0x01 << 6);
1044 break;
1045 case (SND_SOC_DAIFMT_RIGHT_J | SND_SOC_DAIFMT_NB_NF):
1046 iface_breg |= (0x02 << 6);
1047 break;
1048 case (SND_SOC_DAIFMT_LEFT_J | SND_SOC_DAIFMT_NB_NF):
1049 iface_breg |= (0x03 << 6);
1050 break;
1051 default:
1052 return -EINVAL;
1053 }
1054
1055 /* set iface */
1056 snd_soc_write(codec, AIC3X_ASD_INTF_CTRLA, iface_areg);
1057 snd_soc_write(codec, AIC3X_ASD_INTF_CTRLB, iface_breg);
1058 snd_soc_write(codec, AIC3X_ASD_INTF_CTRLC, delay);
1059
1060 return 0;
1061 }
1062
1063 static int aic3x_init_3007(struct snd_soc_codec *codec)
1064 {
1065 u8 tmp1, tmp2, *cache = codec->reg_cache;
1066
1067 /*
1068 * There is no need to cache writes to undocumented page 0xD but
1069 * respective page 0 register cache entries must be preserved
1070 */
1071 tmp1 = cache[0xD];
1072 tmp2 = cache[0x8];
1073 /* Class-D speaker driver init; datasheet p. 46 */
1074 snd_soc_write(codec, AIC3X_PAGE_SELECT, 0x0D);
1075 snd_soc_write(codec, 0xD, 0x0D);
1076 snd_soc_write(codec, 0x8, 0x5C);
1077 snd_soc_write(codec, 0x8, 0x5D);
1078 snd_soc_write(codec, 0x8, 0x5C);
1079 snd_soc_write(codec, AIC3X_PAGE_SELECT, 0x00);
1080 cache[0xD] = tmp1;
1081 cache[0x8] = tmp2;
1082
1083 return 0;
1084 }
1085
1086 static int aic3x_regulator_event(struct notifier_block *nb,
1087 unsigned long event, void *data)
1088 {
1089 struct aic3x_disable_nb *disable_nb =
1090 container_of(nb, struct aic3x_disable_nb, nb);
1091 struct aic3x_priv *aic3x = disable_nb->aic3x;
1092
1093 if (event & REGULATOR_EVENT_DISABLE) {
1094 /*
1095 * Put codec to reset and require cache sync as at least one
1096 * of the supplies was disabled
1097 */
1098 if (gpio_is_valid(aic3x->gpio_reset))
1099 gpio_set_value(aic3x->gpio_reset, 0);
1100 aic3x->codec->cache_sync = 1;
1101 }
1102
1103 return 0;
1104 }
1105
1106 static int aic3x_set_power(struct snd_soc_codec *codec, int power)
1107 {
1108 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1109 int i, ret;
1110 u8 *cache = codec->reg_cache;
1111
1112 if (power) {
1113 ret = regulator_bulk_enable(ARRAY_SIZE(aic3x->supplies),
1114 aic3x->supplies);
1115 if (ret)
1116 goto out;
1117 aic3x->power = 1;
1118 /*
1119 * Reset release and cache sync is necessary only if some
1120 * supply was off or if there were cached writes
1121 */
1122 if (!codec->cache_sync)
1123 goto out;
1124
1125 if (gpio_is_valid(aic3x->gpio_reset)) {
1126 udelay(1);
1127 gpio_set_value(aic3x->gpio_reset, 1);
1128 }
1129
1130 /* Sync reg_cache with the hardware */
1131 codec->cache_only = 0;
1132 for (i = AIC3X_SAMPLE_RATE_SEL_REG; i < ARRAY_SIZE(aic3x_reg); i++)
1133 snd_soc_write(codec, i, cache[i]);
1134 if (aic3x->model == AIC3X_MODEL_3007)
1135 aic3x_init_3007(codec);
1136 codec->cache_sync = 0;
1137 } else {
1138 /*
1139 * Do soft reset to this codec instance in order to clear
1140 * possible VDD leakage currents in case the supply regulators
1141 * remain on
1142 */
1143 snd_soc_write(codec, AIC3X_RESET, SOFT_RESET);
1144 codec->cache_sync = 1;
1145 aic3x->power = 0;
1146 /* HW writes are needless when bias is off */
1147 codec->cache_only = 1;
1148 ret = regulator_bulk_disable(ARRAY_SIZE(aic3x->supplies),
1149 aic3x->supplies);
1150 }
1151 out:
1152 return ret;
1153 }
1154
1155 static int aic3x_set_bias_level(struct snd_soc_codec *codec,
1156 enum snd_soc_bias_level level)
1157 {
1158 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1159 u8 reg;
1160
1161 switch (level) {
1162 case SND_SOC_BIAS_ON:
1163 break;
1164 case SND_SOC_BIAS_PREPARE:
1165 if (codec->dapm.bias_level == SND_SOC_BIAS_STANDBY &&
1166 aic3x->master) {
1167 /* enable pll */
1168 reg = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
1169 snd_soc_write(codec, AIC3X_PLL_PROGA_REG,
1170 reg | PLL_ENABLE);
1171 }
1172 break;
1173 case SND_SOC_BIAS_STANDBY:
1174 if (!aic3x->power)
1175 aic3x_set_power(codec, 1);
1176 if (codec->dapm.bias_level == SND_SOC_BIAS_PREPARE &&
1177 aic3x->master) {
1178 /* disable pll */
1179 reg = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
1180 snd_soc_write(codec, AIC3X_PLL_PROGA_REG,
1181 reg & ~PLL_ENABLE);
1182 }
1183 break;
1184 case SND_SOC_BIAS_OFF:
1185 if (aic3x->power)
1186 aic3x_set_power(codec, 0);
1187 break;
1188 }
1189 codec->dapm.bias_level = level;
1190
1191 return 0;
1192 }
1193
1194 void aic3x_set_gpio(struct snd_soc_codec *codec, int gpio, int state)
1195 {
1196 u8 reg = gpio ? AIC3X_GPIO2_REG : AIC3X_GPIO1_REG;
1197 u8 bit = gpio ? 3: 0;
1198 u8 val = snd_soc_read(codec, reg) & ~(1 << bit);
1199 snd_soc_write(codec, reg, val | (!!state << bit));
1200 }
1201 EXPORT_SYMBOL_GPL(aic3x_set_gpio);
1202
1203 int aic3x_get_gpio(struct snd_soc_codec *codec, int gpio)
1204 {
1205 u8 reg = gpio ? AIC3X_GPIO2_REG : AIC3X_GPIO1_REG;
1206 u8 val = 0, bit = gpio ? 2 : 1;
1207
1208 aic3x_read(codec, reg, &val);
1209 return (val >> bit) & 1;
1210 }
1211 EXPORT_SYMBOL_GPL(aic3x_get_gpio);
1212
1213 void aic3x_set_headset_detection(struct snd_soc_codec *codec, int detect,
1214 int headset_debounce, int button_debounce)
1215 {
1216 u8 val;
1217
1218 val = ((detect & AIC3X_HEADSET_DETECT_MASK)
1219 << AIC3X_HEADSET_DETECT_SHIFT) |
1220 ((headset_debounce & AIC3X_HEADSET_DEBOUNCE_MASK)
1221 << AIC3X_HEADSET_DEBOUNCE_SHIFT) |
1222 ((button_debounce & AIC3X_BUTTON_DEBOUNCE_MASK)
1223 << AIC3X_BUTTON_DEBOUNCE_SHIFT);
1224
1225 if (detect & AIC3X_HEADSET_DETECT_MASK)
1226 val |= AIC3X_HEADSET_DETECT_ENABLED;
1227
1228 snd_soc_write(codec, AIC3X_HEADSET_DETECT_CTRL_A, val);
1229 }
1230 EXPORT_SYMBOL_GPL(aic3x_set_headset_detection);
1231
1232 int aic3x_headset_detected(struct snd_soc_codec *codec)
1233 {
1234 u8 val = 0;
1235 aic3x_read(codec, AIC3X_HEADSET_DETECT_CTRL_B, &val);
1236 return (val >> 4) & 1;
1237 }
1238 EXPORT_SYMBOL_GPL(aic3x_headset_detected);
1239
1240 int aic3x_button_pressed(struct snd_soc_codec *codec)
1241 {
1242 u8 val = 0;
1243 aic3x_read(codec, AIC3X_HEADSET_DETECT_CTRL_B, &val);
1244 return (val >> 5) & 1;
1245 }
1246 EXPORT_SYMBOL_GPL(aic3x_button_pressed);
1247
1248 #define AIC3X_RATES SNDRV_PCM_RATE_8000_96000
1249 #define AIC3X_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \
1250 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
1251
1252 static struct snd_soc_dai_ops aic3x_dai_ops = {
1253 .hw_params = aic3x_hw_params,
1254 .digital_mute = aic3x_mute,
1255 .set_sysclk = aic3x_set_dai_sysclk,
1256 .set_fmt = aic3x_set_dai_fmt,
1257 };
1258
1259 static struct snd_soc_dai_driver aic3x_dai = {
1260 .name = "tlv320aic3x-hifi",
1261 .playback = {
1262 .stream_name = "Playback",
1263 .channels_min = 1,
1264 .channels_max = 2,
1265 .rates = AIC3X_RATES,
1266 .formats = AIC3X_FORMATS,},
1267 .capture = {
1268 .stream_name = "Capture",
1269 .channels_min = 1,
1270 .channels_max = 2,
1271 .rates = AIC3X_RATES,
1272 .formats = AIC3X_FORMATS,},
1273 .ops = &aic3x_dai_ops,
1274 .symmetric_rates = 1,
1275 };
1276
1277 static int aic3x_suspend(struct snd_soc_codec *codec, pm_message_t state)
1278 {
1279 aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF);
1280
1281 return 0;
1282 }
1283
1284 static int aic3x_resume(struct snd_soc_codec *codec)
1285 {
1286 aic3x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
1287
1288 return 0;
1289 }
1290
1291 /*
1292 * initialise the AIC3X driver
1293 * register the mixer and dsp interfaces with the kernel
1294 */
1295 static int aic3x_init(struct snd_soc_codec *codec)
1296 {
1297 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1298 int reg;
1299
1300 snd_soc_write(codec, AIC3X_PAGE_SELECT, PAGE0_SELECT);
1301 snd_soc_write(codec, AIC3X_RESET, SOFT_RESET);
1302
1303 /* DAC default volume and mute */
1304 snd_soc_write(codec, LDAC_VOL, DEFAULT_VOL | MUTE_ON);
1305 snd_soc_write(codec, RDAC_VOL, DEFAULT_VOL | MUTE_ON);
1306
1307 /* DAC to HP default volume and route to Output mixer */
1308 snd_soc_write(codec, DACL1_2_HPLOUT_VOL, DEFAULT_VOL | ROUTE_ON);
1309 snd_soc_write(codec, DACR1_2_HPROUT_VOL, DEFAULT_VOL | ROUTE_ON);
1310 snd_soc_write(codec, DACL1_2_HPLCOM_VOL, DEFAULT_VOL | ROUTE_ON);
1311 snd_soc_write(codec, DACR1_2_HPRCOM_VOL, DEFAULT_VOL | ROUTE_ON);
1312 /* DAC to Line Out default volume and route to Output mixer */
1313 snd_soc_write(codec, DACL1_2_LLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1314 snd_soc_write(codec, DACR1_2_RLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1315 /* DAC to Mono Line Out default volume and route to Output mixer */
1316 snd_soc_write(codec, DACL1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1317 snd_soc_write(codec, DACR1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1318
1319 /* unmute all outputs */
1320 reg = snd_soc_read(codec, LLOPM_CTRL);
1321 snd_soc_write(codec, LLOPM_CTRL, reg | UNMUTE);
1322 reg = snd_soc_read(codec, RLOPM_CTRL);
1323 snd_soc_write(codec, RLOPM_CTRL, reg | UNMUTE);
1324 reg = snd_soc_read(codec, MONOLOPM_CTRL);
1325 snd_soc_write(codec, MONOLOPM_CTRL, reg | UNMUTE);
1326 reg = snd_soc_read(codec, HPLOUT_CTRL);
1327 snd_soc_write(codec, HPLOUT_CTRL, reg | UNMUTE);
1328 reg = snd_soc_read(codec, HPROUT_CTRL);
1329 snd_soc_write(codec, HPROUT_CTRL, reg | UNMUTE);
1330 reg = snd_soc_read(codec, HPLCOM_CTRL);
1331 snd_soc_write(codec, HPLCOM_CTRL, reg | UNMUTE);
1332 reg = snd_soc_read(codec, HPRCOM_CTRL);
1333 snd_soc_write(codec, HPRCOM_CTRL, reg | UNMUTE);
1334
1335 /* ADC default volume and unmute */
1336 snd_soc_write(codec, LADC_VOL, DEFAULT_GAIN);
1337 snd_soc_write(codec, RADC_VOL, DEFAULT_GAIN);
1338 /* By default route Line1 to ADC PGA mixer */
1339 snd_soc_write(codec, LINE1L_2_LADC_CTRL, 0x0);
1340 snd_soc_write(codec, LINE1R_2_RADC_CTRL, 0x0);
1341
1342 /* PGA to HP Bypass default volume, disconnect from Output Mixer */
1343 snd_soc_write(codec, PGAL_2_HPLOUT_VOL, DEFAULT_VOL);
1344 snd_soc_write(codec, PGAR_2_HPROUT_VOL, DEFAULT_VOL);
1345 snd_soc_write(codec, PGAL_2_HPLCOM_VOL, DEFAULT_VOL);
1346 snd_soc_write(codec, PGAR_2_HPRCOM_VOL, DEFAULT_VOL);
1347 /* PGA to Line Out default volume, disconnect from Output Mixer */
1348 snd_soc_write(codec, PGAL_2_LLOPM_VOL, DEFAULT_VOL);
1349 snd_soc_write(codec, PGAR_2_RLOPM_VOL, DEFAULT_VOL);
1350 /* PGA to Mono Line Out default volume, disconnect from Output Mixer */
1351 snd_soc_write(codec, PGAL_2_MONOLOPM_VOL, DEFAULT_VOL);
1352 snd_soc_write(codec, PGAR_2_MONOLOPM_VOL, DEFAULT_VOL);
1353
1354 /* Line2 to HP Bypass default volume, disconnect from Output Mixer */
1355 snd_soc_write(codec, LINE2L_2_HPLOUT_VOL, DEFAULT_VOL);
1356 snd_soc_write(codec, LINE2R_2_HPROUT_VOL, DEFAULT_VOL);
1357 snd_soc_write(codec, LINE2L_2_HPLCOM_VOL, DEFAULT_VOL);
1358 snd_soc_write(codec, LINE2R_2_HPRCOM_VOL, DEFAULT_VOL);
1359 /* Line2 Line Out default volume, disconnect from Output Mixer */
1360 snd_soc_write(codec, LINE2L_2_LLOPM_VOL, DEFAULT_VOL);
1361 snd_soc_write(codec, LINE2R_2_RLOPM_VOL, DEFAULT_VOL);
1362 /* Line2 to Mono Out default volume, disconnect from Output Mixer */
1363 snd_soc_write(codec, LINE2L_2_MONOLOPM_VOL, DEFAULT_VOL);
1364 snd_soc_write(codec, LINE2R_2_MONOLOPM_VOL, DEFAULT_VOL);
1365
1366 if (aic3x->model == AIC3X_MODEL_3007) {
1367 aic3x_init_3007(codec);
1368 snd_soc_write(codec, CLASSD_CTRL, 0);
1369 }
1370
1371 return 0;
1372 }
1373
1374 static bool aic3x_is_shared_reset(struct aic3x_priv *aic3x)
1375 {
1376 struct aic3x_priv *a;
1377
1378 list_for_each_entry(a, &reset_list, list) {
1379 if (gpio_is_valid(aic3x->gpio_reset) &&
1380 aic3x->gpio_reset == a->gpio_reset)
1381 return true;
1382 }
1383
1384 return false;
1385 }
1386
1387 static int aic3x_probe(struct snd_soc_codec *codec)
1388 {
1389 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1390 int ret, i;
1391
1392 INIT_LIST_HEAD(&aic3x->list);
1393 aic3x->codec = codec;
1394 codec->dapm.idle_bias_off = 1;
1395
1396 ret = snd_soc_codec_set_cache_io(codec, 8, 8, aic3x->control_type);
1397 if (ret != 0) {
1398 dev_err(codec->dev, "Failed to set cache I/O: %d\n", ret);
1399 return ret;
1400 }
1401
1402 if (gpio_is_valid(aic3x->gpio_reset) &&
1403 !aic3x_is_shared_reset(aic3x)) {
1404 ret = gpio_request(aic3x->gpio_reset, "tlv320aic3x reset");
1405 if (ret != 0)
1406 goto err_gpio;
1407 gpio_direction_output(aic3x->gpio_reset, 0);
1408 }
1409
1410 for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++)
1411 aic3x->supplies[i].supply = aic3x_supply_names[i];
1412
1413 ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(aic3x->supplies),
1414 aic3x->supplies);
1415 if (ret != 0) {
1416 dev_err(codec->dev, "Failed to request supplies: %d\n", ret);
1417 goto err_get;
1418 }
1419 for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++) {
1420 aic3x->disable_nb[i].nb.notifier_call = aic3x_regulator_event;
1421 aic3x->disable_nb[i].aic3x = aic3x;
1422 ret = regulator_register_notifier(aic3x->supplies[i].consumer,
1423 &aic3x->disable_nb[i].nb);
1424 if (ret) {
1425 dev_err(codec->dev,
1426 "Failed to request regulator notifier: %d\n",
1427 ret);
1428 goto err_notif;
1429 }
1430 }
1431
1432 codec->cache_only = 1;
1433 aic3x_init(codec);
1434
1435 if (aic3x->setup) {
1436 /* setup GPIO functions */
1437 snd_soc_write(codec, AIC3X_GPIO1_REG,
1438 (aic3x->setup->gpio_func[0] & 0xf) << 4);
1439 snd_soc_write(codec, AIC3X_GPIO2_REG,
1440 (aic3x->setup->gpio_func[1] & 0xf) << 4);
1441 }
1442
1443 snd_soc_add_controls(codec, aic3x_snd_controls,
1444 ARRAY_SIZE(aic3x_snd_controls));
1445 if (aic3x->model == AIC3X_MODEL_3007)
1446 snd_soc_add_controls(codec, &aic3x_classd_amp_gain_ctrl, 1);
1447
1448 aic3x_add_widgets(codec);
1449 list_add(&aic3x->list, &reset_list);
1450
1451 return 0;
1452
1453 err_notif:
1454 while (i--)
1455 regulator_unregister_notifier(aic3x->supplies[i].consumer,
1456 &aic3x->disable_nb[i].nb);
1457 regulator_bulk_free(ARRAY_SIZE(aic3x->supplies), aic3x->supplies);
1458 err_get:
1459 if (gpio_is_valid(aic3x->gpio_reset) &&
1460 !aic3x_is_shared_reset(aic3x))
1461 gpio_free(aic3x->gpio_reset);
1462 err_gpio:
1463 return ret;
1464 }
1465
1466 static int aic3x_remove(struct snd_soc_codec *codec)
1467 {
1468 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1469 int i;
1470
1471 aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF);
1472 list_del(&aic3x->list);
1473 if (gpio_is_valid(aic3x->gpio_reset) &&
1474 !aic3x_is_shared_reset(aic3x)) {
1475 gpio_set_value(aic3x->gpio_reset, 0);
1476 gpio_free(aic3x->gpio_reset);
1477 }
1478 for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++)
1479 regulator_unregister_notifier(aic3x->supplies[i].consumer,
1480 &aic3x->disable_nb[i].nb);
1481 regulator_bulk_free(ARRAY_SIZE(aic3x->supplies), aic3x->supplies);
1482
1483 return 0;
1484 }
1485
1486 static struct snd_soc_codec_driver soc_codec_dev_aic3x = {
1487 .set_bias_level = aic3x_set_bias_level,
1488 .reg_cache_size = ARRAY_SIZE(aic3x_reg),
1489 .reg_word_size = sizeof(u8),
1490 .reg_cache_default = aic3x_reg,
1491 .probe = aic3x_probe,
1492 .remove = aic3x_remove,
1493 .suspend = aic3x_suspend,
1494 .resume = aic3x_resume,
1495 };
1496
1497 #if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
1498 /*
1499 * AIC3X 2 wire address can be up to 4 devices with device addresses
1500 * 0x18, 0x19, 0x1A, 0x1B
1501 */
1502
1503 static const struct i2c_device_id aic3x_i2c_id[] = {
1504 { "tlv320aic3x", AIC3X_MODEL_3X },
1505 { "tlv320aic33", AIC3X_MODEL_33 },
1506 { "tlv320aic3007", AIC3X_MODEL_3007 },
1507 { }
1508 };
1509 MODULE_DEVICE_TABLE(i2c, aic3x_i2c_id);
1510
1511 /*
1512 * If the i2c layer weren't so broken, we could pass this kind of data
1513 * around
1514 */
1515 static int aic3x_i2c_probe(struct i2c_client *i2c,
1516 const struct i2c_device_id *id)
1517 {
1518 struct aic3x_pdata *pdata = i2c->dev.platform_data;
1519 struct aic3x_priv *aic3x;
1520 int ret;
1521
1522 aic3x = kzalloc(sizeof(struct aic3x_priv), GFP_KERNEL);
1523 if (aic3x == NULL) {
1524 dev_err(&i2c->dev, "failed to create private data\n");
1525 return -ENOMEM;
1526 }
1527
1528 aic3x->control_type = SND_SOC_I2C;
1529
1530 i2c_set_clientdata(i2c, aic3x);
1531 if (pdata) {
1532 aic3x->gpio_reset = pdata->gpio_reset;
1533 aic3x->setup = pdata->setup;
1534 } else {
1535 aic3x->gpio_reset = -1;
1536 }
1537
1538 aic3x->model = id->driver_data;
1539
1540 ret = snd_soc_register_codec(&i2c->dev,
1541 &soc_codec_dev_aic3x, &aic3x_dai, 1);
1542 if (ret < 0)
1543 kfree(aic3x);
1544 return ret;
1545 }
1546
1547 static int aic3x_i2c_remove(struct i2c_client *client)
1548 {
1549 snd_soc_unregister_codec(&client->dev);
1550 kfree(i2c_get_clientdata(client));
1551 return 0;
1552 }
1553
1554 /* machine i2c codec control layer */
1555 static struct i2c_driver aic3x_i2c_driver = {
1556 .driver = {
1557 .name = "tlv320aic3x-codec",
1558 .owner = THIS_MODULE,
1559 },
1560 .probe = aic3x_i2c_probe,
1561 .remove = aic3x_i2c_remove,
1562 .id_table = aic3x_i2c_id,
1563 };
1564 #endif
1565
1566 static int __init aic3x_modinit(void)
1567 {
1568 int ret = 0;
1569 #if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
1570 ret = i2c_add_driver(&aic3x_i2c_driver);
1571 if (ret != 0) {
1572 printk(KERN_ERR "Failed to register TLV320AIC3x I2C driver: %d\n",
1573 ret);
1574 }
1575 #endif
1576 return ret;
1577 }
1578 module_init(aic3x_modinit);
1579
1580 static void __exit aic3x_exit(void)
1581 {
1582 #if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
1583 i2c_del_driver(&aic3x_i2c_driver);
1584 #endif
1585 }
1586 module_exit(aic3x_exit);
1587
1588 MODULE_DESCRIPTION("ASoC TLV320AIC3X codec driver");
1589 MODULE_AUTHOR("Vladimir Barinov");
1590 MODULE_LICENSE("GPL");
This page took 0.068115 seconds and 5 git commands to generate.