regulator: core: Fix memory leak in regulator_resolve_supply()
[deliverable/linux.git] / sound / usb / midi.c
1 /*
2 * usbmidi.c - ALSA USB MIDI driver
3 *
4 * Copyright (c) 2002-2009 Clemens Ladisch
5 * All rights reserved.
6 *
7 * Based on the OSS usb-midi driver by NAGANO Daisuke,
8 * NetBSD's umidi driver by Takuya SHIOZAKI,
9 * the "USB Device Class Definition for MIDI Devices" by Roland
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. The name of the author may not be used to endorse or promote products
18 * derived from this software without specific prior written permission.
19 *
20 * Alternatively, this software may be distributed and/or modified under the
21 * terms of the GNU General Public License as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any later
23 * version.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
29 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38 #include <linux/kernel.h>
39 #include <linux/types.h>
40 #include <linux/bitops.h>
41 #include <linux/interrupt.h>
42 #include <linux/spinlock.h>
43 #include <linux/string.h>
44 #include <linux/init.h>
45 #include <linux/slab.h>
46 #include <linux/timer.h>
47 #include <linux/usb.h>
48 #include <linux/wait.h>
49 #include <linux/usb/audio.h>
50 #include <linux/module.h>
51
52 #include <sound/core.h>
53 #include <sound/control.h>
54 #include <sound/rawmidi.h>
55 #include <sound/asequencer.h>
56 #include "usbaudio.h"
57 #include "midi.h"
58 #include "power.h"
59 #include "helper.h"
60
61 /*
62 * define this to log all USB packets
63 */
64 /* #define DUMP_PACKETS */
65
66 /*
67 * how long to wait after some USB errors, so that hub_wq can disconnect() us
68 * without too many spurious errors
69 */
70 #define ERROR_DELAY_JIFFIES (HZ / 10)
71
72 #define OUTPUT_URBS 7
73 #define INPUT_URBS 7
74
75
76 MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
77 MODULE_DESCRIPTION("USB Audio/MIDI helper module");
78 MODULE_LICENSE("Dual BSD/GPL");
79
80
81 struct usb_ms_header_descriptor {
82 __u8 bLength;
83 __u8 bDescriptorType;
84 __u8 bDescriptorSubtype;
85 __u8 bcdMSC[2];
86 __le16 wTotalLength;
87 } __attribute__ ((packed));
88
89 struct usb_ms_endpoint_descriptor {
90 __u8 bLength;
91 __u8 bDescriptorType;
92 __u8 bDescriptorSubtype;
93 __u8 bNumEmbMIDIJack;
94 __u8 baAssocJackID[0];
95 } __attribute__ ((packed));
96
97 struct snd_usb_midi_in_endpoint;
98 struct snd_usb_midi_out_endpoint;
99 struct snd_usb_midi_endpoint;
100
101 struct usb_protocol_ops {
102 void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int);
103 void (*output)(struct snd_usb_midi_out_endpoint *ep, struct urb *urb);
104 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t);
105 void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint *);
106 void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint *);
107 };
108
109 struct snd_usb_midi {
110 struct usb_device *dev;
111 struct snd_card *card;
112 struct usb_interface *iface;
113 const struct snd_usb_audio_quirk *quirk;
114 struct snd_rawmidi *rmidi;
115 struct usb_protocol_ops *usb_protocol_ops;
116 struct list_head list;
117 struct timer_list error_timer;
118 spinlock_t disc_lock;
119 struct rw_semaphore disc_rwsem;
120 struct mutex mutex;
121 u32 usb_id;
122 int next_midi_device;
123
124 struct snd_usb_midi_endpoint {
125 struct snd_usb_midi_out_endpoint *out;
126 struct snd_usb_midi_in_endpoint *in;
127 } endpoints[MIDI_MAX_ENDPOINTS];
128 unsigned long input_triggered;
129 unsigned int opened[2];
130 unsigned char disconnected;
131 unsigned char input_running;
132
133 struct snd_kcontrol *roland_load_ctl;
134 };
135
136 struct snd_usb_midi_out_endpoint {
137 struct snd_usb_midi *umidi;
138 struct out_urb_context {
139 struct urb *urb;
140 struct snd_usb_midi_out_endpoint *ep;
141 } urbs[OUTPUT_URBS];
142 unsigned int active_urbs;
143 unsigned int drain_urbs;
144 int max_transfer; /* size of urb buffer */
145 struct tasklet_struct tasklet;
146 unsigned int next_urb;
147 spinlock_t buffer_lock;
148
149 struct usbmidi_out_port {
150 struct snd_usb_midi_out_endpoint *ep;
151 struct snd_rawmidi_substream *substream;
152 int active;
153 uint8_t cable; /* cable number << 4 */
154 uint8_t state;
155 #define STATE_UNKNOWN 0
156 #define STATE_1PARAM 1
157 #define STATE_2PARAM_1 2
158 #define STATE_2PARAM_2 3
159 #define STATE_SYSEX_0 4
160 #define STATE_SYSEX_1 5
161 #define STATE_SYSEX_2 6
162 uint8_t data[2];
163 } ports[0x10];
164 int current_port;
165
166 wait_queue_head_t drain_wait;
167 };
168
169 struct snd_usb_midi_in_endpoint {
170 struct snd_usb_midi *umidi;
171 struct urb *urbs[INPUT_URBS];
172 struct usbmidi_in_port {
173 struct snd_rawmidi_substream *substream;
174 u8 running_status_length;
175 } ports[0x10];
176 u8 seen_f5;
177 u8 error_resubmit;
178 int current_port;
179 };
180
181 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint *ep);
182
183 static const uint8_t snd_usbmidi_cin_length[] = {
184 0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1
185 };
186
187 /*
188 * Submits the URB, with error handling.
189 */
190 static int snd_usbmidi_submit_urb(struct urb *urb, gfp_t flags)
191 {
192 int err = usb_submit_urb(urb, flags);
193 if (err < 0 && err != -ENODEV)
194 dev_err(&urb->dev->dev, "usb_submit_urb: %d\n", err);
195 return err;
196 }
197
198 /*
199 * Error handling for URB completion functions.
200 */
201 static int snd_usbmidi_urb_error(const struct urb *urb)
202 {
203 switch (urb->status) {
204 /* manually unlinked, or device gone */
205 case -ENOENT:
206 case -ECONNRESET:
207 case -ESHUTDOWN:
208 case -ENODEV:
209 return -ENODEV;
210 /* errors that might occur during unplugging */
211 case -EPROTO:
212 case -ETIME:
213 case -EILSEQ:
214 return -EIO;
215 default:
216 dev_err(&urb->dev->dev, "urb status %d\n", urb->status);
217 return 0; /* continue */
218 }
219 }
220
221 /*
222 * Receives a chunk of MIDI data.
223 */
224 static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint *ep,
225 int portidx, uint8_t *data, int length)
226 {
227 struct usbmidi_in_port *port = &ep->ports[portidx];
228
229 if (!port->substream) {
230 dev_dbg(&ep->umidi->dev->dev, "unexpected port %d!\n", portidx);
231 return;
232 }
233 if (!test_bit(port->substream->number, &ep->umidi->input_triggered))
234 return;
235 snd_rawmidi_receive(port->substream, data, length);
236 }
237
238 #ifdef DUMP_PACKETS
239 static void dump_urb(const char *type, const u8 *data, int length)
240 {
241 snd_printk(KERN_DEBUG "%s packet: [", type);
242 for (; length > 0; ++data, --length)
243 printk(" %02x", *data);
244 printk(" ]\n");
245 }
246 #else
247 #define dump_urb(type, data, length) /* nothing */
248 #endif
249
250 /*
251 * Processes the data read from the device.
252 */
253 static void snd_usbmidi_in_urb_complete(struct urb *urb)
254 {
255 struct snd_usb_midi_in_endpoint *ep = urb->context;
256
257 if (urb->status == 0) {
258 dump_urb("received", urb->transfer_buffer, urb->actual_length);
259 ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer,
260 urb->actual_length);
261 } else {
262 int err = snd_usbmidi_urb_error(urb);
263 if (err < 0) {
264 if (err != -ENODEV) {
265 ep->error_resubmit = 1;
266 mod_timer(&ep->umidi->error_timer,
267 jiffies + ERROR_DELAY_JIFFIES);
268 }
269 return;
270 }
271 }
272
273 urb->dev = ep->umidi->dev;
274 snd_usbmidi_submit_urb(urb, GFP_ATOMIC);
275 }
276
277 static void snd_usbmidi_out_urb_complete(struct urb *urb)
278 {
279 struct out_urb_context *context = urb->context;
280 struct snd_usb_midi_out_endpoint *ep = context->ep;
281 unsigned int urb_index;
282
283 spin_lock(&ep->buffer_lock);
284 urb_index = context - ep->urbs;
285 ep->active_urbs &= ~(1 << urb_index);
286 if (unlikely(ep->drain_urbs)) {
287 ep->drain_urbs &= ~(1 << urb_index);
288 wake_up(&ep->drain_wait);
289 }
290 spin_unlock(&ep->buffer_lock);
291 if (urb->status < 0) {
292 int err = snd_usbmidi_urb_error(urb);
293 if (err < 0) {
294 if (err != -ENODEV)
295 mod_timer(&ep->umidi->error_timer,
296 jiffies + ERROR_DELAY_JIFFIES);
297 return;
298 }
299 }
300 snd_usbmidi_do_output(ep);
301 }
302
303 /*
304 * This is called when some data should be transferred to the device
305 * (from one or more substreams).
306 */
307 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint *ep)
308 {
309 unsigned int urb_index;
310 struct urb *urb;
311 unsigned long flags;
312
313 spin_lock_irqsave(&ep->buffer_lock, flags);
314 if (ep->umidi->disconnected) {
315 spin_unlock_irqrestore(&ep->buffer_lock, flags);
316 return;
317 }
318
319 urb_index = ep->next_urb;
320 for (;;) {
321 if (!(ep->active_urbs & (1 << urb_index))) {
322 urb = ep->urbs[urb_index].urb;
323 urb->transfer_buffer_length = 0;
324 ep->umidi->usb_protocol_ops->output(ep, urb);
325 if (urb->transfer_buffer_length == 0)
326 break;
327
328 dump_urb("sending", urb->transfer_buffer,
329 urb->transfer_buffer_length);
330 urb->dev = ep->umidi->dev;
331 if (snd_usbmidi_submit_urb(urb, GFP_ATOMIC) < 0)
332 break;
333 ep->active_urbs |= 1 << urb_index;
334 }
335 if (++urb_index >= OUTPUT_URBS)
336 urb_index = 0;
337 if (urb_index == ep->next_urb)
338 break;
339 }
340 ep->next_urb = urb_index;
341 spin_unlock_irqrestore(&ep->buffer_lock, flags);
342 }
343
344 static void snd_usbmidi_out_tasklet(unsigned long data)
345 {
346 struct snd_usb_midi_out_endpoint *ep =
347 (struct snd_usb_midi_out_endpoint *) data;
348
349 snd_usbmidi_do_output(ep);
350 }
351
352 /* called after transfers had been interrupted due to some USB error */
353 static void snd_usbmidi_error_timer(unsigned long data)
354 {
355 struct snd_usb_midi *umidi = (struct snd_usb_midi *)data;
356 unsigned int i, j;
357
358 spin_lock(&umidi->disc_lock);
359 if (umidi->disconnected) {
360 spin_unlock(&umidi->disc_lock);
361 return;
362 }
363 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
364 struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in;
365 if (in && in->error_resubmit) {
366 in->error_resubmit = 0;
367 for (j = 0; j < INPUT_URBS; ++j) {
368 if (atomic_read(&in->urbs[j]->use_count))
369 continue;
370 in->urbs[j]->dev = umidi->dev;
371 snd_usbmidi_submit_urb(in->urbs[j], GFP_ATOMIC);
372 }
373 }
374 if (umidi->endpoints[i].out)
375 snd_usbmidi_do_output(umidi->endpoints[i].out);
376 }
377 spin_unlock(&umidi->disc_lock);
378 }
379
380 /* helper function to send static data that may not DMA-able */
381 static int send_bulk_static_data(struct snd_usb_midi_out_endpoint *ep,
382 const void *data, int len)
383 {
384 int err = 0;
385 void *buf = kmemdup(data, len, GFP_KERNEL);
386 if (!buf)
387 return -ENOMEM;
388 dump_urb("sending", buf, len);
389 if (ep->urbs[0].urb)
390 err = usb_bulk_msg(ep->umidi->dev, ep->urbs[0].urb->pipe,
391 buf, len, NULL, 250);
392 kfree(buf);
393 return err;
394 }
395
396 /*
397 * Standard USB MIDI protocol: see the spec.
398 * Midiman protocol: like the standard protocol, but the control byte is the
399 * fourth byte in each packet, and uses length instead of CIN.
400 */
401
402 static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint *ep,
403 uint8_t *buffer, int buffer_length)
404 {
405 int i;
406
407 for (i = 0; i + 3 < buffer_length; i += 4)
408 if (buffer[i] != 0) {
409 int cable = buffer[i] >> 4;
410 int length = snd_usbmidi_cin_length[buffer[i] & 0x0f];
411 snd_usbmidi_input_data(ep, cable, &buffer[i + 1],
412 length);
413 }
414 }
415
416 static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint *ep,
417 uint8_t *buffer, int buffer_length)
418 {
419 int i;
420
421 for (i = 0; i + 3 < buffer_length; i += 4)
422 if (buffer[i + 3] != 0) {
423 int port = buffer[i + 3] >> 4;
424 int length = buffer[i + 3] & 3;
425 snd_usbmidi_input_data(ep, port, &buffer[i], length);
426 }
427 }
428
429 /*
430 * Buggy M-Audio device: running status on input results in a packet that has
431 * the data bytes but not the status byte and that is marked with CIN 4.
432 */
433 static void snd_usbmidi_maudio_broken_running_status_input(
434 struct snd_usb_midi_in_endpoint *ep,
435 uint8_t *buffer, int buffer_length)
436 {
437 int i;
438
439 for (i = 0; i + 3 < buffer_length; i += 4)
440 if (buffer[i] != 0) {
441 int cable = buffer[i] >> 4;
442 u8 cin = buffer[i] & 0x0f;
443 struct usbmidi_in_port *port = &ep->ports[cable];
444 int length;
445
446 length = snd_usbmidi_cin_length[cin];
447 if (cin == 0xf && buffer[i + 1] >= 0xf8)
448 ; /* realtime msg: no running status change */
449 else if (cin >= 0x8 && cin <= 0xe)
450 /* channel msg */
451 port->running_status_length = length - 1;
452 else if (cin == 0x4 &&
453 port->running_status_length != 0 &&
454 buffer[i + 1] < 0x80)
455 /* CIN 4 that is not a SysEx */
456 length = port->running_status_length;
457 else
458 /*
459 * All other msgs cannot begin running status.
460 * (A channel msg sent as two or three CIN 0xF
461 * packets could in theory, but this device
462 * doesn't use this format.)
463 */
464 port->running_status_length = 0;
465 snd_usbmidi_input_data(ep, cable, &buffer[i + 1],
466 length);
467 }
468 }
469
470 /*
471 * CME protocol: like the standard protocol, but SysEx commands are sent as a
472 * single USB packet preceded by a 0x0F byte.
473 */
474 static void snd_usbmidi_cme_input(struct snd_usb_midi_in_endpoint *ep,
475 uint8_t *buffer, int buffer_length)
476 {
477 if (buffer_length < 2 || (buffer[0] & 0x0f) != 0x0f)
478 snd_usbmidi_standard_input(ep, buffer, buffer_length);
479 else
480 snd_usbmidi_input_data(ep, buffer[0] >> 4,
481 &buffer[1], buffer_length - 1);
482 }
483
484 /*
485 * Adds one USB MIDI packet to the output buffer.
486 */
487 static void snd_usbmidi_output_standard_packet(struct urb *urb, uint8_t p0,
488 uint8_t p1, uint8_t p2,
489 uint8_t p3)
490 {
491
492 uint8_t *buf =
493 (uint8_t *)urb->transfer_buffer + urb->transfer_buffer_length;
494 buf[0] = p0;
495 buf[1] = p1;
496 buf[2] = p2;
497 buf[3] = p3;
498 urb->transfer_buffer_length += 4;
499 }
500
501 /*
502 * Adds one Midiman packet to the output buffer.
503 */
504 static void snd_usbmidi_output_midiman_packet(struct urb *urb, uint8_t p0,
505 uint8_t p1, uint8_t p2,
506 uint8_t p3)
507 {
508
509 uint8_t *buf =
510 (uint8_t *)urb->transfer_buffer + urb->transfer_buffer_length;
511 buf[0] = p1;
512 buf[1] = p2;
513 buf[2] = p3;
514 buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f];
515 urb->transfer_buffer_length += 4;
516 }
517
518 /*
519 * Converts MIDI commands to USB MIDI packets.
520 */
521 static void snd_usbmidi_transmit_byte(struct usbmidi_out_port *port,
522 uint8_t b, struct urb *urb)
523 {
524 uint8_t p0 = port->cable;
525 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) =
526 port->ep->umidi->usb_protocol_ops->output_packet;
527
528 if (b >= 0xf8) {
529 output_packet(urb, p0 | 0x0f, b, 0, 0);
530 } else if (b >= 0xf0) {
531 switch (b) {
532 case 0xf0:
533 port->data[0] = b;
534 port->state = STATE_SYSEX_1;
535 break;
536 case 0xf1:
537 case 0xf3:
538 port->data[0] = b;
539 port->state = STATE_1PARAM;
540 break;
541 case 0xf2:
542 port->data[0] = b;
543 port->state = STATE_2PARAM_1;
544 break;
545 case 0xf4:
546 case 0xf5:
547 port->state = STATE_UNKNOWN;
548 break;
549 case 0xf6:
550 output_packet(urb, p0 | 0x05, 0xf6, 0, 0);
551 port->state = STATE_UNKNOWN;
552 break;
553 case 0xf7:
554 switch (port->state) {
555 case STATE_SYSEX_0:
556 output_packet(urb, p0 | 0x05, 0xf7, 0, 0);
557 break;
558 case STATE_SYSEX_1:
559 output_packet(urb, p0 | 0x06, port->data[0],
560 0xf7, 0);
561 break;
562 case STATE_SYSEX_2:
563 output_packet(urb, p0 | 0x07, port->data[0],
564 port->data[1], 0xf7);
565 break;
566 }
567 port->state = STATE_UNKNOWN;
568 break;
569 }
570 } else if (b >= 0x80) {
571 port->data[0] = b;
572 if (b >= 0xc0 && b <= 0xdf)
573 port->state = STATE_1PARAM;
574 else
575 port->state = STATE_2PARAM_1;
576 } else { /* b < 0x80 */
577 switch (port->state) {
578 case STATE_1PARAM:
579 if (port->data[0] < 0xf0) {
580 p0 |= port->data[0] >> 4;
581 } else {
582 p0 |= 0x02;
583 port->state = STATE_UNKNOWN;
584 }
585 output_packet(urb, p0, port->data[0], b, 0);
586 break;
587 case STATE_2PARAM_1:
588 port->data[1] = b;
589 port->state = STATE_2PARAM_2;
590 break;
591 case STATE_2PARAM_2:
592 if (port->data[0] < 0xf0) {
593 p0 |= port->data[0] >> 4;
594 port->state = STATE_2PARAM_1;
595 } else {
596 p0 |= 0x03;
597 port->state = STATE_UNKNOWN;
598 }
599 output_packet(urb, p0, port->data[0], port->data[1], b);
600 break;
601 case STATE_SYSEX_0:
602 port->data[0] = b;
603 port->state = STATE_SYSEX_1;
604 break;
605 case STATE_SYSEX_1:
606 port->data[1] = b;
607 port->state = STATE_SYSEX_2;
608 break;
609 case STATE_SYSEX_2:
610 output_packet(urb, p0 | 0x04, port->data[0],
611 port->data[1], b);
612 port->state = STATE_SYSEX_0;
613 break;
614 }
615 }
616 }
617
618 static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint *ep,
619 struct urb *urb)
620 {
621 int p;
622
623 /* FIXME: lower-numbered ports can starve higher-numbered ports */
624 for (p = 0; p < 0x10; ++p) {
625 struct usbmidi_out_port *port = &ep->ports[p];
626 if (!port->active)
627 continue;
628 while (urb->transfer_buffer_length + 3 < ep->max_transfer) {
629 uint8_t b;
630 if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) {
631 port->active = 0;
632 break;
633 }
634 snd_usbmidi_transmit_byte(port, b, urb);
635 }
636 }
637 }
638
639 static struct usb_protocol_ops snd_usbmidi_standard_ops = {
640 .input = snd_usbmidi_standard_input,
641 .output = snd_usbmidi_standard_output,
642 .output_packet = snd_usbmidi_output_standard_packet,
643 };
644
645 static struct usb_protocol_ops snd_usbmidi_midiman_ops = {
646 .input = snd_usbmidi_midiman_input,
647 .output = snd_usbmidi_standard_output,
648 .output_packet = snd_usbmidi_output_midiman_packet,
649 };
650
651 static struct usb_protocol_ops snd_usbmidi_maudio_broken_running_status_ops = {
652 .input = snd_usbmidi_maudio_broken_running_status_input,
653 .output = snd_usbmidi_standard_output,
654 .output_packet = snd_usbmidi_output_standard_packet,
655 };
656
657 static struct usb_protocol_ops snd_usbmidi_cme_ops = {
658 .input = snd_usbmidi_cme_input,
659 .output = snd_usbmidi_standard_output,
660 .output_packet = snd_usbmidi_output_standard_packet,
661 };
662
663 /*
664 * AKAI MPD16 protocol:
665 *
666 * For control port (endpoint 1):
667 * ==============================
668 * One or more chunks consisting of first byte of (0x10 | msg_len) and then a
669 * SysEx message (msg_len=9 bytes long).
670 *
671 * For data port (endpoint 2):
672 * ===========================
673 * One or more chunks consisting of first byte of (0x20 | msg_len) and then a
674 * MIDI message (msg_len bytes long)
675 *
676 * Messages sent: Active Sense, Note On, Poly Pressure, Control Change.
677 */
678 static void snd_usbmidi_akai_input(struct snd_usb_midi_in_endpoint *ep,
679 uint8_t *buffer, int buffer_length)
680 {
681 unsigned int pos = 0;
682 unsigned int len = (unsigned int)buffer_length;
683 while (pos < len) {
684 unsigned int port = (buffer[pos] >> 4) - 1;
685 unsigned int msg_len = buffer[pos] & 0x0f;
686 pos++;
687 if (pos + msg_len <= len && port < 2)
688 snd_usbmidi_input_data(ep, 0, &buffer[pos], msg_len);
689 pos += msg_len;
690 }
691 }
692
693 #define MAX_AKAI_SYSEX_LEN 9
694
695 static void snd_usbmidi_akai_output(struct snd_usb_midi_out_endpoint *ep,
696 struct urb *urb)
697 {
698 uint8_t *msg;
699 int pos, end, count, buf_end;
700 uint8_t tmp[MAX_AKAI_SYSEX_LEN];
701 struct snd_rawmidi_substream *substream = ep->ports[0].substream;
702
703 if (!ep->ports[0].active)
704 return;
705
706 msg = urb->transfer_buffer + urb->transfer_buffer_length;
707 buf_end = ep->max_transfer - MAX_AKAI_SYSEX_LEN - 1;
708
709 /* only try adding more data when there's space for at least 1 SysEx */
710 while (urb->transfer_buffer_length < buf_end) {
711 count = snd_rawmidi_transmit_peek(substream,
712 tmp, MAX_AKAI_SYSEX_LEN);
713 if (!count) {
714 ep->ports[0].active = 0;
715 return;
716 }
717 /* try to skip non-SysEx data */
718 for (pos = 0; pos < count && tmp[pos] != 0xF0; pos++)
719 ;
720
721 if (pos > 0) {
722 snd_rawmidi_transmit_ack(substream, pos);
723 continue;
724 }
725
726 /* look for the start or end marker */
727 for (end = 1; end < count && tmp[end] < 0xF0; end++)
728 ;
729
730 /* next SysEx started before the end of current one */
731 if (end < count && tmp[end] == 0xF0) {
732 /* it's incomplete - drop it */
733 snd_rawmidi_transmit_ack(substream, end);
734 continue;
735 }
736 /* SysEx complete */
737 if (end < count && tmp[end] == 0xF7) {
738 /* queue it, ack it, and get the next one */
739 count = end + 1;
740 msg[0] = 0x10 | count;
741 memcpy(&msg[1], tmp, count);
742 snd_rawmidi_transmit_ack(substream, count);
743 urb->transfer_buffer_length += count + 1;
744 msg += count + 1;
745 continue;
746 }
747 /* less than 9 bytes and no end byte - wait for more */
748 if (count < MAX_AKAI_SYSEX_LEN) {
749 ep->ports[0].active = 0;
750 return;
751 }
752 /* 9 bytes and no end marker in sight - malformed, skip it */
753 snd_rawmidi_transmit_ack(substream, count);
754 }
755 }
756
757 static struct usb_protocol_ops snd_usbmidi_akai_ops = {
758 .input = snd_usbmidi_akai_input,
759 .output = snd_usbmidi_akai_output,
760 };
761
762 /*
763 * Novation USB MIDI protocol: number of data bytes is in the first byte
764 * (when receiving) (+1!) or in the second byte (when sending); data begins
765 * at the third byte.
766 */
767
768 static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint *ep,
769 uint8_t *buffer, int buffer_length)
770 {
771 if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1)
772 return;
773 snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1);
774 }
775
776 static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint *ep,
777 struct urb *urb)
778 {
779 uint8_t *transfer_buffer;
780 int count;
781
782 if (!ep->ports[0].active)
783 return;
784 transfer_buffer = urb->transfer_buffer;
785 count = snd_rawmidi_transmit(ep->ports[0].substream,
786 &transfer_buffer[2],
787 ep->max_transfer - 2);
788 if (count < 1) {
789 ep->ports[0].active = 0;
790 return;
791 }
792 transfer_buffer[0] = 0;
793 transfer_buffer[1] = count;
794 urb->transfer_buffer_length = 2 + count;
795 }
796
797 static struct usb_protocol_ops snd_usbmidi_novation_ops = {
798 .input = snd_usbmidi_novation_input,
799 .output = snd_usbmidi_novation_output,
800 };
801
802 /*
803 * "raw" protocol: just move raw MIDI bytes from/to the endpoint
804 */
805
806 static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint *ep,
807 uint8_t *buffer, int buffer_length)
808 {
809 snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
810 }
811
812 static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint *ep,
813 struct urb *urb)
814 {
815 int count;
816
817 if (!ep->ports[0].active)
818 return;
819 count = snd_rawmidi_transmit(ep->ports[0].substream,
820 urb->transfer_buffer,
821 ep->max_transfer);
822 if (count < 1) {
823 ep->ports[0].active = 0;
824 return;
825 }
826 urb->transfer_buffer_length = count;
827 }
828
829 static struct usb_protocol_ops snd_usbmidi_raw_ops = {
830 .input = snd_usbmidi_raw_input,
831 .output = snd_usbmidi_raw_output,
832 };
833
834 /*
835 * FTDI protocol: raw MIDI bytes, but input packets have two modem status bytes.
836 */
837
838 static void snd_usbmidi_ftdi_input(struct snd_usb_midi_in_endpoint *ep,
839 uint8_t *buffer, int buffer_length)
840 {
841 if (buffer_length > 2)
842 snd_usbmidi_input_data(ep, 0, buffer + 2, buffer_length - 2);
843 }
844
845 static struct usb_protocol_ops snd_usbmidi_ftdi_ops = {
846 .input = snd_usbmidi_ftdi_input,
847 .output = snd_usbmidi_raw_output,
848 };
849
850 static void snd_usbmidi_us122l_input(struct snd_usb_midi_in_endpoint *ep,
851 uint8_t *buffer, int buffer_length)
852 {
853 if (buffer_length != 9)
854 return;
855 buffer_length = 8;
856 while (buffer_length && buffer[buffer_length - 1] == 0xFD)
857 buffer_length--;
858 if (buffer_length)
859 snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
860 }
861
862 static void snd_usbmidi_us122l_output(struct snd_usb_midi_out_endpoint *ep,
863 struct urb *urb)
864 {
865 int count;
866
867 if (!ep->ports[0].active)
868 return;
869 switch (snd_usb_get_speed(ep->umidi->dev)) {
870 case USB_SPEED_HIGH:
871 case USB_SPEED_SUPER:
872 count = 1;
873 break;
874 default:
875 count = 2;
876 }
877 count = snd_rawmidi_transmit(ep->ports[0].substream,
878 urb->transfer_buffer,
879 count);
880 if (count < 1) {
881 ep->ports[0].active = 0;
882 return;
883 }
884
885 memset(urb->transfer_buffer + count, 0xFD, ep->max_transfer - count);
886 urb->transfer_buffer_length = ep->max_transfer;
887 }
888
889 static struct usb_protocol_ops snd_usbmidi_122l_ops = {
890 .input = snd_usbmidi_us122l_input,
891 .output = snd_usbmidi_us122l_output,
892 };
893
894 /*
895 * Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching.
896 */
897
898 static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint *ep)
899 {
900 static const u8 init_data[] = {
901 /* initialization magic: "get version" */
902 0xf0,
903 0x00, 0x20, 0x31, /* Emagic */
904 0x64, /* Unitor8 */
905 0x0b, /* version number request */
906 0x00, /* command version */
907 0x00, /* EEPROM, box 0 */
908 0xf7
909 };
910 send_bulk_static_data(ep, init_data, sizeof(init_data));
911 /* while we're at it, pour on more magic */
912 send_bulk_static_data(ep, init_data, sizeof(init_data));
913 }
914
915 static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint *ep)
916 {
917 static const u8 finish_data[] = {
918 /* switch to patch mode with last preset */
919 0xf0,
920 0x00, 0x20, 0x31, /* Emagic */
921 0x64, /* Unitor8 */
922 0x10, /* patch switch command */
923 0x00, /* command version */
924 0x7f, /* to all boxes */
925 0x40, /* last preset in EEPROM */
926 0xf7
927 };
928 send_bulk_static_data(ep, finish_data, sizeof(finish_data));
929 }
930
931 static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint *ep,
932 uint8_t *buffer, int buffer_length)
933 {
934 int i;
935
936 /* FF indicates end of valid data */
937 for (i = 0; i < buffer_length; ++i)
938 if (buffer[i] == 0xff) {
939 buffer_length = i;
940 break;
941 }
942
943 /* handle F5 at end of last buffer */
944 if (ep->seen_f5)
945 goto switch_port;
946
947 while (buffer_length > 0) {
948 /* determine size of data until next F5 */
949 for (i = 0; i < buffer_length; ++i)
950 if (buffer[i] == 0xf5)
951 break;
952 snd_usbmidi_input_data(ep, ep->current_port, buffer, i);
953 buffer += i;
954 buffer_length -= i;
955
956 if (buffer_length <= 0)
957 break;
958 /* assert(buffer[0] == 0xf5); */
959 ep->seen_f5 = 1;
960 ++buffer;
961 --buffer_length;
962
963 switch_port:
964 if (buffer_length <= 0)
965 break;
966 if (buffer[0] < 0x80) {
967 ep->current_port = (buffer[0] - 1) & 15;
968 ++buffer;
969 --buffer_length;
970 }
971 ep->seen_f5 = 0;
972 }
973 }
974
975 static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint *ep,
976 struct urb *urb)
977 {
978 int port0 = ep->current_port;
979 uint8_t *buf = urb->transfer_buffer;
980 int buf_free = ep->max_transfer;
981 int length, i;
982
983 for (i = 0; i < 0x10; ++i) {
984 /* round-robin, starting at the last current port */
985 int portnum = (port0 + i) & 15;
986 struct usbmidi_out_port *port = &ep->ports[portnum];
987
988 if (!port->active)
989 continue;
990 if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) {
991 port->active = 0;
992 continue;
993 }
994
995 if (portnum != ep->current_port) {
996 if (buf_free < 2)
997 break;
998 ep->current_port = portnum;
999 buf[0] = 0xf5;
1000 buf[1] = (portnum + 1) & 15;
1001 buf += 2;
1002 buf_free -= 2;
1003 }
1004
1005 if (buf_free < 1)
1006 break;
1007 length = snd_rawmidi_transmit(port->substream, buf, buf_free);
1008 if (length > 0) {
1009 buf += length;
1010 buf_free -= length;
1011 if (buf_free < 1)
1012 break;
1013 }
1014 }
1015 if (buf_free < ep->max_transfer && buf_free > 0) {
1016 *buf = 0xff;
1017 --buf_free;
1018 }
1019 urb->transfer_buffer_length = ep->max_transfer - buf_free;
1020 }
1021
1022 static struct usb_protocol_ops snd_usbmidi_emagic_ops = {
1023 .input = snd_usbmidi_emagic_input,
1024 .output = snd_usbmidi_emagic_output,
1025 .init_out_endpoint = snd_usbmidi_emagic_init_out,
1026 .finish_out_endpoint = snd_usbmidi_emagic_finish_out,
1027 };
1028
1029
1030 static void update_roland_altsetting(struct snd_usb_midi *umidi)
1031 {
1032 struct usb_interface *intf;
1033 struct usb_host_interface *hostif;
1034 struct usb_interface_descriptor *intfd;
1035 int is_light_load;
1036
1037 intf = umidi->iface;
1038 is_light_load = intf->cur_altsetting != intf->altsetting;
1039 if (umidi->roland_load_ctl->private_value == is_light_load)
1040 return;
1041 hostif = &intf->altsetting[umidi->roland_load_ctl->private_value];
1042 intfd = get_iface_desc(hostif);
1043 snd_usbmidi_input_stop(&umidi->list);
1044 usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1045 intfd->bAlternateSetting);
1046 snd_usbmidi_input_start(&umidi->list);
1047 }
1048
1049 static int substream_open(struct snd_rawmidi_substream *substream, int dir,
1050 int open)
1051 {
1052 struct snd_usb_midi *umidi = substream->rmidi->private_data;
1053 struct snd_kcontrol *ctl;
1054
1055 down_read(&umidi->disc_rwsem);
1056 if (umidi->disconnected) {
1057 up_read(&umidi->disc_rwsem);
1058 return open ? -ENODEV : 0;
1059 }
1060
1061 mutex_lock(&umidi->mutex);
1062 if (open) {
1063 if (!umidi->opened[0] && !umidi->opened[1]) {
1064 if (umidi->roland_load_ctl) {
1065 ctl = umidi->roland_load_ctl;
1066 ctl->vd[0].access |=
1067 SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1068 snd_ctl_notify(umidi->card,
1069 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
1070 update_roland_altsetting(umidi);
1071 }
1072 }
1073 umidi->opened[dir]++;
1074 if (umidi->opened[1])
1075 snd_usbmidi_input_start(&umidi->list);
1076 } else {
1077 umidi->opened[dir]--;
1078 if (!umidi->opened[1])
1079 snd_usbmidi_input_stop(&umidi->list);
1080 if (!umidi->opened[0] && !umidi->opened[1]) {
1081 if (umidi->roland_load_ctl) {
1082 ctl = umidi->roland_load_ctl;
1083 ctl->vd[0].access &=
1084 ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1085 snd_ctl_notify(umidi->card,
1086 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
1087 }
1088 }
1089 }
1090 mutex_unlock(&umidi->mutex);
1091 up_read(&umidi->disc_rwsem);
1092 return 0;
1093 }
1094
1095 static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream)
1096 {
1097 struct snd_usb_midi *umidi = substream->rmidi->private_data;
1098 struct usbmidi_out_port *port = NULL;
1099 int i, j;
1100
1101 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
1102 if (umidi->endpoints[i].out)
1103 for (j = 0; j < 0x10; ++j)
1104 if (umidi->endpoints[i].out->ports[j].substream == substream) {
1105 port = &umidi->endpoints[i].out->ports[j];
1106 break;
1107 }
1108 if (!port) {
1109 snd_BUG();
1110 return -ENXIO;
1111 }
1112
1113 substream->runtime->private_data = port;
1114 port->state = STATE_UNKNOWN;
1115 return substream_open(substream, 0, 1);
1116 }
1117
1118 static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream)
1119 {
1120 return substream_open(substream, 0, 0);
1121 }
1122
1123 static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream,
1124 int up)
1125 {
1126 struct usbmidi_out_port *port =
1127 (struct usbmidi_out_port *)substream->runtime->private_data;
1128
1129 port->active = up;
1130 if (up) {
1131 if (port->ep->umidi->disconnected) {
1132 /* gobble up remaining bytes to prevent wait in
1133 * snd_rawmidi_drain_output */
1134 while (!snd_rawmidi_transmit_empty(substream))
1135 snd_rawmidi_transmit_ack(substream, 1);
1136 return;
1137 }
1138 tasklet_schedule(&port->ep->tasklet);
1139 }
1140 }
1141
1142 static void snd_usbmidi_output_drain(struct snd_rawmidi_substream *substream)
1143 {
1144 struct usbmidi_out_port *port = substream->runtime->private_data;
1145 struct snd_usb_midi_out_endpoint *ep = port->ep;
1146 unsigned int drain_urbs;
1147 DEFINE_WAIT(wait);
1148 long timeout = msecs_to_jiffies(50);
1149
1150 if (ep->umidi->disconnected)
1151 return;
1152 /*
1153 * The substream buffer is empty, but some data might still be in the
1154 * currently active URBs, so we have to wait for those to complete.
1155 */
1156 spin_lock_irq(&ep->buffer_lock);
1157 drain_urbs = ep->active_urbs;
1158 if (drain_urbs) {
1159 ep->drain_urbs |= drain_urbs;
1160 do {
1161 prepare_to_wait(&ep->drain_wait, &wait,
1162 TASK_UNINTERRUPTIBLE);
1163 spin_unlock_irq(&ep->buffer_lock);
1164 timeout = schedule_timeout(timeout);
1165 spin_lock_irq(&ep->buffer_lock);
1166 drain_urbs &= ep->drain_urbs;
1167 } while (drain_urbs && timeout);
1168 finish_wait(&ep->drain_wait, &wait);
1169 }
1170 spin_unlock_irq(&ep->buffer_lock);
1171 }
1172
1173 static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream)
1174 {
1175 return substream_open(substream, 1, 1);
1176 }
1177
1178 static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream)
1179 {
1180 return substream_open(substream, 1, 0);
1181 }
1182
1183 static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream,
1184 int up)
1185 {
1186 struct snd_usb_midi *umidi = substream->rmidi->private_data;
1187
1188 if (up)
1189 set_bit(substream->number, &umidi->input_triggered);
1190 else
1191 clear_bit(substream->number, &umidi->input_triggered);
1192 }
1193
1194 static struct snd_rawmidi_ops snd_usbmidi_output_ops = {
1195 .open = snd_usbmidi_output_open,
1196 .close = snd_usbmidi_output_close,
1197 .trigger = snd_usbmidi_output_trigger,
1198 .drain = snd_usbmidi_output_drain,
1199 };
1200
1201 static struct snd_rawmidi_ops snd_usbmidi_input_ops = {
1202 .open = snd_usbmidi_input_open,
1203 .close = snd_usbmidi_input_close,
1204 .trigger = snd_usbmidi_input_trigger
1205 };
1206
1207 static void free_urb_and_buffer(struct snd_usb_midi *umidi, struct urb *urb,
1208 unsigned int buffer_length)
1209 {
1210 usb_free_coherent(umidi->dev, buffer_length,
1211 urb->transfer_buffer, urb->transfer_dma);
1212 usb_free_urb(urb);
1213 }
1214
1215 /*
1216 * Frees an input endpoint.
1217 * May be called when ep hasn't been initialized completely.
1218 */
1219 static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint *ep)
1220 {
1221 unsigned int i;
1222
1223 for (i = 0; i < INPUT_URBS; ++i)
1224 if (ep->urbs[i])
1225 free_urb_and_buffer(ep->umidi, ep->urbs[i],
1226 ep->urbs[i]->transfer_buffer_length);
1227 kfree(ep);
1228 }
1229
1230 /*
1231 * Creates an input endpoint.
1232 */
1233 static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi *umidi,
1234 struct snd_usb_midi_endpoint_info *ep_info,
1235 struct snd_usb_midi_endpoint *rep)
1236 {
1237 struct snd_usb_midi_in_endpoint *ep;
1238 void *buffer;
1239 unsigned int pipe;
1240 int length;
1241 unsigned int i;
1242
1243 rep->in = NULL;
1244 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1245 if (!ep)
1246 return -ENOMEM;
1247 ep->umidi = umidi;
1248
1249 for (i = 0; i < INPUT_URBS; ++i) {
1250 ep->urbs[i] = usb_alloc_urb(0, GFP_KERNEL);
1251 if (!ep->urbs[i]) {
1252 snd_usbmidi_in_endpoint_delete(ep);
1253 return -ENOMEM;
1254 }
1255 }
1256 if (ep_info->in_interval)
1257 pipe = usb_rcvintpipe(umidi->dev, ep_info->in_ep);
1258 else
1259 pipe = usb_rcvbulkpipe(umidi->dev, ep_info->in_ep);
1260 length = usb_maxpacket(umidi->dev, pipe, 0);
1261 for (i = 0; i < INPUT_URBS; ++i) {
1262 buffer = usb_alloc_coherent(umidi->dev, length, GFP_KERNEL,
1263 &ep->urbs[i]->transfer_dma);
1264 if (!buffer) {
1265 snd_usbmidi_in_endpoint_delete(ep);
1266 return -ENOMEM;
1267 }
1268 if (ep_info->in_interval)
1269 usb_fill_int_urb(ep->urbs[i], umidi->dev,
1270 pipe, buffer, length,
1271 snd_usbmidi_in_urb_complete,
1272 ep, ep_info->in_interval);
1273 else
1274 usb_fill_bulk_urb(ep->urbs[i], umidi->dev,
1275 pipe, buffer, length,
1276 snd_usbmidi_in_urb_complete, ep);
1277 ep->urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1278 }
1279
1280 rep->in = ep;
1281 return 0;
1282 }
1283
1284 /*
1285 * Frees an output endpoint.
1286 * May be called when ep hasn't been initialized completely.
1287 */
1288 static void snd_usbmidi_out_endpoint_clear(struct snd_usb_midi_out_endpoint *ep)
1289 {
1290 unsigned int i;
1291
1292 for (i = 0; i < OUTPUT_URBS; ++i)
1293 if (ep->urbs[i].urb) {
1294 free_urb_and_buffer(ep->umidi, ep->urbs[i].urb,
1295 ep->max_transfer);
1296 ep->urbs[i].urb = NULL;
1297 }
1298 }
1299
1300 static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint *ep)
1301 {
1302 snd_usbmidi_out_endpoint_clear(ep);
1303 kfree(ep);
1304 }
1305
1306 /*
1307 * Creates an output endpoint, and initializes output ports.
1308 */
1309 static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi *umidi,
1310 struct snd_usb_midi_endpoint_info *ep_info,
1311 struct snd_usb_midi_endpoint *rep)
1312 {
1313 struct snd_usb_midi_out_endpoint *ep;
1314 unsigned int i;
1315 unsigned int pipe;
1316 void *buffer;
1317
1318 rep->out = NULL;
1319 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1320 if (!ep)
1321 return -ENOMEM;
1322 ep->umidi = umidi;
1323
1324 for (i = 0; i < OUTPUT_URBS; ++i) {
1325 ep->urbs[i].urb = usb_alloc_urb(0, GFP_KERNEL);
1326 if (!ep->urbs[i].urb) {
1327 snd_usbmidi_out_endpoint_delete(ep);
1328 return -ENOMEM;
1329 }
1330 ep->urbs[i].ep = ep;
1331 }
1332 if (ep_info->out_interval)
1333 pipe = usb_sndintpipe(umidi->dev, ep_info->out_ep);
1334 else
1335 pipe = usb_sndbulkpipe(umidi->dev, ep_info->out_ep);
1336 switch (umidi->usb_id) {
1337 default:
1338 ep->max_transfer = usb_maxpacket(umidi->dev, pipe, 1);
1339 break;
1340 /*
1341 * Various chips declare a packet size larger than 4 bytes, but
1342 * do not actually work with larger packets:
1343 */
1344 case USB_ID(0x0a92, 0x1020): /* ESI M4U */
1345 case USB_ID(0x1430, 0x474b): /* RedOctane GH MIDI INTERFACE */
1346 case USB_ID(0x15ca, 0x0101): /* Textech USB Midi Cable */
1347 case USB_ID(0x15ca, 0x1806): /* Textech USB Midi Cable */
1348 case USB_ID(0x1a86, 0x752d): /* QinHeng CH345 "USB2.0-MIDI" */
1349 case USB_ID(0xfc08, 0x0101): /* Unknown vendor Cable */
1350 ep->max_transfer = 4;
1351 break;
1352 /*
1353 * Some devices only work with 9 bytes packet size:
1354 */
1355 case USB_ID(0x0644, 0x800E): /* Tascam US-122L */
1356 case USB_ID(0x0644, 0x800F): /* Tascam US-144 */
1357 ep->max_transfer = 9;
1358 break;
1359 }
1360 for (i = 0; i < OUTPUT_URBS; ++i) {
1361 buffer = usb_alloc_coherent(umidi->dev,
1362 ep->max_transfer, GFP_KERNEL,
1363 &ep->urbs[i].urb->transfer_dma);
1364 if (!buffer) {
1365 snd_usbmidi_out_endpoint_delete(ep);
1366 return -ENOMEM;
1367 }
1368 if (ep_info->out_interval)
1369 usb_fill_int_urb(ep->urbs[i].urb, umidi->dev,
1370 pipe, buffer, ep->max_transfer,
1371 snd_usbmidi_out_urb_complete,
1372 &ep->urbs[i], ep_info->out_interval);
1373 else
1374 usb_fill_bulk_urb(ep->urbs[i].urb, umidi->dev,
1375 pipe, buffer, ep->max_transfer,
1376 snd_usbmidi_out_urb_complete,
1377 &ep->urbs[i]);
1378 ep->urbs[i].urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1379 }
1380
1381 spin_lock_init(&ep->buffer_lock);
1382 tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep);
1383 init_waitqueue_head(&ep->drain_wait);
1384
1385 for (i = 0; i < 0x10; ++i)
1386 if (ep_info->out_cables & (1 << i)) {
1387 ep->ports[i].ep = ep;
1388 ep->ports[i].cable = i << 4;
1389 }
1390
1391 if (umidi->usb_protocol_ops->init_out_endpoint)
1392 umidi->usb_protocol_ops->init_out_endpoint(ep);
1393
1394 rep->out = ep;
1395 return 0;
1396 }
1397
1398 /*
1399 * Frees everything.
1400 */
1401 static void snd_usbmidi_free(struct snd_usb_midi *umidi)
1402 {
1403 int i;
1404
1405 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1406 struct snd_usb_midi_endpoint *ep = &umidi->endpoints[i];
1407 if (ep->out)
1408 snd_usbmidi_out_endpoint_delete(ep->out);
1409 if (ep->in)
1410 snd_usbmidi_in_endpoint_delete(ep->in);
1411 }
1412 mutex_destroy(&umidi->mutex);
1413 kfree(umidi);
1414 }
1415
1416 /*
1417 * Unlinks all URBs (must be done before the usb_device is deleted).
1418 */
1419 void snd_usbmidi_disconnect(struct list_head *p)
1420 {
1421 struct snd_usb_midi *umidi;
1422 unsigned int i, j;
1423
1424 umidi = list_entry(p, struct snd_usb_midi, list);
1425 /*
1426 * an URB's completion handler may start the timer and
1427 * a timer may submit an URB. To reliably break the cycle
1428 * a flag under lock must be used
1429 */
1430 down_write(&umidi->disc_rwsem);
1431 spin_lock_irq(&umidi->disc_lock);
1432 umidi->disconnected = 1;
1433 spin_unlock_irq(&umidi->disc_lock);
1434 up_write(&umidi->disc_rwsem);
1435
1436 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1437 struct snd_usb_midi_endpoint *ep = &umidi->endpoints[i];
1438 if (ep->out)
1439 tasklet_kill(&ep->out->tasklet);
1440 if (ep->out) {
1441 for (j = 0; j < OUTPUT_URBS; ++j)
1442 usb_kill_urb(ep->out->urbs[j].urb);
1443 if (umidi->usb_protocol_ops->finish_out_endpoint)
1444 umidi->usb_protocol_ops->finish_out_endpoint(ep->out);
1445 ep->out->active_urbs = 0;
1446 if (ep->out->drain_urbs) {
1447 ep->out->drain_urbs = 0;
1448 wake_up(&ep->out->drain_wait);
1449 }
1450 }
1451 if (ep->in)
1452 for (j = 0; j < INPUT_URBS; ++j)
1453 usb_kill_urb(ep->in->urbs[j]);
1454 /* free endpoints here; later call can result in Oops */
1455 if (ep->out)
1456 snd_usbmidi_out_endpoint_clear(ep->out);
1457 if (ep->in) {
1458 snd_usbmidi_in_endpoint_delete(ep->in);
1459 ep->in = NULL;
1460 }
1461 }
1462 del_timer_sync(&umidi->error_timer);
1463 }
1464 EXPORT_SYMBOL(snd_usbmidi_disconnect);
1465
1466 static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi)
1467 {
1468 struct snd_usb_midi *umidi = rmidi->private_data;
1469 snd_usbmidi_free(umidi);
1470 }
1471
1472 static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi *umidi,
1473 int stream,
1474 int number)
1475 {
1476 struct snd_rawmidi_substream *substream;
1477
1478 list_for_each_entry(substream, &umidi->rmidi->streams[stream].substreams,
1479 list) {
1480 if (substream->number == number)
1481 return substream;
1482 }
1483 return NULL;
1484 }
1485
1486 /*
1487 * This list specifies names for ports that do not fit into the standard
1488 * "(product) MIDI (n)" schema because they aren't external MIDI ports,
1489 * such as internal control or synthesizer ports.
1490 */
1491 static struct port_info {
1492 u32 id;
1493 short int port;
1494 short int voices;
1495 const char *name;
1496 unsigned int seq_flags;
1497 } snd_usbmidi_port_info[] = {
1498 #define PORT_INFO(vendor, product, num, name_, voices_, flags) \
1499 { .id = USB_ID(vendor, product), \
1500 .port = num, .voices = voices_, \
1501 .name = name_, .seq_flags = flags }
1502 #define EXTERNAL_PORT(vendor, product, num, name) \
1503 PORT_INFO(vendor, product, num, name, 0, \
1504 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1505 SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1506 SNDRV_SEQ_PORT_TYPE_PORT)
1507 #define CONTROL_PORT(vendor, product, num, name) \
1508 PORT_INFO(vendor, product, num, name, 0, \
1509 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1510 SNDRV_SEQ_PORT_TYPE_HARDWARE)
1511 #define GM_SYNTH_PORT(vendor, product, num, name, voices) \
1512 PORT_INFO(vendor, product, num, name, voices, \
1513 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1514 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1515 SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1516 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1517 #define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \
1518 PORT_INFO(vendor, product, num, name, voices, \
1519 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1520 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1521 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1522 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1523 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1524 SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1525 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1526 #define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \
1527 PORT_INFO(vendor, product, num, name, voices, \
1528 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1529 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1530 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1531 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1532 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1533 SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \
1534 SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1535 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1536 /* Yamaha MOTIF XF */
1537 GM_SYNTH_PORT(0x0499, 0x105c, 0, "%s Tone Generator", 128),
1538 CONTROL_PORT(0x0499, 0x105c, 1, "%s Remote Control"),
1539 EXTERNAL_PORT(0x0499, 0x105c, 2, "%s Thru"),
1540 CONTROL_PORT(0x0499, 0x105c, 3, "%s Editor"),
1541 /* Roland UA-100 */
1542 CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"),
1543 /* Roland SC-8850 */
1544 SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128),
1545 SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128),
1546 SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128),
1547 SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128),
1548 EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"),
1549 EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"),
1550 /* Roland U-8 */
1551 EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"),
1552 CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"),
1553 /* Roland SC-8820 */
1554 SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64),
1555 SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64),
1556 EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"),
1557 /* Roland SK-500 */
1558 SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64),
1559 SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64),
1560 EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"),
1561 /* Roland SC-D70 */
1562 SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64),
1563 SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64),
1564 EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"),
1565 /* Edirol UM-880 */
1566 CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"),
1567 /* Edirol SD-90 */
1568 ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128),
1569 ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128),
1570 EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"),
1571 EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"),
1572 /* Edirol UM-550 */
1573 CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"),
1574 /* Edirol SD-20 */
1575 ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64),
1576 ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64),
1577 EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"),
1578 /* Edirol SD-80 */
1579 ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128),
1580 ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128),
1581 EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"),
1582 EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"),
1583 /* Edirol UA-700 */
1584 EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"),
1585 CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"),
1586 /* Roland VariOS */
1587 EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"),
1588 EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"),
1589 EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"),
1590 /* Edirol PCR */
1591 EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"),
1592 EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"),
1593 EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"),
1594 /* BOSS GS-10 */
1595 EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"),
1596 CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"),
1597 /* Edirol UA-1000 */
1598 EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"),
1599 CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"),
1600 /* Edirol UR-80 */
1601 EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"),
1602 EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"),
1603 EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"),
1604 /* Edirol PCR-A */
1605 EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"),
1606 EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"),
1607 EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"),
1608 /* BOSS GT-PRO */
1609 CONTROL_PORT(0x0582, 0x0089, 0, "%s Control"),
1610 /* Edirol UM-3EX */
1611 CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"),
1612 /* Roland VG-99 */
1613 CONTROL_PORT(0x0582, 0x00b2, 0, "%s Control"),
1614 EXTERNAL_PORT(0x0582, 0x00b2, 1, "%s MIDI"),
1615 /* Cakewalk Sonar V-Studio 100 */
1616 EXTERNAL_PORT(0x0582, 0x00eb, 0, "%s MIDI"),
1617 CONTROL_PORT(0x0582, 0x00eb, 1, "%s Control"),
1618 /* Roland VB-99 */
1619 CONTROL_PORT(0x0582, 0x0102, 0, "%s Control"),
1620 EXTERNAL_PORT(0x0582, 0x0102, 1, "%s MIDI"),
1621 /* Roland A-PRO */
1622 EXTERNAL_PORT(0x0582, 0x010f, 0, "%s MIDI"),
1623 CONTROL_PORT(0x0582, 0x010f, 1, "%s 1"),
1624 CONTROL_PORT(0x0582, 0x010f, 2, "%s 2"),
1625 /* Roland SD-50 */
1626 ROLAND_SYNTH_PORT(0x0582, 0x0114, 0, "%s Synth", 128),
1627 EXTERNAL_PORT(0x0582, 0x0114, 1, "%s MIDI"),
1628 CONTROL_PORT(0x0582, 0x0114, 2, "%s Control"),
1629 /* Roland OCTA-CAPTURE */
1630 EXTERNAL_PORT(0x0582, 0x0120, 0, "%s MIDI"),
1631 CONTROL_PORT(0x0582, 0x0120, 1, "%s Control"),
1632 EXTERNAL_PORT(0x0582, 0x0121, 0, "%s MIDI"),
1633 CONTROL_PORT(0x0582, 0x0121, 1, "%s Control"),
1634 /* Roland SPD-SX */
1635 CONTROL_PORT(0x0582, 0x0145, 0, "%s Control"),
1636 EXTERNAL_PORT(0x0582, 0x0145, 1, "%s MIDI"),
1637 /* Roland A-Series */
1638 CONTROL_PORT(0x0582, 0x0156, 0, "%s Keyboard"),
1639 EXTERNAL_PORT(0x0582, 0x0156, 1, "%s MIDI"),
1640 /* Roland INTEGRA-7 */
1641 ROLAND_SYNTH_PORT(0x0582, 0x015b, 0, "%s Synth", 128),
1642 CONTROL_PORT(0x0582, 0x015b, 1, "%s Control"),
1643 /* M-Audio MidiSport 8x8 */
1644 CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"),
1645 CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"),
1646 /* MOTU Fastlane */
1647 EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"),
1648 EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"),
1649 /* Emagic Unitor8/AMT8/MT4 */
1650 EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"),
1651 EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"),
1652 EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"),
1653 /* Akai MPD16 */
1654 CONTROL_PORT(0x09e8, 0x0062, 0, "%s Control"),
1655 PORT_INFO(0x09e8, 0x0062, 1, "%s MIDI", 0,
1656 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1657 SNDRV_SEQ_PORT_TYPE_HARDWARE),
1658 /* Access Music Virus TI */
1659 EXTERNAL_PORT(0x133e, 0x0815, 0, "%s MIDI"),
1660 PORT_INFO(0x133e, 0x0815, 1, "%s Synth", 0,
1661 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1662 SNDRV_SEQ_PORT_TYPE_HARDWARE |
1663 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER),
1664 };
1665
1666 static struct port_info *find_port_info(struct snd_usb_midi *umidi, int number)
1667 {
1668 int i;
1669
1670 for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) {
1671 if (snd_usbmidi_port_info[i].id == umidi->usb_id &&
1672 snd_usbmidi_port_info[i].port == number)
1673 return &snd_usbmidi_port_info[i];
1674 }
1675 return NULL;
1676 }
1677
1678 static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number,
1679 struct snd_seq_port_info *seq_port_info)
1680 {
1681 struct snd_usb_midi *umidi = rmidi->private_data;
1682 struct port_info *port_info;
1683
1684 /* TODO: read port flags from descriptors */
1685 port_info = find_port_info(umidi, number);
1686 if (port_info) {
1687 seq_port_info->type = port_info->seq_flags;
1688 seq_port_info->midi_voices = port_info->voices;
1689 }
1690 }
1691
1692 static void snd_usbmidi_init_substream(struct snd_usb_midi *umidi,
1693 int stream, int number,
1694 struct snd_rawmidi_substream **rsubstream)
1695 {
1696 struct port_info *port_info;
1697 const char *name_format;
1698
1699 struct snd_rawmidi_substream *substream =
1700 snd_usbmidi_find_substream(umidi, stream, number);
1701 if (!substream) {
1702 dev_err(&umidi->dev->dev, "substream %d:%d not found\n", stream,
1703 number);
1704 return;
1705 }
1706
1707 /* TODO: read port name from jack descriptor */
1708 port_info = find_port_info(umidi, number);
1709 name_format = port_info ? port_info->name : "%s MIDI %d";
1710 snprintf(substream->name, sizeof(substream->name),
1711 name_format, umidi->card->shortname, number + 1);
1712
1713 *rsubstream = substream;
1714 }
1715
1716 /*
1717 * Creates the endpoints and their ports.
1718 */
1719 static int snd_usbmidi_create_endpoints(struct snd_usb_midi *umidi,
1720 struct snd_usb_midi_endpoint_info *endpoints)
1721 {
1722 int i, j, err;
1723 int out_ports = 0, in_ports = 0;
1724
1725 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1726 if (endpoints[i].out_cables) {
1727 err = snd_usbmidi_out_endpoint_create(umidi,
1728 &endpoints[i],
1729 &umidi->endpoints[i]);
1730 if (err < 0)
1731 return err;
1732 }
1733 if (endpoints[i].in_cables) {
1734 err = snd_usbmidi_in_endpoint_create(umidi,
1735 &endpoints[i],
1736 &umidi->endpoints[i]);
1737 if (err < 0)
1738 return err;
1739 }
1740
1741 for (j = 0; j < 0x10; ++j) {
1742 if (endpoints[i].out_cables & (1 << j)) {
1743 snd_usbmidi_init_substream(umidi,
1744 SNDRV_RAWMIDI_STREAM_OUTPUT,
1745 out_ports,
1746 &umidi->endpoints[i].out->ports[j].substream);
1747 ++out_ports;
1748 }
1749 if (endpoints[i].in_cables & (1 << j)) {
1750 snd_usbmidi_init_substream(umidi,
1751 SNDRV_RAWMIDI_STREAM_INPUT,
1752 in_ports,
1753 &umidi->endpoints[i].in->ports[j].substream);
1754 ++in_ports;
1755 }
1756 }
1757 }
1758 dev_dbg(&umidi->dev->dev, "created %d output and %d input ports\n",
1759 out_ports, in_ports);
1760 return 0;
1761 }
1762
1763 /*
1764 * Returns MIDIStreaming device capabilities.
1765 */
1766 static int snd_usbmidi_get_ms_info(struct snd_usb_midi *umidi,
1767 struct snd_usb_midi_endpoint_info *endpoints)
1768 {
1769 struct usb_interface *intf;
1770 struct usb_host_interface *hostif;
1771 struct usb_interface_descriptor *intfd;
1772 struct usb_ms_header_descriptor *ms_header;
1773 struct usb_host_endpoint *hostep;
1774 struct usb_endpoint_descriptor *ep;
1775 struct usb_ms_endpoint_descriptor *ms_ep;
1776 int i, epidx;
1777
1778 intf = umidi->iface;
1779 if (!intf)
1780 return -ENXIO;
1781 hostif = &intf->altsetting[0];
1782 intfd = get_iface_desc(hostif);
1783 ms_header = (struct usb_ms_header_descriptor *)hostif->extra;
1784 if (hostif->extralen >= 7 &&
1785 ms_header->bLength >= 7 &&
1786 ms_header->bDescriptorType == USB_DT_CS_INTERFACE &&
1787 ms_header->bDescriptorSubtype == UAC_HEADER)
1788 dev_dbg(&umidi->dev->dev, "MIDIStreaming version %02x.%02x\n",
1789 ms_header->bcdMSC[1], ms_header->bcdMSC[0]);
1790 else
1791 dev_warn(&umidi->dev->dev,
1792 "MIDIStreaming interface descriptor not found\n");
1793
1794 epidx = 0;
1795 for (i = 0; i < intfd->bNumEndpoints; ++i) {
1796 hostep = &hostif->endpoint[i];
1797 ep = get_ep_desc(hostep);
1798 if (!usb_endpoint_xfer_bulk(ep) && !usb_endpoint_xfer_int(ep))
1799 continue;
1800 ms_ep = (struct usb_ms_endpoint_descriptor *)hostep->extra;
1801 if (hostep->extralen < 4 ||
1802 ms_ep->bLength < 4 ||
1803 ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT ||
1804 ms_ep->bDescriptorSubtype != UAC_MS_GENERAL)
1805 continue;
1806 if (usb_endpoint_dir_out(ep)) {
1807 if (endpoints[epidx].out_ep) {
1808 if (++epidx >= MIDI_MAX_ENDPOINTS) {
1809 dev_warn(&umidi->dev->dev,
1810 "too many endpoints\n");
1811 break;
1812 }
1813 }
1814 endpoints[epidx].out_ep = usb_endpoint_num(ep);
1815 if (usb_endpoint_xfer_int(ep))
1816 endpoints[epidx].out_interval = ep->bInterval;
1817 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1818 /*
1819 * Low speed bulk transfers don't exist, so
1820 * force interrupt transfers for devices like
1821 * ESI MIDI Mate that try to use them anyway.
1822 */
1823 endpoints[epidx].out_interval = 1;
1824 endpoints[epidx].out_cables =
1825 (1 << ms_ep->bNumEmbMIDIJack) - 1;
1826 dev_dbg(&umidi->dev->dev, "EP %02X: %d jack(s)\n",
1827 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1828 } else {
1829 if (endpoints[epidx].in_ep) {
1830 if (++epidx >= MIDI_MAX_ENDPOINTS) {
1831 dev_warn(&umidi->dev->dev,
1832 "too many endpoints\n");
1833 break;
1834 }
1835 }
1836 endpoints[epidx].in_ep = usb_endpoint_num(ep);
1837 if (usb_endpoint_xfer_int(ep))
1838 endpoints[epidx].in_interval = ep->bInterval;
1839 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1840 endpoints[epidx].in_interval = 1;
1841 endpoints[epidx].in_cables =
1842 (1 << ms_ep->bNumEmbMIDIJack) - 1;
1843 dev_dbg(&umidi->dev->dev, "EP %02X: %d jack(s)\n",
1844 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1845 }
1846 }
1847 return 0;
1848 }
1849
1850 static int roland_load_info(struct snd_kcontrol *kcontrol,
1851 struct snd_ctl_elem_info *info)
1852 {
1853 static const char *const names[] = { "High Load", "Light Load" };
1854
1855 return snd_ctl_enum_info(info, 1, 2, names);
1856 }
1857
1858 static int roland_load_get(struct snd_kcontrol *kcontrol,
1859 struct snd_ctl_elem_value *value)
1860 {
1861 value->value.enumerated.item[0] = kcontrol->private_value;
1862 return 0;
1863 }
1864
1865 static int roland_load_put(struct snd_kcontrol *kcontrol,
1866 struct snd_ctl_elem_value *value)
1867 {
1868 struct snd_usb_midi *umidi = kcontrol->private_data;
1869 int changed;
1870
1871 if (value->value.enumerated.item[0] > 1)
1872 return -EINVAL;
1873 mutex_lock(&umidi->mutex);
1874 changed = value->value.enumerated.item[0] != kcontrol->private_value;
1875 if (changed)
1876 kcontrol->private_value = value->value.enumerated.item[0];
1877 mutex_unlock(&umidi->mutex);
1878 return changed;
1879 }
1880
1881 static struct snd_kcontrol_new roland_load_ctl = {
1882 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1883 .name = "MIDI Input Mode",
1884 .info = roland_load_info,
1885 .get = roland_load_get,
1886 .put = roland_load_put,
1887 .private_value = 1,
1888 };
1889
1890 /*
1891 * On Roland devices, use the second alternate setting to be able to use
1892 * the interrupt input endpoint.
1893 */
1894 static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi *umidi)
1895 {
1896 struct usb_interface *intf;
1897 struct usb_host_interface *hostif;
1898 struct usb_interface_descriptor *intfd;
1899
1900 intf = umidi->iface;
1901 if (!intf || intf->num_altsetting != 2)
1902 return;
1903
1904 hostif = &intf->altsetting[1];
1905 intfd = get_iface_desc(hostif);
1906 if (intfd->bNumEndpoints != 2 ||
1907 (get_endpoint(hostif, 0)->bmAttributes &
1908 USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK ||
1909 (get_endpoint(hostif, 1)->bmAttributes &
1910 USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
1911 return;
1912
1913 dev_dbg(&umidi->dev->dev, "switching to altsetting %d with int ep\n",
1914 intfd->bAlternateSetting);
1915 usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1916 intfd->bAlternateSetting);
1917
1918 umidi->roland_load_ctl = snd_ctl_new1(&roland_load_ctl, umidi);
1919 if (snd_ctl_add(umidi->card, umidi->roland_load_ctl) < 0)
1920 umidi->roland_load_ctl = NULL;
1921 }
1922
1923 /*
1924 * Try to find any usable endpoints in the interface.
1925 */
1926 static int snd_usbmidi_detect_endpoints(struct snd_usb_midi *umidi,
1927 struct snd_usb_midi_endpoint_info *endpoint,
1928 int max_endpoints)
1929 {
1930 struct usb_interface *intf;
1931 struct usb_host_interface *hostif;
1932 struct usb_interface_descriptor *intfd;
1933 struct usb_endpoint_descriptor *epd;
1934 int i, out_eps = 0, in_eps = 0;
1935
1936 if (USB_ID_VENDOR(umidi->usb_id) == 0x0582)
1937 snd_usbmidi_switch_roland_altsetting(umidi);
1938
1939 if (endpoint[0].out_ep || endpoint[0].in_ep)
1940 return 0;
1941
1942 intf = umidi->iface;
1943 if (!intf || intf->num_altsetting < 1)
1944 return -ENOENT;
1945 hostif = intf->cur_altsetting;
1946 intfd = get_iface_desc(hostif);
1947
1948 for (i = 0; i < intfd->bNumEndpoints; ++i) {
1949 epd = get_endpoint(hostif, i);
1950 if (!usb_endpoint_xfer_bulk(epd) &&
1951 !usb_endpoint_xfer_int(epd))
1952 continue;
1953 if (out_eps < max_endpoints &&
1954 usb_endpoint_dir_out(epd)) {
1955 endpoint[out_eps].out_ep = usb_endpoint_num(epd);
1956 if (usb_endpoint_xfer_int(epd))
1957 endpoint[out_eps].out_interval = epd->bInterval;
1958 ++out_eps;
1959 }
1960 if (in_eps < max_endpoints &&
1961 usb_endpoint_dir_in(epd)) {
1962 endpoint[in_eps].in_ep = usb_endpoint_num(epd);
1963 if (usb_endpoint_xfer_int(epd))
1964 endpoint[in_eps].in_interval = epd->bInterval;
1965 ++in_eps;
1966 }
1967 }
1968 return (out_eps || in_eps) ? 0 : -ENOENT;
1969 }
1970
1971 /*
1972 * Detects the endpoints for one-port-per-endpoint protocols.
1973 */
1974 static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi *umidi,
1975 struct snd_usb_midi_endpoint_info *endpoints)
1976 {
1977 int err, i;
1978
1979 err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS);
1980 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1981 if (endpoints[i].out_ep)
1982 endpoints[i].out_cables = 0x0001;
1983 if (endpoints[i].in_ep)
1984 endpoints[i].in_cables = 0x0001;
1985 }
1986 return err;
1987 }
1988
1989 /*
1990 * Detects the endpoints and ports of Yamaha devices.
1991 */
1992 static int snd_usbmidi_detect_yamaha(struct snd_usb_midi *umidi,
1993 struct snd_usb_midi_endpoint_info *endpoint)
1994 {
1995 struct usb_interface *intf;
1996 struct usb_host_interface *hostif;
1997 struct usb_interface_descriptor *intfd;
1998 uint8_t *cs_desc;
1999
2000 intf = umidi->iface;
2001 if (!intf)
2002 return -ENOENT;
2003 hostif = intf->altsetting;
2004 intfd = get_iface_desc(hostif);
2005 if (intfd->bNumEndpoints < 1)
2006 return -ENOENT;
2007
2008 /*
2009 * For each port there is one MIDI_IN/OUT_JACK descriptor, not
2010 * necessarily with any useful contents. So simply count 'em.
2011 */
2012 for (cs_desc = hostif->extra;
2013 cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2;
2014 cs_desc += cs_desc[0]) {
2015 if (cs_desc[1] == USB_DT_CS_INTERFACE) {
2016 if (cs_desc[2] == UAC_MIDI_IN_JACK)
2017 endpoint->in_cables =
2018 (endpoint->in_cables << 1) | 1;
2019 else if (cs_desc[2] == UAC_MIDI_OUT_JACK)
2020 endpoint->out_cables =
2021 (endpoint->out_cables << 1) | 1;
2022 }
2023 }
2024 if (!endpoint->in_cables && !endpoint->out_cables)
2025 return -ENOENT;
2026
2027 return snd_usbmidi_detect_endpoints(umidi, endpoint, 1);
2028 }
2029
2030 /*
2031 * Detects the endpoints and ports of Roland devices.
2032 */
2033 static int snd_usbmidi_detect_roland(struct snd_usb_midi *umidi,
2034 struct snd_usb_midi_endpoint_info *endpoint)
2035 {
2036 struct usb_interface *intf;
2037 struct usb_host_interface *hostif;
2038 u8 *cs_desc;
2039
2040 intf = umidi->iface;
2041 if (!intf)
2042 return -ENOENT;
2043 hostif = intf->altsetting;
2044 /*
2045 * Some devices have a descriptor <06 24 F1 02 <inputs> <outputs>>,
2046 * some have standard class descriptors, or both kinds, or neither.
2047 */
2048 for (cs_desc = hostif->extra;
2049 cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2;
2050 cs_desc += cs_desc[0]) {
2051 if (cs_desc[0] >= 6 &&
2052 cs_desc[1] == USB_DT_CS_INTERFACE &&
2053 cs_desc[2] == 0xf1 &&
2054 cs_desc[3] == 0x02) {
2055 endpoint->in_cables = (1 << cs_desc[4]) - 1;
2056 endpoint->out_cables = (1 << cs_desc[5]) - 1;
2057 return snd_usbmidi_detect_endpoints(umidi, endpoint, 1);
2058 } else if (cs_desc[0] >= 7 &&
2059 cs_desc[1] == USB_DT_CS_INTERFACE &&
2060 cs_desc[2] == UAC_HEADER) {
2061 return snd_usbmidi_get_ms_info(umidi, endpoint);
2062 }
2063 }
2064
2065 return -ENODEV;
2066 }
2067
2068 /*
2069 * Creates the endpoints and their ports for Midiman devices.
2070 */
2071 static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi *umidi,
2072 struct snd_usb_midi_endpoint_info *endpoint)
2073 {
2074 struct snd_usb_midi_endpoint_info ep_info;
2075 struct usb_interface *intf;
2076 struct usb_host_interface *hostif;
2077 struct usb_interface_descriptor *intfd;
2078 struct usb_endpoint_descriptor *epd;
2079 int cable, err;
2080
2081 intf = umidi->iface;
2082 if (!intf)
2083 return -ENOENT;
2084 hostif = intf->altsetting;
2085 intfd = get_iface_desc(hostif);
2086 /*
2087 * The various MidiSport devices have more or less random endpoint
2088 * numbers, so we have to identify the endpoints by their index in
2089 * the descriptor array, like the driver for that other OS does.
2090 *
2091 * There is one interrupt input endpoint for all input ports, one
2092 * bulk output endpoint for even-numbered ports, and one for odd-
2093 * numbered ports. Both bulk output endpoints have corresponding
2094 * input bulk endpoints (at indices 1 and 3) which aren't used.
2095 */
2096 if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) {
2097 dev_dbg(&umidi->dev->dev, "not enough endpoints\n");
2098 return -ENOENT;
2099 }
2100
2101 epd = get_endpoint(hostif, 0);
2102 if (!usb_endpoint_dir_in(epd) || !usb_endpoint_xfer_int(epd)) {
2103 dev_dbg(&umidi->dev->dev, "endpoint[0] isn't interrupt\n");
2104 return -ENXIO;
2105 }
2106 epd = get_endpoint(hostif, 2);
2107 if (!usb_endpoint_dir_out(epd) || !usb_endpoint_xfer_bulk(epd)) {
2108 dev_dbg(&umidi->dev->dev, "endpoint[2] isn't bulk output\n");
2109 return -ENXIO;
2110 }
2111 if (endpoint->out_cables > 0x0001) {
2112 epd = get_endpoint(hostif, 4);
2113 if (!usb_endpoint_dir_out(epd) ||
2114 !usb_endpoint_xfer_bulk(epd)) {
2115 dev_dbg(&umidi->dev->dev,
2116 "endpoint[4] isn't bulk output\n");
2117 return -ENXIO;
2118 }
2119 }
2120
2121 ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress &
2122 USB_ENDPOINT_NUMBER_MASK;
2123 ep_info.out_interval = 0;
2124 ep_info.out_cables = endpoint->out_cables & 0x5555;
2125 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info,
2126 &umidi->endpoints[0]);
2127 if (err < 0)
2128 return err;
2129
2130 ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress &
2131 USB_ENDPOINT_NUMBER_MASK;
2132 ep_info.in_interval = get_endpoint(hostif, 0)->bInterval;
2133 ep_info.in_cables = endpoint->in_cables;
2134 err = snd_usbmidi_in_endpoint_create(umidi, &ep_info,
2135 &umidi->endpoints[0]);
2136 if (err < 0)
2137 return err;
2138
2139 if (endpoint->out_cables > 0x0001) {
2140 ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress &
2141 USB_ENDPOINT_NUMBER_MASK;
2142 ep_info.out_cables = endpoint->out_cables & 0xaaaa;
2143 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info,
2144 &umidi->endpoints[1]);
2145 if (err < 0)
2146 return err;
2147 }
2148
2149 for (cable = 0; cable < 0x10; ++cable) {
2150 if (endpoint->out_cables & (1 << cable))
2151 snd_usbmidi_init_substream(umidi,
2152 SNDRV_RAWMIDI_STREAM_OUTPUT,
2153 cable,
2154 &umidi->endpoints[cable & 1].out->ports[cable].substream);
2155 if (endpoint->in_cables & (1 << cable))
2156 snd_usbmidi_init_substream(umidi,
2157 SNDRV_RAWMIDI_STREAM_INPUT,
2158 cable,
2159 &umidi->endpoints[0].in->ports[cable].substream);
2160 }
2161 return 0;
2162 }
2163
2164 static struct snd_rawmidi_global_ops snd_usbmidi_ops = {
2165 .get_port_info = snd_usbmidi_get_port_info,
2166 };
2167
2168 static int snd_usbmidi_create_rawmidi(struct snd_usb_midi *umidi,
2169 int out_ports, int in_ports)
2170 {
2171 struct snd_rawmidi *rmidi;
2172 int err;
2173
2174 err = snd_rawmidi_new(umidi->card, "USB MIDI",
2175 umidi->next_midi_device++,
2176 out_ports, in_ports, &rmidi);
2177 if (err < 0)
2178 return err;
2179 strcpy(rmidi->name, umidi->card->shortname);
2180 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
2181 SNDRV_RAWMIDI_INFO_INPUT |
2182 SNDRV_RAWMIDI_INFO_DUPLEX;
2183 rmidi->ops = &snd_usbmidi_ops;
2184 rmidi->private_data = umidi;
2185 rmidi->private_free = snd_usbmidi_rawmidi_free;
2186 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT,
2187 &snd_usbmidi_output_ops);
2188 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT,
2189 &snd_usbmidi_input_ops);
2190
2191 umidi->rmidi = rmidi;
2192 return 0;
2193 }
2194
2195 /*
2196 * Temporarily stop input.
2197 */
2198 void snd_usbmidi_input_stop(struct list_head *p)
2199 {
2200 struct snd_usb_midi *umidi;
2201 unsigned int i, j;
2202
2203 umidi = list_entry(p, struct snd_usb_midi, list);
2204 if (!umidi->input_running)
2205 return;
2206 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2207 struct snd_usb_midi_endpoint *ep = &umidi->endpoints[i];
2208 if (ep->in)
2209 for (j = 0; j < INPUT_URBS; ++j)
2210 usb_kill_urb(ep->in->urbs[j]);
2211 }
2212 umidi->input_running = 0;
2213 }
2214 EXPORT_SYMBOL(snd_usbmidi_input_stop);
2215
2216 static void snd_usbmidi_input_start_ep(struct snd_usb_midi_in_endpoint *ep)
2217 {
2218 unsigned int i;
2219
2220 if (!ep)
2221 return;
2222 for (i = 0; i < INPUT_URBS; ++i) {
2223 struct urb *urb = ep->urbs[i];
2224 urb->dev = ep->umidi->dev;
2225 snd_usbmidi_submit_urb(urb, GFP_KERNEL);
2226 }
2227 }
2228
2229 /*
2230 * Resume input after a call to snd_usbmidi_input_stop().
2231 */
2232 void snd_usbmidi_input_start(struct list_head *p)
2233 {
2234 struct snd_usb_midi *umidi;
2235 int i;
2236
2237 umidi = list_entry(p, struct snd_usb_midi, list);
2238 if (umidi->input_running || !umidi->opened[1])
2239 return;
2240 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
2241 snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
2242 umidi->input_running = 1;
2243 }
2244 EXPORT_SYMBOL(snd_usbmidi_input_start);
2245
2246 /*
2247 * Prepare for suspend. Typically called from the USB suspend callback.
2248 */
2249 void snd_usbmidi_suspend(struct list_head *p)
2250 {
2251 struct snd_usb_midi *umidi;
2252
2253 umidi = list_entry(p, struct snd_usb_midi, list);
2254 mutex_lock(&umidi->mutex);
2255 snd_usbmidi_input_stop(p);
2256 mutex_unlock(&umidi->mutex);
2257 }
2258 EXPORT_SYMBOL(snd_usbmidi_suspend);
2259
2260 /*
2261 * Resume. Typically called from the USB resume callback.
2262 */
2263 void snd_usbmidi_resume(struct list_head *p)
2264 {
2265 struct snd_usb_midi *umidi;
2266
2267 umidi = list_entry(p, struct snd_usb_midi, list);
2268 mutex_lock(&umidi->mutex);
2269 snd_usbmidi_input_start(p);
2270 mutex_unlock(&umidi->mutex);
2271 }
2272 EXPORT_SYMBOL(snd_usbmidi_resume);
2273
2274 /*
2275 * Creates and registers everything needed for a MIDI streaming interface.
2276 */
2277 int snd_usbmidi_create(struct snd_card *card,
2278 struct usb_interface *iface,
2279 struct list_head *midi_list,
2280 const struct snd_usb_audio_quirk *quirk)
2281 {
2282 struct snd_usb_midi *umidi;
2283 struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS];
2284 int out_ports, in_ports;
2285 int i, err;
2286
2287 umidi = kzalloc(sizeof(*umidi), GFP_KERNEL);
2288 if (!umidi)
2289 return -ENOMEM;
2290 umidi->dev = interface_to_usbdev(iface);
2291 umidi->card = card;
2292 umidi->iface = iface;
2293 umidi->quirk = quirk;
2294 umidi->usb_protocol_ops = &snd_usbmidi_standard_ops;
2295 spin_lock_init(&umidi->disc_lock);
2296 init_rwsem(&umidi->disc_rwsem);
2297 mutex_init(&umidi->mutex);
2298 umidi->usb_id = USB_ID(le16_to_cpu(umidi->dev->descriptor.idVendor),
2299 le16_to_cpu(umidi->dev->descriptor.idProduct));
2300 setup_timer(&umidi->error_timer, snd_usbmidi_error_timer,
2301 (unsigned long)umidi);
2302
2303 /* detect the endpoint(s) to use */
2304 memset(endpoints, 0, sizeof(endpoints));
2305 switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) {
2306 case QUIRK_MIDI_STANDARD_INTERFACE:
2307 err = snd_usbmidi_get_ms_info(umidi, endpoints);
2308 if (umidi->usb_id == USB_ID(0x0763, 0x0150)) /* M-Audio Uno */
2309 umidi->usb_protocol_ops =
2310 &snd_usbmidi_maudio_broken_running_status_ops;
2311 break;
2312 case QUIRK_MIDI_US122L:
2313 umidi->usb_protocol_ops = &snd_usbmidi_122l_ops;
2314 /* fall through */
2315 case QUIRK_MIDI_FIXED_ENDPOINT:
2316 memcpy(&endpoints[0], quirk->data,
2317 sizeof(struct snd_usb_midi_endpoint_info));
2318 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2319 break;
2320 case QUIRK_MIDI_YAMAHA:
2321 err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]);
2322 break;
2323 case QUIRK_MIDI_ROLAND:
2324 err = snd_usbmidi_detect_roland(umidi, &endpoints[0]);
2325 break;
2326 case QUIRK_MIDI_MIDIMAN:
2327 umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops;
2328 memcpy(&endpoints[0], quirk->data,
2329 sizeof(struct snd_usb_midi_endpoint_info));
2330 err = 0;
2331 break;
2332 case QUIRK_MIDI_NOVATION:
2333 umidi->usb_protocol_ops = &snd_usbmidi_novation_ops;
2334 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2335 break;
2336 case QUIRK_MIDI_RAW_BYTES:
2337 umidi->usb_protocol_ops = &snd_usbmidi_raw_ops;
2338 /*
2339 * Interface 1 contains isochronous endpoints, but with the same
2340 * numbers as in interface 0. Since it is interface 1 that the
2341 * USB core has most recently seen, these descriptors are now
2342 * associated with the endpoint numbers. This will foul up our
2343 * attempts to submit bulk/interrupt URBs to the endpoints in
2344 * interface 0, so we have to make sure that the USB core looks
2345 * again at interface 0 by calling usb_set_interface() on it.
2346 */
2347 if (umidi->usb_id == USB_ID(0x07fd, 0x0001)) /* MOTU Fastlane */
2348 usb_set_interface(umidi->dev, 0, 0);
2349 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2350 break;
2351 case QUIRK_MIDI_EMAGIC:
2352 umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops;
2353 memcpy(&endpoints[0], quirk->data,
2354 sizeof(struct snd_usb_midi_endpoint_info));
2355 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2356 break;
2357 case QUIRK_MIDI_CME:
2358 umidi->usb_protocol_ops = &snd_usbmidi_cme_ops;
2359 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2360 break;
2361 case QUIRK_MIDI_AKAI:
2362 umidi->usb_protocol_ops = &snd_usbmidi_akai_ops;
2363 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2364 /* endpoint 1 is input-only */
2365 endpoints[1].out_cables = 0;
2366 break;
2367 case QUIRK_MIDI_FTDI:
2368 umidi->usb_protocol_ops = &snd_usbmidi_ftdi_ops;
2369
2370 /* set baud rate to 31250 (48 MHz / 16 / 96) */
2371 err = usb_control_msg(umidi->dev, usb_sndctrlpipe(umidi->dev, 0),
2372 3, 0x40, 0x60, 0, NULL, 0, 1000);
2373 if (err < 0)
2374 break;
2375
2376 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2377 break;
2378 default:
2379 dev_err(&umidi->dev->dev, "invalid quirk type %d\n",
2380 quirk->type);
2381 err = -ENXIO;
2382 break;
2383 }
2384 if (err < 0) {
2385 kfree(umidi);
2386 return err;
2387 }
2388
2389 /* create rawmidi device */
2390 out_ports = 0;
2391 in_ports = 0;
2392 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2393 out_ports += hweight16(endpoints[i].out_cables);
2394 in_ports += hweight16(endpoints[i].in_cables);
2395 }
2396 err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports);
2397 if (err < 0) {
2398 kfree(umidi);
2399 return err;
2400 }
2401
2402 /* create endpoint/port structures */
2403 if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN)
2404 err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]);
2405 else
2406 err = snd_usbmidi_create_endpoints(umidi, endpoints);
2407 if (err < 0) {
2408 snd_usbmidi_free(umidi);
2409 return err;
2410 }
2411
2412 usb_autopm_get_interface_no_resume(umidi->iface);
2413
2414 list_add_tail(&umidi->list, midi_list);
2415 return 0;
2416 }
2417 EXPORT_SYMBOL(snd_usbmidi_create);
This page took 0.096896 seconds and 5 git commands to generate.