d0efd5eaaa0b33d53a1c89948f274bbe29eb7ea4
[deliverable/linux.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 * with code, comments and ideas from :-
9 * Richard Purdie <richard@openedhand.com>
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * TODO:
17 * o Add hw rules to enforce rates, etc.
18 * o More testing with other codecs/machines.
19 * o Add more codecs and platforms to ensure good API coverage.
20 * o Support TDM on PCM and I2S
21 */
22
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/pm.h>
28 #include <linux/bitops.h>
29 #include <linux/debugfs.h>
30 #include <linux/platform_device.h>
31 #include <sound/ac97_codec.h>
32 #include <sound/core.h>
33 #include <sound/pcm.h>
34 #include <sound/pcm_params.h>
35 #include <sound/soc.h>
36 #include <sound/soc-dapm.h>
37 #include <sound/initval.h>
38
39 static DEFINE_MUTEX(pcm_mutex);
40 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
41
42 #ifdef CONFIG_DEBUG_FS
43 static struct dentry *debugfs_root;
44 #endif
45
46 static DEFINE_MUTEX(client_mutex);
47 static LIST_HEAD(card_list);
48 static LIST_HEAD(dai_list);
49 static LIST_HEAD(platform_list);
50 static LIST_HEAD(codec_list);
51
52 static int snd_soc_register_card(struct snd_soc_card *card);
53 static int snd_soc_unregister_card(struct snd_soc_card *card);
54
55 /*
56 * This is a timeout to do a DAPM powerdown after a stream is closed().
57 * It can be used to eliminate pops between different playback streams, e.g.
58 * between two audio tracks.
59 */
60 static int pmdown_time = 5000;
61 module_param(pmdown_time, int, 0);
62 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
63
64 /*
65 * This function forces any delayed work to be queued and run.
66 */
67 static int run_delayed_work(struct delayed_work *dwork)
68 {
69 int ret;
70
71 /* cancel any work waiting to be queued. */
72 ret = cancel_delayed_work(dwork);
73
74 /* if there was any work waiting then we run it now and
75 * wait for it's completion */
76 if (ret) {
77 schedule_delayed_work(dwork, 0);
78 flush_scheduled_work();
79 }
80 return ret;
81 }
82
83 /* codec register dump */
84 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
85 {
86 int i, step = 1, count = 0;
87
88 if (!codec->reg_cache_size)
89 return 0;
90
91 if (codec->reg_cache_step)
92 step = codec->reg_cache_step;
93
94 count += sprintf(buf, "%s registers\n", codec->name);
95 for (i = 0; i < codec->reg_cache_size; i += step) {
96 if (codec->readable_register && !codec->readable_register(i))
97 continue;
98
99 count += sprintf(buf + count, "%2x: ", i);
100 if (count >= PAGE_SIZE - 1)
101 break;
102
103 if (codec->display_register)
104 count += codec->display_register(codec, buf + count,
105 PAGE_SIZE - count, i);
106 else
107 count += snprintf(buf + count, PAGE_SIZE - count,
108 "%4x", codec->read(codec, i));
109
110 if (count >= PAGE_SIZE - 1)
111 break;
112
113 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
114 if (count >= PAGE_SIZE - 1)
115 break;
116 }
117
118 /* Truncate count; min() would cause a warning */
119 if (count >= PAGE_SIZE)
120 count = PAGE_SIZE - 1;
121
122 return count;
123 }
124 static ssize_t codec_reg_show(struct device *dev,
125 struct device_attribute *attr, char *buf)
126 {
127 struct snd_soc_device *devdata = dev_get_drvdata(dev);
128 return soc_codec_reg_show(devdata->card->codec, buf);
129 }
130
131 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
132
133 static ssize_t pmdown_time_show(struct device *dev,
134 struct device_attribute *attr, char *buf)
135 {
136 struct snd_soc_device *socdev = dev_get_drvdata(dev);
137 struct snd_soc_card *card = socdev->card;
138
139 return sprintf(buf, "%ld\n", card->pmdown_time);
140 }
141
142 static ssize_t pmdown_time_set(struct device *dev,
143 struct device_attribute *attr,
144 const char *buf, size_t count)
145 {
146 struct snd_soc_device *socdev = dev_get_drvdata(dev);
147 struct snd_soc_card *card = socdev->card;
148
149 strict_strtol(buf, 10, &card->pmdown_time);
150
151 return count;
152 }
153
154 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
155
156 #ifdef CONFIG_DEBUG_FS
157 static int codec_reg_open_file(struct inode *inode, struct file *file)
158 {
159 file->private_data = inode->i_private;
160 return 0;
161 }
162
163 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
164 size_t count, loff_t *ppos)
165 {
166 ssize_t ret;
167 struct snd_soc_codec *codec = file->private_data;
168 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
169 if (!buf)
170 return -ENOMEM;
171 ret = soc_codec_reg_show(codec, buf);
172 if (ret >= 0)
173 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
174 kfree(buf);
175 return ret;
176 }
177
178 static ssize_t codec_reg_write_file(struct file *file,
179 const char __user *user_buf, size_t count, loff_t *ppos)
180 {
181 char buf[32];
182 int buf_size;
183 char *start = buf;
184 unsigned long reg, value;
185 int step = 1;
186 struct snd_soc_codec *codec = file->private_data;
187
188 buf_size = min(count, (sizeof(buf)-1));
189 if (copy_from_user(buf, user_buf, buf_size))
190 return -EFAULT;
191 buf[buf_size] = 0;
192
193 if (codec->reg_cache_step)
194 step = codec->reg_cache_step;
195
196 while (*start == ' ')
197 start++;
198 reg = simple_strtoul(start, &start, 16);
199 if ((reg >= codec->reg_cache_size) || (reg % step))
200 return -EINVAL;
201 while (*start == ' ')
202 start++;
203 if (strict_strtoul(start, 16, &value))
204 return -EINVAL;
205 codec->write(codec, reg, value);
206 return buf_size;
207 }
208
209 static const struct file_operations codec_reg_fops = {
210 .open = codec_reg_open_file,
211 .read = codec_reg_read_file,
212 .write = codec_reg_write_file,
213 };
214
215 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
216 {
217 char codec_root[128];
218
219 if (codec->dev)
220 snprintf(codec_root, sizeof(codec_root),
221 "%s.%s", codec->name, dev_name(codec->dev));
222 else
223 snprintf(codec_root, sizeof(codec_root),
224 "%s", codec->name);
225
226 codec->debugfs_codec_root = debugfs_create_dir(codec_root,
227 debugfs_root);
228 if (!codec->debugfs_codec_root) {
229 printk(KERN_WARNING
230 "ASoC: Failed to create codec debugfs directory\n");
231 return;
232 }
233
234 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
235 codec->debugfs_codec_root,
236 codec, &codec_reg_fops);
237 if (!codec->debugfs_reg)
238 printk(KERN_WARNING
239 "ASoC: Failed to create codec register debugfs file\n");
240
241 codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0744,
242 codec->debugfs_codec_root,
243 &codec->pop_time);
244 if (!codec->debugfs_pop_time)
245 printk(KERN_WARNING
246 "Failed to create pop time debugfs file\n");
247
248 codec->debugfs_dapm = debugfs_create_dir("dapm",
249 codec->debugfs_codec_root);
250 if (!codec->debugfs_dapm)
251 printk(KERN_WARNING
252 "Failed to create DAPM debugfs directory\n");
253
254 snd_soc_dapm_debugfs_init(codec);
255 }
256
257 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
258 {
259 debugfs_remove_recursive(codec->debugfs_codec_root);
260 }
261
262 #else
263
264 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
265 {
266 }
267
268 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
269 {
270 }
271 #endif
272
273 #ifdef CONFIG_SND_SOC_AC97_BUS
274 /* unregister ac97 codec */
275 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
276 {
277 if (codec->ac97->dev.bus)
278 device_unregister(&codec->ac97->dev);
279 return 0;
280 }
281
282 /* stop no dev release warning */
283 static void soc_ac97_device_release(struct device *dev){}
284
285 /* register ac97 codec to bus */
286 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
287 {
288 int err;
289
290 codec->ac97->dev.bus = &ac97_bus_type;
291 codec->ac97->dev.parent = codec->card->dev;
292 codec->ac97->dev.release = soc_ac97_device_release;
293
294 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
295 codec->card->number, 0, codec->name);
296 err = device_register(&codec->ac97->dev);
297 if (err < 0) {
298 snd_printk(KERN_ERR "Can't register ac97 bus\n");
299 codec->ac97->dev.bus = NULL;
300 return err;
301 }
302 return 0;
303 }
304 #endif
305
306 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
307 {
308 struct snd_soc_pcm_runtime *rtd = substream->private_data;
309 struct snd_soc_device *socdev = rtd->socdev;
310 struct snd_soc_card *card = socdev->card;
311 struct snd_soc_dai_link *machine = rtd->dai;
312 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
313 struct snd_soc_dai *codec_dai = machine->codec_dai;
314 int ret;
315
316 if (codec_dai->symmetric_rates || cpu_dai->symmetric_rates ||
317 machine->symmetric_rates) {
318 dev_dbg(card->dev, "Symmetry forces %dHz rate\n",
319 machine->rate);
320
321 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
322 SNDRV_PCM_HW_PARAM_RATE,
323 machine->rate,
324 machine->rate);
325 if (ret < 0) {
326 dev_err(card->dev,
327 "Unable to apply rate symmetry constraint: %d\n", ret);
328 return ret;
329 }
330 }
331
332 return 0;
333 }
334
335 /*
336 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
337 * then initialized and any private data can be allocated. This also calls
338 * startup for the cpu DAI, platform, machine and codec DAI.
339 */
340 static int soc_pcm_open(struct snd_pcm_substream *substream)
341 {
342 struct snd_soc_pcm_runtime *rtd = substream->private_data;
343 struct snd_soc_device *socdev = rtd->socdev;
344 struct snd_soc_card *card = socdev->card;
345 struct snd_pcm_runtime *runtime = substream->runtime;
346 struct snd_soc_dai_link *machine = rtd->dai;
347 struct snd_soc_platform *platform = card->platform;
348 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
349 struct snd_soc_dai *codec_dai = machine->codec_dai;
350 int ret = 0;
351
352 mutex_lock(&pcm_mutex);
353
354 /* startup the audio subsystem */
355 if (cpu_dai->ops->startup) {
356 ret = cpu_dai->ops->startup(substream, cpu_dai);
357 if (ret < 0) {
358 printk(KERN_ERR "asoc: can't open interface %s\n",
359 cpu_dai->name);
360 goto out;
361 }
362 }
363
364 if (platform->pcm_ops->open) {
365 ret = platform->pcm_ops->open(substream);
366 if (ret < 0) {
367 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
368 goto platform_err;
369 }
370 }
371
372 if (codec_dai->ops->startup) {
373 ret = codec_dai->ops->startup(substream, codec_dai);
374 if (ret < 0) {
375 printk(KERN_ERR "asoc: can't open codec %s\n",
376 codec_dai->name);
377 goto codec_dai_err;
378 }
379 }
380
381 if (machine->ops && machine->ops->startup) {
382 ret = machine->ops->startup(substream);
383 if (ret < 0) {
384 printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
385 goto machine_err;
386 }
387 }
388
389 /* Check that the codec and cpu DAI's are compatible */
390 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
391 runtime->hw.rate_min =
392 max(codec_dai->playback.rate_min,
393 cpu_dai->playback.rate_min);
394 runtime->hw.rate_max =
395 min(codec_dai->playback.rate_max,
396 cpu_dai->playback.rate_max);
397 runtime->hw.channels_min =
398 max(codec_dai->playback.channels_min,
399 cpu_dai->playback.channels_min);
400 runtime->hw.channels_max =
401 min(codec_dai->playback.channels_max,
402 cpu_dai->playback.channels_max);
403 runtime->hw.formats =
404 codec_dai->playback.formats & cpu_dai->playback.formats;
405 runtime->hw.rates =
406 codec_dai->playback.rates & cpu_dai->playback.rates;
407 } else {
408 runtime->hw.rate_min =
409 max(codec_dai->capture.rate_min,
410 cpu_dai->capture.rate_min);
411 runtime->hw.rate_max =
412 min(codec_dai->capture.rate_max,
413 cpu_dai->capture.rate_max);
414 runtime->hw.channels_min =
415 max(codec_dai->capture.channels_min,
416 cpu_dai->capture.channels_min);
417 runtime->hw.channels_max =
418 min(codec_dai->capture.channels_max,
419 cpu_dai->capture.channels_max);
420 runtime->hw.formats =
421 codec_dai->capture.formats & cpu_dai->capture.formats;
422 runtime->hw.rates =
423 codec_dai->capture.rates & cpu_dai->capture.rates;
424 }
425
426 snd_pcm_limit_hw_rates(runtime);
427 if (!runtime->hw.rates) {
428 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
429 codec_dai->name, cpu_dai->name);
430 goto config_err;
431 }
432 if (!runtime->hw.formats) {
433 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
434 codec_dai->name, cpu_dai->name);
435 goto config_err;
436 }
437 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
438 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
439 codec_dai->name, cpu_dai->name);
440 goto config_err;
441 }
442
443 /* Symmetry only applies if we've already got an active stream. */
444 if (cpu_dai->active || codec_dai->active) {
445 ret = soc_pcm_apply_symmetry(substream);
446 if (ret != 0)
447 goto config_err;
448 }
449
450 pr_debug("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
451 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
452 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
453 runtime->hw.channels_max);
454 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
455 runtime->hw.rate_max);
456
457 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
458 cpu_dai->playback.active = codec_dai->playback.active = 1;
459 else
460 cpu_dai->capture.active = codec_dai->capture.active = 1;
461 cpu_dai->active = codec_dai->active = 1;
462 cpu_dai->runtime = runtime;
463 card->codec->active++;
464 mutex_unlock(&pcm_mutex);
465 return 0;
466
467 config_err:
468 if (machine->ops && machine->ops->shutdown)
469 machine->ops->shutdown(substream);
470
471 machine_err:
472 if (codec_dai->ops->shutdown)
473 codec_dai->ops->shutdown(substream, codec_dai);
474
475 codec_dai_err:
476 if (platform->pcm_ops->close)
477 platform->pcm_ops->close(substream);
478
479 platform_err:
480 if (cpu_dai->ops->shutdown)
481 cpu_dai->ops->shutdown(substream, cpu_dai);
482 out:
483 mutex_unlock(&pcm_mutex);
484 return ret;
485 }
486
487 /*
488 * Power down the audio subsystem pmdown_time msecs after close is called.
489 * This is to ensure there are no pops or clicks in between any music tracks
490 * due to DAPM power cycling.
491 */
492 static void close_delayed_work(struct work_struct *work)
493 {
494 struct snd_soc_card *card = container_of(work, struct snd_soc_card,
495 delayed_work.work);
496 struct snd_soc_codec *codec = card->codec;
497 struct snd_soc_dai *codec_dai;
498 int i;
499
500 mutex_lock(&pcm_mutex);
501 for (i = 0; i < codec->num_dai; i++) {
502 codec_dai = &codec->dai[i];
503
504 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
505 codec_dai->playback.stream_name,
506 codec_dai->playback.active ? "active" : "inactive",
507 codec_dai->pop_wait ? "yes" : "no");
508
509 /* are we waiting on this codec DAI stream */
510 if (codec_dai->pop_wait == 1) {
511 codec_dai->pop_wait = 0;
512 snd_soc_dapm_stream_event(codec,
513 codec_dai->playback.stream_name,
514 SND_SOC_DAPM_STREAM_STOP);
515 }
516 }
517 mutex_unlock(&pcm_mutex);
518 }
519
520 /*
521 * Called by ALSA when a PCM substream is closed. Private data can be
522 * freed here. The cpu DAI, codec DAI, machine and platform are also
523 * shutdown.
524 */
525 static int soc_codec_close(struct snd_pcm_substream *substream)
526 {
527 struct snd_soc_pcm_runtime *rtd = substream->private_data;
528 struct snd_soc_device *socdev = rtd->socdev;
529 struct snd_soc_card *card = socdev->card;
530 struct snd_soc_dai_link *machine = rtd->dai;
531 struct snd_soc_platform *platform = card->platform;
532 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
533 struct snd_soc_dai *codec_dai = machine->codec_dai;
534 struct snd_soc_codec *codec = card->codec;
535
536 mutex_lock(&pcm_mutex);
537
538 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
539 cpu_dai->playback.active = codec_dai->playback.active = 0;
540 else
541 cpu_dai->capture.active = codec_dai->capture.active = 0;
542
543 if (codec_dai->playback.active == 0 &&
544 codec_dai->capture.active == 0) {
545 cpu_dai->active = codec_dai->active = 0;
546 }
547 codec->active--;
548
549 /* Muting the DAC suppresses artifacts caused during digital
550 * shutdown, for example from stopping clocks.
551 */
552 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
553 snd_soc_dai_digital_mute(codec_dai, 1);
554
555 if (cpu_dai->ops->shutdown)
556 cpu_dai->ops->shutdown(substream, cpu_dai);
557
558 if (codec_dai->ops->shutdown)
559 codec_dai->ops->shutdown(substream, codec_dai);
560
561 if (machine->ops && machine->ops->shutdown)
562 machine->ops->shutdown(substream);
563
564 if (platform->pcm_ops->close)
565 platform->pcm_ops->close(substream);
566 cpu_dai->runtime = NULL;
567
568 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
569 /* start delayed pop wq here for playback streams */
570 codec_dai->pop_wait = 1;
571 schedule_delayed_work(&card->delayed_work,
572 msecs_to_jiffies(card->pmdown_time));
573 } else {
574 /* capture streams can be powered down now */
575 snd_soc_dapm_stream_event(codec,
576 codec_dai->capture.stream_name,
577 SND_SOC_DAPM_STREAM_STOP);
578 }
579
580 mutex_unlock(&pcm_mutex);
581 return 0;
582 }
583
584 /*
585 * Called by ALSA when the PCM substream is prepared, can set format, sample
586 * rate, etc. This function is non atomic and can be called multiple times,
587 * it can refer to the runtime info.
588 */
589 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
590 {
591 struct snd_soc_pcm_runtime *rtd = substream->private_data;
592 struct snd_soc_device *socdev = rtd->socdev;
593 struct snd_soc_card *card = socdev->card;
594 struct snd_soc_dai_link *machine = rtd->dai;
595 struct snd_soc_platform *platform = card->platform;
596 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
597 struct snd_soc_dai *codec_dai = machine->codec_dai;
598 struct snd_soc_codec *codec = card->codec;
599 int ret = 0;
600
601 mutex_lock(&pcm_mutex);
602
603 if (machine->ops && machine->ops->prepare) {
604 ret = machine->ops->prepare(substream);
605 if (ret < 0) {
606 printk(KERN_ERR "asoc: machine prepare error\n");
607 goto out;
608 }
609 }
610
611 if (platform->pcm_ops->prepare) {
612 ret = platform->pcm_ops->prepare(substream);
613 if (ret < 0) {
614 printk(KERN_ERR "asoc: platform prepare error\n");
615 goto out;
616 }
617 }
618
619 if (codec_dai->ops->prepare) {
620 ret = codec_dai->ops->prepare(substream, codec_dai);
621 if (ret < 0) {
622 printk(KERN_ERR "asoc: codec DAI prepare error\n");
623 goto out;
624 }
625 }
626
627 if (cpu_dai->ops->prepare) {
628 ret = cpu_dai->ops->prepare(substream, cpu_dai);
629 if (ret < 0) {
630 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
631 goto out;
632 }
633 }
634
635 /* cancel any delayed stream shutdown that is pending */
636 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
637 codec_dai->pop_wait) {
638 codec_dai->pop_wait = 0;
639 cancel_delayed_work(&card->delayed_work);
640 }
641
642 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
643 snd_soc_dapm_stream_event(codec,
644 codec_dai->playback.stream_name,
645 SND_SOC_DAPM_STREAM_START);
646 else
647 snd_soc_dapm_stream_event(codec,
648 codec_dai->capture.stream_name,
649 SND_SOC_DAPM_STREAM_START);
650
651 snd_soc_dai_digital_mute(codec_dai, 0);
652
653 out:
654 mutex_unlock(&pcm_mutex);
655 return ret;
656 }
657
658 /*
659 * Called by ALSA when the hardware params are set by application. This
660 * function can also be called multiple times and can allocate buffers
661 * (using snd_pcm_lib_* ). It's non-atomic.
662 */
663 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
664 struct snd_pcm_hw_params *params)
665 {
666 struct snd_soc_pcm_runtime *rtd = substream->private_data;
667 struct snd_soc_device *socdev = rtd->socdev;
668 struct snd_soc_dai_link *machine = rtd->dai;
669 struct snd_soc_card *card = socdev->card;
670 struct snd_soc_platform *platform = card->platform;
671 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
672 struct snd_soc_dai *codec_dai = machine->codec_dai;
673 int ret = 0;
674
675 mutex_lock(&pcm_mutex);
676
677 if (machine->ops && machine->ops->hw_params) {
678 ret = machine->ops->hw_params(substream, params);
679 if (ret < 0) {
680 printk(KERN_ERR "asoc: machine hw_params failed\n");
681 goto out;
682 }
683 }
684
685 if (codec_dai->ops->hw_params) {
686 ret = codec_dai->ops->hw_params(substream, params, codec_dai);
687 if (ret < 0) {
688 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
689 codec_dai->name);
690 goto codec_err;
691 }
692 }
693
694 if (cpu_dai->ops->hw_params) {
695 ret = cpu_dai->ops->hw_params(substream, params, cpu_dai);
696 if (ret < 0) {
697 printk(KERN_ERR "asoc: interface %s hw params failed\n",
698 cpu_dai->name);
699 goto interface_err;
700 }
701 }
702
703 if (platform->pcm_ops->hw_params) {
704 ret = platform->pcm_ops->hw_params(substream, params);
705 if (ret < 0) {
706 printk(KERN_ERR "asoc: platform %s hw params failed\n",
707 platform->name);
708 goto platform_err;
709 }
710 }
711
712 machine->rate = params_rate(params);
713
714 out:
715 mutex_unlock(&pcm_mutex);
716 return ret;
717
718 platform_err:
719 if (cpu_dai->ops->hw_free)
720 cpu_dai->ops->hw_free(substream, cpu_dai);
721
722 interface_err:
723 if (codec_dai->ops->hw_free)
724 codec_dai->ops->hw_free(substream, codec_dai);
725
726 codec_err:
727 if (machine->ops && machine->ops->hw_free)
728 machine->ops->hw_free(substream);
729
730 mutex_unlock(&pcm_mutex);
731 return ret;
732 }
733
734 /*
735 * Free's resources allocated by hw_params, can be called multiple times
736 */
737 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
738 {
739 struct snd_soc_pcm_runtime *rtd = substream->private_data;
740 struct snd_soc_device *socdev = rtd->socdev;
741 struct snd_soc_dai_link *machine = rtd->dai;
742 struct snd_soc_card *card = socdev->card;
743 struct snd_soc_platform *platform = card->platform;
744 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
745 struct snd_soc_dai *codec_dai = machine->codec_dai;
746 struct snd_soc_codec *codec = card->codec;
747
748 mutex_lock(&pcm_mutex);
749
750 /* apply codec digital mute */
751 if (!codec->active)
752 snd_soc_dai_digital_mute(codec_dai, 1);
753
754 /* free any machine hw params */
755 if (machine->ops && machine->ops->hw_free)
756 machine->ops->hw_free(substream);
757
758 /* free any DMA resources */
759 if (platform->pcm_ops->hw_free)
760 platform->pcm_ops->hw_free(substream);
761
762 /* now free hw params for the DAI's */
763 if (codec_dai->ops->hw_free)
764 codec_dai->ops->hw_free(substream, codec_dai);
765
766 if (cpu_dai->ops->hw_free)
767 cpu_dai->ops->hw_free(substream, cpu_dai);
768
769 mutex_unlock(&pcm_mutex);
770 return 0;
771 }
772
773 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
774 {
775 struct snd_soc_pcm_runtime *rtd = substream->private_data;
776 struct snd_soc_device *socdev = rtd->socdev;
777 struct snd_soc_card *card= socdev->card;
778 struct snd_soc_dai_link *machine = rtd->dai;
779 struct snd_soc_platform *platform = card->platform;
780 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
781 struct snd_soc_dai *codec_dai = machine->codec_dai;
782 int ret;
783
784 if (codec_dai->ops->trigger) {
785 ret = codec_dai->ops->trigger(substream, cmd, codec_dai);
786 if (ret < 0)
787 return ret;
788 }
789
790 if (platform->pcm_ops->trigger) {
791 ret = platform->pcm_ops->trigger(substream, cmd);
792 if (ret < 0)
793 return ret;
794 }
795
796 if (cpu_dai->ops->trigger) {
797 ret = cpu_dai->ops->trigger(substream, cmd, cpu_dai);
798 if (ret < 0)
799 return ret;
800 }
801 return 0;
802 }
803
804 /* ASoC PCM operations */
805 static struct snd_pcm_ops soc_pcm_ops = {
806 .open = soc_pcm_open,
807 .close = soc_codec_close,
808 .hw_params = soc_pcm_hw_params,
809 .hw_free = soc_pcm_hw_free,
810 .prepare = soc_pcm_prepare,
811 .trigger = soc_pcm_trigger,
812 };
813
814 #ifdef CONFIG_PM
815 /* powers down audio subsystem for suspend */
816 static int soc_suspend(struct device *dev)
817 {
818 struct platform_device *pdev = to_platform_device(dev);
819 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
820 struct snd_soc_card *card = socdev->card;
821 struct snd_soc_platform *platform = card->platform;
822 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
823 struct snd_soc_codec *codec = card->codec;
824 int i;
825
826 /* If the initialization of this soc device failed, there is no codec
827 * associated with it. Just bail out in this case.
828 */
829 if (!codec)
830 return 0;
831
832 /* Due to the resume being scheduled into a workqueue we could
833 * suspend before that's finished - wait for it to complete.
834 */
835 snd_power_lock(codec->card);
836 snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
837 snd_power_unlock(codec->card);
838
839 /* we're going to block userspace touching us until resume completes */
840 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
841
842 /* mute any active DAC's */
843 for (i = 0; i < card->num_links; i++) {
844 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
845 if (dai->ops->digital_mute && dai->playback.active)
846 dai->ops->digital_mute(dai, 1);
847 }
848
849 /* suspend all pcms */
850 for (i = 0; i < card->num_links; i++)
851 snd_pcm_suspend_all(card->dai_link[i].pcm);
852
853 if (card->suspend_pre)
854 card->suspend_pre(pdev, PMSG_SUSPEND);
855
856 for (i = 0; i < card->num_links; i++) {
857 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
858 if (cpu_dai->suspend && !cpu_dai->ac97_control)
859 cpu_dai->suspend(cpu_dai);
860 if (platform->suspend)
861 platform->suspend(cpu_dai);
862 }
863
864 /* close any waiting streams and save state */
865 run_delayed_work(&card->delayed_work);
866 codec->suspend_bias_level = codec->bias_level;
867
868 for (i = 0; i < codec->num_dai; i++) {
869 char *stream = codec->dai[i].playback.stream_name;
870 if (stream != NULL)
871 snd_soc_dapm_stream_event(codec, stream,
872 SND_SOC_DAPM_STREAM_SUSPEND);
873 stream = codec->dai[i].capture.stream_name;
874 if (stream != NULL)
875 snd_soc_dapm_stream_event(codec, stream,
876 SND_SOC_DAPM_STREAM_SUSPEND);
877 }
878
879 if (codec_dev->suspend)
880 codec_dev->suspend(pdev, PMSG_SUSPEND);
881
882 for (i = 0; i < card->num_links; i++) {
883 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
884 if (cpu_dai->suspend && cpu_dai->ac97_control)
885 cpu_dai->suspend(cpu_dai);
886 }
887
888 if (card->suspend_post)
889 card->suspend_post(pdev, PMSG_SUSPEND);
890
891 return 0;
892 }
893
894 /* deferred resume work, so resume can complete before we finished
895 * setting our codec back up, which can be very slow on I2C
896 */
897 static void soc_resume_deferred(struct work_struct *work)
898 {
899 struct snd_soc_card *card = container_of(work,
900 struct snd_soc_card,
901 deferred_resume_work);
902 struct snd_soc_device *socdev = card->socdev;
903 struct snd_soc_platform *platform = card->platform;
904 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
905 struct snd_soc_codec *codec = card->codec;
906 struct platform_device *pdev = to_platform_device(socdev->dev);
907 int i;
908
909 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
910 * so userspace apps are blocked from touching us
911 */
912
913 dev_dbg(socdev->dev, "starting resume work\n");
914
915 if (card->resume_pre)
916 card->resume_pre(pdev);
917
918 for (i = 0; i < card->num_links; i++) {
919 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
920 if (cpu_dai->resume && cpu_dai->ac97_control)
921 cpu_dai->resume(cpu_dai);
922 }
923
924 if (codec_dev->resume)
925 codec_dev->resume(pdev);
926
927 for (i = 0; i < codec->num_dai; i++) {
928 char *stream = codec->dai[i].playback.stream_name;
929 if (stream != NULL)
930 snd_soc_dapm_stream_event(codec, stream,
931 SND_SOC_DAPM_STREAM_RESUME);
932 stream = codec->dai[i].capture.stream_name;
933 if (stream != NULL)
934 snd_soc_dapm_stream_event(codec, stream,
935 SND_SOC_DAPM_STREAM_RESUME);
936 }
937
938 /* unmute any active DACs */
939 for (i = 0; i < card->num_links; i++) {
940 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
941 if (dai->ops->digital_mute && dai->playback.active)
942 dai->ops->digital_mute(dai, 0);
943 }
944
945 for (i = 0; i < card->num_links; i++) {
946 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
947 if (cpu_dai->resume && !cpu_dai->ac97_control)
948 cpu_dai->resume(cpu_dai);
949 if (platform->resume)
950 platform->resume(cpu_dai);
951 }
952
953 if (card->resume_post)
954 card->resume_post(pdev);
955
956 dev_dbg(socdev->dev, "resume work completed\n");
957
958 /* userspace can access us now we are back as we were before */
959 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
960 }
961
962 /* powers up audio subsystem after a suspend */
963 static int soc_resume(struct device *dev)
964 {
965 struct platform_device *pdev = to_platform_device(dev);
966 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
967 struct snd_soc_card *card = socdev->card;
968 struct snd_soc_dai *cpu_dai = card->dai_link[0].cpu_dai;
969
970 /* If the initialization of this soc device failed, there is no codec
971 * associated with it. Just bail out in this case.
972 */
973 if (!card->codec)
974 return 0;
975
976 /* AC97 devices might have other drivers hanging off them so
977 * need to resume immediately. Other drivers don't have that
978 * problem and may take a substantial amount of time to resume
979 * due to I/O costs and anti-pop so handle them out of line.
980 */
981 if (cpu_dai->ac97_control) {
982 dev_dbg(socdev->dev, "Resuming AC97 immediately\n");
983 soc_resume_deferred(&card->deferred_resume_work);
984 } else {
985 dev_dbg(socdev->dev, "Scheduling resume work\n");
986 if (!schedule_work(&card->deferred_resume_work))
987 dev_err(socdev->dev, "resume work item may be lost\n");
988 }
989
990 return 0;
991 }
992 #else
993 #define soc_suspend NULL
994 #define soc_resume NULL
995 #endif
996
997 static struct snd_soc_dai_ops null_dai_ops = {
998 };
999
1000 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1001 {
1002 struct platform_device *pdev = container_of(card->dev,
1003 struct platform_device,
1004 dev);
1005 struct snd_soc_codec_device *codec_dev = card->socdev->codec_dev;
1006 struct snd_soc_codec *codec;
1007 struct snd_soc_platform *platform;
1008 struct snd_soc_dai *dai;
1009 int i, found, ret, ac97;
1010
1011 if (card->instantiated)
1012 return;
1013
1014 found = 0;
1015 list_for_each_entry(platform, &platform_list, list)
1016 if (card->platform == platform) {
1017 found = 1;
1018 break;
1019 }
1020 if (!found) {
1021 dev_dbg(card->dev, "Platform %s not registered\n",
1022 card->platform->name);
1023 return;
1024 }
1025
1026 ac97 = 0;
1027 for (i = 0; i < card->num_links; i++) {
1028 found = 0;
1029 list_for_each_entry(dai, &dai_list, list)
1030 if (card->dai_link[i].cpu_dai == dai) {
1031 found = 1;
1032 break;
1033 }
1034 if (!found) {
1035 dev_dbg(card->dev, "DAI %s not registered\n",
1036 card->dai_link[i].cpu_dai->name);
1037 return;
1038 }
1039
1040 if (card->dai_link[i].cpu_dai->ac97_control)
1041 ac97 = 1;
1042 }
1043
1044 for (i = 0; i < card->num_links; i++) {
1045 if (!card->dai_link[i].codec_dai->ops)
1046 card->dai_link[i].codec_dai->ops = &null_dai_ops;
1047 }
1048
1049 /* If we have AC97 in the system then don't wait for the
1050 * codec. This will need revisiting if we have to handle
1051 * systems with mixed AC97 and non-AC97 parts. Only check for
1052 * DAIs currently; we can't do this per link since some AC97
1053 * codecs have non-AC97 DAIs.
1054 */
1055 if (!ac97)
1056 for (i = 0; i < card->num_links; i++) {
1057 found = 0;
1058 list_for_each_entry(dai, &dai_list, list)
1059 if (card->dai_link[i].codec_dai == dai) {
1060 found = 1;
1061 break;
1062 }
1063 if (!found) {
1064 dev_dbg(card->dev, "DAI %s not registered\n",
1065 card->dai_link[i].codec_dai->name);
1066 return;
1067 }
1068 }
1069
1070 /* Note that we do not current check for codec components */
1071
1072 dev_dbg(card->dev, "All components present, instantiating\n");
1073
1074 /* Found everything, bring it up */
1075 card->pmdown_time = pmdown_time;
1076
1077 if (card->probe) {
1078 ret = card->probe(pdev);
1079 if (ret < 0)
1080 return;
1081 }
1082
1083 for (i = 0; i < card->num_links; i++) {
1084 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1085 if (cpu_dai->probe) {
1086 ret = cpu_dai->probe(pdev, cpu_dai);
1087 if (ret < 0)
1088 goto cpu_dai_err;
1089 }
1090 }
1091
1092 if (codec_dev->probe) {
1093 ret = codec_dev->probe(pdev);
1094 if (ret < 0)
1095 goto cpu_dai_err;
1096 }
1097 codec = card->codec;
1098
1099 if (platform->probe) {
1100 ret = platform->probe(pdev);
1101 if (ret < 0)
1102 goto platform_err;
1103 }
1104
1105 /* DAPM stream work */
1106 INIT_DELAYED_WORK(&card->delayed_work, close_delayed_work);
1107 #ifdef CONFIG_PM
1108 /* deferred resume work */
1109 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1110 #endif
1111
1112 for (i = 0; i < card->num_links; i++) {
1113 if (card->dai_link[i].init) {
1114 ret = card->dai_link[i].init(codec);
1115 if (ret < 0) {
1116 printk(KERN_ERR "asoc: failed to init %s\n",
1117 card->dai_link[i].stream_name);
1118 continue;
1119 }
1120 }
1121 if (card->dai_link[i].codec_dai->ac97_control)
1122 ac97 = 1;
1123 }
1124
1125 snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1126 "%s", card->name);
1127 snprintf(codec->card->longname, sizeof(codec->card->longname),
1128 "%s (%s)", card->name, codec->name);
1129
1130 /* Make sure all DAPM widgets are instantiated */
1131 snd_soc_dapm_new_widgets(codec);
1132
1133 ret = snd_card_register(codec->card);
1134 if (ret < 0) {
1135 printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
1136 codec->name);
1137 goto card_err;
1138 }
1139
1140 mutex_lock(&codec->mutex);
1141 #ifdef CONFIG_SND_SOC_AC97_BUS
1142 /* Only instantiate AC97 if not already done by the adaptor
1143 * for the generic AC97 subsystem.
1144 */
1145 if (ac97 && strcmp(codec->name, "AC97") != 0) {
1146 ret = soc_ac97_dev_register(codec);
1147 if (ret < 0) {
1148 printk(KERN_ERR "asoc: AC97 device register failed\n");
1149 snd_card_free(codec->card);
1150 mutex_unlock(&codec->mutex);
1151 goto card_err;
1152 }
1153 }
1154 #endif
1155
1156 ret = snd_soc_dapm_sys_add(card->socdev->dev);
1157 if (ret < 0)
1158 printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1159
1160 ret = device_create_file(card->socdev->dev, &dev_attr_pmdown_time);
1161 if (ret < 0)
1162 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1163
1164 ret = device_create_file(card->socdev->dev, &dev_attr_codec_reg);
1165 if (ret < 0)
1166 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1167
1168 soc_init_codec_debugfs(codec);
1169 mutex_unlock(&codec->mutex);
1170
1171 card->instantiated = 1;
1172
1173 return;
1174
1175 card_err:
1176 if (platform->remove)
1177 platform->remove(pdev);
1178
1179 platform_err:
1180 if (codec_dev->remove)
1181 codec_dev->remove(pdev);
1182
1183 cpu_dai_err:
1184 for (i--; i >= 0; i--) {
1185 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1186 if (cpu_dai->remove)
1187 cpu_dai->remove(pdev, cpu_dai);
1188 }
1189
1190 if (card->remove)
1191 card->remove(pdev);
1192 }
1193
1194 /*
1195 * Attempt to initialise any uninitalised cards. Must be called with
1196 * client_mutex.
1197 */
1198 static void snd_soc_instantiate_cards(void)
1199 {
1200 struct snd_soc_card *card;
1201 list_for_each_entry(card, &card_list, list)
1202 snd_soc_instantiate_card(card);
1203 }
1204
1205 /* probes a new socdev */
1206 static int soc_probe(struct platform_device *pdev)
1207 {
1208 int ret = 0;
1209 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1210 struct snd_soc_card *card = socdev->card;
1211
1212 /* Bodge while we push things out of socdev */
1213 card->socdev = socdev;
1214
1215 /* Bodge while we unpick instantiation */
1216 card->dev = &pdev->dev;
1217 ret = snd_soc_register_card(card);
1218 if (ret != 0) {
1219 dev_err(&pdev->dev, "Failed to register card\n");
1220 return ret;
1221 }
1222
1223 return 0;
1224 }
1225
1226 /* removes a socdev */
1227 static int soc_remove(struct platform_device *pdev)
1228 {
1229 int i;
1230 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1231 struct snd_soc_card *card = socdev->card;
1232 struct snd_soc_platform *platform = card->platform;
1233 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
1234
1235 if (!card->instantiated)
1236 return 0;
1237
1238 run_delayed_work(&card->delayed_work);
1239
1240 if (platform->remove)
1241 platform->remove(pdev);
1242
1243 if (codec_dev->remove)
1244 codec_dev->remove(pdev);
1245
1246 for (i = 0; i < card->num_links; i++) {
1247 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1248 if (cpu_dai->remove)
1249 cpu_dai->remove(pdev, cpu_dai);
1250 }
1251
1252 if (card->remove)
1253 card->remove(pdev);
1254
1255 snd_soc_unregister_card(card);
1256
1257 return 0;
1258 }
1259
1260 static int soc_poweroff(struct device *dev)
1261 {
1262 struct platform_device *pdev = to_platform_device(dev);
1263 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1264 struct snd_soc_card *card = socdev->card;
1265
1266 if (!card->instantiated)
1267 return 0;
1268
1269 /* Flush out pmdown_time work - we actually do want to run it
1270 * now, we're shutting down so no imminent restart. */
1271 run_delayed_work(&card->delayed_work);
1272
1273 snd_soc_dapm_shutdown(socdev);
1274
1275 return 0;
1276 }
1277
1278 static const struct dev_pm_ops soc_pm_ops = {
1279 .suspend = soc_suspend,
1280 .resume = soc_resume,
1281 .poweroff = soc_poweroff,
1282 };
1283
1284 /* ASoC platform driver */
1285 static struct platform_driver soc_driver = {
1286 .driver = {
1287 .name = "soc-audio",
1288 .owner = THIS_MODULE,
1289 .pm = &soc_pm_ops,
1290 },
1291 .probe = soc_probe,
1292 .remove = soc_remove,
1293 };
1294
1295 /* create a new pcm */
1296 static int soc_new_pcm(struct snd_soc_device *socdev,
1297 struct snd_soc_dai_link *dai_link, int num)
1298 {
1299 struct snd_soc_card *card = socdev->card;
1300 struct snd_soc_codec *codec = card->codec;
1301 struct snd_soc_platform *platform = card->platform;
1302 struct snd_soc_dai *codec_dai = dai_link->codec_dai;
1303 struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
1304 struct snd_soc_pcm_runtime *rtd;
1305 struct snd_pcm *pcm;
1306 char new_name[64];
1307 int ret = 0, playback = 0, capture = 0;
1308
1309 rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
1310 if (rtd == NULL)
1311 return -ENOMEM;
1312
1313 rtd->dai = dai_link;
1314 rtd->socdev = socdev;
1315 codec_dai->codec = card->codec;
1316
1317 /* check client and interface hw capabilities */
1318 snprintf(new_name, sizeof(new_name), "%s %s-%d",
1319 dai_link->stream_name, codec_dai->name, num);
1320
1321 if (codec_dai->playback.channels_min)
1322 playback = 1;
1323 if (codec_dai->capture.channels_min)
1324 capture = 1;
1325
1326 ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
1327 capture, &pcm);
1328 if (ret < 0) {
1329 printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
1330 codec->name);
1331 kfree(rtd);
1332 return ret;
1333 }
1334
1335 dai_link->pcm = pcm;
1336 pcm->private_data = rtd;
1337 soc_pcm_ops.mmap = platform->pcm_ops->mmap;
1338 soc_pcm_ops.pointer = platform->pcm_ops->pointer;
1339 soc_pcm_ops.ioctl = platform->pcm_ops->ioctl;
1340 soc_pcm_ops.copy = platform->pcm_ops->copy;
1341 soc_pcm_ops.silence = platform->pcm_ops->silence;
1342 soc_pcm_ops.ack = platform->pcm_ops->ack;
1343 soc_pcm_ops.page = platform->pcm_ops->page;
1344
1345 if (playback)
1346 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1347
1348 if (capture)
1349 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1350
1351 ret = platform->pcm_new(codec->card, codec_dai, pcm);
1352 if (ret < 0) {
1353 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1354 kfree(rtd);
1355 return ret;
1356 }
1357
1358 pcm->private_free = platform->pcm_free;
1359 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1360 cpu_dai->name);
1361 return ret;
1362 }
1363
1364 /**
1365 * snd_soc_codec_volatile_register: Report if a register is volatile.
1366 *
1367 * @codec: CODEC to query.
1368 * @reg: Register to query.
1369 *
1370 * Boolean function indiciating if a CODEC register is volatile.
1371 */
1372 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
1373 {
1374 if (codec->volatile_register)
1375 return codec->volatile_register(reg);
1376 else
1377 return 0;
1378 }
1379 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1380
1381 /**
1382 * snd_soc_new_ac97_codec - initailise AC97 device
1383 * @codec: audio codec
1384 * @ops: AC97 bus operations
1385 * @num: AC97 codec number
1386 *
1387 * Initialises AC97 codec resources for use by ad-hoc devices only.
1388 */
1389 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1390 struct snd_ac97_bus_ops *ops, int num)
1391 {
1392 mutex_lock(&codec->mutex);
1393
1394 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1395 if (codec->ac97 == NULL) {
1396 mutex_unlock(&codec->mutex);
1397 return -ENOMEM;
1398 }
1399
1400 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1401 if (codec->ac97->bus == NULL) {
1402 kfree(codec->ac97);
1403 codec->ac97 = NULL;
1404 mutex_unlock(&codec->mutex);
1405 return -ENOMEM;
1406 }
1407
1408 codec->ac97->bus->ops = ops;
1409 codec->ac97->num = num;
1410 codec->dev = &codec->ac97->dev;
1411 mutex_unlock(&codec->mutex);
1412 return 0;
1413 }
1414 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1415
1416 /**
1417 * snd_soc_free_ac97_codec - free AC97 codec device
1418 * @codec: audio codec
1419 *
1420 * Frees AC97 codec device resources.
1421 */
1422 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1423 {
1424 mutex_lock(&codec->mutex);
1425 kfree(codec->ac97->bus);
1426 kfree(codec->ac97);
1427 codec->ac97 = NULL;
1428 mutex_unlock(&codec->mutex);
1429 }
1430 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1431
1432 /**
1433 * snd_soc_update_bits - update codec register bits
1434 * @codec: audio codec
1435 * @reg: codec register
1436 * @mask: register mask
1437 * @value: new value
1438 *
1439 * Writes new register value.
1440 *
1441 * Returns 1 for change else 0.
1442 */
1443 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1444 unsigned int mask, unsigned int value)
1445 {
1446 int change;
1447 unsigned int old, new;
1448
1449 old = snd_soc_read(codec, reg);
1450 new = (old & ~mask) | value;
1451 change = old != new;
1452 if (change)
1453 snd_soc_write(codec, reg, new);
1454
1455 return change;
1456 }
1457 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1458
1459 /**
1460 * snd_soc_update_bits_locked - update codec register bits
1461 * @codec: audio codec
1462 * @reg: codec register
1463 * @mask: register mask
1464 * @value: new value
1465 *
1466 * Writes new register value, and takes the codec mutex.
1467 *
1468 * Returns 1 for change else 0.
1469 */
1470 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
1471 unsigned short reg, unsigned int mask,
1472 unsigned int value)
1473 {
1474 int change;
1475
1476 mutex_lock(&codec->mutex);
1477 change = snd_soc_update_bits(codec, reg, mask, value);
1478 mutex_unlock(&codec->mutex);
1479
1480 return change;
1481 }
1482 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
1483
1484 /**
1485 * snd_soc_test_bits - test register for change
1486 * @codec: audio codec
1487 * @reg: codec register
1488 * @mask: register mask
1489 * @value: new value
1490 *
1491 * Tests a register with a new value and checks if the new value is
1492 * different from the old value.
1493 *
1494 * Returns 1 for change else 0.
1495 */
1496 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1497 unsigned int mask, unsigned int value)
1498 {
1499 int change;
1500 unsigned int old, new;
1501
1502 old = snd_soc_read(codec, reg);
1503 new = (old & ~mask) | value;
1504 change = old != new;
1505
1506 return change;
1507 }
1508 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1509
1510 /**
1511 * snd_soc_new_pcms - create new sound card and pcms
1512 * @socdev: the SoC audio device
1513 * @idx: ALSA card index
1514 * @xid: card identification
1515 *
1516 * Create a new sound card based upon the codec and interface pcms.
1517 *
1518 * Returns 0 for success, else error.
1519 */
1520 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1521 {
1522 struct snd_soc_card *card = socdev->card;
1523 struct snd_soc_codec *codec = card->codec;
1524 int ret, i;
1525
1526 mutex_lock(&codec->mutex);
1527
1528 /* register a sound card */
1529 ret = snd_card_create(idx, xid, codec->owner, 0, &codec->card);
1530 if (ret < 0) {
1531 printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1532 codec->name);
1533 mutex_unlock(&codec->mutex);
1534 return ret;
1535 }
1536
1537 codec->socdev = socdev;
1538 codec->card->dev = socdev->dev;
1539 codec->card->private_data = codec;
1540 strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1541
1542 /* create the pcms */
1543 for (i = 0; i < card->num_links; i++) {
1544 ret = soc_new_pcm(socdev, &card->dai_link[i], i);
1545 if (ret < 0) {
1546 printk(KERN_ERR "asoc: can't create pcm %s\n",
1547 card->dai_link[i].stream_name);
1548 mutex_unlock(&codec->mutex);
1549 return ret;
1550 }
1551 /* Check for codec->ac97 to handle the ac97.c fun */
1552 if (card->dai_link[i].codec_dai->ac97_control && codec->ac97) {
1553 snd_ac97_dev_add_pdata(codec->ac97,
1554 card->dai_link[i].cpu_dai->ac97_pdata);
1555 }
1556 }
1557
1558 mutex_unlock(&codec->mutex);
1559 return ret;
1560 }
1561 EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1562
1563 /**
1564 * snd_soc_free_pcms - free sound card and pcms
1565 * @socdev: the SoC audio device
1566 *
1567 * Frees sound card and pcms associated with the socdev.
1568 * Also unregister the codec if it is an AC97 device.
1569 */
1570 void snd_soc_free_pcms(struct snd_soc_device *socdev)
1571 {
1572 struct snd_soc_codec *codec = socdev->card->codec;
1573 #ifdef CONFIG_SND_SOC_AC97_BUS
1574 struct snd_soc_dai *codec_dai;
1575 int i;
1576 #endif
1577
1578 mutex_lock(&codec->mutex);
1579 soc_cleanup_codec_debugfs(codec);
1580 #ifdef CONFIG_SND_SOC_AC97_BUS
1581 for (i = 0; i < codec->num_dai; i++) {
1582 codec_dai = &codec->dai[i];
1583 if (codec_dai->ac97_control && codec->ac97 &&
1584 strcmp(codec->name, "AC97") != 0) {
1585 soc_ac97_dev_unregister(codec);
1586 goto free_card;
1587 }
1588 }
1589 free_card:
1590 #endif
1591
1592 if (codec->card)
1593 snd_card_free(codec->card);
1594 device_remove_file(socdev->dev, &dev_attr_codec_reg);
1595 mutex_unlock(&codec->mutex);
1596 }
1597 EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1598
1599 /**
1600 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1601 * @substream: the pcm substream
1602 * @hw: the hardware parameters
1603 *
1604 * Sets the substream runtime hardware parameters.
1605 */
1606 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1607 const struct snd_pcm_hardware *hw)
1608 {
1609 struct snd_pcm_runtime *runtime = substream->runtime;
1610 runtime->hw.info = hw->info;
1611 runtime->hw.formats = hw->formats;
1612 runtime->hw.period_bytes_min = hw->period_bytes_min;
1613 runtime->hw.period_bytes_max = hw->period_bytes_max;
1614 runtime->hw.periods_min = hw->periods_min;
1615 runtime->hw.periods_max = hw->periods_max;
1616 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1617 runtime->hw.fifo_size = hw->fifo_size;
1618 return 0;
1619 }
1620 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1621
1622 /**
1623 * snd_soc_cnew - create new control
1624 * @_template: control template
1625 * @data: control private data
1626 * @long_name: control long name
1627 *
1628 * Create a new mixer control from a template control.
1629 *
1630 * Returns 0 for success, else error.
1631 */
1632 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1633 void *data, char *long_name)
1634 {
1635 struct snd_kcontrol_new template;
1636
1637 memcpy(&template, _template, sizeof(template));
1638 if (long_name)
1639 template.name = long_name;
1640 template.index = 0;
1641
1642 return snd_ctl_new1(&template, data);
1643 }
1644 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1645
1646 /**
1647 * snd_soc_add_controls - add an array of controls to a codec.
1648 * Convienience function to add a list of controls. Many codecs were
1649 * duplicating this code.
1650 *
1651 * @codec: codec to add controls to
1652 * @controls: array of controls to add
1653 * @num_controls: number of elements in the array
1654 *
1655 * Return 0 for success, else error.
1656 */
1657 int snd_soc_add_controls(struct snd_soc_codec *codec,
1658 const struct snd_kcontrol_new *controls, int num_controls)
1659 {
1660 struct snd_card *card = codec->card;
1661 int err, i;
1662
1663 for (i = 0; i < num_controls; i++) {
1664 const struct snd_kcontrol_new *control = &controls[i];
1665 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
1666 if (err < 0) {
1667 dev_err(codec->dev, "%s: Failed to add %s\n",
1668 codec->name, control->name);
1669 return err;
1670 }
1671 }
1672
1673 return 0;
1674 }
1675 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
1676
1677 /**
1678 * snd_soc_info_enum_double - enumerated double mixer info callback
1679 * @kcontrol: mixer control
1680 * @uinfo: control element information
1681 *
1682 * Callback to provide information about a double enumerated
1683 * mixer control.
1684 *
1685 * Returns 0 for success.
1686 */
1687 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1688 struct snd_ctl_elem_info *uinfo)
1689 {
1690 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1691
1692 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1693 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1694 uinfo->value.enumerated.items = e->max;
1695
1696 if (uinfo->value.enumerated.item > e->max - 1)
1697 uinfo->value.enumerated.item = e->max - 1;
1698 strcpy(uinfo->value.enumerated.name,
1699 e->texts[uinfo->value.enumerated.item]);
1700 return 0;
1701 }
1702 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1703
1704 /**
1705 * snd_soc_get_enum_double - enumerated double mixer get callback
1706 * @kcontrol: mixer control
1707 * @ucontrol: control element information
1708 *
1709 * Callback to get the value of a double enumerated mixer.
1710 *
1711 * Returns 0 for success.
1712 */
1713 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1714 struct snd_ctl_elem_value *ucontrol)
1715 {
1716 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1717 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1718 unsigned int val, bitmask;
1719
1720 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1721 ;
1722 val = snd_soc_read(codec, e->reg);
1723 ucontrol->value.enumerated.item[0]
1724 = (val >> e->shift_l) & (bitmask - 1);
1725 if (e->shift_l != e->shift_r)
1726 ucontrol->value.enumerated.item[1] =
1727 (val >> e->shift_r) & (bitmask - 1);
1728
1729 return 0;
1730 }
1731 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1732
1733 /**
1734 * snd_soc_put_enum_double - enumerated double mixer put callback
1735 * @kcontrol: mixer control
1736 * @ucontrol: control element information
1737 *
1738 * Callback to set the value of a double enumerated mixer.
1739 *
1740 * Returns 0 for success.
1741 */
1742 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1743 struct snd_ctl_elem_value *ucontrol)
1744 {
1745 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1746 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1747 unsigned int val;
1748 unsigned int mask, bitmask;
1749
1750 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1751 ;
1752 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1753 return -EINVAL;
1754 val = ucontrol->value.enumerated.item[0] << e->shift_l;
1755 mask = (bitmask - 1) << e->shift_l;
1756 if (e->shift_l != e->shift_r) {
1757 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1758 return -EINVAL;
1759 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1760 mask |= (bitmask - 1) << e->shift_r;
1761 }
1762
1763 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
1764 }
1765 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1766
1767 /**
1768 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
1769 * @kcontrol: mixer control
1770 * @ucontrol: control element information
1771 *
1772 * Callback to get the value of a double semi enumerated mixer.
1773 *
1774 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1775 * used for handling bitfield coded enumeration for example.
1776 *
1777 * Returns 0 for success.
1778 */
1779 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
1780 struct snd_ctl_elem_value *ucontrol)
1781 {
1782 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1783 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1784 unsigned int reg_val, val, mux;
1785
1786 reg_val = snd_soc_read(codec, e->reg);
1787 val = (reg_val >> e->shift_l) & e->mask;
1788 for (mux = 0; mux < e->max; mux++) {
1789 if (val == e->values[mux])
1790 break;
1791 }
1792 ucontrol->value.enumerated.item[0] = mux;
1793 if (e->shift_l != e->shift_r) {
1794 val = (reg_val >> e->shift_r) & e->mask;
1795 for (mux = 0; mux < e->max; mux++) {
1796 if (val == e->values[mux])
1797 break;
1798 }
1799 ucontrol->value.enumerated.item[1] = mux;
1800 }
1801
1802 return 0;
1803 }
1804 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
1805
1806 /**
1807 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
1808 * @kcontrol: mixer control
1809 * @ucontrol: control element information
1810 *
1811 * Callback to set the value of a double semi enumerated mixer.
1812 *
1813 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1814 * used for handling bitfield coded enumeration for example.
1815 *
1816 * Returns 0 for success.
1817 */
1818 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
1819 struct snd_ctl_elem_value *ucontrol)
1820 {
1821 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1822 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1823 unsigned int val;
1824 unsigned int mask;
1825
1826 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1827 return -EINVAL;
1828 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
1829 mask = e->mask << e->shift_l;
1830 if (e->shift_l != e->shift_r) {
1831 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1832 return -EINVAL;
1833 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
1834 mask |= e->mask << e->shift_r;
1835 }
1836
1837 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
1838 }
1839 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
1840
1841 /**
1842 * snd_soc_info_enum_ext - external enumerated single mixer info callback
1843 * @kcontrol: mixer control
1844 * @uinfo: control element information
1845 *
1846 * Callback to provide information about an external enumerated
1847 * single mixer.
1848 *
1849 * Returns 0 for success.
1850 */
1851 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1852 struct snd_ctl_elem_info *uinfo)
1853 {
1854 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1855
1856 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1857 uinfo->count = 1;
1858 uinfo->value.enumerated.items = e->max;
1859
1860 if (uinfo->value.enumerated.item > e->max - 1)
1861 uinfo->value.enumerated.item = e->max - 1;
1862 strcpy(uinfo->value.enumerated.name,
1863 e->texts[uinfo->value.enumerated.item]);
1864 return 0;
1865 }
1866 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1867
1868 /**
1869 * snd_soc_info_volsw_ext - external single mixer info callback
1870 * @kcontrol: mixer control
1871 * @uinfo: control element information
1872 *
1873 * Callback to provide information about a single external mixer control.
1874 *
1875 * Returns 0 for success.
1876 */
1877 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1878 struct snd_ctl_elem_info *uinfo)
1879 {
1880 int max = kcontrol->private_value;
1881
1882 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1883 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1884 else
1885 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1886
1887 uinfo->count = 1;
1888 uinfo->value.integer.min = 0;
1889 uinfo->value.integer.max = max;
1890 return 0;
1891 }
1892 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1893
1894 /**
1895 * snd_soc_info_volsw - single mixer info callback
1896 * @kcontrol: mixer control
1897 * @uinfo: control element information
1898 *
1899 * Callback to provide information about a single mixer control.
1900 *
1901 * Returns 0 for success.
1902 */
1903 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1904 struct snd_ctl_elem_info *uinfo)
1905 {
1906 struct soc_mixer_control *mc =
1907 (struct soc_mixer_control *)kcontrol->private_value;
1908 int max = mc->max;
1909 unsigned int shift = mc->shift;
1910 unsigned int rshift = mc->rshift;
1911
1912 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1913 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1914 else
1915 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1916
1917 uinfo->count = shift == rshift ? 1 : 2;
1918 uinfo->value.integer.min = 0;
1919 uinfo->value.integer.max = max;
1920 return 0;
1921 }
1922 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1923
1924 /**
1925 * snd_soc_get_volsw - single mixer get callback
1926 * @kcontrol: mixer control
1927 * @ucontrol: control element information
1928 *
1929 * Callback to get the value of a single mixer control.
1930 *
1931 * Returns 0 for success.
1932 */
1933 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1934 struct snd_ctl_elem_value *ucontrol)
1935 {
1936 struct soc_mixer_control *mc =
1937 (struct soc_mixer_control *)kcontrol->private_value;
1938 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1939 unsigned int reg = mc->reg;
1940 unsigned int shift = mc->shift;
1941 unsigned int rshift = mc->rshift;
1942 int max = mc->max;
1943 unsigned int mask = (1 << fls(max)) - 1;
1944 unsigned int invert = mc->invert;
1945
1946 ucontrol->value.integer.value[0] =
1947 (snd_soc_read(codec, reg) >> shift) & mask;
1948 if (shift != rshift)
1949 ucontrol->value.integer.value[1] =
1950 (snd_soc_read(codec, reg) >> rshift) & mask;
1951 if (invert) {
1952 ucontrol->value.integer.value[0] =
1953 max - ucontrol->value.integer.value[0];
1954 if (shift != rshift)
1955 ucontrol->value.integer.value[1] =
1956 max - ucontrol->value.integer.value[1];
1957 }
1958
1959 return 0;
1960 }
1961 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1962
1963 /**
1964 * snd_soc_put_volsw - single mixer put callback
1965 * @kcontrol: mixer control
1966 * @ucontrol: control element information
1967 *
1968 * Callback to set the value of a single mixer control.
1969 *
1970 * Returns 0 for success.
1971 */
1972 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1973 struct snd_ctl_elem_value *ucontrol)
1974 {
1975 struct soc_mixer_control *mc =
1976 (struct soc_mixer_control *)kcontrol->private_value;
1977 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1978 unsigned int reg = mc->reg;
1979 unsigned int shift = mc->shift;
1980 unsigned int rshift = mc->rshift;
1981 int max = mc->max;
1982 unsigned int mask = (1 << fls(max)) - 1;
1983 unsigned int invert = mc->invert;
1984 unsigned int val, val2, val_mask;
1985
1986 val = (ucontrol->value.integer.value[0] & mask);
1987 if (invert)
1988 val = max - val;
1989 val_mask = mask << shift;
1990 val = val << shift;
1991 if (shift != rshift) {
1992 val2 = (ucontrol->value.integer.value[1] & mask);
1993 if (invert)
1994 val2 = max - val2;
1995 val_mask |= mask << rshift;
1996 val |= val2 << rshift;
1997 }
1998 return snd_soc_update_bits_locked(codec, reg, val_mask, val);
1999 }
2000 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2001
2002 /**
2003 * snd_soc_info_volsw_2r - double mixer info callback
2004 * @kcontrol: mixer control
2005 * @uinfo: control element information
2006 *
2007 * Callback to provide information about a double mixer control that
2008 * spans 2 codec registers.
2009 *
2010 * Returns 0 for success.
2011 */
2012 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2013 struct snd_ctl_elem_info *uinfo)
2014 {
2015 struct soc_mixer_control *mc =
2016 (struct soc_mixer_control *)kcontrol->private_value;
2017 int max = mc->max;
2018
2019 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2020 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2021 else
2022 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2023
2024 uinfo->count = 2;
2025 uinfo->value.integer.min = 0;
2026 uinfo->value.integer.max = max;
2027 return 0;
2028 }
2029 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2030
2031 /**
2032 * snd_soc_get_volsw_2r - double mixer get callback
2033 * @kcontrol: mixer control
2034 * @ucontrol: control element information
2035 *
2036 * Callback to get the value of a double mixer control that spans 2 registers.
2037 *
2038 * Returns 0 for success.
2039 */
2040 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2041 struct snd_ctl_elem_value *ucontrol)
2042 {
2043 struct soc_mixer_control *mc =
2044 (struct soc_mixer_control *)kcontrol->private_value;
2045 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2046 unsigned int reg = mc->reg;
2047 unsigned int reg2 = mc->rreg;
2048 unsigned int shift = mc->shift;
2049 int max = mc->max;
2050 unsigned int mask = (1 << fls(max)) - 1;
2051 unsigned int invert = mc->invert;
2052
2053 ucontrol->value.integer.value[0] =
2054 (snd_soc_read(codec, reg) >> shift) & mask;
2055 ucontrol->value.integer.value[1] =
2056 (snd_soc_read(codec, reg2) >> shift) & mask;
2057 if (invert) {
2058 ucontrol->value.integer.value[0] =
2059 max - ucontrol->value.integer.value[0];
2060 ucontrol->value.integer.value[1] =
2061 max - ucontrol->value.integer.value[1];
2062 }
2063
2064 return 0;
2065 }
2066 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2067
2068 /**
2069 * snd_soc_put_volsw_2r - double mixer set callback
2070 * @kcontrol: mixer control
2071 * @ucontrol: control element information
2072 *
2073 * Callback to set the value of a double mixer control that spans 2 registers.
2074 *
2075 * Returns 0 for success.
2076 */
2077 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2078 struct snd_ctl_elem_value *ucontrol)
2079 {
2080 struct soc_mixer_control *mc =
2081 (struct soc_mixer_control *)kcontrol->private_value;
2082 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2083 unsigned int reg = mc->reg;
2084 unsigned int reg2 = mc->rreg;
2085 unsigned int shift = mc->shift;
2086 int max = mc->max;
2087 unsigned int mask = (1 << fls(max)) - 1;
2088 unsigned int invert = mc->invert;
2089 int err;
2090 unsigned int val, val2, val_mask;
2091
2092 val_mask = mask << shift;
2093 val = (ucontrol->value.integer.value[0] & mask);
2094 val2 = (ucontrol->value.integer.value[1] & mask);
2095
2096 if (invert) {
2097 val = max - val;
2098 val2 = max - val2;
2099 }
2100
2101 val = val << shift;
2102 val2 = val2 << shift;
2103
2104 err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2105 if (err < 0)
2106 return err;
2107
2108 err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2109 return err;
2110 }
2111 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2112
2113 /**
2114 * snd_soc_info_volsw_s8 - signed mixer info callback
2115 * @kcontrol: mixer control
2116 * @uinfo: control element information
2117 *
2118 * Callback to provide information about a signed mixer control.
2119 *
2120 * Returns 0 for success.
2121 */
2122 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2123 struct snd_ctl_elem_info *uinfo)
2124 {
2125 struct soc_mixer_control *mc =
2126 (struct soc_mixer_control *)kcontrol->private_value;
2127 int max = mc->max;
2128 int min = mc->min;
2129
2130 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2131 uinfo->count = 2;
2132 uinfo->value.integer.min = 0;
2133 uinfo->value.integer.max = max-min;
2134 return 0;
2135 }
2136 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2137
2138 /**
2139 * snd_soc_get_volsw_s8 - signed mixer get callback
2140 * @kcontrol: mixer control
2141 * @ucontrol: control element information
2142 *
2143 * Callback to get the value of a signed mixer control.
2144 *
2145 * Returns 0 for success.
2146 */
2147 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2148 struct snd_ctl_elem_value *ucontrol)
2149 {
2150 struct soc_mixer_control *mc =
2151 (struct soc_mixer_control *)kcontrol->private_value;
2152 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2153 unsigned int reg = mc->reg;
2154 int min = mc->min;
2155 int val = snd_soc_read(codec, reg);
2156
2157 ucontrol->value.integer.value[0] =
2158 ((signed char)(val & 0xff))-min;
2159 ucontrol->value.integer.value[1] =
2160 ((signed char)((val >> 8) & 0xff))-min;
2161 return 0;
2162 }
2163 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2164
2165 /**
2166 * snd_soc_put_volsw_sgn - signed mixer put callback
2167 * @kcontrol: mixer control
2168 * @ucontrol: control element information
2169 *
2170 * Callback to set the value of a signed mixer control.
2171 *
2172 * Returns 0 for success.
2173 */
2174 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2175 struct snd_ctl_elem_value *ucontrol)
2176 {
2177 struct soc_mixer_control *mc =
2178 (struct soc_mixer_control *)kcontrol->private_value;
2179 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2180 unsigned int reg = mc->reg;
2181 int min = mc->min;
2182 unsigned int val;
2183
2184 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2185 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2186
2187 return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2188 }
2189 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2190
2191 /**
2192 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2193 * @dai: DAI
2194 * @clk_id: DAI specific clock ID
2195 * @freq: new clock frequency in Hz
2196 * @dir: new clock direction - input/output.
2197 *
2198 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2199 */
2200 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2201 unsigned int freq, int dir)
2202 {
2203 if (dai->ops && dai->ops->set_sysclk)
2204 return dai->ops->set_sysclk(dai, clk_id, freq, dir);
2205 else
2206 return -EINVAL;
2207 }
2208 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2209
2210 /**
2211 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2212 * @dai: DAI
2213 * @div_id: DAI specific clock divider ID
2214 * @div: new clock divisor.
2215 *
2216 * Configures the clock dividers. This is used to derive the best DAI bit and
2217 * frame clocks from the system or master clock. It's best to set the DAI bit
2218 * and frame clocks as low as possible to save system power.
2219 */
2220 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2221 int div_id, int div)
2222 {
2223 if (dai->ops && dai->ops->set_clkdiv)
2224 return dai->ops->set_clkdiv(dai, div_id, div);
2225 else
2226 return -EINVAL;
2227 }
2228 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2229
2230 /**
2231 * snd_soc_dai_set_pll - configure DAI PLL.
2232 * @dai: DAI
2233 * @pll_id: DAI specific PLL ID
2234 * @source: DAI specific source for the PLL
2235 * @freq_in: PLL input clock frequency in Hz
2236 * @freq_out: requested PLL output clock frequency in Hz
2237 *
2238 * Configures and enables PLL to generate output clock based on input clock.
2239 */
2240 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2241 unsigned int freq_in, unsigned int freq_out)
2242 {
2243 if (dai->ops && dai->ops->set_pll)
2244 return dai->ops->set_pll(dai, pll_id, source,
2245 freq_in, freq_out);
2246 else
2247 return -EINVAL;
2248 }
2249 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2250
2251 /**
2252 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2253 * @dai: DAI
2254 * @fmt: SND_SOC_DAIFMT_ format value.
2255 *
2256 * Configures the DAI hardware format and clocking.
2257 */
2258 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2259 {
2260 if (dai->ops && dai->ops->set_fmt)
2261 return dai->ops->set_fmt(dai, fmt);
2262 else
2263 return -EINVAL;
2264 }
2265 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2266
2267 /**
2268 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2269 * @dai: DAI
2270 * @tx_mask: bitmask representing active TX slots.
2271 * @rx_mask: bitmask representing active RX slots.
2272 * @slots: Number of slots in use.
2273 * @slot_width: Width in bits for each slot.
2274 *
2275 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2276 * specific.
2277 */
2278 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2279 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
2280 {
2281 if (dai->ops && dai->ops->set_tdm_slot)
2282 return dai->ops->set_tdm_slot(dai, tx_mask, rx_mask,
2283 slots, slot_width);
2284 else
2285 return -EINVAL;
2286 }
2287 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2288
2289 /**
2290 * snd_soc_dai_set_channel_map - configure DAI audio channel map
2291 * @dai: DAI
2292 * @tx_num: how many TX channels
2293 * @tx_slot: pointer to an array which imply the TX slot number channel
2294 * 0~num-1 uses
2295 * @rx_num: how many RX channels
2296 * @rx_slot: pointer to an array which imply the RX slot number channel
2297 * 0~num-1 uses
2298 *
2299 * configure the relationship between channel number and TDM slot number.
2300 */
2301 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
2302 unsigned int tx_num, unsigned int *tx_slot,
2303 unsigned int rx_num, unsigned int *rx_slot)
2304 {
2305 if (dai->ops && dai->ops->set_channel_map)
2306 return dai->ops->set_channel_map(dai, tx_num, tx_slot,
2307 rx_num, rx_slot);
2308 else
2309 return -EINVAL;
2310 }
2311 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
2312
2313 /**
2314 * snd_soc_dai_set_tristate - configure DAI system or master clock.
2315 * @dai: DAI
2316 * @tristate: tristate enable
2317 *
2318 * Tristates the DAI so that others can use it.
2319 */
2320 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2321 {
2322 if (dai->ops && dai->ops->set_tristate)
2323 return dai->ops->set_tristate(dai, tristate);
2324 else
2325 return -EINVAL;
2326 }
2327 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2328
2329 /**
2330 * snd_soc_dai_digital_mute - configure DAI system or master clock.
2331 * @dai: DAI
2332 * @mute: mute enable
2333 *
2334 * Mutes the DAI DAC.
2335 */
2336 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2337 {
2338 if (dai->ops && dai->ops->digital_mute)
2339 return dai->ops->digital_mute(dai, mute);
2340 else
2341 return -EINVAL;
2342 }
2343 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2344
2345 /**
2346 * snd_soc_register_card - Register a card with the ASoC core
2347 *
2348 * @card: Card to register
2349 *
2350 * Note that currently this is an internal only function: it will be
2351 * exposed to machine drivers after further backporting of ASoC v2
2352 * registration APIs.
2353 */
2354 static int snd_soc_register_card(struct snd_soc_card *card)
2355 {
2356 if (!card->name || !card->dev)
2357 return -EINVAL;
2358
2359 INIT_LIST_HEAD(&card->list);
2360 card->instantiated = 0;
2361
2362 mutex_lock(&client_mutex);
2363 list_add(&card->list, &card_list);
2364 snd_soc_instantiate_cards();
2365 mutex_unlock(&client_mutex);
2366
2367 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2368
2369 return 0;
2370 }
2371
2372 /**
2373 * snd_soc_unregister_card - Unregister a card with the ASoC core
2374 *
2375 * @card: Card to unregister
2376 *
2377 * Note that currently this is an internal only function: it will be
2378 * exposed to machine drivers after further backporting of ASoC v2
2379 * registration APIs.
2380 */
2381 static int snd_soc_unregister_card(struct snd_soc_card *card)
2382 {
2383 mutex_lock(&client_mutex);
2384 list_del(&card->list);
2385 mutex_unlock(&client_mutex);
2386
2387 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2388
2389 return 0;
2390 }
2391
2392 /**
2393 * snd_soc_register_dai - Register a DAI with the ASoC core
2394 *
2395 * @dai: DAI to register
2396 */
2397 int snd_soc_register_dai(struct snd_soc_dai *dai)
2398 {
2399 if (!dai->name)
2400 return -EINVAL;
2401
2402 /* The device should become mandatory over time */
2403 if (!dai->dev)
2404 printk(KERN_WARNING "No device for DAI %s\n", dai->name);
2405
2406 if (!dai->ops)
2407 dai->ops = &null_dai_ops;
2408
2409 INIT_LIST_HEAD(&dai->list);
2410
2411 mutex_lock(&client_mutex);
2412 list_add(&dai->list, &dai_list);
2413 snd_soc_instantiate_cards();
2414 mutex_unlock(&client_mutex);
2415
2416 pr_debug("Registered DAI '%s'\n", dai->name);
2417
2418 return 0;
2419 }
2420 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
2421
2422 /**
2423 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
2424 *
2425 * @dai: DAI to unregister
2426 */
2427 void snd_soc_unregister_dai(struct snd_soc_dai *dai)
2428 {
2429 mutex_lock(&client_mutex);
2430 list_del(&dai->list);
2431 mutex_unlock(&client_mutex);
2432
2433 pr_debug("Unregistered DAI '%s'\n", dai->name);
2434 }
2435 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
2436
2437 /**
2438 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
2439 *
2440 * @dai: Array of DAIs to register
2441 * @count: Number of DAIs
2442 */
2443 int snd_soc_register_dais(struct snd_soc_dai *dai, size_t count)
2444 {
2445 int i, ret;
2446
2447 for (i = 0; i < count; i++) {
2448 ret = snd_soc_register_dai(&dai[i]);
2449 if (ret != 0)
2450 goto err;
2451 }
2452
2453 return 0;
2454
2455 err:
2456 for (i--; i >= 0; i--)
2457 snd_soc_unregister_dai(&dai[i]);
2458
2459 return ret;
2460 }
2461 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
2462
2463 /**
2464 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
2465 *
2466 * @dai: Array of DAIs to unregister
2467 * @count: Number of DAIs
2468 */
2469 void snd_soc_unregister_dais(struct snd_soc_dai *dai, size_t count)
2470 {
2471 int i;
2472
2473 for (i = 0; i < count; i++)
2474 snd_soc_unregister_dai(&dai[i]);
2475 }
2476 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
2477
2478 /**
2479 * snd_soc_register_platform - Register a platform with the ASoC core
2480 *
2481 * @platform: platform to register
2482 */
2483 int snd_soc_register_platform(struct snd_soc_platform *platform)
2484 {
2485 if (!platform->name)
2486 return -EINVAL;
2487
2488 INIT_LIST_HEAD(&platform->list);
2489
2490 mutex_lock(&client_mutex);
2491 list_add(&platform->list, &platform_list);
2492 snd_soc_instantiate_cards();
2493 mutex_unlock(&client_mutex);
2494
2495 pr_debug("Registered platform '%s'\n", platform->name);
2496
2497 return 0;
2498 }
2499 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
2500
2501 /**
2502 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
2503 *
2504 * @platform: platform to unregister
2505 */
2506 void snd_soc_unregister_platform(struct snd_soc_platform *platform)
2507 {
2508 mutex_lock(&client_mutex);
2509 list_del(&platform->list);
2510 mutex_unlock(&client_mutex);
2511
2512 pr_debug("Unregistered platform '%s'\n", platform->name);
2513 }
2514 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
2515
2516 static u64 codec_format_map[] = {
2517 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
2518 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
2519 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
2520 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
2521 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
2522 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
2523 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2524 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2525 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
2526 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
2527 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
2528 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
2529 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
2530 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
2531 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
2532 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
2533 };
2534
2535 /* Fix up the DAI formats for endianness: codecs don't actually see
2536 * the endianness of the data but we're using the CPU format
2537 * definitions which do need to include endianness so we ensure that
2538 * codec DAIs always have both big and little endian variants set.
2539 */
2540 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
2541 {
2542 int i;
2543
2544 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
2545 if (stream->formats & codec_format_map[i])
2546 stream->formats |= codec_format_map[i];
2547 }
2548
2549 /**
2550 * snd_soc_register_codec - Register a codec with the ASoC core
2551 *
2552 * @codec: codec to register
2553 */
2554 int snd_soc_register_codec(struct snd_soc_codec *codec)
2555 {
2556 int i;
2557
2558 if (!codec->name)
2559 return -EINVAL;
2560
2561 /* The device should become mandatory over time */
2562 if (!codec->dev)
2563 printk(KERN_WARNING "No device for codec %s\n", codec->name);
2564
2565 INIT_LIST_HEAD(&codec->list);
2566
2567 for (i = 0; i < codec->num_dai; i++) {
2568 fixup_codec_formats(&codec->dai[i].playback);
2569 fixup_codec_formats(&codec->dai[i].capture);
2570 }
2571
2572 mutex_lock(&client_mutex);
2573 list_add(&codec->list, &codec_list);
2574 snd_soc_instantiate_cards();
2575 mutex_unlock(&client_mutex);
2576
2577 pr_debug("Registered codec '%s'\n", codec->name);
2578
2579 return 0;
2580 }
2581 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
2582
2583 /**
2584 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
2585 *
2586 * @codec: codec to unregister
2587 */
2588 void snd_soc_unregister_codec(struct snd_soc_codec *codec)
2589 {
2590 mutex_lock(&client_mutex);
2591 list_del(&codec->list);
2592 mutex_unlock(&client_mutex);
2593
2594 pr_debug("Unregistered codec '%s'\n", codec->name);
2595 }
2596 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
2597
2598 static int __init snd_soc_init(void)
2599 {
2600 #ifdef CONFIG_DEBUG_FS
2601 debugfs_root = debugfs_create_dir("asoc", NULL);
2602 if (IS_ERR(debugfs_root) || !debugfs_root) {
2603 printk(KERN_WARNING
2604 "ASoC: Failed to create debugfs directory\n");
2605 debugfs_root = NULL;
2606 }
2607 #endif
2608
2609 return platform_driver_register(&soc_driver);
2610 }
2611
2612 static void __exit snd_soc_exit(void)
2613 {
2614 #ifdef CONFIG_DEBUG_FS
2615 debugfs_remove_recursive(debugfs_root);
2616 #endif
2617 platform_driver_unregister(&soc_driver);
2618 }
2619
2620 module_init(snd_soc_init);
2621 module_exit(snd_soc_exit);
2622
2623 /* Module information */
2624 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
2625 MODULE_DESCRIPTION("ALSA SoC Core");
2626 MODULE_LICENSE("GPL");
2627 MODULE_ALIAS("platform:soc-audio");
This page took 0.187482 seconds and 5 git commands to generate.