Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[deliverable/linux.git] / sound / sparc / dbri.c
1 /*
2 * Driver for DBRI sound chip found on Sparcs.
3 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
4 *
5 * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
6 *
7 * Based entirely upon drivers/sbus/audio/dbri.c which is:
8 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
9 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
10 *
11 * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
12 * on Sun SPARCStation 10, 20, LX and Voyager models.
13 *
14 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
15 * data time multiplexer with ISDN support (aka T7259)
16 * Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
17 * CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
18 * Documentation:
19 * - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
20 * Sparc Technology Business (courtesy of Sun Support)
21 * - Data sheet of the T7903, a newer but very similar ISA bus equivalent
22 * available from the Lucent (formerly AT&T microelectronics) home
23 * page.
24 * - http://www.freesoft.org/Linux/DBRI/
25 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
26 * Interfaces: CHI, Audio In & Out, 2 bits parallel
27 * Documentation: from the Crystal Semiconductor home page.
28 *
29 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
30 * memory and a serial device (long pipes, no. 0-15) or between two serial
31 * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
32 * device (short pipes).
33 * A timeslot defines the bit-offset and no. of bits read from a serial device.
34 * The timeslots are linked to 6 circular lists, one for each direction for
35 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
36 * (the second one is a monitor/tee pipe, valid only for serial input).
37 *
38 * The mmcodec is connected via the CHI bus and needs the data & some
39 * parameters (volume, output selection) time multiplexed in 8 byte
40 * chunks. It also has a control mode, which serves for audio format setting.
41 *
42 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
43 * the same CHI bus, so I thought perhaps it is possible to use the on-board
44 * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
45 * audio devices. But the SUN HW group decided against it, at least on my
46 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
47 * connected.
48 *
49 * I've tried to stick to the following function naming conventions:
50 * snd_* ALSA stuff
51 * cs4215_* CS4215 codec specific stuff
52 * dbri_* DBRI high-level stuff
53 * other DBRI low-level stuff
54 */
55
56 #include <linux/interrupt.h>
57 #include <linux/delay.h>
58 #include <linux/irq.h>
59 #include <linux/io.h>
60
61 #include <sound/core.h>
62 #include <sound/pcm.h>
63 #include <sound/pcm_params.h>
64 #include <sound/info.h>
65 #include <sound/control.h>
66 #include <sound/initval.h>
67
68 #include <linux/of.h>
69 #include <asm/sbus.h>
70 #include <asm/atomic.h>
71
72 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
73 MODULE_DESCRIPTION("Sun DBRI");
74 MODULE_LICENSE("GPL");
75 MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
76
77 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
78 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
79 /* Enable this card */
80 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
81
82 module_param_array(index, int, NULL, 0444);
83 MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
84 module_param_array(id, charp, NULL, 0444);
85 MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
86 module_param_array(enable, bool, NULL, 0444);
87 MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
88
89 #undef DBRI_DEBUG
90
91 #define D_INT (1<<0)
92 #define D_GEN (1<<1)
93 #define D_CMD (1<<2)
94 #define D_MM (1<<3)
95 #define D_USR (1<<4)
96 #define D_DESC (1<<5)
97
98 static int dbri_debug;
99 module_param(dbri_debug, int, 0644);
100 MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
101
102 #ifdef DBRI_DEBUG
103 static char *cmds[] = {
104 "WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
105 "SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
106 };
107
108 #define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
109
110 #else
111 #define dprintk(a, x...) do { } while (0)
112
113 #endif /* DBRI_DEBUG */
114
115 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) | \
116 (intr << 27) | \
117 value)
118
119 /***************************************************************************
120 CS4215 specific definitions and structures
121 ****************************************************************************/
122
123 struct cs4215 {
124 __u8 data[4]; /* Data mode: Time slots 5-8 */
125 __u8 ctrl[4]; /* Ctrl mode: Time slots 1-4 */
126 __u8 onboard;
127 __u8 offset; /* Bit offset from frame sync to time slot 1 */
128 volatile __u32 status;
129 volatile __u32 version;
130 __u8 precision; /* In bits, either 8 or 16 */
131 __u8 channels; /* 1 or 2 */
132 };
133
134 /*
135 * Control mode first
136 */
137
138 /* Time Slot 1, Status register */
139 #define CS4215_CLB (1<<2) /* Control Latch Bit */
140 #define CS4215_OLB (1<<3) /* 1: line: 2.0V, speaker 4V */
141 /* 0: line: 2.8V, speaker 8V */
142 #define CS4215_MLB (1<<4) /* 1: Microphone: 20dB gain disabled */
143 #define CS4215_RSRVD_1 (1<<5)
144
145 /* Time Slot 2, Data Format Register */
146 #define CS4215_DFR_LINEAR16 0
147 #define CS4215_DFR_ULAW 1
148 #define CS4215_DFR_ALAW 2
149 #define CS4215_DFR_LINEAR8 3
150 #define CS4215_DFR_STEREO (1<<2)
151 static struct {
152 unsigned short freq;
153 unsigned char xtal;
154 unsigned char csval;
155 } CS4215_FREQ[] = {
156 { 8000, (1 << 4), (0 << 3) },
157 { 16000, (1 << 4), (1 << 3) },
158 { 27429, (1 << 4), (2 << 3) }, /* Actually 24428.57 */
159 { 32000, (1 << 4), (3 << 3) },
160 /* { NA, (1 << 4), (4 << 3) }, */
161 /* { NA, (1 << 4), (5 << 3) }, */
162 { 48000, (1 << 4), (6 << 3) },
163 { 9600, (1 << 4), (7 << 3) },
164 { 5512, (2 << 4), (0 << 3) }, /* Actually 5512.5 */
165 { 11025, (2 << 4), (1 << 3) },
166 { 18900, (2 << 4), (2 << 3) },
167 { 22050, (2 << 4), (3 << 3) },
168 { 37800, (2 << 4), (4 << 3) },
169 { 44100, (2 << 4), (5 << 3) },
170 { 33075, (2 << 4), (6 << 3) },
171 { 6615, (2 << 4), (7 << 3) },
172 { 0, 0, 0}
173 };
174
175 #define CS4215_HPF (1<<7) /* High Pass Filter, 1: Enabled */
176
177 #define CS4215_12_MASK 0xfcbf /* Mask off reserved bits in slot 1 & 2 */
178
179 /* Time Slot 3, Serial Port Control register */
180 #define CS4215_XEN (1<<0) /* 0: Enable serial output */
181 #define CS4215_XCLK (1<<1) /* 1: Master mode: Generate SCLK */
182 #define CS4215_BSEL_64 (0<<2) /* Bitrate: 64 bits per frame */
183 #define CS4215_BSEL_128 (1<<2)
184 #define CS4215_BSEL_256 (2<<2)
185 #define CS4215_MCK_MAST (0<<4) /* Master clock */
186 #define CS4215_MCK_XTL1 (1<<4) /* 24.576 MHz clock source */
187 #define CS4215_MCK_XTL2 (2<<4) /* 16.9344 MHz clock source */
188 #define CS4215_MCK_CLK1 (3<<4) /* Clockin, 256 x Fs */
189 #define CS4215_MCK_CLK2 (4<<4) /* Clockin, see DFR */
190
191 /* Time Slot 4, Test Register */
192 #define CS4215_DAD (1<<0) /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
193 #define CS4215_ENL (1<<1) /* Enable Loopback Testing */
194
195 /* Time Slot 5, Parallel Port Register */
196 /* Read only here and the same as the in data mode */
197
198 /* Time Slot 6, Reserved */
199
200 /* Time Slot 7, Version Register */
201 #define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
202
203 /* Time Slot 8, Reserved */
204
205 /*
206 * Data mode
207 */
208 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data */
209
210 /* Time Slot 5, Output Setting */
211 #define CS4215_LO(v) v /* Left Output Attenuation 0x3f: -94.5 dB */
212 #define CS4215_LE (1<<6) /* Line Out Enable */
213 #define CS4215_HE (1<<7) /* Headphone Enable */
214
215 /* Time Slot 6, Output Setting */
216 #define CS4215_RO(v) v /* Right Output Attenuation 0x3f: -94.5 dB */
217 #define CS4215_SE (1<<6) /* Speaker Enable */
218 #define CS4215_ADI (1<<7) /* A/D Data Invalid: Busy in calibration */
219
220 /* Time Slot 7, Input Setting */
221 #define CS4215_LG(v) v /* Left Gain Setting 0xf: 22.5 dB */
222 #define CS4215_IS (1<<4) /* Input Select: 1=Microphone, 0=Line */
223 #define CS4215_OVR (1<<5) /* 1: Over range condition occurred */
224 #define CS4215_PIO0 (1<<6) /* Parallel I/O 0 */
225 #define CS4215_PIO1 (1<<7)
226
227 /* Time Slot 8, Input Setting */
228 #define CS4215_RG(v) v /* Right Gain Setting 0xf: 22.5 dB */
229 #define CS4215_MA(v) (v<<4) /* Monitor Path Attenuation 0xf: mute */
230
231 /***************************************************************************
232 DBRI specific definitions and structures
233 ****************************************************************************/
234
235 /* DBRI main registers */
236 #define REG0 0x00 /* Status and Control */
237 #define REG1 0x04 /* Mode and Interrupt */
238 #define REG2 0x08 /* Parallel IO */
239 #define REG3 0x0c /* Test */
240 #define REG8 0x20 /* Command Queue Pointer */
241 #define REG9 0x24 /* Interrupt Queue Pointer */
242
243 #define DBRI_NO_CMDS 64
244 #define DBRI_INT_BLK 64
245 #define DBRI_NO_DESCS 64
246 #define DBRI_NO_PIPES 32
247 #define DBRI_MAX_PIPE (DBRI_NO_PIPES - 1)
248
249 #define DBRI_REC 0
250 #define DBRI_PLAY 1
251 #define DBRI_NO_STREAMS 2
252
253 /* One transmit/receive descriptor */
254 /* When ba != 0 descriptor is used */
255 struct dbri_mem {
256 volatile __u32 word1;
257 __u32 ba; /* Transmit/Receive Buffer Address */
258 __u32 nda; /* Next Descriptor Address */
259 volatile __u32 word4;
260 };
261
262 /* This structure is in a DMA region where it can accessed by both
263 * the CPU and the DBRI
264 */
265 struct dbri_dma {
266 s32 cmd[DBRI_NO_CMDS]; /* Place for commands */
267 volatile s32 intr[DBRI_INT_BLK]; /* Interrupt field */
268 struct dbri_mem desc[DBRI_NO_DESCS]; /* Xmit/receive descriptors */
269 };
270
271 #define dbri_dma_off(member, elem) \
272 ((u32)(unsigned long) \
273 (&(((struct dbri_dma *)0)->member[elem])))
274
275 enum in_or_out { PIPEinput, PIPEoutput };
276
277 struct dbri_pipe {
278 u32 sdp; /* SDP command word */
279 int nextpipe; /* Next pipe in linked list */
280 int length; /* Length of timeslot (bits) */
281 int first_desc; /* Index of first descriptor */
282 int desc; /* Index of active descriptor */
283 volatile __u32 *recv_fixed_ptr; /* Ptr to receive fixed data */
284 };
285
286 /* Per stream (playback or record) information */
287 struct dbri_streaminfo {
288 struct snd_pcm_substream *substream;
289 u32 dvma_buffer; /* Device view of ALSA DMA buffer */
290 int size; /* Size of DMA buffer */
291 size_t offset; /* offset in user buffer */
292 int pipe; /* Data pipe used */
293 int left_gain; /* mixer elements */
294 int right_gain;
295 };
296
297 /* This structure holds the information for both chips (DBRI & CS4215) */
298 struct snd_dbri {
299 int regs_size, irq; /* Needed for unload */
300 struct sbus_dev *sdev; /* SBUS device info */
301 spinlock_t lock;
302
303 struct dbri_dma *dma; /* Pointer to our DMA block */
304 u32 dma_dvma; /* DBRI visible DMA address */
305
306 void __iomem *regs; /* dbri HW regs */
307 int dbri_irqp; /* intr queue pointer */
308
309 struct dbri_pipe pipes[DBRI_NO_PIPES]; /* DBRI's 32 data pipes */
310 int next_desc[DBRI_NO_DESCS]; /* Index of next desc, or -1 */
311 spinlock_t cmdlock; /* Protects cmd queue accesses */
312 s32 *cmdptr; /* Pointer to the last queued cmd */
313
314 int chi_bpf;
315
316 struct cs4215 mm; /* mmcodec special info */
317 /* per stream (playback/record) info */
318 struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
319 };
320
321 #define DBRI_MAX_VOLUME 63 /* Output volume */
322 #define DBRI_MAX_GAIN 15 /* Input gain */
323
324 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
325 #define D_P (1<<15) /* Program command & queue pointer valid */
326 #define D_G (1<<14) /* Allow 4-Word SBus Burst */
327 #define D_S (1<<13) /* Allow 16-Word SBus Burst */
328 #define D_E (1<<12) /* Allow 8-Word SBus Burst */
329 #define D_X (1<<7) /* Sanity Timer Disable */
330 #define D_T (1<<6) /* Permit activation of the TE interface */
331 #define D_N (1<<5) /* Permit activation of the NT interface */
332 #define D_C (1<<4) /* Permit activation of the CHI interface */
333 #define D_F (1<<3) /* Force Sanity Timer Time-Out */
334 #define D_D (1<<2) /* Disable Master Mode */
335 #define D_H (1<<1) /* Halt for Analysis */
336 #define D_R (1<<0) /* Soft Reset */
337
338 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
339 #define D_LITTLE_END (1<<8) /* Byte Order */
340 #define D_BIG_END (0<<8) /* Byte Order */
341 #define D_MRR (1<<4) /* Multiple Error Ack on SBus (read only) */
342 #define D_MLE (1<<3) /* Multiple Late Error on SBus (read only) */
343 #define D_LBG (1<<2) /* Lost Bus Grant on SBus (read only) */
344 #define D_MBE (1<<1) /* Burst Error on SBus (read only) */
345 #define D_IR (1<<0) /* Interrupt Indicator (read only) */
346
347 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
348 #define D_ENPIO3 (1<<7) /* Enable Pin 3 */
349 #define D_ENPIO2 (1<<6) /* Enable Pin 2 */
350 #define D_ENPIO1 (1<<5) /* Enable Pin 1 */
351 #define D_ENPIO0 (1<<4) /* Enable Pin 0 */
352 #define D_ENPIO (0xf0) /* Enable all the pins */
353 #define D_PIO3 (1<<3) /* Pin 3: 1: Data mode, 0: Ctrl mode */
354 #define D_PIO2 (1<<2) /* Pin 2: 1: Onboard PDN */
355 #define D_PIO1 (1<<1) /* Pin 1: 0: Reset */
356 #define D_PIO0 (1<<0) /* Pin 0: 1: Speakerbox PDN */
357
358 /* DBRI Commands (Page 20) */
359 #define D_WAIT 0x0 /* Stop execution */
360 #define D_PAUSE 0x1 /* Flush long pipes */
361 #define D_JUMP 0x2 /* New command queue */
362 #define D_IIQ 0x3 /* Initialize Interrupt Queue */
363 #define D_REX 0x4 /* Report command execution via interrupt */
364 #define D_SDP 0x5 /* Setup Data Pipe */
365 #define D_CDP 0x6 /* Continue Data Pipe (reread NULL Pointer) */
366 #define D_DTS 0x7 /* Define Time Slot */
367 #define D_SSP 0x8 /* Set short Data Pipe */
368 #define D_CHI 0x9 /* Set CHI Global Mode */
369 #define D_NT 0xa /* NT Command */
370 #define D_TE 0xb /* TE Command */
371 #define D_CDEC 0xc /* Codec setup */
372 #define D_TEST 0xd /* No comment */
373 #define D_CDM 0xe /* CHI Data mode command */
374
375 /* Special bits for some commands */
376 #define D_PIPE(v) ((v)<<0) /* Pipe No.: 0-15 long, 16-21 short */
377
378 /* Setup Data Pipe */
379 /* IRM */
380 #define D_SDP_2SAME (1<<18) /* Report 2nd time in a row value received */
381 #define D_SDP_CHANGE (2<<18) /* Report any changes */
382 #define D_SDP_EVERY (3<<18) /* Report any changes */
383 #define D_SDP_EOL (1<<17) /* EOL interrupt enable */
384 #define D_SDP_IDLE (1<<16) /* HDLC idle interrupt enable */
385
386 /* Pipe data MODE */
387 #define D_SDP_MEM (0<<13) /* To/from memory */
388 #define D_SDP_HDLC (2<<13)
389 #define D_SDP_HDLC_D (3<<13) /* D Channel (prio control) */
390 #define D_SDP_SER (4<<13) /* Serial to serial */
391 #define D_SDP_FIXED (6<<13) /* Short only */
392 #define D_SDP_MODE(v) ((v)&(7<<13))
393
394 #define D_SDP_TO_SER (1<<12) /* Direction */
395 #define D_SDP_FROM_SER (0<<12) /* Direction */
396 #define D_SDP_MSB (1<<11) /* Bit order within Byte */
397 #define D_SDP_LSB (0<<11) /* Bit order within Byte */
398 #define D_SDP_P (1<<10) /* Pointer Valid */
399 #define D_SDP_A (1<<8) /* Abort */
400 #define D_SDP_C (1<<7) /* Clear */
401
402 /* Define Time Slot */
403 #define D_DTS_VI (1<<17) /* Valid Input Time-Slot Descriptor */
404 #define D_DTS_VO (1<<16) /* Valid Output Time-Slot Descriptor */
405 #define D_DTS_INS (1<<15) /* Insert Time Slot */
406 #define D_DTS_DEL (0<<15) /* Delete Time Slot */
407 #define D_DTS_PRVIN(v) ((v)<<10) /* Previous In Pipe */
408 #define D_DTS_PRVOUT(v) ((v)<<5) /* Previous Out Pipe */
409
410 /* Time Slot defines */
411 #define D_TS_LEN(v) ((v)<<24) /* Number of bits in this time slot */
412 #define D_TS_CYCLE(v) ((v)<<14) /* Bit Count at start of TS */
413 #define D_TS_DI (1<<13) /* Data Invert */
414 #define D_TS_1CHANNEL (0<<10) /* Single Channel / Normal mode */
415 #define D_TS_MONITOR (2<<10) /* Monitor pipe */
416 #define D_TS_NONCONTIG (3<<10) /* Non contiguous mode */
417 #define D_TS_ANCHOR (7<<10) /* Starting short pipes */
418 #define D_TS_MON(v) ((v)<<5) /* Monitor Pipe */
419 #define D_TS_NEXT(v) ((v)<<0) /* Pipe no.: 0-15 long, 16-21 short */
420
421 /* Concentration Highway Interface Modes */
422 #define D_CHI_CHICM(v) ((v)<<16) /* Clock mode */
423 #define D_CHI_IR (1<<15) /* Immediate Interrupt Report */
424 #define D_CHI_EN (1<<14) /* CHIL Interrupt enabled */
425 #define D_CHI_OD (1<<13) /* Open Drain Enable */
426 #define D_CHI_FE (1<<12) /* Sample CHIFS on Rising Frame Edge */
427 #define D_CHI_FD (1<<11) /* Frame Drive */
428 #define D_CHI_BPF(v) ((v)<<0) /* Bits per Frame */
429
430 /* NT: These are here for completeness */
431 #define D_NT_FBIT (1<<17) /* Frame Bit */
432 #define D_NT_NBF (1<<16) /* Number of bad frames to loose framing */
433 #define D_NT_IRM_IMM (1<<15) /* Interrupt Report & Mask: Immediate */
434 #define D_NT_IRM_EN (1<<14) /* Interrupt Report & Mask: Enable */
435 #define D_NT_ISNT (1<<13) /* Configure interface as NT */
436 #define D_NT_FT (1<<12) /* Fixed Timing */
437 #define D_NT_EZ (1<<11) /* Echo Channel is Zeros */
438 #define D_NT_IFA (1<<10) /* Inhibit Final Activation */
439 #define D_NT_ACT (1<<9) /* Activate Interface */
440 #define D_NT_MFE (1<<8) /* Multiframe Enable */
441 #define D_NT_RLB(v) ((v)<<5) /* Remote Loopback */
442 #define D_NT_LLB(v) ((v)<<2) /* Local Loopback */
443 #define D_NT_FACT (1<<1) /* Force Activation */
444 #define D_NT_ABV (1<<0) /* Activate Bipolar Violation */
445
446 /* Codec Setup */
447 #define D_CDEC_CK(v) ((v)<<24) /* Clock Select */
448 #define D_CDEC_FED(v) ((v)<<12) /* FSCOD Falling Edge Delay */
449 #define D_CDEC_RED(v) ((v)<<0) /* FSCOD Rising Edge Delay */
450
451 /* Test */
452 #define D_TEST_RAM(v) ((v)<<16) /* RAM Pointer */
453 #define D_TEST_SIZE(v) ((v)<<11) /* */
454 #define D_TEST_ROMONOFF 0x5 /* Toggle ROM opcode monitor on/off */
455 #define D_TEST_PROC 0x6 /* Microprocessor test */
456 #define D_TEST_SER 0x7 /* Serial-Controller test */
457 #define D_TEST_RAMREAD 0x8 /* Copy from Ram to system memory */
458 #define D_TEST_RAMWRITE 0x9 /* Copy into Ram from system memory */
459 #define D_TEST_RAMBIST 0xa /* RAM Built-In Self Test */
460 #define D_TEST_MCBIST 0xb /* Microcontroller Built-In Self Test */
461 #define D_TEST_DUMP 0xe /* ROM Dump */
462
463 /* CHI Data Mode */
464 #define D_CDM_THI (1 << 8) /* Transmit Data on CHIDR Pin */
465 #define D_CDM_RHI (1 << 7) /* Receive Data on CHIDX Pin */
466 #define D_CDM_RCE (1 << 6) /* Receive on Rising Edge of CHICK */
467 #define D_CDM_XCE (1 << 2) /* Transmit Data on Rising Edge of CHICK */
468 #define D_CDM_XEN (1 << 1) /* Transmit Highway Enable */
469 #define D_CDM_REN (1 << 0) /* Receive Highway Enable */
470
471 /* The Interrupts */
472 #define D_INTR_BRDY 1 /* Buffer Ready for processing */
473 #define D_INTR_MINT 2 /* Marked Interrupt in RD/TD */
474 #define D_INTR_IBEG 3 /* Flag to idle transition detected (HDLC) */
475 #define D_INTR_IEND 4 /* Idle to flag transition detected (HDLC) */
476 #define D_INTR_EOL 5 /* End of List */
477 #define D_INTR_CMDI 6 /* Command has bean read */
478 #define D_INTR_XCMP 8 /* Transmission of frame complete */
479 #define D_INTR_SBRI 9 /* BRI status change info */
480 #define D_INTR_FXDT 10 /* Fixed data change */
481 #define D_INTR_CHIL 11 /* CHI lost frame sync (channel 36 only) */
482 #define D_INTR_COLL 11 /* Unrecoverable D-Channel collision */
483 #define D_INTR_DBYT 12 /* Dropped by frame slip */
484 #define D_INTR_RBYT 13 /* Repeated by frame slip */
485 #define D_INTR_LINT 14 /* Lost Interrupt */
486 #define D_INTR_UNDR 15 /* DMA underrun */
487
488 #define D_INTR_TE 32
489 #define D_INTR_NT 34
490 #define D_INTR_CHI 36
491 #define D_INTR_CMD 38
492
493 #define D_INTR_GETCHAN(v) (((v) >> 24) & 0x3f)
494 #define D_INTR_GETCODE(v) (((v) >> 20) & 0xf)
495 #define D_INTR_GETCMD(v) (((v) >> 16) & 0xf)
496 #define D_INTR_GETVAL(v) ((v) & 0xffff)
497 #define D_INTR_GETRVAL(v) ((v) & 0xfffff)
498
499 #define D_P_0 0 /* TE receive anchor */
500 #define D_P_1 1 /* TE transmit anchor */
501 #define D_P_2 2 /* NT transmit anchor */
502 #define D_P_3 3 /* NT receive anchor */
503 #define D_P_4 4 /* CHI send data */
504 #define D_P_5 5 /* CHI receive data */
505 #define D_P_6 6 /* */
506 #define D_P_7 7 /* */
507 #define D_P_8 8 /* */
508 #define D_P_9 9 /* */
509 #define D_P_10 10 /* */
510 #define D_P_11 11 /* */
511 #define D_P_12 12 /* */
512 #define D_P_13 13 /* */
513 #define D_P_14 14 /* */
514 #define D_P_15 15 /* */
515 #define D_P_16 16 /* CHI anchor pipe */
516 #define D_P_17 17 /* CHI send */
517 #define D_P_18 18 /* CHI receive */
518 #define D_P_19 19 /* CHI receive */
519 #define D_P_20 20 /* CHI receive */
520 #define D_P_21 21 /* */
521 #define D_P_22 22 /* */
522 #define D_P_23 23 /* */
523 #define D_P_24 24 /* */
524 #define D_P_25 25 /* */
525 #define D_P_26 26 /* */
526 #define D_P_27 27 /* */
527 #define D_P_28 28 /* */
528 #define D_P_29 29 /* */
529 #define D_P_30 30 /* */
530 #define D_P_31 31 /* */
531
532 /* Transmit descriptor defines */
533 #define DBRI_TD_F (1 << 31) /* End of Frame */
534 #define DBRI_TD_D (1 << 30) /* Do not append CRC */
535 #define DBRI_TD_CNT(v) ((v) << 16) /* Number of valid bytes in the buffer */
536 #define DBRI_TD_B (1 << 15) /* Final interrupt */
537 #define DBRI_TD_M (1 << 14) /* Marker interrupt */
538 #define DBRI_TD_I (1 << 13) /* Transmit Idle Characters */
539 #define DBRI_TD_FCNT(v) (v) /* Flag Count */
540 #define DBRI_TD_UNR (1 << 3) /* Underrun: transmitter is out of data */
541 #define DBRI_TD_ABT (1 << 2) /* Abort: frame aborted */
542 #define DBRI_TD_TBC (1 << 0) /* Transmit buffer Complete */
543 #define DBRI_TD_STATUS(v) ((v) & 0xff) /* Transmit status */
544 /* Maximum buffer size per TD: almost 8KB */
545 #define DBRI_TD_MAXCNT ((1 << 13) - 4)
546
547 /* Receive descriptor defines */
548 #define DBRI_RD_F (1 << 31) /* End of Frame */
549 #define DBRI_RD_C (1 << 30) /* Completed buffer */
550 #define DBRI_RD_B (1 << 15) /* Final interrupt */
551 #define DBRI_RD_M (1 << 14) /* Marker interrupt */
552 #define DBRI_RD_BCNT(v) (v) /* Buffer size */
553 #define DBRI_RD_CRC (1 << 7) /* 0: CRC is correct */
554 #define DBRI_RD_BBC (1 << 6) /* 1: Bad Byte received */
555 #define DBRI_RD_ABT (1 << 5) /* Abort: frame aborted */
556 #define DBRI_RD_OVRN (1 << 3) /* Overrun: data lost */
557 #define DBRI_RD_STATUS(v) ((v) & 0xff) /* Receive status */
558 #define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff) /* Valid bytes in the buffer */
559
560 /* stream_info[] access */
561 /* Translate the ALSA direction into the array index */
562 #define DBRI_STREAMNO(substream) \
563 (substream->stream == \
564 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
565
566 /* Return a pointer to dbri_streaminfo */
567 #define DBRI_STREAM(dbri, substream) \
568 &dbri->stream_info[DBRI_STREAMNO(substream)]
569
570 /*
571 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
572 * So we have to reverse the bits. Note: not all bit lengths are supported
573 */
574 static __u32 reverse_bytes(__u32 b, int len)
575 {
576 switch (len) {
577 case 32:
578 b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
579 case 16:
580 b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
581 case 8:
582 b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
583 case 4:
584 b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
585 case 2:
586 b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
587 case 1:
588 case 0:
589 break;
590 default:
591 printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
592 };
593
594 return b;
595 }
596
597 /*
598 ****************************************************************************
599 ************** DBRI initialization and command synchronization *************
600 ****************************************************************************
601
602 Commands are sent to the DBRI by building a list of them in memory,
603 then writing the address of the first list item to DBRI register 8.
604 The list is terminated with a WAIT command, which generates a
605 CPU interrupt to signal completion.
606
607 Since the DBRI can run in parallel with the CPU, several means of
608 synchronization present themselves. The method implemented here uses
609 the dbri_cmdwait() to wait for execution of batch of sent commands.
610
611 A circular command buffer is used here. A new command is being added
612 while another can be executed. The scheme works by adding two WAIT commands
613 after each sent batch of commands. When the next batch is prepared it is
614 added after the WAIT commands then the WAITs are replaced with single JUMP
615 command to the new batch. The the DBRI is forced to reread the last WAIT
616 command (replaced by the JUMP by then). If the DBRI is still executing
617 previous commands the request to reread the WAIT command is ignored.
618
619 Every time a routine wants to write commands to the DBRI, it must
620 first call dbri_cmdlock() and get pointer to a free space in
621 dbri->dma->cmd buffer. After this, the commands can be written to
622 the buffer, and dbri_cmdsend() is called with the final pointer value
623 to send them to the DBRI.
624
625 */
626
627 #define MAXLOOPS 20
628 /*
629 * Wait for the current command string to execute
630 */
631 static void dbri_cmdwait(struct snd_dbri *dbri)
632 {
633 int maxloops = MAXLOOPS;
634 unsigned long flags;
635
636 /* Delay if previous commands are still being processed */
637 spin_lock_irqsave(&dbri->lock, flags);
638 while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
639 spin_unlock_irqrestore(&dbri->lock, flags);
640 msleep_interruptible(1);
641 spin_lock_irqsave(&dbri->lock, flags);
642 }
643 spin_unlock_irqrestore(&dbri->lock, flags);
644
645 if (maxloops == 0)
646 printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
647 else
648 dprintk(D_CMD, "Chip completed command buffer (%d)\n",
649 MAXLOOPS - maxloops - 1);
650 }
651 /*
652 * Lock the command queue and return pointer to space for len cmd words
653 * It locks the cmdlock spinlock.
654 */
655 static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
656 {
657 /* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
658 len += 2;
659 spin_lock(&dbri->cmdlock);
660 if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
661 return dbri->cmdptr + 2;
662 else if (len < sbus_readl(dbri->regs + REG8) - dbri->dma_dvma)
663 return dbri->dma->cmd;
664 else
665 printk(KERN_ERR "DBRI: no space for commands.");
666
667 return NULL;
668 }
669
670 /*
671 * Send prepared cmd string. It works by writing a JUMP cmd into
672 * the last WAIT cmd and force DBRI to reread the cmd.
673 * The JUMP cmd points to the new cmd string.
674 * It also releases the cmdlock spinlock.
675 *
676 * Lock must be held before calling this.
677 */
678 static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
679 {
680 s32 tmp, addr;
681 static int wait_id = 0;
682
683 wait_id++;
684 wait_id &= 0xffff; /* restrict it to a 16 bit counter. */
685 *(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
686 *(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
687
688 /* Replace the last command with JUMP */
689 addr = dbri->dma_dvma + (cmd - len - dbri->dma->cmd) * sizeof(s32);
690 *(dbri->cmdptr+1) = addr;
691 *(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
692
693 #ifdef DBRI_DEBUG
694 if (cmd > dbri->cmdptr) {
695 s32 *ptr;
696
697 for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
698 dprintk(D_CMD, "cmd: %lx:%08x\n",
699 (unsigned long)ptr, *ptr);
700 } else {
701 s32 *ptr = dbri->cmdptr;
702
703 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
704 ptr++;
705 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
706 for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
707 dprintk(D_CMD, "cmd: %lx:%08x\n",
708 (unsigned long)ptr, *ptr);
709 }
710 #endif
711
712 /* Reread the last command */
713 tmp = sbus_readl(dbri->regs + REG0);
714 tmp |= D_P;
715 sbus_writel(tmp, dbri->regs + REG0);
716
717 dbri->cmdptr = cmd;
718 spin_unlock(&dbri->cmdlock);
719 }
720
721 /* Lock must be held when calling this */
722 static void dbri_reset(struct snd_dbri *dbri)
723 {
724 int i;
725 u32 tmp;
726
727 dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
728 sbus_readl(dbri->regs + REG0),
729 sbus_readl(dbri->regs + REG2),
730 sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
731
732 sbus_writel(D_R, dbri->regs + REG0); /* Soft Reset */
733 for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
734 udelay(10);
735
736 /* A brute approach - DBRI falls back to working burst size by itself
737 * On SS20 D_S does not work, so do not try so high. */
738 tmp = sbus_readl(dbri->regs + REG0);
739 tmp |= D_G | D_E;
740 tmp &= ~D_S;
741 sbus_writel(tmp, dbri->regs + REG0);
742 }
743
744 /* Lock must not be held before calling this */
745 static void __devinit dbri_initialize(struct snd_dbri *dbri)
746 {
747 s32 *cmd;
748 u32 dma_addr;
749 unsigned long flags;
750 int n;
751
752 spin_lock_irqsave(&dbri->lock, flags);
753
754 dbri_reset(dbri);
755
756 /* Initialize pipes */
757 for (n = 0; n < DBRI_NO_PIPES; n++)
758 dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
759
760 spin_lock_init(&dbri->cmdlock);
761 /*
762 * Initialize the interrupt ring buffer.
763 */
764 dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
765 dbri->dma->intr[0] = dma_addr;
766 dbri->dbri_irqp = 1;
767 /*
768 * Set up the interrupt queue
769 */
770 spin_lock(&dbri->cmdlock);
771 cmd = dbri->cmdptr = dbri->dma->cmd;
772 *(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
773 *(cmd++) = dma_addr;
774 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
775 dbri->cmdptr = cmd;
776 *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
777 *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
778 dma_addr = dbri->dma_dvma + dbri_dma_off(cmd, 0);
779 sbus_writel(dma_addr, dbri->regs + REG8);
780 spin_unlock(&dbri->cmdlock);
781
782 spin_unlock_irqrestore(&dbri->lock, flags);
783 dbri_cmdwait(dbri);
784 }
785
786 /*
787 ****************************************************************************
788 ************************** DBRI data pipe management ***********************
789 ****************************************************************************
790
791 While DBRI control functions use the command and interrupt buffers, the
792 main data path takes the form of data pipes, which can be short (command
793 and interrupt driven), or long (attached to DMA buffers). These functions
794 provide a rudimentary means of setting up and managing the DBRI's pipes,
795 but the calling functions have to make sure they respect the pipes' linked
796 list ordering, among other things. The transmit and receive functions
797 here interface closely with the transmit and receive interrupt code.
798
799 */
800 static inline int pipe_active(struct snd_dbri *dbri, int pipe)
801 {
802 return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
803 }
804
805 /* reset_pipe(dbri, pipe)
806 *
807 * Called on an in-use pipe to clear anything being transmitted or received
808 * Lock must be held before calling this.
809 */
810 static void reset_pipe(struct snd_dbri *dbri, int pipe)
811 {
812 int sdp;
813 int desc;
814 s32 *cmd;
815
816 if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
817 printk(KERN_ERR "DBRI: reset_pipe called with "
818 "illegal pipe number\n");
819 return;
820 }
821
822 sdp = dbri->pipes[pipe].sdp;
823 if (sdp == 0) {
824 printk(KERN_ERR "DBRI: reset_pipe called "
825 "on uninitialized pipe\n");
826 return;
827 }
828
829 cmd = dbri_cmdlock(dbri, 3);
830 *(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
831 *(cmd++) = 0;
832 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
833 dbri_cmdsend(dbri, cmd, 3);
834
835 desc = dbri->pipes[pipe].first_desc;
836 if (desc >= 0)
837 do {
838 dbri->dma->desc[desc].ba = 0;
839 dbri->dma->desc[desc].nda = 0;
840 desc = dbri->next_desc[desc];
841 } while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
842
843 dbri->pipes[pipe].desc = -1;
844 dbri->pipes[pipe].first_desc = -1;
845 }
846
847 /*
848 * Lock must be held before calling this.
849 */
850 static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
851 {
852 if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
853 printk(KERN_ERR "DBRI: setup_pipe called "
854 "with illegal pipe number\n");
855 return;
856 }
857
858 if ((sdp & 0xf800) != sdp) {
859 printk(KERN_ERR "DBRI: setup_pipe called "
860 "with strange SDP value\n");
861 /* sdp &= 0xf800; */
862 }
863
864 /* If this is a fixed receive pipe, arrange for an interrupt
865 * every time its data changes
866 */
867 if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
868 sdp |= D_SDP_CHANGE;
869
870 sdp |= D_PIPE(pipe);
871 dbri->pipes[pipe].sdp = sdp;
872 dbri->pipes[pipe].desc = -1;
873 dbri->pipes[pipe].first_desc = -1;
874
875 reset_pipe(dbri, pipe);
876 }
877
878 /*
879 * Lock must be held before calling this.
880 */
881 static void link_time_slot(struct snd_dbri *dbri, int pipe,
882 int prevpipe, int nextpipe,
883 int length, int cycle)
884 {
885 s32 *cmd;
886 int val;
887
888 if (pipe < 0 || pipe > DBRI_MAX_PIPE
889 || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
890 || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
891 printk(KERN_ERR
892 "DBRI: link_time_slot called with illegal pipe number\n");
893 return;
894 }
895
896 if (dbri->pipes[pipe].sdp == 0
897 || dbri->pipes[prevpipe].sdp == 0
898 || dbri->pipes[nextpipe].sdp == 0) {
899 printk(KERN_ERR "DBRI: link_time_slot called "
900 "on uninitialized pipe\n");
901 return;
902 }
903
904 dbri->pipes[prevpipe].nextpipe = pipe;
905 dbri->pipes[pipe].nextpipe = nextpipe;
906 dbri->pipes[pipe].length = length;
907
908 cmd = dbri_cmdlock(dbri, 4);
909
910 if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
911 /* Deal with CHI special case:
912 * "If transmission on edges 0 or 1 is desired, then cycle n
913 * (where n = # of bit times per frame...) must be used."
914 * - DBRI data sheet, page 11
915 */
916 if (prevpipe == 16 && cycle == 0)
917 cycle = dbri->chi_bpf;
918
919 val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
920 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
921 *(cmd++) = 0;
922 *(cmd++) =
923 D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
924 } else {
925 val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
926 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
927 *(cmd++) =
928 D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
929 *(cmd++) = 0;
930 }
931 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
932
933 dbri_cmdsend(dbri, cmd, 4);
934 }
935
936 #if 0
937 /*
938 * Lock must be held before calling this.
939 */
940 static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
941 enum in_or_out direction, int prevpipe,
942 int nextpipe)
943 {
944 s32 *cmd;
945 int val;
946
947 if (pipe < 0 || pipe > DBRI_MAX_PIPE
948 || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
949 || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
950 printk(KERN_ERR
951 "DBRI: unlink_time_slot called with illegal pipe number\n");
952 return;
953 }
954
955 cmd = dbri_cmdlock(dbri, 4);
956
957 if (direction == PIPEinput) {
958 val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
959 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
960 *(cmd++) = D_TS_NEXT(nextpipe);
961 *(cmd++) = 0;
962 } else {
963 val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
964 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
965 *(cmd++) = 0;
966 *(cmd++) = D_TS_NEXT(nextpipe);
967 }
968 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
969
970 dbri_cmdsend(dbri, cmd, 4);
971 }
972 #endif
973
974 /* xmit_fixed() / recv_fixed()
975 *
976 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
977 * expected to change much, and which we don't need to buffer.
978 * The DBRI only interrupts us when the data changes (receive pipes),
979 * or only changes the data when this function is called (transmit pipes).
980 * Only short pipes (numbers 16-31) can be used in fixed data mode.
981 *
982 * These function operate on a 32-bit field, no matter how large
983 * the actual time slot is. The interrupt handler takes care of bit
984 * ordering and alignment. An 8-bit time slot will always end up
985 * in the low-order 8 bits, filled either MSB-first or LSB-first,
986 * depending on the settings passed to setup_pipe().
987 *
988 * Lock must not be held before calling it.
989 */
990 static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
991 {
992 s32 *cmd;
993 unsigned long flags;
994
995 if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
996 printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
997 return;
998 }
999
1000 if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1001 printk(KERN_ERR "DBRI: xmit_fixed: "
1002 "Uninitialized pipe %d\n", pipe);
1003 return;
1004 }
1005
1006 if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1007 printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1008 return;
1009 }
1010
1011 if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1012 printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1013 pipe);
1014 return;
1015 }
1016
1017 /* DBRI short pipes always transmit LSB first */
1018
1019 if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1020 data = reverse_bytes(data, dbri->pipes[pipe].length);
1021
1022 cmd = dbri_cmdlock(dbri, 3);
1023
1024 *(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1025 *(cmd++) = data;
1026 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1027
1028 spin_lock_irqsave(&dbri->lock, flags);
1029 dbri_cmdsend(dbri, cmd, 3);
1030 spin_unlock_irqrestore(&dbri->lock, flags);
1031 dbri_cmdwait(dbri);
1032
1033 }
1034
1035 static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1036 {
1037 if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1038 printk(KERN_ERR "DBRI: recv_fixed called with "
1039 "illegal pipe number\n");
1040 return;
1041 }
1042
1043 if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1044 printk(KERN_ERR "DBRI: recv_fixed called on "
1045 "non-fixed pipe %d\n", pipe);
1046 return;
1047 }
1048
1049 if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1050 printk(KERN_ERR "DBRI: recv_fixed called on "
1051 "transmit pipe %d\n", pipe);
1052 return;
1053 }
1054
1055 dbri->pipes[pipe].recv_fixed_ptr = ptr;
1056 }
1057
1058 /* setup_descs()
1059 *
1060 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1061 * with a DMA buffer.
1062 *
1063 * Only pipe numbers 0-15 can be used in this mode.
1064 *
1065 * This function takes a stream number pointing to a data buffer,
1066 * and work by building chains of descriptors which identify the
1067 * data buffers. Buffers too large for a single descriptor will
1068 * be spread across multiple descriptors.
1069 *
1070 * All descriptors create a ring buffer.
1071 *
1072 * Lock must be held before calling this.
1073 */
1074 static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1075 {
1076 struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1077 __u32 dvma_buffer;
1078 int desc;
1079 int len;
1080 int first_desc = -1;
1081 int last_desc = -1;
1082
1083 if (info->pipe < 0 || info->pipe > 15) {
1084 printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1085 return -2;
1086 }
1087
1088 if (dbri->pipes[info->pipe].sdp == 0) {
1089 printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1090 info->pipe);
1091 return -2;
1092 }
1093
1094 dvma_buffer = info->dvma_buffer;
1095 len = info->size;
1096
1097 if (streamno == DBRI_PLAY) {
1098 if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1099 printk(KERN_ERR "DBRI: setup_descs: "
1100 "Called on receive pipe %d\n", info->pipe);
1101 return -2;
1102 }
1103 } else {
1104 if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1105 printk(KERN_ERR
1106 "DBRI: setup_descs: Called on transmit pipe %d\n",
1107 info->pipe);
1108 return -2;
1109 }
1110 /* Should be able to queue multiple buffers
1111 * to receive on a pipe
1112 */
1113 if (pipe_active(dbri, info->pipe)) {
1114 printk(KERN_ERR "DBRI: recv_on_pipe: "
1115 "Called on active pipe %d\n", info->pipe);
1116 return -2;
1117 }
1118
1119 /* Make sure buffer size is multiple of four */
1120 len &= ~3;
1121 }
1122
1123 /* Free descriptors if pipe has any */
1124 desc = dbri->pipes[info->pipe].first_desc;
1125 if (desc >= 0)
1126 do {
1127 dbri->dma->desc[desc].ba = 0;
1128 dbri->dma->desc[desc].nda = 0;
1129 desc = dbri->next_desc[desc];
1130 } while (desc != -1 &&
1131 desc != dbri->pipes[info->pipe].first_desc);
1132
1133 dbri->pipes[info->pipe].desc = -1;
1134 dbri->pipes[info->pipe].first_desc = -1;
1135
1136 desc = 0;
1137 while (len > 0) {
1138 int mylen;
1139
1140 for (; desc < DBRI_NO_DESCS; desc++) {
1141 if (!dbri->dma->desc[desc].ba)
1142 break;
1143 }
1144
1145 if (desc == DBRI_NO_DESCS) {
1146 printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1147 return -1;
1148 }
1149
1150 if (len > DBRI_TD_MAXCNT)
1151 mylen = DBRI_TD_MAXCNT; /* 8KB - 4 */
1152 else
1153 mylen = len;
1154
1155 if (mylen > period)
1156 mylen = period;
1157
1158 dbri->next_desc[desc] = -1;
1159 dbri->dma->desc[desc].ba = dvma_buffer;
1160 dbri->dma->desc[desc].nda = 0;
1161
1162 if (streamno == DBRI_PLAY) {
1163 dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1164 dbri->dma->desc[desc].word4 = 0;
1165 dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1166 } else {
1167 dbri->dma->desc[desc].word1 = 0;
1168 dbri->dma->desc[desc].word4 =
1169 DBRI_RD_B | DBRI_RD_BCNT(mylen);
1170 }
1171
1172 if (first_desc == -1)
1173 first_desc = desc;
1174 else {
1175 dbri->next_desc[last_desc] = desc;
1176 dbri->dma->desc[last_desc].nda =
1177 dbri->dma_dvma + dbri_dma_off(desc, desc);
1178 }
1179
1180 last_desc = desc;
1181 dvma_buffer += mylen;
1182 len -= mylen;
1183 }
1184
1185 if (first_desc == -1 || last_desc == -1) {
1186 printk(KERN_ERR "DBRI: setup_descs: "
1187 " Not enough descriptors available\n");
1188 return -1;
1189 }
1190
1191 dbri->dma->desc[last_desc].nda =
1192 dbri->dma_dvma + dbri_dma_off(desc, first_desc);
1193 dbri->next_desc[last_desc] = first_desc;
1194 dbri->pipes[info->pipe].first_desc = first_desc;
1195 dbri->pipes[info->pipe].desc = first_desc;
1196
1197 #ifdef DBRI_DEBUG
1198 for (desc = first_desc; desc != -1;) {
1199 dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1200 desc,
1201 dbri->dma->desc[desc].word1,
1202 dbri->dma->desc[desc].ba,
1203 dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1204 desc = dbri->next_desc[desc];
1205 if (desc == first_desc)
1206 break;
1207 }
1208 #endif
1209 return 0;
1210 }
1211
1212 /*
1213 ****************************************************************************
1214 ************************** DBRI - CHI interface ****************************
1215 ****************************************************************************
1216
1217 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1218 multiplexed serial interface which the DBRI can operate in either master
1219 (give clock/frame sync) or slave (take clock/frame sync) mode.
1220
1221 */
1222
1223 enum master_or_slave { CHImaster, CHIslave };
1224
1225 /*
1226 * Lock must not be held before calling it.
1227 */
1228 static void reset_chi(struct snd_dbri *dbri,
1229 enum master_or_slave master_or_slave,
1230 int bits_per_frame)
1231 {
1232 s32 *cmd;
1233 int val;
1234
1235 /* Set CHI Anchor: Pipe 16 */
1236
1237 cmd = dbri_cmdlock(dbri, 4);
1238 val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1239 | D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1240 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1241 *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1242 *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1243 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1244 dbri_cmdsend(dbri, cmd, 4);
1245
1246 dbri->pipes[16].sdp = 1;
1247 dbri->pipes[16].nextpipe = 16;
1248
1249 cmd = dbri_cmdlock(dbri, 4);
1250
1251 if (master_or_slave == CHIslave) {
1252 /* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1253 *
1254 * CHICM = 0 (slave mode, 8 kHz frame rate)
1255 * IR = give immediate CHI status interrupt
1256 * EN = give CHI status interrupt upon change
1257 */
1258 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1259 } else {
1260 /* Setup DBRI for CHI Master - generate clock, FS
1261 *
1262 * BPF = bits per 8 kHz frame
1263 * 12.288 MHz / CHICM_divisor = clock rate
1264 * FD = 1 - drive CHIFS on rising edge of CHICK
1265 */
1266 int clockrate = bits_per_frame * 8;
1267 int divisor = 12288 / clockrate;
1268
1269 if (divisor > 255 || divisor * clockrate != 12288)
1270 printk(KERN_ERR "DBRI: illegal bits_per_frame "
1271 "in setup_chi\n");
1272
1273 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1274 | D_CHI_BPF(bits_per_frame));
1275 }
1276
1277 dbri->chi_bpf = bits_per_frame;
1278
1279 /* CHI Data Mode
1280 *
1281 * RCE = 0 - receive on falling edge of CHICK
1282 * XCE = 1 - transmit on rising edge of CHICK
1283 * XEN = 1 - enable transmitter
1284 * REN = 1 - enable receiver
1285 */
1286
1287 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1288 *(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1289 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1290
1291 dbri_cmdsend(dbri, cmd, 4);
1292 }
1293
1294 /*
1295 ****************************************************************************
1296 *********************** CS4215 audio codec management **********************
1297 ****************************************************************************
1298
1299 In the standard SPARC audio configuration, the CS4215 codec is attached
1300 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1301
1302 * Lock must not be held before calling it.
1303
1304 */
1305 static __devinit void cs4215_setup_pipes(struct snd_dbri *dbri)
1306 {
1307 unsigned long flags;
1308
1309 spin_lock_irqsave(&dbri->lock, flags);
1310 /*
1311 * Data mode:
1312 * Pipe 4: Send timeslots 1-4 (audio data)
1313 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1314 * Pipe 6: Receive timeslots 1-4 (audio data)
1315 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1316 * interrupt, and the rest of the data (slot 5 and 8) is
1317 * not relevant for us (only for doublechecking).
1318 *
1319 * Control mode:
1320 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1321 * Pipe 18: Receive timeslot 1 (clb).
1322 * Pipe 19: Receive timeslot 7 (version).
1323 */
1324
1325 setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1326 setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1327 setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1328 setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1329
1330 setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1331 setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1332 setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1333 spin_unlock_irqrestore(&dbri->lock, flags);
1334
1335 dbri_cmdwait(dbri);
1336 }
1337
1338 static __devinit int cs4215_init_data(struct cs4215 *mm)
1339 {
1340 /*
1341 * No action, memory resetting only.
1342 *
1343 * Data Time Slot 5-8
1344 * Speaker,Line and Headphone enable. Gain set to the half.
1345 * Input is mike.
1346 */
1347 mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1348 mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1349 mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1350 mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1351
1352 /*
1353 * Control Time Slot 1-4
1354 * 0: Default I/O voltage scale
1355 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1356 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1357 * 3: Tests disabled
1358 */
1359 mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1360 mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1361 mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1362 mm->ctrl[3] = 0;
1363
1364 mm->status = 0;
1365 mm->version = 0xff;
1366 mm->precision = 8; /* For ULAW */
1367 mm->channels = 1;
1368
1369 return 0;
1370 }
1371
1372 static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1373 {
1374 if (muted) {
1375 dbri->mm.data[0] |= 63;
1376 dbri->mm.data[1] |= 63;
1377 dbri->mm.data[2] &= ~15;
1378 dbri->mm.data[3] &= ~15;
1379 } else {
1380 /* Start by setting the playback attenuation. */
1381 struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1382 int left_gain = info->left_gain & 0x3f;
1383 int right_gain = info->right_gain & 0x3f;
1384
1385 dbri->mm.data[0] &= ~0x3f; /* Reset the volume bits */
1386 dbri->mm.data[1] &= ~0x3f;
1387 dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1388 dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1389
1390 /* Now set the recording gain. */
1391 info = &dbri->stream_info[DBRI_REC];
1392 left_gain = info->left_gain & 0xf;
1393 right_gain = info->right_gain & 0xf;
1394 dbri->mm.data[2] |= CS4215_LG(left_gain);
1395 dbri->mm.data[3] |= CS4215_RG(right_gain);
1396 }
1397
1398 xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1399 }
1400
1401 /*
1402 * Set the CS4215 to data mode.
1403 */
1404 static void cs4215_open(struct snd_dbri *dbri)
1405 {
1406 int data_width;
1407 u32 tmp;
1408 unsigned long flags;
1409
1410 dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1411 dbri->mm.channels, dbri->mm.precision);
1412
1413 /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1414 * to make sure this takes. This avoids clicking noises.
1415 */
1416
1417 cs4215_setdata(dbri, 1);
1418 udelay(125);
1419
1420 /*
1421 * Data mode:
1422 * Pipe 4: Send timeslots 1-4 (audio data)
1423 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1424 * Pipe 6: Receive timeslots 1-4 (audio data)
1425 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1426 * interrupt, and the rest of the data (slot 5 and 8) is
1427 * not relevant for us (only for doublechecking).
1428 *
1429 * Just like in control mode, the time slots are all offset by eight
1430 * bits. The CS4215, it seems, observes TSIN (the delayed signal)
1431 * even if it's the CHI master. Don't ask me...
1432 */
1433 spin_lock_irqsave(&dbri->lock, flags);
1434 tmp = sbus_readl(dbri->regs + REG0);
1435 tmp &= ~(D_C); /* Disable CHI */
1436 sbus_writel(tmp, dbri->regs + REG0);
1437
1438 /* Switch CS4215 to data mode - set PIO3 to 1 */
1439 sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1440 (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1441
1442 reset_chi(dbri, CHIslave, 128);
1443
1444 /* Note: this next doesn't work for 8-bit stereo, because the two
1445 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1446 * (See CS4215 datasheet Fig 15)
1447 *
1448 * DBRI non-contiguous mode would be required to make this work.
1449 */
1450 data_width = dbri->mm.channels * dbri->mm.precision;
1451
1452 link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1453 link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1454 link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1455 link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1456
1457 /* FIXME: enable CHI after _setdata? */
1458 tmp = sbus_readl(dbri->regs + REG0);
1459 tmp |= D_C; /* Enable CHI */
1460 sbus_writel(tmp, dbri->regs + REG0);
1461 spin_unlock_irqrestore(&dbri->lock, flags);
1462
1463 cs4215_setdata(dbri, 0);
1464 }
1465
1466 /*
1467 * Send the control information (i.e. audio format)
1468 */
1469 static int cs4215_setctrl(struct snd_dbri *dbri)
1470 {
1471 int i, val;
1472 u32 tmp;
1473 unsigned long flags;
1474
1475 /* FIXME - let the CPU do something useful during these delays */
1476
1477 /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1478 * to make sure this takes. This avoids clicking noises.
1479 */
1480 cs4215_setdata(dbri, 1);
1481 udelay(125);
1482
1483 /*
1484 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1485 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1486 */
1487 val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1488 sbus_writel(val, dbri->regs + REG2);
1489 dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1490 udelay(34);
1491
1492 /* In Control mode, the CS4215 is a slave device, so the DBRI must
1493 * operate as CHI master, supplying clocking and frame synchronization.
1494 *
1495 * In Data mode, however, the CS4215 must be CHI master to insure
1496 * that its data stream is synchronous with its codec.
1497 *
1498 * The upshot of all this? We start by putting the DBRI into master
1499 * mode, program the CS4215 in Control mode, then switch the CS4215
1500 * into Data mode and put the DBRI into slave mode. Various timing
1501 * requirements must be observed along the way.
1502 *
1503 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1504 * others?), the addressing of the CS4215's time slots is
1505 * offset by eight bits, so we add eight to all the "cycle"
1506 * values in the Define Time Slot (DTS) commands. This is
1507 * done in hardware by a TI 248 that delays the DBRI->4215
1508 * frame sync signal by eight clock cycles. Anybody know why?
1509 */
1510 spin_lock_irqsave(&dbri->lock, flags);
1511 tmp = sbus_readl(dbri->regs + REG0);
1512 tmp &= ~D_C; /* Disable CHI */
1513 sbus_writel(tmp, dbri->regs + REG0);
1514
1515 reset_chi(dbri, CHImaster, 128);
1516
1517 /*
1518 * Control mode:
1519 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1520 * Pipe 18: Receive timeslot 1 (clb).
1521 * Pipe 19: Receive timeslot 7 (version).
1522 */
1523
1524 link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1525 link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1526 link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1527 spin_unlock_irqrestore(&dbri->lock, flags);
1528
1529 /* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1530 dbri->mm.ctrl[0] &= ~CS4215_CLB;
1531 xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1532
1533 spin_lock_irqsave(&dbri->lock, flags);
1534 tmp = sbus_readl(dbri->regs + REG0);
1535 tmp |= D_C; /* Enable CHI */
1536 sbus_writel(tmp, dbri->regs + REG0);
1537 spin_unlock_irqrestore(&dbri->lock, flags);
1538
1539 for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1540 msleep_interruptible(1);
1541
1542 if (i == 0) {
1543 dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1544 dbri->mm.status);
1545 return -1;
1546 }
1547
1548 /* Disable changes to our copy of the version number, as we are about
1549 * to leave control mode.
1550 */
1551 recv_fixed(dbri, 19, NULL);
1552
1553 /* Terminate CS4215 control mode - data sheet says
1554 * "Set CLB=1 and send two more frames of valid control info"
1555 */
1556 dbri->mm.ctrl[0] |= CS4215_CLB;
1557 xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1558
1559 /* Two frames of control info @ 8kHz frame rate = 250 us delay */
1560 udelay(250);
1561
1562 cs4215_setdata(dbri, 0);
1563
1564 return 0;
1565 }
1566
1567 /*
1568 * Setup the codec with the sampling rate, audio format and number of
1569 * channels.
1570 * As part of the process we resend the settings for the data
1571 * timeslots as well.
1572 */
1573 static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1574 snd_pcm_format_t format, unsigned int channels)
1575 {
1576 int freq_idx;
1577 int ret = 0;
1578
1579 /* Lookup index for this rate */
1580 for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1581 if (CS4215_FREQ[freq_idx].freq == rate)
1582 break;
1583 }
1584 if (CS4215_FREQ[freq_idx].freq != rate) {
1585 printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1586 return -1;
1587 }
1588
1589 switch (format) {
1590 case SNDRV_PCM_FORMAT_MU_LAW:
1591 dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1592 dbri->mm.precision = 8;
1593 break;
1594 case SNDRV_PCM_FORMAT_A_LAW:
1595 dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1596 dbri->mm.precision = 8;
1597 break;
1598 case SNDRV_PCM_FORMAT_U8:
1599 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1600 dbri->mm.precision = 8;
1601 break;
1602 case SNDRV_PCM_FORMAT_S16_BE:
1603 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1604 dbri->mm.precision = 16;
1605 break;
1606 default:
1607 printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1608 return -1;
1609 }
1610
1611 /* Add rate parameters */
1612 dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1613 dbri->mm.ctrl[2] = CS4215_XCLK |
1614 CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1615
1616 dbri->mm.channels = channels;
1617 if (channels == 2)
1618 dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1619
1620 ret = cs4215_setctrl(dbri);
1621 if (ret == 0)
1622 cs4215_open(dbri); /* set codec to data mode */
1623
1624 return ret;
1625 }
1626
1627 /*
1628 *
1629 */
1630 static __devinit int cs4215_init(struct snd_dbri *dbri)
1631 {
1632 u32 reg2 = sbus_readl(dbri->regs + REG2);
1633 dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1634
1635 /* Look for the cs4215 chips */
1636 if (reg2 & D_PIO2) {
1637 dprintk(D_MM, "Onboard CS4215 detected\n");
1638 dbri->mm.onboard = 1;
1639 }
1640 if (reg2 & D_PIO0) {
1641 dprintk(D_MM, "Speakerbox detected\n");
1642 dbri->mm.onboard = 0;
1643
1644 if (reg2 & D_PIO2) {
1645 printk(KERN_INFO "DBRI: Using speakerbox / "
1646 "ignoring onboard mmcodec.\n");
1647 sbus_writel(D_ENPIO2, dbri->regs + REG2);
1648 }
1649 }
1650
1651 if (!(reg2 & (D_PIO0 | D_PIO2))) {
1652 printk(KERN_ERR "DBRI: no mmcodec found.\n");
1653 return -EIO;
1654 }
1655
1656 cs4215_setup_pipes(dbri);
1657 cs4215_init_data(&dbri->mm);
1658
1659 /* Enable capture of the status & version timeslots. */
1660 recv_fixed(dbri, 18, &dbri->mm.status);
1661 recv_fixed(dbri, 19, &dbri->mm.version);
1662
1663 dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1664 if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1665 dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1666 dbri->mm.offset);
1667 return -EIO;
1668 }
1669 dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1670
1671 return 0;
1672 }
1673
1674 /*
1675 ****************************************************************************
1676 *************************** DBRI interrupt handler *************************
1677 ****************************************************************************
1678
1679 The DBRI communicates with the CPU mainly via a circular interrupt
1680 buffer. When an interrupt is signaled, the CPU walks through the
1681 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1682 Complicated interrupts are handled by dedicated functions (which
1683 appear first in this file). Any pending interrupts can be serviced by
1684 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1685 interrupts are disabled.
1686
1687 */
1688
1689 /* xmit_descs()
1690 *
1691 * Starts transmitting the current TD's for recording/playing.
1692 * For playback, ALSA has filled the DMA memory with new data (we hope).
1693 */
1694 static void xmit_descs(struct snd_dbri *dbri)
1695 {
1696 struct dbri_streaminfo *info;
1697 s32 *cmd;
1698 unsigned long flags;
1699 int first_td;
1700
1701 if (dbri == NULL)
1702 return; /* Disabled */
1703
1704 info = &dbri->stream_info[DBRI_REC];
1705 spin_lock_irqsave(&dbri->lock, flags);
1706
1707 if (info->pipe >= 0) {
1708 first_td = dbri->pipes[info->pipe].first_desc;
1709
1710 dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1711
1712 /* Stream could be closed by the time we run. */
1713 if (first_td >= 0) {
1714 cmd = dbri_cmdlock(dbri, 2);
1715 *(cmd++) = DBRI_CMD(D_SDP, 0,
1716 dbri->pipes[info->pipe].sdp
1717 | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1718 *(cmd++) = dbri->dma_dvma +
1719 dbri_dma_off(desc, first_td);
1720 dbri_cmdsend(dbri, cmd, 2);
1721
1722 /* Reset our admin of the pipe. */
1723 dbri->pipes[info->pipe].desc = first_td;
1724 }
1725 }
1726
1727 info = &dbri->stream_info[DBRI_PLAY];
1728
1729 if (info->pipe >= 0) {
1730 first_td = dbri->pipes[info->pipe].first_desc;
1731
1732 dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1733
1734 /* Stream could be closed by the time we run. */
1735 if (first_td >= 0) {
1736 cmd = dbri_cmdlock(dbri, 2);
1737 *(cmd++) = DBRI_CMD(D_SDP, 0,
1738 dbri->pipes[info->pipe].sdp
1739 | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1740 *(cmd++) = dbri->dma_dvma +
1741 dbri_dma_off(desc, first_td);
1742 dbri_cmdsend(dbri, cmd, 2);
1743
1744 /* Reset our admin of the pipe. */
1745 dbri->pipes[info->pipe].desc = first_td;
1746 }
1747 }
1748
1749 spin_unlock_irqrestore(&dbri->lock, flags);
1750 }
1751
1752 /* transmission_complete_intr()
1753 *
1754 * Called by main interrupt handler when DBRI signals transmission complete
1755 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1756 *
1757 * Walks through the pipe's list of transmit buffer descriptors and marks
1758 * them as available. Stops when the first descriptor is found without
1759 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1760 *
1761 * The DMA buffers are not released. They form a ring buffer and
1762 * they are filled by ALSA while others are transmitted by DMA.
1763 *
1764 */
1765
1766 static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1767 {
1768 struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1769 int td = dbri->pipes[pipe].desc;
1770 int status;
1771
1772 while (td >= 0) {
1773 if (td >= DBRI_NO_DESCS) {
1774 printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1775 return;
1776 }
1777
1778 status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1779 if (!(status & DBRI_TD_TBC))
1780 break;
1781
1782 dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1783
1784 dbri->dma->desc[td].word4 = 0; /* Reset it for next time. */
1785 info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1786
1787 td = dbri->next_desc[td];
1788 dbri->pipes[pipe].desc = td;
1789 }
1790
1791 /* Notify ALSA */
1792 spin_unlock(&dbri->lock);
1793 snd_pcm_period_elapsed(info->substream);
1794 spin_lock(&dbri->lock);
1795 }
1796
1797 static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1798 {
1799 struct dbri_streaminfo *info;
1800 int rd = dbri->pipes[pipe].desc;
1801 s32 status;
1802
1803 if (rd < 0 || rd >= DBRI_NO_DESCS) {
1804 printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1805 return;
1806 }
1807
1808 dbri->pipes[pipe].desc = dbri->next_desc[rd];
1809 status = dbri->dma->desc[rd].word1;
1810 dbri->dma->desc[rd].word1 = 0; /* Reset it for next time. */
1811
1812 info = &dbri->stream_info[DBRI_REC];
1813 info->offset += DBRI_RD_CNT(status);
1814
1815 /* FIXME: Check status */
1816
1817 dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1818 rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1819
1820 /* Notify ALSA */
1821 spin_unlock(&dbri->lock);
1822 snd_pcm_period_elapsed(info->substream);
1823 spin_lock(&dbri->lock);
1824 }
1825
1826 static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1827 {
1828 int val = D_INTR_GETVAL(x);
1829 int channel = D_INTR_GETCHAN(x);
1830 int command = D_INTR_GETCMD(x);
1831 int code = D_INTR_GETCODE(x);
1832 #ifdef DBRI_DEBUG
1833 int rval = D_INTR_GETRVAL(x);
1834 #endif
1835
1836 if (channel == D_INTR_CMD) {
1837 dprintk(D_CMD, "INTR: Command: %-5s Value:%d\n",
1838 cmds[command], val);
1839 } else {
1840 dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1841 channel, code, rval);
1842 }
1843
1844 switch (code) {
1845 case D_INTR_CMDI:
1846 if (command != D_WAIT)
1847 printk(KERN_ERR "DBRI: Command read interrupt\n");
1848 break;
1849 case D_INTR_BRDY:
1850 reception_complete_intr(dbri, channel);
1851 break;
1852 case D_INTR_XCMP:
1853 case D_INTR_MINT:
1854 transmission_complete_intr(dbri, channel);
1855 break;
1856 case D_INTR_UNDR:
1857 /* UNDR - Transmission underrun
1858 * resend SDP command with clear pipe bit (C) set
1859 */
1860 {
1861 /* FIXME: do something useful in case of underrun */
1862 printk(KERN_ERR "DBRI: Underrun error\n");
1863 #if 0
1864 s32 *cmd;
1865 int pipe = channel;
1866 int td = dbri->pipes[pipe].desc;
1867
1868 dbri->dma->desc[td].word4 = 0;
1869 cmd = dbri_cmdlock(dbri, NoGetLock);
1870 *(cmd++) = DBRI_CMD(D_SDP, 0,
1871 dbri->pipes[pipe].sdp
1872 | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1873 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1874 dbri_cmdsend(dbri, cmd);
1875 #endif
1876 }
1877 break;
1878 case D_INTR_FXDT:
1879 /* FXDT - Fixed data change */
1880 if (dbri->pipes[channel].sdp & D_SDP_MSB)
1881 val = reverse_bytes(val, dbri->pipes[channel].length);
1882
1883 if (dbri->pipes[channel].recv_fixed_ptr)
1884 *(dbri->pipes[channel].recv_fixed_ptr) = val;
1885 break;
1886 default:
1887 if (channel != D_INTR_CMD)
1888 printk(KERN_WARNING
1889 "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1890 }
1891 }
1892
1893 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1894 * buffer until it finds a zero word (indicating nothing more to do
1895 * right now). Non-zero words require processing and are handed off
1896 * to dbri_process_one_interrupt AFTER advancing the pointer.
1897 */
1898 static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1899 {
1900 s32 x;
1901
1902 while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1903 dbri->dma->intr[dbri->dbri_irqp] = 0;
1904 dbri->dbri_irqp++;
1905 if (dbri->dbri_irqp == DBRI_INT_BLK)
1906 dbri->dbri_irqp = 1;
1907
1908 dbri_process_one_interrupt(dbri, x);
1909 }
1910 }
1911
1912 static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1913 {
1914 struct snd_dbri *dbri = dev_id;
1915 static int errcnt = 0;
1916 int x;
1917
1918 if (dbri == NULL)
1919 return IRQ_NONE;
1920 spin_lock(&dbri->lock);
1921
1922 /*
1923 * Read it, so the interrupt goes away.
1924 */
1925 x = sbus_readl(dbri->regs + REG1);
1926
1927 if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1928 u32 tmp;
1929
1930 if (x & D_MRR)
1931 printk(KERN_ERR
1932 "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1933 x);
1934 if (x & D_MLE)
1935 printk(KERN_ERR
1936 "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1937 x);
1938 if (x & D_LBG)
1939 printk(KERN_ERR
1940 "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1941 if (x & D_MBE)
1942 printk(KERN_ERR
1943 "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1944
1945 /* Some of these SBus errors cause the chip's SBus circuitry
1946 * to be disabled, so just re-enable and try to keep going.
1947 *
1948 * The only one I've seen is MRR, which will be triggered
1949 * if you let a transmit pipe underrun, then try to CDP it.
1950 *
1951 * If these things persist, we reset the chip.
1952 */
1953 if ((++errcnt) % 10 == 0) {
1954 dprintk(D_INT, "Interrupt errors exceeded.\n");
1955 dbri_reset(dbri);
1956 } else {
1957 tmp = sbus_readl(dbri->regs + REG0);
1958 tmp &= ~(D_D);
1959 sbus_writel(tmp, dbri->regs + REG0);
1960 }
1961 }
1962
1963 dbri_process_interrupt_buffer(dbri);
1964
1965 spin_unlock(&dbri->lock);
1966
1967 return IRQ_HANDLED;
1968 }
1969
1970 /****************************************************************************
1971 PCM Interface
1972 ****************************************************************************/
1973 static struct snd_pcm_hardware snd_dbri_pcm_hw = {
1974 .info = SNDRV_PCM_INFO_MMAP |
1975 SNDRV_PCM_INFO_INTERLEAVED |
1976 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1977 SNDRV_PCM_INFO_MMAP_VALID,
1978 .formats = SNDRV_PCM_FMTBIT_MU_LAW |
1979 SNDRV_PCM_FMTBIT_A_LAW |
1980 SNDRV_PCM_FMTBIT_U8 |
1981 SNDRV_PCM_FMTBIT_S16_BE,
1982 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1983 .rate_min = 5512,
1984 .rate_max = 48000,
1985 .channels_min = 1,
1986 .channels_max = 2,
1987 .buffer_bytes_max = 64 * 1024,
1988 .period_bytes_min = 1,
1989 .period_bytes_max = DBRI_TD_MAXCNT,
1990 .periods_min = 1,
1991 .periods_max = 1024,
1992 };
1993
1994 static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
1995 struct snd_pcm_hw_rule *rule)
1996 {
1997 struct snd_interval *c = hw_param_interval(params,
1998 SNDRV_PCM_HW_PARAM_CHANNELS);
1999 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2000 struct snd_mask fmt;
2001
2002 snd_mask_any(&fmt);
2003 if (c->min > 1) {
2004 fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2005 return snd_mask_refine(f, &fmt);
2006 }
2007 return 0;
2008 }
2009
2010 static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2011 struct snd_pcm_hw_rule *rule)
2012 {
2013 struct snd_interval *c = hw_param_interval(params,
2014 SNDRV_PCM_HW_PARAM_CHANNELS);
2015 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2016 struct snd_interval ch;
2017
2018 snd_interval_any(&ch);
2019 if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2020 ch.min = 1;
2021 ch.max = 1;
2022 ch.integer = 1;
2023 return snd_interval_refine(c, &ch);
2024 }
2025 return 0;
2026 }
2027
2028 static int snd_dbri_open(struct snd_pcm_substream *substream)
2029 {
2030 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2031 struct snd_pcm_runtime *runtime = substream->runtime;
2032 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2033 unsigned long flags;
2034
2035 dprintk(D_USR, "open audio output.\n");
2036 runtime->hw = snd_dbri_pcm_hw;
2037
2038 spin_lock_irqsave(&dbri->lock, flags);
2039 info->substream = substream;
2040 info->offset = 0;
2041 info->dvma_buffer = 0;
2042 info->pipe = -1;
2043 spin_unlock_irqrestore(&dbri->lock, flags);
2044
2045 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2046 snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2047 -1);
2048 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2049 snd_hw_rule_channels, NULL,
2050 SNDRV_PCM_HW_PARAM_CHANNELS,
2051 -1);
2052
2053 cs4215_open(dbri);
2054
2055 return 0;
2056 }
2057
2058 static int snd_dbri_close(struct snd_pcm_substream *substream)
2059 {
2060 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2061 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2062
2063 dprintk(D_USR, "close audio output.\n");
2064 info->substream = NULL;
2065 info->offset = 0;
2066
2067 return 0;
2068 }
2069
2070 static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2071 struct snd_pcm_hw_params *hw_params)
2072 {
2073 struct snd_pcm_runtime *runtime = substream->runtime;
2074 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2075 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2076 int direction;
2077 int ret;
2078
2079 /* set sampling rate, audio format and number of channels */
2080 ret = cs4215_prepare(dbri, params_rate(hw_params),
2081 params_format(hw_params),
2082 params_channels(hw_params));
2083 if (ret != 0)
2084 return ret;
2085
2086 if ((ret = snd_pcm_lib_malloc_pages(substream,
2087 params_buffer_bytes(hw_params))) < 0) {
2088 printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2089 return ret;
2090 }
2091
2092 /* hw_params can get called multiple times. Only map the DMA once.
2093 */
2094 if (info->dvma_buffer == 0) {
2095 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2096 direction = SBUS_DMA_TODEVICE;
2097 else
2098 direction = SBUS_DMA_FROMDEVICE;
2099
2100 info->dvma_buffer = sbus_map_single(dbri->sdev,
2101 runtime->dma_area,
2102 params_buffer_bytes(hw_params),
2103 direction);
2104 }
2105
2106 direction = params_buffer_bytes(hw_params);
2107 dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2108 direction, info->dvma_buffer);
2109 return 0;
2110 }
2111
2112 static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2113 {
2114 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2115 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2116 int direction;
2117
2118 dprintk(D_USR, "hw_free.\n");
2119
2120 /* hw_free can get called multiple times. Only unmap the DMA once.
2121 */
2122 if (info->dvma_buffer) {
2123 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2124 direction = SBUS_DMA_TODEVICE;
2125 else
2126 direction = SBUS_DMA_FROMDEVICE;
2127
2128 sbus_unmap_single(dbri->sdev, info->dvma_buffer,
2129 substream->runtime->buffer_size, direction);
2130 info->dvma_buffer = 0;
2131 }
2132 if (info->pipe != -1) {
2133 reset_pipe(dbri, info->pipe);
2134 info->pipe = -1;
2135 }
2136
2137 return snd_pcm_lib_free_pages(substream);
2138 }
2139
2140 static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2141 {
2142 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2143 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2144 int ret;
2145
2146 info->size = snd_pcm_lib_buffer_bytes(substream);
2147 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2148 info->pipe = 4; /* Send pipe */
2149 else
2150 info->pipe = 6; /* Receive pipe */
2151
2152 spin_lock_irq(&dbri->lock);
2153 info->offset = 0;
2154
2155 /* Setup the all the transmit/receive descriptors to cover the
2156 * whole DMA buffer.
2157 */
2158 ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2159 snd_pcm_lib_period_bytes(substream));
2160
2161 spin_unlock_irq(&dbri->lock);
2162
2163 dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2164 return ret;
2165 }
2166
2167 static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2168 {
2169 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2170 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2171 int ret = 0;
2172
2173 switch (cmd) {
2174 case SNDRV_PCM_TRIGGER_START:
2175 dprintk(D_USR, "start audio, period is %d bytes\n",
2176 (int)snd_pcm_lib_period_bytes(substream));
2177 /* Re-submit the TDs. */
2178 xmit_descs(dbri);
2179 break;
2180 case SNDRV_PCM_TRIGGER_STOP:
2181 dprintk(D_USR, "stop audio.\n");
2182 reset_pipe(dbri, info->pipe);
2183 break;
2184 default:
2185 ret = -EINVAL;
2186 }
2187
2188 return ret;
2189 }
2190
2191 static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2192 {
2193 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2194 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2195 snd_pcm_uframes_t ret;
2196
2197 ret = bytes_to_frames(substream->runtime, info->offset)
2198 % substream->runtime->buffer_size;
2199 dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2200 ret, substream->runtime->buffer_size);
2201 return ret;
2202 }
2203
2204 static struct snd_pcm_ops snd_dbri_ops = {
2205 .open = snd_dbri_open,
2206 .close = snd_dbri_close,
2207 .ioctl = snd_pcm_lib_ioctl,
2208 .hw_params = snd_dbri_hw_params,
2209 .hw_free = snd_dbri_hw_free,
2210 .prepare = snd_dbri_prepare,
2211 .trigger = snd_dbri_trigger,
2212 .pointer = snd_dbri_pointer,
2213 };
2214
2215 static int __devinit snd_dbri_pcm(struct snd_card *card)
2216 {
2217 struct snd_pcm *pcm;
2218 int err;
2219
2220 if ((err = snd_pcm_new(card,
2221 /* ID */ "sun_dbri",
2222 /* device */ 0,
2223 /* playback count */ 1,
2224 /* capture count */ 1, &pcm)) < 0)
2225 return err;
2226 snd_assert(pcm != NULL, return -EINVAL);
2227
2228 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2229 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2230
2231 pcm->private_data = card->private_data;
2232 pcm->info_flags = 0;
2233 strcpy(pcm->name, card->shortname);
2234
2235 if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2236 SNDRV_DMA_TYPE_CONTINUOUS,
2237 snd_dma_continuous_data(GFP_KERNEL),
2238 64 * 1024, 64 * 1024)) < 0)
2239 return err;
2240
2241 return 0;
2242 }
2243
2244 /*****************************************************************************
2245 Mixer interface
2246 *****************************************************************************/
2247
2248 static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2249 struct snd_ctl_elem_info *uinfo)
2250 {
2251 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2252 uinfo->count = 2;
2253 uinfo->value.integer.min = 0;
2254 if (kcontrol->private_value == DBRI_PLAY)
2255 uinfo->value.integer.max = DBRI_MAX_VOLUME;
2256 else
2257 uinfo->value.integer.max = DBRI_MAX_GAIN;
2258 return 0;
2259 }
2260
2261 static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2262 struct snd_ctl_elem_value *ucontrol)
2263 {
2264 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2265 struct dbri_streaminfo *info;
2266 snd_assert(dbri != NULL, return -EINVAL);
2267 info = &dbri->stream_info[kcontrol->private_value];
2268 snd_assert(info != NULL, return -EINVAL);
2269
2270 ucontrol->value.integer.value[0] = info->left_gain;
2271 ucontrol->value.integer.value[1] = info->right_gain;
2272 return 0;
2273 }
2274
2275 static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2276 struct snd_ctl_elem_value *ucontrol)
2277 {
2278 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2279 struct dbri_streaminfo *info =
2280 &dbri->stream_info[kcontrol->private_value];
2281 unsigned int vol[2];
2282 int changed = 0;
2283
2284 vol[0] = ucontrol->value.integer.value[0];
2285 vol[1] = ucontrol->value.integer.value[1];
2286 if (kcontrol->private_value == DBRI_PLAY) {
2287 if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2288 return -EINVAL;
2289 } else {
2290 if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2291 return -EINVAL;
2292 }
2293
2294 if (info->left_gain != vol[0]) {
2295 info->left_gain = vol[0];
2296 changed = 1;
2297 }
2298 if (info->right_gain != vol[1]) {
2299 info->right_gain = vol[1];
2300 changed = 1;
2301 }
2302 if (changed) {
2303 /* First mute outputs, and wait 1/8000 sec (125 us)
2304 * to make sure this takes. This avoids clicking noises.
2305 */
2306 cs4215_setdata(dbri, 1);
2307 udelay(125);
2308 cs4215_setdata(dbri, 0);
2309 }
2310 return changed;
2311 }
2312
2313 static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2314 struct snd_ctl_elem_info *uinfo)
2315 {
2316 int mask = (kcontrol->private_value >> 16) & 0xff;
2317
2318 uinfo->type = (mask == 1) ?
2319 SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2320 uinfo->count = 1;
2321 uinfo->value.integer.min = 0;
2322 uinfo->value.integer.max = mask;
2323 return 0;
2324 }
2325
2326 static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2327 struct snd_ctl_elem_value *ucontrol)
2328 {
2329 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2330 int elem = kcontrol->private_value & 0xff;
2331 int shift = (kcontrol->private_value >> 8) & 0xff;
2332 int mask = (kcontrol->private_value >> 16) & 0xff;
2333 int invert = (kcontrol->private_value >> 24) & 1;
2334 snd_assert(dbri != NULL, return -EINVAL);
2335
2336 if (elem < 4)
2337 ucontrol->value.integer.value[0] =
2338 (dbri->mm.data[elem] >> shift) & mask;
2339 else
2340 ucontrol->value.integer.value[0] =
2341 (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2342
2343 if (invert == 1)
2344 ucontrol->value.integer.value[0] =
2345 mask - ucontrol->value.integer.value[0];
2346 return 0;
2347 }
2348
2349 static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2350 struct snd_ctl_elem_value *ucontrol)
2351 {
2352 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2353 int elem = kcontrol->private_value & 0xff;
2354 int shift = (kcontrol->private_value >> 8) & 0xff;
2355 int mask = (kcontrol->private_value >> 16) & 0xff;
2356 int invert = (kcontrol->private_value >> 24) & 1;
2357 int changed = 0;
2358 unsigned short val;
2359 snd_assert(dbri != NULL, return -EINVAL);
2360
2361 val = (ucontrol->value.integer.value[0] & mask);
2362 if (invert == 1)
2363 val = mask - val;
2364 val <<= shift;
2365
2366 if (elem < 4) {
2367 dbri->mm.data[elem] = (dbri->mm.data[elem] &
2368 ~(mask << shift)) | val;
2369 changed = (val != dbri->mm.data[elem]);
2370 } else {
2371 dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2372 ~(mask << shift)) | val;
2373 changed = (val != dbri->mm.ctrl[elem - 4]);
2374 }
2375
2376 dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2377 "mixer-value=%ld, mm-value=0x%x\n",
2378 mask, changed, ucontrol->value.integer.value[0],
2379 dbri->mm.data[elem & 3]);
2380
2381 if (changed) {
2382 /* First mute outputs, and wait 1/8000 sec (125 us)
2383 * to make sure this takes. This avoids clicking noises.
2384 */
2385 cs4215_setdata(dbri, 1);
2386 udelay(125);
2387 cs4215_setdata(dbri, 0);
2388 }
2389 return changed;
2390 }
2391
2392 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2393 timeslots. Shift is the bit offset in the timeslot, mask defines the
2394 number of bits. invert is a boolean for use with attenuation.
2395 */
2396 #define CS4215_SINGLE(xname, entry, shift, mask, invert) \
2397 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \
2398 .info = snd_cs4215_info_single, \
2399 .get = snd_cs4215_get_single, .put = snd_cs4215_put_single, \
2400 .private_value = (entry) | ((shift) << 8) | ((mask) << 16) | \
2401 ((invert) << 24) },
2402
2403 static struct snd_kcontrol_new dbri_controls[] __devinitdata = {
2404 {
2405 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2406 .name = "Playback Volume",
2407 .info = snd_cs4215_info_volume,
2408 .get = snd_cs4215_get_volume,
2409 .put = snd_cs4215_put_volume,
2410 .private_value = DBRI_PLAY,
2411 },
2412 CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2413 CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2414 CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2415 {
2416 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2417 .name = "Capture Volume",
2418 .info = snd_cs4215_info_volume,
2419 .get = snd_cs4215_get_volume,
2420 .put = snd_cs4215_put_volume,
2421 .private_value = DBRI_REC,
2422 },
2423 /* FIXME: mic/line switch */
2424 CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2425 CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2426 CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2427 CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2428 };
2429
2430 static int __devinit snd_dbri_mixer(struct snd_card *card)
2431 {
2432 int idx, err;
2433 struct snd_dbri *dbri;
2434
2435 snd_assert(card != NULL && card->private_data != NULL, return -EINVAL);
2436 dbri = card->private_data;
2437
2438 strcpy(card->mixername, card->shortname);
2439
2440 for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2441 err = snd_ctl_add(card,
2442 snd_ctl_new1(&dbri_controls[idx], dbri));
2443 if (err < 0)
2444 return err;
2445 }
2446
2447 for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2448 dbri->stream_info[idx].left_gain = 0;
2449 dbri->stream_info[idx].right_gain = 0;
2450 }
2451
2452 return 0;
2453 }
2454
2455 /****************************************************************************
2456 /proc interface
2457 ****************************************************************************/
2458 static void dbri_regs_read(struct snd_info_entry *entry,
2459 struct snd_info_buffer *buffer)
2460 {
2461 struct snd_dbri *dbri = entry->private_data;
2462
2463 snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2464 snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2465 snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2466 snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2467 }
2468
2469 #ifdef DBRI_DEBUG
2470 static void dbri_debug_read(struct snd_info_entry *entry,
2471 struct snd_info_buffer *buffer)
2472 {
2473 struct snd_dbri *dbri = entry->private_data;
2474 int pipe;
2475 snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2476
2477 for (pipe = 0; pipe < 32; pipe++) {
2478 if (pipe_active(dbri, pipe)) {
2479 struct dbri_pipe *pptr = &dbri->pipes[pipe];
2480 snd_iprintf(buffer,
2481 "Pipe %d: %s SDP=0x%x desc=%d, "
2482 "len=%d next %d\n",
2483 pipe,
2484 (pptr->sdp & D_SDP_TO_SER) ? "output" :
2485 "input",
2486 pptr->sdp, pptr->desc,
2487 pptr->length, pptr->nextpipe);
2488 }
2489 }
2490 }
2491 #endif
2492
2493 static void __devinit snd_dbri_proc(struct snd_card *card)
2494 {
2495 struct snd_dbri *dbri = card->private_data;
2496 struct snd_info_entry *entry;
2497
2498 if (!snd_card_proc_new(card, "regs", &entry))
2499 snd_info_set_text_ops(entry, dbri, dbri_regs_read);
2500
2501 #ifdef DBRI_DEBUG
2502 if (!snd_card_proc_new(card, "debug", &entry)) {
2503 snd_info_set_text_ops(entry, dbri, dbri_debug_read);
2504 entry->mode = S_IFREG | S_IRUGO; /* Readable only. */
2505 }
2506 #endif
2507 }
2508
2509 /*
2510 ****************************************************************************
2511 **************************** Initialization ********************************
2512 ****************************************************************************
2513 */
2514 static void snd_dbri_free(struct snd_dbri *dbri);
2515
2516 static int __devinit snd_dbri_create(struct snd_card *card,
2517 struct sbus_dev *sdev,
2518 int irq, int dev)
2519 {
2520 struct snd_dbri *dbri = card->private_data;
2521 int err;
2522
2523 spin_lock_init(&dbri->lock);
2524 dbri->sdev = sdev;
2525 dbri->irq = irq;
2526
2527 dbri->dma = sbus_alloc_consistent(sdev, sizeof(struct dbri_dma),
2528 &dbri->dma_dvma);
2529 memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2530
2531 dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2532 dbri->dma, dbri->dma_dvma);
2533
2534 /* Map the registers into memory. */
2535 dbri->regs_size = sdev->reg_addrs[0].reg_size;
2536 dbri->regs = sbus_ioremap(&sdev->resource[0], 0,
2537 dbri->regs_size, "DBRI Registers");
2538 if (!dbri->regs) {
2539 printk(KERN_ERR "DBRI: could not allocate registers\n");
2540 sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2541 (void *)dbri->dma, dbri->dma_dvma);
2542 return -EIO;
2543 }
2544
2545 err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2546 "DBRI audio", dbri);
2547 if (err) {
2548 printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2549 sbus_iounmap(dbri->regs, dbri->regs_size);
2550 sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2551 (void *)dbri->dma, dbri->dma_dvma);
2552 return err;
2553 }
2554
2555 /* Do low level initialization of the DBRI and CS4215 chips */
2556 dbri_initialize(dbri);
2557 err = cs4215_init(dbri);
2558 if (err) {
2559 snd_dbri_free(dbri);
2560 return err;
2561 }
2562
2563 return 0;
2564 }
2565
2566 static void snd_dbri_free(struct snd_dbri *dbri)
2567 {
2568 dprintk(D_GEN, "snd_dbri_free\n");
2569 dbri_reset(dbri);
2570
2571 if (dbri->irq)
2572 free_irq(dbri->irq, dbri);
2573
2574 if (dbri->regs)
2575 sbus_iounmap(dbri->regs, dbri->regs_size);
2576
2577 if (dbri->dma)
2578 sbus_free_consistent(dbri->sdev, sizeof(struct dbri_dma),
2579 (void *)dbri->dma, dbri->dma_dvma);
2580 }
2581
2582 static int __devinit dbri_probe(struct of_device *of_dev,
2583 const struct of_device_id *match)
2584 {
2585 struct sbus_dev *sdev = to_sbus_device(&of_dev->dev);
2586 struct snd_dbri *dbri;
2587 int irq;
2588 struct resource *rp;
2589 struct snd_card *card;
2590 static int dev = 0;
2591 int err;
2592
2593 dprintk(D_GEN, "DBRI: Found %s in SBUS slot %d\n",
2594 sdev->prom_name, sdev->slot);
2595
2596 if (dev >= SNDRV_CARDS)
2597 return -ENODEV;
2598 if (!enable[dev]) {
2599 dev++;
2600 return -ENOENT;
2601 }
2602
2603 irq = sdev->irqs[0];
2604 if (irq <= 0) {
2605 printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2606 return -ENODEV;
2607 }
2608
2609 card = snd_card_new(index[dev], id[dev], THIS_MODULE,
2610 sizeof(struct snd_dbri));
2611 if (card == NULL)
2612 return -ENOMEM;
2613
2614 strcpy(card->driver, "DBRI");
2615 strcpy(card->shortname, "Sun DBRI");
2616 rp = &sdev->resource[0];
2617 sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2618 card->shortname,
2619 rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2620
2621 err = snd_dbri_create(card, sdev, irq, dev);
2622 if (err < 0) {
2623 snd_card_free(card);
2624 return err;
2625 }
2626
2627 dbri = card->private_data;
2628 err = snd_dbri_pcm(card);
2629 if (err < 0)
2630 goto _err;
2631
2632 err = snd_dbri_mixer(card);
2633 if (err < 0)
2634 goto _err;
2635
2636 /* /proc file handling */
2637 snd_dbri_proc(card);
2638 dev_set_drvdata(&of_dev->dev, card);
2639
2640 err = snd_card_register(card);
2641 if (err < 0)
2642 goto _err;
2643
2644 printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2645 dev, dbri->regs,
2646 dbri->irq, sdev->prom_name[9], dbri->mm.version);
2647 dev++;
2648
2649 return 0;
2650
2651 _err:
2652 snd_dbri_free(dbri);
2653 snd_card_free(card);
2654 return err;
2655 }
2656
2657 static int __devexit dbri_remove(struct of_device *dev)
2658 {
2659 struct snd_card *card = dev_get_drvdata(&dev->dev);
2660
2661 snd_dbri_free(card->private_data);
2662 snd_card_free(card);
2663
2664 dev_set_drvdata(&dev->dev, NULL);
2665
2666 return 0;
2667 }
2668
2669 static struct of_device_id dbri_match[] = {
2670 {
2671 .name = "SUNW,DBRIe",
2672 },
2673 {
2674 .name = "SUNW,DBRIf",
2675 },
2676 {},
2677 };
2678
2679 MODULE_DEVICE_TABLE(of, dbri_match);
2680
2681 static struct of_platform_driver dbri_sbus_driver = {
2682 .name = "dbri",
2683 .match_table = dbri_match,
2684 .probe = dbri_probe,
2685 .remove = __devexit_p(dbri_remove),
2686 };
2687
2688 /* Probe for the dbri chip and then attach the driver. */
2689 static int __init dbri_init(void)
2690 {
2691 return of_register_driver(&dbri_sbus_driver, &sbus_bus_type);
2692 }
2693
2694 static void __exit dbri_exit(void)
2695 {
2696 of_unregister_driver(&dbri_sbus_driver);
2697 }
2698
2699 module_init(dbri_init);
2700 module_exit(dbri_exit);
This page took 0.122326 seconds and 6 git commands to generate.