Merge tag 'freevxfs-for-4.8' of git://git.infradead.org/users/hch/freevxfs
[deliverable/linux.git] / sound / soc / fsl / fsl_ssi.c
1 /*
2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
7 *
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
11 *
12 *
13 * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
14 *
15 * The i.MX SSI core has some nasty limitations in AC97 mode. While most
16 * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
17 * one FIFO which combines all valid receive slots. We cannot even select
18 * which slots we want to receive. The WM9712 with which this driver
19 * was developed with always sends GPIO status data in slot 12 which
20 * we receive in our (PCM-) data stream. The only chance we have is to
21 * manually skip this data in the FIQ handler. With sampling rates different
22 * from 48000Hz not every frame has valid receive data, so the ratio
23 * between pcm data and GPIO status data changes. Our FIQ handler is not
24 * able to handle this, hence this driver only works with 48000Hz sampling
25 * rate.
26 * Reading and writing AC97 registers is another challenge. The core
27 * provides us status bits when the read register is updated with *another*
28 * value. When we read the same register two times (and the register still
29 * contains the same value) these status bits are not set. We work
30 * around this by not polling these bits but only wait a fixed delay.
31 */
32
33 #include <linux/init.h>
34 #include <linux/io.h>
35 #include <linux/module.h>
36 #include <linux/interrupt.h>
37 #include <linux/clk.h>
38 #include <linux/device.h>
39 #include <linux/delay.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/of.h>
43 #include <linux/of_address.h>
44 #include <linux/of_irq.h>
45 #include <linux/of_platform.h>
46
47 #include <sound/core.h>
48 #include <sound/pcm.h>
49 #include <sound/pcm_params.h>
50 #include <sound/initval.h>
51 #include <sound/soc.h>
52 #include <sound/dmaengine_pcm.h>
53
54 #include "fsl_ssi.h"
55 #include "imx-pcm.h"
56
57 /**
58 * FSLSSI_I2S_RATES: sample rates supported by the I2S
59 *
60 * This driver currently only supports the SSI running in I2S slave mode,
61 * which means the codec determines the sample rate. Therefore, we tell
62 * ALSA that we support all rates and let the codec driver decide what rates
63 * are really supported.
64 */
65 #define FSLSSI_I2S_RATES SNDRV_PCM_RATE_CONTINUOUS
66
67 /**
68 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
69 *
70 * The SSI has a limitation in that the samples must be in the same byte
71 * order as the host CPU. This is because when multiple bytes are written
72 * to the STX register, the bytes and bits must be written in the same
73 * order. The STX is a shift register, so all the bits need to be aligned
74 * (bit-endianness must match byte-endianness). Processors typically write
75 * the bits within a byte in the same order that the bytes of a word are
76 * written in. So if the host CPU is big-endian, then only big-endian
77 * samples will be written to STX properly.
78 */
79 #ifdef __BIG_ENDIAN
80 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
81 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
82 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
83 #else
84 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
85 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
86 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
87 #endif
88
89 #define FSLSSI_SIER_DBG_RX_FLAGS (CCSR_SSI_SIER_RFF0_EN | \
90 CCSR_SSI_SIER_RLS_EN | CCSR_SSI_SIER_RFS_EN | \
91 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_RFRC_EN)
92 #define FSLSSI_SIER_DBG_TX_FLAGS (CCSR_SSI_SIER_TFE0_EN | \
93 CCSR_SSI_SIER_TLS_EN | CCSR_SSI_SIER_TFS_EN | \
94 CCSR_SSI_SIER_TUE0_EN | CCSR_SSI_SIER_TFRC_EN)
95
96 enum fsl_ssi_type {
97 FSL_SSI_MCP8610,
98 FSL_SSI_MX21,
99 FSL_SSI_MX35,
100 FSL_SSI_MX51,
101 };
102
103 struct fsl_ssi_reg_val {
104 u32 sier;
105 u32 srcr;
106 u32 stcr;
107 u32 scr;
108 };
109
110 struct fsl_ssi_rxtx_reg_val {
111 struct fsl_ssi_reg_val rx;
112 struct fsl_ssi_reg_val tx;
113 };
114
115 static bool fsl_ssi_readable_reg(struct device *dev, unsigned int reg)
116 {
117 switch (reg) {
118 case CCSR_SSI_SACCEN:
119 case CCSR_SSI_SACCDIS:
120 return false;
121 default:
122 return true;
123 }
124 }
125
126 static bool fsl_ssi_volatile_reg(struct device *dev, unsigned int reg)
127 {
128 switch (reg) {
129 case CCSR_SSI_STX0:
130 case CCSR_SSI_STX1:
131 case CCSR_SSI_SRX0:
132 case CCSR_SSI_SRX1:
133 case CCSR_SSI_SISR:
134 case CCSR_SSI_SFCSR:
135 case CCSR_SSI_SACNT:
136 case CCSR_SSI_SACADD:
137 case CCSR_SSI_SACDAT:
138 case CCSR_SSI_SATAG:
139 case CCSR_SSI_SACCST:
140 case CCSR_SSI_SOR:
141 return true;
142 default:
143 return false;
144 }
145 }
146
147 static bool fsl_ssi_precious_reg(struct device *dev, unsigned int reg)
148 {
149 switch (reg) {
150 case CCSR_SSI_SRX0:
151 case CCSR_SSI_SRX1:
152 case CCSR_SSI_SISR:
153 case CCSR_SSI_SACADD:
154 case CCSR_SSI_SACDAT:
155 case CCSR_SSI_SATAG:
156 return true;
157 default:
158 return false;
159 }
160 }
161
162 static bool fsl_ssi_writeable_reg(struct device *dev, unsigned int reg)
163 {
164 switch (reg) {
165 case CCSR_SSI_SRX0:
166 case CCSR_SSI_SRX1:
167 case CCSR_SSI_SACCST:
168 return false;
169 default:
170 return true;
171 }
172 }
173
174 static const struct regmap_config fsl_ssi_regconfig = {
175 .max_register = CCSR_SSI_SACCDIS,
176 .reg_bits = 32,
177 .val_bits = 32,
178 .reg_stride = 4,
179 .val_format_endian = REGMAP_ENDIAN_NATIVE,
180 .num_reg_defaults_raw = CCSR_SSI_SACCDIS / sizeof(uint32_t) + 1,
181 .readable_reg = fsl_ssi_readable_reg,
182 .volatile_reg = fsl_ssi_volatile_reg,
183 .precious_reg = fsl_ssi_precious_reg,
184 .writeable_reg = fsl_ssi_writeable_reg,
185 .cache_type = REGCACHE_RBTREE,
186 };
187
188 struct fsl_ssi_soc_data {
189 bool imx;
190 bool imx21regs; /* imx21-class SSI - no SACC{ST,EN,DIS} regs */
191 bool offline_config;
192 u32 sisr_write_mask;
193 };
194
195 /**
196 * fsl_ssi_private: per-SSI private data
197 *
198 * @reg: Pointer to the regmap registers
199 * @irq: IRQ of this SSI
200 * @cpu_dai_drv: CPU DAI driver for this device
201 *
202 * @dai_fmt: DAI configuration this device is currently used with
203 * @i2s_mode: i2s and network mode configuration of the device. Is used to
204 * switch between normal and i2s/network mode
205 * mode depending on the number of channels
206 * @use_dma: DMA is used or FIQ with stream filter
207 * @use_dual_fifo: DMA with support for both FIFOs used
208 * @fifo_deph: Depth of the SSI FIFOs
209 * @rxtx_reg_val: Specific register settings for receive/transmit configuration
210 *
211 * @clk: SSI clock
212 * @baudclk: SSI baud clock for master mode
213 * @baudclk_streams: Active streams that are using baudclk
214 * @bitclk_freq: bitclock frequency set by .set_dai_sysclk
215 *
216 * @dma_params_tx: DMA transmit parameters
217 * @dma_params_rx: DMA receive parameters
218 * @ssi_phys: physical address of the SSI registers
219 *
220 * @fiq_params: FIQ stream filtering parameters
221 *
222 * @pdev: Pointer to pdev used for deprecated fsl-ssi sound card
223 *
224 * @dbg_stats: Debugging statistics
225 *
226 * @soc: SoC specific data
227 */
228 struct fsl_ssi_private {
229 struct regmap *regs;
230 int irq;
231 struct snd_soc_dai_driver cpu_dai_drv;
232
233 unsigned int dai_fmt;
234 u8 i2s_mode;
235 bool use_dma;
236 bool use_dual_fifo;
237 bool has_ipg_clk_name;
238 unsigned int fifo_depth;
239 struct fsl_ssi_rxtx_reg_val rxtx_reg_val;
240
241 struct clk *clk;
242 struct clk *baudclk;
243 unsigned int baudclk_streams;
244 unsigned int bitclk_freq;
245
246 /* regcache for volatile regs */
247 u32 regcache_sfcsr;
248 u32 regcache_sacnt;
249
250 /* DMA params */
251 struct snd_dmaengine_dai_dma_data dma_params_tx;
252 struct snd_dmaengine_dai_dma_data dma_params_rx;
253 dma_addr_t ssi_phys;
254
255 /* params for non-dma FIQ stream filtered mode */
256 struct imx_pcm_fiq_params fiq_params;
257
258 /* Used when using fsl-ssi as sound-card. This is only used by ppc and
259 * should be replaced with simple-sound-card. */
260 struct platform_device *pdev;
261
262 struct fsl_ssi_dbg dbg_stats;
263
264 const struct fsl_ssi_soc_data *soc;
265 struct device *dev;
266 };
267
268 /*
269 * imx51 and later SoCs have a slightly different IP that allows the
270 * SSI configuration while the SSI unit is running.
271 *
272 * More important, it is necessary on those SoCs to configure the
273 * sperate TX/RX DMA bits just before starting the stream
274 * (fsl_ssi_trigger). The SDMA unit has to be configured before fsl_ssi
275 * sends any DMA requests to the SDMA unit, otherwise it is not defined
276 * how the SDMA unit handles the DMA request.
277 *
278 * SDMA units are present on devices starting at imx35 but the imx35
279 * reference manual states that the DMA bits should not be changed
280 * while the SSI unit is running (SSIEN). So we support the necessary
281 * online configuration of fsl-ssi starting at imx51.
282 */
283
284 static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
285 .imx = false,
286 .offline_config = true,
287 .sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
288 CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
289 CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
290 };
291
292 static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
293 .imx = true,
294 .imx21regs = true,
295 .offline_config = true,
296 .sisr_write_mask = 0,
297 };
298
299 static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
300 .imx = true,
301 .offline_config = true,
302 .sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
303 CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
304 CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
305 };
306
307 static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
308 .imx = true,
309 .offline_config = false,
310 .sisr_write_mask = CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
311 CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
312 };
313
314 static const struct of_device_id fsl_ssi_ids[] = {
315 { .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
316 { .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
317 { .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
318 { .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
319 {}
320 };
321 MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
322
323 static bool fsl_ssi_is_ac97(struct fsl_ssi_private *ssi_private)
324 {
325 return (ssi_private->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) ==
326 SND_SOC_DAIFMT_AC97;
327 }
328
329 static bool fsl_ssi_is_i2s_master(struct fsl_ssi_private *ssi_private)
330 {
331 return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
332 SND_SOC_DAIFMT_CBS_CFS;
333 }
334
335 static bool fsl_ssi_is_i2s_cbm_cfs(struct fsl_ssi_private *ssi_private)
336 {
337 return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
338 SND_SOC_DAIFMT_CBM_CFS;
339 }
340 /**
341 * fsl_ssi_isr: SSI interrupt handler
342 *
343 * Although it's possible to use the interrupt handler to send and receive
344 * data to/from the SSI, we use the DMA instead. Programming is more
345 * complicated, but the performance is much better.
346 *
347 * This interrupt handler is used only to gather statistics.
348 *
349 * @irq: IRQ of the SSI device
350 * @dev_id: pointer to the ssi_private structure for this SSI device
351 */
352 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
353 {
354 struct fsl_ssi_private *ssi_private = dev_id;
355 struct regmap *regs = ssi_private->regs;
356 __be32 sisr;
357 __be32 sisr2;
358
359 /* We got an interrupt, so read the status register to see what we
360 were interrupted for. We mask it with the Interrupt Enable register
361 so that we only check for events that we're interested in.
362 */
363 regmap_read(regs, CCSR_SSI_SISR, &sisr);
364
365 sisr2 = sisr & ssi_private->soc->sisr_write_mask;
366 /* Clear the bits that we set */
367 if (sisr2)
368 regmap_write(regs, CCSR_SSI_SISR, sisr2);
369
370 fsl_ssi_dbg_isr(&ssi_private->dbg_stats, sisr);
371
372 return IRQ_HANDLED;
373 }
374
375 /*
376 * Enable/Disable all rx/tx config flags at once.
377 */
378 static void fsl_ssi_rxtx_config(struct fsl_ssi_private *ssi_private,
379 bool enable)
380 {
381 struct regmap *regs = ssi_private->regs;
382 struct fsl_ssi_rxtx_reg_val *vals = &ssi_private->rxtx_reg_val;
383
384 if (enable) {
385 regmap_update_bits(regs, CCSR_SSI_SIER,
386 vals->rx.sier | vals->tx.sier,
387 vals->rx.sier | vals->tx.sier);
388 regmap_update_bits(regs, CCSR_SSI_SRCR,
389 vals->rx.srcr | vals->tx.srcr,
390 vals->rx.srcr | vals->tx.srcr);
391 regmap_update_bits(regs, CCSR_SSI_STCR,
392 vals->rx.stcr | vals->tx.stcr,
393 vals->rx.stcr | vals->tx.stcr);
394 } else {
395 regmap_update_bits(regs, CCSR_SSI_SRCR,
396 vals->rx.srcr | vals->tx.srcr, 0);
397 regmap_update_bits(regs, CCSR_SSI_STCR,
398 vals->rx.stcr | vals->tx.stcr, 0);
399 regmap_update_bits(regs, CCSR_SSI_SIER,
400 vals->rx.sier | vals->tx.sier, 0);
401 }
402 }
403
404 /*
405 * Clear RX or TX FIFO to remove samples from the previous
406 * stream session which may be still present in the FIFO and
407 * may introduce bad samples and/or channel slipping.
408 *
409 * Note: The SOR is not documented in recent IMX datasheet, but
410 * is described in IMX51 reference manual at section 56.3.3.15.
411 */
412 static void fsl_ssi_fifo_clear(struct fsl_ssi_private *ssi_private,
413 bool is_rx)
414 {
415 if (is_rx) {
416 regmap_update_bits(ssi_private->regs, CCSR_SSI_SOR,
417 CCSR_SSI_SOR_RX_CLR, CCSR_SSI_SOR_RX_CLR);
418 } else {
419 regmap_update_bits(ssi_private->regs, CCSR_SSI_SOR,
420 CCSR_SSI_SOR_TX_CLR, CCSR_SSI_SOR_TX_CLR);
421 }
422 }
423
424 /*
425 * Calculate the bits that have to be disabled for the current stream that is
426 * getting disabled. This keeps the bits enabled that are necessary for the
427 * second stream to work if 'stream_active' is true.
428 *
429 * Detailed calculation:
430 * These are the values that need to be active after disabling. For non-active
431 * second stream, this is 0:
432 * vals_stream * !!stream_active
433 *
434 * The following computes the overall differences between the setup for the
435 * to-disable stream and the active stream, a simple XOR:
436 * vals_disable ^ (vals_stream * !!(stream_active))
437 *
438 * The full expression adds a mask on all values we care about
439 */
440 #define fsl_ssi_disable_val(vals_disable, vals_stream, stream_active) \
441 ((vals_disable) & \
442 ((vals_disable) ^ ((vals_stream) * (u32)!!(stream_active))))
443
444 /*
445 * Enable/Disable a ssi configuration. You have to pass either
446 * ssi_private->rxtx_reg_val.rx or tx as vals parameter.
447 */
448 static void fsl_ssi_config(struct fsl_ssi_private *ssi_private, bool enable,
449 struct fsl_ssi_reg_val *vals)
450 {
451 struct regmap *regs = ssi_private->regs;
452 struct fsl_ssi_reg_val *avals;
453 int nr_active_streams;
454 u32 scr_val;
455 int keep_active;
456
457 regmap_read(regs, CCSR_SSI_SCR, &scr_val);
458
459 nr_active_streams = !!(scr_val & CCSR_SSI_SCR_TE) +
460 !!(scr_val & CCSR_SSI_SCR_RE);
461
462 if (nr_active_streams - 1 > 0)
463 keep_active = 1;
464 else
465 keep_active = 0;
466
467 /* Find the other direction values rx or tx which we do not want to
468 * modify */
469 if (&ssi_private->rxtx_reg_val.rx == vals)
470 avals = &ssi_private->rxtx_reg_val.tx;
471 else
472 avals = &ssi_private->rxtx_reg_val.rx;
473
474 /* If vals should be disabled, start with disabling the unit */
475 if (!enable) {
476 u32 scr = fsl_ssi_disable_val(vals->scr, avals->scr,
477 keep_active);
478 regmap_update_bits(regs, CCSR_SSI_SCR, scr, 0);
479 }
480
481 /*
482 * We are running on a SoC which does not support online SSI
483 * reconfiguration, so we have to enable all necessary flags at once
484 * even if we do not use them later (capture and playback configuration)
485 */
486 if (ssi_private->soc->offline_config) {
487 if ((enable && !nr_active_streams) ||
488 (!enable && !keep_active))
489 fsl_ssi_rxtx_config(ssi_private, enable);
490
491 goto config_done;
492 }
493
494 /*
495 * Configure single direction units while the SSI unit is running
496 * (online configuration)
497 */
498 if (enable) {
499 fsl_ssi_fifo_clear(ssi_private, vals->scr & CCSR_SSI_SCR_RE);
500
501 regmap_update_bits(regs, CCSR_SSI_SRCR, vals->srcr, vals->srcr);
502 regmap_update_bits(regs, CCSR_SSI_STCR, vals->stcr, vals->stcr);
503 regmap_update_bits(regs, CCSR_SSI_SIER, vals->sier, vals->sier);
504 } else {
505 u32 sier;
506 u32 srcr;
507 u32 stcr;
508
509 /*
510 * Disabling the necessary flags for one of rx/tx while the
511 * other stream is active is a little bit more difficult. We
512 * have to disable only those flags that differ between both
513 * streams (rx XOR tx) and that are set in the stream that is
514 * disabled now. Otherwise we could alter flags of the other
515 * stream
516 */
517
518 /* These assignments are simply vals without bits set in avals*/
519 sier = fsl_ssi_disable_val(vals->sier, avals->sier,
520 keep_active);
521 srcr = fsl_ssi_disable_val(vals->srcr, avals->srcr,
522 keep_active);
523 stcr = fsl_ssi_disable_val(vals->stcr, avals->stcr,
524 keep_active);
525
526 regmap_update_bits(regs, CCSR_SSI_SRCR, srcr, 0);
527 regmap_update_bits(regs, CCSR_SSI_STCR, stcr, 0);
528 regmap_update_bits(regs, CCSR_SSI_SIER, sier, 0);
529 }
530
531 config_done:
532 /* Enabling of subunits is done after configuration */
533 if (enable) {
534 if (ssi_private->use_dma && (vals->scr & CCSR_SSI_SCR_TE)) {
535 /*
536 * Be sure the Tx FIFO is filled when TE is set.
537 * Otherwise, there are some chances to start the
538 * playback with some void samples inserted first,
539 * generating a channel slip.
540 *
541 * First, SSIEN must be set, to let the FIFO be filled.
542 *
543 * Notes:
544 * - Limit this fix to the DMA case until FIQ cases can
545 * be tested.
546 * - Limit the length of the busy loop to not lock the
547 * system too long, even if 1-2 loops are sufficient
548 * in general.
549 */
550 int i;
551 int max_loop = 100;
552 regmap_update_bits(regs, CCSR_SSI_SCR,
553 CCSR_SSI_SCR_SSIEN, CCSR_SSI_SCR_SSIEN);
554 for (i = 0; i < max_loop; i++) {
555 u32 sfcsr;
556 regmap_read(regs, CCSR_SSI_SFCSR, &sfcsr);
557 if (CCSR_SSI_SFCSR_TFCNT0(sfcsr))
558 break;
559 }
560 if (i == max_loop) {
561 dev_err(ssi_private->dev,
562 "Timeout waiting TX FIFO filling\n");
563 }
564 }
565 regmap_update_bits(regs, CCSR_SSI_SCR, vals->scr, vals->scr);
566 }
567 }
568
569
570 static void fsl_ssi_rx_config(struct fsl_ssi_private *ssi_private, bool enable)
571 {
572 fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.rx);
573 }
574
575 static void fsl_ssi_tx_config(struct fsl_ssi_private *ssi_private, bool enable)
576 {
577 fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.tx);
578 }
579
580 /*
581 * Setup rx/tx register values used to enable/disable the streams. These will
582 * be used later in fsl_ssi_config to setup the streams without the need to
583 * check for all different SSI modes.
584 */
585 static void fsl_ssi_setup_reg_vals(struct fsl_ssi_private *ssi_private)
586 {
587 struct fsl_ssi_rxtx_reg_val *reg = &ssi_private->rxtx_reg_val;
588
589 reg->rx.sier = CCSR_SSI_SIER_RFF0_EN;
590 reg->rx.srcr = CCSR_SSI_SRCR_RFEN0;
591 reg->rx.scr = 0;
592 reg->tx.sier = CCSR_SSI_SIER_TFE0_EN;
593 reg->tx.stcr = CCSR_SSI_STCR_TFEN0;
594 reg->tx.scr = 0;
595
596 if (!fsl_ssi_is_ac97(ssi_private)) {
597 reg->rx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE;
598 reg->rx.sier |= CCSR_SSI_SIER_RFF0_EN;
599 reg->tx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE;
600 reg->tx.sier |= CCSR_SSI_SIER_TFE0_EN;
601 }
602
603 if (ssi_private->use_dma) {
604 reg->rx.sier |= CCSR_SSI_SIER_RDMAE;
605 reg->tx.sier |= CCSR_SSI_SIER_TDMAE;
606 } else {
607 reg->rx.sier |= CCSR_SSI_SIER_RIE;
608 reg->tx.sier |= CCSR_SSI_SIER_TIE;
609 }
610
611 reg->rx.sier |= FSLSSI_SIER_DBG_RX_FLAGS;
612 reg->tx.sier |= FSLSSI_SIER_DBG_TX_FLAGS;
613 }
614
615 static void fsl_ssi_setup_ac97(struct fsl_ssi_private *ssi_private)
616 {
617 struct regmap *regs = ssi_private->regs;
618
619 /*
620 * Setup the clock control register
621 */
622 regmap_write(regs, CCSR_SSI_STCCR,
623 CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
624 regmap_write(regs, CCSR_SSI_SRCCR,
625 CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
626
627 /*
628 * Enable AC97 mode and startup the SSI
629 */
630 regmap_write(regs, CCSR_SSI_SACNT,
631 CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV);
632
633 /* no SACC{ST,EN,DIS} regs on imx21-class SSI */
634 if (!ssi_private->soc->imx21regs) {
635 regmap_write(regs, CCSR_SSI_SACCDIS, 0xff);
636 regmap_write(regs, CCSR_SSI_SACCEN, 0x300);
637 }
638
639 /*
640 * Enable SSI, Transmit and Receive. AC97 has to communicate with the
641 * codec before a stream is started.
642 */
643 regmap_update_bits(regs, CCSR_SSI_SCR,
644 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE,
645 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);
646
647 regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_WAIT(3));
648 }
649
650 /**
651 * fsl_ssi_startup: create a new substream
652 *
653 * This is the first function called when a stream is opened.
654 *
655 * If this is the first stream open, then grab the IRQ and program most of
656 * the SSI registers.
657 */
658 static int fsl_ssi_startup(struct snd_pcm_substream *substream,
659 struct snd_soc_dai *dai)
660 {
661 struct snd_soc_pcm_runtime *rtd = substream->private_data;
662 struct fsl_ssi_private *ssi_private =
663 snd_soc_dai_get_drvdata(rtd->cpu_dai);
664 int ret;
665
666 ret = clk_prepare_enable(ssi_private->clk);
667 if (ret)
668 return ret;
669
670 /* When using dual fifo mode, it is safer to ensure an even period
671 * size. If appearing to an odd number while DMA always starts its
672 * task from fifo0, fifo1 would be neglected at the end of each
673 * period. But SSI would still access fifo1 with an invalid data.
674 */
675 if (ssi_private->use_dual_fifo)
676 snd_pcm_hw_constraint_step(substream->runtime, 0,
677 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
678
679 return 0;
680 }
681
682 /**
683 * fsl_ssi_shutdown: shutdown the SSI
684 *
685 */
686 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
687 struct snd_soc_dai *dai)
688 {
689 struct snd_soc_pcm_runtime *rtd = substream->private_data;
690 struct fsl_ssi_private *ssi_private =
691 snd_soc_dai_get_drvdata(rtd->cpu_dai);
692
693 clk_disable_unprepare(ssi_private->clk);
694
695 }
696
697 /**
698 * fsl_ssi_set_bclk - configure Digital Audio Interface bit clock
699 *
700 * Note: This function can be only called when using SSI as DAI master
701 *
702 * Quick instruction for parameters:
703 * freq: Output BCLK frequency = samplerate * 32 (fixed) * channels
704 * dir: SND_SOC_CLOCK_OUT -> TxBCLK, SND_SOC_CLOCK_IN -> RxBCLK.
705 */
706 static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
707 struct snd_soc_dai *cpu_dai,
708 struct snd_pcm_hw_params *hw_params)
709 {
710 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
711 struct regmap *regs = ssi_private->regs;
712 int synchronous = ssi_private->cpu_dai_drv.symmetric_rates, ret;
713 u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
714 unsigned long clkrate, baudrate, tmprate;
715 u64 sub, savesub = 100000;
716 unsigned int freq;
717 bool baudclk_is_used;
718
719 /* Prefer the explicitly set bitclock frequency */
720 if (ssi_private->bitclk_freq)
721 freq = ssi_private->bitclk_freq;
722 else
723 freq = params_channels(hw_params) * 32 * params_rate(hw_params);
724
725 /* Don't apply it to any non-baudclk circumstance */
726 if (IS_ERR(ssi_private->baudclk))
727 return -EINVAL;
728
729 /*
730 * Hardware limitation: The bclk rate must be
731 * never greater than 1/5 IPG clock rate
732 */
733 if (freq * 5 > clk_get_rate(ssi_private->clk)) {
734 dev_err(cpu_dai->dev, "bitclk > ipgclk/5\n");
735 return -EINVAL;
736 }
737
738 baudclk_is_used = ssi_private->baudclk_streams & ~(BIT(substream->stream));
739
740 /* It should be already enough to divide clock by setting pm alone */
741 psr = 0;
742 div2 = 0;
743
744 factor = (div2 + 1) * (7 * psr + 1) * 2;
745
746 for (i = 0; i < 255; i++) {
747 tmprate = freq * factor * (i + 1);
748
749 if (baudclk_is_used)
750 clkrate = clk_get_rate(ssi_private->baudclk);
751 else
752 clkrate = clk_round_rate(ssi_private->baudclk, tmprate);
753
754 clkrate /= factor;
755 afreq = clkrate / (i + 1);
756
757 if (freq == afreq)
758 sub = 0;
759 else if (freq / afreq == 1)
760 sub = freq - afreq;
761 else if (afreq / freq == 1)
762 sub = afreq - freq;
763 else
764 continue;
765
766 /* Calculate the fraction */
767 sub *= 100000;
768 do_div(sub, freq);
769
770 if (sub < savesub && !(i == 0 && psr == 0 && div2 == 0)) {
771 baudrate = tmprate;
772 savesub = sub;
773 pm = i;
774 }
775
776 /* We are lucky */
777 if (savesub == 0)
778 break;
779 }
780
781 /* No proper pm found if it is still remaining the initial value */
782 if (pm == 999) {
783 dev_err(cpu_dai->dev, "failed to handle the required sysclk\n");
784 return -EINVAL;
785 }
786
787 stccr = CCSR_SSI_SxCCR_PM(pm + 1) | (div2 ? CCSR_SSI_SxCCR_DIV2 : 0) |
788 (psr ? CCSR_SSI_SxCCR_PSR : 0);
789 mask = CCSR_SSI_SxCCR_PM_MASK | CCSR_SSI_SxCCR_DIV2 |
790 CCSR_SSI_SxCCR_PSR;
791
792 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK || synchronous)
793 regmap_update_bits(regs, CCSR_SSI_STCCR, mask, stccr);
794 else
795 regmap_update_bits(regs, CCSR_SSI_SRCCR, mask, stccr);
796
797 if (!baudclk_is_used) {
798 ret = clk_set_rate(ssi_private->baudclk, baudrate);
799 if (ret) {
800 dev_err(cpu_dai->dev, "failed to set baudclk rate\n");
801 return -EINVAL;
802 }
803 }
804
805 return 0;
806 }
807
808 static int fsl_ssi_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
809 int clk_id, unsigned int freq, int dir)
810 {
811 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
812
813 ssi_private->bitclk_freq = freq;
814
815 return 0;
816 }
817
818 /**
819 * fsl_ssi_hw_params - program the sample size
820 *
821 * Most of the SSI registers have been programmed in the startup function,
822 * but the word length must be programmed here. Unfortunately, programming
823 * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
824 * cause a problem with supporting simultaneous playback and capture. If
825 * the SSI is already playing a stream, then that stream may be temporarily
826 * stopped when you start capture.
827 *
828 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
829 * clock master.
830 */
831 static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
832 struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
833 {
834 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
835 struct regmap *regs = ssi_private->regs;
836 unsigned int channels = params_channels(hw_params);
837 unsigned int sample_size = params_width(hw_params);
838 u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
839 int ret;
840 u32 scr_val;
841 int enabled;
842
843 regmap_read(regs, CCSR_SSI_SCR, &scr_val);
844 enabled = scr_val & CCSR_SSI_SCR_SSIEN;
845
846 /*
847 * If we're in synchronous mode, and the SSI is already enabled,
848 * then STCCR is already set properly.
849 */
850 if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
851 return 0;
852
853 if (fsl_ssi_is_i2s_master(ssi_private)) {
854 ret = fsl_ssi_set_bclk(substream, cpu_dai, hw_params);
855 if (ret)
856 return ret;
857
858 /* Do not enable the clock if it is already enabled */
859 if (!(ssi_private->baudclk_streams & BIT(substream->stream))) {
860 ret = clk_prepare_enable(ssi_private->baudclk);
861 if (ret)
862 return ret;
863
864 ssi_private->baudclk_streams |= BIT(substream->stream);
865 }
866 }
867
868 if (!fsl_ssi_is_ac97(ssi_private)) {
869 u8 i2smode;
870 /*
871 * Switch to normal net mode in order to have a frame sync
872 * signal every 32 bits instead of 16 bits
873 */
874 if (fsl_ssi_is_i2s_cbm_cfs(ssi_private) && sample_size == 16)
875 i2smode = CCSR_SSI_SCR_I2S_MODE_NORMAL |
876 CCSR_SSI_SCR_NET;
877 else
878 i2smode = ssi_private->i2s_mode;
879
880 regmap_update_bits(regs, CCSR_SSI_SCR,
881 CCSR_SSI_SCR_NET | CCSR_SSI_SCR_I2S_MODE_MASK,
882 channels == 1 ? 0 : i2smode);
883 }
884
885 /*
886 * FIXME: The documentation says that SxCCR[WL] should not be
887 * modified while the SSI is enabled. The only time this can
888 * happen is if we're trying to do simultaneous playback and
889 * capture in asynchronous mode. Unfortunately, I have been enable
890 * to get that to work at all on the P1022DS. Therefore, we don't
891 * bother to disable/enable the SSI when setting SxCCR[WL], because
892 * the SSI will stop anyway. Maybe one day, this will get fixed.
893 */
894
895 /* In synchronous mode, the SSI uses STCCR for capture */
896 if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
897 ssi_private->cpu_dai_drv.symmetric_rates)
898 regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_WL_MASK,
899 wl);
900 else
901 regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_WL_MASK,
902 wl);
903
904 return 0;
905 }
906
907 static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
908 struct snd_soc_dai *cpu_dai)
909 {
910 struct snd_soc_pcm_runtime *rtd = substream->private_data;
911 struct fsl_ssi_private *ssi_private =
912 snd_soc_dai_get_drvdata(rtd->cpu_dai);
913
914 if (fsl_ssi_is_i2s_master(ssi_private) &&
915 ssi_private->baudclk_streams & BIT(substream->stream)) {
916 clk_disable_unprepare(ssi_private->baudclk);
917 ssi_private->baudclk_streams &= ~BIT(substream->stream);
918 }
919
920 return 0;
921 }
922
923 static int _fsl_ssi_set_dai_fmt(struct device *dev,
924 struct fsl_ssi_private *ssi_private,
925 unsigned int fmt)
926 {
927 struct regmap *regs = ssi_private->regs;
928 u32 strcr = 0, stcr, srcr, scr, mask;
929 u8 wm;
930
931 ssi_private->dai_fmt = fmt;
932
933 if (fsl_ssi_is_i2s_master(ssi_private) && IS_ERR(ssi_private->baudclk)) {
934 dev_err(dev, "baudclk is missing which is necessary for master mode\n");
935 return -EINVAL;
936 }
937
938 fsl_ssi_setup_reg_vals(ssi_private);
939
940 regmap_read(regs, CCSR_SSI_SCR, &scr);
941 scr &= ~(CCSR_SSI_SCR_SYN | CCSR_SSI_SCR_I2S_MODE_MASK);
942 scr |= CCSR_SSI_SCR_SYNC_TX_FS;
943
944 mask = CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR |
945 CCSR_SSI_STCR_TSCKP | CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TFSL |
946 CCSR_SSI_STCR_TEFS;
947 regmap_read(regs, CCSR_SSI_STCR, &stcr);
948 regmap_read(regs, CCSR_SSI_SRCR, &srcr);
949 stcr &= ~mask;
950 srcr &= ~mask;
951
952 ssi_private->i2s_mode = CCSR_SSI_SCR_NET;
953 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
954 case SND_SOC_DAIFMT_I2S:
955 regmap_update_bits(regs, CCSR_SSI_STCCR,
956 CCSR_SSI_SxCCR_DC_MASK,
957 CCSR_SSI_SxCCR_DC(2));
958 regmap_update_bits(regs, CCSR_SSI_SRCCR,
959 CCSR_SSI_SxCCR_DC_MASK,
960 CCSR_SSI_SxCCR_DC(2));
961 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
962 case SND_SOC_DAIFMT_CBM_CFS:
963 case SND_SOC_DAIFMT_CBS_CFS:
964 ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_MASTER;
965 break;
966 case SND_SOC_DAIFMT_CBM_CFM:
967 ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_SLAVE;
968 break;
969 default:
970 return -EINVAL;
971 }
972
973 /* Data on rising edge of bclk, frame low, 1clk before data */
974 strcr |= CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TSCKP |
975 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
976 break;
977 case SND_SOC_DAIFMT_LEFT_J:
978 /* Data on rising edge of bclk, frame high */
979 strcr |= CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TSCKP;
980 break;
981 case SND_SOC_DAIFMT_DSP_A:
982 /* Data on rising edge of bclk, frame high, 1clk before data */
983 strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
984 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
985 break;
986 case SND_SOC_DAIFMT_DSP_B:
987 /* Data on rising edge of bclk, frame high */
988 strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
989 CCSR_SSI_STCR_TXBIT0;
990 break;
991 case SND_SOC_DAIFMT_AC97:
992 ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_NORMAL;
993 break;
994 default:
995 return -EINVAL;
996 }
997 scr |= ssi_private->i2s_mode;
998
999 /* DAI clock inversion */
1000 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1001 case SND_SOC_DAIFMT_NB_NF:
1002 /* Nothing to do for both normal cases */
1003 break;
1004 case SND_SOC_DAIFMT_IB_NF:
1005 /* Invert bit clock */
1006 strcr ^= CCSR_SSI_STCR_TSCKP;
1007 break;
1008 case SND_SOC_DAIFMT_NB_IF:
1009 /* Invert frame clock */
1010 strcr ^= CCSR_SSI_STCR_TFSI;
1011 break;
1012 case SND_SOC_DAIFMT_IB_IF:
1013 /* Invert both clocks */
1014 strcr ^= CCSR_SSI_STCR_TSCKP;
1015 strcr ^= CCSR_SSI_STCR_TFSI;
1016 break;
1017 default:
1018 return -EINVAL;
1019 }
1020
1021 /* DAI clock master masks */
1022 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1023 case SND_SOC_DAIFMT_CBS_CFS:
1024 strcr |= CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR;
1025 scr |= CCSR_SSI_SCR_SYS_CLK_EN;
1026 break;
1027 case SND_SOC_DAIFMT_CBM_CFM:
1028 scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
1029 break;
1030 case SND_SOC_DAIFMT_CBM_CFS:
1031 strcr &= ~CCSR_SSI_STCR_TXDIR;
1032 strcr |= CCSR_SSI_STCR_TFDIR;
1033 scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
1034 break;
1035 default:
1036 if (!fsl_ssi_is_ac97(ssi_private))
1037 return -EINVAL;
1038 }
1039
1040 stcr |= strcr;
1041 srcr |= strcr;
1042
1043 if (ssi_private->cpu_dai_drv.symmetric_rates
1044 || fsl_ssi_is_ac97(ssi_private)) {
1045 /* Need to clear RXDIR when using SYNC or AC97 mode */
1046 srcr &= ~CCSR_SSI_SRCR_RXDIR;
1047 scr |= CCSR_SSI_SCR_SYN;
1048 }
1049
1050 regmap_write(regs, CCSR_SSI_STCR, stcr);
1051 regmap_write(regs, CCSR_SSI_SRCR, srcr);
1052 regmap_write(regs, CCSR_SSI_SCR, scr);
1053
1054 /*
1055 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
1056 * use FIFO 1. We program the transmit water to signal a DMA transfer
1057 * if there are only two (or fewer) elements left in the FIFO. Two
1058 * elements equals one frame (left channel, right channel). This value,
1059 * however, depends on the depth of the transmit buffer.
1060 *
1061 * We set the watermark on the same level as the DMA burstsize. For
1062 * fiq it is probably better to use the biggest possible watermark
1063 * size.
1064 */
1065 if (ssi_private->use_dma)
1066 wm = ssi_private->fifo_depth - 2;
1067 else
1068 wm = ssi_private->fifo_depth;
1069
1070 regmap_write(regs, CCSR_SSI_SFCSR,
1071 CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
1072 CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm));
1073
1074 if (ssi_private->use_dual_fifo) {
1075 regmap_update_bits(regs, CCSR_SSI_SRCR, CCSR_SSI_SRCR_RFEN1,
1076 CCSR_SSI_SRCR_RFEN1);
1077 regmap_update_bits(regs, CCSR_SSI_STCR, CCSR_SSI_STCR_TFEN1,
1078 CCSR_SSI_STCR_TFEN1);
1079 regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_TCH_EN,
1080 CCSR_SSI_SCR_TCH_EN);
1081 }
1082
1083 if ((fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_AC97)
1084 fsl_ssi_setup_ac97(ssi_private);
1085
1086 return 0;
1087
1088 }
1089
1090 /**
1091 * fsl_ssi_set_dai_fmt - configure Digital Audio Interface Format.
1092 */
1093 static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
1094 {
1095 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
1096
1097 return _fsl_ssi_set_dai_fmt(cpu_dai->dev, ssi_private, fmt);
1098 }
1099
1100 /**
1101 * fsl_ssi_set_dai_tdm_slot - set TDM slot number
1102 *
1103 * Note: This function can be only called when using SSI as DAI master
1104 */
1105 static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
1106 u32 rx_mask, int slots, int slot_width)
1107 {
1108 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
1109 struct regmap *regs = ssi_private->regs;
1110 u32 val;
1111
1112 /* The slot number should be >= 2 if using Network mode or I2S mode */
1113 regmap_read(regs, CCSR_SSI_SCR, &val);
1114 val &= CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_NET;
1115 if (val && slots < 2) {
1116 dev_err(cpu_dai->dev, "slot number should be >= 2 in I2S or NET\n");
1117 return -EINVAL;
1118 }
1119
1120 regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_DC_MASK,
1121 CCSR_SSI_SxCCR_DC(slots));
1122 regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_DC_MASK,
1123 CCSR_SSI_SxCCR_DC(slots));
1124
1125 /* The register SxMSKs needs SSI to provide essential clock due to
1126 * hardware design. So we here temporarily enable SSI to set them.
1127 */
1128 regmap_read(regs, CCSR_SSI_SCR, &val);
1129 val &= CCSR_SSI_SCR_SSIEN;
1130 regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN,
1131 CCSR_SSI_SCR_SSIEN);
1132
1133 regmap_write(regs, CCSR_SSI_STMSK, ~tx_mask);
1134 regmap_write(regs, CCSR_SSI_SRMSK, ~rx_mask);
1135
1136 regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN, val);
1137
1138 return 0;
1139 }
1140
1141 /**
1142 * fsl_ssi_trigger: start and stop the DMA transfer.
1143 *
1144 * This function is called by ALSA to start, stop, pause, and resume the DMA
1145 * transfer of data.
1146 *
1147 * The DMA channel is in external master start and pause mode, which
1148 * means the SSI completely controls the flow of data.
1149 */
1150 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
1151 struct snd_soc_dai *dai)
1152 {
1153 struct snd_soc_pcm_runtime *rtd = substream->private_data;
1154 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
1155 struct regmap *regs = ssi_private->regs;
1156
1157 switch (cmd) {
1158 case SNDRV_PCM_TRIGGER_START:
1159 case SNDRV_PCM_TRIGGER_RESUME:
1160 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1161 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1162 fsl_ssi_tx_config(ssi_private, true);
1163 else
1164 fsl_ssi_rx_config(ssi_private, true);
1165 break;
1166
1167 case SNDRV_PCM_TRIGGER_STOP:
1168 case SNDRV_PCM_TRIGGER_SUSPEND:
1169 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1170 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1171 fsl_ssi_tx_config(ssi_private, false);
1172 else
1173 fsl_ssi_rx_config(ssi_private, false);
1174 break;
1175
1176 default:
1177 return -EINVAL;
1178 }
1179
1180 if (fsl_ssi_is_ac97(ssi_private)) {
1181 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1182 regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_TX_CLR);
1183 else
1184 regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_RX_CLR);
1185 }
1186
1187 return 0;
1188 }
1189
1190 static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
1191 {
1192 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);
1193
1194 if (ssi_private->soc->imx && ssi_private->use_dma) {
1195 dai->playback_dma_data = &ssi_private->dma_params_tx;
1196 dai->capture_dma_data = &ssi_private->dma_params_rx;
1197 }
1198
1199 return 0;
1200 }
1201
1202 static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
1203 .startup = fsl_ssi_startup,
1204 .shutdown = fsl_ssi_shutdown,
1205 .hw_params = fsl_ssi_hw_params,
1206 .hw_free = fsl_ssi_hw_free,
1207 .set_fmt = fsl_ssi_set_dai_fmt,
1208 .set_sysclk = fsl_ssi_set_dai_sysclk,
1209 .set_tdm_slot = fsl_ssi_set_dai_tdm_slot,
1210 .trigger = fsl_ssi_trigger,
1211 };
1212
1213 /* Template for the CPU dai driver structure */
1214 static struct snd_soc_dai_driver fsl_ssi_dai_template = {
1215 .probe = fsl_ssi_dai_probe,
1216 .playback = {
1217 .stream_name = "CPU-Playback",
1218 .channels_min = 1,
1219 .channels_max = 32,
1220 .rates = FSLSSI_I2S_RATES,
1221 .formats = FSLSSI_I2S_FORMATS,
1222 },
1223 .capture = {
1224 .stream_name = "CPU-Capture",
1225 .channels_min = 1,
1226 .channels_max = 32,
1227 .rates = FSLSSI_I2S_RATES,
1228 .formats = FSLSSI_I2S_FORMATS,
1229 },
1230 .ops = &fsl_ssi_dai_ops,
1231 };
1232
1233 static const struct snd_soc_component_driver fsl_ssi_component = {
1234 .name = "fsl-ssi",
1235 };
1236
1237 static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
1238 .bus_control = true,
1239 .probe = fsl_ssi_dai_probe,
1240 .playback = {
1241 .stream_name = "AC97 Playback",
1242 .channels_min = 2,
1243 .channels_max = 2,
1244 .rates = SNDRV_PCM_RATE_8000_48000,
1245 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1246 },
1247 .capture = {
1248 .stream_name = "AC97 Capture",
1249 .channels_min = 2,
1250 .channels_max = 2,
1251 .rates = SNDRV_PCM_RATE_48000,
1252 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1253 },
1254 .ops = &fsl_ssi_dai_ops,
1255 };
1256
1257
1258 static struct fsl_ssi_private *fsl_ac97_data;
1259
1260 static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
1261 unsigned short val)
1262 {
1263 struct regmap *regs = fsl_ac97_data->regs;
1264 unsigned int lreg;
1265 unsigned int lval;
1266 int ret;
1267
1268 if (reg > 0x7f)
1269 return;
1270
1271 ret = clk_prepare_enable(fsl_ac97_data->clk);
1272 if (ret) {
1273 pr_err("ac97 write clk_prepare_enable failed: %d\n",
1274 ret);
1275 return;
1276 }
1277
1278 lreg = reg << 12;
1279 regmap_write(regs, CCSR_SSI_SACADD, lreg);
1280
1281 lval = val << 4;
1282 regmap_write(regs, CCSR_SSI_SACDAT, lval);
1283
1284 regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
1285 CCSR_SSI_SACNT_WR);
1286 udelay(100);
1287
1288 clk_disable_unprepare(fsl_ac97_data->clk);
1289 }
1290
1291 static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
1292 unsigned short reg)
1293 {
1294 struct regmap *regs = fsl_ac97_data->regs;
1295
1296 unsigned short val = -1;
1297 u32 reg_val;
1298 unsigned int lreg;
1299 int ret;
1300
1301 ret = clk_prepare_enable(fsl_ac97_data->clk);
1302 if (ret) {
1303 pr_err("ac97 read clk_prepare_enable failed: %d\n",
1304 ret);
1305 return -1;
1306 }
1307
1308 lreg = (reg & 0x7f) << 12;
1309 regmap_write(regs, CCSR_SSI_SACADD, lreg);
1310 regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
1311 CCSR_SSI_SACNT_RD);
1312
1313 udelay(100);
1314
1315 regmap_read(regs, CCSR_SSI_SACDAT, &reg_val);
1316 val = (reg_val >> 4) & 0xffff;
1317
1318 clk_disable_unprepare(fsl_ac97_data->clk);
1319
1320 return val;
1321 }
1322
1323 static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
1324 .read = fsl_ssi_ac97_read,
1325 .write = fsl_ssi_ac97_write,
1326 };
1327
1328 /**
1329 * Make every character in a string lower-case
1330 */
1331 static void make_lowercase(char *s)
1332 {
1333 char *p = s;
1334 char c;
1335
1336 while ((c = *p)) {
1337 if ((c >= 'A') && (c <= 'Z'))
1338 *p = c + ('a' - 'A');
1339 p++;
1340 }
1341 }
1342
1343 static int fsl_ssi_imx_probe(struct platform_device *pdev,
1344 struct fsl_ssi_private *ssi_private, void __iomem *iomem)
1345 {
1346 struct device_node *np = pdev->dev.of_node;
1347 u32 dmas[4];
1348 int ret;
1349
1350 if (ssi_private->has_ipg_clk_name)
1351 ssi_private->clk = devm_clk_get(&pdev->dev, "ipg");
1352 else
1353 ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
1354 if (IS_ERR(ssi_private->clk)) {
1355 ret = PTR_ERR(ssi_private->clk);
1356 dev_err(&pdev->dev, "could not get clock: %d\n", ret);
1357 return ret;
1358 }
1359
1360 if (!ssi_private->has_ipg_clk_name) {
1361 ret = clk_prepare_enable(ssi_private->clk);
1362 if (ret) {
1363 dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
1364 return ret;
1365 }
1366 }
1367
1368 /* For those SLAVE implementations, we ignore non-baudclk cases
1369 * and, instead, abandon MASTER mode that needs baud clock.
1370 */
1371 ssi_private->baudclk = devm_clk_get(&pdev->dev, "baud");
1372 if (IS_ERR(ssi_private->baudclk))
1373 dev_dbg(&pdev->dev, "could not get baud clock: %ld\n",
1374 PTR_ERR(ssi_private->baudclk));
1375
1376 /*
1377 * We have burstsize be "fifo_depth - 2" to match the SSI
1378 * watermark setting in fsl_ssi_startup().
1379 */
1380 ssi_private->dma_params_tx.maxburst = ssi_private->fifo_depth - 2;
1381 ssi_private->dma_params_rx.maxburst = ssi_private->fifo_depth - 2;
1382 ssi_private->dma_params_tx.addr = ssi_private->ssi_phys + CCSR_SSI_STX0;
1383 ssi_private->dma_params_rx.addr = ssi_private->ssi_phys + CCSR_SSI_SRX0;
1384
1385 ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1386 if (ssi_private->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL) {
1387 ssi_private->use_dual_fifo = true;
1388 /* When using dual fifo mode, we need to keep watermark
1389 * as even numbers due to dma script limitation.
1390 */
1391 ssi_private->dma_params_tx.maxburst &= ~0x1;
1392 ssi_private->dma_params_rx.maxburst &= ~0x1;
1393 }
1394
1395 if (!ssi_private->use_dma) {
1396
1397 /*
1398 * Some boards use an incompatible codec. To get it
1399 * working, we are using imx-fiq-pcm-audio, that
1400 * can handle those codecs. DMA is not possible in this
1401 * situation.
1402 */
1403
1404 ssi_private->fiq_params.irq = ssi_private->irq;
1405 ssi_private->fiq_params.base = iomem;
1406 ssi_private->fiq_params.dma_params_rx =
1407 &ssi_private->dma_params_rx;
1408 ssi_private->fiq_params.dma_params_tx =
1409 &ssi_private->dma_params_tx;
1410
1411 ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
1412 if (ret)
1413 goto error_pcm;
1414 } else {
1415 ret = imx_pcm_dma_init(pdev, IMX_SSI_DMABUF_SIZE);
1416 if (ret)
1417 goto error_pcm;
1418 }
1419
1420 return 0;
1421
1422 error_pcm:
1423
1424 if (!ssi_private->has_ipg_clk_name)
1425 clk_disable_unprepare(ssi_private->clk);
1426 return ret;
1427 }
1428
1429 static void fsl_ssi_imx_clean(struct platform_device *pdev,
1430 struct fsl_ssi_private *ssi_private)
1431 {
1432 if (!ssi_private->use_dma)
1433 imx_pcm_fiq_exit(pdev);
1434 if (!ssi_private->has_ipg_clk_name)
1435 clk_disable_unprepare(ssi_private->clk);
1436 }
1437
1438 static int fsl_ssi_probe(struct platform_device *pdev)
1439 {
1440 struct fsl_ssi_private *ssi_private;
1441 int ret = 0;
1442 struct device_node *np = pdev->dev.of_node;
1443 const struct of_device_id *of_id;
1444 const char *p, *sprop;
1445 const uint32_t *iprop;
1446 struct resource *res;
1447 void __iomem *iomem;
1448 char name[64];
1449 struct regmap_config regconfig = fsl_ssi_regconfig;
1450
1451 of_id = of_match_device(fsl_ssi_ids, &pdev->dev);
1452 if (!of_id || !of_id->data)
1453 return -EINVAL;
1454
1455 ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private),
1456 GFP_KERNEL);
1457 if (!ssi_private) {
1458 dev_err(&pdev->dev, "could not allocate DAI object\n");
1459 return -ENOMEM;
1460 }
1461
1462 ssi_private->soc = of_id->data;
1463 ssi_private->dev = &pdev->dev;
1464
1465 sprop = of_get_property(np, "fsl,mode", NULL);
1466 if (sprop) {
1467 if (!strcmp(sprop, "ac97-slave"))
1468 ssi_private->dai_fmt = SND_SOC_DAIFMT_AC97;
1469 }
1470
1471 ssi_private->use_dma = !of_property_read_bool(np,
1472 "fsl,fiq-stream-filter");
1473
1474 if (fsl_ssi_is_ac97(ssi_private)) {
1475 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
1476 sizeof(fsl_ssi_ac97_dai));
1477
1478 fsl_ac97_data = ssi_private;
1479
1480 ret = snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
1481 if (ret) {
1482 dev_err(&pdev->dev, "could not set AC'97 ops\n");
1483 return ret;
1484 }
1485 } else {
1486 /* Initialize this copy of the CPU DAI driver structure */
1487 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
1488 sizeof(fsl_ssi_dai_template));
1489 }
1490 ssi_private->cpu_dai_drv.name = dev_name(&pdev->dev);
1491
1492 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1493 iomem = devm_ioremap_resource(&pdev->dev, res);
1494 if (IS_ERR(iomem))
1495 return PTR_ERR(iomem);
1496 ssi_private->ssi_phys = res->start;
1497
1498 if (ssi_private->soc->imx21regs) {
1499 /*
1500 * According to datasheet imx21-class SSI
1501 * don't have SACC{ST,EN,DIS} regs.
1502 */
1503 regconfig.max_register = CCSR_SSI_SRMSK;
1504 regconfig.num_reg_defaults_raw =
1505 CCSR_SSI_SRMSK / sizeof(uint32_t) + 1;
1506 }
1507
1508 ret = of_property_match_string(np, "clock-names", "ipg");
1509 if (ret < 0) {
1510 ssi_private->has_ipg_clk_name = false;
1511 ssi_private->regs = devm_regmap_init_mmio(&pdev->dev, iomem,
1512 &regconfig);
1513 } else {
1514 ssi_private->has_ipg_clk_name = true;
1515 ssi_private->regs = devm_regmap_init_mmio_clk(&pdev->dev,
1516 "ipg", iomem, &regconfig);
1517 }
1518 if (IS_ERR(ssi_private->regs)) {
1519 dev_err(&pdev->dev, "Failed to init register map\n");
1520 return PTR_ERR(ssi_private->regs);
1521 }
1522
1523 ssi_private->irq = platform_get_irq(pdev, 0);
1524 if (ssi_private->irq < 0) {
1525 dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
1526 return ssi_private->irq;
1527 }
1528
1529 /* Are the RX and the TX clocks locked? */
1530 if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
1531 if (!fsl_ssi_is_ac97(ssi_private))
1532 ssi_private->cpu_dai_drv.symmetric_rates = 1;
1533
1534 ssi_private->cpu_dai_drv.symmetric_channels = 1;
1535 ssi_private->cpu_dai_drv.symmetric_samplebits = 1;
1536 }
1537
1538 /* Determine the FIFO depth. */
1539 iprop = of_get_property(np, "fsl,fifo-depth", NULL);
1540 if (iprop)
1541 ssi_private->fifo_depth = be32_to_cpup(iprop);
1542 else
1543 /* Older 8610 DTs didn't have the fifo-depth property */
1544 ssi_private->fifo_depth = 8;
1545
1546 dev_set_drvdata(&pdev->dev, ssi_private);
1547
1548 if (ssi_private->soc->imx) {
1549 ret = fsl_ssi_imx_probe(pdev, ssi_private, iomem);
1550 if (ret)
1551 return ret;
1552 }
1553
1554 ret = devm_snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
1555 &ssi_private->cpu_dai_drv, 1);
1556 if (ret) {
1557 dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1558 goto error_asoc_register;
1559 }
1560
1561 if (ssi_private->use_dma) {
1562 ret = devm_request_irq(&pdev->dev, ssi_private->irq,
1563 fsl_ssi_isr, 0, dev_name(&pdev->dev),
1564 ssi_private);
1565 if (ret < 0) {
1566 dev_err(&pdev->dev, "could not claim irq %u\n",
1567 ssi_private->irq);
1568 goto error_asoc_register;
1569 }
1570 }
1571
1572 ret = fsl_ssi_debugfs_create(&ssi_private->dbg_stats, &pdev->dev);
1573 if (ret)
1574 goto error_asoc_register;
1575
1576 /*
1577 * If codec-handle property is missing from SSI node, we assume
1578 * that the machine driver uses new binding which does not require
1579 * SSI driver to trigger machine driver's probe.
1580 */
1581 if (!of_get_property(np, "codec-handle", NULL))
1582 goto done;
1583
1584 /* Trigger the machine driver's probe function. The platform driver
1585 * name of the machine driver is taken from /compatible property of the
1586 * device tree. We also pass the address of the CPU DAI driver
1587 * structure.
1588 */
1589 sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
1590 /* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1591 p = strrchr(sprop, ',');
1592 if (p)
1593 sprop = p + 1;
1594 snprintf(name, sizeof(name), "snd-soc-%s", sprop);
1595 make_lowercase(name);
1596
1597 ssi_private->pdev =
1598 platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
1599 if (IS_ERR(ssi_private->pdev)) {
1600 ret = PTR_ERR(ssi_private->pdev);
1601 dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1602 goto error_sound_card;
1603 }
1604
1605 done:
1606 if (ssi_private->dai_fmt)
1607 _fsl_ssi_set_dai_fmt(&pdev->dev, ssi_private,
1608 ssi_private->dai_fmt);
1609
1610 if (fsl_ssi_is_ac97(ssi_private)) {
1611 u32 ssi_idx;
1612
1613 ret = of_property_read_u32(np, "cell-index", &ssi_idx);
1614 if (ret) {
1615 dev_err(&pdev->dev, "cannot get SSI index property\n");
1616 goto error_sound_card;
1617 }
1618
1619 ssi_private->pdev =
1620 platform_device_register_data(NULL,
1621 "ac97-codec", ssi_idx, NULL, 0);
1622 if (IS_ERR(ssi_private->pdev)) {
1623 ret = PTR_ERR(ssi_private->pdev);
1624 dev_err(&pdev->dev,
1625 "failed to register AC97 codec platform: %d\n",
1626 ret);
1627 goto error_sound_card;
1628 }
1629 }
1630
1631 return 0;
1632
1633 error_sound_card:
1634 fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
1635
1636 error_asoc_register:
1637 if (ssi_private->soc->imx)
1638 fsl_ssi_imx_clean(pdev, ssi_private);
1639
1640 return ret;
1641 }
1642
1643 static int fsl_ssi_remove(struct platform_device *pdev)
1644 {
1645 struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
1646
1647 fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
1648
1649 if (ssi_private->pdev)
1650 platform_device_unregister(ssi_private->pdev);
1651
1652 if (ssi_private->soc->imx)
1653 fsl_ssi_imx_clean(pdev, ssi_private);
1654
1655 if (fsl_ssi_is_ac97(ssi_private))
1656 snd_soc_set_ac97_ops(NULL);
1657
1658 return 0;
1659 }
1660
1661 #ifdef CONFIG_PM_SLEEP
1662 static int fsl_ssi_suspend(struct device *dev)
1663 {
1664 struct fsl_ssi_private *ssi_private = dev_get_drvdata(dev);
1665 struct regmap *regs = ssi_private->regs;
1666
1667 regmap_read(regs, CCSR_SSI_SFCSR,
1668 &ssi_private->regcache_sfcsr);
1669 regmap_read(regs, CCSR_SSI_SACNT,
1670 &ssi_private->regcache_sacnt);
1671
1672 regcache_cache_only(regs, true);
1673 regcache_mark_dirty(regs);
1674
1675 return 0;
1676 }
1677
1678 static int fsl_ssi_resume(struct device *dev)
1679 {
1680 struct fsl_ssi_private *ssi_private = dev_get_drvdata(dev);
1681 struct regmap *regs = ssi_private->regs;
1682
1683 regcache_cache_only(regs, false);
1684
1685 regmap_update_bits(regs, CCSR_SSI_SFCSR,
1686 CCSR_SSI_SFCSR_RFWM1_MASK | CCSR_SSI_SFCSR_TFWM1_MASK |
1687 CCSR_SSI_SFCSR_RFWM0_MASK | CCSR_SSI_SFCSR_TFWM0_MASK,
1688 ssi_private->regcache_sfcsr);
1689 regmap_write(regs, CCSR_SSI_SACNT,
1690 ssi_private->regcache_sacnt);
1691
1692 return regcache_sync(regs);
1693 }
1694 #endif /* CONFIG_PM_SLEEP */
1695
1696 static const struct dev_pm_ops fsl_ssi_pm = {
1697 SET_SYSTEM_SLEEP_PM_OPS(fsl_ssi_suspend, fsl_ssi_resume)
1698 };
1699
1700 static struct platform_driver fsl_ssi_driver = {
1701 .driver = {
1702 .name = "fsl-ssi-dai",
1703 .of_match_table = fsl_ssi_ids,
1704 .pm = &fsl_ssi_pm,
1705 },
1706 .probe = fsl_ssi_probe,
1707 .remove = fsl_ssi_remove,
1708 };
1709
1710 module_platform_driver(fsl_ssi_driver);
1711
1712 MODULE_ALIAS("platform:fsl-ssi-dai");
1713 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1714 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1715 MODULE_LICENSE("GPL v2");
This page took 0.064782 seconds and 6 git commands to generate.