ALSA: usb-audio: convert list_for_each to entry variant
[deliverable/linux.git] / sound / usb / midi.c
1 /*
2 * usbmidi.c - ALSA USB MIDI driver
3 *
4 * Copyright (c) 2002-2009 Clemens Ladisch
5 * All rights reserved.
6 *
7 * Based on the OSS usb-midi driver by NAGANO Daisuke,
8 * NetBSD's umidi driver by Takuya SHIOZAKI,
9 * the "USB Device Class Definition for MIDI Devices" by Roland
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. The name of the author may not be used to endorse or promote products
18 * derived from this software without specific prior written permission.
19 *
20 * Alternatively, this software may be distributed and/or modified under the
21 * terms of the GNU General Public License as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any later
23 * version.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
29 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38 #include <linux/kernel.h>
39 #include <linux/types.h>
40 #include <linux/bitops.h>
41 #include <linux/interrupt.h>
42 #include <linux/spinlock.h>
43 #include <linux/string.h>
44 #include <linux/init.h>
45 #include <linux/slab.h>
46 #include <linux/timer.h>
47 #include <linux/usb.h>
48 #include <linux/wait.h>
49 #include <linux/usb/audio.h>
50 #include <linux/module.h>
51
52 #include <sound/core.h>
53 #include <sound/control.h>
54 #include <sound/rawmidi.h>
55 #include <sound/asequencer.h>
56 #include "usbaudio.h"
57 #include "midi.h"
58 #include "power.h"
59 #include "helper.h"
60
61 /*
62 * define this to log all USB packets
63 */
64 /* #define DUMP_PACKETS */
65
66 /*
67 * how long to wait after some USB errors, so that khubd can disconnect() us
68 * without too many spurious errors
69 */
70 #define ERROR_DELAY_JIFFIES (HZ / 10)
71
72 #define OUTPUT_URBS 7
73 #define INPUT_URBS 7
74
75
76 MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
77 MODULE_DESCRIPTION("USB Audio/MIDI helper module");
78 MODULE_LICENSE("Dual BSD/GPL");
79
80
81 struct usb_ms_header_descriptor {
82 __u8 bLength;
83 __u8 bDescriptorType;
84 __u8 bDescriptorSubtype;
85 __u8 bcdMSC[2];
86 __le16 wTotalLength;
87 } __attribute__ ((packed));
88
89 struct usb_ms_endpoint_descriptor {
90 __u8 bLength;
91 __u8 bDescriptorType;
92 __u8 bDescriptorSubtype;
93 __u8 bNumEmbMIDIJack;
94 __u8 baAssocJackID[0];
95 } __attribute__ ((packed));
96
97 struct snd_usb_midi_in_endpoint;
98 struct snd_usb_midi_out_endpoint;
99 struct snd_usb_midi_endpoint;
100
101 struct usb_protocol_ops {
102 void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int);
103 void (*output)(struct snd_usb_midi_out_endpoint *ep, struct urb *urb);
104 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t);
105 void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint*);
106 void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint*);
107 };
108
109 struct snd_usb_midi {
110 struct usb_device *dev;
111 struct snd_card *card;
112 struct usb_interface *iface;
113 const struct snd_usb_audio_quirk *quirk;
114 struct snd_rawmidi *rmidi;
115 struct usb_protocol_ops* usb_protocol_ops;
116 struct list_head list;
117 struct timer_list error_timer;
118 spinlock_t disc_lock;
119 struct rw_semaphore disc_rwsem;
120 struct mutex mutex;
121 u32 usb_id;
122 int next_midi_device;
123
124 struct snd_usb_midi_endpoint {
125 struct snd_usb_midi_out_endpoint *out;
126 struct snd_usb_midi_in_endpoint *in;
127 } endpoints[MIDI_MAX_ENDPOINTS];
128 unsigned long input_triggered;
129 bool autopm_reference;
130 unsigned int opened[2];
131 unsigned char disconnected;
132 unsigned char input_running;
133
134 struct snd_kcontrol *roland_load_ctl;
135 };
136
137 struct snd_usb_midi_out_endpoint {
138 struct snd_usb_midi* umidi;
139 struct out_urb_context {
140 struct urb *urb;
141 struct snd_usb_midi_out_endpoint *ep;
142 } urbs[OUTPUT_URBS];
143 unsigned int active_urbs;
144 unsigned int drain_urbs;
145 int max_transfer; /* size of urb buffer */
146 struct tasklet_struct tasklet;
147 unsigned int next_urb;
148 spinlock_t buffer_lock;
149
150 struct usbmidi_out_port {
151 struct snd_usb_midi_out_endpoint* ep;
152 struct snd_rawmidi_substream *substream;
153 int active;
154 uint8_t cable; /* cable number << 4 */
155 uint8_t state;
156 #define STATE_UNKNOWN 0
157 #define STATE_1PARAM 1
158 #define STATE_2PARAM_1 2
159 #define STATE_2PARAM_2 3
160 #define STATE_SYSEX_0 4
161 #define STATE_SYSEX_1 5
162 #define STATE_SYSEX_2 6
163 uint8_t data[2];
164 } ports[0x10];
165 int current_port;
166
167 wait_queue_head_t drain_wait;
168 };
169
170 struct snd_usb_midi_in_endpoint {
171 struct snd_usb_midi* umidi;
172 struct urb* urbs[INPUT_URBS];
173 struct usbmidi_in_port {
174 struct snd_rawmidi_substream *substream;
175 u8 running_status_length;
176 } ports[0x10];
177 u8 seen_f5;
178 u8 error_resubmit;
179 int current_port;
180 };
181
182 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep);
183
184 static const uint8_t snd_usbmidi_cin_length[] = {
185 0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1
186 };
187
188 /*
189 * Submits the URB, with error handling.
190 */
191 static int snd_usbmidi_submit_urb(struct urb* urb, gfp_t flags)
192 {
193 int err = usb_submit_urb(urb, flags);
194 if (err < 0 && err != -ENODEV)
195 snd_printk(KERN_ERR "usb_submit_urb: %d\n", err);
196 return err;
197 }
198
199 /*
200 * Error handling for URB completion functions.
201 */
202 static int snd_usbmidi_urb_error(int status)
203 {
204 switch (status) {
205 /* manually unlinked, or device gone */
206 case -ENOENT:
207 case -ECONNRESET:
208 case -ESHUTDOWN:
209 case -ENODEV:
210 return -ENODEV;
211 /* errors that might occur during unplugging */
212 case -EPROTO:
213 case -ETIME:
214 case -EILSEQ:
215 return -EIO;
216 default:
217 snd_printk(KERN_ERR "urb status %d\n", status);
218 return 0; /* continue */
219 }
220 }
221
222 /*
223 * Receives a chunk of MIDI data.
224 */
225 static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint* ep, int portidx,
226 uint8_t* data, int length)
227 {
228 struct usbmidi_in_port* port = &ep->ports[portidx];
229
230 if (!port->substream) {
231 snd_printd("unexpected port %d!\n", portidx);
232 return;
233 }
234 if (!test_bit(port->substream->number, &ep->umidi->input_triggered))
235 return;
236 snd_rawmidi_receive(port->substream, data, length);
237 }
238
239 #ifdef DUMP_PACKETS
240 static void dump_urb(const char *type, const u8 *data, int length)
241 {
242 snd_printk(KERN_DEBUG "%s packet: [", type);
243 for (; length > 0; ++data, --length)
244 printk(" %02x", *data);
245 printk(" ]\n");
246 }
247 #else
248 #define dump_urb(type, data, length) /* nothing */
249 #endif
250
251 /*
252 * Processes the data read from the device.
253 */
254 static void snd_usbmidi_in_urb_complete(struct urb* urb)
255 {
256 struct snd_usb_midi_in_endpoint* ep = urb->context;
257
258 if (urb->status == 0) {
259 dump_urb("received", urb->transfer_buffer, urb->actual_length);
260 ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer,
261 urb->actual_length);
262 } else {
263 int err = snd_usbmidi_urb_error(urb->status);
264 if (err < 0) {
265 if (err != -ENODEV) {
266 ep->error_resubmit = 1;
267 mod_timer(&ep->umidi->error_timer,
268 jiffies + ERROR_DELAY_JIFFIES);
269 }
270 return;
271 }
272 }
273
274 urb->dev = ep->umidi->dev;
275 snd_usbmidi_submit_urb(urb, GFP_ATOMIC);
276 }
277
278 static void snd_usbmidi_out_urb_complete(struct urb* urb)
279 {
280 struct out_urb_context *context = urb->context;
281 struct snd_usb_midi_out_endpoint* ep = context->ep;
282 unsigned int urb_index;
283
284 spin_lock(&ep->buffer_lock);
285 urb_index = context - ep->urbs;
286 ep->active_urbs &= ~(1 << urb_index);
287 if (unlikely(ep->drain_urbs)) {
288 ep->drain_urbs &= ~(1 << urb_index);
289 wake_up(&ep->drain_wait);
290 }
291 spin_unlock(&ep->buffer_lock);
292 if (urb->status < 0) {
293 int err = snd_usbmidi_urb_error(urb->status);
294 if (err < 0) {
295 if (err != -ENODEV)
296 mod_timer(&ep->umidi->error_timer,
297 jiffies + ERROR_DELAY_JIFFIES);
298 return;
299 }
300 }
301 snd_usbmidi_do_output(ep);
302 }
303
304 /*
305 * This is called when some data should be transferred to the device
306 * (from one or more substreams).
307 */
308 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep)
309 {
310 unsigned int urb_index;
311 struct urb* urb;
312 unsigned long flags;
313
314 spin_lock_irqsave(&ep->buffer_lock, flags);
315 if (ep->umidi->disconnected) {
316 spin_unlock_irqrestore(&ep->buffer_lock, flags);
317 return;
318 }
319
320 urb_index = ep->next_urb;
321 for (;;) {
322 if (!(ep->active_urbs & (1 << urb_index))) {
323 urb = ep->urbs[urb_index].urb;
324 urb->transfer_buffer_length = 0;
325 ep->umidi->usb_protocol_ops->output(ep, urb);
326 if (urb->transfer_buffer_length == 0)
327 break;
328
329 dump_urb("sending", urb->transfer_buffer,
330 urb->transfer_buffer_length);
331 urb->dev = ep->umidi->dev;
332 if (snd_usbmidi_submit_urb(urb, GFP_ATOMIC) < 0)
333 break;
334 ep->active_urbs |= 1 << urb_index;
335 }
336 if (++urb_index >= OUTPUT_URBS)
337 urb_index = 0;
338 if (urb_index == ep->next_urb)
339 break;
340 }
341 ep->next_urb = urb_index;
342 spin_unlock_irqrestore(&ep->buffer_lock, flags);
343 }
344
345 static void snd_usbmidi_out_tasklet(unsigned long data)
346 {
347 struct snd_usb_midi_out_endpoint* ep = (struct snd_usb_midi_out_endpoint *) data;
348
349 snd_usbmidi_do_output(ep);
350 }
351
352 /* called after transfers had been interrupted due to some USB error */
353 static void snd_usbmidi_error_timer(unsigned long data)
354 {
355 struct snd_usb_midi *umidi = (struct snd_usb_midi *)data;
356 unsigned int i, j;
357
358 spin_lock(&umidi->disc_lock);
359 if (umidi->disconnected) {
360 spin_unlock(&umidi->disc_lock);
361 return;
362 }
363 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
364 struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in;
365 if (in && in->error_resubmit) {
366 in->error_resubmit = 0;
367 for (j = 0; j < INPUT_URBS; ++j) {
368 in->urbs[j]->dev = umidi->dev;
369 snd_usbmidi_submit_urb(in->urbs[j], GFP_ATOMIC);
370 }
371 }
372 if (umidi->endpoints[i].out)
373 snd_usbmidi_do_output(umidi->endpoints[i].out);
374 }
375 spin_unlock(&umidi->disc_lock);
376 }
377
378 /* helper function to send static data that may not DMA-able */
379 static int send_bulk_static_data(struct snd_usb_midi_out_endpoint* ep,
380 const void *data, int len)
381 {
382 int err = 0;
383 void *buf = kmemdup(data, len, GFP_KERNEL);
384 if (!buf)
385 return -ENOMEM;
386 dump_urb("sending", buf, len);
387 if (ep->urbs[0].urb)
388 err = usb_bulk_msg(ep->umidi->dev, ep->urbs[0].urb->pipe,
389 buf, len, NULL, 250);
390 kfree(buf);
391 return err;
392 }
393
394 /*
395 * Standard USB MIDI protocol: see the spec.
396 * Midiman protocol: like the standard protocol, but the control byte is the
397 * fourth byte in each packet, and uses length instead of CIN.
398 */
399
400 static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint* ep,
401 uint8_t* buffer, int buffer_length)
402 {
403 int i;
404
405 for (i = 0; i + 3 < buffer_length; i += 4)
406 if (buffer[i] != 0) {
407 int cable = buffer[i] >> 4;
408 int length = snd_usbmidi_cin_length[buffer[i] & 0x0f];
409 snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
410 }
411 }
412
413 static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint* ep,
414 uint8_t* buffer, int buffer_length)
415 {
416 int i;
417
418 for (i = 0; i + 3 < buffer_length; i += 4)
419 if (buffer[i + 3] != 0) {
420 int port = buffer[i + 3] >> 4;
421 int length = buffer[i + 3] & 3;
422 snd_usbmidi_input_data(ep, port, &buffer[i], length);
423 }
424 }
425
426 /*
427 * Buggy M-Audio device: running status on input results in a packet that has
428 * the data bytes but not the status byte and that is marked with CIN 4.
429 */
430 static void snd_usbmidi_maudio_broken_running_status_input(
431 struct snd_usb_midi_in_endpoint* ep,
432 uint8_t* buffer, int buffer_length)
433 {
434 int i;
435
436 for (i = 0; i + 3 < buffer_length; i += 4)
437 if (buffer[i] != 0) {
438 int cable = buffer[i] >> 4;
439 u8 cin = buffer[i] & 0x0f;
440 struct usbmidi_in_port *port = &ep->ports[cable];
441 int length;
442
443 length = snd_usbmidi_cin_length[cin];
444 if (cin == 0xf && buffer[i + 1] >= 0xf8)
445 ; /* realtime msg: no running status change */
446 else if (cin >= 0x8 && cin <= 0xe)
447 /* channel msg */
448 port->running_status_length = length - 1;
449 else if (cin == 0x4 &&
450 port->running_status_length != 0 &&
451 buffer[i + 1] < 0x80)
452 /* CIN 4 that is not a SysEx */
453 length = port->running_status_length;
454 else
455 /*
456 * All other msgs cannot begin running status.
457 * (A channel msg sent as two or three CIN 0xF
458 * packets could in theory, but this device
459 * doesn't use this format.)
460 */
461 port->running_status_length = 0;
462 snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
463 }
464 }
465
466 /*
467 * CME protocol: like the standard protocol, but SysEx commands are sent as a
468 * single USB packet preceded by a 0x0F byte.
469 */
470 static void snd_usbmidi_cme_input(struct snd_usb_midi_in_endpoint *ep,
471 uint8_t *buffer, int buffer_length)
472 {
473 if (buffer_length < 2 || (buffer[0] & 0x0f) != 0x0f)
474 snd_usbmidi_standard_input(ep, buffer, buffer_length);
475 else
476 snd_usbmidi_input_data(ep, buffer[0] >> 4,
477 &buffer[1], buffer_length - 1);
478 }
479
480 /*
481 * Adds one USB MIDI packet to the output buffer.
482 */
483 static void snd_usbmidi_output_standard_packet(struct urb* urb, uint8_t p0,
484 uint8_t p1, uint8_t p2, uint8_t p3)
485 {
486
487 uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
488 buf[0] = p0;
489 buf[1] = p1;
490 buf[2] = p2;
491 buf[3] = p3;
492 urb->transfer_buffer_length += 4;
493 }
494
495 /*
496 * Adds one Midiman packet to the output buffer.
497 */
498 static void snd_usbmidi_output_midiman_packet(struct urb* urb, uint8_t p0,
499 uint8_t p1, uint8_t p2, uint8_t p3)
500 {
501
502 uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
503 buf[0] = p1;
504 buf[1] = p2;
505 buf[2] = p3;
506 buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f];
507 urb->transfer_buffer_length += 4;
508 }
509
510 /*
511 * Converts MIDI commands to USB MIDI packets.
512 */
513 static void snd_usbmidi_transmit_byte(struct usbmidi_out_port* port,
514 uint8_t b, struct urb* urb)
515 {
516 uint8_t p0 = port->cable;
517 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) =
518 port->ep->umidi->usb_protocol_ops->output_packet;
519
520 if (b >= 0xf8) {
521 output_packet(urb, p0 | 0x0f, b, 0, 0);
522 } else if (b >= 0xf0) {
523 switch (b) {
524 case 0xf0:
525 port->data[0] = b;
526 port->state = STATE_SYSEX_1;
527 break;
528 case 0xf1:
529 case 0xf3:
530 port->data[0] = b;
531 port->state = STATE_1PARAM;
532 break;
533 case 0xf2:
534 port->data[0] = b;
535 port->state = STATE_2PARAM_1;
536 break;
537 case 0xf4:
538 case 0xf5:
539 port->state = STATE_UNKNOWN;
540 break;
541 case 0xf6:
542 output_packet(urb, p0 | 0x05, 0xf6, 0, 0);
543 port->state = STATE_UNKNOWN;
544 break;
545 case 0xf7:
546 switch (port->state) {
547 case STATE_SYSEX_0:
548 output_packet(urb, p0 | 0x05, 0xf7, 0, 0);
549 break;
550 case STATE_SYSEX_1:
551 output_packet(urb, p0 | 0x06, port->data[0], 0xf7, 0);
552 break;
553 case STATE_SYSEX_2:
554 output_packet(urb, p0 | 0x07, port->data[0], port->data[1], 0xf7);
555 break;
556 }
557 port->state = STATE_UNKNOWN;
558 break;
559 }
560 } else if (b >= 0x80) {
561 port->data[0] = b;
562 if (b >= 0xc0 && b <= 0xdf)
563 port->state = STATE_1PARAM;
564 else
565 port->state = STATE_2PARAM_1;
566 } else { /* b < 0x80 */
567 switch (port->state) {
568 case STATE_1PARAM:
569 if (port->data[0] < 0xf0) {
570 p0 |= port->data[0] >> 4;
571 } else {
572 p0 |= 0x02;
573 port->state = STATE_UNKNOWN;
574 }
575 output_packet(urb, p0, port->data[0], b, 0);
576 break;
577 case STATE_2PARAM_1:
578 port->data[1] = b;
579 port->state = STATE_2PARAM_2;
580 break;
581 case STATE_2PARAM_2:
582 if (port->data[0] < 0xf0) {
583 p0 |= port->data[0] >> 4;
584 port->state = STATE_2PARAM_1;
585 } else {
586 p0 |= 0x03;
587 port->state = STATE_UNKNOWN;
588 }
589 output_packet(urb, p0, port->data[0], port->data[1], b);
590 break;
591 case STATE_SYSEX_0:
592 port->data[0] = b;
593 port->state = STATE_SYSEX_1;
594 break;
595 case STATE_SYSEX_1:
596 port->data[1] = b;
597 port->state = STATE_SYSEX_2;
598 break;
599 case STATE_SYSEX_2:
600 output_packet(urb, p0 | 0x04, port->data[0], port->data[1], b);
601 port->state = STATE_SYSEX_0;
602 break;
603 }
604 }
605 }
606
607 static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint* ep,
608 struct urb *urb)
609 {
610 int p;
611
612 /* FIXME: lower-numbered ports can starve higher-numbered ports */
613 for (p = 0; p < 0x10; ++p) {
614 struct usbmidi_out_port* port = &ep->ports[p];
615 if (!port->active)
616 continue;
617 while (urb->transfer_buffer_length + 3 < ep->max_transfer) {
618 uint8_t b;
619 if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) {
620 port->active = 0;
621 break;
622 }
623 snd_usbmidi_transmit_byte(port, b, urb);
624 }
625 }
626 }
627
628 static struct usb_protocol_ops snd_usbmidi_standard_ops = {
629 .input = snd_usbmidi_standard_input,
630 .output = snd_usbmidi_standard_output,
631 .output_packet = snd_usbmidi_output_standard_packet,
632 };
633
634 static struct usb_protocol_ops snd_usbmidi_midiman_ops = {
635 .input = snd_usbmidi_midiman_input,
636 .output = snd_usbmidi_standard_output,
637 .output_packet = snd_usbmidi_output_midiman_packet,
638 };
639
640 static struct usb_protocol_ops snd_usbmidi_maudio_broken_running_status_ops = {
641 .input = snd_usbmidi_maudio_broken_running_status_input,
642 .output = snd_usbmidi_standard_output,
643 .output_packet = snd_usbmidi_output_standard_packet,
644 };
645
646 static struct usb_protocol_ops snd_usbmidi_cme_ops = {
647 .input = snd_usbmidi_cme_input,
648 .output = snd_usbmidi_standard_output,
649 .output_packet = snd_usbmidi_output_standard_packet,
650 };
651
652 /*
653 * AKAI MPD16 protocol:
654 *
655 * For control port (endpoint 1):
656 * ==============================
657 * One or more chunks consisting of first byte of (0x10 | msg_len) and then a
658 * SysEx message (msg_len=9 bytes long).
659 *
660 * For data port (endpoint 2):
661 * ===========================
662 * One or more chunks consisting of first byte of (0x20 | msg_len) and then a
663 * MIDI message (msg_len bytes long)
664 *
665 * Messages sent: Active Sense, Note On, Poly Pressure, Control Change.
666 */
667 static void snd_usbmidi_akai_input(struct snd_usb_midi_in_endpoint *ep,
668 uint8_t *buffer, int buffer_length)
669 {
670 unsigned int pos = 0;
671 unsigned int len = (unsigned int)buffer_length;
672 while (pos < len) {
673 unsigned int port = (buffer[pos] >> 4) - 1;
674 unsigned int msg_len = buffer[pos] & 0x0f;
675 pos++;
676 if (pos + msg_len <= len && port < 2)
677 snd_usbmidi_input_data(ep, 0, &buffer[pos], msg_len);
678 pos += msg_len;
679 }
680 }
681
682 #define MAX_AKAI_SYSEX_LEN 9
683
684 static void snd_usbmidi_akai_output(struct snd_usb_midi_out_endpoint *ep,
685 struct urb *urb)
686 {
687 uint8_t *msg;
688 int pos, end, count, buf_end;
689 uint8_t tmp[MAX_AKAI_SYSEX_LEN];
690 struct snd_rawmidi_substream *substream = ep->ports[0].substream;
691
692 if (!ep->ports[0].active)
693 return;
694
695 msg = urb->transfer_buffer + urb->transfer_buffer_length;
696 buf_end = ep->max_transfer - MAX_AKAI_SYSEX_LEN - 1;
697
698 /* only try adding more data when there's space for at least 1 SysEx */
699 while (urb->transfer_buffer_length < buf_end) {
700 count = snd_rawmidi_transmit_peek(substream,
701 tmp, MAX_AKAI_SYSEX_LEN);
702 if (!count) {
703 ep->ports[0].active = 0;
704 return;
705 }
706 /* try to skip non-SysEx data */
707 for (pos = 0; pos < count && tmp[pos] != 0xF0; pos++)
708 ;
709
710 if (pos > 0) {
711 snd_rawmidi_transmit_ack(substream, pos);
712 continue;
713 }
714
715 /* look for the start or end marker */
716 for (end = 1; end < count && tmp[end] < 0xF0; end++)
717 ;
718
719 /* next SysEx started before the end of current one */
720 if (end < count && tmp[end] == 0xF0) {
721 /* it's incomplete - drop it */
722 snd_rawmidi_transmit_ack(substream, end);
723 continue;
724 }
725 /* SysEx complete */
726 if (end < count && tmp[end] == 0xF7) {
727 /* queue it, ack it, and get the next one */
728 count = end + 1;
729 msg[0] = 0x10 | count;
730 memcpy(&msg[1], tmp, count);
731 snd_rawmidi_transmit_ack(substream, count);
732 urb->transfer_buffer_length += count + 1;
733 msg += count + 1;
734 continue;
735 }
736 /* less than 9 bytes and no end byte - wait for more */
737 if (count < MAX_AKAI_SYSEX_LEN) {
738 ep->ports[0].active = 0;
739 return;
740 }
741 /* 9 bytes and no end marker in sight - malformed, skip it */
742 snd_rawmidi_transmit_ack(substream, count);
743 }
744 }
745
746 static struct usb_protocol_ops snd_usbmidi_akai_ops = {
747 .input = snd_usbmidi_akai_input,
748 .output = snd_usbmidi_akai_output,
749 };
750
751 /*
752 * Novation USB MIDI protocol: number of data bytes is in the first byte
753 * (when receiving) (+1!) or in the second byte (when sending); data begins
754 * at the third byte.
755 */
756
757 static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint* ep,
758 uint8_t* buffer, int buffer_length)
759 {
760 if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1)
761 return;
762 snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1);
763 }
764
765 static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint* ep,
766 struct urb *urb)
767 {
768 uint8_t* transfer_buffer;
769 int count;
770
771 if (!ep->ports[0].active)
772 return;
773 transfer_buffer = urb->transfer_buffer;
774 count = snd_rawmidi_transmit(ep->ports[0].substream,
775 &transfer_buffer[2],
776 ep->max_transfer - 2);
777 if (count < 1) {
778 ep->ports[0].active = 0;
779 return;
780 }
781 transfer_buffer[0] = 0;
782 transfer_buffer[1] = count;
783 urb->transfer_buffer_length = 2 + count;
784 }
785
786 static struct usb_protocol_ops snd_usbmidi_novation_ops = {
787 .input = snd_usbmidi_novation_input,
788 .output = snd_usbmidi_novation_output,
789 };
790
791 /*
792 * "raw" protocol: just move raw MIDI bytes from/to the endpoint
793 */
794
795 static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint* ep,
796 uint8_t* buffer, int buffer_length)
797 {
798 snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
799 }
800
801 static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint* ep,
802 struct urb *urb)
803 {
804 int count;
805
806 if (!ep->ports[0].active)
807 return;
808 count = snd_rawmidi_transmit(ep->ports[0].substream,
809 urb->transfer_buffer,
810 ep->max_transfer);
811 if (count < 1) {
812 ep->ports[0].active = 0;
813 return;
814 }
815 urb->transfer_buffer_length = count;
816 }
817
818 static struct usb_protocol_ops snd_usbmidi_raw_ops = {
819 .input = snd_usbmidi_raw_input,
820 .output = snd_usbmidi_raw_output,
821 };
822
823 /*
824 * FTDI protocol: raw MIDI bytes, but input packets have two modem status bytes.
825 */
826
827 static void snd_usbmidi_ftdi_input(struct snd_usb_midi_in_endpoint* ep,
828 uint8_t* buffer, int buffer_length)
829 {
830 if (buffer_length > 2)
831 snd_usbmidi_input_data(ep, 0, buffer + 2, buffer_length - 2);
832 }
833
834 static struct usb_protocol_ops snd_usbmidi_ftdi_ops = {
835 .input = snd_usbmidi_ftdi_input,
836 .output = snd_usbmidi_raw_output,
837 };
838
839 static void snd_usbmidi_us122l_input(struct snd_usb_midi_in_endpoint *ep,
840 uint8_t *buffer, int buffer_length)
841 {
842 if (buffer_length != 9)
843 return;
844 buffer_length = 8;
845 while (buffer_length && buffer[buffer_length - 1] == 0xFD)
846 buffer_length--;
847 if (buffer_length)
848 snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
849 }
850
851 static void snd_usbmidi_us122l_output(struct snd_usb_midi_out_endpoint *ep,
852 struct urb *urb)
853 {
854 int count;
855
856 if (!ep->ports[0].active)
857 return;
858 switch (snd_usb_get_speed(ep->umidi->dev)) {
859 case USB_SPEED_HIGH:
860 case USB_SPEED_SUPER:
861 count = 1;
862 break;
863 default:
864 count = 2;
865 }
866 count = snd_rawmidi_transmit(ep->ports[0].substream,
867 urb->transfer_buffer,
868 count);
869 if (count < 1) {
870 ep->ports[0].active = 0;
871 return;
872 }
873
874 memset(urb->transfer_buffer + count, 0xFD, ep->max_transfer - count);
875 urb->transfer_buffer_length = ep->max_transfer;
876 }
877
878 static struct usb_protocol_ops snd_usbmidi_122l_ops = {
879 .input = snd_usbmidi_us122l_input,
880 .output = snd_usbmidi_us122l_output,
881 };
882
883 /*
884 * Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching.
885 */
886
887 static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint* ep)
888 {
889 static const u8 init_data[] = {
890 /* initialization magic: "get version" */
891 0xf0,
892 0x00, 0x20, 0x31, /* Emagic */
893 0x64, /* Unitor8 */
894 0x0b, /* version number request */
895 0x00, /* command version */
896 0x00, /* EEPROM, box 0 */
897 0xf7
898 };
899 send_bulk_static_data(ep, init_data, sizeof(init_data));
900 /* while we're at it, pour on more magic */
901 send_bulk_static_data(ep, init_data, sizeof(init_data));
902 }
903
904 static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint* ep)
905 {
906 static const u8 finish_data[] = {
907 /* switch to patch mode with last preset */
908 0xf0,
909 0x00, 0x20, 0x31, /* Emagic */
910 0x64, /* Unitor8 */
911 0x10, /* patch switch command */
912 0x00, /* command version */
913 0x7f, /* to all boxes */
914 0x40, /* last preset in EEPROM */
915 0xf7
916 };
917 send_bulk_static_data(ep, finish_data, sizeof(finish_data));
918 }
919
920 static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint* ep,
921 uint8_t* buffer, int buffer_length)
922 {
923 int i;
924
925 /* FF indicates end of valid data */
926 for (i = 0; i < buffer_length; ++i)
927 if (buffer[i] == 0xff) {
928 buffer_length = i;
929 break;
930 }
931
932 /* handle F5 at end of last buffer */
933 if (ep->seen_f5)
934 goto switch_port;
935
936 while (buffer_length > 0) {
937 /* determine size of data until next F5 */
938 for (i = 0; i < buffer_length; ++i)
939 if (buffer[i] == 0xf5)
940 break;
941 snd_usbmidi_input_data(ep, ep->current_port, buffer, i);
942 buffer += i;
943 buffer_length -= i;
944
945 if (buffer_length <= 0)
946 break;
947 /* assert(buffer[0] == 0xf5); */
948 ep->seen_f5 = 1;
949 ++buffer;
950 --buffer_length;
951
952 switch_port:
953 if (buffer_length <= 0)
954 break;
955 if (buffer[0] < 0x80) {
956 ep->current_port = (buffer[0] - 1) & 15;
957 ++buffer;
958 --buffer_length;
959 }
960 ep->seen_f5 = 0;
961 }
962 }
963
964 static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint* ep,
965 struct urb *urb)
966 {
967 int port0 = ep->current_port;
968 uint8_t* buf = urb->transfer_buffer;
969 int buf_free = ep->max_transfer;
970 int length, i;
971
972 for (i = 0; i < 0x10; ++i) {
973 /* round-robin, starting at the last current port */
974 int portnum = (port0 + i) & 15;
975 struct usbmidi_out_port* port = &ep->ports[portnum];
976
977 if (!port->active)
978 continue;
979 if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) {
980 port->active = 0;
981 continue;
982 }
983
984 if (portnum != ep->current_port) {
985 if (buf_free < 2)
986 break;
987 ep->current_port = portnum;
988 buf[0] = 0xf5;
989 buf[1] = (portnum + 1) & 15;
990 buf += 2;
991 buf_free -= 2;
992 }
993
994 if (buf_free < 1)
995 break;
996 length = snd_rawmidi_transmit(port->substream, buf, buf_free);
997 if (length > 0) {
998 buf += length;
999 buf_free -= length;
1000 if (buf_free < 1)
1001 break;
1002 }
1003 }
1004 if (buf_free < ep->max_transfer && buf_free > 0) {
1005 *buf = 0xff;
1006 --buf_free;
1007 }
1008 urb->transfer_buffer_length = ep->max_transfer - buf_free;
1009 }
1010
1011 static struct usb_protocol_ops snd_usbmidi_emagic_ops = {
1012 .input = snd_usbmidi_emagic_input,
1013 .output = snd_usbmidi_emagic_output,
1014 .init_out_endpoint = snd_usbmidi_emagic_init_out,
1015 .finish_out_endpoint = snd_usbmidi_emagic_finish_out,
1016 };
1017
1018
1019 static void update_roland_altsetting(struct snd_usb_midi* umidi)
1020 {
1021 struct usb_interface *intf;
1022 struct usb_host_interface *hostif;
1023 struct usb_interface_descriptor *intfd;
1024 int is_light_load;
1025
1026 intf = umidi->iface;
1027 is_light_load = intf->cur_altsetting != intf->altsetting;
1028 if (umidi->roland_load_ctl->private_value == is_light_load)
1029 return;
1030 hostif = &intf->altsetting[umidi->roland_load_ctl->private_value];
1031 intfd = get_iface_desc(hostif);
1032 snd_usbmidi_input_stop(&umidi->list);
1033 usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1034 intfd->bAlternateSetting);
1035 snd_usbmidi_input_start(&umidi->list);
1036 }
1037
1038 static int substream_open(struct snd_rawmidi_substream *substream, int dir,
1039 int open)
1040 {
1041 struct snd_usb_midi* umidi = substream->rmidi->private_data;
1042 struct snd_kcontrol *ctl;
1043 int err;
1044
1045 down_read(&umidi->disc_rwsem);
1046 if (umidi->disconnected) {
1047 up_read(&umidi->disc_rwsem);
1048 return open ? -ENODEV : 0;
1049 }
1050
1051 mutex_lock(&umidi->mutex);
1052 if (open) {
1053 if (!umidi->opened[0] && !umidi->opened[1]) {
1054 err = usb_autopm_get_interface(umidi->iface);
1055 umidi->autopm_reference = err >= 0;
1056 if (err < 0 && err != -EACCES) {
1057 mutex_unlock(&umidi->mutex);
1058 up_read(&umidi->disc_rwsem);
1059 return -EIO;
1060 }
1061 if (umidi->roland_load_ctl) {
1062 ctl = umidi->roland_load_ctl;
1063 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1064 snd_ctl_notify(umidi->card,
1065 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
1066 update_roland_altsetting(umidi);
1067 }
1068 }
1069 umidi->opened[dir]++;
1070 if (umidi->opened[1])
1071 snd_usbmidi_input_start(&umidi->list);
1072 } else {
1073 umidi->opened[dir]--;
1074 if (!umidi->opened[1])
1075 snd_usbmidi_input_stop(&umidi->list);
1076 if (!umidi->opened[0] && !umidi->opened[1]) {
1077 if (umidi->roland_load_ctl) {
1078 ctl = umidi->roland_load_ctl;
1079 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1080 snd_ctl_notify(umidi->card,
1081 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
1082 }
1083 if (umidi->autopm_reference)
1084 usb_autopm_put_interface(umidi->iface);
1085 }
1086 }
1087 mutex_unlock(&umidi->mutex);
1088 up_read(&umidi->disc_rwsem);
1089 return 0;
1090 }
1091
1092 static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream)
1093 {
1094 struct snd_usb_midi* umidi = substream->rmidi->private_data;
1095 struct usbmidi_out_port* port = NULL;
1096 int i, j;
1097
1098 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
1099 if (umidi->endpoints[i].out)
1100 for (j = 0; j < 0x10; ++j)
1101 if (umidi->endpoints[i].out->ports[j].substream == substream) {
1102 port = &umidi->endpoints[i].out->ports[j];
1103 break;
1104 }
1105 if (!port) {
1106 snd_BUG();
1107 return -ENXIO;
1108 }
1109
1110 substream->runtime->private_data = port;
1111 port->state = STATE_UNKNOWN;
1112 return substream_open(substream, 0, 1);
1113 }
1114
1115 static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream)
1116 {
1117 return substream_open(substream, 0, 0);
1118 }
1119
1120 static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream, int up)
1121 {
1122 struct usbmidi_out_port* port = (struct usbmidi_out_port*)substream->runtime->private_data;
1123
1124 port->active = up;
1125 if (up) {
1126 if (port->ep->umidi->disconnected) {
1127 /* gobble up remaining bytes to prevent wait in
1128 * snd_rawmidi_drain_output */
1129 while (!snd_rawmidi_transmit_empty(substream))
1130 snd_rawmidi_transmit_ack(substream, 1);
1131 return;
1132 }
1133 tasklet_schedule(&port->ep->tasklet);
1134 }
1135 }
1136
1137 static void snd_usbmidi_output_drain(struct snd_rawmidi_substream *substream)
1138 {
1139 struct usbmidi_out_port* port = substream->runtime->private_data;
1140 struct snd_usb_midi_out_endpoint *ep = port->ep;
1141 unsigned int drain_urbs;
1142 DEFINE_WAIT(wait);
1143 long timeout = msecs_to_jiffies(50);
1144
1145 if (ep->umidi->disconnected)
1146 return;
1147 /*
1148 * The substream buffer is empty, but some data might still be in the
1149 * currently active URBs, so we have to wait for those to complete.
1150 */
1151 spin_lock_irq(&ep->buffer_lock);
1152 drain_urbs = ep->active_urbs;
1153 if (drain_urbs) {
1154 ep->drain_urbs |= drain_urbs;
1155 do {
1156 prepare_to_wait(&ep->drain_wait, &wait,
1157 TASK_UNINTERRUPTIBLE);
1158 spin_unlock_irq(&ep->buffer_lock);
1159 timeout = schedule_timeout(timeout);
1160 spin_lock_irq(&ep->buffer_lock);
1161 drain_urbs &= ep->drain_urbs;
1162 } while (drain_urbs && timeout);
1163 finish_wait(&ep->drain_wait, &wait);
1164 }
1165 spin_unlock_irq(&ep->buffer_lock);
1166 }
1167
1168 static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream)
1169 {
1170 return substream_open(substream, 1, 1);
1171 }
1172
1173 static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream)
1174 {
1175 return substream_open(substream, 1, 0);
1176 }
1177
1178 static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream, int up)
1179 {
1180 struct snd_usb_midi* umidi = substream->rmidi->private_data;
1181
1182 if (up)
1183 set_bit(substream->number, &umidi->input_triggered);
1184 else
1185 clear_bit(substream->number, &umidi->input_triggered);
1186 }
1187
1188 static struct snd_rawmidi_ops snd_usbmidi_output_ops = {
1189 .open = snd_usbmidi_output_open,
1190 .close = snd_usbmidi_output_close,
1191 .trigger = snd_usbmidi_output_trigger,
1192 .drain = snd_usbmidi_output_drain,
1193 };
1194
1195 static struct snd_rawmidi_ops snd_usbmidi_input_ops = {
1196 .open = snd_usbmidi_input_open,
1197 .close = snd_usbmidi_input_close,
1198 .trigger = snd_usbmidi_input_trigger
1199 };
1200
1201 static void free_urb_and_buffer(struct snd_usb_midi *umidi, struct urb *urb,
1202 unsigned int buffer_length)
1203 {
1204 usb_free_coherent(umidi->dev, buffer_length,
1205 urb->transfer_buffer, urb->transfer_dma);
1206 usb_free_urb(urb);
1207 }
1208
1209 /*
1210 * Frees an input endpoint.
1211 * May be called when ep hasn't been initialized completely.
1212 */
1213 static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint* ep)
1214 {
1215 unsigned int i;
1216
1217 for (i = 0; i < INPUT_URBS; ++i)
1218 if (ep->urbs[i])
1219 free_urb_and_buffer(ep->umidi, ep->urbs[i],
1220 ep->urbs[i]->transfer_buffer_length);
1221 kfree(ep);
1222 }
1223
1224 /*
1225 * Creates an input endpoint.
1226 */
1227 static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi* umidi,
1228 struct snd_usb_midi_endpoint_info* ep_info,
1229 struct snd_usb_midi_endpoint* rep)
1230 {
1231 struct snd_usb_midi_in_endpoint* ep;
1232 void* buffer;
1233 unsigned int pipe;
1234 int length;
1235 unsigned int i;
1236
1237 rep->in = NULL;
1238 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1239 if (!ep)
1240 return -ENOMEM;
1241 ep->umidi = umidi;
1242
1243 for (i = 0; i < INPUT_URBS; ++i) {
1244 ep->urbs[i] = usb_alloc_urb(0, GFP_KERNEL);
1245 if (!ep->urbs[i]) {
1246 snd_usbmidi_in_endpoint_delete(ep);
1247 return -ENOMEM;
1248 }
1249 }
1250 if (ep_info->in_interval)
1251 pipe = usb_rcvintpipe(umidi->dev, ep_info->in_ep);
1252 else
1253 pipe = usb_rcvbulkpipe(umidi->dev, ep_info->in_ep);
1254 length = usb_maxpacket(umidi->dev, pipe, 0);
1255 for (i = 0; i < INPUT_URBS; ++i) {
1256 buffer = usb_alloc_coherent(umidi->dev, length, GFP_KERNEL,
1257 &ep->urbs[i]->transfer_dma);
1258 if (!buffer) {
1259 snd_usbmidi_in_endpoint_delete(ep);
1260 return -ENOMEM;
1261 }
1262 if (ep_info->in_interval)
1263 usb_fill_int_urb(ep->urbs[i], umidi->dev,
1264 pipe, buffer, length,
1265 snd_usbmidi_in_urb_complete,
1266 ep, ep_info->in_interval);
1267 else
1268 usb_fill_bulk_urb(ep->urbs[i], umidi->dev,
1269 pipe, buffer, length,
1270 snd_usbmidi_in_urb_complete, ep);
1271 ep->urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1272 }
1273
1274 rep->in = ep;
1275 return 0;
1276 }
1277
1278 /*
1279 * Frees an output endpoint.
1280 * May be called when ep hasn't been initialized completely.
1281 */
1282 static void snd_usbmidi_out_endpoint_clear(struct snd_usb_midi_out_endpoint *ep)
1283 {
1284 unsigned int i;
1285
1286 for (i = 0; i < OUTPUT_URBS; ++i)
1287 if (ep->urbs[i].urb) {
1288 free_urb_and_buffer(ep->umidi, ep->urbs[i].urb,
1289 ep->max_transfer);
1290 ep->urbs[i].urb = NULL;
1291 }
1292 }
1293
1294 static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint *ep)
1295 {
1296 snd_usbmidi_out_endpoint_clear(ep);
1297 kfree(ep);
1298 }
1299
1300 /*
1301 * Creates an output endpoint, and initializes output ports.
1302 */
1303 static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi* umidi,
1304 struct snd_usb_midi_endpoint_info* ep_info,
1305 struct snd_usb_midi_endpoint* rep)
1306 {
1307 struct snd_usb_midi_out_endpoint* ep;
1308 unsigned int i;
1309 unsigned int pipe;
1310 void* buffer;
1311
1312 rep->out = NULL;
1313 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1314 if (!ep)
1315 return -ENOMEM;
1316 ep->umidi = umidi;
1317
1318 for (i = 0; i < OUTPUT_URBS; ++i) {
1319 ep->urbs[i].urb = usb_alloc_urb(0, GFP_KERNEL);
1320 if (!ep->urbs[i].urb) {
1321 snd_usbmidi_out_endpoint_delete(ep);
1322 return -ENOMEM;
1323 }
1324 ep->urbs[i].ep = ep;
1325 }
1326 if (ep_info->out_interval)
1327 pipe = usb_sndintpipe(umidi->dev, ep_info->out_ep);
1328 else
1329 pipe = usb_sndbulkpipe(umidi->dev, ep_info->out_ep);
1330 switch (umidi->usb_id) {
1331 default:
1332 ep->max_transfer = usb_maxpacket(umidi->dev, pipe, 1);
1333 break;
1334 /*
1335 * Various chips declare a packet size larger than 4 bytes, but
1336 * do not actually work with larger packets:
1337 */
1338 case USB_ID(0x0a92, 0x1020): /* ESI M4U */
1339 case USB_ID(0x1430, 0x474b): /* RedOctane GH MIDI INTERFACE */
1340 case USB_ID(0x15ca, 0x0101): /* Textech USB Midi Cable */
1341 case USB_ID(0x15ca, 0x1806): /* Textech USB Midi Cable */
1342 case USB_ID(0x1a86, 0x752d): /* QinHeng CH345 "USB2.0-MIDI" */
1343 case USB_ID(0xfc08, 0x0101): /* Unknown vendor Cable */
1344 ep->max_transfer = 4;
1345 break;
1346 /*
1347 * Some devices only work with 9 bytes packet size:
1348 */
1349 case USB_ID(0x0644, 0x800E): /* Tascam US-122L */
1350 case USB_ID(0x0644, 0x800F): /* Tascam US-144 */
1351 ep->max_transfer = 9;
1352 break;
1353 }
1354 for (i = 0; i < OUTPUT_URBS; ++i) {
1355 buffer = usb_alloc_coherent(umidi->dev,
1356 ep->max_transfer, GFP_KERNEL,
1357 &ep->urbs[i].urb->transfer_dma);
1358 if (!buffer) {
1359 snd_usbmidi_out_endpoint_delete(ep);
1360 return -ENOMEM;
1361 }
1362 if (ep_info->out_interval)
1363 usb_fill_int_urb(ep->urbs[i].urb, umidi->dev,
1364 pipe, buffer, ep->max_transfer,
1365 snd_usbmidi_out_urb_complete,
1366 &ep->urbs[i], ep_info->out_interval);
1367 else
1368 usb_fill_bulk_urb(ep->urbs[i].urb, umidi->dev,
1369 pipe, buffer, ep->max_transfer,
1370 snd_usbmidi_out_urb_complete,
1371 &ep->urbs[i]);
1372 ep->urbs[i].urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1373 }
1374
1375 spin_lock_init(&ep->buffer_lock);
1376 tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep);
1377 init_waitqueue_head(&ep->drain_wait);
1378
1379 for (i = 0; i < 0x10; ++i)
1380 if (ep_info->out_cables & (1 << i)) {
1381 ep->ports[i].ep = ep;
1382 ep->ports[i].cable = i << 4;
1383 }
1384
1385 if (umidi->usb_protocol_ops->init_out_endpoint)
1386 umidi->usb_protocol_ops->init_out_endpoint(ep);
1387
1388 rep->out = ep;
1389 return 0;
1390 }
1391
1392 /*
1393 * Frees everything.
1394 */
1395 static void snd_usbmidi_free(struct snd_usb_midi* umidi)
1396 {
1397 int i;
1398
1399 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1400 struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
1401 if (ep->out)
1402 snd_usbmidi_out_endpoint_delete(ep->out);
1403 if (ep->in)
1404 snd_usbmidi_in_endpoint_delete(ep->in);
1405 }
1406 mutex_destroy(&umidi->mutex);
1407 kfree(umidi);
1408 }
1409
1410 /*
1411 * Unlinks all URBs (must be done before the usb_device is deleted).
1412 */
1413 void snd_usbmidi_disconnect(struct list_head* p)
1414 {
1415 struct snd_usb_midi* umidi;
1416 unsigned int i, j;
1417
1418 umidi = list_entry(p, struct snd_usb_midi, list);
1419 /*
1420 * an URB's completion handler may start the timer and
1421 * a timer may submit an URB. To reliably break the cycle
1422 * a flag under lock must be used
1423 */
1424 down_write(&umidi->disc_rwsem);
1425 spin_lock_irq(&umidi->disc_lock);
1426 umidi->disconnected = 1;
1427 spin_unlock_irq(&umidi->disc_lock);
1428 up_write(&umidi->disc_rwsem);
1429
1430 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1431 struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
1432 if (ep->out)
1433 tasklet_kill(&ep->out->tasklet);
1434 if (ep->out) {
1435 for (j = 0; j < OUTPUT_URBS; ++j)
1436 usb_kill_urb(ep->out->urbs[j].urb);
1437 if (umidi->usb_protocol_ops->finish_out_endpoint)
1438 umidi->usb_protocol_ops->finish_out_endpoint(ep->out);
1439 ep->out->active_urbs = 0;
1440 if (ep->out->drain_urbs) {
1441 ep->out->drain_urbs = 0;
1442 wake_up(&ep->out->drain_wait);
1443 }
1444 }
1445 if (ep->in)
1446 for (j = 0; j < INPUT_URBS; ++j)
1447 usb_kill_urb(ep->in->urbs[j]);
1448 /* free endpoints here; later call can result in Oops */
1449 if (ep->out)
1450 snd_usbmidi_out_endpoint_clear(ep->out);
1451 if (ep->in) {
1452 snd_usbmidi_in_endpoint_delete(ep->in);
1453 ep->in = NULL;
1454 }
1455 }
1456 del_timer_sync(&umidi->error_timer);
1457 }
1458
1459 static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi)
1460 {
1461 struct snd_usb_midi* umidi = rmidi->private_data;
1462 snd_usbmidi_free(umidi);
1463 }
1464
1465 static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi* umidi,
1466 int stream, int number)
1467 {
1468 struct snd_rawmidi_substream *substream;
1469
1470 list_for_each_entry(substream, &umidi->rmidi->streams[stream].substreams, list) {
1471 if (substream->number == number)
1472 return substream;
1473 }
1474 return NULL;
1475 }
1476
1477 /*
1478 * This list specifies names for ports that do not fit into the standard
1479 * "(product) MIDI (n)" schema because they aren't external MIDI ports,
1480 * such as internal control or synthesizer ports.
1481 */
1482 static struct port_info {
1483 u32 id;
1484 short int port;
1485 short int voices;
1486 const char *name;
1487 unsigned int seq_flags;
1488 } snd_usbmidi_port_info[] = {
1489 #define PORT_INFO(vendor, product, num, name_, voices_, flags) \
1490 { .id = USB_ID(vendor, product), \
1491 .port = num, .voices = voices_, \
1492 .name = name_, .seq_flags = flags }
1493 #define EXTERNAL_PORT(vendor, product, num, name) \
1494 PORT_INFO(vendor, product, num, name, 0, \
1495 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1496 SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1497 SNDRV_SEQ_PORT_TYPE_PORT)
1498 #define CONTROL_PORT(vendor, product, num, name) \
1499 PORT_INFO(vendor, product, num, name, 0, \
1500 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1501 SNDRV_SEQ_PORT_TYPE_HARDWARE)
1502 #define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \
1503 PORT_INFO(vendor, product, num, name, voices, \
1504 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1505 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1506 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1507 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1508 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1509 SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1510 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1511 #define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \
1512 PORT_INFO(vendor, product, num, name, voices, \
1513 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1514 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1515 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1516 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1517 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1518 SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \
1519 SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1520 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1521 /* Roland UA-100 */
1522 CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"),
1523 /* Roland SC-8850 */
1524 SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128),
1525 SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128),
1526 SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128),
1527 SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128),
1528 EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"),
1529 EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"),
1530 /* Roland U-8 */
1531 EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"),
1532 CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"),
1533 /* Roland SC-8820 */
1534 SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64),
1535 SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64),
1536 EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"),
1537 /* Roland SK-500 */
1538 SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64),
1539 SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64),
1540 EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"),
1541 /* Roland SC-D70 */
1542 SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64),
1543 SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64),
1544 EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"),
1545 /* Edirol UM-880 */
1546 CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"),
1547 /* Edirol SD-90 */
1548 ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128),
1549 ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128),
1550 EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"),
1551 EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"),
1552 /* Edirol UM-550 */
1553 CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"),
1554 /* Edirol SD-20 */
1555 ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64),
1556 ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64),
1557 EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"),
1558 /* Edirol SD-80 */
1559 ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128),
1560 ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128),
1561 EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"),
1562 EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"),
1563 /* Edirol UA-700 */
1564 EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"),
1565 CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"),
1566 /* Roland VariOS */
1567 EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"),
1568 EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"),
1569 EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"),
1570 /* Edirol PCR */
1571 EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"),
1572 EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"),
1573 EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"),
1574 /* BOSS GS-10 */
1575 EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"),
1576 CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"),
1577 /* Edirol UA-1000 */
1578 EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"),
1579 CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"),
1580 /* Edirol UR-80 */
1581 EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"),
1582 EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"),
1583 EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"),
1584 /* Edirol PCR-A */
1585 EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"),
1586 EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"),
1587 EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"),
1588 /* Edirol UM-3EX */
1589 CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"),
1590 /* M-Audio MidiSport 8x8 */
1591 CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"),
1592 CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"),
1593 /* MOTU Fastlane */
1594 EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"),
1595 EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"),
1596 /* Emagic Unitor8/AMT8/MT4 */
1597 EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"),
1598 EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"),
1599 EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"),
1600 /* Akai MPD16 */
1601 CONTROL_PORT(0x09e8, 0x0062, 0, "%s Control"),
1602 PORT_INFO(0x09e8, 0x0062, 1, "%s MIDI", 0,
1603 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1604 SNDRV_SEQ_PORT_TYPE_HARDWARE),
1605 /* Access Music Virus TI */
1606 EXTERNAL_PORT(0x133e, 0x0815, 0, "%s MIDI"),
1607 PORT_INFO(0x133e, 0x0815, 1, "%s Synth", 0,
1608 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1609 SNDRV_SEQ_PORT_TYPE_HARDWARE |
1610 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER),
1611 };
1612
1613 static struct port_info *find_port_info(struct snd_usb_midi* umidi, int number)
1614 {
1615 int i;
1616
1617 for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) {
1618 if (snd_usbmidi_port_info[i].id == umidi->usb_id &&
1619 snd_usbmidi_port_info[i].port == number)
1620 return &snd_usbmidi_port_info[i];
1621 }
1622 return NULL;
1623 }
1624
1625 static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number,
1626 struct snd_seq_port_info *seq_port_info)
1627 {
1628 struct snd_usb_midi *umidi = rmidi->private_data;
1629 struct port_info *port_info;
1630
1631 /* TODO: read port flags from descriptors */
1632 port_info = find_port_info(umidi, number);
1633 if (port_info) {
1634 seq_port_info->type = port_info->seq_flags;
1635 seq_port_info->midi_voices = port_info->voices;
1636 }
1637 }
1638
1639 static void snd_usbmidi_init_substream(struct snd_usb_midi* umidi,
1640 int stream, int number,
1641 struct snd_rawmidi_substream ** rsubstream)
1642 {
1643 struct port_info *port_info;
1644 const char *name_format;
1645
1646 struct snd_rawmidi_substream *substream = snd_usbmidi_find_substream(umidi, stream, number);
1647 if (!substream) {
1648 snd_printd(KERN_ERR "substream %d:%d not found\n", stream, number);
1649 return;
1650 }
1651
1652 /* TODO: read port name from jack descriptor */
1653 port_info = find_port_info(umidi, number);
1654 name_format = port_info ? port_info->name : "%s MIDI %d";
1655 snprintf(substream->name, sizeof(substream->name),
1656 name_format, umidi->card->shortname, number + 1);
1657
1658 *rsubstream = substream;
1659 }
1660
1661 /*
1662 * Creates the endpoints and their ports.
1663 */
1664 static int snd_usbmidi_create_endpoints(struct snd_usb_midi* umidi,
1665 struct snd_usb_midi_endpoint_info* endpoints)
1666 {
1667 int i, j, err;
1668 int out_ports = 0, in_ports = 0;
1669
1670 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1671 if (endpoints[i].out_cables) {
1672 err = snd_usbmidi_out_endpoint_create(umidi, &endpoints[i],
1673 &umidi->endpoints[i]);
1674 if (err < 0)
1675 return err;
1676 }
1677 if (endpoints[i].in_cables) {
1678 err = snd_usbmidi_in_endpoint_create(umidi, &endpoints[i],
1679 &umidi->endpoints[i]);
1680 if (err < 0)
1681 return err;
1682 }
1683
1684 for (j = 0; j < 0x10; ++j) {
1685 if (endpoints[i].out_cables & (1 << j)) {
1686 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, out_ports,
1687 &umidi->endpoints[i].out->ports[j].substream);
1688 ++out_ports;
1689 }
1690 if (endpoints[i].in_cables & (1 << j)) {
1691 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, in_ports,
1692 &umidi->endpoints[i].in->ports[j].substream);
1693 ++in_ports;
1694 }
1695 }
1696 }
1697 snd_printdd(KERN_INFO "created %d output and %d input ports\n",
1698 out_ports, in_ports);
1699 return 0;
1700 }
1701
1702 /*
1703 * Returns MIDIStreaming device capabilities.
1704 */
1705 static int snd_usbmidi_get_ms_info(struct snd_usb_midi* umidi,
1706 struct snd_usb_midi_endpoint_info* endpoints)
1707 {
1708 struct usb_interface* intf;
1709 struct usb_host_interface *hostif;
1710 struct usb_interface_descriptor* intfd;
1711 struct usb_ms_header_descriptor* ms_header;
1712 struct usb_host_endpoint *hostep;
1713 struct usb_endpoint_descriptor* ep;
1714 struct usb_ms_endpoint_descriptor* ms_ep;
1715 int i, epidx;
1716
1717 intf = umidi->iface;
1718 if (!intf)
1719 return -ENXIO;
1720 hostif = &intf->altsetting[0];
1721 intfd = get_iface_desc(hostif);
1722 ms_header = (struct usb_ms_header_descriptor*)hostif->extra;
1723 if (hostif->extralen >= 7 &&
1724 ms_header->bLength >= 7 &&
1725 ms_header->bDescriptorType == USB_DT_CS_INTERFACE &&
1726 ms_header->bDescriptorSubtype == UAC_HEADER)
1727 snd_printdd(KERN_INFO "MIDIStreaming version %02x.%02x\n",
1728 ms_header->bcdMSC[1], ms_header->bcdMSC[0]);
1729 else
1730 snd_printk(KERN_WARNING "MIDIStreaming interface descriptor not found\n");
1731
1732 epidx = 0;
1733 for (i = 0; i < intfd->bNumEndpoints; ++i) {
1734 hostep = &hostif->endpoint[i];
1735 ep = get_ep_desc(hostep);
1736 if (!usb_endpoint_xfer_bulk(ep) && !usb_endpoint_xfer_int(ep))
1737 continue;
1738 ms_ep = (struct usb_ms_endpoint_descriptor*)hostep->extra;
1739 if (hostep->extralen < 4 ||
1740 ms_ep->bLength < 4 ||
1741 ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT ||
1742 ms_ep->bDescriptorSubtype != UAC_MS_GENERAL)
1743 continue;
1744 if (usb_endpoint_dir_out(ep)) {
1745 if (endpoints[epidx].out_ep) {
1746 if (++epidx >= MIDI_MAX_ENDPOINTS) {
1747 snd_printk(KERN_WARNING "too many endpoints\n");
1748 break;
1749 }
1750 }
1751 endpoints[epidx].out_ep = usb_endpoint_num(ep);
1752 if (usb_endpoint_xfer_int(ep))
1753 endpoints[epidx].out_interval = ep->bInterval;
1754 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1755 /*
1756 * Low speed bulk transfers don't exist, so
1757 * force interrupt transfers for devices like
1758 * ESI MIDI Mate that try to use them anyway.
1759 */
1760 endpoints[epidx].out_interval = 1;
1761 endpoints[epidx].out_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
1762 snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
1763 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1764 } else {
1765 if (endpoints[epidx].in_ep) {
1766 if (++epidx >= MIDI_MAX_ENDPOINTS) {
1767 snd_printk(KERN_WARNING "too many endpoints\n");
1768 break;
1769 }
1770 }
1771 endpoints[epidx].in_ep = usb_endpoint_num(ep);
1772 if (usb_endpoint_xfer_int(ep))
1773 endpoints[epidx].in_interval = ep->bInterval;
1774 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1775 endpoints[epidx].in_interval = 1;
1776 endpoints[epidx].in_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
1777 snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
1778 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1779 }
1780 }
1781 return 0;
1782 }
1783
1784 static int roland_load_info(struct snd_kcontrol *kcontrol,
1785 struct snd_ctl_elem_info *info)
1786 {
1787 static const char *const names[] = { "High Load", "Light Load" };
1788
1789 return snd_ctl_enum_info(info, 1, 2, names);
1790 }
1791
1792 static int roland_load_get(struct snd_kcontrol *kcontrol,
1793 struct snd_ctl_elem_value *value)
1794 {
1795 value->value.enumerated.item[0] = kcontrol->private_value;
1796 return 0;
1797 }
1798
1799 static int roland_load_put(struct snd_kcontrol *kcontrol,
1800 struct snd_ctl_elem_value *value)
1801 {
1802 struct snd_usb_midi* umidi = kcontrol->private_data;
1803 int changed;
1804
1805 if (value->value.enumerated.item[0] > 1)
1806 return -EINVAL;
1807 mutex_lock(&umidi->mutex);
1808 changed = value->value.enumerated.item[0] != kcontrol->private_value;
1809 if (changed)
1810 kcontrol->private_value = value->value.enumerated.item[0];
1811 mutex_unlock(&umidi->mutex);
1812 return changed;
1813 }
1814
1815 static struct snd_kcontrol_new roland_load_ctl = {
1816 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1817 .name = "MIDI Input Mode",
1818 .info = roland_load_info,
1819 .get = roland_load_get,
1820 .put = roland_load_put,
1821 .private_value = 1,
1822 };
1823
1824 /*
1825 * On Roland devices, use the second alternate setting to be able to use
1826 * the interrupt input endpoint.
1827 */
1828 static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi* umidi)
1829 {
1830 struct usb_interface* intf;
1831 struct usb_host_interface *hostif;
1832 struct usb_interface_descriptor* intfd;
1833
1834 intf = umidi->iface;
1835 if (!intf || intf->num_altsetting != 2)
1836 return;
1837
1838 hostif = &intf->altsetting[1];
1839 intfd = get_iface_desc(hostif);
1840 if (intfd->bNumEndpoints != 2 ||
1841 (get_endpoint(hostif, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK ||
1842 (get_endpoint(hostif, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
1843 return;
1844
1845 snd_printdd(KERN_INFO "switching to altsetting %d with int ep\n",
1846 intfd->bAlternateSetting);
1847 usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1848 intfd->bAlternateSetting);
1849
1850 umidi->roland_load_ctl = snd_ctl_new1(&roland_load_ctl, umidi);
1851 if (snd_ctl_add(umidi->card, umidi->roland_load_ctl) < 0)
1852 umidi->roland_load_ctl = NULL;
1853 }
1854
1855 /*
1856 * Try to find any usable endpoints in the interface.
1857 */
1858 static int snd_usbmidi_detect_endpoints(struct snd_usb_midi* umidi,
1859 struct snd_usb_midi_endpoint_info* endpoint,
1860 int max_endpoints)
1861 {
1862 struct usb_interface* intf;
1863 struct usb_host_interface *hostif;
1864 struct usb_interface_descriptor* intfd;
1865 struct usb_endpoint_descriptor* epd;
1866 int i, out_eps = 0, in_eps = 0;
1867
1868 if (USB_ID_VENDOR(umidi->usb_id) == 0x0582)
1869 snd_usbmidi_switch_roland_altsetting(umidi);
1870
1871 if (endpoint[0].out_ep || endpoint[0].in_ep)
1872 return 0;
1873
1874 intf = umidi->iface;
1875 if (!intf || intf->num_altsetting < 1)
1876 return -ENOENT;
1877 hostif = intf->cur_altsetting;
1878 intfd = get_iface_desc(hostif);
1879
1880 for (i = 0; i < intfd->bNumEndpoints; ++i) {
1881 epd = get_endpoint(hostif, i);
1882 if (!usb_endpoint_xfer_bulk(epd) &&
1883 !usb_endpoint_xfer_int(epd))
1884 continue;
1885 if (out_eps < max_endpoints &&
1886 usb_endpoint_dir_out(epd)) {
1887 endpoint[out_eps].out_ep = usb_endpoint_num(epd);
1888 if (usb_endpoint_xfer_int(epd))
1889 endpoint[out_eps].out_interval = epd->bInterval;
1890 ++out_eps;
1891 }
1892 if (in_eps < max_endpoints &&
1893 usb_endpoint_dir_in(epd)) {
1894 endpoint[in_eps].in_ep = usb_endpoint_num(epd);
1895 if (usb_endpoint_xfer_int(epd))
1896 endpoint[in_eps].in_interval = epd->bInterval;
1897 ++in_eps;
1898 }
1899 }
1900 return (out_eps || in_eps) ? 0 : -ENOENT;
1901 }
1902
1903 /*
1904 * Detects the endpoints for one-port-per-endpoint protocols.
1905 */
1906 static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi* umidi,
1907 struct snd_usb_midi_endpoint_info* endpoints)
1908 {
1909 int err, i;
1910
1911 err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS);
1912 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1913 if (endpoints[i].out_ep)
1914 endpoints[i].out_cables = 0x0001;
1915 if (endpoints[i].in_ep)
1916 endpoints[i].in_cables = 0x0001;
1917 }
1918 return err;
1919 }
1920
1921 /*
1922 * Detects the endpoints and ports of Yamaha devices.
1923 */
1924 static int snd_usbmidi_detect_yamaha(struct snd_usb_midi* umidi,
1925 struct snd_usb_midi_endpoint_info* endpoint)
1926 {
1927 struct usb_interface* intf;
1928 struct usb_host_interface *hostif;
1929 struct usb_interface_descriptor* intfd;
1930 uint8_t* cs_desc;
1931
1932 intf = umidi->iface;
1933 if (!intf)
1934 return -ENOENT;
1935 hostif = intf->altsetting;
1936 intfd = get_iface_desc(hostif);
1937 if (intfd->bNumEndpoints < 1)
1938 return -ENOENT;
1939
1940 /*
1941 * For each port there is one MIDI_IN/OUT_JACK descriptor, not
1942 * necessarily with any useful contents. So simply count 'em.
1943 */
1944 for (cs_desc = hostif->extra;
1945 cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2;
1946 cs_desc += cs_desc[0]) {
1947 if (cs_desc[1] == USB_DT_CS_INTERFACE) {
1948 if (cs_desc[2] == UAC_MIDI_IN_JACK)
1949 endpoint->in_cables = (endpoint->in_cables << 1) | 1;
1950 else if (cs_desc[2] == UAC_MIDI_OUT_JACK)
1951 endpoint->out_cables = (endpoint->out_cables << 1) | 1;
1952 }
1953 }
1954 if (!endpoint->in_cables && !endpoint->out_cables)
1955 return -ENOENT;
1956
1957 return snd_usbmidi_detect_endpoints(umidi, endpoint, 1);
1958 }
1959
1960 /*
1961 * Creates the endpoints and their ports for Midiman devices.
1962 */
1963 static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi* umidi,
1964 struct snd_usb_midi_endpoint_info* endpoint)
1965 {
1966 struct snd_usb_midi_endpoint_info ep_info;
1967 struct usb_interface* intf;
1968 struct usb_host_interface *hostif;
1969 struct usb_interface_descriptor* intfd;
1970 struct usb_endpoint_descriptor* epd;
1971 int cable, err;
1972
1973 intf = umidi->iface;
1974 if (!intf)
1975 return -ENOENT;
1976 hostif = intf->altsetting;
1977 intfd = get_iface_desc(hostif);
1978 /*
1979 * The various MidiSport devices have more or less random endpoint
1980 * numbers, so we have to identify the endpoints by their index in
1981 * the descriptor array, like the driver for that other OS does.
1982 *
1983 * There is one interrupt input endpoint for all input ports, one
1984 * bulk output endpoint for even-numbered ports, and one for odd-
1985 * numbered ports. Both bulk output endpoints have corresponding
1986 * input bulk endpoints (at indices 1 and 3) which aren't used.
1987 */
1988 if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) {
1989 snd_printdd(KERN_ERR "not enough endpoints\n");
1990 return -ENOENT;
1991 }
1992
1993 epd = get_endpoint(hostif, 0);
1994 if (!usb_endpoint_dir_in(epd) || !usb_endpoint_xfer_int(epd)) {
1995 snd_printdd(KERN_ERR "endpoint[0] isn't interrupt\n");
1996 return -ENXIO;
1997 }
1998 epd = get_endpoint(hostif, 2);
1999 if (!usb_endpoint_dir_out(epd) || !usb_endpoint_xfer_bulk(epd)) {
2000 snd_printdd(KERN_ERR "endpoint[2] isn't bulk output\n");
2001 return -ENXIO;
2002 }
2003 if (endpoint->out_cables > 0x0001) {
2004 epd = get_endpoint(hostif, 4);
2005 if (!usb_endpoint_dir_out(epd) ||
2006 !usb_endpoint_xfer_bulk(epd)) {
2007 snd_printdd(KERN_ERR "endpoint[4] isn't bulk output\n");
2008 return -ENXIO;
2009 }
2010 }
2011
2012 ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
2013 ep_info.out_interval = 0;
2014 ep_info.out_cables = endpoint->out_cables & 0x5555;
2015 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
2016 if (err < 0)
2017 return err;
2018
2019 ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
2020 ep_info.in_interval = get_endpoint(hostif, 0)->bInterval;
2021 ep_info.in_cables = endpoint->in_cables;
2022 err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
2023 if (err < 0)
2024 return err;
2025
2026 if (endpoint->out_cables > 0x0001) {
2027 ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
2028 ep_info.out_cables = endpoint->out_cables & 0xaaaa;
2029 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[1]);
2030 if (err < 0)
2031 return err;
2032 }
2033
2034 for (cable = 0; cable < 0x10; ++cable) {
2035 if (endpoint->out_cables & (1 << cable))
2036 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, cable,
2037 &umidi->endpoints[cable & 1].out->ports[cable].substream);
2038 if (endpoint->in_cables & (1 << cable))
2039 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, cable,
2040 &umidi->endpoints[0].in->ports[cable].substream);
2041 }
2042 return 0;
2043 }
2044
2045 static struct snd_rawmidi_global_ops snd_usbmidi_ops = {
2046 .get_port_info = snd_usbmidi_get_port_info,
2047 };
2048
2049 static int snd_usbmidi_create_rawmidi(struct snd_usb_midi* umidi,
2050 int out_ports, int in_ports)
2051 {
2052 struct snd_rawmidi *rmidi;
2053 int err;
2054
2055 err = snd_rawmidi_new(umidi->card, "USB MIDI",
2056 umidi->next_midi_device++,
2057 out_ports, in_ports, &rmidi);
2058 if (err < 0)
2059 return err;
2060 strcpy(rmidi->name, umidi->card->shortname);
2061 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
2062 SNDRV_RAWMIDI_INFO_INPUT |
2063 SNDRV_RAWMIDI_INFO_DUPLEX;
2064 rmidi->ops = &snd_usbmidi_ops;
2065 rmidi->private_data = umidi;
2066 rmidi->private_free = snd_usbmidi_rawmidi_free;
2067 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_usbmidi_output_ops);
2068 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_usbmidi_input_ops);
2069
2070 umidi->rmidi = rmidi;
2071 return 0;
2072 }
2073
2074 /*
2075 * Temporarily stop input.
2076 */
2077 void snd_usbmidi_input_stop(struct list_head* p)
2078 {
2079 struct snd_usb_midi* umidi;
2080 unsigned int i, j;
2081
2082 umidi = list_entry(p, struct snd_usb_midi, list);
2083 if (!umidi->input_running)
2084 return;
2085 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2086 struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
2087 if (ep->in)
2088 for (j = 0; j < INPUT_URBS; ++j)
2089 usb_kill_urb(ep->in->urbs[j]);
2090 }
2091 umidi->input_running = 0;
2092 }
2093
2094 static void snd_usbmidi_input_start_ep(struct snd_usb_midi_in_endpoint* ep)
2095 {
2096 unsigned int i;
2097
2098 if (!ep)
2099 return;
2100 for (i = 0; i < INPUT_URBS; ++i) {
2101 struct urb* urb = ep->urbs[i];
2102 urb->dev = ep->umidi->dev;
2103 snd_usbmidi_submit_urb(urb, GFP_KERNEL);
2104 }
2105 }
2106
2107 /*
2108 * Resume input after a call to snd_usbmidi_input_stop().
2109 */
2110 void snd_usbmidi_input_start(struct list_head* p)
2111 {
2112 struct snd_usb_midi* umidi;
2113 int i;
2114
2115 umidi = list_entry(p, struct snd_usb_midi, list);
2116 if (umidi->input_running || !umidi->opened[1])
2117 return;
2118 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
2119 snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
2120 umidi->input_running = 1;
2121 }
2122
2123 /*
2124 * Creates and registers everything needed for a MIDI streaming interface.
2125 */
2126 int snd_usbmidi_create(struct snd_card *card,
2127 struct usb_interface* iface,
2128 struct list_head *midi_list,
2129 const struct snd_usb_audio_quirk* quirk)
2130 {
2131 struct snd_usb_midi* umidi;
2132 struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS];
2133 int out_ports, in_ports;
2134 int i, err;
2135
2136 umidi = kzalloc(sizeof(*umidi), GFP_KERNEL);
2137 if (!umidi)
2138 return -ENOMEM;
2139 umidi->dev = interface_to_usbdev(iface);
2140 umidi->card = card;
2141 umidi->iface = iface;
2142 umidi->quirk = quirk;
2143 umidi->usb_protocol_ops = &snd_usbmidi_standard_ops;
2144 init_timer(&umidi->error_timer);
2145 spin_lock_init(&umidi->disc_lock);
2146 init_rwsem(&umidi->disc_rwsem);
2147 mutex_init(&umidi->mutex);
2148 umidi->usb_id = USB_ID(le16_to_cpu(umidi->dev->descriptor.idVendor),
2149 le16_to_cpu(umidi->dev->descriptor.idProduct));
2150 umidi->error_timer.function = snd_usbmidi_error_timer;
2151 umidi->error_timer.data = (unsigned long)umidi;
2152
2153 /* detect the endpoint(s) to use */
2154 memset(endpoints, 0, sizeof(endpoints));
2155 switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) {
2156 case QUIRK_MIDI_STANDARD_INTERFACE:
2157 err = snd_usbmidi_get_ms_info(umidi, endpoints);
2158 if (umidi->usb_id == USB_ID(0x0763, 0x0150)) /* M-Audio Uno */
2159 umidi->usb_protocol_ops =
2160 &snd_usbmidi_maudio_broken_running_status_ops;
2161 break;
2162 case QUIRK_MIDI_US122L:
2163 umidi->usb_protocol_ops = &snd_usbmidi_122l_ops;
2164 /* fall through */
2165 case QUIRK_MIDI_FIXED_ENDPOINT:
2166 memcpy(&endpoints[0], quirk->data,
2167 sizeof(struct snd_usb_midi_endpoint_info));
2168 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2169 break;
2170 case QUIRK_MIDI_YAMAHA:
2171 err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]);
2172 break;
2173 case QUIRK_MIDI_MIDIMAN:
2174 umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops;
2175 memcpy(&endpoints[0], quirk->data,
2176 sizeof(struct snd_usb_midi_endpoint_info));
2177 err = 0;
2178 break;
2179 case QUIRK_MIDI_NOVATION:
2180 umidi->usb_protocol_ops = &snd_usbmidi_novation_ops;
2181 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2182 break;
2183 case QUIRK_MIDI_RAW_BYTES:
2184 umidi->usb_protocol_ops = &snd_usbmidi_raw_ops;
2185 /*
2186 * Interface 1 contains isochronous endpoints, but with the same
2187 * numbers as in interface 0. Since it is interface 1 that the
2188 * USB core has most recently seen, these descriptors are now
2189 * associated with the endpoint numbers. This will foul up our
2190 * attempts to submit bulk/interrupt URBs to the endpoints in
2191 * interface 0, so we have to make sure that the USB core looks
2192 * again at interface 0 by calling usb_set_interface() on it.
2193 */
2194 if (umidi->usb_id == USB_ID(0x07fd, 0x0001)) /* MOTU Fastlane */
2195 usb_set_interface(umidi->dev, 0, 0);
2196 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2197 break;
2198 case QUIRK_MIDI_EMAGIC:
2199 umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops;
2200 memcpy(&endpoints[0], quirk->data,
2201 sizeof(struct snd_usb_midi_endpoint_info));
2202 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2203 break;
2204 case QUIRK_MIDI_CME:
2205 umidi->usb_protocol_ops = &snd_usbmidi_cme_ops;
2206 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2207 break;
2208 case QUIRK_MIDI_AKAI:
2209 umidi->usb_protocol_ops = &snd_usbmidi_akai_ops;
2210 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2211 /* endpoint 1 is input-only */
2212 endpoints[1].out_cables = 0;
2213 break;
2214 case QUIRK_MIDI_FTDI:
2215 umidi->usb_protocol_ops = &snd_usbmidi_ftdi_ops;
2216
2217 /* set baud rate to 31250 (48 MHz / 16 / 96) */
2218 err = usb_control_msg(umidi->dev, usb_sndctrlpipe(umidi->dev, 0),
2219 3, 0x40, 0x60, 0, NULL, 0, 1000);
2220 if (err < 0)
2221 break;
2222
2223 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2224 break;
2225 default:
2226 snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type);
2227 err = -ENXIO;
2228 break;
2229 }
2230 if (err < 0) {
2231 kfree(umidi);
2232 return err;
2233 }
2234
2235 /* create rawmidi device */
2236 out_ports = 0;
2237 in_ports = 0;
2238 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2239 out_ports += hweight16(endpoints[i].out_cables);
2240 in_ports += hweight16(endpoints[i].in_cables);
2241 }
2242 err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports);
2243 if (err < 0) {
2244 kfree(umidi);
2245 return err;
2246 }
2247
2248 /* create endpoint/port structures */
2249 if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN)
2250 err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]);
2251 else
2252 err = snd_usbmidi_create_endpoints(umidi, endpoints);
2253 if (err < 0) {
2254 snd_usbmidi_free(umidi);
2255 return err;
2256 }
2257
2258 list_add_tail(&umidi->list, midi_list);
2259 return 0;
2260 }
2261
2262 EXPORT_SYMBOL(snd_usbmidi_create);
2263 EXPORT_SYMBOL(snd_usbmidi_input_stop);
2264 EXPORT_SYMBOL(snd_usbmidi_input_start);
2265 EXPORT_SYMBOL(snd_usbmidi_disconnect);
This page took 0.121902 seconds and 5 git commands to generate.