0860a7f112992caee60f3cf0498256ee7a46d96d
[deliverable/linux.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 * Copyright (C) 2010 Slimlogic Ltd.
7 * Copyright (C) 2010 Texas Instruments Inc.
8 *
9 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 * with code, comments and ideas from :-
11 * Richard Purdie <richard@openedhand.com>
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 * TODO:
19 * o Add hw rules to enforce rates, etc.
20 * o More testing with other codecs/machines.
21 * o Add more codecs and platforms to ensure good API coverage.
22 * o Support TDM on PCM and I2S
23 */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/pinctrl/consumer.h>
34 #include <linux/ctype.h>
35 #include <linux/slab.h>
36 #include <linux/of.h>
37 #include <linux/gpio.h>
38 #include <linux/of_gpio.h>
39 #include <sound/ac97_codec.h>
40 #include <sound/core.h>
41 #include <sound/jack.h>
42 #include <sound/pcm.h>
43 #include <sound/pcm_params.h>
44 #include <sound/soc.h>
45 #include <sound/soc-dpcm.h>
46 #include <sound/initval.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/asoc.h>
50
51 #define NAME_SIZE 32
52
53 #ifdef CONFIG_DEBUG_FS
54 struct dentry *snd_soc_debugfs_root;
55 EXPORT_SYMBOL_GPL(snd_soc_debugfs_root);
56 #endif
57
58 static DEFINE_MUTEX(client_mutex);
59 static LIST_HEAD(dai_list);
60 static LIST_HEAD(platform_list);
61 static LIST_HEAD(codec_list);
62 static LIST_HEAD(component_list);
63
64 /*
65 * This is a timeout to do a DAPM powerdown after a stream is closed().
66 * It can be used to eliminate pops between different playback streams, e.g.
67 * between two audio tracks.
68 */
69 static int pmdown_time = 5000;
70 module_param(pmdown_time, int, 0);
71 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
72
73 struct snd_ac97_reset_cfg {
74 struct pinctrl *pctl;
75 struct pinctrl_state *pstate_reset;
76 struct pinctrl_state *pstate_warm_reset;
77 struct pinctrl_state *pstate_run;
78 int gpio_sdata;
79 int gpio_sync;
80 int gpio_reset;
81 };
82
83 /* returns the minimum number of bytes needed to represent
84 * a particular given value */
85 static int min_bytes_needed(unsigned long val)
86 {
87 int c = 0;
88 int i;
89
90 for (i = (sizeof val * 8) - 1; i >= 0; --i, ++c)
91 if (val & (1UL << i))
92 break;
93 c = (sizeof val * 8) - c;
94 if (!c || (c % 8))
95 c = (c + 8) / 8;
96 else
97 c /= 8;
98 return c;
99 }
100
101 /* fill buf which is 'len' bytes with a formatted
102 * string of the form 'reg: value\n' */
103 static int format_register_str(struct snd_soc_codec *codec,
104 unsigned int reg, char *buf, size_t len)
105 {
106 int wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
107 int regsize = codec->driver->reg_word_size * 2;
108 int ret;
109 char tmpbuf[len + 1];
110 char regbuf[regsize + 1];
111
112 /* since tmpbuf is allocated on the stack, warn the callers if they
113 * try to abuse this function */
114 WARN_ON(len > 63);
115
116 /* +2 for ': ' and + 1 for '\n' */
117 if (wordsize + regsize + 2 + 1 != len)
118 return -EINVAL;
119
120 ret = snd_soc_read(codec, reg);
121 if (ret < 0) {
122 memset(regbuf, 'X', regsize);
123 regbuf[regsize] = '\0';
124 } else {
125 snprintf(regbuf, regsize + 1, "%.*x", regsize, ret);
126 }
127
128 /* prepare the buffer */
129 snprintf(tmpbuf, len + 1, "%.*x: %s\n", wordsize, reg, regbuf);
130 /* copy it back to the caller without the '\0' */
131 memcpy(buf, tmpbuf, len);
132
133 return 0;
134 }
135
136 /* codec register dump */
137 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf,
138 size_t count, loff_t pos)
139 {
140 int i, step = 1;
141 int wordsize, regsize;
142 int len;
143 size_t total = 0;
144 loff_t p = 0;
145
146 wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
147 regsize = codec->driver->reg_word_size * 2;
148
149 len = wordsize + regsize + 2 + 1;
150
151 if (!codec->driver->reg_cache_size)
152 return 0;
153
154 if (codec->driver->reg_cache_step)
155 step = codec->driver->reg_cache_step;
156
157 for (i = 0; i < codec->driver->reg_cache_size; i += step) {
158 if (!snd_soc_codec_readable_register(codec, i))
159 continue;
160 if (codec->driver->display_register) {
161 count += codec->driver->display_register(codec, buf + count,
162 PAGE_SIZE - count, i);
163 } else {
164 /* only support larger than PAGE_SIZE bytes debugfs
165 * entries for the default case */
166 if (p >= pos) {
167 if (total + len >= count - 1)
168 break;
169 format_register_str(codec, i, buf + total, len);
170 total += len;
171 }
172 p += len;
173 }
174 }
175
176 total = min(total, count - 1);
177
178 return total;
179 }
180
181 static ssize_t codec_reg_show(struct device *dev,
182 struct device_attribute *attr, char *buf)
183 {
184 struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev);
185
186 return soc_codec_reg_show(rtd->codec, buf, PAGE_SIZE, 0);
187 }
188
189 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
190
191 static ssize_t pmdown_time_show(struct device *dev,
192 struct device_attribute *attr, char *buf)
193 {
194 struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev);
195
196 return sprintf(buf, "%ld\n", rtd->pmdown_time);
197 }
198
199 static ssize_t pmdown_time_set(struct device *dev,
200 struct device_attribute *attr,
201 const char *buf, size_t count)
202 {
203 struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev);
204 int ret;
205
206 ret = kstrtol(buf, 10, &rtd->pmdown_time);
207 if (ret)
208 return ret;
209
210 return count;
211 }
212
213 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
214
215 #ifdef CONFIG_DEBUG_FS
216 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
217 size_t count, loff_t *ppos)
218 {
219 ssize_t ret;
220 struct snd_soc_codec *codec = file->private_data;
221 char *buf;
222
223 if (*ppos < 0 || !count)
224 return -EINVAL;
225
226 buf = kmalloc(count, GFP_KERNEL);
227 if (!buf)
228 return -ENOMEM;
229
230 ret = soc_codec_reg_show(codec, buf, count, *ppos);
231 if (ret >= 0) {
232 if (copy_to_user(user_buf, buf, ret)) {
233 kfree(buf);
234 return -EFAULT;
235 }
236 *ppos += ret;
237 }
238
239 kfree(buf);
240 return ret;
241 }
242
243 static ssize_t codec_reg_write_file(struct file *file,
244 const char __user *user_buf, size_t count, loff_t *ppos)
245 {
246 char buf[32];
247 size_t buf_size;
248 char *start = buf;
249 unsigned long reg, value;
250 struct snd_soc_codec *codec = file->private_data;
251 int ret;
252
253 buf_size = min(count, (sizeof(buf)-1));
254 if (copy_from_user(buf, user_buf, buf_size))
255 return -EFAULT;
256 buf[buf_size] = 0;
257
258 while (*start == ' ')
259 start++;
260 reg = simple_strtoul(start, &start, 16);
261 while (*start == ' ')
262 start++;
263 ret = kstrtoul(start, 16, &value);
264 if (ret)
265 return ret;
266
267 /* Userspace has been fiddling around behind the kernel's back */
268 add_taint(TAINT_USER, LOCKDEP_NOW_UNRELIABLE);
269
270 snd_soc_write(codec, reg, value);
271 return buf_size;
272 }
273
274 static const struct file_operations codec_reg_fops = {
275 .open = simple_open,
276 .read = codec_reg_read_file,
277 .write = codec_reg_write_file,
278 .llseek = default_llseek,
279 };
280
281 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
282 {
283 struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
284
285 codec->debugfs_codec_root = debugfs_create_dir(codec->name,
286 debugfs_card_root);
287 if (!codec->debugfs_codec_root) {
288 dev_warn(codec->dev,
289 "ASoC: Failed to create codec debugfs directory\n");
290 return;
291 }
292
293 debugfs_create_bool("cache_sync", 0444, codec->debugfs_codec_root,
294 &codec->cache_sync);
295 debugfs_create_bool("cache_only", 0444, codec->debugfs_codec_root,
296 &codec->cache_only);
297
298 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
299 codec->debugfs_codec_root,
300 codec, &codec_reg_fops);
301 if (!codec->debugfs_reg)
302 dev_warn(codec->dev,
303 "ASoC: Failed to create codec register debugfs file\n");
304
305 snd_soc_dapm_debugfs_init(&codec->dapm, codec->debugfs_codec_root);
306 }
307
308 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
309 {
310 debugfs_remove_recursive(codec->debugfs_codec_root);
311 }
312
313 static void soc_init_platform_debugfs(struct snd_soc_platform *platform)
314 {
315 struct dentry *debugfs_card_root = platform->card->debugfs_card_root;
316
317 platform->debugfs_platform_root = debugfs_create_dir(platform->name,
318 debugfs_card_root);
319 if (!platform->debugfs_platform_root) {
320 dev_warn(platform->dev,
321 "ASoC: Failed to create platform debugfs directory\n");
322 return;
323 }
324
325 snd_soc_dapm_debugfs_init(&platform->dapm,
326 platform->debugfs_platform_root);
327 }
328
329 static void soc_cleanup_platform_debugfs(struct snd_soc_platform *platform)
330 {
331 debugfs_remove_recursive(platform->debugfs_platform_root);
332 }
333
334 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
335 size_t count, loff_t *ppos)
336 {
337 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
338 ssize_t len, ret = 0;
339 struct snd_soc_codec *codec;
340
341 if (!buf)
342 return -ENOMEM;
343
344 list_for_each_entry(codec, &codec_list, list) {
345 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
346 codec->name);
347 if (len >= 0)
348 ret += len;
349 if (ret > PAGE_SIZE) {
350 ret = PAGE_SIZE;
351 break;
352 }
353 }
354
355 if (ret >= 0)
356 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
357
358 kfree(buf);
359
360 return ret;
361 }
362
363 static const struct file_operations codec_list_fops = {
364 .read = codec_list_read_file,
365 .llseek = default_llseek,/* read accesses f_pos */
366 };
367
368 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
369 size_t count, loff_t *ppos)
370 {
371 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
372 ssize_t len, ret = 0;
373 struct snd_soc_dai *dai;
374
375 if (!buf)
376 return -ENOMEM;
377
378 list_for_each_entry(dai, &dai_list, list) {
379 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
380 if (len >= 0)
381 ret += len;
382 if (ret > PAGE_SIZE) {
383 ret = PAGE_SIZE;
384 break;
385 }
386 }
387
388 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
389
390 kfree(buf);
391
392 return ret;
393 }
394
395 static const struct file_operations dai_list_fops = {
396 .read = dai_list_read_file,
397 .llseek = default_llseek,/* read accesses f_pos */
398 };
399
400 static ssize_t platform_list_read_file(struct file *file,
401 char __user *user_buf,
402 size_t count, loff_t *ppos)
403 {
404 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
405 ssize_t len, ret = 0;
406 struct snd_soc_platform *platform;
407
408 if (!buf)
409 return -ENOMEM;
410
411 list_for_each_entry(platform, &platform_list, list) {
412 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
413 platform->name);
414 if (len >= 0)
415 ret += len;
416 if (ret > PAGE_SIZE) {
417 ret = PAGE_SIZE;
418 break;
419 }
420 }
421
422 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
423
424 kfree(buf);
425
426 return ret;
427 }
428
429 static const struct file_operations platform_list_fops = {
430 .read = platform_list_read_file,
431 .llseek = default_llseek,/* read accesses f_pos */
432 };
433
434 static void soc_init_card_debugfs(struct snd_soc_card *card)
435 {
436 card->debugfs_card_root = debugfs_create_dir(card->name,
437 snd_soc_debugfs_root);
438 if (!card->debugfs_card_root) {
439 dev_warn(card->dev,
440 "ASoC: Failed to create card debugfs directory\n");
441 return;
442 }
443
444 card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
445 card->debugfs_card_root,
446 &card->pop_time);
447 if (!card->debugfs_pop_time)
448 dev_warn(card->dev,
449 "ASoC: Failed to create pop time debugfs file\n");
450 }
451
452 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
453 {
454 debugfs_remove_recursive(card->debugfs_card_root);
455 }
456
457 #else
458
459 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
460 {
461 }
462
463 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
464 {
465 }
466
467 static inline void soc_init_platform_debugfs(struct snd_soc_platform *platform)
468 {
469 }
470
471 static inline void soc_cleanup_platform_debugfs(struct snd_soc_platform *platform)
472 {
473 }
474
475 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
476 {
477 }
478
479 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
480 {
481 }
482 #endif
483
484 struct snd_pcm_substream *snd_soc_get_dai_substream(struct snd_soc_card *card,
485 const char *dai_link, int stream)
486 {
487 int i;
488
489 for (i = 0; i < card->num_links; i++) {
490 if (card->rtd[i].dai_link->no_pcm &&
491 !strcmp(card->rtd[i].dai_link->name, dai_link))
492 return card->rtd[i].pcm->streams[stream].substream;
493 }
494 dev_dbg(card->dev, "ASoC: failed to find dai link %s\n", dai_link);
495 return NULL;
496 }
497 EXPORT_SYMBOL_GPL(snd_soc_get_dai_substream);
498
499 struct snd_soc_pcm_runtime *snd_soc_get_pcm_runtime(struct snd_soc_card *card,
500 const char *dai_link)
501 {
502 int i;
503
504 for (i = 0; i < card->num_links; i++) {
505 if (!strcmp(card->rtd[i].dai_link->name, dai_link))
506 return &card->rtd[i];
507 }
508 dev_dbg(card->dev, "ASoC: failed to find rtd %s\n", dai_link);
509 return NULL;
510 }
511 EXPORT_SYMBOL_GPL(snd_soc_get_pcm_runtime);
512
513 #ifdef CONFIG_SND_SOC_AC97_BUS
514 /* unregister ac97 codec */
515 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
516 {
517 if (codec->ac97->dev.bus)
518 device_unregister(&codec->ac97->dev);
519 return 0;
520 }
521
522 /* stop no dev release warning */
523 static void soc_ac97_device_release(struct device *dev){}
524
525 /* register ac97 codec to bus */
526 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
527 {
528 int err;
529
530 codec->ac97->dev.bus = &ac97_bus_type;
531 codec->ac97->dev.parent = codec->card->dev;
532 codec->ac97->dev.release = soc_ac97_device_release;
533
534 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
535 codec->card->snd_card->number, 0, codec->name);
536 err = device_register(&codec->ac97->dev);
537 if (err < 0) {
538 dev_err(codec->dev, "ASoC: Can't register ac97 bus\n");
539 codec->ac97->dev.bus = NULL;
540 return err;
541 }
542 return 0;
543 }
544 #endif
545
546 static void codec2codec_close_delayed_work(struct work_struct *work)
547 {
548 /* Currently nothing to do for c2c links
549 * Since c2c links are internal nodes in the DAPM graph and
550 * don't interface with the outside world or application layer
551 * we don't have to do any special handling on close.
552 */
553 }
554
555 #ifdef CONFIG_PM_SLEEP
556 /* powers down audio subsystem for suspend */
557 int snd_soc_suspend(struct device *dev)
558 {
559 struct snd_soc_card *card = dev_get_drvdata(dev);
560 struct snd_soc_codec *codec;
561 int i;
562
563 /* If the initialization of this soc device failed, there is no codec
564 * associated with it. Just bail out in this case.
565 */
566 if (list_empty(&card->codec_dev_list))
567 return 0;
568
569 /* Due to the resume being scheduled into a workqueue we could
570 * suspend before that's finished - wait for it to complete.
571 */
572 snd_power_lock(card->snd_card);
573 snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
574 snd_power_unlock(card->snd_card);
575
576 /* we're going to block userspace touching us until resume completes */
577 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
578
579 /* mute any active DACs */
580 for (i = 0; i < card->num_rtd; i++) {
581 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
582 struct snd_soc_dai_driver *drv = dai->driver;
583
584 if (card->rtd[i].dai_link->ignore_suspend)
585 continue;
586
587 if (drv->ops->digital_mute && dai->playback_active)
588 drv->ops->digital_mute(dai, 1);
589 }
590
591 /* suspend all pcms */
592 for (i = 0; i < card->num_rtd; i++) {
593 if (card->rtd[i].dai_link->ignore_suspend)
594 continue;
595
596 snd_pcm_suspend_all(card->rtd[i].pcm);
597 }
598
599 if (card->suspend_pre)
600 card->suspend_pre(card);
601
602 for (i = 0; i < card->num_rtd; i++) {
603 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
604 struct snd_soc_platform *platform = card->rtd[i].platform;
605
606 if (card->rtd[i].dai_link->ignore_suspend)
607 continue;
608
609 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
610 cpu_dai->driver->suspend(cpu_dai);
611 if (platform->driver->suspend && !platform->suspended) {
612 platform->driver->suspend(cpu_dai);
613 platform->suspended = 1;
614 }
615 }
616
617 /* close any waiting streams and save state */
618 for (i = 0; i < card->num_rtd; i++) {
619 flush_delayed_work(&card->rtd[i].delayed_work);
620 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
621 }
622
623 for (i = 0; i < card->num_rtd; i++) {
624
625 if (card->rtd[i].dai_link->ignore_suspend)
626 continue;
627
628 snd_soc_dapm_stream_event(&card->rtd[i],
629 SNDRV_PCM_STREAM_PLAYBACK,
630 SND_SOC_DAPM_STREAM_SUSPEND);
631
632 snd_soc_dapm_stream_event(&card->rtd[i],
633 SNDRV_PCM_STREAM_CAPTURE,
634 SND_SOC_DAPM_STREAM_SUSPEND);
635 }
636
637 /* Recheck all analogue paths too */
638 dapm_mark_io_dirty(&card->dapm);
639 snd_soc_dapm_sync(&card->dapm);
640
641 /* suspend all CODECs */
642 list_for_each_entry(codec, &card->codec_dev_list, card_list) {
643 /* If there are paths active then the CODEC will be held with
644 * bias _ON and should not be suspended. */
645 if (!codec->suspended && codec->driver->suspend) {
646 switch (codec->dapm.bias_level) {
647 case SND_SOC_BIAS_STANDBY:
648 /*
649 * If the CODEC is capable of idle
650 * bias off then being in STANDBY
651 * means it's doing something,
652 * otherwise fall through.
653 */
654 if (codec->dapm.idle_bias_off) {
655 dev_dbg(codec->dev,
656 "ASoC: idle_bias_off CODEC on over suspend\n");
657 break;
658 }
659 case SND_SOC_BIAS_OFF:
660 codec->driver->suspend(codec);
661 codec->suspended = 1;
662 codec->cache_sync = 1;
663 if (codec->using_regmap)
664 regcache_mark_dirty(codec->control_data);
665 break;
666 default:
667 dev_dbg(codec->dev,
668 "ASoC: CODEC is on over suspend\n");
669 break;
670 }
671 }
672 }
673
674 for (i = 0; i < card->num_rtd; i++) {
675 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
676
677 if (card->rtd[i].dai_link->ignore_suspend)
678 continue;
679
680 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
681 cpu_dai->driver->suspend(cpu_dai);
682 }
683
684 if (card->suspend_post)
685 card->suspend_post(card);
686
687 return 0;
688 }
689 EXPORT_SYMBOL_GPL(snd_soc_suspend);
690
691 /* deferred resume work, so resume can complete before we finished
692 * setting our codec back up, which can be very slow on I2C
693 */
694 static void soc_resume_deferred(struct work_struct *work)
695 {
696 struct snd_soc_card *card =
697 container_of(work, struct snd_soc_card, deferred_resume_work);
698 struct snd_soc_codec *codec;
699 int i;
700
701 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
702 * so userspace apps are blocked from touching us
703 */
704
705 dev_dbg(card->dev, "ASoC: starting resume work\n");
706
707 /* Bring us up into D2 so that DAPM starts enabling things */
708 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
709
710 if (card->resume_pre)
711 card->resume_pre(card);
712
713 /* resume AC97 DAIs */
714 for (i = 0; i < card->num_rtd; i++) {
715 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
716
717 if (card->rtd[i].dai_link->ignore_suspend)
718 continue;
719
720 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
721 cpu_dai->driver->resume(cpu_dai);
722 }
723
724 list_for_each_entry(codec, &card->codec_dev_list, card_list) {
725 /* If the CODEC was idle over suspend then it will have been
726 * left with bias OFF or STANDBY and suspended so we must now
727 * resume. Otherwise the suspend was suppressed.
728 */
729 if (codec->driver->resume && codec->suspended) {
730 switch (codec->dapm.bias_level) {
731 case SND_SOC_BIAS_STANDBY:
732 case SND_SOC_BIAS_OFF:
733 codec->driver->resume(codec);
734 codec->suspended = 0;
735 break;
736 default:
737 dev_dbg(codec->dev,
738 "ASoC: CODEC was on over suspend\n");
739 break;
740 }
741 }
742 }
743
744 for (i = 0; i < card->num_rtd; i++) {
745
746 if (card->rtd[i].dai_link->ignore_suspend)
747 continue;
748
749 snd_soc_dapm_stream_event(&card->rtd[i],
750 SNDRV_PCM_STREAM_PLAYBACK,
751 SND_SOC_DAPM_STREAM_RESUME);
752
753 snd_soc_dapm_stream_event(&card->rtd[i],
754 SNDRV_PCM_STREAM_CAPTURE,
755 SND_SOC_DAPM_STREAM_RESUME);
756 }
757
758 /* unmute any active DACs */
759 for (i = 0; i < card->num_rtd; i++) {
760 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
761 struct snd_soc_dai_driver *drv = dai->driver;
762
763 if (card->rtd[i].dai_link->ignore_suspend)
764 continue;
765
766 if (drv->ops->digital_mute && dai->playback_active)
767 drv->ops->digital_mute(dai, 0);
768 }
769
770 for (i = 0; i < card->num_rtd; i++) {
771 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
772 struct snd_soc_platform *platform = card->rtd[i].platform;
773
774 if (card->rtd[i].dai_link->ignore_suspend)
775 continue;
776
777 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
778 cpu_dai->driver->resume(cpu_dai);
779 if (platform->driver->resume && platform->suspended) {
780 platform->driver->resume(cpu_dai);
781 platform->suspended = 0;
782 }
783 }
784
785 if (card->resume_post)
786 card->resume_post(card);
787
788 dev_dbg(card->dev, "ASoC: resume work completed\n");
789
790 /* userspace can access us now we are back as we were before */
791 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
792
793 /* Recheck all analogue paths too */
794 dapm_mark_io_dirty(&card->dapm);
795 snd_soc_dapm_sync(&card->dapm);
796 }
797
798 /* powers up audio subsystem after a suspend */
799 int snd_soc_resume(struct device *dev)
800 {
801 struct snd_soc_card *card = dev_get_drvdata(dev);
802 int i, ac97_control = 0;
803
804 /* If the initialization of this soc device failed, there is no codec
805 * associated with it. Just bail out in this case.
806 */
807 if (list_empty(&card->codec_dev_list))
808 return 0;
809
810 /* AC97 devices might have other drivers hanging off them so
811 * need to resume immediately. Other drivers don't have that
812 * problem and may take a substantial amount of time to resume
813 * due to I/O costs and anti-pop so handle them out of line.
814 */
815 for (i = 0; i < card->num_rtd; i++) {
816 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
817 ac97_control |= cpu_dai->driver->ac97_control;
818 }
819 if (ac97_control) {
820 dev_dbg(dev, "ASoC: Resuming AC97 immediately\n");
821 soc_resume_deferred(&card->deferred_resume_work);
822 } else {
823 dev_dbg(dev, "ASoC: Scheduling resume work\n");
824 if (!schedule_work(&card->deferred_resume_work))
825 dev_err(dev, "ASoC: resume work item may be lost\n");
826 }
827
828 return 0;
829 }
830 EXPORT_SYMBOL_GPL(snd_soc_resume);
831 #else
832 #define snd_soc_suspend NULL
833 #define snd_soc_resume NULL
834 #endif
835
836 static const struct snd_soc_dai_ops null_dai_ops = {
837 };
838
839 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
840 {
841 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
842 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
843 struct snd_soc_codec *codec;
844 struct snd_soc_platform *platform;
845 struct snd_soc_dai *codec_dai, *cpu_dai;
846 const char *platform_name;
847
848 dev_dbg(card->dev, "ASoC: binding %s at idx %d\n", dai_link->name, num);
849
850 /* Find CPU DAI from registered DAIs*/
851 list_for_each_entry(cpu_dai, &dai_list, list) {
852 if (dai_link->cpu_of_node &&
853 (cpu_dai->dev->of_node != dai_link->cpu_of_node))
854 continue;
855 if (dai_link->cpu_name &&
856 strcmp(dev_name(cpu_dai->dev), dai_link->cpu_name))
857 continue;
858 if (dai_link->cpu_dai_name &&
859 strcmp(cpu_dai->name, dai_link->cpu_dai_name))
860 continue;
861
862 rtd->cpu_dai = cpu_dai;
863 }
864
865 if (!rtd->cpu_dai) {
866 dev_err(card->dev, "ASoC: CPU DAI %s not registered\n",
867 dai_link->cpu_dai_name);
868 return -EPROBE_DEFER;
869 }
870
871 /* Find CODEC from registered CODECs */
872 list_for_each_entry(codec, &codec_list, list) {
873 if (dai_link->codec_of_node) {
874 if (codec->dev->of_node != dai_link->codec_of_node)
875 continue;
876 } else {
877 if (strcmp(codec->name, dai_link->codec_name))
878 continue;
879 }
880
881 rtd->codec = codec;
882
883 /*
884 * CODEC found, so find CODEC DAI from registered DAIs from
885 * this CODEC
886 */
887 list_for_each_entry(codec_dai, &dai_list, list) {
888 if (codec->dev == codec_dai->dev &&
889 !strcmp(codec_dai->name,
890 dai_link->codec_dai_name)) {
891
892 rtd->codec_dai = codec_dai;
893 }
894 }
895
896 if (!rtd->codec_dai) {
897 dev_err(card->dev, "ASoC: CODEC DAI %s not registered\n",
898 dai_link->codec_dai_name);
899 return -EPROBE_DEFER;
900 }
901 }
902
903 if (!rtd->codec) {
904 dev_err(card->dev, "ASoC: CODEC %s not registered\n",
905 dai_link->codec_name);
906 return -EPROBE_DEFER;
907 }
908
909 /* if there's no platform we match on the empty platform */
910 platform_name = dai_link->platform_name;
911 if (!platform_name && !dai_link->platform_of_node)
912 platform_name = "snd-soc-dummy";
913
914 /* find one from the set of registered platforms */
915 list_for_each_entry(platform, &platform_list, list) {
916 if (dai_link->platform_of_node) {
917 if (platform->dev->of_node !=
918 dai_link->platform_of_node)
919 continue;
920 } else {
921 if (strcmp(platform->name, platform_name))
922 continue;
923 }
924
925 rtd->platform = platform;
926 }
927 if (!rtd->platform) {
928 dev_err(card->dev, "ASoC: platform %s not registered\n",
929 dai_link->platform_name);
930 return -EPROBE_DEFER;
931 }
932
933 card->num_rtd++;
934
935 return 0;
936 }
937
938 static int soc_remove_platform(struct snd_soc_platform *platform)
939 {
940 int ret;
941
942 if (platform->driver->remove) {
943 ret = platform->driver->remove(platform);
944 if (ret < 0)
945 dev_err(platform->dev, "ASoC: failed to remove %d\n",
946 ret);
947 }
948
949 /* Make sure all DAPM widgets are freed */
950 snd_soc_dapm_free(&platform->dapm);
951
952 soc_cleanup_platform_debugfs(platform);
953 platform->probed = 0;
954 list_del(&platform->card_list);
955 module_put(platform->dev->driver->owner);
956
957 return 0;
958 }
959
960 static void soc_remove_codec(struct snd_soc_codec *codec)
961 {
962 int err;
963
964 if (codec->driver->remove) {
965 err = codec->driver->remove(codec);
966 if (err < 0)
967 dev_err(codec->dev, "ASoC: failed to remove %d\n", err);
968 }
969
970 /* Make sure all DAPM widgets are freed */
971 snd_soc_dapm_free(&codec->dapm);
972
973 soc_cleanup_codec_debugfs(codec);
974 codec->probed = 0;
975 list_del(&codec->card_list);
976 module_put(codec->dev->driver->owner);
977 }
978
979 static void soc_remove_link_dais(struct snd_soc_card *card, int num, int order)
980 {
981 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
982 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
983 int err;
984
985 /* unregister the rtd device */
986 if (rtd->dev_registered) {
987 device_remove_file(rtd->dev, &dev_attr_pmdown_time);
988 device_remove_file(rtd->dev, &dev_attr_codec_reg);
989 device_unregister(rtd->dev);
990 rtd->dev_registered = 0;
991 }
992
993 /* remove the CODEC DAI */
994 if (codec_dai && codec_dai->probed &&
995 codec_dai->driver->remove_order == order) {
996 if (codec_dai->driver->remove) {
997 err = codec_dai->driver->remove(codec_dai);
998 if (err < 0)
999 dev_err(codec_dai->dev,
1000 "ASoC: failed to remove %s: %d\n",
1001 codec_dai->name, err);
1002 }
1003 codec_dai->probed = 0;
1004 list_del(&codec_dai->card_list);
1005 }
1006
1007 /* remove the cpu_dai */
1008 if (cpu_dai && cpu_dai->probed &&
1009 cpu_dai->driver->remove_order == order) {
1010 if (cpu_dai->driver->remove) {
1011 err = cpu_dai->driver->remove(cpu_dai);
1012 if (err < 0)
1013 dev_err(cpu_dai->dev,
1014 "ASoC: failed to remove %s: %d\n",
1015 cpu_dai->name, err);
1016 }
1017 cpu_dai->probed = 0;
1018 list_del(&cpu_dai->card_list);
1019
1020 if (!cpu_dai->codec) {
1021 snd_soc_dapm_free(&cpu_dai->dapm);
1022 module_put(cpu_dai->dev->driver->owner);
1023 }
1024 }
1025 }
1026
1027 static void soc_remove_link_components(struct snd_soc_card *card, int num,
1028 int order)
1029 {
1030 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1031 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1032 struct snd_soc_dai *codec_dai = rtd->codec_dai;
1033 struct snd_soc_platform *platform = rtd->platform;
1034 struct snd_soc_codec *codec;
1035
1036 /* remove the platform */
1037 if (platform && platform->probed &&
1038 platform->driver->remove_order == order) {
1039 soc_remove_platform(platform);
1040 }
1041
1042 /* remove the CODEC-side CODEC */
1043 if (codec_dai) {
1044 codec = codec_dai->codec;
1045 if (codec && codec->probed &&
1046 codec->driver->remove_order == order)
1047 soc_remove_codec(codec);
1048 }
1049
1050 /* remove any CPU-side CODEC */
1051 if (cpu_dai) {
1052 codec = cpu_dai->codec;
1053 if (codec && codec->probed &&
1054 codec->driver->remove_order == order)
1055 soc_remove_codec(codec);
1056 }
1057 }
1058
1059 static void soc_remove_dai_links(struct snd_soc_card *card)
1060 {
1061 int dai, order;
1062
1063 for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
1064 order++) {
1065 for (dai = 0; dai < card->num_rtd; dai++)
1066 soc_remove_link_dais(card, dai, order);
1067 }
1068
1069 for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
1070 order++) {
1071 for (dai = 0; dai < card->num_rtd; dai++)
1072 soc_remove_link_components(card, dai, order);
1073 }
1074
1075 card->num_rtd = 0;
1076 }
1077
1078 static void soc_set_name_prefix(struct snd_soc_card *card,
1079 struct snd_soc_codec *codec)
1080 {
1081 int i;
1082
1083 if (card->codec_conf == NULL)
1084 return;
1085
1086 for (i = 0; i < card->num_configs; i++) {
1087 struct snd_soc_codec_conf *map = &card->codec_conf[i];
1088 if (map->dev_name && !strcmp(codec->name, map->dev_name)) {
1089 codec->name_prefix = map->name_prefix;
1090 break;
1091 }
1092 }
1093 }
1094
1095 static int soc_probe_codec(struct snd_soc_card *card,
1096 struct snd_soc_codec *codec)
1097 {
1098 int ret = 0;
1099 const struct snd_soc_codec_driver *driver = codec->driver;
1100 struct snd_soc_dai *dai;
1101
1102 codec->card = card;
1103 codec->dapm.card = card;
1104 soc_set_name_prefix(card, codec);
1105
1106 if (!try_module_get(codec->dev->driver->owner))
1107 return -ENODEV;
1108
1109 soc_init_codec_debugfs(codec);
1110
1111 if (driver->dapm_widgets)
1112 snd_soc_dapm_new_controls(&codec->dapm, driver->dapm_widgets,
1113 driver->num_dapm_widgets);
1114
1115 /* Create DAPM widgets for each DAI stream */
1116 list_for_each_entry(dai, &dai_list, list) {
1117 if (dai->dev != codec->dev)
1118 continue;
1119
1120 snd_soc_dapm_new_dai_widgets(&codec->dapm, dai);
1121 }
1122
1123 codec->dapm.idle_bias_off = driver->idle_bias_off;
1124
1125 if (driver->probe) {
1126 ret = driver->probe(codec);
1127 if (ret < 0) {
1128 dev_err(codec->dev,
1129 "ASoC: failed to probe CODEC %d\n", ret);
1130 goto err_probe;
1131 }
1132 WARN(codec->dapm.idle_bias_off &&
1133 codec->dapm.bias_level != SND_SOC_BIAS_OFF,
1134 "codec %s can not start from non-off bias with idle_bias_off==1\n",
1135 codec->name);
1136 }
1137
1138 /* If the driver didn't set I/O up try regmap */
1139 if (!codec->write && dev_get_regmap(codec->dev, NULL))
1140 snd_soc_codec_set_cache_io(codec, 0, 0, SND_SOC_REGMAP);
1141
1142 if (driver->controls)
1143 snd_soc_add_codec_controls(codec, driver->controls,
1144 driver->num_controls);
1145 if (driver->dapm_routes)
1146 snd_soc_dapm_add_routes(&codec->dapm, driver->dapm_routes,
1147 driver->num_dapm_routes);
1148
1149 /* mark codec as probed and add to card codec list */
1150 codec->probed = 1;
1151 list_add(&codec->card_list, &card->codec_dev_list);
1152 list_add(&codec->dapm.list, &card->dapm_list);
1153
1154 return 0;
1155
1156 err_probe:
1157 soc_cleanup_codec_debugfs(codec);
1158 module_put(codec->dev->driver->owner);
1159
1160 return ret;
1161 }
1162
1163 static int soc_probe_platform(struct snd_soc_card *card,
1164 struct snd_soc_platform *platform)
1165 {
1166 int ret = 0;
1167 const struct snd_soc_platform_driver *driver = platform->driver;
1168 struct snd_soc_dai *dai;
1169
1170 platform->card = card;
1171 platform->dapm.card = card;
1172
1173 if (!try_module_get(platform->dev->driver->owner))
1174 return -ENODEV;
1175
1176 soc_init_platform_debugfs(platform);
1177
1178 if (driver->dapm_widgets)
1179 snd_soc_dapm_new_controls(&platform->dapm,
1180 driver->dapm_widgets, driver->num_dapm_widgets);
1181
1182 /* Create DAPM widgets for each DAI stream */
1183 list_for_each_entry(dai, &dai_list, list) {
1184 if (dai->dev != platform->dev)
1185 continue;
1186
1187 snd_soc_dapm_new_dai_widgets(&platform->dapm, dai);
1188 }
1189
1190 platform->dapm.idle_bias_off = 1;
1191
1192 if (driver->probe) {
1193 ret = driver->probe(platform);
1194 if (ret < 0) {
1195 dev_err(platform->dev,
1196 "ASoC: failed to probe platform %d\n", ret);
1197 goto err_probe;
1198 }
1199 }
1200
1201 if (driver->controls)
1202 snd_soc_add_platform_controls(platform, driver->controls,
1203 driver->num_controls);
1204 if (driver->dapm_routes)
1205 snd_soc_dapm_add_routes(&platform->dapm, driver->dapm_routes,
1206 driver->num_dapm_routes);
1207
1208 /* mark platform as probed and add to card platform list */
1209 platform->probed = 1;
1210 list_add(&platform->card_list, &card->platform_dev_list);
1211 list_add(&platform->dapm.list, &card->dapm_list);
1212
1213 return 0;
1214
1215 err_probe:
1216 soc_cleanup_platform_debugfs(platform);
1217 module_put(platform->dev->driver->owner);
1218
1219 return ret;
1220 }
1221
1222 static void rtd_release(struct device *dev)
1223 {
1224 kfree(dev);
1225 }
1226
1227 static int soc_post_component_init(struct snd_soc_card *card,
1228 struct snd_soc_codec *codec,
1229 int num, int dailess)
1230 {
1231 struct snd_soc_dai_link *dai_link = NULL;
1232 struct snd_soc_aux_dev *aux_dev = NULL;
1233 struct snd_soc_pcm_runtime *rtd;
1234 const char *temp, *name;
1235 int ret = 0;
1236
1237 if (!dailess) {
1238 dai_link = &card->dai_link[num];
1239 rtd = &card->rtd[num];
1240 name = dai_link->name;
1241 } else {
1242 aux_dev = &card->aux_dev[num];
1243 rtd = &card->rtd_aux[num];
1244 name = aux_dev->name;
1245 }
1246 rtd->card = card;
1247
1248 /* machine controls, routes and widgets are not prefixed */
1249 temp = codec->name_prefix;
1250 codec->name_prefix = NULL;
1251
1252 /* do machine specific initialization */
1253 if (!dailess && dai_link->init)
1254 ret = dai_link->init(rtd);
1255 else if (dailess && aux_dev->init)
1256 ret = aux_dev->init(&codec->dapm);
1257 if (ret < 0) {
1258 dev_err(card->dev, "ASoC: failed to init %s: %d\n", name, ret);
1259 return ret;
1260 }
1261 codec->name_prefix = temp;
1262
1263 /* register the rtd device */
1264 rtd->codec = codec;
1265
1266 rtd->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
1267 if (!rtd->dev)
1268 return -ENOMEM;
1269 device_initialize(rtd->dev);
1270 rtd->dev->parent = card->dev;
1271 rtd->dev->release = rtd_release;
1272 rtd->dev->init_name = name;
1273 dev_set_drvdata(rtd->dev, rtd);
1274 mutex_init(&rtd->pcm_mutex);
1275 INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_PLAYBACK].be_clients);
1276 INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_CAPTURE].be_clients);
1277 INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_PLAYBACK].fe_clients);
1278 INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_CAPTURE].fe_clients);
1279 ret = device_add(rtd->dev);
1280 if (ret < 0) {
1281 /* calling put_device() here to free the rtd->dev */
1282 put_device(rtd->dev);
1283 dev_err(card->dev,
1284 "ASoC: failed to register runtime device: %d\n", ret);
1285 return ret;
1286 }
1287 rtd->dev_registered = 1;
1288
1289 /* add DAPM sysfs entries for this codec */
1290 ret = snd_soc_dapm_sys_add(rtd->dev);
1291 if (ret < 0)
1292 dev_err(codec->dev,
1293 "ASoC: failed to add codec dapm sysfs entries: %d\n", ret);
1294
1295 /* add codec sysfs entries */
1296 ret = device_create_file(rtd->dev, &dev_attr_codec_reg);
1297 if (ret < 0)
1298 dev_err(codec->dev,
1299 "ASoC: failed to add codec sysfs files: %d\n", ret);
1300
1301 #ifdef CONFIG_DEBUG_FS
1302 /* add DPCM sysfs entries */
1303 if (!dailess && !dai_link->dynamic)
1304 goto out;
1305
1306 ret = soc_dpcm_debugfs_add(rtd);
1307 if (ret < 0)
1308 dev_err(rtd->dev, "ASoC: failed to add dpcm sysfs entries: %d\n", ret);
1309
1310 out:
1311 #endif
1312 return 0;
1313 }
1314
1315 static int soc_probe_link_components(struct snd_soc_card *card, int num,
1316 int order)
1317 {
1318 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1319 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1320 struct snd_soc_dai *codec_dai = rtd->codec_dai;
1321 struct snd_soc_platform *platform = rtd->platform;
1322 int ret;
1323
1324 /* probe the CPU-side component, if it is a CODEC */
1325 if (cpu_dai->codec &&
1326 !cpu_dai->codec->probed &&
1327 cpu_dai->codec->driver->probe_order == order) {
1328 ret = soc_probe_codec(card, cpu_dai->codec);
1329 if (ret < 0)
1330 return ret;
1331 }
1332
1333 /* probe the CODEC-side component */
1334 if (!codec_dai->codec->probed &&
1335 codec_dai->codec->driver->probe_order == order) {
1336 ret = soc_probe_codec(card, codec_dai->codec);
1337 if (ret < 0)
1338 return ret;
1339 }
1340
1341 /* probe the platform */
1342 if (!platform->probed &&
1343 platform->driver->probe_order == order) {
1344 ret = soc_probe_platform(card, platform);
1345 if (ret < 0)
1346 return ret;
1347 }
1348
1349 return 0;
1350 }
1351
1352 static int soc_probe_link_dais(struct snd_soc_card *card, int num, int order)
1353 {
1354 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1355 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1356 struct snd_soc_codec *codec = rtd->codec;
1357 struct snd_soc_platform *platform = rtd->platform;
1358 struct snd_soc_dai *codec_dai = rtd->codec_dai;
1359 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1360 struct snd_soc_dapm_widget *play_w, *capture_w;
1361 int ret;
1362
1363 dev_dbg(card->dev, "ASoC: probe %s dai link %d late %d\n",
1364 card->name, num, order);
1365
1366 /* config components */
1367 cpu_dai->platform = platform;
1368 codec_dai->card = card;
1369 cpu_dai->card = card;
1370
1371 /* set default power off timeout */
1372 rtd->pmdown_time = pmdown_time;
1373
1374 /* probe the cpu_dai */
1375 if (!cpu_dai->probed &&
1376 cpu_dai->driver->probe_order == order) {
1377 if (!cpu_dai->codec) {
1378 cpu_dai->dapm.card = card;
1379 if (!try_module_get(cpu_dai->dev->driver->owner))
1380 return -ENODEV;
1381
1382 list_add(&cpu_dai->dapm.list, &card->dapm_list);
1383 snd_soc_dapm_new_dai_widgets(&cpu_dai->dapm, cpu_dai);
1384 }
1385
1386 if (cpu_dai->driver->probe) {
1387 ret = cpu_dai->driver->probe(cpu_dai);
1388 if (ret < 0) {
1389 dev_err(cpu_dai->dev,
1390 "ASoC: failed to probe CPU DAI %s: %d\n",
1391 cpu_dai->name, ret);
1392 module_put(cpu_dai->dev->driver->owner);
1393 return ret;
1394 }
1395 }
1396 cpu_dai->probed = 1;
1397 /* mark cpu_dai as probed and add to card dai list */
1398 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1399 }
1400
1401 /* probe the CODEC DAI */
1402 if (!codec_dai->probed && codec_dai->driver->probe_order == order) {
1403 if (codec_dai->driver->probe) {
1404 ret = codec_dai->driver->probe(codec_dai);
1405 if (ret < 0) {
1406 dev_err(codec_dai->dev,
1407 "ASoC: failed to probe CODEC DAI %s: %d\n",
1408 codec_dai->name, ret);
1409 return ret;
1410 }
1411 }
1412
1413 /* mark codec_dai as probed and add to card dai list */
1414 codec_dai->probed = 1;
1415 list_add(&codec_dai->card_list, &card->dai_dev_list);
1416 }
1417
1418 /* complete DAI probe during last probe */
1419 if (order != SND_SOC_COMP_ORDER_LAST)
1420 return 0;
1421
1422 ret = soc_post_component_init(card, codec, num, 0);
1423 if (ret)
1424 return ret;
1425
1426 ret = device_create_file(rtd->dev, &dev_attr_pmdown_time);
1427 if (ret < 0)
1428 dev_warn(rtd->dev, "ASoC: failed to add pmdown_time sysfs: %d\n",
1429 ret);
1430
1431 if (cpu_dai->driver->compress_dai) {
1432 /*create compress_device"*/
1433 ret = soc_new_compress(rtd, num);
1434 if (ret < 0) {
1435 dev_err(card->dev, "ASoC: can't create compress %s\n",
1436 dai_link->stream_name);
1437 return ret;
1438 }
1439 } else {
1440
1441 if (!dai_link->params) {
1442 /* create the pcm */
1443 ret = soc_new_pcm(rtd, num);
1444 if (ret < 0) {
1445 dev_err(card->dev, "ASoC: can't create pcm %s :%d\n",
1446 dai_link->stream_name, ret);
1447 return ret;
1448 }
1449 } else {
1450 INIT_DELAYED_WORK(&rtd->delayed_work,
1451 codec2codec_close_delayed_work);
1452
1453 /* link the DAI widgets */
1454 play_w = codec_dai->playback_widget;
1455 capture_w = cpu_dai->capture_widget;
1456 if (play_w && capture_w) {
1457 ret = snd_soc_dapm_new_pcm(card, dai_link->params,
1458 capture_w, play_w);
1459 if (ret != 0) {
1460 dev_err(card->dev, "ASoC: Can't link %s to %s: %d\n",
1461 play_w->name, capture_w->name, ret);
1462 return ret;
1463 }
1464 }
1465
1466 play_w = cpu_dai->playback_widget;
1467 capture_w = codec_dai->capture_widget;
1468 if (play_w && capture_w) {
1469 ret = snd_soc_dapm_new_pcm(card, dai_link->params,
1470 capture_w, play_w);
1471 if (ret != 0) {
1472 dev_err(card->dev, "ASoC: Can't link %s to %s: %d\n",
1473 play_w->name, capture_w->name, ret);
1474 return ret;
1475 }
1476 }
1477 }
1478 }
1479
1480 /* add platform data for AC97 devices */
1481 if (rtd->codec_dai->driver->ac97_control)
1482 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1483
1484 return 0;
1485 }
1486
1487 #ifdef CONFIG_SND_SOC_AC97_BUS
1488 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1489 {
1490 int ret;
1491
1492 /* Only instantiate AC97 if not already done by the adaptor
1493 * for the generic AC97 subsystem.
1494 */
1495 if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1496 /*
1497 * It is possible that the AC97 device is already registered to
1498 * the device subsystem. This happens when the device is created
1499 * via snd_ac97_mixer(). Currently only SoC codec that does so
1500 * is the generic AC97 glue but others migh emerge.
1501 *
1502 * In those cases we don't try to register the device again.
1503 */
1504 if (!rtd->codec->ac97_created)
1505 return 0;
1506
1507 ret = soc_ac97_dev_register(rtd->codec);
1508 if (ret < 0) {
1509 dev_err(rtd->codec->dev,
1510 "ASoC: AC97 device register failed: %d\n", ret);
1511 return ret;
1512 }
1513
1514 rtd->codec->ac97_registered = 1;
1515 }
1516 return 0;
1517 }
1518
1519 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1520 {
1521 if (codec->ac97_registered) {
1522 soc_ac97_dev_unregister(codec);
1523 codec->ac97_registered = 0;
1524 }
1525 }
1526 #endif
1527
1528 static int soc_check_aux_dev(struct snd_soc_card *card, int num)
1529 {
1530 struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1531 struct snd_soc_codec *codec;
1532
1533 /* find CODEC from registered CODECs*/
1534 list_for_each_entry(codec, &codec_list, list) {
1535 if (!strcmp(codec->name, aux_dev->codec_name))
1536 return 0;
1537 }
1538
1539 dev_err(card->dev, "ASoC: %s not registered\n", aux_dev->codec_name);
1540
1541 return -EPROBE_DEFER;
1542 }
1543
1544 static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
1545 {
1546 struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1547 struct snd_soc_codec *codec;
1548 int ret = -ENODEV;
1549
1550 /* find CODEC from registered CODECs*/
1551 list_for_each_entry(codec, &codec_list, list) {
1552 if (!strcmp(codec->name, aux_dev->codec_name)) {
1553 if (codec->probed) {
1554 dev_err(codec->dev,
1555 "ASoC: codec already probed");
1556 ret = -EBUSY;
1557 goto out;
1558 }
1559 goto found;
1560 }
1561 }
1562 /* codec not found */
1563 dev_err(card->dev, "ASoC: codec %s not found", aux_dev->codec_name);
1564 return -EPROBE_DEFER;
1565
1566 found:
1567 ret = soc_probe_codec(card, codec);
1568 if (ret < 0)
1569 return ret;
1570
1571 ret = soc_post_component_init(card, codec, num, 1);
1572
1573 out:
1574 return ret;
1575 }
1576
1577 static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
1578 {
1579 struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1580 struct snd_soc_codec *codec = rtd->codec;
1581
1582 /* unregister the rtd device */
1583 if (rtd->dev_registered) {
1584 device_remove_file(rtd->dev, &dev_attr_codec_reg);
1585 device_unregister(rtd->dev);
1586 rtd->dev_registered = 0;
1587 }
1588
1589 if (codec && codec->probed)
1590 soc_remove_codec(codec);
1591 }
1592
1593 static int snd_soc_init_codec_cache(struct snd_soc_codec *codec)
1594 {
1595 int ret;
1596
1597 if (codec->cache_init)
1598 return 0;
1599
1600 ret = snd_soc_cache_init(codec);
1601 if (ret < 0) {
1602 dev_err(codec->dev,
1603 "ASoC: Failed to set cache compression type: %d\n",
1604 ret);
1605 return ret;
1606 }
1607 codec->cache_init = 1;
1608 return 0;
1609 }
1610
1611 static int snd_soc_instantiate_card(struct snd_soc_card *card)
1612 {
1613 struct snd_soc_codec *codec;
1614 struct snd_soc_dai_link *dai_link;
1615 int ret, i, order, dai_fmt;
1616
1617 mutex_lock_nested(&card->mutex, SND_SOC_CARD_CLASS_INIT);
1618
1619 /* bind DAIs */
1620 for (i = 0; i < card->num_links; i++) {
1621 ret = soc_bind_dai_link(card, i);
1622 if (ret != 0)
1623 goto base_error;
1624 }
1625
1626 /* check aux_devs too */
1627 for (i = 0; i < card->num_aux_devs; i++) {
1628 ret = soc_check_aux_dev(card, i);
1629 if (ret != 0)
1630 goto base_error;
1631 }
1632
1633 /* initialize the register cache for each available codec */
1634 list_for_each_entry(codec, &codec_list, list) {
1635 if (codec->cache_init)
1636 continue;
1637 ret = snd_soc_init_codec_cache(codec);
1638 if (ret < 0)
1639 goto base_error;
1640 }
1641
1642 /* card bind complete so register a sound card */
1643 ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1644 card->owner, 0, &card->snd_card);
1645 if (ret < 0) {
1646 dev_err(card->dev,
1647 "ASoC: can't create sound card for card %s: %d\n",
1648 card->name, ret);
1649 goto base_error;
1650 }
1651 card->snd_card->dev = card->dev;
1652
1653 card->dapm.bias_level = SND_SOC_BIAS_OFF;
1654 card->dapm.dev = card->dev;
1655 card->dapm.card = card;
1656 list_add(&card->dapm.list, &card->dapm_list);
1657
1658 #ifdef CONFIG_DEBUG_FS
1659 snd_soc_dapm_debugfs_init(&card->dapm, card->debugfs_card_root);
1660 #endif
1661
1662 #ifdef CONFIG_PM_SLEEP
1663 /* deferred resume work */
1664 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1665 #endif
1666
1667 if (card->dapm_widgets)
1668 snd_soc_dapm_new_controls(&card->dapm, card->dapm_widgets,
1669 card->num_dapm_widgets);
1670
1671 /* initialise the sound card only once */
1672 if (card->probe) {
1673 ret = card->probe(card);
1674 if (ret < 0)
1675 goto card_probe_error;
1676 }
1677
1678 /* probe all components used by DAI links on this card */
1679 for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
1680 order++) {
1681 for (i = 0; i < card->num_links; i++) {
1682 ret = soc_probe_link_components(card, i, order);
1683 if (ret < 0) {
1684 dev_err(card->dev,
1685 "ASoC: failed to instantiate card %d\n",
1686 ret);
1687 goto probe_dai_err;
1688 }
1689 }
1690 }
1691
1692 /* probe all DAI links on this card */
1693 for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
1694 order++) {
1695 for (i = 0; i < card->num_links; i++) {
1696 ret = soc_probe_link_dais(card, i, order);
1697 if (ret < 0) {
1698 dev_err(card->dev,
1699 "ASoC: failed to instantiate card %d\n",
1700 ret);
1701 goto probe_dai_err;
1702 }
1703 }
1704 }
1705
1706 for (i = 0; i < card->num_aux_devs; i++) {
1707 ret = soc_probe_aux_dev(card, i);
1708 if (ret < 0) {
1709 dev_err(card->dev,
1710 "ASoC: failed to add auxiliary devices %d\n",
1711 ret);
1712 goto probe_aux_dev_err;
1713 }
1714 }
1715
1716 snd_soc_dapm_link_dai_widgets(card);
1717
1718 if (card->controls)
1719 snd_soc_add_card_controls(card, card->controls, card->num_controls);
1720
1721 if (card->dapm_routes)
1722 snd_soc_dapm_add_routes(&card->dapm, card->dapm_routes,
1723 card->num_dapm_routes);
1724
1725 for (i = 0; i < card->num_links; i++) {
1726 dai_link = &card->dai_link[i];
1727 dai_fmt = dai_link->dai_fmt;
1728
1729 if (dai_fmt) {
1730 ret = snd_soc_dai_set_fmt(card->rtd[i].codec_dai,
1731 dai_fmt);
1732 if (ret != 0 && ret != -ENOTSUPP)
1733 dev_warn(card->rtd[i].codec_dai->dev,
1734 "ASoC: Failed to set DAI format: %d\n",
1735 ret);
1736 }
1737
1738 /* If this is a regular CPU link there will be a platform */
1739 if (dai_fmt &&
1740 (dai_link->platform_name || dai_link->platform_of_node)) {
1741 ret = snd_soc_dai_set_fmt(card->rtd[i].cpu_dai,
1742 dai_fmt);
1743 if (ret != 0 && ret != -ENOTSUPP)
1744 dev_warn(card->rtd[i].cpu_dai->dev,
1745 "ASoC: Failed to set DAI format: %d\n",
1746 ret);
1747 } else if (dai_fmt) {
1748 /* Flip the polarity for the "CPU" end */
1749 dai_fmt &= ~SND_SOC_DAIFMT_MASTER_MASK;
1750 switch (dai_link->dai_fmt &
1751 SND_SOC_DAIFMT_MASTER_MASK) {
1752 case SND_SOC_DAIFMT_CBM_CFM:
1753 dai_fmt |= SND_SOC_DAIFMT_CBS_CFS;
1754 break;
1755 case SND_SOC_DAIFMT_CBM_CFS:
1756 dai_fmt |= SND_SOC_DAIFMT_CBS_CFM;
1757 break;
1758 case SND_SOC_DAIFMT_CBS_CFM:
1759 dai_fmt |= SND_SOC_DAIFMT_CBM_CFS;
1760 break;
1761 case SND_SOC_DAIFMT_CBS_CFS:
1762 dai_fmt |= SND_SOC_DAIFMT_CBM_CFM;
1763 break;
1764 }
1765
1766 ret = snd_soc_dai_set_fmt(card->rtd[i].cpu_dai,
1767 dai_fmt);
1768 if (ret != 0 && ret != -ENOTSUPP)
1769 dev_warn(card->rtd[i].cpu_dai->dev,
1770 "ASoC: Failed to set DAI format: %d\n",
1771 ret);
1772 }
1773 }
1774
1775 snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1776 "%s", card->name);
1777 snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1778 "%s", card->long_name ? card->long_name : card->name);
1779 snprintf(card->snd_card->driver, sizeof(card->snd_card->driver),
1780 "%s", card->driver_name ? card->driver_name : card->name);
1781 for (i = 0; i < ARRAY_SIZE(card->snd_card->driver); i++) {
1782 switch (card->snd_card->driver[i]) {
1783 case '_':
1784 case '-':
1785 case '\0':
1786 break;
1787 default:
1788 if (!isalnum(card->snd_card->driver[i]))
1789 card->snd_card->driver[i] = '_';
1790 break;
1791 }
1792 }
1793
1794 if (card->late_probe) {
1795 ret = card->late_probe(card);
1796 if (ret < 0) {
1797 dev_err(card->dev, "ASoC: %s late_probe() failed: %d\n",
1798 card->name, ret);
1799 goto probe_aux_dev_err;
1800 }
1801 }
1802
1803 if (card->fully_routed)
1804 list_for_each_entry(codec, &card->codec_dev_list, card_list)
1805 snd_soc_dapm_auto_nc_codec_pins(codec);
1806
1807 snd_soc_dapm_new_widgets(card);
1808
1809 ret = snd_card_register(card->snd_card);
1810 if (ret < 0) {
1811 dev_err(card->dev, "ASoC: failed to register soundcard %d\n",
1812 ret);
1813 goto probe_aux_dev_err;
1814 }
1815
1816 #ifdef CONFIG_SND_SOC_AC97_BUS
1817 /* register any AC97 codecs */
1818 for (i = 0; i < card->num_rtd; i++) {
1819 ret = soc_register_ac97_dai_link(&card->rtd[i]);
1820 if (ret < 0) {
1821 dev_err(card->dev,
1822 "ASoC: failed to register AC97: %d\n", ret);
1823 while (--i >= 0)
1824 soc_unregister_ac97_dai_link(card->rtd[i].codec);
1825 goto probe_aux_dev_err;
1826 }
1827 }
1828 #endif
1829
1830 card->instantiated = 1;
1831 snd_soc_dapm_sync(&card->dapm);
1832 mutex_unlock(&card->mutex);
1833
1834 return 0;
1835
1836 probe_aux_dev_err:
1837 for (i = 0; i < card->num_aux_devs; i++)
1838 soc_remove_aux_dev(card, i);
1839
1840 probe_dai_err:
1841 soc_remove_dai_links(card);
1842
1843 card_probe_error:
1844 if (card->remove)
1845 card->remove(card);
1846
1847 snd_card_free(card->snd_card);
1848
1849 base_error:
1850 mutex_unlock(&card->mutex);
1851
1852 return ret;
1853 }
1854
1855 /* probes a new socdev */
1856 static int soc_probe(struct platform_device *pdev)
1857 {
1858 struct snd_soc_card *card = platform_get_drvdata(pdev);
1859
1860 /*
1861 * no card, so machine driver should be registering card
1862 * we should not be here in that case so ret error
1863 */
1864 if (!card)
1865 return -EINVAL;
1866
1867 dev_warn(&pdev->dev,
1868 "ASoC: machine %s should use snd_soc_register_card()\n",
1869 card->name);
1870
1871 /* Bodge while we unpick instantiation */
1872 card->dev = &pdev->dev;
1873
1874 return snd_soc_register_card(card);
1875 }
1876
1877 static int soc_cleanup_card_resources(struct snd_soc_card *card)
1878 {
1879 int i;
1880
1881 /* make sure any delayed work runs */
1882 for (i = 0; i < card->num_rtd; i++) {
1883 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1884 flush_delayed_work(&rtd->delayed_work);
1885 }
1886
1887 /* remove auxiliary devices */
1888 for (i = 0; i < card->num_aux_devs; i++)
1889 soc_remove_aux_dev(card, i);
1890
1891 /* remove and free each DAI */
1892 soc_remove_dai_links(card);
1893
1894 soc_cleanup_card_debugfs(card);
1895
1896 /* remove the card */
1897 if (card->remove)
1898 card->remove(card);
1899
1900 snd_soc_dapm_free(&card->dapm);
1901
1902 snd_card_free(card->snd_card);
1903 return 0;
1904
1905 }
1906
1907 /* removes a socdev */
1908 static int soc_remove(struct platform_device *pdev)
1909 {
1910 struct snd_soc_card *card = platform_get_drvdata(pdev);
1911
1912 snd_soc_unregister_card(card);
1913 return 0;
1914 }
1915
1916 int snd_soc_poweroff(struct device *dev)
1917 {
1918 struct snd_soc_card *card = dev_get_drvdata(dev);
1919 int i;
1920
1921 if (!card->instantiated)
1922 return 0;
1923
1924 /* Flush out pmdown_time work - we actually do want to run it
1925 * now, we're shutting down so no imminent restart. */
1926 for (i = 0; i < card->num_rtd; i++) {
1927 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1928 flush_delayed_work(&rtd->delayed_work);
1929 }
1930
1931 snd_soc_dapm_shutdown(card);
1932
1933 return 0;
1934 }
1935 EXPORT_SYMBOL_GPL(snd_soc_poweroff);
1936
1937 const struct dev_pm_ops snd_soc_pm_ops = {
1938 .suspend = snd_soc_suspend,
1939 .resume = snd_soc_resume,
1940 .freeze = snd_soc_suspend,
1941 .thaw = snd_soc_resume,
1942 .poweroff = snd_soc_poweroff,
1943 .restore = snd_soc_resume,
1944 };
1945 EXPORT_SYMBOL_GPL(snd_soc_pm_ops);
1946
1947 /* ASoC platform driver */
1948 static struct platform_driver soc_driver = {
1949 .driver = {
1950 .name = "soc-audio",
1951 .owner = THIS_MODULE,
1952 .pm = &snd_soc_pm_ops,
1953 },
1954 .probe = soc_probe,
1955 .remove = soc_remove,
1956 };
1957
1958 /**
1959 * snd_soc_codec_volatile_register: Report if a register is volatile.
1960 *
1961 * @codec: CODEC to query.
1962 * @reg: Register to query.
1963 *
1964 * Boolean function indiciating if a CODEC register is volatile.
1965 */
1966 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec,
1967 unsigned int reg)
1968 {
1969 if (codec->volatile_register)
1970 return codec->volatile_register(codec, reg);
1971 else
1972 return 0;
1973 }
1974 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1975
1976 /**
1977 * snd_soc_codec_readable_register: Report if a register is readable.
1978 *
1979 * @codec: CODEC to query.
1980 * @reg: Register to query.
1981 *
1982 * Boolean function indicating if a CODEC register is readable.
1983 */
1984 int snd_soc_codec_readable_register(struct snd_soc_codec *codec,
1985 unsigned int reg)
1986 {
1987 if (codec->readable_register)
1988 return codec->readable_register(codec, reg);
1989 else
1990 return 1;
1991 }
1992 EXPORT_SYMBOL_GPL(snd_soc_codec_readable_register);
1993
1994 /**
1995 * snd_soc_codec_writable_register: Report if a register is writable.
1996 *
1997 * @codec: CODEC to query.
1998 * @reg: Register to query.
1999 *
2000 * Boolean function indicating if a CODEC register is writable.
2001 */
2002 int snd_soc_codec_writable_register(struct snd_soc_codec *codec,
2003 unsigned int reg)
2004 {
2005 if (codec->writable_register)
2006 return codec->writable_register(codec, reg);
2007 else
2008 return 1;
2009 }
2010 EXPORT_SYMBOL_GPL(snd_soc_codec_writable_register);
2011
2012 int snd_soc_platform_read(struct snd_soc_platform *platform,
2013 unsigned int reg)
2014 {
2015 unsigned int ret;
2016
2017 if (!platform->driver->read) {
2018 dev_err(platform->dev, "ASoC: platform has no read back\n");
2019 return -1;
2020 }
2021
2022 ret = platform->driver->read(platform, reg);
2023 dev_dbg(platform->dev, "read %x => %x\n", reg, ret);
2024 trace_snd_soc_preg_read(platform, reg, ret);
2025
2026 return ret;
2027 }
2028 EXPORT_SYMBOL_GPL(snd_soc_platform_read);
2029
2030 int snd_soc_platform_write(struct snd_soc_platform *platform,
2031 unsigned int reg, unsigned int val)
2032 {
2033 if (!platform->driver->write) {
2034 dev_err(platform->dev, "ASoC: platform has no write back\n");
2035 return -1;
2036 }
2037
2038 dev_dbg(platform->dev, "write %x = %x\n", reg, val);
2039 trace_snd_soc_preg_write(platform, reg, val);
2040 return platform->driver->write(platform, reg, val);
2041 }
2042 EXPORT_SYMBOL_GPL(snd_soc_platform_write);
2043
2044 /**
2045 * snd_soc_new_ac97_codec - initailise AC97 device
2046 * @codec: audio codec
2047 * @ops: AC97 bus operations
2048 * @num: AC97 codec number
2049 *
2050 * Initialises AC97 codec resources for use by ad-hoc devices only.
2051 */
2052 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
2053 struct snd_ac97_bus_ops *ops, int num)
2054 {
2055 mutex_lock(&codec->mutex);
2056
2057 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
2058 if (codec->ac97 == NULL) {
2059 mutex_unlock(&codec->mutex);
2060 return -ENOMEM;
2061 }
2062
2063 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
2064 if (codec->ac97->bus == NULL) {
2065 kfree(codec->ac97);
2066 codec->ac97 = NULL;
2067 mutex_unlock(&codec->mutex);
2068 return -ENOMEM;
2069 }
2070
2071 codec->ac97->bus->ops = ops;
2072 codec->ac97->num = num;
2073
2074 /*
2075 * Mark the AC97 device to be created by us. This way we ensure that the
2076 * device will be registered with the device subsystem later on.
2077 */
2078 codec->ac97_created = 1;
2079
2080 mutex_unlock(&codec->mutex);
2081 return 0;
2082 }
2083 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
2084
2085 static struct snd_ac97_reset_cfg snd_ac97_rst_cfg;
2086
2087 static void snd_soc_ac97_warm_reset(struct snd_ac97 *ac97)
2088 {
2089 struct pinctrl *pctl = snd_ac97_rst_cfg.pctl;
2090
2091 pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_warm_reset);
2092
2093 gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 1);
2094
2095 udelay(10);
2096
2097 gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 0);
2098
2099 pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_run);
2100 msleep(2);
2101 }
2102
2103 static void snd_soc_ac97_reset(struct snd_ac97 *ac97)
2104 {
2105 struct pinctrl *pctl = snd_ac97_rst_cfg.pctl;
2106
2107 pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_reset);
2108
2109 gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 0);
2110 gpio_direction_output(snd_ac97_rst_cfg.gpio_sdata, 0);
2111 gpio_direction_output(snd_ac97_rst_cfg.gpio_reset, 0);
2112
2113 udelay(10);
2114
2115 gpio_direction_output(snd_ac97_rst_cfg.gpio_reset, 1);
2116
2117 pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_run);
2118 msleep(2);
2119 }
2120
2121 static int snd_soc_ac97_parse_pinctl(struct device *dev,
2122 struct snd_ac97_reset_cfg *cfg)
2123 {
2124 struct pinctrl *p;
2125 struct pinctrl_state *state;
2126 int gpio;
2127 int ret;
2128
2129 p = devm_pinctrl_get(dev);
2130 if (IS_ERR(p)) {
2131 dev_err(dev, "Failed to get pinctrl\n");
2132 return PTR_RET(p);
2133 }
2134 cfg->pctl = p;
2135
2136 state = pinctrl_lookup_state(p, "ac97-reset");
2137 if (IS_ERR(state)) {
2138 dev_err(dev, "Can't find pinctrl state ac97-reset\n");
2139 return PTR_RET(state);
2140 }
2141 cfg->pstate_reset = state;
2142
2143 state = pinctrl_lookup_state(p, "ac97-warm-reset");
2144 if (IS_ERR(state)) {
2145 dev_err(dev, "Can't find pinctrl state ac97-warm-reset\n");
2146 return PTR_RET(state);
2147 }
2148 cfg->pstate_warm_reset = state;
2149
2150 state = pinctrl_lookup_state(p, "ac97-running");
2151 if (IS_ERR(state)) {
2152 dev_err(dev, "Can't find pinctrl state ac97-running\n");
2153 return PTR_RET(state);
2154 }
2155 cfg->pstate_run = state;
2156
2157 gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 0);
2158 if (gpio < 0) {
2159 dev_err(dev, "Can't find ac97-sync gpio\n");
2160 return gpio;
2161 }
2162 ret = devm_gpio_request(dev, gpio, "AC97 link sync");
2163 if (ret) {
2164 dev_err(dev, "Failed requesting ac97-sync gpio\n");
2165 return ret;
2166 }
2167 cfg->gpio_sync = gpio;
2168
2169 gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 1);
2170 if (gpio < 0) {
2171 dev_err(dev, "Can't find ac97-sdata gpio %d\n", gpio);
2172 return gpio;
2173 }
2174 ret = devm_gpio_request(dev, gpio, "AC97 link sdata");
2175 if (ret) {
2176 dev_err(dev, "Failed requesting ac97-sdata gpio\n");
2177 return ret;
2178 }
2179 cfg->gpio_sdata = gpio;
2180
2181 gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 2);
2182 if (gpio < 0) {
2183 dev_err(dev, "Can't find ac97-reset gpio\n");
2184 return gpio;
2185 }
2186 ret = devm_gpio_request(dev, gpio, "AC97 link reset");
2187 if (ret) {
2188 dev_err(dev, "Failed requesting ac97-reset gpio\n");
2189 return ret;
2190 }
2191 cfg->gpio_reset = gpio;
2192
2193 return 0;
2194 }
2195
2196 struct snd_ac97_bus_ops *soc_ac97_ops;
2197 EXPORT_SYMBOL_GPL(soc_ac97_ops);
2198
2199 int snd_soc_set_ac97_ops(struct snd_ac97_bus_ops *ops)
2200 {
2201 if (ops == soc_ac97_ops)
2202 return 0;
2203
2204 if (soc_ac97_ops && ops)
2205 return -EBUSY;
2206
2207 soc_ac97_ops = ops;
2208
2209 return 0;
2210 }
2211 EXPORT_SYMBOL_GPL(snd_soc_set_ac97_ops);
2212
2213 /**
2214 * snd_soc_set_ac97_ops_of_reset - Set ac97 ops with generic ac97 reset functions
2215 *
2216 * This function sets the reset and warm_reset properties of ops and parses
2217 * the device node of pdev to get pinctrl states and gpio numbers to use.
2218 */
2219 int snd_soc_set_ac97_ops_of_reset(struct snd_ac97_bus_ops *ops,
2220 struct platform_device *pdev)
2221 {
2222 struct device *dev = &pdev->dev;
2223 struct snd_ac97_reset_cfg cfg;
2224 int ret;
2225
2226 ret = snd_soc_ac97_parse_pinctl(dev, &cfg);
2227 if (ret)
2228 return ret;
2229
2230 ret = snd_soc_set_ac97_ops(ops);
2231 if (ret)
2232 return ret;
2233
2234 ops->warm_reset = snd_soc_ac97_warm_reset;
2235 ops->reset = snd_soc_ac97_reset;
2236
2237 snd_ac97_rst_cfg = cfg;
2238 return 0;
2239 }
2240 EXPORT_SYMBOL_GPL(snd_soc_set_ac97_ops_of_reset);
2241
2242 /**
2243 * snd_soc_free_ac97_codec - free AC97 codec device
2244 * @codec: audio codec
2245 *
2246 * Frees AC97 codec device resources.
2247 */
2248 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
2249 {
2250 mutex_lock(&codec->mutex);
2251 #ifdef CONFIG_SND_SOC_AC97_BUS
2252 soc_unregister_ac97_dai_link(codec);
2253 #endif
2254 kfree(codec->ac97->bus);
2255 kfree(codec->ac97);
2256 codec->ac97 = NULL;
2257 codec->ac97_created = 0;
2258 mutex_unlock(&codec->mutex);
2259 }
2260 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
2261
2262 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
2263 {
2264 unsigned int ret;
2265
2266 ret = codec->read(codec, reg);
2267 dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
2268 trace_snd_soc_reg_read(codec, reg, ret);
2269
2270 return ret;
2271 }
2272 EXPORT_SYMBOL_GPL(snd_soc_read);
2273
2274 unsigned int snd_soc_write(struct snd_soc_codec *codec,
2275 unsigned int reg, unsigned int val)
2276 {
2277 dev_dbg(codec->dev, "write %x = %x\n", reg, val);
2278 trace_snd_soc_reg_write(codec, reg, val);
2279 return codec->write(codec, reg, val);
2280 }
2281 EXPORT_SYMBOL_GPL(snd_soc_write);
2282
2283 /**
2284 * snd_soc_update_bits - update codec register bits
2285 * @codec: audio codec
2286 * @reg: codec register
2287 * @mask: register mask
2288 * @value: new value
2289 *
2290 * Writes new register value.
2291 *
2292 * Returns 1 for change, 0 for no change, or negative error code.
2293 */
2294 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
2295 unsigned int mask, unsigned int value)
2296 {
2297 bool change;
2298 unsigned int old, new;
2299 int ret;
2300
2301 if (codec->using_regmap) {
2302 ret = regmap_update_bits_check(codec->control_data, reg,
2303 mask, value, &change);
2304 } else {
2305 ret = snd_soc_read(codec, reg);
2306 if (ret < 0)
2307 return ret;
2308
2309 old = ret;
2310 new = (old & ~mask) | (value & mask);
2311 change = old != new;
2312 if (change)
2313 ret = snd_soc_write(codec, reg, new);
2314 }
2315
2316 if (ret < 0)
2317 return ret;
2318
2319 return change;
2320 }
2321 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
2322
2323 /**
2324 * snd_soc_update_bits_locked - update codec register bits
2325 * @codec: audio codec
2326 * @reg: codec register
2327 * @mask: register mask
2328 * @value: new value
2329 *
2330 * Writes new register value, and takes the codec mutex.
2331 *
2332 * Returns 1 for change else 0.
2333 */
2334 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
2335 unsigned short reg, unsigned int mask,
2336 unsigned int value)
2337 {
2338 int change;
2339
2340 mutex_lock(&codec->mutex);
2341 change = snd_soc_update_bits(codec, reg, mask, value);
2342 mutex_unlock(&codec->mutex);
2343
2344 return change;
2345 }
2346 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
2347
2348 /**
2349 * snd_soc_test_bits - test register for change
2350 * @codec: audio codec
2351 * @reg: codec register
2352 * @mask: register mask
2353 * @value: new value
2354 *
2355 * Tests a register with a new value and checks if the new value is
2356 * different from the old value.
2357 *
2358 * Returns 1 for change else 0.
2359 */
2360 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
2361 unsigned int mask, unsigned int value)
2362 {
2363 int change;
2364 unsigned int old, new;
2365
2366 old = snd_soc_read(codec, reg);
2367 new = (old & ~mask) | value;
2368 change = old != new;
2369
2370 return change;
2371 }
2372 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
2373
2374 /**
2375 * snd_soc_cnew - create new control
2376 * @_template: control template
2377 * @data: control private data
2378 * @long_name: control long name
2379 * @prefix: control name prefix
2380 *
2381 * Create a new mixer control from a template control.
2382 *
2383 * Returns 0 for success, else error.
2384 */
2385 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2386 void *data, const char *long_name,
2387 const char *prefix)
2388 {
2389 struct snd_kcontrol_new template;
2390 struct snd_kcontrol *kcontrol;
2391 char *name = NULL;
2392
2393 memcpy(&template, _template, sizeof(template));
2394 template.index = 0;
2395
2396 if (!long_name)
2397 long_name = template.name;
2398
2399 if (prefix) {
2400 name = kasprintf(GFP_KERNEL, "%s %s", prefix, long_name);
2401 if (!name)
2402 return NULL;
2403
2404 template.name = name;
2405 } else {
2406 template.name = long_name;
2407 }
2408
2409 kcontrol = snd_ctl_new1(&template, data);
2410
2411 kfree(name);
2412
2413 return kcontrol;
2414 }
2415 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2416
2417 static int snd_soc_add_controls(struct snd_card *card, struct device *dev,
2418 const struct snd_kcontrol_new *controls, int num_controls,
2419 const char *prefix, void *data)
2420 {
2421 int err, i;
2422
2423 for (i = 0; i < num_controls; i++) {
2424 const struct snd_kcontrol_new *control = &controls[i];
2425 err = snd_ctl_add(card, snd_soc_cnew(control, data,
2426 control->name, prefix));
2427 if (err < 0) {
2428 dev_err(dev, "ASoC: Failed to add %s: %d\n",
2429 control->name, err);
2430 return err;
2431 }
2432 }
2433
2434 return 0;
2435 }
2436
2437 struct snd_kcontrol *snd_soc_card_get_kcontrol(struct snd_soc_card *soc_card,
2438 const char *name)
2439 {
2440 struct snd_card *card = soc_card->snd_card;
2441 struct snd_kcontrol *kctl;
2442
2443 if (unlikely(!name))
2444 return NULL;
2445
2446 list_for_each_entry(kctl, &card->controls, list)
2447 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name)))
2448 return kctl;
2449 return NULL;
2450 }
2451 EXPORT_SYMBOL_GPL(snd_soc_card_get_kcontrol);
2452
2453 /**
2454 * snd_soc_add_codec_controls - add an array of controls to a codec.
2455 * Convenience function to add a list of controls. Many codecs were
2456 * duplicating this code.
2457 *
2458 * @codec: codec to add controls to
2459 * @controls: array of controls to add
2460 * @num_controls: number of elements in the array
2461 *
2462 * Return 0 for success, else error.
2463 */
2464 int snd_soc_add_codec_controls(struct snd_soc_codec *codec,
2465 const struct snd_kcontrol_new *controls, int num_controls)
2466 {
2467 struct snd_card *card = codec->card->snd_card;
2468
2469 return snd_soc_add_controls(card, codec->dev, controls, num_controls,
2470 codec->name_prefix, codec);
2471 }
2472 EXPORT_SYMBOL_GPL(snd_soc_add_codec_controls);
2473
2474 /**
2475 * snd_soc_add_platform_controls - add an array of controls to a platform.
2476 * Convenience function to add a list of controls.
2477 *
2478 * @platform: platform to add controls to
2479 * @controls: array of controls to add
2480 * @num_controls: number of elements in the array
2481 *
2482 * Return 0 for success, else error.
2483 */
2484 int snd_soc_add_platform_controls(struct snd_soc_platform *platform,
2485 const struct snd_kcontrol_new *controls, int num_controls)
2486 {
2487 struct snd_card *card = platform->card->snd_card;
2488
2489 return snd_soc_add_controls(card, platform->dev, controls, num_controls,
2490 NULL, platform);
2491 }
2492 EXPORT_SYMBOL_GPL(snd_soc_add_platform_controls);
2493
2494 /**
2495 * snd_soc_add_card_controls - add an array of controls to a SoC card.
2496 * Convenience function to add a list of controls.
2497 *
2498 * @soc_card: SoC card to add controls to
2499 * @controls: array of controls to add
2500 * @num_controls: number of elements in the array
2501 *
2502 * Return 0 for success, else error.
2503 */
2504 int snd_soc_add_card_controls(struct snd_soc_card *soc_card,
2505 const struct snd_kcontrol_new *controls, int num_controls)
2506 {
2507 struct snd_card *card = soc_card->snd_card;
2508
2509 return snd_soc_add_controls(card, soc_card->dev, controls, num_controls,
2510 NULL, soc_card);
2511 }
2512 EXPORT_SYMBOL_GPL(snd_soc_add_card_controls);
2513
2514 /**
2515 * snd_soc_add_dai_controls - add an array of controls to a DAI.
2516 * Convienience function to add a list of controls.
2517 *
2518 * @dai: DAI to add controls to
2519 * @controls: array of controls to add
2520 * @num_controls: number of elements in the array
2521 *
2522 * Return 0 for success, else error.
2523 */
2524 int snd_soc_add_dai_controls(struct snd_soc_dai *dai,
2525 const struct snd_kcontrol_new *controls, int num_controls)
2526 {
2527 struct snd_card *card = dai->card->snd_card;
2528
2529 return snd_soc_add_controls(card, dai->dev, controls, num_controls,
2530 NULL, dai);
2531 }
2532 EXPORT_SYMBOL_GPL(snd_soc_add_dai_controls);
2533
2534 /**
2535 * snd_soc_info_enum_double - enumerated double mixer info callback
2536 * @kcontrol: mixer control
2537 * @uinfo: control element information
2538 *
2539 * Callback to provide information about a double enumerated
2540 * mixer control.
2541 *
2542 * Returns 0 for success.
2543 */
2544 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2545 struct snd_ctl_elem_info *uinfo)
2546 {
2547 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2548
2549 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2550 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2551 uinfo->value.enumerated.items = e->max;
2552
2553 if (uinfo->value.enumerated.item > e->max - 1)
2554 uinfo->value.enumerated.item = e->max - 1;
2555 strcpy(uinfo->value.enumerated.name,
2556 e->texts[uinfo->value.enumerated.item]);
2557 return 0;
2558 }
2559 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2560
2561 /**
2562 * snd_soc_get_enum_double - enumerated double mixer get callback
2563 * @kcontrol: mixer control
2564 * @ucontrol: control element information
2565 *
2566 * Callback to get the value of a double enumerated mixer.
2567 *
2568 * Returns 0 for success.
2569 */
2570 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2571 struct snd_ctl_elem_value *ucontrol)
2572 {
2573 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2574 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2575 unsigned int val;
2576
2577 val = snd_soc_read(codec, e->reg);
2578 ucontrol->value.enumerated.item[0]
2579 = (val >> e->shift_l) & e->mask;
2580 if (e->shift_l != e->shift_r)
2581 ucontrol->value.enumerated.item[1] =
2582 (val >> e->shift_r) & e->mask;
2583
2584 return 0;
2585 }
2586 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2587
2588 /**
2589 * snd_soc_put_enum_double - enumerated double mixer put callback
2590 * @kcontrol: mixer control
2591 * @ucontrol: control element information
2592 *
2593 * Callback to set the value of a double enumerated mixer.
2594 *
2595 * Returns 0 for success.
2596 */
2597 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2598 struct snd_ctl_elem_value *ucontrol)
2599 {
2600 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2601 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2602 unsigned int val;
2603 unsigned int mask;
2604
2605 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2606 return -EINVAL;
2607 val = ucontrol->value.enumerated.item[0] << e->shift_l;
2608 mask = e->mask << e->shift_l;
2609 if (e->shift_l != e->shift_r) {
2610 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2611 return -EINVAL;
2612 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2613 mask |= e->mask << e->shift_r;
2614 }
2615
2616 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2617 }
2618 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2619
2620 /**
2621 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2622 * @kcontrol: mixer control
2623 * @ucontrol: control element information
2624 *
2625 * Callback to get the value of a double semi enumerated mixer.
2626 *
2627 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2628 * used for handling bitfield coded enumeration for example.
2629 *
2630 * Returns 0 for success.
2631 */
2632 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2633 struct snd_ctl_elem_value *ucontrol)
2634 {
2635 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2636 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2637 unsigned int reg_val, val, mux;
2638
2639 reg_val = snd_soc_read(codec, e->reg);
2640 val = (reg_val >> e->shift_l) & e->mask;
2641 for (mux = 0; mux < e->max; mux++) {
2642 if (val == e->values[mux])
2643 break;
2644 }
2645 ucontrol->value.enumerated.item[0] = mux;
2646 if (e->shift_l != e->shift_r) {
2647 val = (reg_val >> e->shift_r) & e->mask;
2648 for (mux = 0; mux < e->max; mux++) {
2649 if (val == e->values[mux])
2650 break;
2651 }
2652 ucontrol->value.enumerated.item[1] = mux;
2653 }
2654
2655 return 0;
2656 }
2657 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2658
2659 /**
2660 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2661 * @kcontrol: mixer control
2662 * @ucontrol: control element information
2663 *
2664 * Callback to set the value of a double semi enumerated mixer.
2665 *
2666 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2667 * used for handling bitfield coded enumeration for example.
2668 *
2669 * Returns 0 for success.
2670 */
2671 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2672 struct snd_ctl_elem_value *ucontrol)
2673 {
2674 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2675 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2676 unsigned int val;
2677 unsigned int mask;
2678
2679 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2680 return -EINVAL;
2681 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2682 mask = e->mask << e->shift_l;
2683 if (e->shift_l != e->shift_r) {
2684 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2685 return -EINVAL;
2686 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2687 mask |= e->mask << e->shift_r;
2688 }
2689
2690 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2691 }
2692 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2693
2694 /**
2695 * snd_soc_info_volsw - single mixer info callback
2696 * @kcontrol: mixer control
2697 * @uinfo: control element information
2698 *
2699 * Callback to provide information about a single mixer control, or a double
2700 * mixer control that spans 2 registers.
2701 *
2702 * Returns 0 for success.
2703 */
2704 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2705 struct snd_ctl_elem_info *uinfo)
2706 {
2707 struct soc_mixer_control *mc =
2708 (struct soc_mixer_control *)kcontrol->private_value;
2709 int platform_max;
2710
2711 if (!mc->platform_max)
2712 mc->platform_max = mc->max;
2713 platform_max = mc->platform_max;
2714
2715 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2716 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2717 else
2718 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2719
2720 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
2721 uinfo->value.integer.min = 0;
2722 uinfo->value.integer.max = platform_max;
2723 return 0;
2724 }
2725 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2726
2727 /**
2728 * snd_soc_get_volsw - single mixer get callback
2729 * @kcontrol: mixer control
2730 * @ucontrol: control element information
2731 *
2732 * Callback to get the value of a single mixer control, or a double mixer
2733 * control that spans 2 registers.
2734 *
2735 * Returns 0 for success.
2736 */
2737 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2738 struct snd_ctl_elem_value *ucontrol)
2739 {
2740 struct soc_mixer_control *mc =
2741 (struct soc_mixer_control *)kcontrol->private_value;
2742 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2743 unsigned int reg = mc->reg;
2744 unsigned int reg2 = mc->rreg;
2745 unsigned int shift = mc->shift;
2746 unsigned int rshift = mc->rshift;
2747 int max = mc->max;
2748 unsigned int mask = (1 << fls(max)) - 1;
2749 unsigned int invert = mc->invert;
2750
2751 ucontrol->value.integer.value[0] =
2752 (snd_soc_read(codec, reg) >> shift) & mask;
2753 if (invert)
2754 ucontrol->value.integer.value[0] =
2755 max - ucontrol->value.integer.value[0];
2756
2757 if (snd_soc_volsw_is_stereo(mc)) {
2758 if (reg == reg2)
2759 ucontrol->value.integer.value[1] =
2760 (snd_soc_read(codec, reg) >> rshift) & mask;
2761 else
2762 ucontrol->value.integer.value[1] =
2763 (snd_soc_read(codec, reg2) >> shift) & mask;
2764 if (invert)
2765 ucontrol->value.integer.value[1] =
2766 max - ucontrol->value.integer.value[1];
2767 }
2768
2769 return 0;
2770 }
2771 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2772
2773 /**
2774 * snd_soc_put_volsw - single mixer put callback
2775 * @kcontrol: mixer control
2776 * @ucontrol: control element information
2777 *
2778 * Callback to set the value of a single mixer control, or a double mixer
2779 * control that spans 2 registers.
2780 *
2781 * Returns 0 for success.
2782 */
2783 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2784 struct snd_ctl_elem_value *ucontrol)
2785 {
2786 struct soc_mixer_control *mc =
2787 (struct soc_mixer_control *)kcontrol->private_value;
2788 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2789 unsigned int reg = mc->reg;
2790 unsigned int reg2 = mc->rreg;
2791 unsigned int shift = mc->shift;
2792 unsigned int rshift = mc->rshift;
2793 int max = mc->max;
2794 unsigned int mask = (1 << fls(max)) - 1;
2795 unsigned int invert = mc->invert;
2796 int err;
2797 bool type_2r = 0;
2798 unsigned int val2 = 0;
2799 unsigned int val, val_mask;
2800
2801 val = (ucontrol->value.integer.value[0] & mask);
2802 if (invert)
2803 val = max - val;
2804 val_mask = mask << shift;
2805 val = val << shift;
2806 if (snd_soc_volsw_is_stereo(mc)) {
2807 val2 = (ucontrol->value.integer.value[1] & mask);
2808 if (invert)
2809 val2 = max - val2;
2810 if (reg == reg2) {
2811 val_mask |= mask << rshift;
2812 val |= val2 << rshift;
2813 } else {
2814 val2 = val2 << shift;
2815 type_2r = 1;
2816 }
2817 }
2818 err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2819 if (err < 0)
2820 return err;
2821
2822 if (type_2r)
2823 err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2824
2825 return err;
2826 }
2827 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2828
2829 /**
2830 * snd_soc_get_volsw_sx - single mixer get callback
2831 * @kcontrol: mixer control
2832 * @ucontrol: control element information
2833 *
2834 * Callback to get the value of a single mixer control, or a double mixer
2835 * control that spans 2 registers.
2836 *
2837 * Returns 0 for success.
2838 */
2839 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
2840 struct snd_ctl_elem_value *ucontrol)
2841 {
2842 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2843 struct soc_mixer_control *mc =
2844 (struct soc_mixer_control *)kcontrol->private_value;
2845
2846 unsigned int reg = mc->reg;
2847 unsigned int reg2 = mc->rreg;
2848 unsigned int shift = mc->shift;
2849 unsigned int rshift = mc->rshift;
2850 int max = mc->max;
2851 int min = mc->min;
2852 int mask = (1 << (fls(min + max) - 1)) - 1;
2853
2854 ucontrol->value.integer.value[0] =
2855 ((snd_soc_read(codec, reg) >> shift) - min) & mask;
2856
2857 if (snd_soc_volsw_is_stereo(mc))
2858 ucontrol->value.integer.value[1] =
2859 ((snd_soc_read(codec, reg2) >> rshift) - min) & mask;
2860
2861 return 0;
2862 }
2863 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
2864
2865 /**
2866 * snd_soc_put_volsw_sx - double mixer set callback
2867 * @kcontrol: mixer control
2868 * @uinfo: control element information
2869 *
2870 * Callback to set the value of a double mixer control that spans 2 registers.
2871 *
2872 * Returns 0 for success.
2873 */
2874 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
2875 struct snd_ctl_elem_value *ucontrol)
2876 {
2877 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2878 struct soc_mixer_control *mc =
2879 (struct soc_mixer_control *)kcontrol->private_value;
2880
2881 unsigned int reg = mc->reg;
2882 unsigned int reg2 = mc->rreg;
2883 unsigned int shift = mc->shift;
2884 unsigned int rshift = mc->rshift;
2885 int max = mc->max;
2886 int min = mc->min;
2887 int mask = (1 << (fls(min + max) - 1)) - 1;
2888 int err = 0;
2889 unsigned short val, val_mask, val2 = 0;
2890
2891 val_mask = mask << shift;
2892 val = (ucontrol->value.integer.value[0] + min) & mask;
2893 val = val << shift;
2894
2895 err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2896 if (err < 0)
2897 return err;
2898
2899 if (snd_soc_volsw_is_stereo(mc)) {
2900 val_mask = mask << rshift;
2901 val2 = (ucontrol->value.integer.value[1] + min) & mask;
2902 val2 = val2 << rshift;
2903
2904 if (snd_soc_update_bits_locked(codec, reg2, val_mask, val2))
2905 return err;
2906 }
2907 return 0;
2908 }
2909 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
2910
2911 /**
2912 * snd_soc_info_volsw_s8 - signed mixer info callback
2913 * @kcontrol: mixer control
2914 * @uinfo: control element information
2915 *
2916 * Callback to provide information about a signed mixer control.
2917 *
2918 * Returns 0 for success.
2919 */
2920 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2921 struct snd_ctl_elem_info *uinfo)
2922 {
2923 struct soc_mixer_control *mc =
2924 (struct soc_mixer_control *)kcontrol->private_value;
2925 int platform_max;
2926 int min = mc->min;
2927
2928 if (!mc->platform_max)
2929 mc->platform_max = mc->max;
2930 platform_max = mc->platform_max;
2931
2932 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2933 uinfo->count = 2;
2934 uinfo->value.integer.min = 0;
2935 uinfo->value.integer.max = platform_max - min;
2936 return 0;
2937 }
2938 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2939
2940 /**
2941 * snd_soc_get_volsw_s8 - signed mixer get callback
2942 * @kcontrol: mixer control
2943 * @ucontrol: control element information
2944 *
2945 * Callback to get the value of a signed mixer control.
2946 *
2947 * Returns 0 for success.
2948 */
2949 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2950 struct snd_ctl_elem_value *ucontrol)
2951 {
2952 struct soc_mixer_control *mc =
2953 (struct soc_mixer_control *)kcontrol->private_value;
2954 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2955 unsigned int reg = mc->reg;
2956 int min = mc->min;
2957 int val = snd_soc_read(codec, reg);
2958
2959 ucontrol->value.integer.value[0] =
2960 ((signed char)(val & 0xff))-min;
2961 ucontrol->value.integer.value[1] =
2962 ((signed char)((val >> 8) & 0xff))-min;
2963 return 0;
2964 }
2965 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2966
2967 /**
2968 * snd_soc_put_volsw_sgn - signed mixer put callback
2969 * @kcontrol: mixer control
2970 * @ucontrol: control element information
2971 *
2972 * Callback to set the value of a signed mixer control.
2973 *
2974 * Returns 0 for success.
2975 */
2976 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2977 struct snd_ctl_elem_value *ucontrol)
2978 {
2979 struct soc_mixer_control *mc =
2980 (struct soc_mixer_control *)kcontrol->private_value;
2981 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2982 unsigned int reg = mc->reg;
2983 int min = mc->min;
2984 unsigned int val;
2985
2986 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2987 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2988
2989 return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2990 }
2991 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2992
2993 /**
2994 * snd_soc_info_volsw_range - single mixer info callback with range.
2995 * @kcontrol: mixer control
2996 * @uinfo: control element information
2997 *
2998 * Callback to provide information, within a range, about a single
2999 * mixer control.
3000 *
3001 * returns 0 for success.
3002 */
3003 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
3004 struct snd_ctl_elem_info *uinfo)
3005 {
3006 struct soc_mixer_control *mc =
3007 (struct soc_mixer_control *)kcontrol->private_value;
3008 int platform_max;
3009 int min = mc->min;
3010
3011 if (!mc->platform_max)
3012 mc->platform_max = mc->max;
3013 platform_max = mc->platform_max;
3014
3015 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3016 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
3017 uinfo->value.integer.min = 0;
3018 uinfo->value.integer.max = platform_max - min;
3019
3020 return 0;
3021 }
3022 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
3023
3024 /**
3025 * snd_soc_put_volsw_range - single mixer put value callback with range.
3026 * @kcontrol: mixer control
3027 * @ucontrol: control element information
3028 *
3029 * Callback to set the value, within a range, for a single mixer control.
3030 *
3031 * Returns 0 for success.
3032 */
3033 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
3034 struct snd_ctl_elem_value *ucontrol)
3035 {
3036 struct soc_mixer_control *mc =
3037 (struct soc_mixer_control *)kcontrol->private_value;
3038 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3039 unsigned int reg = mc->reg;
3040 unsigned int rreg = mc->rreg;
3041 unsigned int shift = mc->shift;
3042 int min = mc->min;
3043 int max = mc->max;
3044 unsigned int mask = (1 << fls(max)) - 1;
3045 unsigned int invert = mc->invert;
3046 unsigned int val, val_mask;
3047 int ret;
3048
3049 val = ((ucontrol->value.integer.value[0] + min) & mask);
3050 if (invert)
3051 val = max - val;
3052 val_mask = mask << shift;
3053 val = val << shift;
3054
3055 ret = snd_soc_update_bits_locked(codec, reg, val_mask, val);
3056 if (ret < 0)
3057 return ret;
3058
3059 if (snd_soc_volsw_is_stereo(mc)) {
3060 val = ((ucontrol->value.integer.value[1] + min) & mask);
3061 if (invert)
3062 val = max - val;
3063 val_mask = mask << shift;
3064 val = val << shift;
3065
3066 ret = snd_soc_update_bits_locked(codec, rreg, val_mask, val);
3067 }
3068
3069 return ret;
3070 }
3071 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
3072
3073 /**
3074 * snd_soc_get_volsw_range - single mixer get callback with range
3075 * @kcontrol: mixer control
3076 * @ucontrol: control element information
3077 *
3078 * Callback to get the value, within a range, of a single mixer control.
3079 *
3080 * Returns 0 for success.
3081 */
3082 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
3083 struct snd_ctl_elem_value *ucontrol)
3084 {
3085 struct soc_mixer_control *mc =
3086 (struct soc_mixer_control *)kcontrol->private_value;
3087 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3088 unsigned int reg = mc->reg;
3089 unsigned int rreg = mc->rreg;
3090 unsigned int shift = mc->shift;
3091 int min = mc->min;
3092 int max = mc->max;
3093 unsigned int mask = (1 << fls(max)) - 1;
3094 unsigned int invert = mc->invert;
3095
3096 ucontrol->value.integer.value[0] =
3097 (snd_soc_read(codec, reg) >> shift) & mask;
3098 if (invert)
3099 ucontrol->value.integer.value[0] =
3100 max - ucontrol->value.integer.value[0];
3101 ucontrol->value.integer.value[0] =
3102 ucontrol->value.integer.value[0] - min;
3103
3104 if (snd_soc_volsw_is_stereo(mc)) {
3105 ucontrol->value.integer.value[1] =
3106 (snd_soc_read(codec, rreg) >> shift) & mask;
3107 if (invert)
3108 ucontrol->value.integer.value[1] =
3109 max - ucontrol->value.integer.value[1];
3110 ucontrol->value.integer.value[1] =
3111 ucontrol->value.integer.value[1] - min;
3112 }
3113
3114 return 0;
3115 }
3116 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
3117
3118 /**
3119 * snd_soc_limit_volume - Set new limit to an existing volume control.
3120 *
3121 * @codec: where to look for the control
3122 * @name: Name of the control
3123 * @max: new maximum limit
3124 *
3125 * Return 0 for success, else error.
3126 */
3127 int snd_soc_limit_volume(struct snd_soc_codec *codec,
3128 const char *name, int max)
3129 {
3130 struct snd_card *card = codec->card->snd_card;
3131 struct snd_kcontrol *kctl;
3132 struct soc_mixer_control *mc;
3133 int found = 0;
3134 int ret = -EINVAL;
3135
3136 /* Sanity check for name and max */
3137 if (unlikely(!name || max <= 0))
3138 return -EINVAL;
3139
3140 list_for_each_entry(kctl, &card->controls, list) {
3141 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
3142 found = 1;
3143 break;
3144 }
3145 }
3146 if (found) {
3147 mc = (struct soc_mixer_control *)kctl->private_value;
3148 if (max <= mc->max) {
3149 mc->platform_max = max;
3150 ret = 0;
3151 }
3152 }
3153 return ret;
3154 }
3155 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
3156
3157 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
3158 struct snd_ctl_elem_info *uinfo)
3159 {
3160 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3161 struct soc_bytes *params = (void *)kcontrol->private_value;
3162
3163 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
3164 uinfo->count = params->num_regs * codec->val_bytes;
3165
3166 return 0;
3167 }
3168 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
3169
3170 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
3171 struct snd_ctl_elem_value *ucontrol)
3172 {
3173 struct soc_bytes *params = (void *)kcontrol->private_value;
3174 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3175 int ret;
3176
3177 if (codec->using_regmap)
3178 ret = regmap_raw_read(codec->control_data, params->base,
3179 ucontrol->value.bytes.data,
3180 params->num_regs * codec->val_bytes);
3181 else
3182 ret = -EINVAL;
3183
3184 /* Hide any masked bytes to ensure consistent data reporting */
3185 if (ret == 0 && params->mask) {
3186 switch (codec->val_bytes) {
3187 case 1:
3188 ucontrol->value.bytes.data[0] &= ~params->mask;
3189 break;
3190 case 2:
3191 ((u16 *)(&ucontrol->value.bytes.data))[0]
3192 &= ~params->mask;
3193 break;
3194 case 4:
3195 ((u32 *)(&ucontrol->value.bytes.data))[0]
3196 &= ~params->mask;
3197 break;
3198 default:
3199 return -EINVAL;
3200 }
3201 }
3202
3203 return ret;
3204 }
3205 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
3206
3207 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
3208 struct snd_ctl_elem_value *ucontrol)
3209 {
3210 struct soc_bytes *params = (void *)kcontrol->private_value;
3211 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3212 int ret, len;
3213 unsigned int val;
3214 void *data;
3215
3216 if (!codec->using_regmap)
3217 return -EINVAL;
3218
3219 len = params->num_regs * codec->val_bytes;
3220
3221 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
3222 if (!data)
3223 return -ENOMEM;
3224
3225 /*
3226 * If we've got a mask then we need to preserve the register
3227 * bits. We shouldn't modify the incoming data so take a
3228 * copy.
3229 */
3230 if (params->mask) {
3231 ret = regmap_read(codec->control_data, params->base, &val);
3232 if (ret != 0)
3233 goto out;
3234
3235 val &= params->mask;
3236
3237 switch (codec->val_bytes) {
3238 case 1:
3239 ((u8 *)data)[0] &= ~params->mask;
3240 ((u8 *)data)[0] |= val;
3241 break;
3242 case 2:
3243 ((u16 *)data)[0] &= cpu_to_be16(~params->mask);
3244 ((u16 *)data)[0] |= cpu_to_be16(val);
3245 break;
3246 case 4:
3247 ((u32 *)data)[0] &= cpu_to_be32(~params->mask);
3248 ((u32 *)data)[0] |= cpu_to_be32(val);
3249 break;
3250 default:
3251 ret = -EINVAL;
3252 goto out;
3253 }
3254 }
3255
3256 ret = regmap_raw_write(codec->control_data, params->base,
3257 data, len);
3258
3259 out:
3260 kfree(data);
3261
3262 return ret;
3263 }
3264 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
3265
3266 /**
3267 * snd_soc_info_xr_sx - signed multi register info callback
3268 * @kcontrol: mreg control
3269 * @uinfo: control element information
3270 *
3271 * Callback to provide information of a control that can
3272 * span multiple codec registers which together
3273 * forms a single signed value in a MSB/LSB manner.
3274 *
3275 * Returns 0 for success.
3276 */
3277 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
3278 struct snd_ctl_elem_info *uinfo)
3279 {
3280 struct soc_mreg_control *mc =
3281 (struct soc_mreg_control *)kcontrol->private_value;
3282 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3283 uinfo->count = 1;
3284 uinfo->value.integer.min = mc->min;
3285 uinfo->value.integer.max = mc->max;
3286
3287 return 0;
3288 }
3289 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
3290
3291 /**
3292 * snd_soc_get_xr_sx - signed multi register get callback
3293 * @kcontrol: mreg control
3294 * @ucontrol: control element information
3295 *
3296 * Callback to get the value of a control that can span
3297 * multiple codec registers which together forms a single
3298 * signed value in a MSB/LSB manner. The control supports
3299 * specifying total no of bits used to allow for bitfields
3300 * across the multiple codec registers.
3301 *
3302 * Returns 0 for success.
3303 */
3304 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
3305 struct snd_ctl_elem_value *ucontrol)
3306 {
3307 struct soc_mreg_control *mc =
3308 (struct soc_mreg_control *)kcontrol->private_value;
3309 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3310 unsigned int regbase = mc->regbase;
3311 unsigned int regcount = mc->regcount;
3312 unsigned int regwshift = codec->driver->reg_word_size * BITS_PER_BYTE;
3313 unsigned int regwmask = (1<<regwshift)-1;
3314 unsigned int invert = mc->invert;
3315 unsigned long mask = (1UL<<mc->nbits)-1;
3316 long min = mc->min;
3317 long max = mc->max;
3318 long val = 0;
3319 unsigned long regval;
3320 unsigned int i;
3321
3322 for (i = 0; i < regcount; i++) {
3323 regval = snd_soc_read(codec, regbase+i) & regwmask;
3324 val |= regval << (regwshift*(regcount-i-1));
3325 }
3326 val &= mask;
3327 if (min < 0 && val > max)
3328 val |= ~mask;
3329 if (invert)
3330 val = max - val;
3331 ucontrol->value.integer.value[0] = val;
3332
3333 return 0;
3334 }
3335 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
3336
3337 /**
3338 * snd_soc_put_xr_sx - signed multi register get callback
3339 * @kcontrol: mreg control
3340 * @ucontrol: control element information
3341 *
3342 * Callback to set the value of a control that can span
3343 * multiple codec registers which together forms a single
3344 * signed value in a MSB/LSB manner. The control supports
3345 * specifying total no of bits used to allow for bitfields
3346 * across the multiple codec registers.
3347 *
3348 * Returns 0 for success.
3349 */
3350 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
3351 struct snd_ctl_elem_value *ucontrol)
3352 {
3353 struct soc_mreg_control *mc =
3354 (struct soc_mreg_control *)kcontrol->private_value;
3355 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3356 unsigned int regbase = mc->regbase;
3357 unsigned int regcount = mc->regcount;
3358 unsigned int regwshift = codec->driver->reg_word_size * BITS_PER_BYTE;
3359 unsigned int regwmask = (1<<regwshift)-1;
3360 unsigned int invert = mc->invert;
3361 unsigned long mask = (1UL<<mc->nbits)-1;
3362 long max = mc->max;
3363 long val = ucontrol->value.integer.value[0];
3364 unsigned int i, regval, regmask;
3365 int err;
3366
3367 if (invert)
3368 val = max - val;
3369 val &= mask;
3370 for (i = 0; i < regcount; i++) {
3371 regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
3372 regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
3373 err = snd_soc_update_bits_locked(codec, regbase+i,
3374 regmask, regval);
3375 if (err < 0)
3376 return err;
3377 }
3378
3379 return 0;
3380 }
3381 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
3382
3383 /**
3384 * snd_soc_get_strobe - strobe get callback
3385 * @kcontrol: mixer control
3386 * @ucontrol: control element information
3387 *
3388 * Callback get the value of a strobe mixer control.
3389 *
3390 * Returns 0 for success.
3391 */
3392 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
3393 struct snd_ctl_elem_value *ucontrol)
3394 {
3395 struct soc_mixer_control *mc =
3396 (struct soc_mixer_control *)kcontrol->private_value;
3397 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3398 unsigned int reg = mc->reg;
3399 unsigned int shift = mc->shift;
3400 unsigned int mask = 1 << shift;
3401 unsigned int invert = mc->invert != 0;
3402 unsigned int val = snd_soc_read(codec, reg) & mask;
3403
3404 if (shift != 0 && val != 0)
3405 val = val >> shift;
3406 ucontrol->value.enumerated.item[0] = val ^ invert;
3407
3408 return 0;
3409 }
3410 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
3411
3412 /**
3413 * snd_soc_put_strobe - strobe put callback
3414 * @kcontrol: mixer control
3415 * @ucontrol: control element information
3416 *
3417 * Callback strobe a register bit to high then low (or the inverse)
3418 * in one pass of a single mixer enum control.
3419 *
3420 * Returns 1 for success.
3421 */
3422 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
3423 struct snd_ctl_elem_value *ucontrol)
3424 {
3425 struct soc_mixer_control *mc =
3426 (struct soc_mixer_control *)kcontrol->private_value;
3427 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
3428 unsigned int reg = mc->reg;
3429 unsigned int shift = mc->shift;
3430 unsigned int mask = 1 << shift;
3431 unsigned int invert = mc->invert != 0;
3432 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
3433 unsigned int val1 = (strobe ^ invert) ? mask : 0;
3434 unsigned int val2 = (strobe ^ invert) ? 0 : mask;
3435 int err;
3436
3437 err = snd_soc_update_bits_locked(codec, reg, mask, val1);
3438 if (err < 0)
3439 return err;
3440
3441 err = snd_soc_update_bits_locked(codec, reg, mask, val2);
3442 return err;
3443 }
3444 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
3445
3446 /**
3447 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
3448 * @dai: DAI
3449 * @clk_id: DAI specific clock ID
3450 * @freq: new clock frequency in Hz
3451 * @dir: new clock direction - input/output.
3452 *
3453 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
3454 */
3455 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
3456 unsigned int freq, int dir)
3457 {
3458 if (dai->driver && dai->driver->ops->set_sysclk)
3459 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
3460 else if (dai->codec && dai->codec->driver->set_sysclk)
3461 return dai->codec->driver->set_sysclk(dai->codec, clk_id, 0,
3462 freq, dir);
3463 else
3464 return -EINVAL;
3465 }
3466 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
3467
3468 /**
3469 * snd_soc_codec_set_sysclk - configure CODEC system or master clock.
3470 * @codec: CODEC
3471 * @clk_id: DAI specific clock ID
3472 * @source: Source for the clock
3473 * @freq: new clock frequency in Hz
3474 * @dir: new clock direction - input/output.
3475 *
3476 * Configures the CODEC master (MCLK) or system (SYSCLK) clocking.
3477 */
3478 int snd_soc_codec_set_sysclk(struct snd_soc_codec *codec, int clk_id,
3479 int source, unsigned int freq, int dir)
3480 {
3481 if (codec->driver->set_sysclk)
3482 return codec->driver->set_sysclk(codec, clk_id, source,
3483 freq, dir);
3484 else
3485 return -EINVAL;
3486 }
3487 EXPORT_SYMBOL_GPL(snd_soc_codec_set_sysclk);
3488
3489 /**
3490 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
3491 * @dai: DAI
3492 * @div_id: DAI specific clock divider ID
3493 * @div: new clock divisor.
3494 *
3495 * Configures the clock dividers. This is used to derive the best DAI bit and
3496 * frame clocks from the system or master clock. It's best to set the DAI bit
3497 * and frame clocks as low as possible to save system power.
3498 */
3499 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
3500 int div_id, int div)
3501 {
3502 if (dai->driver && dai->driver->ops->set_clkdiv)
3503 return dai->driver->ops->set_clkdiv(dai, div_id, div);
3504 else
3505 return -EINVAL;
3506 }
3507 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
3508
3509 /**
3510 * snd_soc_dai_set_pll - configure DAI PLL.
3511 * @dai: DAI
3512 * @pll_id: DAI specific PLL ID
3513 * @source: DAI specific source for the PLL
3514 * @freq_in: PLL input clock frequency in Hz
3515 * @freq_out: requested PLL output clock frequency in Hz
3516 *
3517 * Configures and enables PLL to generate output clock based on input clock.
3518 */
3519 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
3520 unsigned int freq_in, unsigned int freq_out)
3521 {
3522 if (dai->driver && dai->driver->ops->set_pll)
3523 return dai->driver->ops->set_pll(dai, pll_id, source,
3524 freq_in, freq_out);
3525 else if (dai->codec && dai->codec->driver->set_pll)
3526 return dai->codec->driver->set_pll(dai->codec, pll_id, source,
3527 freq_in, freq_out);
3528 else
3529 return -EINVAL;
3530 }
3531 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
3532
3533 /*
3534 * snd_soc_codec_set_pll - configure codec PLL.
3535 * @codec: CODEC
3536 * @pll_id: DAI specific PLL ID
3537 * @source: DAI specific source for the PLL
3538 * @freq_in: PLL input clock frequency in Hz
3539 * @freq_out: requested PLL output clock frequency in Hz
3540 *
3541 * Configures and enables PLL to generate output clock based on input clock.
3542 */
3543 int snd_soc_codec_set_pll(struct snd_soc_codec *codec, int pll_id, int source,
3544 unsigned int freq_in, unsigned int freq_out)
3545 {
3546 if (codec->driver->set_pll)
3547 return codec->driver->set_pll(codec, pll_id, source,
3548 freq_in, freq_out);
3549 else
3550 return -EINVAL;
3551 }
3552 EXPORT_SYMBOL_GPL(snd_soc_codec_set_pll);
3553
3554 /**
3555 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
3556 * @dai: DAI
3557 * @fmt: SND_SOC_DAIFMT_ format value.
3558 *
3559 * Configures the DAI hardware format and clocking.
3560 */
3561 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
3562 {
3563 if (dai->driver == NULL)
3564 return -EINVAL;
3565 if (dai->driver->ops->set_fmt == NULL)
3566 return -ENOTSUPP;
3567 return dai->driver->ops->set_fmt(dai, fmt);
3568 }
3569 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
3570
3571 /**
3572 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
3573 * @dai: DAI
3574 * @tx_mask: bitmask representing active TX slots.
3575 * @rx_mask: bitmask representing active RX slots.
3576 * @slots: Number of slots in use.
3577 * @slot_width: Width in bits for each slot.
3578 *
3579 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
3580 * specific.
3581 */
3582 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
3583 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
3584 {
3585 if (dai->driver && dai->driver->ops->set_tdm_slot)
3586 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
3587 slots, slot_width);
3588 else
3589 return -EINVAL;
3590 }
3591 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
3592
3593 /**
3594 * snd_soc_dai_set_channel_map - configure DAI audio channel map
3595 * @dai: DAI
3596 * @tx_num: how many TX channels
3597 * @tx_slot: pointer to an array which imply the TX slot number channel
3598 * 0~num-1 uses
3599 * @rx_num: how many RX channels
3600 * @rx_slot: pointer to an array which imply the RX slot number channel
3601 * 0~num-1 uses
3602 *
3603 * configure the relationship between channel number and TDM slot number.
3604 */
3605 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
3606 unsigned int tx_num, unsigned int *tx_slot,
3607 unsigned int rx_num, unsigned int *rx_slot)
3608 {
3609 if (dai->driver && dai->driver->ops->set_channel_map)
3610 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
3611 rx_num, rx_slot);
3612 else
3613 return -EINVAL;
3614 }
3615 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
3616
3617 /**
3618 * snd_soc_dai_set_tristate - configure DAI system or master clock.
3619 * @dai: DAI
3620 * @tristate: tristate enable
3621 *
3622 * Tristates the DAI so that others can use it.
3623 */
3624 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
3625 {
3626 if (dai->driver && dai->driver->ops->set_tristate)
3627 return dai->driver->ops->set_tristate(dai, tristate);
3628 else
3629 return -EINVAL;
3630 }
3631 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
3632
3633 /**
3634 * snd_soc_dai_digital_mute - configure DAI system or master clock.
3635 * @dai: DAI
3636 * @mute: mute enable
3637 * @direction: stream to mute
3638 *
3639 * Mutes the DAI DAC.
3640 */
3641 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute,
3642 int direction)
3643 {
3644 if (!dai->driver)
3645 return -ENOTSUPP;
3646
3647 if (dai->driver->ops->mute_stream)
3648 return dai->driver->ops->mute_stream(dai, mute, direction);
3649 else if (direction == SNDRV_PCM_STREAM_PLAYBACK &&
3650 dai->driver->ops->digital_mute)
3651 return dai->driver->ops->digital_mute(dai, mute);
3652 else
3653 return -ENOTSUPP;
3654 }
3655 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
3656
3657 /**
3658 * snd_soc_register_card - Register a card with the ASoC core
3659 *
3660 * @card: Card to register
3661 *
3662 */
3663 int snd_soc_register_card(struct snd_soc_card *card)
3664 {
3665 int i, ret;
3666
3667 if (!card->name || !card->dev)
3668 return -EINVAL;
3669
3670 for (i = 0; i < card->num_links; i++) {
3671 struct snd_soc_dai_link *link = &card->dai_link[i];
3672
3673 /*
3674 * Codec must be specified by 1 of name or OF node,
3675 * not both or neither.
3676 */
3677 if (!!link->codec_name == !!link->codec_of_node) {
3678 dev_err(card->dev,
3679 "ASoC: Neither/both codec name/of_node are set for %s\n",
3680 link->name);
3681 return -EINVAL;
3682 }
3683 /* Codec DAI name must be specified */
3684 if (!link->codec_dai_name) {
3685 dev_err(card->dev,
3686 "ASoC: codec_dai_name not set for %s\n",
3687 link->name);
3688 return -EINVAL;
3689 }
3690
3691 /*
3692 * Platform may be specified by either name or OF node, but
3693 * can be left unspecified, and a dummy platform will be used.
3694 */
3695 if (link->platform_name && link->platform_of_node) {
3696 dev_err(card->dev,
3697 "ASoC: Both platform name/of_node are set for %s\n",
3698 link->name);
3699 return -EINVAL;
3700 }
3701
3702 /*
3703 * CPU device may be specified by either name or OF node, but
3704 * can be left unspecified, and will be matched based on DAI
3705 * name alone..
3706 */
3707 if (link->cpu_name && link->cpu_of_node) {
3708 dev_err(card->dev,
3709 "ASoC: Neither/both cpu name/of_node are set for %s\n",
3710 link->name);
3711 return -EINVAL;
3712 }
3713 /*
3714 * At least one of CPU DAI name or CPU device name/node must be
3715 * specified
3716 */
3717 if (!link->cpu_dai_name &&
3718 !(link->cpu_name || link->cpu_of_node)) {
3719 dev_err(card->dev,
3720 "ASoC: Neither cpu_dai_name nor cpu_name/of_node are set for %s\n",
3721 link->name);
3722 return -EINVAL;
3723 }
3724 }
3725
3726 dev_set_drvdata(card->dev, card);
3727
3728 snd_soc_initialize_card_lists(card);
3729
3730 soc_init_card_debugfs(card);
3731
3732 card->rtd = devm_kzalloc(card->dev,
3733 sizeof(struct snd_soc_pcm_runtime) *
3734 (card->num_links + card->num_aux_devs),
3735 GFP_KERNEL);
3736 if (card->rtd == NULL)
3737 return -ENOMEM;
3738 card->num_rtd = 0;
3739 card->rtd_aux = &card->rtd[card->num_links];
3740
3741 for (i = 0; i < card->num_links; i++)
3742 card->rtd[i].dai_link = &card->dai_link[i];
3743
3744 INIT_LIST_HEAD(&card->list);
3745 INIT_LIST_HEAD(&card->dapm_dirty);
3746 card->instantiated = 0;
3747 mutex_init(&card->mutex);
3748 mutex_init(&card->dapm_mutex);
3749
3750 ret = snd_soc_instantiate_card(card);
3751 if (ret != 0)
3752 soc_cleanup_card_debugfs(card);
3753
3754 return ret;
3755 }
3756 EXPORT_SYMBOL_GPL(snd_soc_register_card);
3757
3758 /**
3759 * snd_soc_unregister_card - Unregister a card with the ASoC core
3760 *
3761 * @card: Card to unregister
3762 *
3763 */
3764 int snd_soc_unregister_card(struct snd_soc_card *card)
3765 {
3766 if (card->instantiated)
3767 soc_cleanup_card_resources(card);
3768 dev_dbg(card->dev, "ASoC: Unregistered card '%s'\n", card->name);
3769
3770 return 0;
3771 }
3772 EXPORT_SYMBOL_GPL(snd_soc_unregister_card);
3773
3774 /*
3775 * Simplify DAI link configuration by removing ".-1" from device names
3776 * and sanitizing names.
3777 */
3778 static char *fmt_single_name(struct device *dev, int *id)
3779 {
3780 char *found, name[NAME_SIZE];
3781 int id1, id2;
3782
3783 if (dev_name(dev) == NULL)
3784 return NULL;
3785
3786 strlcpy(name, dev_name(dev), NAME_SIZE);
3787
3788 /* are we a "%s.%d" name (platform and SPI components) */
3789 found = strstr(name, dev->driver->name);
3790 if (found) {
3791 /* get ID */
3792 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3793
3794 /* discard ID from name if ID == -1 */
3795 if (*id == -1)
3796 found[strlen(dev->driver->name)] = '\0';
3797 }
3798
3799 } else {
3800 /* I2C component devices are named "bus-addr" */
3801 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3802 char tmp[NAME_SIZE];
3803
3804 /* create unique ID number from I2C addr and bus */
3805 *id = ((id1 & 0xffff) << 16) + id2;
3806
3807 /* sanitize component name for DAI link creation */
3808 snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3809 strlcpy(name, tmp, NAME_SIZE);
3810 } else
3811 *id = 0;
3812 }
3813
3814 return kstrdup(name, GFP_KERNEL);
3815 }
3816
3817 /*
3818 * Simplify DAI link naming for single devices with multiple DAIs by removing
3819 * any ".-1" and using the DAI name (instead of device name).
3820 */
3821 static inline char *fmt_multiple_name(struct device *dev,
3822 struct snd_soc_dai_driver *dai_drv)
3823 {
3824 if (dai_drv->name == NULL) {
3825 dev_err(dev,
3826 "ASoC: error - multiple DAI %s registered with no name\n",
3827 dev_name(dev));
3828 return NULL;
3829 }
3830
3831 return kstrdup(dai_drv->name, GFP_KERNEL);
3832 }
3833
3834 /**
3835 * snd_soc_register_dai - Register a DAI with the ASoC core
3836 *
3837 * @dai: DAI to register
3838 */
3839 static int snd_soc_register_dai(struct device *dev,
3840 struct snd_soc_dai_driver *dai_drv)
3841 {
3842 struct snd_soc_codec *codec;
3843 struct snd_soc_dai *dai;
3844
3845 dev_dbg(dev, "ASoC: dai register %s\n", dev_name(dev));
3846
3847 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3848 if (dai == NULL)
3849 return -ENOMEM;
3850
3851 /* create DAI component name */
3852 dai->name = fmt_single_name(dev, &dai->id);
3853 if (dai->name == NULL) {
3854 kfree(dai);
3855 return -ENOMEM;
3856 }
3857
3858 dai->dev = dev;
3859 dai->driver = dai_drv;
3860 dai->dapm.dev = dev;
3861 if (!dai->driver->ops)
3862 dai->driver->ops = &null_dai_ops;
3863
3864 mutex_lock(&client_mutex);
3865
3866 list_for_each_entry(codec, &codec_list, list) {
3867 if (codec->dev == dev) {
3868 dev_dbg(dev, "ASoC: Mapped DAI %s to CODEC %s\n",
3869 dai->name, codec->name);
3870 dai->codec = codec;
3871 break;
3872 }
3873 }
3874
3875 if (!dai->codec)
3876 dai->dapm.idle_bias_off = 1;
3877
3878 list_add(&dai->list, &dai_list);
3879
3880 mutex_unlock(&client_mutex);
3881
3882 dev_dbg(dev, "ASoC: Registered DAI '%s'\n", dai->name);
3883
3884 return 0;
3885 }
3886
3887 /**
3888 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3889 *
3890 * @dai: DAI to unregister
3891 */
3892 static void snd_soc_unregister_dai(struct device *dev)
3893 {
3894 struct snd_soc_dai *dai;
3895
3896 list_for_each_entry(dai, &dai_list, list) {
3897 if (dev == dai->dev)
3898 goto found;
3899 }
3900 return;
3901
3902 found:
3903 mutex_lock(&client_mutex);
3904 list_del(&dai->list);
3905 mutex_unlock(&client_mutex);
3906
3907 dev_dbg(dev, "ASoC: Unregistered DAI '%s'\n", dai->name);
3908 kfree(dai->name);
3909 kfree(dai);
3910 }
3911
3912 /**
3913 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3914 *
3915 * @dai: Array of DAIs to register
3916 * @count: Number of DAIs
3917 */
3918 static int snd_soc_register_dais(struct device *dev,
3919 struct snd_soc_dai_driver *dai_drv, size_t count)
3920 {
3921 struct snd_soc_codec *codec;
3922 struct snd_soc_dai *dai;
3923 int i, ret = 0;
3924
3925 dev_dbg(dev, "ASoC: dai register %s #%Zu\n", dev_name(dev), count);
3926
3927 for (i = 0; i < count; i++) {
3928
3929 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3930 if (dai == NULL) {
3931 ret = -ENOMEM;
3932 goto err;
3933 }
3934
3935 /* create DAI component name */
3936 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3937 if (dai->name == NULL) {
3938 kfree(dai);
3939 ret = -EINVAL;
3940 goto err;
3941 }
3942
3943 dai->dev = dev;
3944 dai->driver = &dai_drv[i];
3945 if (dai->driver->id)
3946 dai->id = dai->driver->id;
3947 else
3948 dai->id = i;
3949 dai->dapm.dev = dev;
3950 if (!dai->driver->ops)
3951 dai->driver->ops = &null_dai_ops;
3952
3953 mutex_lock(&client_mutex);
3954
3955 list_for_each_entry(codec, &codec_list, list) {
3956 if (codec->dev == dev) {
3957 dev_dbg(dev,
3958 "ASoC: Mapped DAI %s to CODEC %s\n",
3959 dai->name, codec->name);
3960 dai->codec = codec;
3961 break;
3962 }
3963 }
3964
3965 if (!dai->codec)
3966 dai->dapm.idle_bias_off = 1;
3967
3968 list_add(&dai->list, &dai_list);
3969
3970 mutex_unlock(&client_mutex);
3971
3972 dev_dbg(dai->dev, "ASoC: Registered DAI '%s'\n", dai->name);
3973 }
3974
3975 return 0;
3976
3977 err:
3978 for (i--; i >= 0; i--)
3979 snd_soc_unregister_dai(dev);
3980
3981 return ret;
3982 }
3983
3984 /**
3985 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3986 *
3987 * @dai: Array of DAIs to unregister
3988 * @count: Number of DAIs
3989 */
3990 static void snd_soc_unregister_dais(struct device *dev, size_t count)
3991 {
3992 int i;
3993
3994 for (i = 0; i < count; i++)
3995 snd_soc_unregister_dai(dev);
3996 }
3997
3998 /**
3999 * snd_soc_register_component - Register a component with the ASoC core
4000 *
4001 */
4002 static int
4003 __snd_soc_register_component(struct device *dev,
4004 struct snd_soc_component *cmpnt,
4005 const struct snd_soc_component_driver *cmpnt_drv,
4006 struct snd_soc_dai_driver *dai_drv,
4007 int num_dai, bool allow_single_dai)
4008 {
4009 int ret;
4010
4011 dev_dbg(dev, "component register %s\n", dev_name(dev));
4012
4013 if (!cmpnt) {
4014 dev_err(dev, "ASoC: Failed to connecting component\n");
4015 return -ENOMEM;
4016 }
4017
4018 cmpnt->name = fmt_single_name(dev, &cmpnt->id);
4019 if (!cmpnt->name) {
4020 dev_err(dev, "ASoC: Failed to simplifying name\n");
4021 return -ENOMEM;
4022 }
4023
4024 cmpnt->dev = dev;
4025 cmpnt->driver = cmpnt_drv;
4026 cmpnt->dai_drv = dai_drv;
4027 cmpnt->num_dai = num_dai;
4028
4029 /*
4030 * snd_soc_register_dai() uses fmt_single_name(), and
4031 * snd_soc_register_dais() uses fmt_multiple_name()
4032 * for dai->name which is used for name based matching
4033 *
4034 * this function is used from cpu/codec.
4035 * allow_single_dai flag can ignore "codec" driver reworking
4036 * since it had been used snd_soc_register_dais(),
4037 */
4038 if ((1 == num_dai) && allow_single_dai)
4039 ret = snd_soc_register_dai(dev, dai_drv);
4040 else
4041 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
4042 if (ret < 0) {
4043 dev_err(dev, "ASoC: Failed to regster DAIs: %d\n", ret);
4044 goto error_component_name;
4045 }
4046
4047 mutex_lock(&client_mutex);
4048 list_add(&cmpnt->list, &component_list);
4049 mutex_unlock(&client_mutex);
4050
4051 dev_dbg(cmpnt->dev, "ASoC: Registered component '%s'\n", cmpnt->name);
4052
4053 return ret;
4054
4055 error_component_name:
4056 kfree(cmpnt->name);
4057
4058 return ret;
4059 }
4060
4061 int snd_soc_register_component(struct device *dev,
4062 const struct snd_soc_component_driver *cmpnt_drv,
4063 struct snd_soc_dai_driver *dai_drv,
4064 int num_dai)
4065 {
4066 struct snd_soc_component *cmpnt;
4067
4068 cmpnt = devm_kzalloc(dev, sizeof(*cmpnt), GFP_KERNEL);
4069 if (!cmpnt) {
4070 dev_err(dev, "ASoC: Failed to allocate memory\n");
4071 return -ENOMEM;
4072 }
4073
4074 return __snd_soc_register_component(dev, cmpnt, cmpnt_drv,
4075 dai_drv, num_dai, true);
4076 }
4077 EXPORT_SYMBOL_GPL(snd_soc_register_component);
4078
4079 /**
4080 * snd_soc_unregister_component - Unregister a component from the ASoC core
4081 *
4082 */
4083 void snd_soc_unregister_component(struct device *dev)
4084 {
4085 struct snd_soc_component *cmpnt;
4086
4087 list_for_each_entry(cmpnt, &component_list, list) {
4088 if (dev == cmpnt->dev)
4089 goto found;
4090 }
4091 return;
4092
4093 found:
4094 snd_soc_unregister_dais(dev, cmpnt->num_dai);
4095
4096 mutex_lock(&client_mutex);
4097 list_del(&cmpnt->list);
4098 mutex_unlock(&client_mutex);
4099
4100 dev_dbg(dev, "ASoC: Unregistered component '%s'\n", cmpnt->name);
4101 kfree(cmpnt->name);
4102 }
4103 EXPORT_SYMBOL_GPL(snd_soc_unregister_component);
4104
4105 /**
4106 * snd_soc_add_platform - Add a platform to the ASoC core
4107 * @dev: The parent device for the platform
4108 * @platform: The platform to add
4109 * @platform_driver: The driver for the platform
4110 */
4111 int snd_soc_add_platform(struct device *dev, struct snd_soc_platform *platform,
4112 const struct snd_soc_platform_driver *platform_drv)
4113 {
4114 /* create platform component name */
4115 platform->name = fmt_single_name(dev, &platform->id);
4116 if (platform->name == NULL)
4117 return -ENOMEM;
4118
4119 platform->dev = dev;
4120 platform->driver = platform_drv;
4121 platform->dapm.dev = dev;
4122 platform->dapm.platform = platform;
4123 platform->dapm.stream_event = platform_drv->stream_event;
4124 mutex_init(&platform->mutex);
4125
4126 mutex_lock(&client_mutex);
4127 list_add(&platform->list, &platform_list);
4128 mutex_unlock(&client_mutex);
4129
4130 dev_dbg(dev, "ASoC: Registered platform '%s'\n", platform->name);
4131
4132 return 0;
4133 }
4134 EXPORT_SYMBOL_GPL(snd_soc_add_platform);
4135
4136 /**
4137 * snd_soc_register_platform - Register a platform with the ASoC core
4138 *
4139 * @platform: platform to register
4140 */
4141 int snd_soc_register_platform(struct device *dev,
4142 const struct snd_soc_platform_driver *platform_drv)
4143 {
4144 struct snd_soc_platform *platform;
4145 int ret;
4146
4147 dev_dbg(dev, "ASoC: platform register %s\n", dev_name(dev));
4148
4149 platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
4150 if (platform == NULL)
4151 return -ENOMEM;
4152
4153 ret = snd_soc_add_platform(dev, platform, platform_drv);
4154 if (ret)
4155 kfree(platform);
4156
4157 return ret;
4158 }
4159 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
4160
4161 /**
4162 * snd_soc_remove_platform - Remove a platform from the ASoC core
4163 * @platform: the platform to remove
4164 */
4165 void snd_soc_remove_platform(struct snd_soc_platform *platform)
4166 {
4167 mutex_lock(&client_mutex);
4168 list_del(&platform->list);
4169 mutex_unlock(&client_mutex);
4170
4171 dev_dbg(platform->dev, "ASoC: Unregistered platform '%s'\n",
4172 platform->name);
4173 kfree(platform->name);
4174 }
4175 EXPORT_SYMBOL_GPL(snd_soc_remove_platform);
4176
4177 struct snd_soc_platform *snd_soc_lookup_platform(struct device *dev)
4178 {
4179 struct snd_soc_platform *platform;
4180
4181 list_for_each_entry(platform, &platform_list, list) {
4182 if (dev == platform->dev)
4183 return platform;
4184 }
4185
4186 return NULL;
4187 }
4188 EXPORT_SYMBOL_GPL(snd_soc_lookup_platform);
4189
4190 /**
4191 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
4192 *
4193 * @platform: platform to unregister
4194 */
4195 void snd_soc_unregister_platform(struct device *dev)
4196 {
4197 struct snd_soc_platform *platform;
4198
4199 platform = snd_soc_lookup_platform(dev);
4200 if (!platform)
4201 return;
4202
4203 snd_soc_remove_platform(platform);
4204 kfree(platform);
4205 }
4206 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
4207
4208 static u64 codec_format_map[] = {
4209 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
4210 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
4211 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
4212 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
4213 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
4214 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
4215 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
4216 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
4217 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
4218 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
4219 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
4220 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
4221 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
4222 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
4223 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
4224 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
4225 };
4226
4227 /* Fix up the DAI formats for endianness: codecs don't actually see
4228 * the endianness of the data but we're using the CPU format
4229 * definitions which do need to include endianness so we ensure that
4230 * codec DAIs always have both big and little endian variants set.
4231 */
4232 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
4233 {
4234 int i;
4235
4236 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
4237 if (stream->formats & codec_format_map[i])
4238 stream->formats |= codec_format_map[i];
4239 }
4240
4241 /**
4242 * snd_soc_register_codec - Register a codec with the ASoC core
4243 *
4244 * @codec: codec to register
4245 */
4246 int snd_soc_register_codec(struct device *dev,
4247 const struct snd_soc_codec_driver *codec_drv,
4248 struct snd_soc_dai_driver *dai_drv,
4249 int num_dai)
4250 {
4251 struct snd_soc_codec *codec;
4252 int ret, i;
4253
4254 dev_dbg(dev, "codec register %s\n", dev_name(dev));
4255
4256 codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
4257 if (codec == NULL)
4258 return -ENOMEM;
4259
4260 /* create CODEC component name */
4261 codec->name = fmt_single_name(dev, &codec->id);
4262 if (codec->name == NULL) {
4263 ret = -ENOMEM;
4264 goto fail_codec;
4265 }
4266
4267 codec->write = codec_drv->write;
4268 codec->read = codec_drv->read;
4269 codec->volatile_register = codec_drv->volatile_register;
4270 codec->readable_register = codec_drv->readable_register;
4271 codec->writable_register = codec_drv->writable_register;
4272 codec->ignore_pmdown_time = codec_drv->ignore_pmdown_time;
4273 codec->dapm.bias_level = SND_SOC_BIAS_OFF;
4274 codec->dapm.dev = dev;
4275 codec->dapm.codec = codec;
4276 codec->dapm.seq_notifier = codec_drv->seq_notifier;
4277 codec->dapm.stream_event = codec_drv->stream_event;
4278 codec->dev = dev;
4279 codec->driver = codec_drv;
4280 codec->num_dai = num_dai;
4281 mutex_init(&codec->mutex);
4282
4283 for (i = 0; i < num_dai; i++) {
4284 fixup_codec_formats(&dai_drv[i].playback);
4285 fixup_codec_formats(&dai_drv[i].capture);
4286 }
4287
4288 mutex_lock(&client_mutex);
4289 list_add(&codec->list, &codec_list);
4290 mutex_unlock(&client_mutex);
4291
4292 /* register component */
4293 ret = __snd_soc_register_component(dev, &codec->component,
4294 &codec_drv->component_driver,
4295 dai_drv, num_dai, false);
4296 if (ret < 0) {
4297 dev_err(codec->dev, "ASoC: Failed to regster component: %d\n", ret);
4298 goto fail_codec_name;
4299 }
4300
4301 dev_dbg(codec->dev, "ASoC: Registered codec '%s'\n", codec->name);
4302 return 0;
4303
4304 fail_codec_name:
4305 mutex_lock(&client_mutex);
4306 list_del(&codec->list);
4307 mutex_unlock(&client_mutex);
4308
4309 kfree(codec->name);
4310 fail_codec:
4311 kfree(codec);
4312 return ret;
4313 }
4314 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
4315
4316 /**
4317 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
4318 *
4319 * @codec: codec to unregister
4320 */
4321 void snd_soc_unregister_codec(struct device *dev)
4322 {
4323 struct snd_soc_codec *codec;
4324
4325 list_for_each_entry(codec, &codec_list, list) {
4326 if (dev == codec->dev)
4327 goto found;
4328 }
4329 return;
4330
4331 found:
4332 snd_soc_unregister_component(dev);
4333
4334 mutex_lock(&client_mutex);
4335 list_del(&codec->list);
4336 mutex_unlock(&client_mutex);
4337
4338 dev_dbg(codec->dev, "ASoC: Unregistered codec '%s'\n", codec->name);
4339
4340 snd_soc_cache_exit(codec);
4341 kfree(codec->name);
4342 kfree(codec);
4343 }
4344 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
4345
4346 /* Retrieve a card's name from device tree */
4347 int snd_soc_of_parse_card_name(struct snd_soc_card *card,
4348 const char *propname)
4349 {
4350 struct device_node *np = card->dev->of_node;
4351 int ret;
4352
4353 ret = of_property_read_string_index(np, propname, 0, &card->name);
4354 /*
4355 * EINVAL means the property does not exist. This is fine providing
4356 * card->name was previously set, which is checked later in
4357 * snd_soc_register_card.
4358 */
4359 if (ret < 0 && ret != -EINVAL) {
4360 dev_err(card->dev,
4361 "ASoC: Property '%s' could not be read: %d\n",
4362 propname, ret);
4363 return ret;
4364 }
4365
4366 return 0;
4367 }
4368 EXPORT_SYMBOL_GPL(snd_soc_of_parse_card_name);
4369
4370 int snd_soc_of_parse_audio_routing(struct snd_soc_card *card,
4371 const char *propname)
4372 {
4373 struct device_node *np = card->dev->of_node;
4374 int num_routes;
4375 struct snd_soc_dapm_route *routes;
4376 int i, ret;
4377
4378 num_routes = of_property_count_strings(np, propname);
4379 if (num_routes < 0 || num_routes & 1) {
4380 dev_err(card->dev,
4381 "ASoC: Property '%s' does not exist or its length is not even\n",
4382 propname);
4383 return -EINVAL;
4384 }
4385 num_routes /= 2;
4386 if (!num_routes) {
4387 dev_err(card->dev, "ASoC: Property '%s's length is zero\n",
4388 propname);
4389 return -EINVAL;
4390 }
4391
4392 routes = devm_kzalloc(card->dev, num_routes * sizeof(*routes),
4393 GFP_KERNEL);
4394 if (!routes) {
4395 dev_err(card->dev,
4396 "ASoC: Could not allocate DAPM route table\n");
4397 return -EINVAL;
4398 }
4399
4400 for (i = 0; i < num_routes; i++) {
4401 ret = of_property_read_string_index(np, propname,
4402 2 * i, &routes[i].sink);
4403 if (ret) {
4404 dev_err(card->dev,
4405 "ASoC: Property '%s' index %d could not be read: %d\n",
4406 propname, 2 * i, ret);
4407 return -EINVAL;
4408 }
4409 ret = of_property_read_string_index(np, propname,
4410 (2 * i) + 1, &routes[i].source);
4411 if (ret) {
4412 dev_err(card->dev,
4413 "ASoC: Property '%s' index %d could not be read: %d\n",
4414 propname, (2 * i) + 1, ret);
4415 return -EINVAL;
4416 }
4417 }
4418
4419 card->num_dapm_routes = num_routes;
4420 card->dapm_routes = routes;
4421
4422 return 0;
4423 }
4424 EXPORT_SYMBOL_GPL(snd_soc_of_parse_audio_routing);
4425
4426 unsigned int snd_soc_of_parse_daifmt(struct device_node *np,
4427 const char *prefix)
4428 {
4429 int ret, i;
4430 char prop[128];
4431 unsigned int format = 0;
4432 int bit, frame;
4433 const char *str;
4434 struct {
4435 char *name;
4436 unsigned int val;
4437 } of_fmt_table[] = {
4438 { "i2s", SND_SOC_DAIFMT_I2S },
4439 { "right_j", SND_SOC_DAIFMT_RIGHT_J },
4440 { "left_j", SND_SOC_DAIFMT_LEFT_J },
4441 { "dsp_a", SND_SOC_DAIFMT_DSP_A },
4442 { "dsp_b", SND_SOC_DAIFMT_DSP_B },
4443 { "ac97", SND_SOC_DAIFMT_AC97 },
4444 { "pdm", SND_SOC_DAIFMT_PDM},
4445 { "msb", SND_SOC_DAIFMT_MSB },
4446 { "lsb", SND_SOC_DAIFMT_LSB },
4447 };
4448
4449 if (!prefix)
4450 prefix = "";
4451
4452 /*
4453 * check "[prefix]format = xxx"
4454 * SND_SOC_DAIFMT_FORMAT_MASK area
4455 */
4456 snprintf(prop, sizeof(prop), "%sformat", prefix);
4457 ret = of_property_read_string(np, prop, &str);
4458 if (ret == 0) {
4459 for (i = 0; i < ARRAY_SIZE(of_fmt_table); i++) {
4460 if (strcmp(str, of_fmt_table[i].name) == 0) {
4461 format |= of_fmt_table[i].val;
4462 break;
4463 }
4464 }
4465 }
4466
4467 /*
4468 * check "[prefix]continuous-clock"
4469 * SND_SOC_DAIFMT_CLOCK_MASK area
4470 */
4471 snprintf(prop, sizeof(prop), "%scontinuous-clock", prefix);
4472 if (of_get_property(np, prop, NULL))
4473 format |= SND_SOC_DAIFMT_CONT;
4474 else
4475 format |= SND_SOC_DAIFMT_GATED;
4476
4477 /*
4478 * check "[prefix]bitclock-inversion"
4479 * check "[prefix]frame-inversion"
4480 * SND_SOC_DAIFMT_INV_MASK area
4481 */
4482 snprintf(prop, sizeof(prop), "%sbitclock-inversion", prefix);
4483 bit = !!of_get_property(np, prop, NULL);
4484
4485 snprintf(prop, sizeof(prop), "%sframe-inversion", prefix);
4486 frame = !!of_get_property(np, prop, NULL);
4487
4488 switch ((bit << 4) + frame) {
4489 case 0x11:
4490 format |= SND_SOC_DAIFMT_IB_IF;
4491 break;
4492 case 0x10:
4493 format |= SND_SOC_DAIFMT_IB_NF;
4494 break;
4495 case 0x01:
4496 format |= SND_SOC_DAIFMT_NB_IF;
4497 break;
4498 default:
4499 /* SND_SOC_DAIFMT_NB_NF is default */
4500 break;
4501 }
4502
4503 /*
4504 * check "[prefix]bitclock-master"
4505 * check "[prefix]frame-master"
4506 * SND_SOC_DAIFMT_MASTER_MASK area
4507 */
4508 snprintf(prop, sizeof(prop), "%sbitclock-master", prefix);
4509 bit = !!of_get_property(np, prop, NULL);
4510
4511 snprintf(prop, sizeof(prop), "%sframe-master", prefix);
4512 frame = !!of_get_property(np, prop, NULL);
4513
4514 switch ((bit << 4) + frame) {
4515 case 0x11:
4516 format |= SND_SOC_DAIFMT_CBM_CFM;
4517 break;
4518 case 0x10:
4519 format |= SND_SOC_DAIFMT_CBM_CFS;
4520 break;
4521 case 0x01:
4522 format |= SND_SOC_DAIFMT_CBS_CFM;
4523 break;
4524 default:
4525 format |= SND_SOC_DAIFMT_CBS_CFS;
4526 break;
4527 }
4528
4529 return format;
4530 }
4531 EXPORT_SYMBOL_GPL(snd_soc_of_parse_daifmt);
4532
4533 int snd_soc_of_get_dai_name(struct device_node *of_node,
4534 const char **dai_name)
4535 {
4536 struct snd_soc_component *pos;
4537 struct of_phandle_args args;
4538 int ret;
4539
4540 ret = of_parse_phandle_with_args(of_node, "sound-dai",
4541 "#sound-dai-cells", 0, &args);
4542 if (ret)
4543 return ret;
4544
4545 ret = -EPROBE_DEFER;
4546
4547 mutex_lock(&client_mutex);
4548 list_for_each_entry(pos, &component_list, list) {
4549 if (pos->dev->of_node != args.np)
4550 continue;
4551
4552 if (pos->driver->of_xlate_dai_name) {
4553 ret = pos->driver->of_xlate_dai_name(pos, &args, dai_name);
4554 } else {
4555 int id = -1;
4556
4557 switch (args.args_count) {
4558 case 0:
4559 id = 0; /* same as dai_drv[0] */
4560 break;
4561 case 1:
4562 id = args.args[0];
4563 break;
4564 default:
4565 /* not supported */
4566 break;
4567 }
4568
4569 if (id < 0 || id >= pos->num_dai) {
4570 ret = -EINVAL;
4571 } else {
4572 *dai_name = pos->dai_drv[id].name;
4573 ret = 0;
4574 }
4575 }
4576
4577 break;
4578 }
4579 mutex_unlock(&client_mutex);
4580
4581 of_node_put(args.np);
4582
4583 return ret;
4584 }
4585 EXPORT_SYMBOL_GPL(snd_soc_of_get_dai_name);
4586
4587 static int __init snd_soc_init(void)
4588 {
4589 #ifdef CONFIG_DEBUG_FS
4590 snd_soc_debugfs_root = debugfs_create_dir("asoc", NULL);
4591 if (IS_ERR(snd_soc_debugfs_root) || !snd_soc_debugfs_root) {
4592 pr_warn("ASoC: Failed to create debugfs directory\n");
4593 snd_soc_debugfs_root = NULL;
4594 }
4595
4596 if (!debugfs_create_file("codecs", 0444, snd_soc_debugfs_root, NULL,
4597 &codec_list_fops))
4598 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
4599
4600 if (!debugfs_create_file("dais", 0444, snd_soc_debugfs_root, NULL,
4601 &dai_list_fops))
4602 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
4603
4604 if (!debugfs_create_file("platforms", 0444, snd_soc_debugfs_root, NULL,
4605 &platform_list_fops))
4606 pr_warn("ASoC: Failed to create platform list debugfs file\n");
4607 #endif
4608
4609 snd_soc_util_init();
4610
4611 return platform_driver_register(&soc_driver);
4612 }
4613 module_init(snd_soc_init);
4614
4615 static void __exit snd_soc_exit(void)
4616 {
4617 snd_soc_util_exit();
4618
4619 #ifdef CONFIG_DEBUG_FS
4620 debugfs_remove_recursive(snd_soc_debugfs_root);
4621 #endif
4622 platform_driver_unregister(&soc_driver);
4623 }
4624 module_exit(snd_soc_exit);
4625
4626 /* Module information */
4627 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
4628 MODULE_DESCRIPTION("ALSA SoC Core");
4629 MODULE_LICENSE("GPL");
4630 MODULE_ALIAS("platform:soc-audio");
This page took 0.47672 seconds and 4 git commands to generate.