Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / sound / soc / intel / skylake / skl-messages.c
1 /*
2 * skl-message.c - HDA DSP interface for FW registration, Pipe and Module
3 * configurations
4 *
5 * Copyright (C) 2015 Intel Corp
6 * Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
7 * Jeeja KP <jeeja.kp@intel.com>
8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as version 2, as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 */
19
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <sound/core.h>
23 #include <sound/pcm.h>
24 #include "skl-sst-dsp.h"
25 #include "skl-sst-ipc.h"
26 #include "skl.h"
27 #include "../common/sst-dsp.h"
28 #include "../common/sst-dsp-priv.h"
29 #include "skl-topology.h"
30 #include "skl-tplg-interface.h"
31
32 static int skl_alloc_dma_buf(struct device *dev,
33 struct snd_dma_buffer *dmab, size_t size)
34 {
35 struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
36 struct hdac_bus *bus = ebus_to_hbus(ebus);
37
38 if (!bus)
39 return -ENODEV;
40
41 return bus->io_ops->dma_alloc_pages(bus, SNDRV_DMA_TYPE_DEV, size, dmab);
42 }
43
44 static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
45 {
46 struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
47 struct hdac_bus *bus = ebus_to_hbus(ebus);
48
49 if (!bus)
50 return -ENODEV;
51
52 bus->io_ops->dma_free_pages(bus, dmab);
53
54 return 0;
55 }
56
57 #define NOTIFICATION_PARAM_ID 3
58 #define NOTIFICATION_MASK 0xf
59
60 /* disable notfication for underruns/overruns from firmware module */
61 static void skl_dsp_enable_notification(struct skl_sst *ctx, bool enable)
62 {
63 struct notification_mask mask;
64 struct skl_ipc_large_config_msg msg = {0};
65
66 mask.notify = NOTIFICATION_MASK;
67 mask.enable = enable;
68
69 msg.large_param_id = NOTIFICATION_PARAM_ID;
70 msg.param_data_size = sizeof(mask);
71
72 skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)&mask);
73 }
74
75 static int skl_dsp_setup_spib(struct device *dev, unsigned int size,
76 int stream_tag, int enable)
77 {
78 struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
79 struct hdac_bus *bus = ebus_to_hbus(ebus);
80 struct hdac_stream *stream = snd_hdac_get_stream(bus,
81 SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
82 struct hdac_ext_stream *estream;
83
84 if (!stream)
85 return -EINVAL;
86
87 estream = stream_to_hdac_ext_stream(stream);
88 /* enable/disable SPIB for this hdac stream */
89 snd_hdac_ext_stream_spbcap_enable(ebus, enable, stream->index);
90
91 /* set the spib value */
92 snd_hdac_ext_stream_set_spib(ebus, estream, size);
93
94 return 0;
95 }
96
97 static int skl_dsp_prepare(struct device *dev, unsigned int format,
98 unsigned int size, struct snd_dma_buffer *dmab)
99 {
100 struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
101 struct hdac_bus *bus = ebus_to_hbus(ebus);
102 struct hdac_ext_stream *estream;
103 struct hdac_stream *stream;
104 struct snd_pcm_substream substream;
105 int ret;
106
107 if (!bus)
108 return -ENODEV;
109
110 memset(&substream, 0, sizeof(substream));
111 substream.stream = SNDRV_PCM_STREAM_PLAYBACK;
112
113 estream = snd_hdac_ext_stream_assign(ebus, &substream,
114 HDAC_EXT_STREAM_TYPE_HOST);
115 if (!estream)
116 return -ENODEV;
117
118 stream = hdac_stream(estream);
119
120 /* assign decouple host dma channel */
121 ret = snd_hdac_dsp_prepare(stream, format, size, dmab);
122 if (ret < 0)
123 return ret;
124
125 skl_dsp_setup_spib(dev, size, stream->stream_tag, true);
126
127 return stream->stream_tag;
128 }
129
130 static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag)
131 {
132 struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
133 struct hdac_stream *stream;
134 struct hdac_bus *bus = ebus_to_hbus(ebus);
135
136 if (!bus)
137 return -ENODEV;
138
139 stream = snd_hdac_get_stream(bus,
140 SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
141 if (!stream)
142 return -EINVAL;
143
144 snd_hdac_dsp_trigger(stream, start);
145
146 return 0;
147 }
148
149 static int skl_dsp_cleanup(struct device *dev,
150 struct snd_dma_buffer *dmab, int stream_tag)
151 {
152 struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
153 struct hdac_stream *stream;
154 struct hdac_ext_stream *estream;
155 struct hdac_bus *bus = ebus_to_hbus(ebus);
156
157 if (!bus)
158 return -ENODEV;
159
160 stream = snd_hdac_get_stream(bus,
161 SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
162 if (!stream)
163 return -EINVAL;
164
165 estream = stream_to_hdac_ext_stream(stream);
166 skl_dsp_setup_spib(dev, 0, stream_tag, false);
167 snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST);
168
169 snd_hdac_dsp_cleanup(stream, dmab);
170
171 return 0;
172 }
173
174 static struct skl_dsp_loader_ops skl_get_loader_ops(void)
175 {
176 struct skl_dsp_loader_ops loader_ops;
177
178 memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops));
179
180 loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
181 loader_ops.free_dma_buf = skl_free_dma_buf;
182
183 return loader_ops;
184 };
185
186 static struct skl_dsp_loader_ops bxt_get_loader_ops(void)
187 {
188 struct skl_dsp_loader_ops loader_ops;
189
190 memset(&loader_ops, 0, sizeof(loader_ops));
191
192 loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
193 loader_ops.free_dma_buf = skl_free_dma_buf;
194 loader_ops.prepare = skl_dsp_prepare;
195 loader_ops.trigger = skl_dsp_trigger;
196 loader_ops.cleanup = skl_dsp_cleanup;
197
198 return loader_ops;
199 };
200
201 static const struct skl_dsp_ops dsp_ops[] = {
202 {
203 .id = 0x9d70,
204 .loader_ops = skl_get_loader_ops,
205 .init = skl_sst_dsp_init,
206 .cleanup = skl_sst_dsp_cleanup
207 },
208 {
209 .id = 0x9d71,
210 .loader_ops = skl_get_loader_ops,
211 .init = skl_sst_dsp_init,
212 .cleanup = skl_sst_dsp_cleanup
213 },
214 {
215 .id = 0x5a98,
216 .loader_ops = bxt_get_loader_ops,
217 .init = bxt_sst_dsp_init,
218 .cleanup = bxt_sst_dsp_cleanup
219 },
220 };
221
222 static int skl_get_dsp_ops(int pci_id)
223 {
224 int i;
225
226 for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) {
227 if (dsp_ops[i].id == pci_id)
228 return i;
229 }
230
231 return -EINVAL;
232 }
233
234 int skl_init_dsp(struct skl *skl)
235 {
236 void __iomem *mmio_base;
237 struct hdac_ext_bus *ebus = &skl->ebus;
238 struct hdac_bus *bus = ebus_to_hbus(ebus);
239 struct skl_dsp_loader_ops loader_ops;
240 int irq = bus->irq;
241 int ret, index;
242
243 /* enable ppcap interrupt */
244 snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
245 snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
246
247 /* read the BAR of the ADSP MMIO */
248 mmio_base = pci_ioremap_bar(skl->pci, 4);
249 if (mmio_base == NULL) {
250 dev_err(bus->dev, "ioremap error\n");
251 return -ENXIO;
252 }
253
254 index = skl_get_dsp_ops(skl->pci->device);
255 if (index < 0)
256 return -EINVAL;
257
258 loader_ops = dsp_ops[index].loader_ops();
259 ret = dsp_ops[index].init(bus->dev, mmio_base, irq,
260 skl->fw_name, loader_ops, &skl->skl_sst);
261
262 if (ret < 0)
263 return ret;
264
265 skl_dsp_enable_notification(skl->skl_sst, false);
266 dev_dbg(bus->dev, "dsp registration status=%d\n", ret);
267
268 return ret;
269 }
270
271 int skl_free_dsp(struct skl *skl)
272 {
273 struct hdac_ext_bus *ebus = &skl->ebus;
274 struct hdac_bus *bus = ebus_to_hbus(ebus);
275 struct skl_sst *ctx = skl->skl_sst;
276 int index;
277
278 /* disable ppcap interrupt */
279 snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
280
281 index = skl_get_dsp_ops(skl->pci->device);
282 if (index < 0)
283 return -EIO;
284
285 dsp_ops[index].cleanup(bus->dev, ctx);
286
287 if (ctx->dsp->addr.lpe)
288 iounmap(ctx->dsp->addr.lpe);
289
290 return 0;
291 }
292
293 int skl_suspend_dsp(struct skl *skl)
294 {
295 struct skl_sst *ctx = skl->skl_sst;
296 int ret;
297
298 /* if ppcap is not supported return 0 */
299 if (!skl->ebus.ppcap)
300 return 0;
301
302 ret = skl_dsp_sleep(ctx->dsp);
303 if (ret < 0)
304 return ret;
305
306 /* disable ppcap interrupt */
307 snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
308 snd_hdac_ext_bus_ppcap_enable(&skl->ebus, false);
309
310 return 0;
311 }
312
313 int skl_resume_dsp(struct skl *skl)
314 {
315 struct skl_sst *ctx = skl->skl_sst;
316 int ret;
317
318 /* if ppcap is not supported return 0 */
319 if (!skl->ebus.ppcap)
320 return 0;
321
322 /* enable ppcap interrupt */
323 snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
324 snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
325
326 ret = skl_dsp_wake(ctx->dsp);
327 if (ret < 0)
328 return ret;
329
330 skl_dsp_enable_notification(skl->skl_sst, false);
331 return ret;
332 }
333
334 enum skl_bitdepth skl_get_bit_depth(int params)
335 {
336 switch (params) {
337 case 8:
338 return SKL_DEPTH_8BIT;
339
340 case 16:
341 return SKL_DEPTH_16BIT;
342
343 case 24:
344 return SKL_DEPTH_24BIT;
345
346 case 32:
347 return SKL_DEPTH_32BIT;
348
349 default:
350 return SKL_DEPTH_INVALID;
351
352 }
353 }
354
355 /*
356 * Each module in DSP expects a base module configuration, which consists of
357 * PCM format information, which we calculate in driver and resource values
358 * which are read from widget information passed through topology binary
359 * This is send when we create a module with INIT_INSTANCE IPC msg
360 */
361 static void skl_set_base_module_format(struct skl_sst *ctx,
362 struct skl_module_cfg *mconfig,
363 struct skl_base_cfg *base_cfg)
364 {
365 struct skl_module_fmt *format = &mconfig->in_fmt[0];
366
367 base_cfg->audio_fmt.number_of_channels = (u8)format->channels;
368
369 base_cfg->audio_fmt.s_freq = format->s_freq;
370 base_cfg->audio_fmt.bit_depth = format->bit_depth;
371 base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
372 base_cfg->audio_fmt.ch_cfg = format->ch_cfg;
373
374 dev_dbg(ctx->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
375 format->bit_depth, format->valid_bit_depth,
376 format->ch_cfg);
377
378 base_cfg->audio_fmt.channel_map = format->ch_map;
379
380 base_cfg->audio_fmt.interleaving = format->interleaving_style;
381
382 base_cfg->cps = mconfig->mcps;
383 base_cfg->ibs = mconfig->ibs;
384 base_cfg->obs = mconfig->obs;
385 base_cfg->is_pages = mconfig->mem_pages;
386 }
387
388 /*
389 * Copies copier capabilities into copier module and updates copier module
390 * config size.
391 */
392 static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
393 struct skl_cpr_cfg *cpr_mconfig)
394 {
395 if (mconfig->formats_config.caps_size == 0)
396 return;
397
398 memcpy(cpr_mconfig->gtw_cfg.config_data,
399 mconfig->formats_config.caps,
400 mconfig->formats_config.caps_size);
401
402 cpr_mconfig->gtw_cfg.config_length =
403 (mconfig->formats_config.caps_size) / 4;
404 }
405
406 #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF
407 /*
408 * Calculate the gatewat settings required for copier module, type of
409 * gateway and index of gateway to use
410 */
411 static u32 skl_get_node_id(struct skl_sst *ctx,
412 struct skl_module_cfg *mconfig)
413 {
414 union skl_connector_node_id node_id = {0};
415 union skl_ssp_dma_node ssp_node = {0};
416 struct skl_pipe_params *params = mconfig->pipe->p_params;
417
418 switch (mconfig->dev_type) {
419 case SKL_DEVICE_BT:
420 node_id.node.dma_type =
421 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
422 SKL_DMA_I2S_LINK_OUTPUT_CLASS :
423 SKL_DMA_I2S_LINK_INPUT_CLASS;
424 node_id.node.vindex = params->host_dma_id +
425 (mconfig->vbus_id << 3);
426 break;
427
428 case SKL_DEVICE_I2S:
429 node_id.node.dma_type =
430 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
431 SKL_DMA_I2S_LINK_OUTPUT_CLASS :
432 SKL_DMA_I2S_LINK_INPUT_CLASS;
433 ssp_node.dma_node.time_slot_index = mconfig->time_slot;
434 ssp_node.dma_node.i2s_instance = mconfig->vbus_id;
435 node_id.node.vindex = ssp_node.val;
436 break;
437
438 case SKL_DEVICE_DMIC:
439 node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
440 node_id.node.vindex = mconfig->vbus_id +
441 (mconfig->time_slot);
442 break;
443
444 case SKL_DEVICE_HDALINK:
445 node_id.node.dma_type =
446 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
447 SKL_DMA_HDA_LINK_OUTPUT_CLASS :
448 SKL_DMA_HDA_LINK_INPUT_CLASS;
449 node_id.node.vindex = params->link_dma_id;
450 break;
451
452 case SKL_DEVICE_HDAHOST:
453 node_id.node.dma_type =
454 (SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
455 SKL_DMA_HDA_HOST_OUTPUT_CLASS :
456 SKL_DMA_HDA_HOST_INPUT_CLASS;
457 node_id.node.vindex = params->host_dma_id;
458 break;
459
460 default:
461 node_id.val = 0xFFFFFFFF;
462 break;
463 }
464
465 return node_id.val;
466 }
467
468 static void skl_setup_cpr_gateway_cfg(struct skl_sst *ctx,
469 struct skl_module_cfg *mconfig,
470 struct skl_cpr_cfg *cpr_mconfig)
471 {
472 cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(ctx, mconfig);
473
474 if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) {
475 cpr_mconfig->cpr_feature_mask = 0;
476 return;
477 }
478
479 if (SKL_CONN_SOURCE == mconfig->hw_conn_type)
480 cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->obs;
481 else
482 cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->ibs;
483
484 cpr_mconfig->cpr_feature_mask = 0;
485 cpr_mconfig->gtw_cfg.config_length = 0;
486
487 skl_copy_copier_caps(mconfig, cpr_mconfig);
488 }
489
490 #define DMA_CONTROL_ID 5
491
492 int skl_dsp_set_dma_control(struct skl_sst *ctx, struct skl_module_cfg *mconfig)
493 {
494 struct skl_dma_control *dma_ctrl;
495 struct skl_i2s_config_blob config_blob;
496 struct skl_ipc_large_config_msg msg = {0};
497 int err = 0;
498
499
500 /*
501 * if blob size is same as capablity size, then no dma control
502 * present so return
503 */
504 if (mconfig->formats_config.caps_size == sizeof(config_blob))
505 return 0;
506
507 msg.large_param_id = DMA_CONTROL_ID;
508 msg.param_data_size = sizeof(struct skl_dma_control) +
509 mconfig->formats_config.caps_size;
510
511 dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL);
512 if (dma_ctrl == NULL)
513 return -ENOMEM;
514
515 dma_ctrl->node_id = skl_get_node_id(ctx, mconfig);
516
517 /* size in dwords */
518 dma_ctrl->config_length = sizeof(config_blob) / 4;
519
520 memcpy(dma_ctrl->config_data, mconfig->formats_config.caps,
521 mconfig->formats_config.caps_size);
522
523 err = skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)dma_ctrl);
524
525 kfree(dma_ctrl);
526
527 return err;
528 }
529
530 static void skl_setup_out_format(struct skl_sst *ctx,
531 struct skl_module_cfg *mconfig,
532 struct skl_audio_data_format *out_fmt)
533 {
534 struct skl_module_fmt *format = &mconfig->out_fmt[0];
535
536 out_fmt->number_of_channels = (u8)format->channels;
537 out_fmt->s_freq = format->s_freq;
538 out_fmt->bit_depth = format->bit_depth;
539 out_fmt->valid_bit_depth = format->valid_bit_depth;
540 out_fmt->ch_cfg = format->ch_cfg;
541
542 out_fmt->channel_map = format->ch_map;
543 out_fmt->interleaving = format->interleaving_style;
544 out_fmt->sample_type = format->sample_type;
545
546 dev_dbg(ctx->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
547 out_fmt->number_of_channels, format->s_freq, format->bit_depth);
548 }
549
550 /*
551 * DSP needs SRC module for frequency conversion, SRC takes base module
552 * configuration and the target frequency as extra parameter passed as src
553 * config
554 */
555 static void skl_set_src_format(struct skl_sst *ctx,
556 struct skl_module_cfg *mconfig,
557 struct skl_src_module_cfg *src_mconfig)
558 {
559 struct skl_module_fmt *fmt = &mconfig->out_fmt[0];
560
561 skl_set_base_module_format(ctx, mconfig,
562 (struct skl_base_cfg *)src_mconfig);
563
564 src_mconfig->src_cfg = fmt->s_freq;
565 }
566
567 /*
568 * DSP needs updown module to do channel conversion. updown module take base
569 * module configuration and channel configuration
570 * It also take coefficients and now we have defaults applied here
571 */
572 static void skl_set_updown_mixer_format(struct skl_sst *ctx,
573 struct skl_module_cfg *mconfig,
574 struct skl_up_down_mixer_cfg *mixer_mconfig)
575 {
576 struct skl_module_fmt *fmt = &mconfig->out_fmt[0];
577 int i = 0;
578
579 skl_set_base_module_format(ctx, mconfig,
580 (struct skl_base_cfg *)mixer_mconfig);
581 mixer_mconfig->out_ch_cfg = fmt->ch_cfg;
582
583 /* Select F/W default coefficient */
584 mixer_mconfig->coeff_sel = 0x0;
585
586 /* User coeff, don't care since we are selecting F/W defaults */
587 for (i = 0; i < UP_DOWN_MIXER_MAX_COEFF; i++)
588 mixer_mconfig->coeff[i] = 0xDEADBEEF;
589 }
590
591 /*
592 * 'copier' is DSP internal module which copies data from Host DMA (HDA host
593 * dma) or link (hda link, SSP, PDM)
594 * Here we calculate the copier module parameters, like PCM format, output
595 * format, gateway settings
596 * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
597 */
598 static void skl_set_copier_format(struct skl_sst *ctx,
599 struct skl_module_cfg *mconfig,
600 struct skl_cpr_cfg *cpr_mconfig)
601 {
602 struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
603 struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;
604
605 skl_set_base_module_format(ctx, mconfig, base_cfg);
606
607 skl_setup_out_format(ctx, mconfig, out_fmt);
608 skl_setup_cpr_gateway_cfg(ctx, mconfig, cpr_mconfig);
609 }
610
611 /*
612 * Algo module are DSP pre processing modules. Algo module take base module
613 * configuration and params
614 */
615
616 static void skl_set_algo_format(struct skl_sst *ctx,
617 struct skl_module_cfg *mconfig,
618 struct skl_algo_cfg *algo_mcfg)
619 {
620 struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)algo_mcfg;
621
622 skl_set_base_module_format(ctx, mconfig, base_cfg);
623
624 if (mconfig->formats_config.caps_size == 0)
625 return;
626
627 memcpy(algo_mcfg->params,
628 mconfig->formats_config.caps,
629 mconfig->formats_config.caps_size);
630
631 }
632
633 /*
634 * Mic select module allows selecting one or many input channels, thus
635 * acting as a demux.
636 *
637 * Mic select module take base module configuration and out-format
638 * configuration
639 */
640 static void skl_set_base_outfmt_format(struct skl_sst *ctx,
641 struct skl_module_cfg *mconfig,
642 struct skl_base_outfmt_cfg *base_outfmt_mcfg)
643 {
644 struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt;
645 struct skl_base_cfg *base_cfg =
646 (struct skl_base_cfg *)base_outfmt_mcfg;
647
648 skl_set_base_module_format(ctx, mconfig, base_cfg);
649 skl_setup_out_format(ctx, mconfig, out_fmt);
650 }
651
652 static u16 skl_get_module_param_size(struct skl_sst *ctx,
653 struct skl_module_cfg *mconfig)
654 {
655 u16 param_size;
656
657 switch (mconfig->m_type) {
658 case SKL_MODULE_TYPE_COPIER:
659 param_size = sizeof(struct skl_cpr_cfg);
660 param_size += mconfig->formats_config.caps_size;
661 return param_size;
662
663 case SKL_MODULE_TYPE_SRCINT:
664 return sizeof(struct skl_src_module_cfg);
665
666 case SKL_MODULE_TYPE_UPDWMIX:
667 return sizeof(struct skl_up_down_mixer_cfg);
668
669 case SKL_MODULE_TYPE_ALGO:
670 param_size = sizeof(struct skl_base_cfg);
671 param_size += mconfig->formats_config.caps_size;
672 return param_size;
673
674 case SKL_MODULE_TYPE_BASE_OUTFMT:
675 return sizeof(struct skl_base_outfmt_cfg);
676
677 default:
678 /*
679 * return only base cfg when no specific module type is
680 * specified
681 */
682 return sizeof(struct skl_base_cfg);
683 }
684
685 return 0;
686 }
687
688 /*
689 * DSP firmware supports various modules like copier, SRC, updown etc.
690 * These modules required various parameters to be calculated and sent for
691 * the module initialization to DSP. By default a generic module needs only
692 * base module format configuration
693 */
694
695 static int skl_set_module_format(struct skl_sst *ctx,
696 struct skl_module_cfg *module_config,
697 u16 *module_config_size,
698 void **param_data)
699 {
700 u16 param_size;
701
702 param_size = skl_get_module_param_size(ctx, module_config);
703
704 *param_data = kzalloc(param_size, GFP_KERNEL);
705 if (NULL == *param_data)
706 return -ENOMEM;
707
708 *module_config_size = param_size;
709
710 switch (module_config->m_type) {
711 case SKL_MODULE_TYPE_COPIER:
712 skl_set_copier_format(ctx, module_config, *param_data);
713 break;
714
715 case SKL_MODULE_TYPE_SRCINT:
716 skl_set_src_format(ctx, module_config, *param_data);
717 break;
718
719 case SKL_MODULE_TYPE_UPDWMIX:
720 skl_set_updown_mixer_format(ctx, module_config, *param_data);
721 break;
722
723 case SKL_MODULE_TYPE_ALGO:
724 skl_set_algo_format(ctx, module_config, *param_data);
725 break;
726
727 case SKL_MODULE_TYPE_BASE_OUTFMT:
728 skl_set_base_outfmt_format(ctx, module_config, *param_data);
729 break;
730
731 default:
732 skl_set_base_module_format(ctx, module_config, *param_data);
733 break;
734
735 }
736
737 dev_dbg(ctx->dev, "Module type=%d config size: %d bytes\n",
738 module_config->id.module_id, param_size);
739 print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4,
740 *param_data, param_size, false);
741 return 0;
742 }
743
744 static int skl_get_queue_index(struct skl_module_pin *mpin,
745 struct skl_module_inst_id id, int max)
746 {
747 int i;
748
749 for (i = 0; i < max; i++) {
750 if (mpin[i].id.module_id == id.module_id &&
751 mpin[i].id.instance_id == id.instance_id)
752 return i;
753 }
754
755 return -EINVAL;
756 }
757
758 /*
759 * Allocates queue for each module.
760 * if dynamic, the pin_index is allocated 0 to max_pin.
761 * In static, the pin_index is fixed based on module_id and instance id
762 */
763 static int skl_alloc_queue(struct skl_module_pin *mpin,
764 struct skl_module_cfg *tgt_cfg, int max)
765 {
766 int i;
767 struct skl_module_inst_id id = tgt_cfg->id;
768 /*
769 * if pin in dynamic, find first free pin
770 * otherwise find match module and instance id pin as topology will
771 * ensure a unique pin is assigned to this so no need to
772 * allocate/free
773 */
774 for (i = 0; i < max; i++) {
775 if (mpin[i].is_dynamic) {
776 if (!mpin[i].in_use &&
777 mpin[i].pin_state == SKL_PIN_UNBIND) {
778
779 mpin[i].in_use = true;
780 mpin[i].id.module_id = id.module_id;
781 mpin[i].id.instance_id = id.instance_id;
782 mpin[i].tgt_mcfg = tgt_cfg;
783 return i;
784 }
785 } else {
786 if (mpin[i].id.module_id == id.module_id &&
787 mpin[i].id.instance_id == id.instance_id &&
788 mpin[i].pin_state == SKL_PIN_UNBIND) {
789
790 mpin[i].tgt_mcfg = tgt_cfg;
791 return i;
792 }
793 }
794 }
795
796 return -EINVAL;
797 }
798
799 static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
800 {
801 if (mpin[q_index].is_dynamic) {
802 mpin[q_index].in_use = false;
803 mpin[q_index].id.module_id = 0;
804 mpin[q_index].id.instance_id = 0;
805 }
806 mpin[q_index].pin_state = SKL_PIN_UNBIND;
807 mpin[q_index].tgt_mcfg = NULL;
808 }
809
810 /* Module state will be set to unint, if all the out pin state is UNBIND */
811
812 static void skl_clear_module_state(struct skl_module_pin *mpin, int max,
813 struct skl_module_cfg *mcfg)
814 {
815 int i;
816 bool found = false;
817
818 for (i = 0; i < max; i++) {
819 if (mpin[i].pin_state == SKL_PIN_UNBIND)
820 continue;
821 found = true;
822 break;
823 }
824
825 if (!found)
826 mcfg->m_state = SKL_MODULE_UNINIT;
827 return;
828 }
829
830 /*
831 * A module needs to be instanataited in DSP. A mdoule is present in a
832 * collection of module referred as a PIPE.
833 * We first calculate the module format, based on module type and then
834 * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
835 */
836 int skl_init_module(struct skl_sst *ctx,
837 struct skl_module_cfg *mconfig)
838 {
839 u16 module_config_size = 0;
840 void *param_data = NULL;
841 int ret;
842 struct skl_ipc_init_instance_msg msg;
843
844 dev_dbg(ctx->dev, "%s: module_id = %d instance=%d\n", __func__,
845 mconfig->id.module_id, mconfig->id.instance_id);
846
847 if (mconfig->pipe->state != SKL_PIPE_CREATED) {
848 dev_err(ctx->dev, "Pipe not created state= %d pipe_id= %d\n",
849 mconfig->pipe->state, mconfig->pipe->ppl_id);
850 return -EIO;
851 }
852
853 ret = skl_set_module_format(ctx, mconfig,
854 &module_config_size, &param_data);
855 if (ret < 0) {
856 dev_err(ctx->dev, "Failed to set module format ret=%d\n", ret);
857 return ret;
858 }
859
860 msg.module_id = mconfig->id.module_id;
861 msg.instance_id = mconfig->id.instance_id;
862 msg.ppl_instance_id = mconfig->pipe->ppl_id;
863 msg.param_data_size = module_config_size;
864 msg.core_id = mconfig->core_id;
865
866 ret = skl_ipc_init_instance(&ctx->ipc, &msg, param_data);
867 if (ret < 0) {
868 dev_err(ctx->dev, "Failed to init instance ret=%d\n", ret);
869 kfree(param_data);
870 return ret;
871 }
872 mconfig->m_state = SKL_MODULE_INIT_DONE;
873 kfree(param_data);
874 return ret;
875 }
876
877 static void skl_dump_bind_info(struct skl_sst *ctx, struct skl_module_cfg
878 *src_module, struct skl_module_cfg *dst_module)
879 {
880 dev_dbg(ctx->dev, "%s: src module_id = %d src_instance=%d\n",
881 __func__, src_module->id.module_id, src_module->id.instance_id);
882 dev_dbg(ctx->dev, "%s: dst_module=%d dst_instacne=%d\n", __func__,
883 dst_module->id.module_id, dst_module->id.instance_id);
884
885 dev_dbg(ctx->dev, "src_module state = %d dst module state = %d\n",
886 src_module->m_state, dst_module->m_state);
887 }
888
889 /*
890 * On module freeup, we need to unbind the module with modules
891 * it is already bind.
892 * Find the pin allocated and unbind then using bind_unbind IPC
893 */
894 int skl_unbind_modules(struct skl_sst *ctx,
895 struct skl_module_cfg *src_mcfg,
896 struct skl_module_cfg *dst_mcfg)
897 {
898 int ret;
899 struct skl_ipc_bind_unbind_msg msg;
900 struct skl_module_inst_id src_id = src_mcfg->id;
901 struct skl_module_inst_id dst_id = dst_mcfg->id;
902 int in_max = dst_mcfg->max_in_queue;
903 int out_max = src_mcfg->max_out_queue;
904 int src_index, dst_index, src_pin_state, dst_pin_state;
905
906 skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
907
908 /* get src queue index */
909 src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
910 if (src_index < 0)
911 return 0;
912
913 msg.src_queue = src_index;
914
915 /* get dst queue index */
916 dst_index = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
917 if (dst_index < 0)
918 return 0;
919
920 msg.dst_queue = dst_index;
921
922 src_pin_state = src_mcfg->m_out_pin[src_index].pin_state;
923 dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state;
924
925 if (src_pin_state != SKL_PIN_BIND_DONE ||
926 dst_pin_state != SKL_PIN_BIND_DONE)
927 return 0;
928
929 msg.module_id = src_mcfg->id.module_id;
930 msg.instance_id = src_mcfg->id.instance_id;
931 msg.dst_module_id = dst_mcfg->id.module_id;
932 msg.dst_instance_id = dst_mcfg->id.instance_id;
933 msg.bind = false;
934
935 ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
936 if (!ret) {
937 /* free queue only if unbind is success */
938 skl_free_queue(src_mcfg->m_out_pin, src_index);
939 skl_free_queue(dst_mcfg->m_in_pin, dst_index);
940
941 /*
942 * check only if src module bind state, bind is
943 * always from src -> sink
944 */
945 skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg);
946 }
947
948 return ret;
949 }
950
951 /*
952 * Once a module is instantiated it need to be 'bind' with other modules in
953 * the pipeline. For binding we need to find the module pins which are bind
954 * together
955 * This function finds the pins and then sends bund_unbind IPC message to
956 * DSP using IPC helper
957 */
958 int skl_bind_modules(struct skl_sst *ctx,
959 struct skl_module_cfg *src_mcfg,
960 struct skl_module_cfg *dst_mcfg)
961 {
962 int ret;
963 struct skl_ipc_bind_unbind_msg msg;
964 int in_max = dst_mcfg->max_in_queue;
965 int out_max = src_mcfg->max_out_queue;
966 int src_index, dst_index;
967
968 skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
969
970 if (src_mcfg->m_state < SKL_MODULE_INIT_DONE ||
971 dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
972 return 0;
973
974 src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max);
975 if (src_index < 0)
976 return -EINVAL;
977
978 msg.src_queue = src_index;
979 dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max);
980 if (dst_index < 0) {
981 skl_free_queue(src_mcfg->m_out_pin, src_index);
982 return -EINVAL;
983 }
984
985 msg.dst_queue = dst_index;
986
987 dev_dbg(ctx->dev, "src queue = %d dst queue =%d\n",
988 msg.src_queue, msg.dst_queue);
989
990 msg.module_id = src_mcfg->id.module_id;
991 msg.instance_id = src_mcfg->id.instance_id;
992 msg.dst_module_id = dst_mcfg->id.module_id;
993 msg.dst_instance_id = dst_mcfg->id.instance_id;
994 msg.bind = true;
995
996 ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
997
998 if (!ret) {
999 src_mcfg->m_state = SKL_MODULE_BIND_DONE;
1000 src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE;
1001 dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE;
1002 } else {
1003 /* error case , if IPC fails, clear the queue index */
1004 skl_free_queue(src_mcfg->m_out_pin, src_index);
1005 skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1006 }
1007
1008 return ret;
1009 }
1010
1011 static int skl_set_pipe_state(struct skl_sst *ctx, struct skl_pipe *pipe,
1012 enum skl_ipc_pipeline_state state)
1013 {
1014 dev_dbg(ctx->dev, "%s: pipe_satate = %d\n", __func__, state);
1015
1016 return skl_ipc_set_pipeline_state(&ctx->ipc, pipe->ppl_id, state);
1017 }
1018
1019 /*
1020 * A pipeline is a collection of modules. Before a module in instantiated a
1021 * pipeline needs to be created for it.
1022 * This function creates pipeline, by sending create pipeline IPC messages
1023 * to FW
1024 */
1025 int skl_create_pipeline(struct skl_sst *ctx, struct skl_pipe *pipe)
1026 {
1027 int ret;
1028
1029 dev_dbg(ctx->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);
1030
1031 ret = skl_ipc_create_pipeline(&ctx->ipc, pipe->memory_pages,
1032 pipe->pipe_priority, pipe->ppl_id);
1033 if (ret < 0) {
1034 dev_err(ctx->dev, "Failed to create pipeline\n");
1035 return ret;
1036 }
1037
1038 pipe->state = SKL_PIPE_CREATED;
1039
1040 return 0;
1041 }
1042
1043 /*
1044 * A pipeline needs to be deleted on cleanup. If a pipeline is running, then
1045 * pause the pipeline first and then delete it
1046 * The pipe delete is done by sending delete pipeline IPC. DSP will stop the
1047 * DMA engines and releases resources
1048 */
1049 int skl_delete_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1050 {
1051 int ret;
1052
1053 dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1054
1055 /* If pipe is started, do stop the pipe in FW. */
1056 if (pipe->state > SKL_PIPE_STARTED) {
1057 ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1058 if (ret < 0) {
1059 dev_err(ctx->dev, "Failed to stop pipeline\n");
1060 return ret;
1061 }
1062
1063 pipe->state = SKL_PIPE_PAUSED;
1064 }
1065
1066 /* If pipe was not created in FW, do not try to delete it */
1067 if (pipe->state < SKL_PIPE_CREATED)
1068 return 0;
1069
1070 ret = skl_ipc_delete_pipeline(&ctx->ipc, pipe->ppl_id);
1071 if (ret < 0) {
1072 dev_err(ctx->dev, "Failed to delete pipeline\n");
1073 return ret;
1074 }
1075
1076 pipe->state = SKL_PIPE_INVALID;
1077
1078 return ret;
1079 }
1080
1081 /*
1082 * A pipeline is also a scheduling entity in DSP which can be run, stopped
1083 * For processing data the pipe need to be run by sending IPC set pipe state
1084 * to DSP
1085 */
1086 int skl_run_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1087 {
1088 int ret;
1089
1090 dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1091
1092 /* If pipe was not created in FW, do not try to pause or delete */
1093 if (pipe->state < SKL_PIPE_CREATED)
1094 return 0;
1095
1096 /* Pipe has to be paused before it is started */
1097 ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1098 if (ret < 0) {
1099 dev_err(ctx->dev, "Failed to pause pipe\n");
1100 return ret;
1101 }
1102
1103 pipe->state = SKL_PIPE_PAUSED;
1104
1105 ret = skl_set_pipe_state(ctx, pipe, PPL_RUNNING);
1106 if (ret < 0) {
1107 dev_err(ctx->dev, "Failed to start pipe\n");
1108 return ret;
1109 }
1110
1111 pipe->state = SKL_PIPE_STARTED;
1112
1113 return 0;
1114 }
1115
1116 /*
1117 * Stop the pipeline by sending set pipe state IPC
1118 * DSP doesnt implement stop so we always send pause message
1119 */
1120 int skl_stop_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1121 {
1122 int ret;
1123
1124 dev_dbg(ctx->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);
1125
1126 /* If pipe was not created in FW, do not try to pause or delete */
1127 if (pipe->state < SKL_PIPE_PAUSED)
1128 return 0;
1129
1130 ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1131 if (ret < 0) {
1132 dev_dbg(ctx->dev, "Failed to stop pipe\n");
1133 return ret;
1134 }
1135
1136 pipe->state = SKL_PIPE_PAUSED;
1137
1138 return 0;
1139 }
1140
1141 /*
1142 * Reset the pipeline by sending set pipe state IPC this will reset the DMA
1143 * from the DSP side
1144 */
1145 int skl_reset_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1146 {
1147 int ret;
1148
1149 /* If pipe was not created in FW, do not try to pause or delete */
1150 if (pipe->state < SKL_PIPE_PAUSED)
1151 return 0;
1152
1153 ret = skl_set_pipe_state(ctx, pipe, PPL_RESET);
1154 if (ret < 0) {
1155 dev_dbg(ctx->dev, "Failed to reset pipe ret=%d\n", ret);
1156 return ret;
1157 }
1158
1159 pipe->state = SKL_PIPE_RESET;
1160
1161 return 0;
1162 }
1163
1164 /* Algo parameter set helper function */
1165 int skl_set_module_params(struct skl_sst *ctx, u32 *params, int size,
1166 u32 param_id, struct skl_module_cfg *mcfg)
1167 {
1168 struct skl_ipc_large_config_msg msg;
1169
1170 msg.module_id = mcfg->id.module_id;
1171 msg.instance_id = mcfg->id.instance_id;
1172 msg.param_data_size = size;
1173 msg.large_param_id = param_id;
1174
1175 return skl_ipc_set_large_config(&ctx->ipc, &msg, params);
1176 }
1177
1178 int skl_get_module_params(struct skl_sst *ctx, u32 *params, int size,
1179 u32 param_id, struct skl_module_cfg *mcfg)
1180 {
1181 struct skl_ipc_large_config_msg msg;
1182
1183 msg.module_id = mcfg->id.module_id;
1184 msg.instance_id = mcfg->id.instance_id;
1185 msg.param_data_size = size;
1186 msg.large_param_id = param_id;
1187
1188 return skl_ipc_get_large_config(&ctx->ipc, &msg, params);
1189 }
This page took 0.054455 seconds and 6 git commands to generate.