6e47610f73a09ad367cc6a94ef7b9dd64fc45bad
[deliverable/linux.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 * Copyright (C) 2010 Slimlogic Ltd.
7 * Copyright (C) 2010 Texas Instruments Inc.
8 *
9 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 * with code, comments and ideas from :-
11 * Richard Purdie <richard@openedhand.com>
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 * TODO:
19 * o Add hw rules to enforce rates, etc.
20 * o More testing with other codecs/machines.
21 * o Add more codecs and platforms to ensure good API coverage.
22 * o Support TDM on PCM and I2S
23 */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/pinctrl/consumer.h>
34 #include <linux/ctype.h>
35 #include <linux/slab.h>
36 #include <linux/of.h>
37 #include <linux/gpio.h>
38 #include <linux/of_gpio.h>
39 #include <sound/ac97_codec.h>
40 #include <sound/core.h>
41 #include <sound/jack.h>
42 #include <sound/pcm.h>
43 #include <sound/pcm_params.h>
44 #include <sound/soc.h>
45 #include <sound/soc-dpcm.h>
46 #include <sound/initval.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/asoc.h>
50
51 #define NAME_SIZE 32
52
53 #ifdef CONFIG_DEBUG_FS
54 struct dentry *snd_soc_debugfs_root;
55 EXPORT_SYMBOL_GPL(snd_soc_debugfs_root);
56 #endif
57
58 static DEFINE_MUTEX(client_mutex);
59 static LIST_HEAD(platform_list);
60 static LIST_HEAD(codec_list);
61 static LIST_HEAD(component_list);
62
63 /*
64 * This is a timeout to do a DAPM powerdown after a stream is closed().
65 * It can be used to eliminate pops between different playback streams, e.g.
66 * between two audio tracks.
67 */
68 static int pmdown_time = 5000;
69 module_param(pmdown_time, int, 0);
70 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
71
72 struct snd_ac97_reset_cfg {
73 struct pinctrl *pctl;
74 struct pinctrl_state *pstate_reset;
75 struct pinctrl_state *pstate_warm_reset;
76 struct pinctrl_state *pstate_run;
77 int gpio_sdata;
78 int gpio_sync;
79 int gpio_reset;
80 };
81
82 /* returns the minimum number of bytes needed to represent
83 * a particular given value */
84 static int min_bytes_needed(unsigned long val)
85 {
86 int c = 0;
87 int i;
88
89 for (i = (sizeof val * 8) - 1; i >= 0; --i, ++c)
90 if (val & (1UL << i))
91 break;
92 c = (sizeof val * 8) - c;
93 if (!c || (c % 8))
94 c = (c + 8) / 8;
95 else
96 c /= 8;
97 return c;
98 }
99
100 /* fill buf which is 'len' bytes with a formatted
101 * string of the form 'reg: value\n' */
102 static int format_register_str(struct snd_soc_codec *codec,
103 unsigned int reg, char *buf, size_t len)
104 {
105 int wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
106 int regsize = codec->driver->reg_word_size * 2;
107 int ret;
108 char tmpbuf[len + 1];
109 char regbuf[regsize + 1];
110
111 /* since tmpbuf is allocated on the stack, warn the callers if they
112 * try to abuse this function */
113 WARN_ON(len > 63);
114
115 /* +2 for ': ' and + 1 for '\n' */
116 if (wordsize + regsize + 2 + 1 != len)
117 return -EINVAL;
118
119 ret = snd_soc_read(codec, reg);
120 if (ret < 0) {
121 memset(regbuf, 'X', regsize);
122 regbuf[regsize] = '\0';
123 } else {
124 snprintf(regbuf, regsize + 1, "%.*x", regsize, ret);
125 }
126
127 /* prepare the buffer */
128 snprintf(tmpbuf, len + 1, "%.*x: %s\n", wordsize, reg, regbuf);
129 /* copy it back to the caller without the '\0' */
130 memcpy(buf, tmpbuf, len);
131
132 return 0;
133 }
134
135 /* codec register dump */
136 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf,
137 size_t count, loff_t pos)
138 {
139 int i, step = 1;
140 int wordsize, regsize;
141 int len;
142 size_t total = 0;
143 loff_t p = 0;
144
145 wordsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
146 regsize = codec->driver->reg_word_size * 2;
147
148 len = wordsize + regsize + 2 + 1;
149
150 if (!codec->driver->reg_cache_size)
151 return 0;
152
153 if (codec->driver->reg_cache_step)
154 step = codec->driver->reg_cache_step;
155
156 for (i = 0; i < codec->driver->reg_cache_size; i += step) {
157 /* only support larger than PAGE_SIZE bytes debugfs
158 * entries for the default case */
159 if (p >= pos) {
160 if (total + len >= count - 1)
161 break;
162 format_register_str(codec, i, buf + total, len);
163 total += len;
164 }
165 p += len;
166 }
167
168 total = min(total, count - 1);
169
170 return total;
171 }
172
173 static ssize_t codec_reg_show(struct device *dev,
174 struct device_attribute *attr, char *buf)
175 {
176 struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev);
177
178 return soc_codec_reg_show(rtd->codec, buf, PAGE_SIZE, 0);
179 }
180
181 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
182
183 static ssize_t pmdown_time_show(struct device *dev,
184 struct device_attribute *attr, char *buf)
185 {
186 struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev);
187
188 return sprintf(buf, "%ld\n", rtd->pmdown_time);
189 }
190
191 static ssize_t pmdown_time_set(struct device *dev,
192 struct device_attribute *attr,
193 const char *buf, size_t count)
194 {
195 struct snd_soc_pcm_runtime *rtd = dev_get_drvdata(dev);
196 int ret;
197
198 ret = kstrtol(buf, 10, &rtd->pmdown_time);
199 if (ret)
200 return ret;
201
202 return count;
203 }
204
205 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
206
207 #ifdef CONFIG_DEBUG_FS
208 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
209 size_t count, loff_t *ppos)
210 {
211 ssize_t ret;
212 struct snd_soc_codec *codec = file->private_data;
213 char *buf;
214
215 if (*ppos < 0 || !count)
216 return -EINVAL;
217
218 buf = kmalloc(count, GFP_KERNEL);
219 if (!buf)
220 return -ENOMEM;
221
222 ret = soc_codec_reg_show(codec, buf, count, *ppos);
223 if (ret >= 0) {
224 if (copy_to_user(user_buf, buf, ret)) {
225 kfree(buf);
226 return -EFAULT;
227 }
228 *ppos += ret;
229 }
230
231 kfree(buf);
232 return ret;
233 }
234
235 static ssize_t codec_reg_write_file(struct file *file,
236 const char __user *user_buf, size_t count, loff_t *ppos)
237 {
238 char buf[32];
239 size_t buf_size;
240 char *start = buf;
241 unsigned long reg, value;
242 struct snd_soc_codec *codec = file->private_data;
243 int ret;
244
245 buf_size = min(count, (sizeof(buf)-1));
246 if (copy_from_user(buf, user_buf, buf_size))
247 return -EFAULT;
248 buf[buf_size] = 0;
249
250 while (*start == ' ')
251 start++;
252 reg = simple_strtoul(start, &start, 16);
253 while (*start == ' ')
254 start++;
255 ret = kstrtoul(start, 16, &value);
256 if (ret)
257 return ret;
258
259 /* Userspace has been fiddling around behind the kernel's back */
260 add_taint(TAINT_USER, LOCKDEP_NOW_UNRELIABLE);
261
262 snd_soc_write(codec, reg, value);
263 return buf_size;
264 }
265
266 static const struct file_operations codec_reg_fops = {
267 .open = simple_open,
268 .read = codec_reg_read_file,
269 .write = codec_reg_write_file,
270 .llseek = default_llseek,
271 };
272
273 static struct dentry *soc_debugfs_create_dir(struct dentry *parent,
274 const char *fmt, ...)
275 {
276 struct dentry *de;
277 va_list ap;
278 char *s;
279
280 va_start(ap, fmt);
281 s = kvasprintf(GFP_KERNEL, fmt, ap);
282 va_end(ap);
283
284 if (!s)
285 return NULL;
286
287 de = debugfs_create_dir(s, parent);
288 kfree(s);
289
290 return de;
291 }
292
293 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
294 {
295 struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
296
297 codec->debugfs_codec_root = soc_debugfs_create_dir(debugfs_card_root,
298 "codec:%s",
299 codec->component.name);
300 if (!codec->debugfs_codec_root) {
301 dev_warn(codec->dev,
302 "ASoC: Failed to create codec debugfs directory\n");
303 return;
304 }
305
306 debugfs_create_bool("cache_sync", 0444, codec->debugfs_codec_root,
307 &codec->cache_sync);
308 debugfs_create_bool("cache_only", 0444, codec->debugfs_codec_root,
309 &codec->cache_only);
310
311 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
312 codec->debugfs_codec_root,
313 codec, &codec_reg_fops);
314 if (!codec->debugfs_reg)
315 dev_warn(codec->dev,
316 "ASoC: Failed to create codec register debugfs file\n");
317
318 snd_soc_dapm_debugfs_init(&codec->dapm, codec->debugfs_codec_root);
319 }
320
321 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
322 {
323 debugfs_remove_recursive(codec->debugfs_codec_root);
324 }
325
326 static void soc_init_platform_debugfs(struct snd_soc_platform *platform)
327 {
328 struct dentry *debugfs_card_root = platform->card->debugfs_card_root;
329
330 platform->debugfs_platform_root = soc_debugfs_create_dir(debugfs_card_root,
331 "platform:%s",
332 platform->component.name);
333 if (!platform->debugfs_platform_root) {
334 dev_warn(platform->dev,
335 "ASoC: Failed to create platform debugfs directory\n");
336 return;
337 }
338
339 snd_soc_dapm_debugfs_init(&platform->component.dapm,
340 platform->debugfs_platform_root);
341 }
342
343 static void soc_cleanup_platform_debugfs(struct snd_soc_platform *platform)
344 {
345 debugfs_remove_recursive(platform->debugfs_platform_root);
346 }
347
348 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
349 size_t count, loff_t *ppos)
350 {
351 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
352 ssize_t len, ret = 0;
353 struct snd_soc_codec *codec;
354
355 if (!buf)
356 return -ENOMEM;
357
358 list_for_each_entry(codec, &codec_list, list) {
359 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
360 codec->component.name);
361 if (len >= 0)
362 ret += len;
363 if (ret > PAGE_SIZE) {
364 ret = PAGE_SIZE;
365 break;
366 }
367 }
368
369 if (ret >= 0)
370 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
371
372 kfree(buf);
373
374 return ret;
375 }
376
377 static const struct file_operations codec_list_fops = {
378 .read = codec_list_read_file,
379 .llseek = default_llseek,/* read accesses f_pos */
380 };
381
382 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
383 size_t count, loff_t *ppos)
384 {
385 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
386 ssize_t len, ret = 0;
387 struct snd_soc_component *component;
388 struct snd_soc_dai *dai;
389
390 if (!buf)
391 return -ENOMEM;
392
393 list_for_each_entry(component, &component_list, list) {
394 list_for_each_entry(dai, &component->dai_list, list) {
395 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
396 dai->name);
397 if (len >= 0)
398 ret += len;
399 if (ret > PAGE_SIZE) {
400 ret = PAGE_SIZE;
401 break;
402 }
403 }
404 }
405
406 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
407
408 kfree(buf);
409
410 return ret;
411 }
412
413 static const struct file_operations dai_list_fops = {
414 .read = dai_list_read_file,
415 .llseek = default_llseek,/* read accesses f_pos */
416 };
417
418 static ssize_t platform_list_read_file(struct file *file,
419 char __user *user_buf,
420 size_t count, loff_t *ppos)
421 {
422 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
423 ssize_t len, ret = 0;
424 struct snd_soc_platform *platform;
425
426 if (!buf)
427 return -ENOMEM;
428
429 list_for_each_entry(platform, &platform_list, list) {
430 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
431 platform->component.name);
432 if (len >= 0)
433 ret += len;
434 if (ret > PAGE_SIZE) {
435 ret = PAGE_SIZE;
436 break;
437 }
438 }
439
440 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
441
442 kfree(buf);
443
444 return ret;
445 }
446
447 static const struct file_operations platform_list_fops = {
448 .read = platform_list_read_file,
449 .llseek = default_llseek,/* read accesses f_pos */
450 };
451
452 static void soc_init_card_debugfs(struct snd_soc_card *card)
453 {
454 card->debugfs_card_root = debugfs_create_dir(card->name,
455 snd_soc_debugfs_root);
456 if (!card->debugfs_card_root) {
457 dev_warn(card->dev,
458 "ASoC: Failed to create card debugfs directory\n");
459 return;
460 }
461
462 card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
463 card->debugfs_card_root,
464 &card->pop_time);
465 if (!card->debugfs_pop_time)
466 dev_warn(card->dev,
467 "ASoC: Failed to create pop time debugfs file\n");
468 }
469
470 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
471 {
472 debugfs_remove_recursive(card->debugfs_card_root);
473 }
474
475 #else
476
477 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
478 {
479 }
480
481 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
482 {
483 }
484
485 static inline void soc_init_platform_debugfs(struct snd_soc_platform *platform)
486 {
487 }
488
489 static inline void soc_cleanup_platform_debugfs(struct snd_soc_platform *platform)
490 {
491 }
492
493 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
494 {
495 }
496
497 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
498 {
499 }
500 #endif
501
502 struct snd_pcm_substream *snd_soc_get_dai_substream(struct snd_soc_card *card,
503 const char *dai_link, int stream)
504 {
505 int i;
506
507 for (i = 0; i < card->num_links; i++) {
508 if (card->rtd[i].dai_link->no_pcm &&
509 !strcmp(card->rtd[i].dai_link->name, dai_link))
510 return card->rtd[i].pcm->streams[stream].substream;
511 }
512 dev_dbg(card->dev, "ASoC: failed to find dai link %s\n", dai_link);
513 return NULL;
514 }
515 EXPORT_SYMBOL_GPL(snd_soc_get_dai_substream);
516
517 struct snd_soc_pcm_runtime *snd_soc_get_pcm_runtime(struct snd_soc_card *card,
518 const char *dai_link)
519 {
520 int i;
521
522 for (i = 0; i < card->num_links; i++) {
523 if (!strcmp(card->rtd[i].dai_link->name, dai_link))
524 return &card->rtd[i];
525 }
526 dev_dbg(card->dev, "ASoC: failed to find rtd %s\n", dai_link);
527 return NULL;
528 }
529 EXPORT_SYMBOL_GPL(snd_soc_get_pcm_runtime);
530
531 #ifdef CONFIG_SND_SOC_AC97_BUS
532 /* unregister ac97 codec */
533 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
534 {
535 if (codec->ac97->dev.bus)
536 device_unregister(&codec->ac97->dev);
537 return 0;
538 }
539
540 /* stop no dev release warning */
541 static void soc_ac97_device_release(struct device *dev){}
542
543 /* register ac97 codec to bus */
544 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
545 {
546 int err;
547
548 codec->ac97->dev.bus = &ac97_bus_type;
549 codec->ac97->dev.parent = codec->card->dev;
550 codec->ac97->dev.release = soc_ac97_device_release;
551
552 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
553 codec->card->snd_card->number, 0, codec->component.name);
554 err = device_register(&codec->ac97->dev);
555 if (err < 0) {
556 dev_err(codec->dev, "ASoC: Can't register ac97 bus\n");
557 codec->ac97->dev.bus = NULL;
558 return err;
559 }
560 return 0;
561 }
562 #endif
563
564 static void codec2codec_close_delayed_work(struct work_struct *work)
565 {
566 /* Currently nothing to do for c2c links
567 * Since c2c links are internal nodes in the DAPM graph and
568 * don't interface with the outside world or application layer
569 * we don't have to do any special handling on close.
570 */
571 }
572
573 #ifdef CONFIG_PM_SLEEP
574 /* powers down audio subsystem for suspend */
575 int snd_soc_suspend(struct device *dev)
576 {
577 struct snd_soc_card *card = dev_get_drvdata(dev);
578 struct snd_soc_codec *codec;
579 int i, j;
580
581 /* If the initialization of this soc device failed, there is no codec
582 * associated with it. Just bail out in this case.
583 */
584 if (list_empty(&card->codec_dev_list))
585 return 0;
586
587 /* Due to the resume being scheduled into a workqueue we could
588 * suspend before that's finished - wait for it to complete.
589 */
590 snd_power_lock(card->snd_card);
591 snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
592 snd_power_unlock(card->snd_card);
593
594 /* we're going to block userspace touching us until resume completes */
595 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
596
597 /* mute any active DACs */
598 for (i = 0; i < card->num_rtd; i++) {
599
600 if (card->rtd[i].dai_link->ignore_suspend)
601 continue;
602
603 for (j = 0; j < card->rtd[i].num_codecs; j++) {
604 struct snd_soc_dai *dai = card->rtd[i].codec_dais[j];
605 struct snd_soc_dai_driver *drv = dai->driver;
606
607 if (drv->ops->digital_mute && dai->playback_active)
608 drv->ops->digital_mute(dai, 1);
609 }
610 }
611
612 /* suspend all pcms */
613 for (i = 0; i < card->num_rtd; i++) {
614 if (card->rtd[i].dai_link->ignore_suspend)
615 continue;
616
617 snd_pcm_suspend_all(card->rtd[i].pcm);
618 }
619
620 if (card->suspend_pre)
621 card->suspend_pre(card);
622
623 for (i = 0; i < card->num_rtd; i++) {
624 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
625 struct snd_soc_platform *platform = card->rtd[i].platform;
626
627 if (card->rtd[i].dai_link->ignore_suspend)
628 continue;
629
630 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
631 cpu_dai->driver->suspend(cpu_dai);
632 if (platform->driver->suspend && !platform->suspended) {
633 platform->driver->suspend(cpu_dai);
634 platform->suspended = 1;
635 }
636 }
637
638 /* close any waiting streams and save state */
639 for (i = 0; i < card->num_rtd; i++) {
640 struct snd_soc_dai **codec_dais = card->rtd[i].codec_dais;
641 flush_delayed_work(&card->rtd[i].delayed_work);
642 for (j = 0; j < card->rtd[i].num_codecs; j++) {
643 codec_dais[j]->codec->dapm.suspend_bias_level =
644 codec_dais[j]->codec->dapm.bias_level;
645 }
646 }
647
648 for (i = 0; i < card->num_rtd; i++) {
649
650 if (card->rtd[i].dai_link->ignore_suspend)
651 continue;
652
653 snd_soc_dapm_stream_event(&card->rtd[i],
654 SNDRV_PCM_STREAM_PLAYBACK,
655 SND_SOC_DAPM_STREAM_SUSPEND);
656
657 snd_soc_dapm_stream_event(&card->rtd[i],
658 SNDRV_PCM_STREAM_CAPTURE,
659 SND_SOC_DAPM_STREAM_SUSPEND);
660 }
661
662 /* Recheck all analogue paths too */
663 dapm_mark_io_dirty(&card->dapm);
664 snd_soc_dapm_sync(&card->dapm);
665
666 /* suspend all CODECs */
667 list_for_each_entry(codec, &card->codec_dev_list, card_list) {
668 /* If there are paths active then the CODEC will be held with
669 * bias _ON and should not be suspended. */
670 if (!codec->suspended && codec->driver->suspend) {
671 switch (codec->dapm.bias_level) {
672 case SND_SOC_BIAS_STANDBY:
673 /*
674 * If the CODEC is capable of idle
675 * bias off then being in STANDBY
676 * means it's doing something,
677 * otherwise fall through.
678 */
679 if (codec->dapm.idle_bias_off) {
680 dev_dbg(codec->dev,
681 "ASoC: idle_bias_off CODEC on over suspend\n");
682 break;
683 }
684 case SND_SOC_BIAS_OFF:
685 codec->driver->suspend(codec);
686 codec->suspended = 1;
687 codec->cache_sync = 1;
688 if (codec->component.regmap)
689 regcache_mark_dirty(codec->component.regmap);
690 /* deactivate pins to sleep state */
691 pinctrl_pm_select_sleep_state(codec->dev);
692 break;
693 default:
694 dev_dbg(codec->dev,
695 "ASoC: CODEC is on over suspend\n");
696 break;
697 }
698 }
699 }
700
701 for (i = 0; i < card->num_rtd; i++) {
702 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
703
704 if (card->rtd[i].dai_link->ignore_suspend)
705 continue;
706
707 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
708 cpu_dai->driver->suspend(cpu_dai);
709
710 /* deactivate pins to sleep state */
711 pinctrl_pm_select_sleep_state(cpu_dai->dev);
712 }
713
714 if (card->suspend_post)
715 card->suspend_post(card);
716
717 return 0;
718 }
719 EXPORT_SYMBOL_GPL(snd_soc_suspend);
720
721 /* deferred resume work, so resume can complete before we finished
722 * setting our codec back up, which can be very slow on I2C
723 */
724 static void soc_resume_deferred(struct work_struct *work)
725 {
726 struct snd_soc_card *card =
727 container_of(work, struct snd_soc_card, deferred_resume_work);
728 struct snd_soc_codec *codec;
729 int i, j;
730
731 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
732 * so userspace apps are blocked from touching us
733 */
734
735 dev_dbg(card->dev, "ASoC: starting resume work\n");
736
737 /* Bring us up into D2 so that DAPM starts enabling things */
738 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
739
740 if (card->resume_pre)
741 card->resume_pre(card);
742
743 /* resume AC97 DAIs */
744 for (i = 0; i < card->num_rtd; i++) {
745 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
746
747 if (card->rtd[i].dai_link->ignore_suspend)
748 continue;
749
750 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
751 cpu_dai->driver->resume(cpu_dai);
752 }
753
754 list_for_each_entry(codec, &card->codec_dev_list, card_list) {
755 /* If the CODEC was idle over suspend then it will have been
756 * left with bias OFF or STANDBY and suspended so we must now
757 * resume. Otherwise the suspend was suppressed.
758 */
759 if (codec->driver->resume && codec->suspended) {
760 switch (codec->dapm.bias_level) {
761 case SND_SOC_BIAS_STANDBY:
762 case SND_SOC_BIAS_OFF:
763 codec->driver->resume(codec);
764 codec->suspended = 0;
765 break;
766 default:
767 dev_dbg(codec->dev,
768 "ASoC: CODEC was on over suspend\n");
769 break;
770 }
771 }
772 }
773
774 for (i = 0; i < card->num_rtd; i++) {
775
776 if (card->rtd[i].dai_link->ignore_suspend)
777 continue;
778
779 snd_soc_dapm_stream_event(&card->rtd[i],
780 SNDRV_PCM_STREAM_PLAYBACK,
781 SND_SOC_DAPM_STREAM_RESUME);
782
783 snd_soc_dapm_stream_event(&card->rtd[i],
784 SNDRV_PCM_STREAM_CAPTURE,
785 SND_SOC_DAPM_STREAM_RESUME);
786 }
787
788 /* unmute any active DACs */
789 for (i = 0; i < card->num_rtd; i++) {
790
791 if (card->rtd[i].dai_link->ignore_suspend)
792 continue;
793
794 for (j = 0; j < card->rtd[i].num_codecs; j++) {
795 struct snd_soc_dai *dai = card->rtd[i].codec_dais[j];
796 struct snd_soc_dai_driver *drv = dai->driver;
797
798 if (drv->ops->digital_mute && dai->playback_active)
799 drv->ops->digital_mute(dai, 0);
800 }
801 }
802
803 for (i = 0; i < card->num_rtd; i++) {
804 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
805 struct snd_soc_platform *platform = card->rtd[i].platform;
806
807 if (card->rtd[i].dai_link->ignore_suspend)
808 continue;
809
810 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
811 cpu_dai->driver->resume(cpu_dai);
812 if (platform->driver->resume && platform->suspended) {
813 platform->driver->resume(cpu_dai);
814 platform->suspended = 0;
815 }
816 }
817
818 if (card->resume_post)
819 card->resume_post(card);
820
821 dev_dbg(card->dev, "ASoC: resume work completed\n");
822
823 /* userspace can access us now we are back as we were before */
824 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
825
826 /* Recheck all analogue paths too */
827 dapm_mark_io_dirty(&card->dapm);
828 snd_soc_dapm_sync(&card->dapm);
829 }
830
831 /* powers up audio subsystem after a suspend */
832 int snd_soc_resume(struct device *dev)
833 {
834 struct snd_soc_card *card = dev_get_drvdata(dev);
835 int i, ac97_control = 0;
836
837 /* If the initialization of this soc device failed, there is no codec
838 * associated with it. Just bail out in this case.
839 */
840 if (list_empty(&card->codec_dev_list))
841 return 0;
842
843 /* activate pins from sleep state */
844 for (i = 0; i < card->num_rtd; i++) {
845 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
846 struct snd_soc_dai **codec_dais = rtd->codec_dais;
847 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
848 int j;
849
850 if (cpu_dai->active)
851 pinctrl_pm_select_default_state(cpu_dai->dev);
852
853 for (j = 0; j < rtd->num_codecs; j++) {
854 struct snd_soc_dai *codec_dai = codec_dais[j];
855 if (codec_dai->active)
856 pinctrl_pm_select_default_state(codec_dai->dev);
857 }
858 }
859
860 /* AC97 devices might have other drivers hanging off them so
861 * need to resume immediately. Other drivers don't have that
862 * problem and may take a substantial amount of time to resume
863 * due to I/O costs and anti-pop so handle them out of line.
864 */
865 for (i = 0; i < card->num_rtd; i++) {
866 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
867 ac97_control |= cpu_dai->driver->ac97_control;
868 }
869 if (ac97_control) {
870 dev_dbg(dev, "ASoC: Resuming AC97 immediately\n");
871 soc_resume_deferred(&card->deferred_resume_work);
872 } else {
873 dev_dbg(dev, "ASoC: Scheduling resume work\n");
874 if (!schedule_work(&card->deferred_resume_work))
875 dev_err(dev, "ASoC: resume work item may be lost\n");
876 }
877
878 return 0;
879 }
880 EXPORT_SYMBOL_GPL(snd_soc_resume);
881 #else
882 #define snd_soc_suspend NULL
883 #define snd_soc_resume NULL
884 #endif
885
886 static const struct snd_soc_dai_ops null_dai_ops = {
887 };
888
889 static struct snd_soc_codec *soc_find_codec(
890 const struct device_node *codec_of_node,
891 const char *codec_name)
892 {
893 struct snd_soc_codec *codec;
894
895 list_for_each_entry(codec, &codec_list, list) {
896 if (codec_of_node) {
897 if (codec->dev->of_node != codec_of_node)
898 continue;
899 } else {
900 if (strcmp(codec->component.name, codec_name))
901 continue;
902 }
903
904 return codec;
905 }
906
907 return NULL;
908 }
909
910 static struct snd_soc_dai *soc_find_codec_dai(struct snd_soc_codec *codec,
911 const char *codec_dai_name)
912 {
913 struct snd_soc_dai *codec_dai;
914
915 list_for_each_entry(codec_dai, &codec->component.dai_list, list) {
916 if (!strcmp(codec_dai->name, codec_dai_name)) {
917 return codec_dai;
918 }
919 }
920
921 return NULL;
922 }
923
924 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
925 {
926 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
927 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
928 struct snd_soc_component *component;
929 struct snd_soc_dai_link_component *codecs = dai_link->codecs;
930 struct snd_soc_dai **codec_dais = rtd->codec_dais;
931 struct snd_soc_platform *platform;
932 struct snd_soc_dai *cpu_dai;
933 const char *platform_name;
934 int i;
935
936 dev_dbg(card->dev, "ASoC: binding %s at idx %d\n", dai_link->name, num);
937
938 /* Find CPU DAI from registered DAIs*/
939 list_for_each_entry(component, &component_list, list) {
940 if (dai_link->cpu_of_node &&
941 component->dev->of_node != dai_link->cpu_of_node)
942 continue;
943 if (dai_link->cpu_name &&
944 strcmp(dev_name(component->dev), dai_link->cpu_name))
945 continue;
946 list_for_each_entry(cpu_dai, &component->dai_list, list) {
947 if (dai_link->cpu_dai_name &&
948 strcmp(cpu_dai->name, dai_link->cpu_dai_name))
949 continue;
950
951 rtd->cpu_dai = cpu_dai;
952 }
953 }
954
955 if (!rtd->cpu_dai) {
956 dev_err(card->dev, "ASoC: CPU DAI %s not registered\n",
957 dai_link->cpu_dai_name);
958 return -EPROBE_DEFER;
959 }
960
961 rtd->num_codecs = dai_link->num_codecs;
962
963 /* Find CODEC from registered CODECs */
964 for (i = 0; i < rtd->num_codecs; i++) {
965 struct snd_soc_codec *codec;
966 codec = soc_find_codec(codecs[i].of_node, codecs[i].name);
967 if (!codec) {
968 dev_err(card->dev, "ASoC: CODEC %s not registered\n",
969 codecs[i].name);
970 return -EPROBE_DEFER;
971 }
972
973 codec_dais[i] = soc_find_codec_dai(codec, codecs[i].dai_name);
974 if (!codec_dais[i]) {
975 dev_err(card->dev, "ASoC: CODEC DAI %s not registered\n",
976 codecs[i].dai_name);
977 return -EPROBE_DEFER;
978 }
979 }
980
981 /* Single codec links expect codec and codec_dai in runtime data */
982 rtd->codec_dai = codec_dais[0];
983 rtd->codec = rtd->codec_dai->codec;
984
985 /* if there's no platform we match on the empty platform */
986 platform_name = dai_link->platform_name;
987 if (!platform_name && !dai_link->platform_of_node)
988 platform_name = "snd-soc-dummy";
989
990 /* find one from the set of registered platforms */
991 list_for_each_entry(platform, &platform_list, list) {
992 if (dai_link->platform_of_node) {
993 if (platform->dev->of_node !=
994 dai_link->platform_of_node)
995 continue;
996 } else {
997 if (strcmp(platform->component.name, platform_name))
998 continue;
999 }
1000
1001 rtd->platform = platform;
1002 }
1003 if (!rtd->platform) {
1004 dev_err(card->dev, "ASoC: platform %s not registered\n",
1005 dai_link->platform_name);
1006 return -EPROBE_DEFER;
1007 }
1008
1009 card->num_rtd++;
1010
1011 return 0;
1012 }
1013
1014 static int soc_remove_platform(struct snd_soc_platform *platform)
1015 {
1016 int ret;
1017
1018 if (platform->driver->remove) {
1019 ret = platform->driver->remove(platform);
1020 if (ret < 0)
1021 dev_err(platform->dev, "ASoC: failed to remove %d\n",
1022 ret);
1023 }
1024
1025 /* Make sure all DAPM widgets are freed */
1026 snd_soc_dapm_free(&platform->component.dapm);
1027
1028 soc_cleanup_platform_debugfs(platform);
1029 platform->probed = 0;
1030 list_del(&platform->card_list);
1031 module_put(platform->dev->driver->owner);
1032
1033 return 0;
1034 }
1035
1036 static void soc_remove_codec(struct snd_soc_codec *codec)
1037 {
1038 int err;
1039
1040 if (codec->driver->remove) {
1041 err = codec->driver->remove(codec);
1042 if (err < 0)
1043 dev_err(codec->dev, "ASoC: failed to remove %d\n", err);
1044 }
1045
1046 /* Make sure all DAPM widgets are freed */
1047 snd_soc_dapm_free(&codec->dapm);
1048
1049 soc_cleanup_codec_debugfs(codec);
1050 codec->probed = 0;
1051 list_del(&codec->card_list);
1052 module_put(codec->dev->driver->owner);
1053 }
1054
1055 static void soc_remove_codec_dai(struct snd_soc_dai *codec_dai, int order)
1056 {
1057 int err;
1058
1059 if (codec_dai && codec_dai->probed &&
1060 codec_dai->driver->remove_order == order) {
1061 if (codec_dai->driver->remove) {
1062 err = codec_dai->driver->remove(codec_dai);
1063 if (err < 0)
1064 dev_err(codec_dai->dev,
1065 "ASoC: failed to remove %s: %d\n",
1066 codec_dai->name, err);
1067 }
1068 codec_dai->probed = 0;
1069 }
1070 }
1071
1072 static void soc_remove_link_dais(struct snd_soc_card *card, int num, int order)
1073 {
1074 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1075 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1076 int i, err;
1077
1078 /* unregister the rtd device */
1079 if (rtd->dev_registered) {
1080 device_remove_file(rtd->dev, &dev_attr_pmdown_time);
1081 device_remove_file(rtd->dev, &dev_attr_codec_reg);
1082 device_unregister(rtd->dev);
1083 rtd->dev_registered = 0;
1084 }
1085
1086 /* remove the CODEC DAI */
1087 for (i = 0; i < rtd->num_codecs; i++)
1088 soc_remove_codec_dai(rtd->codec_dais[i], order);
1089
1090 /* remove the cpu_dai */
1091 if (cpu_dai && cpu_dai->probed &&
1092 cpu_dai->driver->remove_order == order) {
1093 if (cpu_dai->driver->remove) {
1094 err = cpu_dai->driver->remove(cpu_dai);
1095 if (err < 0)
1096 dev_err(cpu_dai->dev,
1097 "ASoC: failed to remove %s: %d\n",
1098 cpu_dai->name, err);
1099 }
1100 cpu_dai->probed = 0;
1101 if (!cpu_dai->codec)
1102 module_put(cpu_dai->dev->driver->owner);
1103 }
1104 }
1105
1106 static void soc_remove_link_components(struct snd_soc_card *card, int num,
1107 int order)
1108 {
1109 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1110 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1111 struct snd_soc_platform *platform = rtd->platform;
1112 struct snd_soc_codec *codec;
1113 int i;
1114
1115 /* remove the platform */
1116 if (platform && platform->probed &&
1117 platform->driver->remove_order == order) {
1118 soc_remove_platform(platform);
1119 }
1120
1121 /* remove the CODEC-side CODEC */
1122 for (i = 0; i < rtd->num_codecs; i++) {
1123 codec = rtd->codec_dais[i]->codec;
1124 if (codec && codec->probed &&
1125 codec->driver->remove_order == order)
1126 soc_remove_codec(codec);
1127 }
1128
1129 /* remove any CPU-side CODEC */
1130 if (cpu_dai) {
1131 codec = cpu_dai->codec;
1132 if (codec && codec->probed &&
1133 codec->driver->remove_order == order)
1134 soc_remove_codec(codec);
1135 }
1136 }
1137
1138 static void soc_remove_dai_links(struct snd_soc_card *card)
1139 {
1140 int dai, order;
1141
1142 for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
1143 order++) {
1144 for (dai = 0; dai < card->num_rtd; dai++)
1145 soc_remove_link_dais(card, dai, order);
1146 }
1147
1148 for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
1149 order++) {
1150 for (dai = 0; dai < card->num_rtd; dai++)
1151 soc_remove_link_components(card, dai, order);
1152 }
1153
1154 card->num_rtd = 0;
1155 }
1156
1157 static void soc_set_name_prefix(struct snd_soc_card *card,
1158 struct snd_soc_component *component)
1159 {
1160 int i;
1161
1162 if (card->codec_conf == NULL)
1163 return;
1164
1165 for (i = 0; i < card->num_configs; i++) {
1166 struct snd_soc_codec_conf *map = &card->codec_conf[i];
1167 if (map->of_node && component->dev->of_node != map->of_node)
1168 continue;
1169 if (map->dev_name && strcmp(component->name, map->dev_name))
1170 continue;
1171 component->name_prefix = map->name_prefix;
1172 break;
1173 }
1174 }
1175
1176 static int soc_probe_codec(struct snd_soc_card *card,
1177 struct snd_soc_codec *codec)
1178 {
1179 int ret = 0;
1180 const struct snd_soc_codec_driver *driver = codec->driver;
1181 struct snd_soc_dai *dai;
1182
1183 codec->card = card;
1184 codec->dapm.card = card;
1185 soc_set_name_prefix(card, &codec->component);
1186
1187 if (!try_module_get(codec->dev->driver->owner))
1188 return -ENODEV;
1189
1190 soc_init_codec_debugfs(codec);
1191
1192 if (driver->dapm_widgets) {
1193 ret = snd_soc_dapm_new_controls(&codec->dapm,
1194 driver->dapm_widgets,
1195 driver->num_dapm_widgets);
1196
1197 if (ret != 0) {
1198 dev_err(codec->dev,
1199 "Failed to create new controls %d\n", ret);
1200 goto err_probe;
1201 }
1202 }
1203
1204 /* Create DAPM widgets for each DAI stream */
1205 list_for_each_entry(dai, &codec->component.dai_list, list) {
1206 ret = snd_soc_dapm_new_dai_widgets(&codec->dapm, dai);
1207
1208 if (ret != 0) {
1209 dev_err(codec->dev,
1210 "Failed to create DAI widgets %d\n", ret);
1211 goto err_probe;
1212 }
1213 }
1214
1215 codec->dapm.idle_bias_off = driver->idle_bias_off;
1216
1217 if (driver->probe) {
1218 ret = driver->probe(codec);
1219 if (ret < 0) {
1220 dev_err(codec->dev,
1221 "ASoC: failed to probe CODEC %d\n", ret);
1222 goto err_probe;
1223 }
1224 WARN(codec->dapm.idle_bias_off &&
1225 codec->dapm.bias_level != SND_SOC_BIAS_OFF,
1226 "codec %s can not start from non-off bias with idle_bias_off==1\n",
1227 codec->component.name);
1228 }
1229
1230 if (driver->controls)
1231 snd_soc_add_codec_controls(codec, driver->controls,
1232 driver->num_controls);
1233 if (driver->dapm_routes)
1234 snd_soc_dapm_add_routes(&codec->dapm, driver->dapm_routes,
1235 driver->num_dapm_routes);
1236
1237 /* mark codec as probed and add to card codec list */
1238 codec->probed = 1;
1239 list_add(&codec->card_list, &card->codec_dev_list);
1240 list_add(&codec->dapm.list, &card->dapm_list);
1241
1242 return 0;
1243
1244 err_probe:
1245 soc_cleanup_codec_debugfs(codec);
1246 module_put(codec->dev->driver->owner);
1247
1248 return ret;
1249 }
1250
1251 static int soc_probe_platform(struct snd_soc_card *card,
1252 struct snd_soc_platform *platform)
1253 {
1254 int ret = 0;
1255 const struct snd_soc_platform_driver *driver = platform->driver;
1256 struct snd_soc_component *component;
1257 struct snd_soc_dai *dai;
1258
1259 platform->card = card;
1260 platform->component.dapm.card = card;
1261
1262 if (!try_module_get(platform->dev->driver->owner))
1263 return -ENODEV;
1264
1265 soc_init_platform_debugfs(platform);
1266
1267 if (driver->dapm_widgets)
1268 snd_soc_dapm_new_controls(&platform->component.dapm,
1269 driver->dapm_widgets, driver->num_dapm_widgets);
1270
1271 /* Create DAPM widgets for each DAI stream */
1272 list_for_each_entry(component, &component_list, list) {
1273 if (component->dev != platform->dev)
1274 continue;
1275 list_for_each_entry(dai, &component->dai_list, list)
1276 snd_soc_dapm_new_dai_widgets(&platform->component.dapm,
1277 dai);
1278 }
1279
1280 platform->component.dapm.idle_bias_off = 1;
1281
1282 if (driver->probe) {
1283 ret = driver->probe(platform);
1284 if (ret < 0) {
1285 dev_err(platform->dev,
1286 "ASoC: failed to probe platform %d\n", ret);
1287 goto err_probe;
1288 }
1289 }
1290
1291 if (driver->controls)
1292 snd_soc_add_platform_controls(platform, driver->controls,
1293 driver->num_controls);
1294 if (driver->dapm_routes)
1295 snd_soc_dapm_add_routes(&platform->component.dapm,
1296 driver->dapm_routes, driver->num_dapm_routes);
1297
1298 /* mark platform as probed and add to card platform list */
1299 platform->probed = 1;
1300 list_add(&platform->card_list, &card->platform_dev_list);
1301 list_add(&platform->component.dapm.list, &card->dapm_list);
1302
1303 return 0;
1304
1305 err_probe:
1306 soc_cleanup_platform_debugfs(platform);
1307 module_put(platform->dev->driver->owner);
1308
1309 return ret;
1310 }
1311
1312 static void rtd_release(struct device *dev)
1313 {
1314 kfree(dev);
1315 }
1316
1317 static int soc_post_component_init(struct snd_soc_pcm_runtime *rtd,
1318 const char *name)
1319 {
1320 int ret = 0;
1321
1322 /* register the rtd device */
1323 rtd->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
1324 if (!rtd->dev)
1325 return -ENOMEM;
1326 device_initialize(rtd->dev);
1327 rtd->dev->parent = rtd->card->dev;
1328 rtd->dev->release = rtd_release;
1329 rtd->dev->init_name = name;
1330 dev_set_drvdata(rtd->dev, rtd);
1331 mutex_init(&rtd->pcm_mutex);
1332 INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_PLAYBACK].be_clients);
1333 INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_CAPTURE].be_clients);
1334 INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_PLAYBACK].fe_clients);
1335 INIT_LIST_HEAD(&rtd->dpcm[SNDRV_PCM_STREAM_CAPTURE].fe_clients);
1336 ret = device_add(rtd->dev);
1337 if (ret < 0) {
1338 /* calling put_device() here to free the rtd->dev */
1339 put_device(rtd->dev);
1340 dev_err(rtd->card->dev,
1341 "ASoC: failed to register runtime device: %d\n", ret);
1342 return ret;
1343 }
1344 rtd->dev_registered = 1;
1345
1346 /* add DAPM sysfs entries for this codec */
1347 ret = snd_soc_dapm_sys_add(rtd->dev);
1348 if (ret < 0)
1349 dev_err(rtd->dev,
1350 "ASoC: failed to add codec dapm sysfs entries: %d\n", ret);
1351
1352 /* add codec sysfs entries */
1353 ret = device_create_file(rtd->dev, &dev_attr_codec_reg);
1354 if (ret < 0)
1355 dev_err(rtd->dev,
1356 "ASoC: failed to add codec sysfs files: %d\n", ret);
1357
1358 return 0;
1359 }
1360
1361 static int soc_probe_link_components(struct snd_soc_card *card, int num,
1362 int order)
1363 {
1364 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1365 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1366 struct snd_soc_platform *platform = rtd->platform;
1367 int i, ret;
1368
1369 /* probe the CPU-side component, if it is a CODEC */
1370 if (cpu_dai->codec &&
1371 !cpu_dai->codec->probed &&
1372 cpu_dai->codec->driver->probe_order == order) {
1373 ret = soc_probe_codec(card, cpu_dai->codec);
1374 if (ret < 0)
1375 return ret;
1376 }
1377
1378 /* probe the CODEC-side components */
1379 for (i = 0; i < rtd->num_codecs; i++) {
1380 if (!rtd->codec_dais[i]->codec->probed &&
1381 rtd->codec_dais[i]->codec->driver->probe_order == order) {
1382 ret = soc_probe_codec(card, rtd->codec_dais[i]->codec);
1383 if (ret < 0)
1384 return ret;
1385 }
1386 }
1387
1388 /* probe the platform */
1389 if (!platform->probed &&
1390 platform->driver->probe_order == order) {
1391 ret = soc_probe_platform(card, platform);
1392 if (ret < 0)
1393 return ret;
1394 }
1395
1396 return 0;
1397 }
1398
1399 static int soc_probe_codec_dai(struct snd_soc_card *card,
1400 struct snd_soc_dai *codec_dai,
1401 int order)
1402 {
1403 int ret;
1404
1405 if (!codec_dai->probed && codec_dai->driver->probe_order == order) {
1406 if (codec_dai->driver->probe) {
1407 ret = codec_dai->driver->probe(codec_dai);
1408 if (ret < 0) {
1409 dev_err(codec_dai->dev,
1410 "ASoC: failed to probe CODEC DAI %s: %d\n",
1411 codec_dai->name, ret);
1412 return ret;
1413 }
1414 }
1415
1416 /* mark codec_dai as probed and add to card dai list */
1417 codec_dai->probed = 1;
1418 }
1419
1420 return 0;
1421 }
1422
1423 static int soc_link_dai_widgets(struct snd_soc_card *card,
1424 struct snd_soc_dai_link *dai_link,
1425 struct snd_soc_pcm_runtime *rtd)
1426 {
1427 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1428 struct snd_soc_dai *codec_dai = rtd->codec_dai;
1429 struct snd_soc_dapm_widget *play_w, *capture_w;
1430 int ret;
1431
1432 if (rtd->num_codecs > 1)
1433 dev_warn(card->dev, "ASoC: Multiple codecs not supported yet\n");
1434
1435 /* link the DAI widgets */
1436 play_w = codec_dai->playback_widget;
1437 capture_w = cpu_dai->capture_widget;
1438 if (play_w && capture_w) {
1439 ret = snd_soc_dapm_new_pcm(card, dai_link->params,
1440 capture_w, play_w);
1441 if (ret != 0) {
1442 dev_err(card->dev, "ASoC: Can't link %s to %s: %d\n",
1443 play_w->name, capture_w->name, ret);
1444 return ret;
1445 }
1446 }
1447
1448 play_w = cpu_dai->playback_widget;
1449 capture_w = codec_dai->capture_widget;
1450 if (play_w && capture_w) {
1451 ret = snd_soc_dapm_new_pcm(card, dai_link->params,
1452 capture_w, play_w);
1453 if (ret != 0) {
1454 dev_err(card->dev, "ASoC: Can't link %s to %s: %d\n",
1455 play_w->name, capture_w->name, ret);
1456 return ret;
1457 }
1458 }
1459
1460 return 0;
1461 }
1462
1463 static int soc_probe_link_dais(struct snd_soc_card *card, int num, int order)
1464 {
1465 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1466 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1467 struct snd_soc_platform *platform = rtd->platform;
1468 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1469 int i, ret;
1470
1471 dev_dbg(card->dev, "ASoC: probe %s dai link %d late %d\n",
1472 card->name, num, order);
1473
1474 /* config components */
1475 cpu_dai->platform = platform;
1476 cpu_dai->card = card;
1477 for (i = 0; i < rtd->num_codecs; i++)
1478 rtd->codec_dais[i]->card = card;
1479
1480 /* set default power off timeout */
1481 rtd->pmdown_time = pmdown_time;
1482
1483 /* probe the cpu_dai */
1484 if (!cpu_dai->probed &&
1485 cpu_dai->driver->probe_order == order) {
1486 if (!cpu_dai->codec) {
1487 if (!try_module_get(cpu_dai->dev->driver->owner))
1488 return -ENODEV;
1489 }
1490
1491 if (cpu_dai->driver->probe) {
1492 ret = cpu_dai->driver->probe(cpu_dai);
1493 if (ret < 0) {
1494 dev_err(cpu_dai->dev,
1495 "ASoC: failed to probe CPU DAI %s: %d\n",
1496 cpu_dai->name, ret);
1497 module_put(cpu_dai->dev->driver->owner);
1498 return ret;
1499 }
1500 }
1501 cpu_dai->probed = 1;
1502 }
1503
1504 /* probe the CODEC DAI */
1505 for (i = 0; i < rtd->num_codecs; i++) {
1506 ret = soc_probe_codec_dai(card, rtd->codec_dais[i], order);
1507 if (ret)
1508 return ret;
1509 }
1510
1511 /* complete DAI probe during last probe */
1512 if (order != SND_SOC_COMP_ORDER_LAST)
1513 return 0;
1514
1515 /* do machine specific initialization */
1516 if (dai_link->init) {
1517 ret = dai_link->init(rtd);
1518 if (ret < 0) {
1519 dev_err(card->dev, "ASoC: failed to init %s: %d\n",
1520 dai_link->name, ret);
1521 return ret;
1522 }
1523 }
1524
1525 ret = soc_post_component_init(rtd, dai_link->name);
1526 if (ret)
1527 return ret;
1528
1529 #ifdef CONFIG_DEBUG_FS
1530 /* add DPCM sysfs entries */
1531 if (dai_link->dynamic) {
1532 ret = soc_dpcm_debugfs_add(rtd);
1533 if (ret < 0) {
1534 dev_err(rtd->dev,
1535 "ASoC: failed to add dpcm sysfs entries: %d\n",
1536 ret);
1537 return ret;
1538 }
1539 }
1540 #endif
1541
1542 ret = device_create_file(rtd->dev, &dev_attr_pmdown_time);
1543 if (ret < 0)
1544 dev_warn(rtd->dev, "ASoC: failed to add pmdown_time sysfs: %d\n",
1545 ret);
1546
1547 if (cpu_dai->driver->compress_dai) {
1548 /*create compress_device"*/
1549 ret = soc_new_compress(rtd, num);
1550 if (ret < 0) {
1551 dev_err(card->dev, "ASoC: can't create compress %s\n",
1552 dai_link->stream_name);
1553 return ret;
1554 }
1555 } else {
1556
1557 if (!dai_link->params) {
1558 /* create the pcm */
1559 ret = soc_new_pcm(rtd, num);
1560 if (ret < 0) {
1561 dev_err(card->dev, "ASoC: can't create pcm %s :%d\n",
1562 dai_link->stream_name, ret);
1563 return ret;
1564 }
1565 } else {
1566 INIT_DELAYED_WORK(&rtd->delayed_work,
1567 codec2codec_close_delayed_work);
1568
1569 /* link the DAI widgets */
1570 ret = soc_link_dai_widgets(card, dai_link, rtd);
1571 if (ret)
1572 return ret;
1573 }
1574 }
1575
1576 /* add platform data for AC97 devices */
1577 for (i = 0; i < rtd->num_codecs; i++) {
1578 if (rtd->codec_dais[i]->driver->ac97_control)
1579 snd_ac97_dev_add_pdata(rtd->codec_dais[i]->codec->ac97,
1580 rtd->cpu_dai->ac97_pdata);
1581 }
1582
1583 return 0;
1584 }
1585
1586 #ifdef CONFIG_SND_SOC_AC97_BUS
1587 static int soc_register_ac97_codec(struct snd_soc_codec *codec,
1588 struct snd_soc_dai *codec_dai)
1589 {
1590 int ret;
1591
1592 /* Only instantiate AC97 if not already done by the adaptor
1593 * for the generic AC97 subsystem.
1594 */
1595 if (codec_dai->driver->ac97_control && !codec->ac97_registered) {
1596 /*
1597 * It is possible that the AC97 device is already registered to
1598 * the device subsystem. This happens when the device is created
1599 * via snd_ac97_mixer(). Currently only SoC codec that does so
1600 * is the generic AC97 glue but others migh emerge.
1601 *
1602 * In those cases we don't try to register the device again.
1603 */
1604 if (!codec->ac97_created)
1605 return 0;
1606
1607 ret = soc_ac97_dev_register(codec);
1608 if (ret < 0) {
1609 dev_err(codec->dev,
1610 "ASoC: AC97 device register failed: %d\n", ret);
1611 return ret;
1612 }
1613
1614 codec->ac97_registered = 1;
1615 }
1616 return 0;
1617 }
1618
1619 static void soc_unregister_ac97_codec(struct snd_soc_codec *codec)
1620 {
1621 if (codec->ac97_registered) {
1622 soc_ac97_dev_unregister(codec);
1623 codec->ac97_registered = 0;
1624 }
1625 }
1626
1627 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1628 {
1629 int i, ret;
1630
1631 for (i = 0; i < rtd->num_codecs; i++) {
1632 struct snd_soc_dai *codec_dai = rtd->codec_dais[i];
1633
1634 ret = soc_register_ac97_codec(codec_dai->codec, codec_dai);
1635 if (ret) {
1636 while (--i >= 0)
1637 soc_unregister_ac97_codec(codec_dai->codec);
1638 return ret;
1639 }
1640 }
1641
1642 return 0;
1643 }
1644
1645 static void soc_unregister_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1646 {
1647 int i;
1648
1649 for (i = 0; i < rtd->num_codecs; i++)
1650 soc_unregister_ac97_codec(rtd->codec_dais[i]->codec);
1651 }
1652 #endif
1653
1654 static int soc_bind_aux_dev(struct snd_soc_card *card, int num)
1655 {
1656 struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1657 struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1658 const char *codecname = aux_dev->codec_name;
1659
1660 rtd->codec = soc_find_codec(aux_dev->codec_of_node, codecname);
1661 if (!rtd->codec) {
1662 if (aux_dev->codec_of_node)
1663 codecname = of_node_full_name(aux_dev->codec_of_node);
1664
1665 dev_err(card->dev, "ASoC: %s not registered\n", codecname);
1666 return -EPROBE_DEFER;
1667 }
1668
1669 return 0;
1670 }
1671
1672 static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
1673 {
1674 struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1675 struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1676 int ret;
1677
1678 if (rtd->codec->probed) {
1679 dev_err(rtd->codec->dev, "ASoC: codec already probed\n");
1680 return -EBUSY;
1681 }
1682
1683 ret = soc_probe_codec(card, rtd->codec);
1684 if (ret < 0)
1685 return ret;
1686
1687 /* do machine specific initialization */
1688 if (aux_dev->init) {
1689 ret = aux_dev->init(&rtd->codec->dapm);
1690 if (ret < 0) {
1691 dev_err(card->dev, "ASoC: failed to init %s: %d\n",
1692 aux_dev->name, ret);
1693 return ret;
1694 }
1695 }
1696
1697 return soc_post_component_init(rtd, aux_dev->name);
1698 }
1699
1700 static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
1701 {
1702 struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1703 struct snd_soc_codec *codec = rtd->codec;
1704
1705 /* unregister the rtd device */
1706 if (rtd->dev_registered) {
1707 device_remove_file(rtd->dev, &dev_attr_codec_reg);
1708 device_unregister(rtd->dev);
1709 rtd->dev_registered = 0;
1710 }
1711
1712 if (codec && codec->probed)
1713 soc_remove_codec(codec);
1714 }
1715
1716 static int snd_soc_init_codec_cache(struct snd_soc_codec *codec)
1717 {
1718 int ret;
1719
1720 if (codec->cache_init)
1721 return 0;
1722
1723 ret = snd_soc_cache_init(codec);
1724 if (ret < 0) {
1725 dev_err(codec->dev,
1726 "ASoC: Failed to set cache compression type: %d\n",
1727 ret);
1728 return ret;
1729 }
1730 codec->cache_init = 1;
1731 return 0;
1732 }
1733
1734 static int snd_soc_instantiate_card(struct snd_soc_card *card)
1735 {
1736 struct snd_soc_codec *codec;
1737 struct snd_soc_dai_link *dai_link;
1738 int ret, i, order, dai_fmt;
1739
1740 mutex_lock_nested(&card->mutex, SND_SOC_CARD_CLASS_INIT);
1741
1742 /* bind DAIs */
1743 for (i = 0; i < card->num_links; i++) {
1744 ret = soc_bind_dai_link(card, i);
1745 if (ret != 0)
1746 goto base_error;
1747 }
1748
1749 /* bind aux_devs too */
1750 for (i = 0; i < card->num_aux_devs; i++) {
1751 ret = soc_bind_aux_dev(card, i);
1752 if (ret != 0)
1753 goto base_error;
1754 }
1755
1756 /* initialize the register cache for each available codec */
1757 list_for_each_entry(codec, &codec_list, list) {
1758 if (codec->cache_init)
1759 continue;
1760 ret = snd_soc_init_codec_cache(codec);
1761 if (ret < 0)
1762 goto base_error;
1763 }
1764
1765 /* card bind complete so register a sound card */
1766 ret = snd_card_new(card->dev, SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1767 card->owner, 0, &card->snd_card);
1768 if (ret < 0) {
1769 dev_err(card->dev,
1770 "ASoC: can't create sound card for card %s: %d\n",
1771 card->name, ret);
1772 goto base_error;
1773 }
1774
1775 card->dapm.bias_level = SND_SOC_BIAS_OFF;
1776 card->dapm.dev = card->dev;
1777 card->dapm.card = card;
1778 list_add(&card->dapm.list, &card->dapm_list);
1779
1780 #ifdef CONFIG_DEBUG_FS
1781 snd_soc_dapm_debugfs_init(&card->dapm, card->debugfs_card_root);
1782 #endif
1783
1784 #ifdef CONFIG_PM_SLEEP
1785 /* deferred resume work */
1786 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1787 #endif
1788
1789 if (card->dapm_widgets)
1790 snd_soc_dapm_new_controls(&card->dapm, card->dapm_widgets,
1791 card->num_dapm_widgets);
1792
1793 /* initialise the sound card only once */
1794 if (card->probe) {
1795 ret = card->probe(card);
1796 if (ret < 0)
1797 goto card_probe_error;
1798 }
1799
1800 /* probe all components used by DAI links on this card */
1801 for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
1802 order++) {
1803 for (i = 0; i < card->num_links; i++) {
1804 ret = soc_probe_link_components(card, i, order);
1805 if (ret < 0) {
1806 dev_err(card->dev,
1807 "ASoC: failed to instantiate card %d\n",
1808 ret);
1809 goto probe_dai_err;
1810 }
1811 }
1812 }
1813
1814 /* probe all DAI links on this card */
1815 for (order = SND_SOC_COMP_ORDER_FIRST; order <= SND_SOC_COMP_ORDER_LAST;
1816 order++) {
1817 for (i = 0; i < card->num_links; i++) {
1818 ret = soc_probe_link_dais(card, i, order);
1819 if (ret < 0) {
1820 dev_err(card->dev,
1821 "ASoC: failed to instantiate card %d\n",
1822 ret);
1823 goto probe_dai_err;
1824 }
1825 }
1826 }
1827
1828 for (i = 0; i < card->num_aux_devs; i++) {
1829 ret = soc_probe_aux_dev(card, i);
1830 if (ret < 0) {
1831 dev_err(card->dev,
1832 "ASoC: failed to add auxiliary devices %d\n",
1833 ret);
1834 goto probe_aux_dev_err;
1835 }
1836 }
1837
1838 snd_soc_dapm_link_dai_widgets(card);
1839 snd_soc_dapm_connect_dai_link_widgets(card);
1840
1841 if (card->controls)
1842 snd_soc_add_card_controls(card, card->controls, card->num_controls);
1843
1844 if (card->dapm_routes)
1845 snd_soc_dapm_add_routes(&card->dapm, card->dapm_routes,
1846 card->num_dapm_routes);
1847
1848 for (i = 0; i < card->num_links; i++) {
1849 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1850 dai_link = &card->dai_link[i];
1851 dai_fmt = dai_link->dai_fmt;
1852
1853 if (dai_fmt) {
1854 struct snd_soc_dai **codec_dais = rtd->codec_dais;
1855 int j;
1856
1857 for (j = 0; j < rtd->num_codecs; j++) {
1858 struct snd_soc_dai *codec_dai = codec_dais[j];
1859
1860 ret = snd_soc_dai_set_fmt(codec_dai, dai_fmt);
1861 if (ret != 0 && ret != -ENOTSUPP)
1862 dev_warn(codec_dai->dev,
1863 "ASoC: Failed to set DAI format: %d\n",
1864 ret);
1865 }
1866 }
1867
1868 /* If this is a regular CPU link there will be a platform */
1869 if (dai_fmt &&
1870 (dai_link->platform_name || dai_link->platform_of_node)) {
1871 ret = snd_soc_dai_set_fmt(card->rtd[i].cpu_dai,
1872 dai_fmt);
1873 if (ret != 0 && ret != -ENOTSUPP)
1874 dev_warn(card->rtd[i].cpu_dai->dev,
1875 "ASoC: Failed to set DAI format: %d\n",
1876 ret);
1877 } else if (dai_fmt) {
1878 /* Flip the polarity for the "CPU" end */
1879 dai_fmt &= ~SND_SOC_DAIFMT_MASTER_MASK;
1880 switch (dai_link->dai_fmt &
1881 SND_SOC_DAIFMT_MASTER_MASK) {
1882 case SND_SOC_DAIFMT_CBM_CFM:
1883 dai_fmt |= SND_SOC_DAIFMT_CBS_CFS;
1884 break;
1885 case SND_SOC_DAIFMT_CBM_CFS:
1886 dai_fmt |= SND_SOC_DAIFMT_CBS_CFM;
1887 break;
1888 case SND_SOC_DAIFMT_CBS_CFM:
1889 dai_fmt |= SND_SOC_DAIFMT_CBM_CFS;
1890 break;
1891 case SND_SOC_DAIFMT_CBS_CFS:
1892 dai_fmt |= SND_SOC_DAIFMT_CBM_CFM;
1893 break;
1894 }
1895
1896 ret = snd_soc_dai_set_fmt(card->rtd[i].cpu_dai,
1897 dai_fmt);
1898 if (ret != 0 && ret != -ENOTSUPP)
1899 dev_warn(card->rtd[i].cpu_dai->dev,
1900 "ASoC: Failed to set DAI format: %d\n",
1901 ret);
1902 }
1903 }
1904
1905 snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1906 "%s", card->name);
1907 snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1908 "%s", card->long_name ? card->long_name : card->name);
1909 snprintf(card->snd_card->driver, sizeof(card->snd_card->driver),
1910 "%s", card->driver_name ? card->driver_name : card->name);
1911 for (i = 0; i < ARRAY_SIZE(card->snd_card->driver); i++) {
1912 switch (card->snd_card->driver[i]) {
1913 case '_':
1914 case '-':
1915 case '\0':
1916 break;
1917 default:
1918 if (!isalnum(card->snd_card->driver[i]))
1919 card->snd_card->driver[i] = '_';
1920 break;
1921 }
1922 }
1923
1924 if (card->late_probe) {
1925 ret = card->late_probe(card);
1926 if (ret < 0) {
1927 dev_err(card->dev, "ASoC: %s late_probe() failed: %d\n",
1928 card->name, ret);
1929 goto probe_aux_dev_err;
1930 }
1931 }
1932
1933 if (card->fully_routed)
1934 snd_soc_dapm_auto_nc_pins(card);
1935
1936 snd_soc_dapm_new_widgets(card);
1937
1938 ret = snd_card_register(card->snd_card);
1939 if (ret < 0) {
1940 dev_err(card->dev, "ASoC: failed to register soundcard %d\n",
1941 ret);
1942 goto probe_aux_dev_err;
1943 }
1944
1945 #ifdef CONFIG_SND_SOC_AC97_BUS
1946 /* register any AC97 codecs */
1947 for (i = 0; i < card->num_rtd; i++) {
1948 ret = soc_register_ac97_dai_link(&card->rtd[i]);
1949 if (ret < 0) {
1950 dev_err(card->dev,
1951 "ASoC: failed to register AC97: %d\n", ret);
1952 while (--i >= 0)
1953 soc_unregister_ac97_dai_link(&card->rtd[i]);
1954 goto probe_aux_dev_err;
1955 }
1956 }
1957 #endif
1958
1959 card->instantiated = 1;
1960 snd_soc_dapm_sync(&card->dapm);
1961 mutex_unlock(&card->mutex);
1962
1963 return 0;
1964
1965 probe_aux_dev_err:
1966 for (i = 0; i < card->num_aux_devs; i++)
1967 soc_remove_aux_dev(card, i);
1968
1969 probe_dai_err:
1970 soc_remove_dai_links(card);
1971
1972 card_probe_error:
1973 if (card->remove)
1974 card->remove(card);
1975
1976 snd_card_free(card->snd_card);
1977
1978 base_error:
1979 mutex_unlock(&card->mutex);
1980
1981 return ret;
1982 }
1983
1984 /* probes a new socdev */
1985 static int soc_probe(struct platform_device *pdev)
1986 {
1987 struct snd_soc_card *card = platform_get_drvdata(pdev);
1988
1989 /*
1990 * no card, so machine driver should be registering card
1991 * we should not be here in that case so ret error
1992 */
1993 if (!card)
1994 return -EINVAL;
1995
1996 dev_warn(&pdev->dev,
1997 "ASoC: machine %s should use snd_soc_register_card()\n",
1998 card->name);
1999
2000 /* Bodge while we unpick instantiation */
2001 card->dev = &pdev->dev;
2002
2003 return snd_soc_register_card(card);
2004 }
2005
2006 static int soc_cleanup_card_resources(struct snd_soc_card *card)
2007 {
2008 int i;
2009
2010 /* make sure any delayed work runs */
2011 for (i = 0; i < card->num_rtd; i++) {
2012 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
2013 flush_delayed_work(&rtd->delayed_work);
2014 }
2015
2016 /* remove auxiliary devices */
2017 for (i = 0; i < card->num_aux_devs; i++)
2018 soc_remove_aux_dev(card, i);
2019
2020 /* remove and free each DAI */
2021 soc_remove_dai_links(card);
2022
2023 soc_cleanup_card_debugfs(card);
2024
2025 /* remove the card */
2026 if (card->remove)
2027 card->remove(card);
2028
2029 snd_soc_dapm_free(&card->dapm);
2030
2031 snd_card_free(card->snd_card);
2032 return 0;
2033
2034 }
2035
2036 /* removes a socdev */
2037 static int soc_remove(struct platform_device *pdev)
2038 {
2039 struct snd_soc_card *card = platform_get_drvdata(pdev);
2040
2041 snd_soc_unregister_card(card);
2042 return 0;
2043 }
2044
2045 int snd_soc_poweroff(struct device *dev)
2046 {
2047 struct snd_soc_card *card = dev_get_drvdata(dev);
2048 int i;
2049
2050 if (!card->instantiated)
2051 return 0;
2052
2053 /* Flush out pmdown_time work - we actually do want to run it
2054 * now, we're shutting down so no imminent restart. */
2055 for (i = 0; i < card->num_rtd; i++) {
2056 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
2057 flush_delayed_work(&rtd->delayed_work);
2058 }
2059
2060 snd_soc_dapm_shutdown(card);
2061
2062 /* deactivate pins to sleep state */
2063 for (i = 0; i < card->num_rtd; i++) {
2064 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
2065 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
2066 int j;
2067
2068 pinctrl_pm_select_sleep_state(cpu_dai->dev);
2069 for (j = 0; j < rtd->num_codecs; j++) {
2070 struct snd_soc_dai *codec_dai = rtd->codec_dais[j];
2071 pinctrl_pm_select_sleep_state(codec_dai->dev);
2072 }
2073 }
2074
2075 return 0;
2076 }
2077 EXPORT_SYMBOL_GPL(snd_soc_poweroff);
2078
2079 const struct dev_pm_ops snd_soc_pm_ops = {
2080 .suspend = snd_soc_suspend,
2081 .resume = snd_soc_resume,
2082 .freeze = snd_soc_suspend,
2083 .thaw = snd_soc_resume,
2084 .poweroff = snd_soc_poweroff,
2085 .restore = snd_soc_resume,
2086 };
2087 EXPORT_SYMBOL_GPL(snd_soc_pm_ops);
2088
2089 /* ASoC platform driver */
2090 static struct platform_driver soc_driver = {
2091 .driver = {
2092 .name = "soc-audio",
2093 .owner = THIS_MODULE,
2094 .pm = &snd_soc_pm_ops,
2095 },
2096 .probe = soc_probe,
2097 .remove = soc_remove,
2098 };
2099
2100 /**
2101 * snd_soc_new_ac97_codec - initailise AC97 device
2102 * @codec: audio codec
2103 * @ops: AC97 bus operations
2104 * @num: AC97 codec number
2105 *
2106 * Initialises AC97 codec resources for use by ad-hoc devices only.
2107 */
2108 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
2109 struct snd_ac97_bus_ops *ops, int num)
2110 {
2111 mutex_lock(&codec->mutex);
2112
2113 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
2114 if (codec->ac97 == NULL) {
2115 mutex_unlock(&codec->mutex);
2116 return -ENOMEM;
2117 }
2118
2119 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
2120 if (codec->ac97->bus == NULL) {
2121 kfree(codec->ac97);
2122 codec->ac97 = NULL;
2123 mutex_unlock(&codec->mutex);
2124 return -ENOMEM;
2125 }
2126
2127 codec->ac97->bus->ops = ops;
2128 codec->ac97->num = num;
2129
2130 /*
2131 * Mark the AC97 device to be created by us. This way we ensure that the
2132 * device will be registered with the device subsystem later on.
2133 */
2134 codec->ac97_created = 1;
2135
2136 mutex_unlock(&codec->mutex);
2137 return 0;
2138 }
2139 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
2140
2141 static struct snd_ac97_reset_cfg snd_ac97_rst_cfg;
2142
2143 static void snd_soc_ac97_warm_reset(struct snd_ac97 *ac97)
2144 {
2145 struct pinctrl *pctl = snd_ac97_rst_cfg.pctl;
2146
2147 pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_warm_reset);
2148
2149 gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 1);
2150
2151 udelay(10);
2152
2153 gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 0);
2154
2155 pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_run);
2156 msleep(2);
2157 }
2158
2159 static void snd_soc_ac97_reset(struct snd_ac97 *ac97)
2160 {
2161 struct pinctrl *pctl = snd_ac97_rst_cfg.pctl;
2162
2163 pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_reset);
2164
2165 gpio_direction_output(snd_ac97_rst_cfg.gpio_sync, 0);
2166 gpio_direction_output(snd_ac97_rst_cfg.gpio_sdata, 0);
2167 gpio_direction_output(snd_ac97_rst_cfg.gpio_reset, 0);
2168
2169 udelay(10);
2170
2171 gpio_direction_output(snd_ac97_rst_cfg.gpio_reset, 1);
2172
2173 pinctrl_select_state(pctl, snd_ac97_rst_cfg.pstate_run);
2174 msleep(2);
2175 }
2176
2177 static int snd_soc_ac97_parse_pinctl(struct device *dev,
2178 struct snd_ac97_reset_cfg *cfg)
2179 {
2180 struct pinctrl *p;
2181 struct pinctrl_state *state;
2182 int gpio;
2183 int ret;
2184
2185 p = devm_pinctrl_get(dev);
2186 if (IS_ERR(p)) {
2187 dev_err(dev, "Failed to get pinctrl\n");
2188 return PTR_ERR(p);
2189 }
2190 cfg->pctl = p;
2191
2192 state = pinctrl_lookup_state(p, "ac97-reset");
2193 if (IS_ERR(state)) {
2194 dev_err(dev, "Can't find pinctrl state ac97-reset\n");
2195 return PTR_ERR(state);
2196 }
2197 cfg->pstate_reset = state;
2198
2199 state = pinctrl_lookup_state(p, "ac97-warm-reset");
2200 if (IS_ERR(state)) {
2201 dev_err(dev, "Can't find pinctrl state ac97-warm-reset\n");
2202 return PTR_ERR(state);
2203 }
2204 cfg->pstate_warm_reset = state;
2205
2206 state = pinctrl_lookup_state(p, "ac97-running");
2207 if (IS_ERR(state)) {
2208 dev_err(dev, "Can't find pinctrl state ac97-running\n");
2209 return PTR_ERR(state);
2210 }
2211 cfg->pstate_run = state;
2212
2213 gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 0);
2214 if (gpio < 0) {
2215 dev_err(dev, "Can't find ac97-sync gpio\n");
2216 return gpio;
2217 }
2218 ret = devm_gpio_request(dev, gpio, "AC97 link sync");
2219 if (ret) {
2220 dev_err(dev, "Failed requesting ac97-sync gpio\n");
2221 return ret;
2222 }
2223 cfg->gpio_sync = gpio;
2224
2225 gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 1);
2226 if (gpio < 0) {
2227 dev_err(dev, "Can't find ac97-sdata gpio %d\n", gpio);
2228 return gpio;
2229 }
2230 ret = devm_gpio_request(dev, gpio, "AC97 link sdata");
2231 if (ret) {
2232 dev_err(dev, "Failed requesting ac97-sdata gpio\n");
2233 return ret;
2234 }
2235 cfg->gpio_sdata = gpio;
2236
2237 gpio = of_get_named_gpio(dev->of_node, "ac97-gpios", 2);
2238 if (gpio < 0) {
2239 dev_err(dev, "Can't find ac97-reset gpio\n");
2240 return gpio;
2241 }
2242 ret = devm_gpio_request(dev, gpio, "AC97 link reset");
2243 if (ret) {
2244 dev_err(dev, "Failed requesting ac97-reset gpio\n");
2245 return ret;
2246 }
2247 cfg->gpio_reset = gpio;
2248
2249 return 0;
2250 }
2251
2252 struct snd_ac97_bus_ops *soc_ac97_ops;
2253 EXPORT_SYMBOL_GPL(soc_ac97_ops);
2254
2255 int snd_soc_set_ac97_ops(struct snd_ac97_bus_ops *ops)
2256 {
2257 if (ops == soc_ac97_ops)
2258 return 0;
2259
2260 if (soc_ac97_ops && ops)
2261 return -EBUSY;
2262
2263 soc_ac97_ops = ops;
2264
2265 return 0;
2266 }
2267 EXPORT_SYMBOL_GPL(snd_soc_set_ac97_ops);
2268
2269 /**
2270 * snd_soc_set_ac97_ops_of_reset - Set ac97 ops with generic ac97 reset functions
2271 *
2272 * This function sets the reset and warm_reset properties of ops and parses
2273 * the device node of pdev to get pinctrl states and gpio numbers to use.
2274 */
2275 int snd_soc_set_ac97_ops_of_reset(struct snd_ac97_bus_ops *ops,
2276 struct platform_device *pdev)
2277 {
2278 struct device *dev = &pdev->dev;
2279 struct snd_ac97_reset_cfg cfg;
2280 int ret;
2281
2282 ret = snd_soc_ac97_parse_pinctl(dev, &cfg);
2283 if (ret)
2284 return ret;
2285
2286 ret = snd_soc_set_ac97_ops(ops);
2287 if (ret)
2288 return ret;
2289
2290 ops->warm_reset = snd_soc_ac97_warm_reset;
2291 ops->reset = snd_soc_ac97_reset;
2292
2293 snd_ac97_rst_cfg = cfg;
2294 return 0;
2295 }
2296 EXPORT_SYMBOL_GPL(snd_soc_set_ac97_ops_of_reset);
2297
2298 /**
2299 * snd_soc_free_ac97_codec - free AC97 codec device
2300 * @codec: audio codec
2301 *
2302 * Frees AC97 codec device resources.
2303 */
2304 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
2305 {
2306 mutex_lock(&codec->mutex);
2307 #ifdef CONFIG_SND_SOC_AC97_BUS
2308 soc_unregister_ac97_codec(codec);
2309 #endif
2310 kfree(codec->ac97->bus);
2311 kfree(codec->ac97);
2312 codec->ac97 = NULL;
2313 codec->ac97_created = 0;
2314 mutex_unlock(&codec->mutex);
2315 }
2316 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
2317
2318 /**
2319 * snd_soc_cnew - create new control
2320 * @_template: control template
2321 * @data: control private data
2322 * @long_name: control long name
2323 * @prefix: control name prefix
2324 *
2325 * Create a new mixer control from a template control.
2326 *
2327 * Returns 0 for success, else error.
2328 */
2329 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2330 void *data, const char *long_name,
2331 const char *prefix)
2332 {
2333 struct snd_kcontrol_new template;
2334 struct snd_kcontrol *kcontrol;
2335 char *name = NULL;
2336
2337 memcpy(&template, _template, sizeof(template));
2338 template.index = 0;
2339
2340 if (!long_name)
2341 long_name = template.name;
2342
2343 if (prefix) {
2344 name = kasprintf(GFP_KERNEL, "%s %s", prefix, long_name);
2345 if (!name)
2346 return NULL;
2347
2348 template.name = name;
2349 } else {
2350 template.name = long_name;
2351 }
2352
2353 kcontrol = snd_ctl_new1(&template, data);
2354
2355 kfree(name);
2356
2357 return kcontrol;
2358 }
2359 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2360
2361 static int snd_soc_add_controls(struct snd_card *card, struct device *dev,
2362 const struct snd_kcontrol_new *controls, int num_controls,
2363 const char *prefix, void *data)
2364 {
2365 int err, i;
2366
2367 for (i = 0; i < num_controls; i++) {
2368 const struct snd_kcontrol_new *control = &controls[i];
2369 err = snd_ctl_add(card, snd_soc_cnew(control, data,
2370 control->name, prefix));
2371 if (err < 0) {
2372 dev_err(dev, "ASoC: Failed to add %s: %d\n",
2373 control->name, err);
2374 return err;
2375 }
2376 }
2377
2378 return 0;
2379 }
2380
2381 struct snd_kcontrol *snd_soc_card_get_kcontrol(struct snd_soc_card *soc_card,
2382 const char *name)
2383 {
2384 struct snd_card *card = soc_card->snd_card;
2385 struct snd_kcontrol *kctl;
2386
2387 if (unlikely(!name))
2388 return NULL;
2389
2390 list_for_each_entry(kctl, &card->controls, list)
2391 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name)))
2392 return kctl;
2393 return NULL;
2394 }
2395 EXPORT_SYMBOL_GPL(snd_soc_card_get_kcontrol);
2396
2397 /**
2398 * snd_soc_add_codec_controls - add an array of controls to a codec.
2399 * Convenience function to add a list of controls. Many codecs were
2400 * duplicating this code.
2401 *
2402 * @codec: codec to add controls to
2403 * @controls: array of controls to add
2404 * @num_controls: number of elements in the array
2405 *
2406 * Return 0 for success, else error.
2407 */
2408 int snd_soc_add_codec_controls(struct snd_soc_codec *codec,
2409 const struct snd_kcontrol_new *controls, int num_controls)
2410 {
2411 struct snd_card *card = codec->card->snd_card;
2412
2413 return snd_soc_add_controls(card, codec->dev, controls, num_controls,
2414 codec->component.name_prefix, &codec->component);
2415 }
2416 EXPORT_SYMBOL_GPL(snd_soc_add_codec_controls);
2417
2418 /**
2419 * snd_soc_add_platform_controls - add an array of controls to a platform.
2420 * Convenience function to add a list of controls.
2421 *
2422 * @platform: platform to add controls to
2423 * @controls: array of controls to add
2424 * @num_controls: number of elements in the array
2425 *
2426 * Return 0 for success, else error.
2427 */
2428 int snd_soc_add_platform_controls(struct snd_soc_platform *platform,
2429 const struct snd_kcontrol_new *controls, int num_controls)
2430 {
2431 struct snd_card *card = platform->card->snd_card;
2432
2433 return snd_soc_add_controls(card, platform->dev, controls, num_controls,
2434 NULL, &platform->component);
2435 }
2436 EXPORT_SYMBOL_GPL(snd_soc_add_platform_controls);
2437
2438 /**
2439 * snd_soc_add_card_controls - add an array of controls to a SoC card.
2440 * Convenience function to add a list of controls.
2441 *
2442 * @soc_card: SoC card to add controls to
2443 * @controls: array of controls to add
2444 * @num_controls: number of elements in the array
2445 *
2446 * Return 0 for success, else error.
2447 */
2448 int snd_soc_add_card_controls(struct snd_soc_card *soc_card,
2449 const struct snd_kcontrol_new *controls, int num_controls)
2450 {
2451 struct snd_card *card = soc_card->snd_card;
2452
2453 return snd_soc_add_controls(card, soc_card->dev, controls, num_controls,
2454 NULL, soc_card);
2455 }
2456 EXPORT_SYMBOL_GPL(snd_soc_add_card_controls);
2457
2458 /**
2459 * snd_soc_add_dai_controls - add an array of controls to a DAI.
2460 * Convienience function to add a list of controls.
2461 *
2462 * @dai: DAI to add controls to
2463 * @controls: array of controls to add
2464 * @num_controls: number of elements in the array
2465 *
2466 * Return 0 for success, else error.
2467 */
2468 int snd_soc_add_dai_controls(struct snd_soc_dai *dai,
2469 const struct snd_kcontrol_new *controls, int num_controls)
2470 {
2471 struct snd_card *card = dai->card->snd_card;
2472
2473 return snd_soc_add_controls(card, dai->dev, controls, num_controls,
2474 NULL, dai);
2475 }
2476 EXPORT_SYMBOL_GPL(snd_soc_add_dai_controls);
2477
2478 /**
2479 * snd_soc_info_enum_double - enumerated double mixer info callback
2480 * @kcontrol: mixer control
2481 * @uinfo: control element information
2482 *
2483 * Callback to provide information about a double enumerated
2484 * mixer control.
2485 *
2486 * Returns 0 for success.
2487 */
2488 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2489 struct snd_ctl_elem_info *uinfo)
2490 {
2491 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2492
2493 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2494 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2495 uinfo->value.enumerated.items = e->items;
2496
2497 if (uinfo->value.enumerated.item >= e->items)
2498 uinfo->value.enumerated.item = e->items - 1;
2499 strlcpy(uinfo->value.enumerated.name,
2500 e->texts[uinfo->value.enumerated.item],
2501 sizeof(uinfo->value.enumerated.name));
2502 return 0;
2503 }
2504 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2505
2506 /**
2507 * snd_soc_get_enum_double - enumerated double mixer get callback
2508 * @kcontrol: mixer control
2509 * @ucontrol: control element information
2510 *
2511 * Callback to get the value of a double enumerated mixer.
2512 *
2513 * Returns 0 for success.
2514 */
2515 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2516 struct snd_ctl_elem_value *ucontrol)
2517 {
2518 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2519 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2520 unsigned int val, item;
2521 unsigned int reg_val;
2522 int ret;
2523
2524 ret = snd_soc_component_read(component, e->reg, &reg_val);
2525 if (ret)
2526 return ret;
2527 val = (reg_val >> e->shift_l) & e->mask;
2528 item = snd_soc_enum_val_to_item(e, val);
2529 ucontrol->value.enumerated.item[0] = item;
2530 if (e->shift_l != e->shift_r) {
2531 val = (reg_val >> e->shift_l) & e->mask;
2532 item = snd_soc_enum_val_to_item(e, val);
2533 ucontrol->value.enumerated.item[1] = item;
2534 }
2535
2536 return 0;
2537 }
2538 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2539
2540 /**
2541 * snd_soc_put_enum_double - enumerated double mixer put callback
2542 * @kcontrol: mixer control
2543 * @ucontrol: control element information
2544 *
2545 * Callback to set the value of a double enumerated mixer.
2546 *
2547 * Returns 0 for success.
2548 */
2549 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2550 struct snd_ctl_elem_value *ucontrol)
2551 {
2552 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2553 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2554 unsigned int *item = ucontrol->value.enumerated.item;
2555 unsigned int val;
2556 unsigned int mask;
2557
2558 if (item[0] >= e->items)
2559 return -EINVAL;
2560 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
2561 mask = e->mask << e->shift_l;
2562 if (e->shift_l != e->shift_r) {
2563 if (item[1] >= e->items)
2564 return -EINVAL;
2565 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
2566 mask |= e->mask << e->shift_r;
2567 }
2568
2569 return snd_soc_component_update_bits(component, e->reg, mask, val);
2570 }
2571 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2572
2573 /**
2574 * snd_soc_read_signed - Read a codec register and interprete as signed value
2575 * @component: component
2576 * @reg: Register to read
2577 * @mask: Mask to use after shifting the register value
2578 * @shift: Right shift of register value
2579 * @sign_bit: Bit that describes if a number is negative or not.
2580 * @signed_val: Pointer to where the read value should be stored
2581 *
2582 * This functions reads a codec register. The register value is shifted right
2583 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
2584 * the given registervalue into a signed integer if sign_bit is non-zero.
2585 *
2586 * Returns 0 on sucess, otherwise an error value
2587 */
2588 static int snd_soc_read_signed(struct snd_soc_component *component,
2589 unsigned int reg, unsigned int mask, unsigned int shift,
2590 unsigned int sign_bit, int *signed_val)
2591 {
2592 int ret;
2593 unsigned int val;
2594
2595 ret = snd_soc_component_read(component, reg, &val);
2596 if (ret < 0)
2597 return ret;
2598
2599 val = (val >> shift) & mask;
2600
2601 if (!sign_bit) {
2602 *signed_val = val;
2603 return 0;
2604 }
2605
2606 /* non-negative number */
2607 if (!(val & BIT(sign_bit))) {
2608 *signed_val = val;
2609 return 0;
2610 }
2611
2612 ret = val;
2613
2614 /*
2615 * The register most probably does not contain a full-sized int.
2616 * Instead we have an arbitrary number of bits in a signed
2617 * representation which has to be translated into a full-sized int.
2618 * This is done by filling up all bits above the sign-bit.
2619 */
2620 ret |= ~((int)(BIT(sign_bit) - 1));
2621
2622 *signed_val = ret;
2623
2624 return 0;
2625 }
2626
2627 /**
2628 * snd_soc_info_volsw - single mixer info callback
2629 * @kcontrol: mixer control
2630 * @uinfo: control element information
2631 *
2632 * Callback to provide information about a single mixer control, or a double
2633 * mixer control that spans 2 registers.
2634 *
2635 * Returns 0 for success.
2636 */
2637 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2638 struct snd_ctl_elem_info *uinfo)
2639 {
2640 struct soc_mixer_control *mc =
2641 (struct soc_mixer_control *)kcontrol->private_value;
2642 int platform_max;
2643
2644 if (!mc->platform_max)
2645 mc->platform_max = mc->max;
2646 platform_max = mc->platform_max;
2647
2648 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2649 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2650 else
2651 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2652
2653 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
2654 uinfo->value.integer.min = 0;
2655 uinfo->value.integer.max = platform_max - mc->min;
2656 return 0;
2657 }
2658 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2659
2660 /**
2661 * snd_soc_get_volsw - single mixer get callback
2662 * @kcontrol: mixer control
2663 * @ucontrol: control element information
2664 *
2665 * Callback to get the value of a single mixer control, or a double mixer
2666 * control that spans 2 registers.
2667 *
2668 * Returns 0 for success.
2669 */
2670 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2671 struct snd_ctl_elem_value *ucontrol)
2672 {
2673 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2674 struct soc_mixer_control *mc =
2675 (struct soc_mixer_control *)kcontrol->private_value;
2676 unsigned int reg = mc->reg;
2677 unsigned int reg2 = mc->rreg;
2678 unsigned int shift = mc->shift;
2679 unsigned int rshift = mc->rshift;
2680 int max = mc->max;
2681 int min = mc->min;
2682 int sign_bit = mc->sign_bit;
2683 unsigned int mask = (1 << fls(max)) - 1;
2684 unsigned int invert = mc->invert;
2685 int val;
2686 int ret;
2687
2688 if (sign_bit)
2689 mask = BIT(sign_bit + 1) - 1;
2690
2691 ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
2692 if (ret)
2693 return ret;
2694
2695 ucontrol->value.integer.value[0] = val - min;
2696 if (invert)
2697 ucontrol->value.integer.value[0] =
2698 max - ucontrol->value.integer.value[0];
2699
2700 if (snd_soc_volsw_is_stereo(mc)) {
2701 if (reg == reg2)
2702 ret = snd_soc_read_signed(component, reg, mask, rshift,
2703 sign_bit, &val);
2704 else
2705 ret = snd_soc_read_signed(component, reg2, mask, shift,
2706 sign_bit, &val);
2707 if (ret)
2708 return ret;
2709
2710 ucontrol->value.integer.value[1] = val - min;
2711 if (invert)
2712 ucontrol->value.integer.value[1] =
2713 max - ucontrol->value.integer.value[1];
2714 }
2715
2716 return 0;
2717 }
2718 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2719
2720 /**
2721 * snd_soc_put_volsw - single mixer put callback
2722 * @kcontrol: mixer control
2723 * @ucontrol: control element information
2724 *
2725 * Callback to set the value of a single mixer control, or a double mixer
2726 * control that spans 2 registers.
2727 *
2728 * Returns 0 for success.
2729 */
2730 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2731 struct snd_ctl_elem_value *ucontrol)
2732 {
2733 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2734 struct soc_mixer_control *mc =
2735 (struct soc_mixer_control *)kcontrol->private_value;
2736 unsigned int reg = mc->reg;
2737 unsigned int reg2 = mc->rreg;
2738 unsigned int shift = mc->shift;
2739 unsigned int rshift = mc->rshift;
2740 int max = mc->max;
2741 int min = mc->min;
2742 unsigned int sign_bit = mc->sign_bit;
2743 unsigned int mask = (1 << fls(max)) - 1;
2744 unsigned int invert = mc->invert;
2745 int err;
2746 bool type_2r = false;
2747 unsigned int val2 = 0;
2748 unsigned int val, val_mask;
2749
2750 if (sign_bit)
2751 mask = BIT(sign_bit + 1) - 1;
2752
2753 val = ((ucontrol->value.integer.value[0] + min) & mask);
2754 if (invert)
2755 val = max - val;
2756 val_mask = mask << shift;
2757 val = val << shift;
2758 if (snd_soc_volsw_is_stereo(mc)) {
2759 val2 = ((ucontrol->value.integer.value[1] + min) & mask);
2760 if (invert)
2761 val2 = max - val2;
2762 if (reg == reg2) {
2763 val_mask |= mask << rshift;
2764 val |= val2 << rshift;
2765 } else {
2766 val2 = val2 << shift;
2767 type_2r = true;
2768 }
2769 }
2770 err = snd_soc_component_update_bits(component, reg, val_mask, val);
2771 if (err < 0)
2772 return err;
2773
2774 if (type_2r)
2775 err = snd_soc_component_update_bits(component, reg2, val_mask,
2776 val2);
2777
2778 return err;
2779 }
2780 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2781
2782 /**
2783 * snd_soc_get_volsw_sx - single mixer get callback
2784 * @kcontrol: mixer control
2785 * @ucontrol: control element information
2786 *
2787 * Callback to get the value of a single mixer control, or a double mixer
2788 * control that spans 2 registers.
2789 *
2790 * Returns 0 for success.
2791 */
2792 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
2793 struct snd_ctl_elem_value *ucontrol)
2794 {
2795 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2796 struct soc_mixer_control *mc =
2797 (struct soc_mixer_control *)kcontrol->private_value;
2798 unsigned int reg = mc->reg;
2799 unsigned int reg2 = mc->rreg;
2800 unsigned int shift = mc->shift;
2801 unsigned int rshift = mc->rshift;
2802 int max = mc->max;
2803 int min = mc->min;
2804 int mask = (1 << (fls(min + max) - 1)) - 1;
2805 unsigned int val;
2806 int ret;
2807
2808 ret = snd_soc_component_read(component, reg, &val);
2809 if (ret < 0)
2810 return ret;
2811
2812 ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
2813
2814 if (snd_soc_volsw_is_stereo(mc)) {
2815 ret = snd_soc_component_read(component, reg2, &val);
2816 if (ret < 0)
2817 return ret;
2818
2819 val = ((val >> rshift) - min) & mask;
2820 ucontrol->value.integer.value[1] = val;
2821 }
2822
2823 return 0;
2824 }
2825 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
2826
2827 /**
2828 * snd_soc_put_volsw_sx - double mixer set callback
2829 * @kcontrol: mixer control
2830 * @uinfo: control element information
2831 *
2832 * Callback to set the value of a double mixer control that spans 2 registers.
2833 *
2834 * Returns 0 for success.
2835 */
2836 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
2837 struct snd_ctl_elem_value *ucontrol)
2838 {
2839 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2840 struct soc_mixer_control *mc =
2841 (struct soc_mixer_control *)kcontrol->private_value;
2842
2843 unsigned int reg = mc->reg;
2844 unsigned int reg2 = mc->rreg;
2845 unsigned int shift = mc->shift;
2846 unsigned int rshift = mc->rshift;
2847 int max = mc->max;
2848 int min = mc->min;
2849 int mask = (1 << (fls(min + max) - 1)) - 1;
2850 int err = 0;
2851 unsigned int val, val_mask, val2 = 0;
2852
2853 val_mask = mask << shift;
2854 val = (ucontrol->value.integer.value[0] + min) & mask;
2855 val = val << shift;
2856
2857 err = snd_soc_component_update_bits(component, reg, val_mask, val);
2858 if (err < 0)
2859 return err;
2860
2861 if (snd_soc_volsw_is_stereo(mc)) {
2862 val_mask = mask << rshift;
2863 val2 = (ucontrol->value.integer.value[1] + min) & mask;
2864 val2 = val2 << rshift;
2865
2866 err = snd_soc_component_update_bits(component, reg2, val_mask,
2867 val2);
2868 }
2869 return err;
2870 }
2871 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
2872
2873 /**
2874 * snd_soc_info_volsw_s8 - signed mixer info callback
2875 * @kcontrol: mixer control
2876 * @uinfo: control element information
2877 *
2878 * Callback to provide information about a signed mixer control.
2879 *
2880 * Returns 0 for success.
2881 */
2882 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2883 struct snd_ctl_elem_info *uinfo)
2884 {
2885 struct soc_mixer_control *mc =
2886 (struct soc_mixer_control *)kcontrol->private_value;
2887 int platform_max;
2888 int min = mc->min;
2889
2890 if (!mc->platform_max)
2891 mc->platform_max = mc->max;
2892 platform_max = mc->platform_max;
2893
2894 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2895 uinfo->count = 2;
2896 uinfo->value.integer.min = 0;
2897 uinfo->value.integer.max = platform_max - min;
2898 return 0;
2899 }
2900 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2901
2902 /**
2903 * snd_soc_get_volsw_s8 - signed mixer get callback
2904 * @kcontrol: mixer control
2905 * @ucontrol: control element information
2906 *
2907 * Callback to get the value of a signed mixer control.
2908 *
2909 * Returns 0 for success.
2910 */
2911 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2912 struct snd_ctl_elem_value *ucontrol)
2913 {
2914 struct soc_mixer_control *mc =
2915 (struct soc_mixer_control *)kcontrol->private_value;
2916 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2917 unsigned int reg = mc->reg;
2918 unsigned int val;
2919 int min = mc->min;
2920 int ret;
2921
2922 ret = snd_soc_component_read(component, reg, &val);
2923 if (ret)
2924 return ret;
2925
2926 ucontrol->value.integer.value[0] =
2927 ((signed char)(val & 0xff))-min;
2928 ucontrol->value.integer.value[1] =
2929 ((signed char)((val >> 8) & 0xff))-min;
2930 return 0;
2931 }
2932 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2933
2934 /**
2935 * snd_soc_put_volsw_sgn - signed mixer put callback
2936 * @kcontrol: mixer control
2937 * @ucontrol: control element information
2938 *
2939 * Callback to set the value of a signed mixer control.
2940 *
2941 * Returns 0 for success.
2942 */
2943 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2944 struct snd_ctl_elem_value *ucontrol)
2945 {
2946 struct soc_mixer_control *mc =
2947 (struct soc_mixer_control *)kcontrol->private_value;
2948 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
2949 unsigned int reg = mc->reg;
2950 int min = mc->min;
2951 unsigned int val;
2952
2953 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2954 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2955
2956 return snd_soc_component_update_bits(component, reg, 0xffff, val);
2957 }
2958 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2959
2960 /**
2961 * snd_soc_info_volsw_range - single mixer info callback with range.
2962 * @kcontrol: mixer control
2963 * @uinfo: control element information
2964 *
2965 * Callback to provide information, within a range, about a single
2966 * mixer control.
2967 *
2968 * returns 0 for success.
2969 */
2970 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
2971 struct snd_ctl_elem_info *uinfo)
2972 {
2973 struct soc_mixer_control *mc =
2974 (struct soc_mixer_control *)kcontrol->private_value;
2975 int platform_max;
2976 int min = mc->min;
2977
2978 if (!mc->platform_max)
2979 mc->platform_max = mc->max;
2980 platform_max = mc->platform_max;
2981
2982 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2983 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
2984 uinfo->value.integer.min = 0;
2985 uinfo->value.integer.max = platform_max - min;
2986
2987 return 0;
2988 }
2989 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
2990
2991 /**
2992 * snd_soc_put_volsw_range - single mixer put value callback with range.
2993 * @kcontrol: mixer control
2994 * @ucontrol: control element information
2995 *
2996 * Callback to set the value, within a range, for a single mixer control.
2997 *
2998 * Returns 0 for success.
2999 */
3000 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
3001 struct snd_ctl_elem_value *ucontrol)
3002 {
3003 struct soc_mixer_control *mc =
3004 (struct soc_mixer_control *)kcontrol->private_value;
3005 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3006 unsigned int reg = mc->reg;
3007 unsigned int rreg = mc->rreg;
3008 unsigned int shift = mc->shift;
3009 int min = mc->min;
3010 int max = mc->max;
3011 unsigned int mask = (1 << fls(max)) - 1;
3012 unsigned int invert = mc->invert;
3013 unsigned int val, val_mask;
3014 int ret;
3015
3016 val = ((ucontrol->value.integer.value[0] + min) & mask);
3017 if (invert)
3018 val = max - val;
3019 val_mask = mask << shift;
3020 val = val << shift;
3021
3022 ret = snd_soc_component_update_bits(component, reg, val_mask, val);
3023 if (ret < 0)
3024 return ret;
3025
3026 if (snd_soc_volsw_is_stereo(mc)) {
3027 val = ((ucontrol->value.integer.value[1] + min) & mask);
3028 if (invert)
3029 val = max - val;
3030 val_mask = mask << shift;
3031 val = val << shift;
3032
3033 ret = snd_soc_component_update_bits(component, rreg, val_mask,
3034 val);
3035 }
3036
3037 return ret;
3038 }
3039 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
3040
3041 /**
3042 * snd_soc_get_volsw_range - single mixer get callback with range
3043 * @kcontrol: mixer control
3044 * @ucontrol: control element information
3045 *
3046 * Callback to get the value, within a range, of a single mixer control.
3047 *
3048 * Returns 0 for success.
3049 */
3050 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
3051 struct snd_ctl_elem_value *ucontrol)
3052 {
3053 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3054 struct soc_mixer_control *mc =
3055 (struct soc_mixer_control *)kcontrol->private_value;
3056 unsigned int reg = mc->reg;
3057 unsigned int rreg = mc->rreg;
3058 unsigned int shift = mc->shift;
3059 int min = mc->min;
3060 int max = mc->max;
3061 unsigned int mask = (1 << fls(max)) - 1;
3062 unsigned int invert = mc->invert;
3063 unsigned int val;
3064 int ret;
3065
3066 ret = snd_soc_component_read(component, reg, &val);
3067 if (ret)
3068 return ret;
3069
3070 ucontrol->value.integer.value[0] = (val >> shift) & mask;
3071 if (invert)
3072 ucontrol->value.integer.value[0] =
3073 max - ucontrol->value.integer.value[0];
3074 ucontrol->value.integer.value[0] =
3075 ucontrol->value.integer.value[0] - min;
3076
3077 if (snd_soc_volsw_is_stereo(mc)) {
3078 ret = snd_soc_component_read(component, rreg, &val);
3079 if (ret)
3080 return ret;
3081
3082 ucontrol->value.integer.value[1] = (val >> shift) & mask;
3083 if (invert)
3084 ucontrol->value.integer.value[1] =
3085 max - ucontrol->value.integer.value[1];
3086 ucontrol->value.integer.value[1] =
3087 ucontrol->value.integer.value[1] - min;
3088 }
3089
3090 return 0;
3091 }
3092 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
3093
3094 /**
3095 * snd_soc_limit_volume - Set new limit to an existing volume control.
3096 *
3097 * @codec: where to look for the control
3098 * @name: Name of the control
3099 * @max: new maximum limit
3100 *
3101 * Return 0 for success, else error.
3102 */
3103 int snd_soc_limit_volume(struct snd_soc_codec *codec,
3104 const char *name, int max)
3105 {
3106 struct snd_card *card = codec->card->snd_card;
3107 struct snd_kcontrol *kctl;
3108 struct soc_mixer_control *mc;
3109 int found = 0;
3110 int ret = -EINVAL;
3111
3112 /* Sanity check for name and max */
3113 if (unlikely(!name || max <= 0))
3114 return -EINVAL;
3115
3116 list_for_each_entry(kctl, &card->controls, list) {
3117 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
3118 found = 1;
3119 break;
3120 }
3121 }
3122 if (found) {
3123 mc = (struct soc_mixer_control *)kctl->private_value;
3124 if (max <= mc->max) {
3125 mc->platform_max = max;
3126 ret = 0;
3127 }
3128 }
3129 return ret;
3130 }
3131 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
3132
3133 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
3134 struct snd_ctl_elem_info *uinfo)
3135 {
3136 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3137 struct soc_bytes *params = (void *)kcontrol->private_value;
3138
3139 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
3140 uinfo->count = params->num_regs * component->val_bytes;
3141
3142 return 0;
3143 }
3144 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
3145
3146 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
3147 struct snd_ctl_elem_value *ucontrol)
3148 {
3149 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3150 struct soc_bytes *params = (void *)kcontrol->private_value;
3151 int ret;
3152
3153 if (component->regmap)
3154 ret = regmap_raw_read(component->regmap, params->base,
3155 ucontrol->value.bytes.data,
3156 params->num_regs * component->val_bytes);
3157 else
3158 ret = -EINVAL;
3159
3160 /* Hide any masked bytes to ensure consistent data reporting */
3161 if (ret == 0 && params->mask) {
3162 switch (component->val_bytes) {
3163 case 1:
3164 ucontrol->value.bytes.data[0] &= ~params->mask;
3165 break;
3166 case 2:
3167 ((u16 *)(&ucontrol->value.bytes.data))[0]
3168 &= cpu_to_be16(~params->mask);
3169 break;
3170 case 4:
3171 ((u32 *)(&ucontrol->value.bytes.data))[0]
3172 &= cpu_to_be32(~params->mask);
3173 break;
3174 default:
3175 return -EINVAL;
3176 }
3177 }
3178
3179 return ret;
3180 }
3181 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
3182
3183 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
3184 struct snd_ctl_elem_value *ucontrol)
3185 {
3186 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3187 struct soc_bytes *params = (void *)kcontrol->private_value;
3188 int ret, len;
3189 unsigned int val, mask;
3190 void *data;
3191
3192 if (!component->regmap)
3193 return -EINVAL;
3194
3195 len = params->num_regs * component->val_bytes;
3196
3197 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
3198 if (!data)
3199 return -ENOMEM;
3200
3201 /*
3202 * If we've got a mask then we need to preserve the register
3203 * bits. We shouldn't modify the incoming data so take a
3204 * copy.
3205 */
3206 if (params->mask) {
3207 ret = regmap_read(component->regmap, params->base, &val);
3208 if (ret != 0)
3209 goto out;
3210
3211 val &= params->mask;
3212
3213 switch (component->val_bytes) {
3214 case 1:
3215 ((u8 *)data)[0] &= ~params->mask;
3216 ((u8 *)data)[0] |= val;
3217 break;
3218 case 2:
3219 mask = ~params->mask;
3220 ret = regmap_parse_val(component->regmap,
3221 &mask, &mask);
3222 if (ret != 0)
3223 goto out;
3224
3225 ((u16 *)data)[0] &= mask;
3226
3227 ret = regmap_parse_val(component->regmap,
3228 &val, &val);
3229 if (ret != 0)
3230 goto out;
3231
3232 ((u16 *)data)[0] |= val;
3233 break;
3234 case 4:
3235 mask = ~params->mask;
3236 ret = regmap_parse_val(component->regmap,
3237 &mask, &mask);
3238 if (ret != 0)
3239 goto out;
3240
3241 ((u32 *)data)[0] &= mask;
3242
3243 ret = regmap_parse_val(component->regmap,
3244 &val, &val);
3245 if (ret != 0)
3246 goto out;
3247
3248 ((u32 *)data)[0] |= val;
3249 break;
3250 default:
3251 ret = -EINVAL;
3252 goto out;
3253 }
3254 }
3255
3256 ret = regmap_raw_write(component->regmap, params->base,
3257 data, len);
3258
3259 out:
3260 kfree(data);
3261
3262 return ret;
3263 }
3264 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
3265
3266 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
3267 struct snd_ctl_elem_info *ucontrol)
3268 {
3269 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
3270
3271 ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
3272 ucontrol->count = params->max;
3273
3274 return 0;
3275 }
3276 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
3277
3278 /**
3279 * snd_soc_info_xr_sx - signed multi register info callback
3280 * @kcontrol: mreg control
3281 * @uinfo: control element information
3282 *
3283 * Callback to provide information of a control that can
3284 * span multiple codec registers which together
3285 * forms a single signed value in a MSB/LSB manner.
3286 *
3287 * Returns 0 for success.
3288 */
3289 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
3290 struct snd_ctl_elem_info *uinfo)
3291 {
3292 struct soc_mreg_control *mc =
3293 (struct soc_mreg_control *)kcontrol->private_value;
3294 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3295 uinfo->count = 1;
3296 uinfo->value.integer.min = mc->min;
3297 uinfo->value.integer.max = mc->max;
3298
3299 return 0;
3300 }
3301 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
3302
3303 /**
3304 * snd_soc_get_xr_sx - signed multi register get callback
3305 * @kcontrol: mreg control
3306 * @ucontrol: control element information
3307 *
3308 * Callback to get the value of a control that can span
3309 * multiple codec registers which together forms a single
3310 * signed value in a MSB/LSB manner. The control supports
3311 * specifying total no of bits used to allow for bitfields
3312 * across the multiple codec registers.
3313 *
3314 * Returns 0 for success.
3315 */
3316 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
3317 struct snd_ctl_elem_value *ucontrol)
3318 {
3319 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3320 struct soc_mreg_control *mc =
3321 (struct soc_mreg_control *)kcontrol->private_value;
3322 unsigned int regbase = mc->regbase;
3323 unsigned int regcount = mc->regcount;
3324 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
3325 unsigned int regwmask = (1<<regwshift)-1;
3326 unsigned int invert = mc->invert;
3327 unsigned long mask = (1UL<<mc->nbits)-1;
3328 long min = mc->min;
3329 long max = mc->max;
3330 long val = 0;
3331 unsigned int regval;
3332 unsigned int i;
3333 int ret;
3334
3335 for (i = 0; i < regcount; i++) {
3336 ret = snd_soc_component_read(component, regbase+i, &regval);
3337 if (ret)
3338 return ret;
3339 val |= (regval & regwmask) << (regwshift*(regcount-i-1));
3340 }
3341 val &= mask;
3342 if (min < 0 && val > max)
3343 val |= ~mask;
3344 if (invert)
3345 val = max - val;
3346 ucontrol->value.integer.value[0] = val;
3347
3348 return 0;
3349 }
3350 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
3351
3352 /**
3353 * snd_soc_put_xr_sx - signed multi register get callback
3354 * @kcontrol: mreg control
3355 * @ucontrol: control element information
3356 *
3357 * Callback to set the value of a control that can span
3358 * multiple codec registers which together forms a single
3359 * signed value in a MSB/LSB manner. The control supports
3360 * specifying total no of bits used to allow for bitfields
3361 * across the multiple codec registers.
3362 *
3363 * Returns 0 for success.
3364 */
3365 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
3366 struct snd_ctl_elem_value *ucontrol)
3367 {
3368 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3369 struct soc_mreg_control *mc =
3370 (struct soc_mreg_control *)kcontrol->private_value;
3371 unsigned int regbase = mc->regbase;
3372 unsigned int regcount = mc->regcount;
3373 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
3374 unsigned int regwmask = (1<<regwshift)-1;
3375 unsigned int invert = mc->invert;
3376 unsigned long mask = (1UL<<mc->nbits)-1;
3377 long max = mc->max;
3378 long val = ucontrol->value.integer.value[0];
3379 unsigned int i, regval, regmask;
3380 int err;
3381
3382 if (invert)
3383 val = max - val;
3384 val &= mask;
3385 for (i = 0; i < regcount; i++) {
3386 regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
3387 regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
3388 err = snd_soc_component_update_bits(component, regbase+i,
3389 regmask, regval);
3390 if (err < 0)
3391 return err;
3392 }
3393
3394 return 0;
3395 }
3396 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
3397
3398 /**
3399 * snd_soc_get_strobe - strobe get callback
3400 * @kcontrol: mixer control
3401 * @ucontrol: control element information
3402 *
3403 * Callback get the value of a strobe mixer control.
3404 *
3405 * Returns 0 for success.
3406 */
3407 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
3408 struct snd_ctl_elem_value *ucontrol)
3409 {
3410 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3411 struct soc_mixer_control *mc =
3412 (struct soc_mixer_control *)kcontrol->private_value;
3413 unsigned int reg = mc->reg;
3414 unsigned int shift = mc->shift;
3415 unsigned int mask = 1 << shift;
3416 unsigned int invert = mc->invert != 0;
3417 unsigned int val;
3418 int ret;
3419
3420 ret = snd_soc_component_read(component, reg, &val);
3421 if (ret)
3422 return ret;
3423
3424 val &= mask;
3425
3426 if (shift != 0 && val != 0)
3427 val = val >> shift;
3428 ucontrol->value.enumerated.item[0] = val ^ invert;
3429
3430 return 0;
3431 }
3432 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
3433
3434 /**
3435 * snd_soc_put_strobe - strobe put callback
3436 * @kcontrol: mixer control
3437 * @ucontrol: control element information
3438 *
3439 * Callback strobe a register bit to high then low (or the inverse)
3440 * in one pass of a single mixer enum control.
3441 *
3442 * Returns 1 for success.
3443 */
3444 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
3445 struct snd_ctl_elem_value *ucontrol)
3446 {
3447 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
3448 struct soc_mixer_control *mc =
3449 (struct soc_mixer_control *)kcontrol->private_value;
3450 unsigned int reg = mc->reg;
3451 unsigned int shift = mc->shift;
3452 unsigned int mask = 1 << shift;
3453 unsigned int invert = mc->invert != 0;
3454 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
3455 unsigned int val1 = (strobe ^ invert) ? mask : 0;
3456 unsigned int val2 = (strobe ^ invert) ? 0 : mask;
3457 int err;
3458
3459 err = snd_soc_component_update_bits(component, reg, mask, val1);
3460 if (err < 0)
3461 return err;
3462
3463 return snd_soc_component_update_bits(component, reg, mask, val2);
3464 }
3465 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
3466
3467 /**
3468 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
3469 * @dai: DAI
3470 * @clk_id: DAI specific clock ID
3471 * @freq: new clock frequency in Hz
3472 * @dir: new clock direction - input/output.
3473 *
3474 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
3475 */
3476 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
3477 unsigned int freq, int dir)
3478 {
3479 if (dai->driver && dai->driver->ops->set_sysclk)
3480 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
3481 else if (dai->codec && dai->codec->driver->set_sysclk)
3482 return dai->codec->driver->set_sysclk(dai->codec, clk_id, 0,
3483 freq, dir);
3484 else
3485 return -ENOTSUPP;
3486 }
3487 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
3488
3489 /**
3490 * snd_soc_codec_set_sysclk - configure CODEC system or master clock.
3491 * @codec: CODEC
3492 * @clk_id: DAI specific clock ID
3493 * @source: Source for the clock
3494 * @freq: new clock frequency in Hz
3495 * @dir: new clock direction - input/output.
3496 *
3497 * Configures the CODEC master (MCLK) or system (SYSCLK) clocking.
3498 */
3499 int snd_soc_codec_set_sysclk(struct snd_soc_codec *codec, int clk_id,
3500 int source, unsigned int freq, int dir)
3501 {
3502 if (codec->driver->set_sysclk)
3503 return codec->driver->set_sysclk(codec, clk_id, source,
3504 freq, dir);
3505 else
3506 return -ENOTSUPP;
3507 }
3508 EXPORT_SYMBOL_GPL(snd_soc_codec_set_sysclk);
3509
3510 /**
3511 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
3512 * @dai: DAI
3513 * @div_id: DAI specific clock divider ID
3514 * @div: new clock divisor.
3515 *
3516 * Configures the clock dividers. This is used to derive the best DAI bit and
3517 * frame clocks from the system or master clock. It's best to set the DAI bit
3518 * and frame clocks as low as possible to save system power.
3519 */
3520 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
3521 int div_id, int div)
3522 {
3523 if (dai->driver && dai->driver->ops->set_clkdiv)
3524 return dai->driver->ops->set_clkdiv(dai, div_id, div);
3525 else
3526 return -EINVAL;
3527 }
3528 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
3529
3530 /**
3531 * snd_soc_dai_set_pll - configure DAI PLL.
3532 * @dai: DAI
3533 * @pll_id: DAI specific PLL ID
3534 * @source: DAI specific source for the PLL
3535 * @freq_in: PLL input clock frequency in Hz
3536 * @freq_out: requested PLL output clock frequency in Hz
3537 *
3538 * Configures and enables PLL to generate output clock based on input clock.
3539 */
3540 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
3541 unsigned int freq_in, unsigned int freq_out)
3542 {
3543 if (dai->driver && dai->driver->ops->set_pll)
3544 return dai->driver->ops->set_pll(dai, pll_id, source,
3545 freq_in, freq_out);
3546 else if (dai->codec && dai->codec->driver->set_pll)
3547 return dai->codec->driver->set_pll(dai->codec, pll_id, source,
3548 freq_in, freq_out);
3549 else
3550 return -EINVAL;
3551 }
3552 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
3553
3554 /*
3555 * snd_soc_codec_set_pll - configure codec PLL.
3556 * @codec: CODEC
3557 * @pll_id: DAI specific PLL ID
3558 * @source: DAI specific source for the PLL
3559 * @freq_in: PLL input clock frequency in Hz
3560 * @freq_out: requested PLL output clock frequency in Hz
3561 *
3562 * Configures and enables PLL to generate output clock based on input clock.
3563 */
3564 int snd_soc_codec_set_pll(struct snd_soc_codec *codec, int pll_id, int source,
3565 unsigned int freq_in, unsigned int freq_out)
3566 {
3567 if (codec->driver->set_pll)
3568 return codec->driver->set_pll(codec, pll_id, source,
3569 freq_in, freq_out);
3570 else
3571 return -EINVAL;
3572 }
3573 EXPORT_SYMBOL_GPL(snd_soc_codec_set_pll);
3574
3575 /**
3576 * snd_soc_dai_set_bclk_ratio - configure BCLK to sample rate ratio.
3577 * @dai: DAI
3578 * @ratio Ratio of BCLK to Sample rate.
3579 *
3580 * Configures the DAI for a preset BCLK to sample rate ratio.
3581 */
3582 int snd_soc_dai_set_bclk_ratio(struct snd_soc_dai *dai, unsigned int ratio)
3583 {
3584 if (dai->driver && dai->driver->ops->set_bclk_ratio)
3585 return dai->driver->ops->set_bclk_ratio(dai, ratio);
3586 else
3587 return -EINVAL;
3588 }
3589 EXPORT_SYMBOL_GPL(snd_soc_dai_set_bclk_ratio);
3590
3591 /**
3592 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
3593 * @dai: DAI
3594 * @fmt: SND_SOC_DAIFMT_ format value.
3595 *
3596 * Configures the DAI hardware format and clocking.
3597 */
3598 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
3599 {
3600 if (dai->driver == NULL)
3601 return -EINVAL;
3602 if (dai->driver->ops->set_fmt == NULL)
3603 return -ENOTSUPP;
3604 return dai->driver->ops->set_fmt(dai, fmt);
3605 }
3606 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
3607
3608 /**
3609 * snd_soc_xlate_tdm_slot - generate tx/rx slot mask.
3610 * @slots: Number of slots in use.
3611 * @tx_mask: bitmask representing active TX slots.
3612 * @rx_mask: bitmask representing active RX slots.
3613 *
3614 * Generates the TDM tx and rx slot default masks for DAI.
3615 */
3616 static int snd_soc_xlate_tdm_slot_mask(unsigned int slots,
3617 unsigned int *tx_mask,
3618 unsigned int *rx_mask)
3619 {
3620 if (*tx_mask || *rx_mask)
3621 return 0;
3622
3623 if (!slots)
3624 return -EINVAL;
3625
3626 *tx_mask = (1 << slots) - 1;
3627 *rx_mask = (1 << slots) - 1;
3628
3629 return 0;
3630 }
3631
3632 /**
3633 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
3634 * @dai: DAI
3635 * @tx_mask: bitmask representing active TX slots.
3636 * @rx_mask: bitmask representing active RX slots.
3637 * @slots: Number of slots in use.
3638 * @slot_width: Width in bits for each slot.
3639 *
3640 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
3641 * specific.
3642 */
3643 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
3644 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
3645 {
3646 if (dai->driver && dai->driver->ops->xlate_tdm_slot_mask)
3647 dai->driver->ops->xlate_tdm_slot_mask(slots,
3648 &tx_mask, &rx_mask);
3649 else
3650 snd_soc_xlate_tdm_slot_mask(slots, &tx_mask, &rx_mask);
3651
3652 dai->tx_mask = tx_mask;
3653 dai->rx_mask = rx_mask;
3654
3655 if (dai->driver && dai->driver->ops->set_tdm_slot)
3656 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
3657 slots, slot_width);
3658 else
3659 return -ENOTSUPP;
3660 }
3661 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
3662
3663 /**
3664 * snd_soc_dai_set_channel_map - configure DAI audio channel map
3665 * @dai: DAI
3666 * @tx_num: how many TX channels
3667 * @tx_slot: pointer to an array which imply the TX slot number channel
3668 * 0~num-1 uses
3669 * @rx_num: how many RX channels
3670 * @rx_slot: pointer to an array which imply the RX slot number channel
3671 * 0~num-1 uses
3672 *
3673 * configure the relationship between channel number and TDM slot number.
3674 */
3675 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
3676 unsigned int tx_num, unsigned int *tx_slot,
3677 unsigned int rx_num, unsigned int *rx_slot)
3678 {
3679 if (dai->driver && dai->driver->ops->set_channel_map)
3680 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
3681 rx_num, rx_slot);
3682 else
3683 return -EINVAL;
3684 }
3685 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
3686
3687 /**
3688 * snd_soc_dai_set_tristate - configure DAI system or master clock.
3689 * @dai: DAI
3690 * @tristate: tristate enable
3691 *
3692 * Tristates the DAI so that others can use it.
3693 */
3694 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
3695 {
3696 if (dai->driver && dai->driver->ops->set_tristate)
3697 return dai->driver->ops->set_tristate(dai, tristate);
3698 else
3699 return -EINVAL;
3700 }
3701 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
3702
3703 /**
3704 * snd_soc_dai_digital_mute - configure DAI system or master clock.
3705 * @dai: DAI
3706 * @mute: mute enable
3707 * @direction: stream to mute
3708 *
3709 * Mutes the DAI DAC.
3710 */
3711 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute,
3712 int direction)
3713 {
3714 if (!dai->driver)
3715 return -ENOTSUPP;
3716
3717 if (dai->driver->ops->mute_stream)
3718 return dai->driver->ops->mute_stream(dai, mute, direction);
3719 else if (direction == SNDRV_PCM_STREAM_PLAYBACK &&
3720 dai->driver->ops->digital_mute)
3721 return dai->driver->ops->digital_mute(dai, mute);
3722 else
3723 return -ENOTSUPP;
3724 }
3725 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
3726
3727 static int snd_soc_init_multicodec(struct snd_soc_card *card,
3728 struct snd_soc_dai_link *dai_link)
3729 {
3730 /* Legacy codec/codec_dai link is a single entry in multicodec */
3731 if (dai_link->codec_name || dai_link->codec_of_node ||
3732 dai_link->codec_dai_name) {
3733 dai_link->num_codecs = 1;
3734
3735 dai_link->codecs = devm_kzalloc(card->dev,
3736 sizeof(struct snd_soc_dai_link_component),
3737 GFP_KERNEL);
3738 if (!dai_link->codecs)
3739 return -ENOMEM;
3740
3741 dai_link->codecs[0].name = dai_link->codec_name;
3742 dai_link->codecs[0].of_node = dai_link->codec_of_node;
3743 dai_link->codecs[0].dai_name = dai_link->codec_dai_name;
3744 }
3745
3746 if (!dai_link->codecs) {
3747 dev_err(card->dev, "ASoC: DAI link has no CODECs\n");
3748 return -EINVAL;
3749 }
3750
3751 return 0;
3752 }
3753
3754 /**
3755 * snd_soc_register_card - Register a card with the ASoC core
3756 *
3757 * @card: Card to register
3758 *
3759 */
3760 int snd_soc_register_card(struct snd_soc_card *card)
3761 {
3762 int i, j, ret;
3763
3764 if (!card->name || !card->dev)
3765 return -EINVAL;
3766
3767 for (i = 0; i < card->num_links; i++) {
3768 struct snd_soc_dai_link *link = &card->dai_link[i];
3769
3770 ret = snd_soc_init_multicodec(card, link);
3771 if (ret) {
3772 dev_err(card->dev, "ASoC: failed to init multicodec\n");
3773 return ret;
3774 }
3775
3776 for (j = 0; j < link->num_codecs; j++) {
3777 /*
3778 * Codec must be specified by 1 of name or OF node,
3779 * not both or neither.
3780 */
3781 if (!!link->codecs[j].name ==
3782 !!link->codecs[j].of_node) {
3783 dev_err(card->dev, "ASoC: Neither/both codec name/of_node are set for %s\n",
3784 link->name);
3785 return -EINVAL;
3786 }
3787 /* Codec DAI name must be specified */
3788 if (!link->codecs[j].dai_name) {
3789 dev_err(card->dev, "ASoC: codec_dai_name not set for %s\n",
3790 link->name);
3791 return -EINVAL;
3792 }
3793 }
3794
3795 /*
3796 * Platform may be specified by either name or OF node, but
3797 * can be left unspecified, and a dummy platform will be used.
3798 */
3799 if (link->platform_name && link->platform_of_node) {
3800 dev_err(card->dev,
3801 "ASoC: Both platform name/of_node are set for %s\n",
3802 link->name);
3803 return -EINVAL;
3804 }
3805
3806 /*
3807 * CPU device may be specified by either name or OF node, but
3808 * can be left unspecified, and will be matched based on DAI
3809 * name alone..
3810 */
3811 if (link->cpu_name && link->cpu_of_node) {
3812 dev_err(card->dev,
3813 "ASoC: Neither/both cpu name/of_node are set for %s\n",
3814 link->name);
3815 return -EINVAL;
3816 }
3817 /*
3818 * At least one of CPU DAI name or CPU device name/node must be
3819 * specified
3820 */
3821 if (!link->cpu_dai_name &&
3822 !(link->cpu_name || link->cpu_of_node)) {
3823 dev_err(card->dev,
3824 "ASoC: Neither cpu_dai_name nor cpu_name/of_node are set for %s\n",
3825 link->name);
3826 return -EINVAL;
3827 }
3828 }
3829
3830 dev_set_drvdata(card->dev, card);
3831
3832 snd_soc_initialize_card_lists(card);
3833
3834 soc_init_card_debugfs(card);
3835
3836 card->rtd = devm_kzalloc(card->dev,
3837 sizeof(struct snd_soc_pcm_runtime) *
3838 (card->num_links + card->num_aux_devs),
3839 GFP_KERNEL);
3840 if (card->rtd == NULL)
3841 return -ENOMEM;
3842 card->num_rtd = 0;
3843 card->rtd_aux = &card->rtd[card->num_links];
3844
3845 for (i = 0; i < card->num_links; i++) {
3846 card->rtd[i].card = card;
3847 card->rtd[i].dai_link = &card->dai_link[i];
3848 card->rtd[i].codec_dais = devm_kzalloc(card->dev,
3849 sizeof(struct snd_soc_dai *) *
3850 (card->rtd[i].dai_link->num_codecs),
3851 GFP_KERNEL);
3852 if (card->rtd[i].codec_dais == NULL)
3853 return -ENOMEM;
3854 }
3855
3856 for (i = 0; i < card->num_aux_devs; i++)
3857 card->rtd_aux[i].card = card;
3858
3859 INIT_LIST_HEAD(&card->dapm_dirty);
3860 card->instantiated = 0;
3861 mutex_init(&card->mutex);
3862 mutex_init(&card->dapm_mutex);
3863
3864 ret = snd_soc_instantiate_card(card);
3865 if (ret != 0)
3866 soc_cleanup_card_debugfs(card);
3867
3868 /* deactivate pins to sleep state */
3869 for (i = 0; i < card->num_rtd; i++) {
3870 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
3871 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
3872 int j;
3873
3874 for (j = 0; j < rtd->num_codecs; j++) {
3875 struct snd_soc_dai *codec_dai = rtd->codec_dais[j];
3876 if (!codec_dai->active)
3877 pinctrl_pm_select_sleep_state(codec_dai->dev);
3878 }
3879
3880 if (!cpu_dai->active)
3881 pinctrl_pm_select_sleep_state(cpu_dai->dev);
3882 }
3883
3884 return ret;
3885 }
3886 EXPORT_SYMBOL_GPL(snd_soc_register_card);
3887
3888 /**
3889 * snd_soc_unregister_card - Unregister a card with the ASoC core
3890 *
3891 * @card: Card to unregister
3892 *
3893 */
3894 int snd_soc_unregister_card(struct snd_soc_card *card)
3895 {
3896 if (card->instantiated)
3897 soc_cleanup_card_resources(card);
3898 dev_dbg(card->dev, "ASoC: Unregistered card '%s'\n", card->name);
3899
3900 return 0;
3901 }
3902 EXPORT_SYMBOL_GPL(snd_soc_unregister_card);
3903
3904 /*
3905 * Simplify DAI link configuration by removing ".-1" from device names
3906 * and sanitizing names.
3907 */
3908 static char *fmt_single_name(struct device *dev, int *id)
3909 {
3910 char *found, name[NAME_SIZE];
3911 int id1, id2;
3912
3913 if (dev_name(dev) == NULL)
3914 return NULL;
3915
3916 strlcpy(name, dev_name(dev), NAME_SIZE);
3917
3918 /* are we a "%s.%d" name (platform and SPI components) */
3919 found = strstr(name, dev->driver->name);
3920 if (found) {
3921 /* get ID */
3922 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3923
3924 /* discard ID from name if ID == -1 */
3925 if (*id == -1)
3926 found[strlen(dev->driver->name)] = '\0';
3927 }
3928
3929 } else {
3930 /* I2C component devices are named "bus-addr" */
3931 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3932 char tmp[NAME_SIZE];
3933
3934 /* create unique ID number from I2C addr and bus */
3935 *id = ((id1 & 0xffff) << 16) + id2;
3936
3937 /* sanitize component name for DAI link creation */
3938 snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3939 strlcpy(name, tmp, NAME_SIZE);
3940 } else
3941 *id = 0;
3942 }
3943
3944 return kstrdup(name, GFP_KERNEL);
3945 }
3946
3947 /*
3948 * Simplify DAI link naming for single devices with multiple DAIs by removing
3949 * any ".-1" and using the DAI name (instead of device name).
3950 */
3951 static inline char *fmt_multiple_name(struct device *dev,
3952 struct snd_soc_dai_driver *dai_drv)
3953 {
3954 if (dai_drv->name == NULL) {
3955 dev_err(dev,
3956 "ASoC: error - multiple DAI %s registered with no name\n",
3957 dev_name(dev));
3958 return NULL;
3959 }
3960
3961 return kstrdup(dai_drv->name, GFP_KERNEL);
3962 }
3963
3964 /**
3965 * snd_soc_unregister_dai - Unregister DAIs from the ASoC core
3966 *
3967 * @component: The component for which the DAIs should be unregistered
3968 */
3969 static void snd_soc_unregister_dais(struct snd_soc_component *component)
3970 {
3971 struct snd_soc_dai *dai, *_dai;
3972
3973 list_for_each_entry_safe(dai, _dai, &component->dai_list, list) {
3974 dev_dbg(component->dev, "ASoC: Unregistered DAI '%s'\n",
3975 dai->name);
3976 list_del(&dai->list);
3977 kfree(dai->name);
3978 kfree(dai);
3979 }
3980 }
3981
3982 /**
3983 * snd_soc_register_dais - Register a DAI with the ASoC core
3984 *
3985 * @component: The component the DAIs are registered for
3986 * @dai_drv: DAI driver to use for the DAIs
3987 * @count: Number of DAIs
3988 * @legacy_dai_naming: Use the legacy naming scheme and let the DAI inherit the
3989 * parent's name.
3990 */
3991 static int snd_soc_register_dais(struct snd_soc_component *component,
3992 struct snd_soc_dai_driver *dai_drv, size_t count,
3993 bool legacy_dai_naming)
3994 {
3995 struct device *dev = component->dev;
3996 struct snd_soc_dai *dai;
3997 unsigned int i;
3998 int ret;
3999
4000 dev_dbg(dev, "ASoC: dai register %s #%Zu\n", dev_name(dev), count);
4001
4002 component->dai_drv = dai_drv;
4003 component->num_dai = count;
4004
4005 for (i = 0; i < count; i++) {
4006
4007 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
4008 if (dai == NULL) {
4009 ret = -ENOMEM;
4010 goto err;
4011 }
4012
4013 /*
4014 * Back in the old days when we still had component-less DAIs,
4015 * instead of having a static name, component-less DAIs would
4016 * inherit the name of the parent device so it is possible to
4017 * register multiple instances of the DAI. We still need to keep
4018 * the same naming style even though those DAIs are not
4019 * component-less anymore.
4020 */
4021 if (count == 1 && legacy_dai_naming) {
4022 dai->name = fmt_single_name(dev, &dai->id);
4023 } else {
4024 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
4025 if (dai_drv[i].id)
4026 dai->id = dai_drv[i].id;
4027 else
4028 dai->id = i;
4029 }
4030 if (dai->name == NULL) {
4031 kfree(dai);
4032 ret = -ENOMEM;
4033 goto err;
4034 }
4035
4036 dai->component = component;
4037 dai->dev = dev;
4038 dai->driver = &dai_drv[i];
4039 if (!dai->driver->ops)
4040 dai->driver->ops = &null_dai_ops;
4041
4042 list_add(&dai->list, &component->dai_list);
4043
4044 dev_dbg(dev, "ASoC: Registered DAI '%s'\n", dai->name);
4045 }
4046
4047 return 0;
4048
4049 err:
4050 snd_soc_unregister_dais(component);
4051
4052 return ret;
4053 }
4054
4055 static void snd_soc_component_seq_notifier(struct snd_soc_dapm_context *dapm,
4056 enum snd_soc_dapm_type type, int subseq)
4057 {
4058 struct snd_soc_component *component = dapm->component;
4059
4060 component->driver->seq_notifier(component, type, subseq);
4061 }
4062
4063 static int snd_soc_component_stream_event(struct snd_soc_dapm_context *dapm,
4064 int event)
4065 {
4066 struct snd_soc_component *component = dapm->component;
4067
4068 return component->driver->stream_event(component, event);
4069 }
4070
4071 static int snd_soc_component_initialize(struct snd_soc_component *component,
4072 const struct snd_soc_component_driver *driver, struct device *dev)
4073 {
4074 struct snd_soc_dapm_context *dapm;
4075
4076 component->name = fmt_single_name(dev, &component->id);
4077 if (!component->name) {
4078 dev_err(dev, "ASoC: Failed to allocate name\n");
4079 return -ENOMEM;
4080 }
4081
4082 component->dev = dev;
4083 component->driver = driver;
4084
4085 if (!component->dapm_ptr)
4086 component->dapm_ptr = &component->dapm;
4087
4088 dapm = component->dapm_ptr;
4089 dapm->dev = dev;
4090 dapm->component = component;
4091 dapm->bias_level = SND_SOC_BIAS_OFF;
4092 if (driver->seq_notifier)
4093 dapm->seq_notifier = snd_soc_component_seq_notifier;
4094 if (driver->stream_event)
4095 dapm->stream_event = snd_soc_component_stream_event;
4096
4097 INIT_LIST_HEAD(&component->dai_list);
4098 mutex_init(&component->io_mutex);
4099
4100 return 0;
4101 }
4102
4103 static void snd_soc_component_add_unlocked(struct snd_soc_component *component)
4104 {
4105 list_add(&component->list, &component_list);
4106 }
4107
4108 static void snd_soc_component_add(struct snd_soc_component *component)
4109 {
4110 mutex_lock(&client_mutex);
4111 snd_soc_component_add_unlocked(component);
4112 mutex_unlock(&client_mutex);
4113 }
4114
4115 static void snd_soc_component_cleanup(struct snd_soc_component *component)
4116 {
4117 snd_soc_unregister_dais(component);
4118 kfree(component->name);
4119 }
4120
4121 static void snd_soc_component_del_unlocked(struct snd_soc_component *component)
4122 {
4123 list_del(&component->list);
4124 }
4125
4126 static void snd_soc_component_del(struct snd_soc_component *component)
4127 {
4128 mutex_lock(&client_mutex);
4129 snd_soc_component_del_unlocked(component);
4130 mutex_unlock(&client_mutex);
4131 }
4132
4133 int snd_soc_register_component(struct device *dev,
4134 const struct snd_soc_component_driver *cmpnt_drv,
4135 struct snd_soc_dai_driver *dai_drv,
4136 int num_dai)
4137 {
4138 struct snd_soc_component *cmpnt;
4139 int ret;
4140
4141 cmpnt = kzalloc(sizeof(*cmpnt), GFP_KERNEL);
4142 if (!cmpnt) {
4143 dev_err(dev, "ASoC: Failed to allocate memory\n");
4144 return -ENOMEM;
4145 }
4146
4147 ret = snd_soc_component_initialize(cmpnt, cmpnt_drv, dev);
4148 if (ret)
4149 goto err_free;
4150
4151 cmpnt->ignore_pmdown_time = true;
4152 cmpnt->registered_as_component = true;
4153
4154 ret = snd_soc_register_dais(cmpnt, dai_drv, num_dai, true);
4155 if (ret < 0) {
4156 dev_err(dev, "ASoC: Failed to regster DAIs: %d\n", ret);
4157 goto err_cleanup;
4158 }
4159
4160 snd_soc_component_add(cmpnt);
4161
4162 return 0;
4163
4164 err_cleanup:
4165 snd_soc_component_cleanup(cmpnt);
4166 err_free:
4167 kfree(cmpnt);
4168 return ret;
4169 }
4170 EXPORT_SYMBOL_GPL(snd_soc_register_component);
4171
4172 /**
4173 * snd_soc_unregister_component - Unregister a component from the ASoC core
4174 *
4175 */
4176 void snd_soc_unregister_component(struct device *dev)
4177 {
4178 struct snd_soc_component *cmpnt;
4179
4180 list_for_each_entry(cmpnt, &component_list, list) {
4181 if (dev == cmpnt->dev && cmpnt->registered_as_component)
4182 goto found;
4183 }
4184 return;
4185
4186 found:
4187 snd_soc_component_del(cmpnt);
4188 snd_soc_component_cleanup(cmpnt);
4189 kfree(cmpnt);
4190 }
4191 EXPORT_SYMBOL_GPL(snd_soc_unregister_component);
4192
4193 static int snd_soc_platform_drv_write(struct snd_soc_component *component,
4194 unsigned int reg, unsigned int val)
4195 {
4196 struct snd_soc_platform *platform = snd_soc_component_to_platform(component);
4197
4198 return platform->driver->write(platform, reg, val);
4199 }
4200
4201 static int snd_soc_platform_drv_read(struct snd_soc_component *component,
4202 unsigned int reg, unsigned int *val)
4203 {
4204 struct snd_soc_platform *platform = snd_soc_component_to_platform(component);
4205
4206 *val = platform->driver->read(platform, reg);
4207
4208 return 0;
4209 }
4210
4211 /**
4212 * snd_soc_add_platform - Add a platform to the ASoC core
4213 * @dev: The parent device for the platform
4214 * @platform: The platform to add
4215 * @platform_driver: The driver for the platform
4216 */
4217 int snd_soc_add_platform(struct device *dev, struct snd_soc_platform *platform,
4218 const struct snd_soc_platform_driver *platform_drv)
4219 {
4220 int ret;
4221
4222 ret = snd_soc_component_initialize(&platform->component,
4223 &platform_drv->component_driver, dev);
4224 if (ret)
4225 return ret;
4226
4227 platform->dev = dev;
4228 platform->driver = platform_drv;
4229 if (platform_drv->write)
4230 platform->component.write = snd_soc_platform_drv_write;
4231 if (platform_drv->read)
4232 platform->component.read = snd_soc_platform_drv_read;
4233
4234 mutex_lock(&client_mutex);
4235 snd_soc_component_add_unlocked(&platform->component);
4236 list_add(&platform->list, &platform_list);
4237 mutex_unlock(&client_mutex);
4238
4239 dev_dbg(dev, "ASoC: Registered platform '%s'\n",
4240 platform->component.name);
4241
4242 return 0;
4243 }
4244 EXPORT_SYMBOL_GPL(snd_soc_add_platform);
4245
4246 /**
4247 * snd_soc_register_platform - Register a platform with the ASoC core
4248 *
4249 * @platform: platform to register
4250 */
4251 int snd_soc_register_platform(struct device *dev,
4252 const struct snd_soc_platform_driver *platform_drv)
4253 {
4254 struct snd_soc_platform *platform;
4255 int ret;
4256
4257 dev_dbg(dev, "ASoC: platform register %s\n", dev_name(dev));
4258
4259 platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
4260 if (platform == NULL)
4261 return -ENOMEM;
4262
4263 ret = snd_soc_add_platform(dev, platform, platform_drv);
4264 if (ret)
4265 kfree(platform);
4266
4267 return ret;
4268 }
4269 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
4270
4271 /**
4272 * snd_soc_remove_platform - Remove a platform from the ASoC core
4273 * @platform: the platform to remove
4274 */
4275 void snd_soc_remove_platform(struct snd_soc_platform *platform)
4276 {
4277
4278 mutex_lock(&client_mutex);
4279 list_del(&platform->list);
4280 snd_soc_component_del_unlocked(&platform->component);
4281 mutex_unlock(&client_mutex);
4282
4283 snd_soc_component_cleanup(&platform->component);
4284
4285 dev_dbg(platform->dev, "ASoC: Unregistered platform '%s'\n",
4286 platform->component.name);
4287 }
4288 EXPORT_SYMBOL_GPL(snd_soc_remove_platform);
4289
4290 struct snd_soc_platform *snd_soc_lookup_platform(struct device *dev)
4291 {
4292 struct snd_soc_platform *platform;
4293
4294 list_for_each_entry(platform, &platform_list, list) {
4295 if (dev == platform->dev)
4296 return platform;
4297 }
4298
4299 return NULL;
4300 }
4301 EXPORT_SYMBOL_GPL(snd_soc_lookup_platform);
4302
4303 /**
4304 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
4305 *
4306 * @platform: platform to unregister
4307 */
4308 void snd_soc_unregister_platform(struct device *dev)
4309 {
4310 struct snd_soc_platform *platform;
4311
4312 platform = snd_soc_lookup_platform(dev);
4313 if (!platform)
4314 return;
4315
4316 snd_soc_remove_platform(platform);
4317 kfree(platform);
4318 }
4319 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
4320
4321 static u64 codec_format_map[] = {
4322 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
4323 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
4324 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
4325 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
4326 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
4327 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
4328 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
4329 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
4330 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
4331 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
4332 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
4333 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
4334 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
4335 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
4336 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
4337 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
4338 };
4339
4340 /* Fix up the DAI formats for endianness: codecs don't actually see
4341 * the endianness of the data but we're using the CPU format
4342 * definitions which do need to include endianness so we ensure that
4343 * codec DAIs always have both big and little endian variants set.
4344 */
4345 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
4346 {
4347 int i;
4348
4349 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
4350 if (stream->formats & codec_format_map[i])
4351 stream->formats |= codec_format_map[i];
4352 }
4353
4354 static int snd_soc_codec_drv_write(struct snd_soc_component *component,
4355 unsigned int reg, unsigned int val)
4356 {
4357 struct snd_soc_codec *codec = snd_soc_component_to_codec(component);
4358
4359 return codec->driver->write(codec, reg, val);
4360 }
4361
4362 static int snd_soc_codec_drv_read(struct snd_soc_component *component,
4363 unsigned int reg, unsigned int *val)
4364 {
4365 struct snd_soc_codec *codec = snd_soc_component_to_codec(component);
4366
4367 *val = codec->driver->read(codec, reg);
4368
4369 return 0;
4370 }
4371
4372 static int snd_soc_codec_set_bias_level(struct snd_soc_dapm_context *dapm,
4373 enum snd_soc_bias_level level)
4374 {
4375 struct snd_soc_codec *codec = snd_soc_dapm_to_codec(dapm);
4376
4377 return codec->driver->set_bias_level(codec, level);
4378 }
4379
4380 /**
4381 * snd_soc_register_codec - Register a codec with the ASoC core
4382 *
4383 * @codec: codec to register
4384 */
4385 int snd_soc_register_codec(struct device *dev,
4386 const struct snd_soc_codec_driver *codec_drv,
4387 struct snd_soc_dai_driver *dai_drv,
4388 int num_dai)
4389 {
4390 struct snd_soc_codec *codec;
4391 struct snd_soc_dai *dai;
4392 struct regmap *regmap;
4393 int ret, i;
4394
4395 dev_dbg(dev, "codec register %s\n", dev_name(dev));
4396
4397 codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
4398 if (codec == NULL)
4399 return -ENOMEM;
4400
4401 codec->component.dapm_ptr = &codec->dapm;
4402
4403 ret = snd_soc_component_initialize(&codec->component,
4404 &codec_drv->component_driver, dev);
4405 if (ret)
4406 goto err_free;
4407
4408 if (codec_drv->write)
4409 codec->component.write = snd_soc_codec_drv_write;
4410 if (codec_drv->read)
4411 codec->component.read = snd_soc_codec_drv_read;
4412 codec->component.ignore_pmdown_time = codec_drv->ignore_pmdown_time;
4413 codec->dapm.codec = codec;
4414 if (codec_drv->seq_notifier)
4415 codec->dapm.seq_notifier = codec_drv->seq_notifier;
4416 if (codec_drv->set_bias_level)
4417 codec->dapm.set_bias_level = snd_soc_codec_set_bias_level;
4418 codec->dev = dev;
4419 codec->driver = codec_drv;
4420 codec->component.val_bytes = codec_drv->reg_word_size;
4421 mutex_init(&codec->mutex);
4422
4423 if (!codec->component.write) {
4424 if (codec_drv->get_regmap)
4425 regmap = codec_drv->get_regmap(dev);
4426 else
4427 regmap = dev_get_regmap(dev, NULL);
4428
4429 if (regmap) {
4430 ret = snd_soc_component_init_io(&codec->component,
4431 regmap);
4432 if (ret) {
4433 dev_err(codec->dev,
4434 "Failed to set cache I/O:%d\n",
4435 ret);
4436 goto err_cleanup;
4437 }
4438 }
4439 }
4440
4441 for (i = 0; i < num_dai; i++) {
4442 fixup_codec_formats(&dai_drv[i].playback);
4443 fixup_codec_formats(&dai_drv[i].capture);
4444 }
4445
4446 ret = snd_soc_register_dais(&codec->component, dai_drv, num_dai, false);
4447 if (ret < 0) {
4448 dev_err(dev, "ASoC: Failed to regster DAIs: %d\n", ret);
4449 goto err_cleanup;
4450 }
4451
4452 list_for_each_entry(dai, &codec->component.dai_list, list)
4453 dai->codec = codec;
4454
4455 mutex_lock(&client_mutex);
4456 snd_soc_component_add_unlocked(&codec->component);
4457 list_add(&codec->list, &codec_list);
4458 mutex_unlock(&client_mutex);
4459
4460 dev_dbg(codec->dev, "ASoC: Registered codec '%s'\n",
4461 codec->component.name);
4462 return 0;
4463
4464 err_cleanup:
4465 snd_soc_component_cleanup(&codec->component);
4466 err_free:
4467 kfree(codec);
4468 return ret;
4469 }
4470 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
4471
4472 /**
4473 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
4474 *
4475 * @codec: codec to unregister
4476 */
4477 void snd_soc_unregister_codec(struct device *dev)
4478 {
4479 struct snd_soc_codec *codec;
4480
4481 list_for_each_entry(codec, &codec_list, list) {
4482 if (dev == codec->dev)
4483 goto found;
4484 }
4485 return;
4486
4487 found:
4488
4489 mutex_lock(&client_mutex);
4490 list_del(&codec->list);
4491 snd_soc_component_del_unlocked(&codec->component);
4492 mutex_unlock(&client_mutex);
4493
4494 dev_dbg(codec->dev, "ASoC: Unregistered codec '%s'\n",
4495 codec->component.name);
4496
4497 snd_soc_component_cleanup(&codec->component);
4498 snd_soc_cache_exit(codec);
4499 kfree(codec);
4500 }
4501 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
4502
4503 /* Retrieve a card's name from device tree */
4504 int snd_soc_of_parse_card_name(struct snd_soc_card *card,
4505 const char *propname)
4506 {
4507 struct device_node *np = card->dev->of_node;
4508 int ret;
4509
4510 ret = of_property_read_string_index(np, propname, 0, &card->name);
4511 /*
4512 * EINVAL means the property does not exist. This is fine providing
4513 * card->name was previously set, which is checked later in
4514 * snd_soc_register_card.
4515 */
4516 if (ret < 0 && ret != -EINVAL) {
4517 dev_err(card->dev,
4518 "ASoC: Property '%s' could not be read: %d\n",
4519 propname, ret);
4520 return ret;
4521 }
4522
4523 return 0;
4524 }
4525 EXPORT_SYMBOL_GPL(snd_soc_of_parse_card_name);
4526
4527 static const struct snd_soc_dapm_widget simple_widgets[] = {
4528 SND_SOC_DAPM_MIC("Microphone", NULL),
4529 SND_SOC_DAPM_LINE("Line", NULL),
4530 SND_SOC_DAPM_HP("Headphone", NULL),
4531 SND_SOC_DAPM_SPK("Speaker", NULL),
4532 };
4533
4534 int snd_soc_of_parse_audio_simple_widgets(struct snd_soc_card *card,
4535 const char *propname)
4536 {
4537 struct device_node *np = card->dev->of_node;
4538 struct snd_soc_dapm_widget *widgets;
4539 const char *template, *wname;
4540 int i, j, num_widgets, ret;
4541
4542 num_widgets = of_property_count_strings(np, propname);
4543 if (num_widgets < 0) {
4544 dev_err(card->dev,
4545 "ASoC: Property '%s' does not exist\n", propname);
4546 return -EINVAL;
4547 }
4548 if (num_widgets & 1) {
4549 dev_err(card->dev,
4550 "ASoC: Property '%s' length is not even\n", propname);
4551 return -EINVAL;
4552 }
4553
4554 num_widgets /= 2;
4555 if (!num_widgets) {
4556 dev_err(card->dev, "ASoC: Property '%s's length is zero\n",
4557 propname);
4558 return -EINVAL;
4559 }
4560
4561 widgets = devm_kcalloc(card->dev, num_widgets, sizeof(*widgets),
4562 GFP_KERNEL);
4563 if (!widgets) {
4564 dev_err(card->dev,
4565 "ASoC: Could not allocate memory for widgets\n");
4566 return -ENOMEM;
4567 }
4568
4569 for (i = 0; i < num_widgets; i++) {
4570 ret = of_property_read_string_index(np, propname,
4571 2 * i, &template);
4572 if (ret) {
4573 dev_err(card->dev,
4574 "ASoC: Property '%s' index %d read error:%d\n",
4575 propname, 2 * i, ret);
4576 return -EINVAL;
4577 }
4578
4579 for (j = 0; j < ARRAY_SIZE(simple_widgets); j++) {
4580 if (!strncmp(template, simple_widgets[j].name,
4581 strlen(simple_widgets[j].name))) {
4582 widgets[i] = simple_widgets[j];
4583 break;
4584 }
4585 }
4586
4587 if (j >= ARRAY_SIZE(simple_widgets)) {
4588 dev_err(card->dev,
4589 "ASoC: DAPM widget '%s' is not supported\n",
4590 template);
4591 return -EINVAL;
4592 }
4593
4594 ret = of_property_read_string_index(np, propname,
4595 (2 * i) + 1,
4596 &wname);
4597 if (ret) {
4598 dev_err(card->dev,
4599 "ASoC: Property '%s' index %d read error:%d\n",
4600 propname, (2 * i) + 1, ret);
4601 return -EINVAL;
4602 }
4603
4604 widgets[i].name = wname;
4605 }
4606
4607 card->dapm_widgets = widgets;
4608 card->num_dapm_widgets = num_widgets;
4609
4610 return 0;
4611 }
4612 EXPORT_SYMBOL_GPL(snd_soc_of_parse_audio_simple_widgets);
4613
4614 int snd_soc_of_parse_tdm_slot(struct device_node *np,
4615 unsigned int *slots,
4616 unsigned int *slot_width)
4617 {
4618 u32 val;
4619 int ret;
4620
4621 if (of_property_read_bool(np, "dai-tdm-slot-num")) {
4622 ret = of_property_read_u32(np, "dai-tdm-slot-num", &val);
4623 if (ret)
4624 return ret;
4625
4626 if (slots)
4627 *slots = val;
4628 }
4629
4630 if (of_property_read_bool(np, "dai-tdm-slot-width")) {
4631 ret = of_property_read_u32(np, "dai-tdm-slot-width", &val);
4632 if (ret)
4633 return ret;
4634
4635 if (slot_width)
4636 *slot_width = val;
4637 }
4638
4639 return 0;
4640 }
4641 EXPORT_SYMBOL_GPL(snd_soc_of_parse_tdm_slot);
4642
4643 int snd_soc_of_parse_audio_routing(struct snd_soc_card *card,
4644 const char *propname)
4645 {
4646 struct device_node *np = card->dev->of_node;
4647 int num_routes;
4648 struct snd_soc_dapm_route *routes;
4649 int i, ret;
4650
4651 num_routes = of_property_count_strings(np, propname);
4652 if (num_routes < 0 || num_routes & 1) {
4653 dev_err(card->dev,
4654 "ASoC: Property '%s' does not exist or its length is not even\n",
4655 propname);
4656 return -EINVAL;
4657 }
4658 num_routes /= 2;
4659 if (!num_routes) {
4660 dev_err(card->dev, "ASoC: Property '%s's length is zero\n",
4661 propname);
4662 return -EINVAL;
4663 }
4664
4665 routes = devm_kzalloc(card->dev, num_routes * sizeof(*routes),
4666 GFP_KERNEL);
4667 if (!routes) {
4668 dev_err(card->dev,
4669 "ASoC: Could not allocate DAPM route table\n");
4670 return -EINVAL;
4671 }
4672
4673 for (i = 0; i < num_routes; i++) {
4674 ret = of_property_read_string_index(np, propname,
4675 2 * i, &routes[i].sink);
4676 if (ret) {
4677 dev_err(card->dev,
4678 "ASoC: Property '%s' index %d could not be read: %d\n",
4679 propname, 2 * i, ret);
4680 return -EINVAL;
4681 }
4682 ret = of_property_read_string_index(np, propname,
4683 (2 * i) + 1, &routes[i].source);
4684 if (ret) {
4685 dev_err(card->dev,
4686 "ASoC: Property '%s' index %d could not be read: %d\n",
4687 propname, (2 * i) + 1, ret);
4688 return -EINVAL;
4689 }
4690 }
4691
4692 card->num_dapm_routes = num_routes;
4693 card->dapm_routes = routes;
4694
4695 return 0;
4696 }
4697 EXPORT_SYMBOL_GPL(snd_soc_of_parse_audio_routing);
4698
4699 unsigned int snd_soc_of_parse_daifmt(struct device_node *np,
4700 const char *prefix,
4701 struct device_node **bitclkmaster,
4702 struct device_node **framemaster)
4703 {
4704 int ret, i;
4705 char prop[128];
4706 unsigned int format = 0;
4707 int bit, frame;
4708 const char *str;
4709 struct {
4710 char *name;
4711 unsigned int val;
4712 } of_fmt_table[] = {
4713 { "i2s", SND_SOC_DAIFMT_I2S },
4714 { "right_j", SND_SOC_DAIFMT_RIGHT_J },
4715 { "left_j", SND_SOC_DAIFMT_LEFT_J },
4716 { "dsp_a", SND_SOC_DAIFMT_DSP_A },
4717 { "dsp_b", SND_SOC_DAIFMT_DSP_B },
4718 { "ac97", SND_SOC_DAIFMT_AC97 },
4719 { "pdm", SND_SOC_DAIFMT_PDM},
4720 { "msb", SND_SOC_DAIFMT_MSB },
4721 { "lsb", SND_SOC_DAIFMT_LSB },
4722 };
4723
4724 if (!prefix)
4725 prefix = "";
4726
4727 /*
4728 * check "[prefix]format = xxx"
4729 * SND_SOC_DAIFMT_FORMAT_MASK area
4730 */
4731 snprintf(prop, sizeof(prop), "%sformat", prefix);
4732 ret = of_property_read_string(np, prop, &str);
4733 if (ret == 0) {
4734 for (i = 0; i < ARRAY_SIZE(of_fmt_table); i++) {
4735 if (strcmp(str, of_fmt_table[i].name) == 0) {
4736 format |= of_fmt_table[i].val;
4737 break;
4738 }
4739 }
4740 }
4741
4742 /*
4743 * check "[prefix]continuous-clock"
4744 * SND_SOC_DAIFMT_CLOCK_MASK area
4745 */
4746 snprintf(prop, sizeof(prop), "%scontinuous-clock", prefix);
4747 if (of_get_property(np, prop, NULL))
4748 format |= SND_SOC_DAIFMT_CONT;
4749 else
4750 format |= SND_SOC_DAIFMT_GATED;
4751
4752 /*
4753 * check "[prefix]bitclock-inversion"
4754 * check "[prefix]frame-inversion"
4755 * SND_SOC_DAIFMT_INV_MASK area
4756 */
4757 snprintf(prop, sizeof(prop), "%sbitclock-inversion", prefix);
4758 bit = !!of_get_property(np, prop, NULL);
4759
4760 snprintf(prop, sizeof(prop), "%sframe-inversion", prefix);
4761 frame = !!of_get_property(np, prop, NULL);
4762
4763 switch ((bit << 4) + frame) {
4764 case 0x11:
4765 format |= SND_SOC_DAIFMT_IB_IF;
4766 break;
4767 case 0x10:
4768 format |= SND_SOC_DAIFMT_IB_NF;
4769 break;
4770 case 0x01:
4771 format |= SND_SOC_DAIFMT_NB_IF;
4772 break;
4773 default:
4774 /* SND_SOC_DAIFMT_NB_NF is default */
4775 break;
4776 }
4777
4778 /*
4779 * check "[prefix]bitclock-master"
4780 * check "[prefix]frame-master"
4781 * SND_SOC_DAIFMT_MASTER_MASK area
4782 */
4783 snprintf(prop, sizeof(prop), "%sbitclock-master", prefix);
4784 bit = !!of_get_property(np, prop, NULL);
4785 if (bit && bitclkmaster)
4786 *bitclkmaster = of_parse_phandle(np, prop, 0);
4787
4788 snprintf(prop, sizeof(prop), "%sframe-master", prefix);
4789 frame = !!of_get_property(np, prop, NULL);
4790 if (frame && framemaster)
4791 *framemaster = of_parse_phandle(np, prop, 0);
4792
4793 switch ((bit << 4) + frame) {
4794 case 0x11:
4795 format |= SND_SOC_DAIFMT_CBM_CFM;
4796 break;
4797 case 0x10:
4798 format |= SND_SOC_DAIFMT_CBM_CFS;
4799 break;
4800 case 0x01:
4801 format |= SND_SOC_DAIFMT_CBS_CFM;
4802 break;
4803 default:
4804 format |= SND_SOC_DAIFMT_CBS_CFS;
4805 break;
4806 }
4807
4808 return format;
4809 }
4810 EXPORT_SYMBOL_GPL(snd_soc_of_parse_daifmt);
4811
4812 int snd_soc_of_get_dai_name(struct device_node *of_node,
4813 const char **dai_name)
4814 {
4815 struct snd_soc_component *pos;
4816 struct of_phandle_args args;
4817 int ret;
4818
4819 ret = of_parse_phandle_with_args(of_node, "sound-dai",
4820 "#sound-dai-cells", 0, &args);
4821 if (ret)
4822 return ret;
4823
4824 ret = -EPROBE_DEFER;
4825
4826 mutex_lock(&client_mutex);
4827 list_for_each_entry(pos, &component_list, list) {
4828 if (pos->dev->of_node != args.np)
4829 continue;
4830
4831 if (pos->driver->of_xlate_dai_name) {
4832 ret = pos->driver->of_xlate_dai_name(pos, &args, dai_name);
4833 } else {
4834 int id = -1;
4835
4836 switch (args.args_count) {
4837 case 0:
4838 id = 0; /* same as dai_drv[0] */
4839 break;
4840 case 1:
4841 id = args.args[0];
4842 break;
4843 default:
4844 /* not supported */
4845 break;
4846 }
4847
4848 if (id < 0 || id >= pos->num_dai) {
4849 ret = -EINVAL;
4850 continue;
4851 }
4852
4853 ret = 0;
4854
4855 *dai_name = pos->dai_drv[id].name;
4856 if (!*dai_name)
4857 *dai_name = pos->name;
4858 }
4859
4860 break;
4861 }
4862 mutex_unlock(&client_mutex);
4863
4864 of_node_put(args.np);
4865
4866 return ret;
4867 }
4868 EXPORT_SYMBOL_GPL(snd_soc_of_get_dai_name);
4869
4870 static int __init snd_soc_init(void)
4871 {
4872 #ifdef CONFIG_DEBUG_FS
4873 snd_soc_debugfs_root = debugfs_create_dir("asoc", NULL);
4874 if (IS_ERR(snd_soc_debugfs_root) || !snd_soc_debugfs_root) {
4875 pr_warn("ASoC: Failed to create debugfs directory\n");
4876 snd_soc_debugfs_root = NULL;
4877 }
4878
4879 if (!debugfs_create_file("codecs", 0444, snd_soc_debugfs_root, NULL,
4880 &codec_list_fops))
4881 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
4882
4883 if (!debugfs_create_file("dais", 0444, snd_soc_debugfs_root, NULL,
4884 &dai_list_fops))
4885 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
4886
4887 if (!debugfs_create_file("platforms", 0444, snd_soc_debugfs_root, NULL,
4888 &platform_list_fops))
4889 pr_warn("ASoC: Failed to create platform list debugfs file\n");
4890 #endif
4891
4892 snd_soc_util_init();
4893
4894 return platform_driver_register(&soc_driver);
4895 }
4896 module_init(snd_soc_init);
4897
4898 static void __exit snd_soc_exit(void)
4899 {
4900 snd_soc_util_exit();
4901
4902 #ifdef CONFIG_DEBUG_FS
4903 debugfs_remove_recursive(snd_soc_debugfs_root);
4904 #endif
4905 platform_driver_unregister(&soc_driver);
4906 }
4907 module_exit(snd_soc_exit);
4908
4909 /* Module information */
4910 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
4911 MODULE_DESCRIPTION("ALSA SoC Core");
4912 MODULE_LICENSE("GPL");
4913 MODULE_ALIAS("platform:soc-audio");
This page took 0.184968 seconds and 4 git commands to generate.