Cleanup: remove dead assignment
[lttng-tools.git] / src / common / consumer / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/compat/endian.h>
38 #include <common/index/index.h>
39 #include <common/kernel-ctl/kernel-ctl.h>
40 #include <common/sessiond-comm/relayd.h>
41 #include <common/sessiond-comm/sessiond-comm.h>
42 #include <common/kernel-consumer/kernel-consumer.h>
43 #include <common/relayd/relayd.h>
44 #include <common/ust-consumer/ust-consumer.h>
45 #include <common/consumer/consumer-timer.h>
46 #include <common/consumer/consumer.h>
47 #include <common/consumer/consumer-stream.h>
48 #include <common/consumer/consumer-testpoint.h>
49 #include <common/align.h>
50 #include <common/consumer/consumer-metadata-cache.h>
51
52 struct lttng_consumer_global_data consumer_data = {
53 .stream_count = 0,
54 .need_update = 1,
55 .type = LTTNG_CONSUMER_UNKNOWN,
56 };
57
58 enum consumer_channel_action {
59 CONSUMER_CHANNEL_ADD,
60 CONSUMER_CHANNEL_DEL,
61 CONSUMER_CHANNEL_QUIT,
62 };
63
64 struct consumer_channel_msg {
65 enum consumer_channel_action action;
66 struct lttng_consumer_channel *chan; /* add */
67 uint64_t key; /* del */
68 };
69
70 /* Flag used to temporarily pause data consumption from testpoints. */
71 int data_consumption_paused;
72
73 /*
74 * Flag to inform the polling thread to quit when all fd hung up. Updated by
75 * the consumer_thread_receive_fds when it notices that all fds has hung up.
76 * Also updated by the signal handler (consumer_should_exit()). Read by the
77 * polling threads.
78 */
79 int consumer_quit;
80
81 /*
82 * Global hash table containing respectively metadata and data streams. The
83 * stream element in this ht should only be updated by the metadata poll thread
84 * for the metadata and the data poll thread for the data.
85 */
86 static struct lttng_ht *metadata_ht;
87 static struct lttng_ht *data_ht;
88
89 /*
90 * Notify a thread lttng pipe to poll back again. This usually means that some
91 * global state has changed so we just send back the thread in a poll wait
92 * call.
93 */
94 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
95 {
96 struct lttng_consumer_stream *null_stream = NULL;
97
98 assert(pipe);
99
100 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
101 }
102
103 static void notify_health_quit_pipe(int *pipe)
104 {
105 ssize_t ret;
106
107 ret = lttng_write(pipe[1], "4", 1);
108 if (ret < 1) {
109 PERROR("write consumer health quit");
110 }
111 }
112
113 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
114 struct lttng_consumer_channel *chan,
115 uint64_t key,
116 enum consumer_channel_action action)
117 {
118 struct consumer_channel_msg msg;
119 ssize_t ret;
120
121 memset(&msg, 0, sizeof(msg));
122
123 msg.action = action;
124 msg.chan = chan;
125 msg.key = key;
126 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
127 if (ret < sizeof(msg)) {
128 PERROR("notify_channel_pipe write error");
129 }
130 }
131
132 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
133 uint64_t key)
134 {
135 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
136 }
137
138 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
139 struct lttng_consumer_channel **chan,
140 uint64_t *key,
141 enum consumer_channel_action *action)
142 {
143 struct consumer_channel_msg msg;
144 ssize_t ret;
145
146 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
147 if (ret < sizeof(msg)) {
148 ret = -1;
149 goto error;
150 }
151 *action = msg.action;
152 *chan = msg.chan;
153 *key = msg.key;
154 error:
155 return (int) ret;
156 }
157
158 /*
159 * Cleanup the stream list of a channel. Those streams are not yet globally
160 * visible
161 */
162 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
163 {
164 struct lttng_consumer_stream *stream, *stmp;
165
166 assert(channel);
167
168 /* Delete streams that might have been left in the stream list. */
169 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
170 send_node) {
171 cds_list_del(&stream->send_node);
172 /*
173 * Once a stream is added to this list, the buffers were created so we
174 * have a guarantee that this call will succeed. Setting the monitor
175 * mode to 0 so we don't lock nor try to delete the stream from the
176 * global hash table.
177 */
178 stream->monitor = 0;
179 consumer_stream_destroy(stream, NULL);
180 }
181 }
182
183 /*
184 * Find a stream. The consumer_data.lock must be locked during this
185 * call.
186 */
187 static struct lttng_consumer_stream *find_stream(uint64_t key,
188 struct lttng_ht *ht)
189 {
190 struct lttng_ht_iter iter;
191 struct lttng_ht_node_u64 *node;
192 struct lttng_consumer_stream *stream = NULL;
193
194 assert(ht);
195
196 /* -1ULL keys are lookup failures */
197 if (key == (uint64_t) -1ULL) {
198 return NULL;
199 }
200
201 rcu_read_lock();
202
203 lttng_ht_lookup(ht, &key, &iter);
204 node = lttng_ht_iter_get_node_u64(&iter);
205 if (node != NULL) {
206 stream = caa_container_of(node, struct lttng_consumer_stream, node);
207 }
208
209 rcu_read_unlock();
210
211 return stream;
212 }
213
214 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
215 {
216 struct lttng_consumer_stream *stream;
217
218 rcu_read_lock();
219 stream = find_stream(key, ht);
220 if (stream) {
221 stream->key = (uint64_t) -1ULL;
222 /*
223 * We don't want the lookup to match, but we still need
224 * to iterate on this stream when iterating over the hash table. Just
225 * change the node key.
226 */
227 stream->node.key = (uint64_t) -1ULL;
228 }
229 rcu_read_unlock();
230 }
231
232 /*
233 * Return a channel object for the given key.
234 *
235 * RCU read side lock MUST be acquired before calling this function and
236 * protects the channel ptr.
237 */
238 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
239 {
240 struct lttng_ht_iter iter;
241 struct lttng_ht_node_u64 *node;
242 struct lttng_consumer_channel *channel = NULL;
243
244 /* -1ULL keys are lookup failures */
245 if (key == (uint64_t) -1ULL) {
246 return NULL;
247 }
248
249 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
250 node = lttng_ht_iter_get_node_u64(&iter);
251 if (node != NULL) {
252 channel = caa_container_of(node, struct lttng_consumer_channel, node);
253 }
254
255 return channel;
256 }
257
258 /*
259 * There is a possibility that the consumer does not have enough time between
260 * the close of the channel on the session daemon and the cleanup in here thus
261 * once we have a channel add with an existing key, we know for sure that this
262 * channel will eventually get cleaned up by all streams being closed.
263 *
264 * This function just nullifies the already existing channel key.
265 */
266 static void steal_channel_key(uint64_t key)
267 {
268 struct lttng_consumer_channel *channel;
269
270 rcu_read_lock();
271 channel = consumer_find_channel(key);
272 if (channel) {
273 channel->key = (uint64_t) -1ULL;
274 /*
275 * We don't want the lookup to match, but we still need to iterate on
276 * this channel when iterating over the hash table. Just change the
277 * node key.
278 */
279 channel->node.key = (uint64_t) -1ULL;
280 }
281 rcu_read_unlock();
282 }
283
284 static void free_channel_rcu(struct rcu_head *head)
285 {
286 struct lttng_ht_node_u64 *node =
287 caa_container_of(head, struct lttng_ht_node_u64, head);
288 struct lttng_consumer_channel *channel =
289 caa_container_of(node, struct lttng_consumer_channel, node);
290
291 switch (consumer_data.type) {
292 case LTTNG_CONSUMER_KERNEL:
293 break;
294 case LTTNG_CONSUMER32_UST:
295 case LTTNG_CONSUMER64_UST:
296 lttng_ustconsumer_free_channel(channel);
297 break;
298 default:
299 ERR("Unknown consumer_data type");
300 abort();
301 }
302 free(channel);
303 }
304
305 /*
306 * RCU protected relayd socket pair free.
307 */
308 static void free_relayd_rcu(struct rcu_head *head)
309 {
310 struct lttng_ht_node_u64 *node =
311 caa_container_of(head, struct lttng_ht_node_u64, head);
312 struct consumer_relayd_sock_pair *relayd =
313 caa_container_of(node, struct consumer_relayd_sock_pair, node);
314
315 /*
316 * Close all sockets. This is done in the call RCU since we don't want the
317 * socket fds to be reassigned thus potentially creating bad state of the
318 * relayd object.
319 *
320 * We do not have to lock the control socket mutex here since at this stage
321 * there is no one referencing to this relayd object.
322 */
323 (void) relayd_close(&relayd->control_sock);
324 (void) relayd_close(&relayd->data_sock);
325
326 free(relayd);
327 }
328
329 /*
330 * Destroy and free relayd socket pair object.
331 */
332 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
333 {
334 int ret;
335 struct lttng_ht_iter iter;
336
337 if (relayd == NULL) {
338 return;
339 }
340
341 DBG("Consumer destroy and close relayd socket pair");
342
343 iter.iter.node = &relayd->node.node;
344 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
345 if (ret != 0) {
346 /* We assume the relayd is being or is destroyed */
347 return;
348 }
349
350 /* RCU free() call */
351 call_rcu(&relayd->node.head, free_relayd_rcu);
352 }
353
354 /*
355 * Remove a channel from the global list protected by a mutex. This function is
356 * also responsible for freeing its data structures.
357 */
358 void consumer_del_channel(struct lttng_consumer_channel *channel)
359 {
360 int ret;
361 struct lttng_ht_iter iter;
362
363 DBG("Consumer delete channel key %" PRIu64, channel->key);
364
365 pthread_mutex_lock(&consumer_data.lock);
366 pthread_mutex_lock(&channel->lock);
367
368 /* Destroy streams that might have been left in the stream list. */
369 clean_channel_stream_list(channel);
370
371 if (channel->live_timer_enabled == 1) {
372 consumer_timer_live_stop(channel);
373 }
374 if (channel->monitor_timer_enabled == 1) {
375 consumer_timer_monitor_stop(channel);
376 }
377
378 switch (consumer_data.type) {
379 case LTTNG_CONSUMER_KERNEL:
380 break;
381 case LTTNG_CONSUMER32_UST:
382 case LTTNG_CONSUMER64_UST:
383 lttng_ustconsumer_del_channel(channel);
384 break;
385 default:
386 ERR("Unknown consumer_data type");
387 assert(0);
388 goto end;
389 }
390
391 rcu_read_lock();
392 iter.iter.node = &channel->node.node;
393 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
394 assert(!ret);
395 rcu_read_unlock();
396
397 call_rcu(&channel->node.head, free_channel_rcu);
398 end:
399 pthread_mutex_unlock(&channel->lock);
400 pthread_mutex_unlock(&consumer_data.lock);
401 }
402
403 /*
404 * Iterate over the relayd hash table and destroy each element. Finally,
405 * destroy the whole hash table.
406 */
407 static void cleanup_relayd_ht(void)
408 {
409 struct lttng_ht_iter iter;
410 struct consumer_relayd_sock_pair *relayd;
411
412 rcu_read_lock();
413
414 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
415 node.node) {
416 consumer_destroy_relayd(relayd);
417 }
418
419 rcu_read_unlock();
420
421 lttng_ht_destroy(consumer_data.relayd_ht);
422 }
423
424 /*
425 * Update the end point status of all streams having the given network sequence
426 * index (relayd index).
427 *
428 * It's atomically set without having the stream mutex locked which is fine
429 * because we handle the write/read race with a pipe wakeup for each thread.
430 */
431 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
432 enum consumer_endpoint_status status)
433 {
434 struct lttng_ht_iter iter;
435 struct lttng_consumer_stream *stream;
436
437 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
438
439 rcu_read_lock();
440
441 /* Let's begin with metadata */
442 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
443 if (stream->net_seq_idx == net_seq_idx) {
444 uatomic_set(&stream->endpoint_status, status);
445 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
446 }
447 }
448
449 /* Follow up by the data streams */
450 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
451 if (stream->net_seq_idx == net_seq_idx) {
452 uatomic_set(&stream->endpoint_status, status);
453 DBG("Delete flag set to data stream %d", stream->wait_fd);
454 }
455 }
456 rcu_read_unlock();
457 }
458
459 /*
460 * Cleanup a relayd object by flagging every associated streams for deletion,
461 * destroying the object meaning removing it from the relayd hash table,
462 * closing the sockets and freeing the memory in a RCU call.
463 *
464 * If a local data context is available, notify the threads that the streams'
465 * state have changed.
466 */
467 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
468 struct lttng_consumer_local_data *ctx)
469 {
470 uint64_t netidx;
471
472 assert(relayd);
473
474 DBG("Cleaning up relayd sockets");
475
476 /* Save the net sequence index before destroying the object */
477 netidx = relayd->net_seq_idx;
478
479 /*
480 * Delete the relayd from the relayd hash table, close the sockets and free
481 * the object in a RCU call.
482 */
483 consumer_destroy_relayd(relayd);
484
485 /* Set inactive endpoint to all streams */
486 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
487
488 /*
489 * With a local data context, notify the threads that the streams' state
490 * have changed. The write() action on the pipe acts as an "implicit"
491 * memory barrier ordering the updates of the end point status from the
492 * read of this status which happens AFTER receiving this notify.
493 */
494 if (ctx) {
495 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
496 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
497 }
498 }
499
500 /*
501 * Flag a relayd socket pair for destruction. Destroy it if the refcount
502 * reaches zero.
503 *
504 * RCU read side lock MUST be aquired before calling this function.
505 */
506 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
507 {
508 assert(relayd);
509
510 /* Set destroy flag for this object */
511 uatomic_set(&relayd->destroy_flag, 1);
512
513 /* Destroy the relayd if refcount is 0 */
514 if (uatomic_read(&relayd->refcount) == 0) {
515 consumer_destroy_relayd(relayd);
516 }
517 }
518
519 /*
520 * Completly destroy stream from every visiable data structure and the given
521 * hash table if one.
522 *
523 * One this call returns, the stream object is not longer usable nor visible.
524 */
525 void consumer_del_stream(struct lttng_consumer_stream *stream,
526 struct lttng_ht *ht)
527 {
528 consumer_stream_destroy(stream, ht);
529 }
530
531 /*
532 * XXX naming of del vs destroy is all mixed up.
533 */
534 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
535 {
536 consumer_stream_destroy(stream, data_ht);
537 }
538
539 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
540 {
541 consumer_stream_destroy(stream, metadata_ht);
542 }
543
544 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
545 uint64_t stream_key,
546 enum lttng_consumer_stream_state state,
547 const char *channel_name,
548 uid_t uid,
549 gid_t gid,
550 uint64_t relayd_id,
551 uint64_t session_id,
552 int cpu,
553 int *alloc_ret,
554 enum consumer_channel_type type,
555 unsigned int monitor)
556 {
557 int ret;
558 struct lttng_consumer_stream *stream;
559
560 stream = zmalloc(sizeof(*stream));
561 if (stream == NULL) {
562 PERROR("malloc struct lttng_consumer_stream");
563 ret = -ENOMEM;
564 goto end;
565 }
566
567 rcu_read_lock();
568
569 stream->key = stream_key;
570 stream->out_fd = -1;
571 stream->out_fd_offset = 0;
572 stream->output_written = 0;
573 stream->state = state;
574 stream->uid = uid;
575 stream->gid = gid;
576 stream->net_seq_idx = relayd_id;
577 stream->session_id = session_id;
578 stream->monitor = monitor;
579 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
580 stream->index_file = NULL;
581 stream->last_sequence_number = -1ULL;
582 pthread_mutex_init(&stream->lock, NULL);
583 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
584
585 /* If channel is the metadata, flag this stream as metadata. */
586 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
587 stream->metadata_flag = 1;
588 /* Metadata is flat out. */
589 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
590 /* Live rendez-vous point. */
591 pthread_cond_init(&stream->metadata_rdv, NULL);
592 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
593 } else {
594 /* Format stream name to <channel_name>_<cpu_number> */
595 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
596 channel_name, cpu);
597 if (ret < 0) {
598 PERROR("snprintf stream name");
599 goto error;
600 }
601 }
602
603 /* Key is always the wait_fd for streams. */
604 lttng_ht_node_init_u64(&stream->node, stream->key);
605
606 /* Init node per channel id key */
607 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
608
609 /* Init session id node with the stream session id */
610 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
611
612 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
613 " relayd_id %" PRIu64 ", session_id %" PRIu64,
614 stream->name, stream->key, channel_key,
615 stream->net_seq_idx, stream->session_id);
616
617 rcu_read_unlock();
618 return stream;
619
620 error:
621 rcu_read_unlock();
622 free(stream);
623 end:
624 if (alloc_ret) {
625 *alloc_ret = ret;
626 }
627 return NULL;
628 }
629
630 /*
631 * Add a stream to the global list protected by a mutex.
632 */
633 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
634 {
635 struct lttng_ht *ht = data_ht;
636 int ret = 0;
637
638 assert(stream);
639 assert(ht);
640
641 DBG3("Adding consumer stream %" PRIu64, stream->key);
642
643 pthread_mutex_lock(&consumer_data.lock);
644 pthread_mutex_lock(&stream->chan->lock);
645 pthread_mutex_lock(&stream->chan->timer_lock);
646 pthread_mutex_lock(&stream->lock);
647 rcu_read_lock();
648
649 /* Steal stream identifier to avoid having streams with the same key */
650 steal_stream_key(stream->key, ht);
651
652 lttng_ht_add_unique_u64(ht, &stream->node);
653
654 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
655 &stream->node_channel_id);
656
657 /*
658 * Add stream to the stream_list_ht of the consumer data. No need to steal
659 * the key since the HT does not use it and we allow to add redundant keys
660 * into this table.
661 */
662 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
663
664 /*
665 * When nb_init_stream_left reaches 0, we don't need to trigger any action
666 * in terms of destroying the associated channel, because the action that
667 * causes the count to become 0 also causes a stream to be added. The
668 * channel deletion will thus be triggered by the following removal of this
669 * stream.
670 */
671 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
672 /* Increment refcount before decrementing nb_init_stream_left */
673 cmm_smp_wmb();
674 uatomic_dec(&stream->chan->nb_init_stream_left);
675 }
676
677 /* Update consumer data once the node is inserted. */
678 consumer_data.stream_count++;
679 consumer_data.need_update = 1;
680
681 rcu_read_unlock();
682 pthread_mutex_unlock(&stream->lock);
683 pthread_mutex_unlock(&stream->chan->timer_lock);
684 pthread_mutex_unlock(&stream->chan->lock);
685 pthread_mutex_unlock(&consumer_data.lock);
686
687 return ret;
688 }
689
690 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
691 {
692 consumer_del_stream(stream, data_ht);
693 }
694
695 /*
696 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
697 * be acquired before calling this.
698 */
699 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
700 {
701 int ret = 0;
702 struct lttng_ht_node_u64 *node;
703 struct lttng_ht_iter iter;
704
705 assert(relayd);
706
707 lttng_ht_lookup(consumer_data.relayd_ht,
708 &relayd->net_seq_idx, &iter);
709 node = lttng_ht_iter_get_node_u64(&iter);
710 if (node != NULL) {
711 goto end;
712 }
713 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
714
715 end:
716 return ret;
717 }
718
719 /*
720 * Allocate and return a consumer relayd socket.
721 */
722 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
723 uint64_t net_seq_idx)
724 {
725 struct consumer_relayd_sock_pair *obj = NULL;
726
727 /* net sequence index of -1 is a failure */
728 if (net_seq_idx == (uint64_t) -1ULL) {
729 goto error;
730 }
731
732 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
733 if (obj == NULL) {
734 PERROR("zmalloc relayd sock");
735 goto error;
736 }
737
738 obj->net_seq_idx = net_seq_idx;
739 obj->refcount = 0;
740 obj->destroy_flag = 0;
741 obj->control_sock.sock.fd = -1;
742 obj->data_sock.sock.fd = -1;
743 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
744 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
745
746 error:
747 return obj;
748 }
749
750 /*
751 * Find a relayd socket pair in the global consumer data.
752 *
753 * Return the object if found else NULL.
754 * RCU read-side lock must be held across this call and while using the
755 * returned object.
756 */
757 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
758 {
759 struct lttng_ht_iter iter;
760 struct lttng_ht_node_u64 *node;
761 struct consumer_relayd_sock_pair *relayd = NULL;
762
763 /* Negative keys are lookup failures */
764 if (key == (uint64_t) -1ULL) {
765 goto error;
766 }
767
768 lttng_ht_lookup(consumer_data.relayd_ht, &key,
769 &iter);
770 node = lttng_ht_iter_get_node_u64(&iter);
771 if (node != NULL) {
772 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
773 }
774
775 error:
776 return relayd;
777 }
778
779 /*
780 * Find a relayd and send the stream
781 *
782 * Returns 0 on success, < 0 on error
783 */
784 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
785 char *path)
786 {
787 int ret = 0;
788 struct consumer_relayd_sock_pair *relayd;
789
790 assert(stream);
791 assert(stream->net_seq_idx != -1ULL);
792 assert(path);
793
794 /* The stream is not metadata. Get relayd reference if exists. */
795 rcu_read_lock();
796 relayd = consumer_find_relayd(stream->net_seq_idx);
797 if (relayd != NULL) {
798 /* Add stream on the relayd */
799 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
800 ret = relayd_add_stream(&relayd->control_sock, stream->name,
801 path, &stream->relayd_stream_id,
802 stream->chan->tracefile_size, stream->chan->tracefile_count);
803 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
804 if (ret < 0) {
805 goto end;
806 }
807
808 uatomic_inc(&relayd->refcount);
809 stream->sent_to_relayd = 1;
810 } else {
811 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
812 stream->key, stream->net_seq_idx);
813 ret = -1;
814 goto end;
815 }
816
817 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
818 stream->name, stream->key, stream->net_seq_idx);
819
820 end:
821 rcu_read_unlock();
822 return ret;
823 }
824
825 /*
826 * Find a relayd and send the streams sent message
827 *
828 * Returns 0 on success, < 0 on error
829 */
830 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
831 {
832 int ret = 0;
833 struct consumer_relayd_sock_pair *relayd;
834
835 assert(net_seq_idx != -1ULL);
836
837 /* The stream is not metadata. Get relayd reference if exists. */
838 rcu_read_lock();
839 relayd = consumer_find_relayd(net_seq_idx);
840 if (relayd != NULL) {
841 /* Add stream on the relayd */
842 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
843 ret = relayd_streams_sent(&relayd->control_sock);
844 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
845 if (ret < 0) {
846 goto end;
847 }
848 } else {
849 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
850 net_seq_idx);
851 ret = -1;
852 goto end;
853 }
854
855 ret = 0;
856 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
857
858 end:
859 rcu_read_unlock();
860 return ret;
861 }
862
863 /*
864 * Find a relayd and close the stream
865 */
866 void close_relayd_stream(struct lttng_consumer_stream *stream)
867 {
868 struct consumer_relayd_sock_pair *relayd;
869
870 /* The stream is not metadata. Get relayd reference if exists. */
871 rcu_read_lock();
872 relayd = consumer_find_relayd(stream->net_seq_idx);
873 if (relayd) {
874 consumer_stream_relayd_close(stream, relayd);
875 }
876 rcu_read_unlock();
877 }
878
879 /*
880 * Handle stream for relayd transmission if the stream applies for network
881 * streaming where the net sequence index is set.
882 *
883 * Return destination file descriptor or negative value on error.
884 */
885 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
886 size_t data_size, unsigned long padding,
887 struct consumer_relayd_sock_pair *relayd)
888 {
889 int outfd = -1, ret;
890 struct lttcomm_relayd_data_hdr data_hdr;
891
892 /* Safety net */
893 assert(stream);
894 assert(relayd);
895
896 /* Reset data header */
897 memset(&data_hdr, 0, sizeof(data_hdr));
898
899 if (stream->metadata_flag) {
900 /* Caller MUST acquire the relayd control socket lock */
901 ret = relayd_send_metadata(&relayd->control_sock, data_size);
902 if (ret < 0) {
903 goto error;
904 }
905
906 /* Metadata are always sent on the control socket. */
907 outfd = relayd->control_sock.sock.fd;
908 } else {
909 /* Set header with stream information */
910 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
911 data_hdr.data_size = htobe32(data_size);
912 data_hdr.padding_size = htobe32(padding);
913 /*
914 * Note that net_seq_num below is assigned with the *current* value of
915 * next_net_seq_num and only after that the next_net_seq_num will be
916 * increment. This is why when issuing a command on the relayd using
917 * this next value, 1 should always be substracted in order to compare
918 * the last seen sequence number on the relayd side to the last sent.
919 */
920 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
921 /* Other fields are zeroed previously */
922
923 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
924 sizeof(data_hdr));
925 if (ret < 0) {
926 goto error;
927 }
928
929 ++stream->next_net_seq_num;
930
931 /* Set to go on data socket */
932 outfd = relayd->data_sock.sock.fd;
933 }
934
935 error:
936 return outfd;
937 }
938
939 /*
940 * Allocate and return a new lttng_consumer_channel object using the given key
941 * to initialize the hash table node.
942 *
943 * On error, return NULL.
944 */
945 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
946 uint64_t session_id,
947 const char *pathname,
948 const char *name,
949 uid_t uid,
950 gid_t gid,
951 uint64_t relayd_id,
952 enum lttng_event_output output,
953 uint64_t tracefile_size,
954 uint64_t tracefile_count,
955 uint64_t session_id_per_pid,
956 unsigned int monitor,
957 unsigned int live_timer_interval,
958 const char *root_shm_path,
959 const char *shm_path)
960 {
961 struct lttng_consumer_channel *channel;
962
963 channel = zmalloc(sizeof(*channel));
964 if (channel == NULL) {
965 PERROR("malloc struct lttng_consumer_channel");
966 goto end;
967 }
968
969 channel->key = key;
970 channel->refcount = 0;
971 channel->session_id = session_id;
972 channel->session_id_per_pid = session_id_per_pid;
973 channel->uid = uid;
974 channel->gid = gid;
975 channel->relayd_id = relayd_id;
976 channel->tracefile_size = tracefile_size;
977 channel->tracefile_count = tracefile_count;
978 channel->monitor = monitor;
979 channel->live_timer_interval = live_timer_interval;
980 pthread_mutex_init(&channel->lock, NULL);
981 pthread_mutex_init(&channel->timer_lock, NULL);
982
983 switch (output) {
984 case LTTNG_EVENT_SPLICE:
985 channel->output = CONSUMER_CHANNEL_SPLICE;
986 break;
987 case LTTNG_EVENT_MMAP:
988 channel->output = CONSUMER_CHANNEL_MMAP;
989 break;
990 default:
991 assert(0);
992 free(channel);
993 channel = NULL;
994 goto end;
995 }
996
997 /*
998 * In monitor mode, the streams associated with the channel will be put in
999 * a special list ONLY owned by this channel. So, the refcount is set to 1
1000 * here meaning that the channel itself has streams that are referenced.
1001 *
1002 * On a channel deletion, once the channel is no longer visible, the
1003 * refcount is decremented and checked for a zero value to delete it. With
1004 * streams in no monitor mode, it will now be safe to destroy the channel.
1005 */
1006 if (!channel->monitor) {
1007 channel->refcount = 1;
1008 }
1009
1010 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1011 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1012
1013 strncpy(channel->name, name, sizeof(channel->name));
1014 channel->name[sizeof(channel->name) - 1] = '\0';
1015
1016 if (root_shm_path) {
1017 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1018 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1019 }
1020 if (shm_path) {
1021 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1022 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1023 }
1024
1025 lttng_ht_node_init_u64(&channel->node, channel->key);
1026
1027 channel->wait_fd = -1;
1028
1029 CDS_INIT_LIST_HEAD(&channel->streams.head);
1030
1031 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1032
1033 end:
1034 return channel;
1035 }
1036
1037 /*
1038 * Add a channel to the global list protected by a mutex.
1039 *
1040 * Always return 0 indicating success.
1041 */
1042 int consumer_add_channel(struct lttng_consumer_channel *channel,
1043 struct lttng_consumer_local_data *ctx)
1044 {
1045 pthread_mutex_lock(&consumer_data.lock);
1046 pthread_mutex_lock(&channel->lock);
1047 pthread_mutex_lock(&channel->timer_lock);
1048
1049 /*
1050 * This gives us a guarantee that the channel we are about to add to the
1051 * channel hash table will be unique. See this function comment on the why
1052 * we need to steel the channel key at this stage.
1053 */
1054 steal_channel_key(channel->key);
1055
1056 rcu_read_lock();
1057 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1058 rcu_read_unlock();
1059
1060 pthread_mutex_unlock(&channel->timer_lock);
1061 pthread_mutex_unlock(&channel->lock);
1062 pthread_mutex_unlock(&consumer_data.lock);
1063
1064 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1065 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1066 }
1067
1068 return 0;
1069 }
1070
1071 /*
1072 * Allocate the pollfd structure and the local view of the out fds to avoid
1073 * doing a lookup in the linked list and concurrency issues when writing is
1074 * needed. Called with consumer_data.lock held.
1075 *
1076 * Returns the number of fds in the structures.
1077 */
1078 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1079 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1080 struct lttng_ht *ht)
1081 {
1082 int i = 0;
1083 struct lttng_ht_iter iter;
1084 struct lttng_consumer_stream *stream;
1085
1086 assert(ctx);
1087 assert(ht);
1088 assert(pollfd);
1089 assert(local_stream);
1090
1091 DBG("Updating poll fd array");
1092 rcu_read_lock();
1093 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1094 /*
1095 * Only active streams with an active end point can be added to the
1096 * poll set and local stream storage of the thread.
1097 *
1098 * There is a potential race here for endpoint_status to be updated
1099 * just after the check. However, this is OK since the stream(s) will
1100 * be deleted once the thread is notified that the end point state has
1101 * changed where this function will be called back again.
1102 */
1103 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1104 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1105 continue;
1106 }
1107 /*
1108 * This clobbers way too much the debug output. Uncomment that if you
1109 * need it for debugging purposes.
1110 *
1111 * DBG("Active FD %d", stream->wait_fd);
1112 */
1113 (*pollfd)[i].fd = stream->wait_fd;
1114 (*pollfd)[i].events = POLLIN | POLLPRI;
1115 local_stream[i] = stream;
1116 i++;
1117 }
1118 rcu_read_unlock();
1119
1120 /*
1121 * Insert the consumer_data_pipe at the end of the array and don't
1122 * increment i so nb_fd is the number of real FD.
1123 */
1124 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1125 (*pollfd)[i].events = POLLIN | POLLPRI;
1126
1127 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1128 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1129 return i;
1130 }
1131
1132 /*
1133 * Poll on the should_quit pipe and the command socket return -1 on
1134 * error, 1 if should exit, 0 if data is available on the command socket
1135 */
1136 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1137 {
1138 int num_rdy;
1139
1140 restart:
1141 num_rdy = poll(consumer_sockpoll, 2, -1);
1142 if (num_rdy == -1) {
1143 /*
1144 * Restart interrupted system call.
1145 */
1146 if (errno == EINTR) {
1147 goto restart;
1148 }
1149 PERROR("Poll error");
1150 return -1;
1151 }
1152 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1153 DBG("consumer_should_quit wake up");
1154 return 1;
1155 }
1156 return 0;
1157 }
1158
1159 /*
1160 * Set the error socket.
1161 */
1162 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1163 int sock)
1164 {
1165 ctx->consumer_error_socket = sock;
1166 }
1167
1168 /*
1169 * Set the command socket path.
1170 */
1171 void lttng_consumer_set_command_sock_path(
1172 struct lttng_consumer_local_data *ctx, char *sock)
1173 {
1174 ctx->consumer_command_sock_path = sock;
1175 }
1176
1177 /*
1178 * Send return code to the session daemon.
1179 * If the socket is not defined, we return 0, it is not a fatal error
1180 */
1181 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1182 {
1183 if (ctx->consumer_error_socket > 0) {
1184 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1185 sizeof(enum lttcomm_sessiond_command));
1186 }
1187
1188 return 0;
1189 }
1190
1191 /*
1192 * Close all the tracefiles and stream fds and MUST be called when all
1193 * instances are destroyed i.e. when all threads were joined and are ended.
1194 */
1195 void lttng_consumer_cleanup(void)
1196 {
1197 struct lttng_ht_iter iter;
1198 struct lttng_consumer_channel *channel;
1199
1200 rcu_read_lock();
1201
1202 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1203 node.node) {
1204 consumer_del_channel(channel);
1205 }
1206
1207 rcu_read_unlock();
1208
1209 lttng_ht_destroy(consumer_data.channel_ht);
1210
1211 cleanup_relayd_ht();
1212
1213 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1214
1215 /*
1216 * This HT contains streams that are freed by either the metadata thread or
1217 * the data thread so we do *nothing* on the hash table and simply destroy
1218 * it.
1219 */
1220 lttng_ht_destroy(consumer_data.stream_list_ht);
1221 }
1222
1223 /*
1224 * Called from signal handler.
1225 */
1226 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1227 {
1228 ssize_t ret;
1229
1230 CMM_STORE_SHARED(consumer_quit, 1);
1231 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1232 if (ret < 1) {
1233 PERROR("write consumer quit");
1234 }
1235
1236 DBG("Consumer flag that it should quit");
1237 }
1238
1239
1240 /*
1241 * Flush pending writes to trace output disk file.
1242 */
1243 static
1244 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1245 off_t orig_offset)
1246 {
1247 int ret;
1248 int outfd = stream->out_fd;
1249
1250 /*
1251 * This does a blocking write-and-wait on any page that belongs to the
1252 * subbuffer prior to the one we just wrote.
1253 * Don't care about error values, as these are just hints and ways to
1254 * limit the amount of page cache used.
1255 */
1256 if (orig_offset < stream->max_sb_size) {
1257 return;
1258 }
1259 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1260 stream->max_sb_size,
1261 SYNC_FILE_RANGE_WAIT_BEFORE
1262 | SYNC_FILE_RANGE_WRITE
1263 | SYNC_FILE_RANGE_WAIT_AFTER);
1264 /*
1265 * Give hints to the kernel about how we access the file:
1266 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1267 * we write it.
1268 *
1269 * We need to call fadvise again after the file grows because the
1270 * kernel does not seem to apply fadvise to non-existing parts of the
1271 * file.
1272 *
1273 * Call fadvise _after_ having waited for the page writeback to
1274 * complete because the dirty page writeback semantic is not well
1275 * defined. So it can be expected to lead to lower throughput in
1276 * streaming.
1277 */
1278 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1279 stream->max_sb_size, POSIX_FADV_DONTNEED);
1280 if (ret && ret != -ENOSYS) {
1281 errno = ret;
1282 PERROR("posix_fadvise on fd %i", outfd);
1283 }
1284 }
1285
1286 /*
1287 * Initialise the necessary environnement :
1288 * - create a new context
1289 * - create the poll_pipe
1290 * - create the should_quit pipe (for signal handler)
1291 * - create the thread pipe (for splice)
1292 *
1293 * Takes a function pointer as argument, this function is called when data is
1294 * available on a buffer. This function is responsible to do the
1295 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1296 * buffer configuration and then kernctl_put_next_subbuf at the end.
1297 *
1298 * Returns a pointer to the new context or NULL on error.
1299 */
1300 struct lttng_consumer_local_data *lttng_consumer_create(
1301 enum lttng_consumer_type type,
1302 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1303 struct lttng_consumer_local_data *ctx),
1304 int (*recv_channel)(struct lttng_consumer_channel *channel),
1305 int (*recv_stream)(struct lttng_consumer_stream *stream),
1306 int (*update_stream)(uint64_t stream_key, uint32_t state))
1307 {
1308 int ret;
1309 struct lttng_consumer_local_data *ctx;
1310
1311 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1312 consumer_data.type == type);
1313 consumer_data.type = type;
1314
1315 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1316 if (ctx == NULL) {
1317 PERROR("allocating context");
1318 goto error;
1319 }
1320
1321 ctx->consumer_error_socket = -1;
1322 ctx->consumer_metadata_socket = -1;
1323 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1324 /* assign the callbacks */
1325 ctx->on_buffer_ready = buffer_ready;
1326 ctx->on_recv_channel = recv_channel;
1327 ctx->on_recv_stream = recv_stream;
1328 ctx->on_update_stream = update_stream;
1329
1330 ctx->consumer_data_pipe = lttng_pipe_open(0);
1331 if (!ctx->consumer_data_pipe) {
1332 goto error_poll_pipe;
1333 }
1334
1335 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1336 if (!ctx->consumer_wakeup_pipe) {
1337 goto error_wakeup_pipe;
1338 }
1339
1340 ret = pipe(ctx->consumer_should_quit);
1341 if (ret < 0) {
1342 PERROR("Error creating recv pipe");
1343 goto error_quit_pipe;
1344 }
1345
1346 ret = pipe(ctx->consumer_channel_pipe);
1347 if (ret < 0) {
1348 PERROR("Error creating channel pipe");
1349 goto error_channel_pipe;
1350 }
1351
1352 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1353 if (!ctx->consumer_metadata_pipe) {
1354 goto error_metadata_pipe;
1355 }
1356
1357 ctx->channel_monitor_pipe = -1;
1358
1359 return ctx;
1360
1361 error_metadata_pipe:
1362 utils_close_pipe(ctx->consumer_channel_pipe);
1363 error_channel_pipe:
1364 utils_close_pipe(ctx->consumer_should_quit);
1365 error_quit_pipe:
1366 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1367 error_wakeup_pipe:
1368 lttng_pipe_destroy(ctx->consumer_data_pipe);
1369 error_poll_pipe:
1370 free(ctx);
1371 error:
1372 return NULL;
1373 }
1374
1375 /*
1376 * Iterate over all streams of the hashtable and free them properly.
1377 */
1378 static void destroy_data_stream_ht(struct lttng_ht *ht)
1379 {
1380 struct lttng_ht_iter iter;
1381 struct lttng_consumer_stream *stream;
1382
1383 if (ht == NULL) {
1384 return;
1385 }
1386
1387 rcu_read_lock();
1388 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1389 /*
1390 * Ignore return value since we are currently cleaning up so any error
1391 * can't be handled.
1392 */
1393 (void) consumer_del_stream(stream, ht);
1394 }
1395 rcu_read_unlock();
1396
1397 lttng_ht_destroy(ht);
1398 }
1399
1400 /*
1401 * Iterate over all streams of the metadata hashtable and free them
1402 * properly.
1403 */
1404 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1405 {
1406 struct lttng_ht_iter iter;
1407 struct lttng_consumer_stream *stream;
1408
1409 if (ht == NULL) {
1410 return;
1411 }
1412
1413 rcu_read_lock();
1414 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1415 /*
1416 * Ignore return value since we are currently cleaning up so any error
1417 * can't be handled.
1418 */
1419 (void) consumer_del_metadata_stream(stream, ht);
1420 }
1421 rcu_read_unlock();
1422
1423 lttng_ht_destroy(ht);
1424 }
1425
1426 /*
1427 * Close all fds associated with the instance and free the context.
1428 */
1429 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1430 {
1431 int ret;
1432
1433 DBG("Consumer destroying it. Closing everything.");
1434
1435 if (!ctx) {
1436 return;
1437 }
1438
1439 destroy_data_stream_ht(data_ht);
1440 destroy_metadata_stream_ht(metadata_ht);
1441
1442 ret = close(ctx->consumer_error_socket);
1443 if (ret) {
1444 PERROR("close");
1445 }
1446 ret = close(ctx->consumer_metadata_socket);
1447 if (ret) {
1448 PERROR("close");
1449 }
1450 utils_close_pipe(ctx->consumer_channel_pipe);
1451 lttng_pipe_destroy(ctx->consumer_data_pipe);
1452 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1453 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1454 utils_close_pipe(ctx->consumer_should_quit);
1455
1456 unlink(ctx->consumer_command_sock_path);
1457 free(ctx);
1458 }
1459
1460 /*
1461 * Write the metadata stream id on the specified file descriptor.
1462 */
1463 static int write_relayd_metadata_id(int fd,
1464 struct lttng_consumer_stream *stream,
1465 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1466 {
1467 ssize_t ret;
1468 struct lttcomm_relayd_metadata_payload hdr;
1469
1470 hdr.stream_id = htobe64(stream->relayd_stream_id);
1471 hdr.padding_size = htobe32(padding);
1472 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1473 if (ret < sizeof(hdr)) {
1474 /*
1475 * This error means that the fd's end is closed so ignore the PERROR
1476 * not to clubber the error output since this can happen in a normal
1477 * code path.
1478 */
1479 if (errno != EPIPE) {
1480 PERROR("write metadata stream id");
1481 }
1482 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1483 /*
1484 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1485 * handle writting the missing part so report that as an error and
1486 * don't lie to the caller.
1487 */
1488 ret = -1;
1489 goto end;
1490 }
1491 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1492 stream->relayd_stream_id, padding);
1493
1494 end:
1495 return (int) ret;
1496 }
1497
1498 /*
1499 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1500 * core function for writing trace buffers to either the local filesystem or
1501 * the network.
1502 *
1503 * It must be called with the stream lock held.
1504 *
1505 * Careful review MUST be put if any changes occur!
1506 *
1507 * Returns the number of bytes written
1508 */
1509 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1510 struct lttng_consumer_local_data *ctx,
1511 struct lttng_consumer_stream *stream, unsigned long len,
1512 unsigned long padding,
1513 struct ctf_packet_index *index)
1514 {
1515 unsigned long mmap_offset;
1516 void *mmap_base;
1517 ssize_t ret = 0;
1518 off_t orig_offset = stream->out_fd_offset;
1519 /* Default is on the disk */
1520 int outfd = stream->out_fd;
1521 struct consumer_relayd_sock_pair *relayd = NULL;
1522 unsigned int relayd_hang_up = 0;
1523
1524 /* RCU lock for the relayd pointer */
1525 rcu_read_lock();
1526
1527 /* Flag that the current stream if set for network streaming. */
1528 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1529 relayd = consumer_find_relayd(stream->net_seq_idx);
1530 if (relayd == NULL) {
1531 ret = -EPIPE;
1532 goto end;
1533 }
1534 }
1535
1536 /* get the offset inside the fd to mmap */
1537 switch (consumer_data.type) {
1538 case LTTNG_CONSUMER_KERNEL:
1539 mmap_base = stream->mmap_base;
1540 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1541 if (ret < 0) {
1542 PERROR("tracer ctl get_mmap_read_offset");
1543 goto end;
1544 }
1545 break;
1546 case LTTNG_CONSUMER32_UST:
1547 case LTTNG_CONSUMER64_UST:
1548 mmap_base = lttng_ustctl_get_mmap_base(stream);
1549 if (!mmap_base) {
1550 ERR("read mmap get mmap base for stream %s", stream->name);
1551 ret = -EPERM;
1552 goto end;
1553 }
1554 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1555 if (ret != 0) {
1556 PERROR("tracer ctl get_mmap_read_offset");
1557 ret = -EINVAL;
1558 goto end;
1559 }
1560 break;
1561 default:
1562 ERR("Unknown consumer_data type");
1563 assert(0);
1564 }
1565
1566 /* Handle stream on the relayd if the output is on the network */
1567 if (relayd) {
1568 unsigned long netlen = len;
1569
1570 /*
1571 * Lock the control socket for the complete duration of the function
1572 * since from this point on we will use the socket.
1573 */
1574 if (stream->metadata_flag) {
1575 /* Metadata requires the control socket. */
1576 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1577 if (stream->reset_metadata_flag) {
1578 ret = relayd_reset_metadata(&relayd->control_sock,
1579 stream->relayd_stream_id,
1580 stream->metadata_version);
1581 if (ret < 0) {
1582 relayd_hang_up = 1;
1583 goto write_error;
1584 }
1585 stream->reset_metadata_flag = 0;
1586 }
1587 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1588 }
1589
1590 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1591 if (ret < 0) {
1592 relayd_hang_up = 1;
1593 goto write_error;
1594 }
1595 /* Use the returned socket. */
1596 outfd = ret;
1597
1598 /* Write metadata stream id before payload */
1599 if (stream->metadata_flag) {
1600 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1601 if (ret < 0) {
1602 relayd_hang_up = 1;
1603 goto write_error;
1604 }
1605 }
1606 } else {
1607 /* No streaming, we have to set the len with the full padding */
1608 len += padding;
1609
1610 if (stream->metadata_flag && stream->reset_metadata_flag) {
1611 ret = utils_truncate_stream_file(stream->out_fd, 0);
1612 if (ret < 0) {
1613 ERR("Reset metadata file");
1614 goto end;
1615 }
1616 stream->reset_metadata_flag = 0;
1617 }
1618
1619 /*
1620 * Check if we need to change the tracefile before writing the packet.
1621 */
1622 if (stream->chan->tracefile_size > 0 &&
1623 (stream->tracefile_size_current + len) >
1624 stream->chan->tracefile_size) {
1625 ret = utils_rotate_stream_file(stream->chan->pathname,
1626 stream->name, stream->chan->tracefile_size,
1627 stream->chan->tracefile_count, stream->uid, stream->gid,
1628 stream->out_fd, &(stream->tracefile_count_current),
1629 &stream->out_fd);
1630 if (ret < 0) {
1631 ERR("Rotating output file");
1632 goto end;
1633 }
1634 outfd = stream->out_fd;
1635
1636 if (stream->index_file) {
1637 lttng_index_file_put(stream->index_file);
1638 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1639 stream->name, stream->uid, stream->gid,
1640 stream->chan->tracefile_size,
1641 stream->tracefile_count_current,
1642 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1643 if (!stream->index_file) {
1644 goto end;
1645 }
1646 }
1647
1648 /* Reset current size because we just perform a rotation. */
1649 stream->tracefile_size_current = 0;
1650 stream->out_fd_offset = 0;
1651 orig_offset = 0;
1652 }
1653 stream->tracefile_size_current += len;
1654 if (index) {
1655 index->offset = htobe64(stream->out_fd_offset);
1656 }
1657 }
1658
1659 /*
1660 * This call guarantee that len or less is returned. It's impossible to
1661 * receive a ret value that is bigger than len.
1662 */
1663 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1664 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1665 if (ret < 0 || ((size_t) ret != len)) {
1666 /*
1667 * Report error to caller if nothing was written else at least send the
1668 * amount written.
1669 */
1670 if (ret < 0) {
1671 ret = -errno;
1672 }
1673 relayd_hang_up = 1;
1674
1675 /* Socket operation failed. We consider the relayd dead */
1676 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1677 /*
1678 * This is possible if the fd is closed on the other side
1679 * (outfd) or any write problem. It can be verbose a bit for a
1680 * normal execution if for instance the relayd is stopped
1681 * abruptly. This can happen so set this to a DBG statement.
1682 */
1683 DBG("Consumer mmap write detected relayd hang up");
1684 } else {
1685 /* Unhandled error, print it and stop function right now. */
1686 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1687 }
1688 goto write_error;
1689 }
1690 stream->output_written += ret;
1691
1692 /* This call is useless on a socket so better save a syscall. */
1693 if (!relayd) {
1694 /* This won't block, but will start writeout asynchronously */
1695 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1696 SYNC_FILE_RANGE_WRITE);
1697 stream->out_fd_offset += len;
1698 lttng_consumer_sync_trace_file(stream, orig_offset);
1699 }
1700
1701 write_error:
1702 /*
1703 * This is a special case that the relayd has closed its socket. Let's
1704 * cleanup the relayd object and all associated streams.
1705 */
1706 if (relayd && relayd_hang_up) {
1707 cleanup_relayd(relayd, ctx);
1708 }
1709
1710 end:
1711 /* Unlock only if ctrl socket used */
1712 if (relayd && stream->metadata_flag) {
1713 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1714 }
1715
1716 rcu_read_unlock();
1717 return ret;
1718 }
1719
1720 /*
1721 * Splice the data from the ring buffer to the tracefile.
1722 *
1723 * It must be called with the stream lock held.
1724 *
1725 * Returns the number of bytes spliced.
1726 */
1727 ssize_t lttng_consumer_on_read_subbuffer_splice(
1728 struct lttng_consumer_local_data *ctx,
1729 struct lttng_consumer_stream *stream, unsigned long len,
1730 unsigned long padding,
1731 struct ctf_packet_index *index)
1732 {
1733 ssize_t ret = 0, written = 0, ret_splice = 0;
1734 loff_t offset = 0;
1735 off_t orig_offset = stream->out_fd_offset;
1736 int fd = stream->wait_fd;
1737 /* Default is on the disk */
1738 int outfd = stream->out_fd;
1739 struct consumer_relayd_sock_pair *relayd = NULL;
1740 int *splice_pipe;
1741 unsigned int relayd_hang_up = 0;
1742
1743 switch (consumer_data.type) {
1744 case LTTNG_CONSUMER_KERNEL:
1745 break;
1746 case LTTNG_CONSUMER32_UST:
1747 case LTTNG_CONSUMER64_UST:
1748 /* Not supported for user space tracing */
1749 return -ENOSYS;
1750 default:
1751 ERR("Unknown consumer_data type");
1752 assert(0);
1753 }
1754
1755 /* RCU lock for the relayd pointer */
1756 rcu_read_lock();
1757
1758 /* Flag that the current stream if set for network streaming. */
1759 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1760 relayd = consumer_find_relayd(stream->net_seq_idx);
1761 if (relayd == NULL) {
1762 written = -ret;
1763 goto end;
1764 }
1765 }
1766 splice_pipe = stream->splice_pipe;
1767
1768 /* Write metadata stream id before payload */
1769 if (relayd) {
1770 unsigned long total_len = len;
1771
1772 if (stream->metadata_flag) {
1773 /*
1774 * Lock the control socket for the complete duration of the function
1775 * since from this point on we will use the socket.
1776 */
1777 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1778
1779 if (stream->reset_metadata_flag) {
1780 ret = relayd_reset_metadata(&relayd->control_sock,
1781 stream->relayd_stream_id,
1782 stream->metadata_version);
1783 if (ret < 0) {
1784 relayd_hang_up = 1;
1785 goto write_error;
1786 }
1787 stream->reset_metadata_flag = 0;
1788 }
1789 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1790 padding);
1791 if (ret < 0) {
1792 written = ret;
1793 relayd_hang_up = 1;
1794 goto write_error;
1795 }
1796
1797 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1798 }
1799
1800 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1801 if (ret < 0) {
1802 written = ret;
1803 relayd_hang_up = 1;
1804 goto write_error;
1805 }
1806 /* Use the returned socket. */
1807 outfd = ret;
1808 } else {
1809 /* No streaming, we have to set the len with the full padding */
1810 len += padding;
1811
1812 if (stream->metadata_flag && stream->reset_metadata_flag) {
1813 ret = utils_truncate_stream_file(stream->out_fd, 0);
1814 if (ret < 0) {
1815 ERR("Reset metadata file");
1816 goto end;
1817 }
1818 stream->reset_metadata_flag = 0;
1819 }
1820 /*
1821 * Check if we need to change the tracefile before writing the packet.
1822 */
1823 if (stream->chan->tracefile_size > 0 &&
1824 (stream->tracefile_size_current + len) >
1825 stream->chan->tracefile_size) {
1826 ret = utils_rotate_stream_file(stream->chan->pathname,
1827 stream->name, stream->chan->tracefile_size,
1828 stream->chan->tracefile_count, stream->uid, stream->gid,
1829 stream->out_fd, &(stream->tracefile_count_current),
1830 &stream->out_fd);
1831 if (ret < 0) {
1832 written = ret;
1833 ERR("Rotating output file");
1834 goto end;
1835 }
1836 outfd = stream->out_fd;
1837
1838 if (stream->index_file) {
1839 lttng_index_file_put(stream->index_file);
1840 stream->index_file = lttng_index_file_create(stream->chan->pathname,
1841 stream->name, stream->uid, stream->gid,
1842 stream->chan->tracefile_size,
1843 stream->tracefile_count_current,
1844 CTF_INDEX_MAJOR, CTF_INDEX_MINOR);
1845 if (!stream->index_file) {
1846 goto end;
1847 }
1848 }
1849
1850 /* Reset current size because we just perform a rotation. */
1851 stream->tracefile_size_current = 0;
1852 stream->out_fd_offset = 0;
1853 orig_offset = 0;
1854 }
1855 stream->tracefile_size_current += len;
1856 index->offset = htobe64(stream->out_fd_offset);
1857 }
1858
1859 while (len > 0) {
1860 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1861 (unsigned long)offset, len, fd, splice_pipe[1]);
1862 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1863 SPLICE_F_MOVE | SPLICE_F_MORE);
1864 DBG("splice chan to pipe, ret %zd", ret_splice);
1865 if (ret_splice < 0) {
1866 ret = errno;
1867 written = -ret;
1868 PERROR("Error in relay splice");
1869 goto splice_error;
1870 }
1871
1872 /* Handle stream on the relayd if the output is on the network */
1873 if (relayd && stream->metadata_flag) {
1874 size_t metadata_payload_size =
1875 sizeof(struct lttcomm_relayd_metadata_payload);
1876
1877 /* Update counter to fit the spliced data */
1878 ret_splice += metadata_payload_size;
1879 len += metadata_payload_size;
1880 /*
1881 * We do this so the return value can match the len passed as
1882 * argument to this function.
1883 */
1884 written -= metadata_payload_size;
1885 }
1886
1887 /* Splice data out */
1888 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1889 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1890 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1891 outfd, ret_splice);
1892 if (ret_splice < 0) {
1893 ret = errno;
1894 written = -ret;
1895 relayd_hang_up = 1;
1896 goto write_error;
1897 } else if (ret_splice > len) {
1898 /*
1899 * We don't expect this code path to be executed but you never know
1900 * so this is an extra protection agains a buggy splice().
1901 */
1902 ret = errno;
1903 written += ret_splice;
1904 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1905 len);
1906 goto splice_error;
1907 } else {
1908 /* All good, update current len and continue. */
1909 len -= ret_splice;
1910 }
1911
1912 /* This call is useless on a socket so better save a syscall. */
1913 if (!relayd) {
1914 /* This won't block, but will start writeout asynchronously */
1915 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1916 SYNC_FILE_RANGE_WRITE);
1917 stream->out_fd_offset += ret_splice;
1918 }
1919 stream->output_written += ret_splice;
1920 written += ret_splice;
1921 }
1922 if (!relayd) {
1923 lttng_consumer_sync_trace_file(stream, orig_offset);
1924 }
1925 goto end;
1926
1927 write_error:
1928 /*
1929 * This is a special case that the relayd has closed its socket. Let's
1930 * cleanup the relayd object and all associated streams.
1931 */
1932 if (relayd && relayd_hang_up) {
1933 cleanup_relayd(relayd, ctx);
1934 /* Skip splice error so the consumer does not fail */
1935 goto end;
1936 }
1937
1938 splice_error:
1939 /* send the appropriate error description to sessiond */
1940 switch (ret) {
1941 case EINVAL:
1942 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1943 break;
1944 case ENOMEM:
1945 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1946 break;
1947 case ESPIPE:
1948 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1949 break;
1950 }
1951
1952 end:
1953 if (relayd && stream->metadata_flag) {
1954 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1955 }
1956
1957 rcu_read_unlock();
1958 return written;
1959 }
1960
1961 /*
1962 * Take a snapshot for a specific fd
1963 *
1964 * Returns 0 on success, < 0 on error
1965 */
1966 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1967 {
1968 switch (consumer_data.type) {
1969 case LTTNG_CONSUMER_KERNEL:
1970 return lttng_kconsumer_take_snapshot(stream);
1971 case LTTNG_CONSUMER32_UST:
1972 case LTTNG_CONSUMER64_UST:
1973 return lttng_ustconsumer_take_snapshot(stream);
1974 default:
1975 ERR("Unknown consumer_data type");
1976 assert(0);
1977 return -ENOSYS;
1978 }
1979 }
1980
1981 /*
1982 * Get the produced position
1983 *
1984 * Returns 0 on success, < 0 on error
1985 */
1986 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1987 unsigned long *pos)
1988 {
1989 switch (consumer_data.type) {
1990 case LTTNG_CONSUMER_KERNEL:
1991 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1992 case LTTNG_CONSUMER32_UST:
1993 case LTTNG_CONSUMER64_UST:
1994 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1995 default:
1996 ERR("Unknown consumer_data type");
1997 assert(0);
1998 return -ENOSYS;
1999 }
2000 }
2001
2002 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
2003 int sock, struct pollfd *consumer_sockpoll)
2004 {
2005 switch (consumer_data.type) {
2006 case LTTNG_CONSUMER_KERNEL:
2007 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2008 case LTTNG_CONSUMER32_UST:
2009 case LTTNG_CONSUMER64_UST:
2010 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
2011 default:
2012 ERR("Unknown consumer_data type");
2013 assert(0);
2014 return -ENOSYS;
2015 }
2016 }
2017
2018 void lttng_consumer_close_all_metadata(void)
2019 {
2020 switch (consumer_data.type) {
2021 case LTTNG_CONSUMER_KERNEL:
2022 /*
2023 * The Kernel consumer has a different metadata scheme so we don't
2024 * close anything because the stream will be closed by the session
2025 * daemon.
2026 */
2027 break;
2028 case LTTNG_CONSUMER32_UST:
2029 case LTTNG_CONSUMER64_UST:
2030 /*
2031 * Close all metadata streams. The metadata hash table is passed and
2032 * this call iterates over it by closing all wakeup fd. This is safe
2033 * because at this point we are sure that the metadata producer is
2034 * either dead or blocked.
2035 */
2036 lttng_ustconsumer_close_all_metadata(metadata_ht);
2037 break;
2038 default:
2039 ERR("Unknown consumer_data type");
2040 assert(0);
2041 }
2042 }
2043
2044 /*
2045 * Clean up a metadata stream and free its memory.
2046 */
2047 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2048 struct lttng_ht *ht)
2049 {
2050 struct lttng_consumer_channel *free_chan = NULL;
2051
2052 assert(stream);
2053 /*
2054 * This call should NEVER receive regular stream. It must always be
2055 * metadata stream and this is crucial for data structure synchronization.
2056 */
2057 assert(stream->metadata_flag);
2058
2059 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2060
2061 pthread_mutex_lock(&consumer_data.lock);
2062 pthread_mutex_lock(&stream->chan->lock);
2063 pthread_mutex_lock(&stream->lock);
2064 if (stream->chan->metadata_cache) {
2065 /* Only applicable to userspace consumers. */
2066 pthread_mutex_lock(&stream->chan->metadata_cache->lock);
2067 }
2068
2069 /* Remove any reference to that stream. */
2070 consumer_stream_delete(stream, ht);
2071
2072 /* Close down everything including the relayd if one. */
2073 consumer_stream_close(stream);
2074 /* Destroy tracer buffers of the stream. */
2075 consumer_stream_destroy_buffers(stream);
2076
2077 /* Atomically decrement channel refcount since other threads can use it. */
2078 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2079 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2080 /* Go for channel deletion! */
2081 free_chan = stream->chan;
2082 }
2083
2084 /*
2085 * Nullify the stream reference so it is not used after deletion. The
2086 * channel lock MUST be acquired before being able to check for a NULL
2087 * pointer value.
2088 */
2089 stream->chan->metadata_stream = NULL;
2090
2091 if (stream->chan->metadata_cache) {
2092 pthread_mutex_unlock(&stream->chan->metadata_cache->lock);
2093 }
2094 pthread_mutex_unlock(&stream->lock);
2095 pthread_mutex_unlock(&stream->chan->lock);
2096 pthread_mutex_unlock(&consumer_data.lock);
2097
2098 if (free_chan) {
2099 consumer_del_channel(free_chan);
2100 }
2101
2102 consumer_stream_free(stream);
2103 }
2104
2105 /*
2106 * Action done with the metadata stream when adding it to the consumer internal
2107 * data structures to handle it.
2108 */
2109 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2110 {
2111 struct lttng_ht *ht = metadata_ht;
2112 int ret = 0;
2113 struct lttng_ht_iter iter;
2114 struct lttng_ht_node_u64 *node;
2115
2116 assert(stream);
2117 assert(ht);
2118
2119 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2120
2121 pthread_mutex_lock(&consumer_data.lock);
2122 pthread_mutex_lock(&stream->chan->lock);
2123 pthread_mutex_lock(&stream->chan->timer_lock);
2124 pthread_mutex_lock(&stream->lock);
2125
2126 /*
2127 * From here, refcounts are updated so be _careful_ when returning an error
2128 * after this point.
2129 */
2130
2131 rcu_read_lock();
2132
2133 /*
2134 * Lookup the stream just to make sure it does not exist in our internal
2135 * state. This should NEVER happen.
2136 */
2137 lttng_ht_lookup(ht, &stream->key, &iter);
2138 node = lttng_ht_iter_get_node_u64(&iter);
2139 assert(!node);
2140
2141 /*
2142 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2143 * in terms of destroying the associated channel, because the action that
2144 * causes the count to become 0 also causes a stream to be added. The
2145 * channel deletion will thus be triggered by the following removal of this
2146 * stream.
2147 */
2148 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2149 /* Increment refcount before decrementing nb_init_stream_left */
2150 cmm_smp_wmb();
2151 uatomic_dec(&stream->chan->nb_init_stream_left);
2152 }
2153
2154 lttng_ht_add_unique_u64(ht, &stream->node);
2155
2156 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2157 &stream->node_channel_id);
2158
2159 /*
2160 * Add stream to the stream_list_ht of the consumer data. No need to steal
2161 * the key since the HT does not use it and we allow to add redundant keys
2162 * into this table.
2163 */
2164 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2165
2166 rcu_read_unlock();
2167
2168 pthread_mutex_unlock(&stream->lock);
2169 pthread_mutex_unlock(&stream->chan->lock);
2170 pthread_mutex_unlock(&stream->chan->timer_lock);
2171 pthread_mutex_unlock(&consumer_data.lock);
2172 return ret;
2173 }
2174
2175 /*
2176 * Delete data stream that are flagged for deletion (endpoint_status).
2177 */
2178 static void validate_endpoint_status_data_stream(void)
2179 {
2180 struct lttng_ht_iter iter;
2181 struct lttng_consumer_stream *stream;
2182
2183 DBG("Consumer delete flagged data stream");
2184
2185 rcu_read_lock();
2186 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2187 /* Validate delete flag of the stream */
2188 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2189 continue;
2190 }
2191 /* Delete it right now */
2192 consumer_del_stream(stream, data_ht);
2193 }
2194 rcu_read_unlock();
2195 }
2196
2197 /*
2198 * Delete metadata stream that are flagged for deletion (endpoint_status).
2199 */
2200 static void validate_endpoint_status_metadata_stream(
2201 struct lttng_poll_event *pollset)
2202 {
2203 struct lttng_ht_iter iter;
2204 struct lttng_consumer_stream *stream;
2205
2206 DBG("Consumer delete flagged metadata stream");
2207
2208 assert(pollset);
2209
2210 rcu_read_lock();
2211 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2212 /* Validate delete flag of the stream */
2213 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2214 continue;
2215 }
2216 /*
2217 * Remove from pollset so the metadata thread can continue without
2218 * blocking on a deleted stream.
2219 */
2220 lttng_poll_del(pollset, stream->wait_fd);
2221
2222 /* Delete it right now */
2223 consumer_del_metadata_stream(stream, metadata_ht);
2224 }
2225 rcu_read_unlock();
2226 }
2227
2228 /*
2229 * Thread polls on metadata file descriptor and write them on disk or on the
2230 * network.
2231 */
2232 void *consumer_thread_metadata_poll(void *data)
2233 {
2234 int ret, i, pollfd, err = -1;
2235 uint32_t revents, nb_fd;
2236 struct lttng_consumer_stream *stream = NULL;
2237 struct lttng_ht_iter iter;
2238 struct lttng_ht_node_u64 *node;
2239 struct lttng_poll_event events;
2240 struct lttng_consumer_local_data *ctx = data;
2241 ssize_t len;
2242
2243 rcu_register_thread();
2244
2245 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2246
2247 if (testpoint(consumerd_thread_metadata)) {
2248 goto error_testpoint;
2249 }
2250
2251 health_code_update();
2252
2253 DBG("Thread metadata poll started");
2254
2255 /* Size is set to 1 for the consumer_metadata pipe */
2256 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2257 if (ret < 0) {
2258 ERR("Poll set creation failed");
2259 goto end_poll;
2260 }
2261
2262 ret = lttng_poll_add(&events,
2263 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2264 if (ret < 0) {
2265 goto end;
2266 }
2267
2268 /* Main loop */
2269 DBG("Metadata main loop started");
2270
2271 while (1) {
2272 restart:
2273 health_code_update();
2274 health_poll_entry();
2275 DBG("Metadata poll wait");
2276 ret = lttng_poll_wait(&events, -1);
2277 DBG("Metadata poll return from wait with %d fd(s)",
2278 LTTNG_POLL_GETNB(&events));
2279 health_poll_exit();
2280 DBG("Metadata event caught in thread");
2281 if (ret < 0) {
2282 if (errno == EINTR) {
2283 ERR("Poll EINTR caught");
2284 goto restart;
2285 }
2286 if (LTTNG_POLL_GETNB(&events) == 0) {
2287 err = 0; /* All is OK */
2288 }
2289 goto end;
2290 }
2291
2292 nb_fd = ret;
2293
2294 /* From here, the event is a metadata wait fd */
2295 for (i = 0; i < nb_fd; i++) {
2296 health_code_update();
2297
2298 revents = LTTNG_POLL_GETEV(&events, i);
2299 pollfd = LTTNG_POLL_GETFD(&events, i);
2300
2301 if (!revents) {
2302 /* No activity for this FD (poll implementation). */
2303 continue;
2304 }
2305
2306 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2307 if (revents & LPOLLIN) {
2308 ssize_t pipe_len;
2309
2310 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2311 &stream, sizeof(stream));
2312 if (pipe_len < sizeof(stream)) {
2313 if (pipe_len < 0) {
2314 PERROR("read metadata stream");
2315 }
2316 /*
2317 * Remove the pipe from the poll set and continue the loop
2318 * since their might be data to consume.
2319 */
2320 lttng_poll_del(&events,
2321 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2322 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2323 continue;
2324 }
2325
2326 /* A NULL stream means that the state has changed. */
2327 if (stream == NULL) {
2328 /* Check for deleted streams. */
2329 validate_endpoint_status_metadata_stream(&events);
2330 goto restart;
2331 }
2332
2333 DBG("Adding metadata stream %d to poll set",
2334 stream->wait_fd);
2335
2336 /* Add metadata stream to the global poll events list */
2337 lttng_poll_add(&events, stream->wait_fd,
2338 LPOLLIN | LPOLLPRI | LPOLLHUP);
2339 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2340 DBG("Metadata thread pipe hung up");
2341 /*
2342 * Remove the pipe from the poll set and continue the loop
2343 * since their might be data to consume.
2344 */
2345 lttng_poll_del(&events,
2346 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2347 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2348 continue;
2349 } else {
2350 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2351 goto end;
2352 }
2353
2354 /* Handle other stream */
2355 continue;
2356 }
2357
2358 rcu_read_lock();
2359 {
2360 uint64_t tmp_id = (uint64_t) pollfd;
2361
2362 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2363 }
2364 node = lttng_ht_iter_get_node_u64(&iter);
2365 assert(node);
2366
2367 stream = caa_container_of(node, struct lttng_consumer_stream,
2368 node);
2369
2370 if (revents & (LPOLLIN | LPOLLPRI)) {
2371 /* Get the data out of the metadata file descriptor */
2372 DBG("Metadata available on fd %d", pollfd);
2373 assert(stream->wait_fd == pollfd);
2374
2375 do {
2376 health_code_update();
2377
2378 len = ctx->on_buffer_ready(stream, ctx);
2379 /*
2380 * We don't check the return value here since if we get
2381 * a negative len, it means an error occurred thus we
2382 * simply remove it from the poll set and free the
2383 * stream.
2384 */
2385 } while (len > 0);
2386
2387 /* It's ok to have an unavailable sub-buffer */
2388 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2389 /* Clean up stream from consumer and free it. */
2390 lttng_poll_del(&events, stream->wait_fd);
2391 consumer_del_metadata_stream(stream, metadata_ht);
2392 }
2393 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2394 DBG("Metadata fd %d is hup|err.", pollfd);
2395 if (!stream->hangup_flush_done
2396 && (consumer_data.type == LTTNG_CONSUMER32_UST
2397 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2398 DBG("Attempting to flush and consume the UST buffers");
2399 lttng_ustconsumer_on_stream_hangup(stream);
2400
2401 /* We just flushed the stream now read it. */
2402 do {
2403 health_code_update();
2404
2405 len = ctx->on_buffer_ready(stream, ctx);
2406 /*
2407 * We don't check the return value here since if we get
2408 * a negative len, it means an error occurred thus we
2409 * simply remove it from the poll set and free the
2410 * stream.
2411 */
2412 } while (len > 0);
2413 }
2414
2415 lttng_poll_del(&events, stream->wait_fd);
2416 /*
2417 * This call update the channel states, closes file descriptors
2418 * and securely free the stream.
2419 */
2420 consumer_del_metadata_stream(stream, metadata_ht);
2421 } else {
2422 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2423 rcu_read_unlock();
2424 goto end;
2425 }
2426 /* Release RCU lock for the stream looked up */
2427 rcu_read_unlock();
2428 }
2429 }
2430
2431 /* All is OK */
2432 err = 0;
2433 end:
2434 DBG("Metadata poll thread exiting");
2435
2436 lttng_poll_clean(&events);
2437 end_poll:
2438 error_testpoint:
2439 if (err) {
2440 health_error();
2441 ERR("Health error occurred in %s", __func__);
2442 }
2443 health_unregister(health_consumerd);
2444 rcu_unregister_thread();
2445 return NULL;
2446 }
2447
2448 /*
2449 * This thread polls the fds in the set to consume the data and write
2450 * it to tracefile if necessary.
2451 */
2452 void *consumer_thread_data_poll(void *data)
2453 {
2454 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2455 struct pollfd *pollfd = NULL;
2456 /* local view of the streams */
2457 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2458 /* local view of consumer_data.fds_count */
2459 int nb_fd = 0;
2460 struct lttng_consumer_local_data *ctx = data;
2461 ssize_t len;
2462
2463 rcu_register_thread();
2464
2465 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2466
2467 if (testpoint(consumerd_thread_data)) {
2468 goto error_testpoint;
2469 }
2470
2471 health_code_update();
2472
2473 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2474 if (local_stream == NULL) {
2475 PERROR("local_stream malloc");
2476 goto end;
2477 }
2478
2479 while (1) {
2480 health_code_update();
2481
2482 high_prio = 0;
2483 num_hup = 0;
2484
2485 /*
2486 * the fds set has been updated, we need to update our
2487 * local array as well
2488 */
2489 pthread_mutex_lock(&consumer_data.lock);
2490 if (consumer_data.need_update) {
2491 free(pollfd);
2492 pollfd = NULL;
2493
2494 free(local_stream);
2495 local_stream = NULL;
2496
2497 /*
2498 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2499 * wake up pipe.
2500 */
2501 pollfd = zmalloc((consumer_data.stream_count + 2) * sizeof(struct pollfd));
2502 if (pollfd == NULL) {
2503 PERROR("pollfd malloc");
2504 pthread_mutex_unlock(&consumer_data.lock);
2505 goto end;
2506 }
2507
2508 local_stream = zmalloc((consumer_data.stream_count + 2) *
2509 sizeof(struct lttng_consumer_stream *));
2510 if (local_stream == NULL) {
2511 PERROR("local_stream malloc");
2512 pthread_mutex_unlock(&consumer_data.lock);
2513 goto end;
2514 }
2515 ret = update_poll_array(ctx, &pollfd, local_stream,
2516 data_ht);
2517 if (ret < 0) {
2518 ERR("Error in allocating pollfd or local_outfds");
2519 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2520 pthread_mutex_unlock(&consumer_data.lock);
2521 goto end;
2522 }
2523 nb_fd = ret;
2524 consumer_data.need_update = 0;
2525 }
2526 pthread_mutex_unlock(&consumer_data.lock);
2527
2528 /* No FDs and consumer_quit, consumer_cleanup the thread */
2529 if (nb_fd == 0 && CMM_LOAD_SHARED(consumer_quit) == 1) {
2530 err = 0; /* All is OK */
2531 goto end;
2532 }
2533 /* poll on the array of fds */
2534 restart:
2535 DBG("polling on %d fd", nb_fd + 2);
2536 if (testpoint(consumerd_thread_data_poll)) {
2537 goto end;
2538 }
2539 health_poll_entry();
2540 num_rdy = poll(pollfd, nb_fd + 2, -1);
2541 health_poll_exit();
2542 DBG("poll num_rdy : %d", num_rdy);
2543 if (num_rdy == -1) {
2544 /*
2545 * Restart interrupted system call.
2546 */
2547 if (errno == EINTR) {
2548 goto restart;
2549 }
2550 PERROR("Poll error");
2551 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2552 goto end;
2553 } else if (num_rdy == 0) {
2554 DBG("Polling thread timed out");
2555 goto end;
2556 }
2557
2558 if (caa_unlikely(data_consumption_paused)) {
2559 DBG("Data consumption paused, sleeping...");
2560 sleep(1);
2561 goto restart;
2562 }
2563
2564 /*
2565 * If the consumer_data_pipe triggered poll go directly to the
2566 * beginning of the loop to update the array. We want to prioritize
2567 * array update over low-priority reads.
2568 */
2569 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2570 ssize_t pipe_readlen;
2571
2572 DBG("consumer_data_pipe wake up");
2573 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2574 &new_stream, sizeof(new_stream));
2575 if (pipe_readlen < sizeof(new_stream)) {
2576 PERROR("Consumer data pipe");
2577 /* Continue so we can at least handle the current stream(s). */
2578 continue;
2579 }
2580
2581 /*
2582 * If the stream is NULL, just ignore it. It's also possible that
2583 * the sessiond poll thread changed the consumer_quit state and is
2584 * waking us up to test it.
2585 */
2586 if (new_stream == NULL) {
2587 validate_endpoint_status_data_stream();
2588 continue;
2589 }
2590
2591 /* Continue to update the local streams and handle prio ones */
2592 continue;
2593 }
2594
2595 /* Handle wakeup pipe. */
2596 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2597 char dummy;
2598 ssize_t pipe_readlen;
2599
2600 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2601 sizeof(dummy));
2602 if (pipe_readlen < 0) {
2603 PERROR("Consumer data wakeup pipe");
2604 }
2605 /* We've been awakened to handle stream(s). */
2606 ctx->has_wakeup = 0;
2607 }
2608
2609 /* Take care of high priority channels first. */
2610 for (i = 0; i < nb_fd; i++) {
2611 health_code_update();
2612
2613 if (local_stream[i] == NULL) {
2614 continue;
2615 }
2616 if (pollfd[i].revents & POLLPRI) {
2617 DBG("Urgent read on fd %d", pollfd[i].fd);
2618 high_prio = 1;
2619 len = ctx->on_buffer_ready(local_stream[i], ctx);
2620 /* it's ok to have an unavailable sub-buffer */
2621 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2622 /* Clean the stream and free it. */
2623 consumer_del_stream(local_stream[i], data_ht);
2624 local_stream[i] = NULL;
2625 } else if (len > 0) {
2626 local_stream[i]->data_read = 1;
2627 }
2628 }
2629 }
2630
2631 /*
2632 * If we read high prio channel in this loop, try again
2633 * for more high prio data.
2634 */
2635 if (high_prio) {
2636 continue;
2637 }
2638
2639 /* Take care of low priority channels. */
2640 for (i = 0; i < nb_fd; i++) {
2641 health_code_update();
2642
2643 if (local_stream[i] == NULL) {
2644 continue;
2645 }
2646 if ((pollfd[i].revents & POLLIN) ||
2647 local_stream[i]->hangup_flush_done ||
2648 local_stream[i]->has_data) {
2649 DBG("Normal read on fd %d", pollfd[i].fd);
2650 len = ctx->on_buffer_ready(local_stream[i], ctx);
2651 /* it's ok to have an unavailable sub-buffer */
2652 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2653 /* Clean the stream and free it. */
2654 consumer_del_stream(local_stream[i], data_ht);
2655 local_stream[i] = NULL;
2656 } else if (len > 0) {
2657 local_stream[i]->data_read = 1;
2658 }
2659 }
2660 }
2661
2662 /* Handle hangup and errors */
2663 for (i = 0; i < nb_fd; i++) {
2664 health_code_update();
2665
2666 if (local_stream[i] == NULL) {
2667 continue;
2668 }
2669 if (!local_stream[i]->hangup_flush_done
2670 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2671 && (consumer_data.type == LTTNG_CONSUMER32_UST
2672 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2673 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2674 pollfd[i].fd);
2675 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2676 /* Attempt read again, for the data we just flushed. */
2677 local_stream[i]->data_read = 1;
2678 }
2679 /*
2680 * If the poll flag is HUP/ERR/NVAL and we have
2681 * read no data in this pass, we can remove the
2682 * stream from its hash table.
2683 */
2684 if ((pollfd[i].revents & POLLHUP)) {
2685 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2686 if (!local_stream[i]->data_read) {
2687 consumer_del_stream(local_stream[i], data_ht);
2688 local_stream[i] = NULL;
2689 num_hup++;
2690 }
2691 } else if (pollfd[i].revents & POLLERR) {
2692 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2693 if (!local_stream[i]->data_read) {
2694 consumer_del_stream(local_stream[i], data_ht);
2695 local_stream[i] = NULL;
2696 num_hup++;
2697 }
2698 } else if (pollfd[i].revents & POLLNVAL) {
2699 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2700 if (!local_stream[i]->data_read) {
2701 consumer_del_stream(local_stream[i], data_ht);
2702 local_stream[i] = NULL;
2703 num_hup++;
2704 }
2705 }
2706 if (local_stream[i] != NULL) {
2707 local_stream[i]->data_read = 0;
2708 }
2709 }
2710 }
2711 /* All is OK */
2712 err = 0;
2713 end:
2714 DBG("polling thread exiting");
2715 free(pollfd);
2716 free(local_stream);
2717
2718 /*
2719 * Close the write side of the pipe so epoll_wait() in
2720 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2721 * read side of the pipe. If we close them both, epoll_wait strangely does
2722 * not return and could create a endless wait period if the pipe is the
2723 * only tracked fd in the poll set. The thread will take care of closing
2724 * the read side.
2725 */
2726 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2727
2728 error_testpoint:
2729 if (err) {
2730 health_error();
2731 ERR("Health error occurred in %s", __func__);
2732 }
2733 health_unregister(health_consumerd);
2734
2735 rcu_unregister_thread();
2736 return NULL;
2737 }
2738
2739 /*
2740 * Close wake-up end of each stream belonging to the channel. This will
2741 * allow the poll() on the stream read-side to detect when the
2742 * write-side (application) finally closes them.
2743 */
2744 static
2745 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2746 {
2747 struct lttng_ht *ht;
2748 struct lttng_consumer_stream *stream;
2749 struct lttng_ht_iter iter;
2750
2751 ht = consumer_data.stream_per_chan_id_ht;
2752
2753 rcu_read_lock();
2754 cds_lfht_for_each_entry_duplicate(ht->ht,
2755 ht->hash_fct(&channel->key, lttng_ht_seed),
2756 ht->match_fct, &channel->key,
2757 &iter.iter, stream, node_channel_id.node) {
2758 /*
2759 * Protect against teardown with mutex.
2760 */
2761 pthread_mutex_lock(&stream->lock);
2762 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2763 goto next;
2764 }
2765 switch (consumer_data.type) {
2766 case LTTNG_CONSUMER_KERNEL:
2767 break;
2768 case LTTNG_CONSUMER32_UST:
2769 case LTTNG_CONSUMER64_UST:
2770 if (stream->metadata_flag) {
2771 /* Safe and protected by the stream lock. */
2772 lttng_ustconsumer_close_metadata(stream->chan);
2773 } else {
2774 /*
2775 * Note: a mutex is taken internally within
2776 * liblttng-ust-ctl to protect timer wakeup_fd
2777 * use from concurrent close.
2778 */
2779 lttng_ustconsumer_close_stream_wakeup(stream);
2780 }
2781 break;
2782 default:
2783 ERR("Unknown consumer_data type");
2784 assert(0);
2785 }
2786 next:
2787 pthread_mutex_unlock(&stream->lock);
2788 }
2789 rcu_read_unlock();
2790 }
2791
2792 static void destroy_channel_ht(struct lttng_ht *ht)
2793 {
2794 struct lttng_ht_iter iter;
2795 struct lttng_consumer_channel *channel;
2796 int ret;
2797
2798 if (ht == NULL) {
2799 return;
2800 }
2801
2802 rcu_read_lock();
2803 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2804 ret = lttng_ht_del(ht, &iter);
2805 assert(ret != 0);
2806 }
2807 rcu_read_unlock();
2808
2809 lttng_ht_destroy(ht);
2810 }
2811
2812 /*
2813 * This thread polls the channel fds to detect when they are being
2814 * closed. It closes all related streams if the channel is detected as
2815 * closed. It is currently only used as a shim layer for UST because the
2816 * consumerd needs to keep the per-stream wakeup end of pipes open for
2817 * periodical flush.
2818 */
2819 void *consumer_thread_channel_poll(void *data)
2820 {
2821 int ret, i, pollfd, err = -1;
2822 uint32_t revents, nb_fd;
2823 struct lttng_consumer_channel *chan = NULL;
2824 struct lttng_ht_iter iter;
2825 struct lttng_ht_node_u64 *node;
2826 struct lttng_poll_event events;
2827 struct lttng_consumer_local_data *ctx = data;
2828 struct lttng_ht *channel_ht;
2829
2830 rcu_register_thread();
2831
2832 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2833
2834 if (testpoint(consumerd_thread_channel)) {
2835 goto error_testpoint;
2836 }
2837
2838 health_code_update();
2839
2840 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2841 if (!channel_ht) {
2842 /* ENOMEM at this point. Better to bail out. */
2843 goto end_ht;
2844 }
2845
2846 DBG("Thread channel poll started");
2847
2848 /* Size is set to 1 for the consumer_channel pipe */
2849 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2850 if (ret < 0) {
2851 ERR("Poll set creation failed");
2852 goto end_poll;
2853 }
2854
2855 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2856 if (ret < 0) {
2857 goto end;
2858 }
2859
2860 /* Main loop */
2861 DBG("Channel main loop started");
2862
2863 while (1) {
2864 restart:
2865 health_code_update();
2866 DBG("Channel poll wait");
2867 health_poll_entry();
2868 ret = lttng_poll_wait(&events, -1);
2869 DBG("Channel poll return from wait with %d fd(s)",
2870 LTTNG_POLL_GETNB(&events));
2871 health_poll_exit();
2872 DBG("Channel event caught in thread");
2873 if (ret < 0) {
2874 if (errno == EINTR) {
2875 ERR("Poll EINTR caught");
2876 goto restart;
2877 }
2878 if (LTTNG_POLL_GETNB(&events) == 0) {
2879 err = 0; /* All is OK */
2880 }
2881 goto end;
2882 }
2883
2884 nb_fd = ret;
2885
2886 /* From here, the event is a channel wait fd */
2887 for (i = 0; i < nb_fd; i++) {
2888 health_code_update();
2889
2890 revents = LTTNG_POLL_GETEV(&events, i);
2891 pollfd = LTTNG_POLL_GETFD(&events, i);
2892
2893 if (!revents) {
2894 /* No activity for this FD (poll implementation). */
2895 continue;
2896 }
2897
2898 if (pollfd == ctx->consumer_channel_pipe[0]) {
2899 if (revents & LPOLLIN) {
2900 enum consumer_channel_action action;
2901 uint64_t key;
2902
2903 ret = read_channel_pipe(ctx, &chan, &key, &action);
2904 if (ret <= 0) {
2905 if (ret < 0) {
2906 ERR("Error reading channel pipe");
2907 }
2908 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2909 continue;
2910 }
2911
2912 switch (action) {
2913 case CONSUMER_CHANNEL_ADD:
2914 DBG("Adding channel %d to poll set",
2915 chan->wait_fd);
2916
2917 lttng_ht_node_init_u64(&chan->wait_fd_node,
2918 chan->wait_fd);
2919 rcu_read_lock();
2920 lttng_ht_add_unique_u64(channel_ht,
2921 &chan->wait_fd_node);
2922 rcu_read_unlock();
2923 /* Add channel to the global poll events list */
2924 lttng_poll_add(&events, chan->wait_fd,
2925 LPOLLERR | LPOLLHUP);
2926 break;
2927 case CONSUMER_CHANNEL_DEL:
2928 {
2929 /*
2930 * This command should never be called if the channel
2931 * has streams monitored by either the data or metadata
2932 * thread. The consumer only notify this thread with a
2933 * channel del. command if it receives a destroy
2934 * channel command from the session daemon that send it
2935 * if a command prior to the GET_CHANNEL failed.
2936 */
2937
2938 rcu_read_lock();
2939 chan = consumer_find_channel(key);
2940 if (!chan) {
2941 rcu_read_unlock();
2942 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2943 break;
2944 }
2945 lttng_poll_del(&events, chan->wait_fd);
2946 iter.iter.node = &chan->wait_fd_node.node;
2947 ret = lttng_ht_del(channel_ht, &iter);
2948 assert(ret == 0);
2949
2950 switch (consumer_data.type) {
2951 case LTTNG_CONSUMER_KERNEL:
2952 break;
2953 case LTTNG_CONSUMER32_UST:
2954 case LTTNG_CONSUMER64_UST:
2955 health_code_update();
2956 /* Destroy streams that might have been left in the stream list. */
2957 clean_channel_stream_list(chan);
2958 break;
2959 default:
2960 ERR("Unknown consumer_data type");
2961 assert(0);
2962 }
2963
2964 /*
2965 * Release our own refcount. Force channel deletion even if
2966 * streams were not initialized.
2967 */
2968 if (!uatomic_sub_return(&chan->refcount, 1)) {
2969 consumer_del_channel(chan);
2970 }
2971 rcu_read_unlock();
2972 goto restart;
2973 }
2974 case CONSUMER_CHANNEL_QUIT:
2975 /*
2976 * Remove the pipe from the poll set and continue the loop
2977 * since their might be data to consume.
2978 */
2979 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2980 continue;
2981 default:
2982 ERR("Unknown action");
2983 break;
2984 }
2985 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2986 DBG("Channel thread pipe hung up");
2987 /*
2988 * Remove the pipe from the poll set and continue the loop
2989 * since their might be data to consume.
2990 */
2991 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2992 continue;
2993 } else {
2994 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2995 goto end;
2996 }
2997
2998 /* Handle other stream */
2999 continue;
3000 }
3001
3002 rcu_read_lock();
3003 {
3004 uint64_t tmp_id = (uint64_t) pollfd;
3005
3006 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
3007 }
3008 node = lttng_ht_iter_get_node_u64(&iter);
3009 assert(node);
3010
3011 chan = caa_container_of(node, struct lttng_consumer_channel,
3012 wait_fd_node);
3013
3014 /* Check for error event */
3015 if (revents & (LPOLLERR | LPOLLHUP)) {
3016 DBG("Channel fd %d is hup|err.", pollfd);
3017
3018 lttng_poll_del(&events, chan->wait_fd);
3019 ret = lttng_ht_del(channel_ht, &iter);
3020 assert(ret == 0);
3021
3022 /*
3023 * This will close the wait fd for each stream associated to
3024 * this channel AND monitored by the data/metadata thread thus
3025 * will be clean by the right thread.
3026 */
3027 consumer_close_channel_streams(chan);
3028
3029 /* Release our own refcount */
3030 if (!uatomic_sub_return(&chan->refcount, 1)
3031 && !uatomic_read(&chan->nb_init_stream_left)) {
3032 consumer_del_channel(chan);
3033 }
3034 } else {
3035 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
3036 rcu_read_unlock();
3037 goto end;
3038 }
3039
3040 /* Release RCU lock for the channel looked up */
3041 rcu_read_unlock();
3042 }
3043 }
3044
3045 /* All is OK */
3046 err = 0;
3047 end:
3048 lttng_poll_clean(&events);
3049 end_poll:
3050 destroy_channel_ht(channel_ht);
3051 end_ht:
3052 error_testpoint:
3053 DBG("Channel poll thread exiting");
3054 if (err) {
3055 health_error();
3056 ERR("Health error occurred in %s", __func__);
3057 }
3058 health_unregister(health_consumerd);
3059 rcu_unregister_thread();
3060 return NULL;
3061 }
3062
3063 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3064 struct pollfd *sockpoll, int client_socket)
3065 {
3066 int ret;
3067
3068 assert(ctx);
3069 assert(sockpoll);
3070
3071 ret = lttng_consumer_poll_socket(sockpoll);
3072 if (ret) {
3073 goto error;
3074 }
3075 DBG("Metadata connection on client_socket");
3076
3077 /* Blocking call, waiting for transmission */
3078 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3079 if (ctx->consumer_metadata_socket < 0) {
3080 WARN("On accept metadata");
3081 ret = -1;
3082 goto error;
3083 }
3084 ret = 0;
3085
3086 error:
3087 return ret;
3088 }
3089
3090 /*
3091 * This thread listens on the consumerd socket and receives the file
3092 * descriptors from the session daemon.
3093 */
3094 void *consumer_thread_sessiond_poll(void *data)
3095 {
3096 int sock = -1, client_socket, ret, err = -1;
3097 /*
3098 * structure to poll for incoming data on communication socket avoids
3099 * making blocking sockets.
3100 */
3101 struct pollfd consumer_sockpoll[2];
3102 struct lttng_consumer_local_data *ctx = data;
3103
3104 rcu_register_thread();
3105
3106 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3107
3108 if (testpoint(consumerd_thread_sessiond)) {
3109 goto error_testpoint;
3110 }
3111
3112 health_code_update();
3113
3114 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3115 unlink(ctx->consumer_command_sock_path);
3116 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3117 if (client_socket < 0) {
3118 ERR("Cannot create command socket");
3119 goto end;
3120 }
3121
3122 ret = lttcomm_listen_unix_sock(client_socket);
3123 if (ret < 0) {
3124 goto end;
3125 }
3126
3127 DBG("Sending ready command to lttng-sessiond");
3128 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3129 /* return < 0 on error, but == 0 is not fatal */
3130 if (ret < 0) {
3131 ERR("Error sending ready command to lttng-sessiond");
3132 goto end;
3133 }
3134
3135 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3136 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3137 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3138 consumer_sockpoll[1].fd = client_socket;
3139 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3140
3141 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3142 if (ret) {
3143 if (ret > 0) {
3144 /* should exit */
3145 err = 0;
3146 }
3147 goto end;
3148 }
3149 DBG("Connection on client_socket");
3150
3151 /* Blocking call, waiting for transmission */
3152 sock = lttcomm_accept_unix_sock(client_socket);
3153 if (sock < 0) {
3154 WARN("On accept");
3155 goto end;
3156 }
3157
3158 /*
3159 * Setup metadata socket which is the second socket connection on the
3160 * command unix socket.
3161 */
3162 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3163 if (ret) {
3164 if (ret > 0) {
3165 /* should exit */
3166 err = 0;
3167 }
3168 goto end;
3169 }
3170
3171 /* This socket is not useful anymore. */
3172 ret = close(client_socket);
3173 if (ret < 0) {
3174 PERROR("close client_socket");
3175 }
3176 client_socket = -1;
3177
3178 /* update the polling structure to poll on the established socket */
3179 consumer_sockpoll[1].fd = sock;
3180 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3181
3182 while (1) {
3183 health_code_update();
3184
3185 health_poll_entry();
3186 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3187 health_poll_exit();
3188 if (ret) {
3189 if (ret > 0) {
3190 /* should exit */
3191 err = 0;
3192 }
3193 goto end;
3194 }
3195 DBG("Incoming command on sock");
3196 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3197 if (ret <= 0) {
3198 /*
3199 * This could simply be a session daemon quitting. Don't output
3200 * ERR() here.
3201 */
3202 DBG("Communication interrupted on command socket");
3203 err = 0;
3204 goto end;
3205 }
3206 if (CMM_LOAD_SHARED(consumer_quit)) {
3207 DBG("consumer_thread_receive_fds received quit from signal");
3208 err = 0; /* All is OK */
3209 goto end;
3210 }
3211 DBG("received command on sock");
3212 }
3213 /* All is OK */
3214 err = 0;
3215
3216 end:
3217 DBG("Consumer thread sessiond poll exiting");
3218
3219 /*
3220 * Close metadata streams since the producer is the session daemon which
3221 * just died.
3222 *
3223 * NOTE: for now, this only applies to the UST tracer.
3224 */
3225 lttng_consumer_close_all_metadata();
3226
3227 /*
3228 * when all fds have hung up, the polling thread
3229 * can exit cleanly
3230 */
3231 CMM_STORE_SHARED(consumer_quit, 1);
3232
3233 /*
3234 * Notify the data poll thread to poll back again and test the
3235 * consumer_quit state that we just set so to quit gracefully.
3236 */
3237 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3238
3239 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3240
3241 notify_health_quit_pipe(health_quit_pipe);
3242
3243 /* Cleaning up possibly open sockets. */
3244 if (sock >= 0) {
3245 ret = close(sock);
3246 if (ret < 0) {
3247 PERROR("close sock sessiond poll");
3248 }
3249 }
3250 if (client_socket >= 0) {
3251 ret = close(client_socket);
3252 if (ret < 0) {
3253 PERROR("close client_socket sessiond poll");
3254 }
3255 }
3256
3257 error_testpoint:
3258 if (err) {
3259 health_error();
3260 ERR("Health error occurred in %s", __func__);
3261 }
3262 health_unregister(health_consumerd);
3263
3264 rcu_unregister_thread();
3265 return NULL;
3266 }
3267
3268 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3269 struct lttng_consumer_local_data *ctx)
3270 {
3271 ssize_t ret;
3272
3273 pthread_mutex_lock(&stream->lock);
3274 if (stream->metadata_flag) {
3275 pthread_mutex_lock(&stream->metadata_rdv_lock);
3276 }
3277
3278 switch (consumer_data.type) {
3279 case LTTNG_CONSUMER_KERNEL:
3280 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3281 break;
3282 case LTTNG_CONSUMER32_UST:
3283 case LTTNG_CONSUMER64_UST:
3284 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3285 break;
3286 default:
3287 ERR("Unknown consumer_data type");
3288 assert(0);
3289 ret = -ENOSYS;
3290 break;
3291 }
3292
3293 if (stream->metadata_flag) {
3294 pthread_cond_broadcast(&stream->metadata_rdv);
3295 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3296 }
3297 pthread_mutex_unlock(&stream->lock);
3298 return ret;
3299 }
3300
3301 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3302 {
3303 switch (consumer_data.type) {
3304 case LTTNG_CONSUMER_KERNEL:
3305 return lttng_kconsumer_on_recv_stream(stream);
3306 case LTTNG_CONSUMER32_UST:
3307 case LTTNG_CONSUMER64_UST:
3308 return lttng_ustconsumer_on_recv_stream(stream);
3309 default:
3310 ERR("Unknown consumer_data type");
3311 assert(0);
3312 return -ENOSYS;
3313 }
3314 }
3315
3316 /*
3317 * Allocate and set consumer data hash tables.
3318 */
3319 int lttng_consumer_init(void)
3320 {
3321 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3322 if (!consumer_data.channel_ht) {
3323 goto error;
3324 }
3325
3326 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3327 if (!consumer_data.relayd_ht) {
3328 goto error;
3329 }
3330
3331 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3332 if (!consumer_data.stream_list_ht) {
3333 goto error;
3334 }
3335
3336 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3337 if (!consumer_data.stream_per_chan_id_ht) {
3338 goto error;
3339 }
3340
3341 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3342 if (!data_ht) {
3343 goto error;
3344 }
3345
3346 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3347 if (!metadata_ht) {
3348 goto error;
3349 }
3350
3351 return 0;
3352
3353 error:
3354 return -1;
3355 }
3356
3357 /*
3358 * Process the ADD_RELAYD command receive by a consumer.
3359 *
3360 * This will create a relayd socket pair and add it to the relayd hash table.
3361 * The caller MUST acquire a RCU read side lock before calling it.
3362 */
3363 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3364 struct lttng_consumer_local_data *ctx, int sock,
3365 struct pollfd *consumer_sockpoll,
3366 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3367 uint64_t relayd_session_id)
3368 {
3369 int fd = -1, ret = -1, relayd_created = 0;
3370 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3371 struct consumer_relayd_sock_pair *relayd = NULL;
3372
3373 assert(ctx);
3374 assert(relayd_sock);
3375
3376 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3377
3378 /* Get relayd reference if exists. */
3379 relayd = consumer_find_relayd(net_seq_idx);
3380 if (relayd == NULL) {
3381 assert(sock_type == LTTNG_STREAM_CONTROL);
3382 /* Not found. Allocate one. */
3383 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3384 if (relayd == NULL) {
3385 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3386 goto error;
3387 } else {
3388 relayd->sessiond_session_id = sessiond_id;
3389 relayd_created = 1;
3390 }
3391
3392 /*
3393 * This code path MUST continue to the consumer send status message to
3394 * we can notify the session daemon and continue our work without
3395 * killing everything.
3396 */
3397 } else {
3398 /*
3399 * relayd key should never be found for control socket.
3400 */
3401 assert(sock_type != LTTNG_STREAM_CONTROL);
3402 }
3403
3404 /* First send a status message before receiving the fds. */
3405 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3406 if (ret < 0) {
3407 /* Somehow, the session daemon is not responding anymore. */
3408 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3409 goto error_nosignal;
3410 }
3411
3412 /* Poll on consumer socket. */
3413 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3414 if (ret) {
3415 /* Needing to exit in the middle of a command: error. */
3416 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3417 goto error_nosignal;
3418 }
3419
3420 /* Get relayd socket from session daemon */
3421 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3422 if (ret != sizeof(fd)) {
3423 fd = -1; /* Just in case it gets set with an invalid value. */
3424
3425 /*
3426 * Failing to receive FDs might indicate a major problem such as
3427 * reaching a fd limit during the receive where the kernel returns a
3428 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3429 * don't take any chances and stop everything.
3430 *
3431 * XXX: Feature request #558 will fix that and avoid this possible
3432 * issue when reaching the fd limit.
3433 */
3434 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3435 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3436 goto error;
3437 }
3438
3439 /* Copy socket information and received FD */
3440 switch (sock_type) {
3441 case LTTNG_STREAM_CONTROL:
3442 /* Copy received lttcomm socket */
3443 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3444 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3445 /* Handle create_sock error. */
3446 if (ret < 0) {
3447 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3448 goto error;
3449 }
3450 /*
3451 * Close the socket created internally by
3452 * lttcomm_create_sock, so we can replace it by the one
3453 * received from sessiond.
3454 */
3455 if (close(relayd->control_sock.sock.fd)) {
3456 PERROR("close");
3457 }
3458
3459 /* Assign new file descriptor */
3460 relayd->control_sock.sock.fd = fd;
3461 fd = -1; /* For error path */
3462 /* Assign version values. */
3463 relayd->control_sock.major = relayd_sock->major;
3464 relayd->control_sock.minor = relayd_sock->minor;
3465
3466 relayd->relayd_session_id = relayd_session_id;
3467
3468 break;
3469 case LTTNG_STREAM_DATA:
3470 /* Copy received lttcomm socket */
3471 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3472 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3473 /* Handle create_sock error. */
3474 if (ret < 0) {
3475 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3476 goto error;
3477 }
3478 /*
3479 * Close the socket created internally by
3480 * lttcomm_create_sock, so we can replace it by the one
3481 * received from sessiond.
3482 */
3483 if (close(relayd->data_sock.sock.fd)) {
3484 PERROR("close");
3485 }
3486
3487 /* Assign new file descriptor */
3488 relayd->data_sock.sock.fd = fd;
3489 fd = -1; /* for eventual error paths */
3490 /* Assign version values. */
3491 relayd->data_sock.major = relayd_sock->major;
3492 relayd->data_sock.minor = relayd_sock->minor;
3493 break;
3494 default:
3495 ERR("Unknown relayd socket type (%d)", sock_type);
3496 ret_code = LTTCOMM_CONSUMERD_FATAL;
3497 goto error;
3498 }
3499
3500 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3501 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3502 relayd->net_seq_idx, fd);
3503
3504 /* We successfully added the socket. Send status back. */
3505 ret = consumer_send_status_msg(sock, ret_code);
3506 if (ret < 0) {
3507 /* Somehow, the session daemon is not responding anymore. */
3508 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3509 goto error_nosignal;
3510 }
3511
3512 /*
3513 * Add relayd socket pair to consumer data hashtable. If object already
3514 * exists or on error, the function gracefully returns.
3515 */
3516 add_relayd(relayd);
3517
3518 /* All good! */
3519 return 0;
3520
3521 error:
3522 if (consumer_send_status_msg(sock, ret_code) < 0) {
3523 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3524 }
3525
3526 error_nosignal:
3527 /* Close received socket if valid. */
3528 if (fd >= 0) {
3529 if (close(fd)) {
3530 PERROR("close received socket");
3531 }
3532 }
3533
3534 if (relayd_created) {
3535 free(relayd);
3536 }
3537
3538 return ret;
3539 }
3540
3541 /*
3542 * Try to lock the stream mutex.
3543 *
3544 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3545 */
3546 static int stream_try_lock(struct lttng_consumer_stream *stream)
3547 {
3548 int ret;
3549
3550 assert(stream);
3551
3552 /*
3553 * Try to lock the stream mutex. On failure, we know that the stream is
3554 * being used else where hence there is data still being extracted.
3555 */
3556 ret = pthread_mutex_trylock(&stream->lock);
3557 if (ret) {
3558 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3559 ret = 0;
3560 goto end;
3561 }
3562
3563 ret = 1;
3564
3565 end:
3566 return ret;
3567 }
3568
3569 /*
3570 * Search for a relayd associated to the session id and return the reference.
3571 *
3572 * A rcu read side lock MUST be acquire before calling this function and locked
3573 * until the relayd object is no longer necessary.
3574 */
3575 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3576 {
3577 struct lttng_ht_iter iter;
3578 struct consumer_relayd_sock_pair *relayd = NULL;
3579
3580 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3581 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3582 node.node) {
3583 /*
3584 * Check by sessiond id which is unique here where the relayd session
3585 * id might not be when having multiple relayd.
3586 */
3587 if (relayd->sessiond_session_id == id) {
3588 /* Found the relayd. There can be only one per id. */
3589 goto found;
3590 }
3591 }
3592
3593 return NULL;
3594
3595 found:
3596 return relayd;
3597 }
3598
3599 /*
3600 * Check if for a given session id there is still data needed to be extract
3601 * from the buffers.
3602 *
3603 * Return 1 if data is pending or else 0 meaning ready to be read.
3604 */
3605 int consumer_data_pending(uint64_t id)
3606 {
3607 int ret;
3608 struct lttng_ht_iter iter;
3609 struct lttng_ht *ht;
3610 struct lttng_consumer_stream *stream;
3611 struct consumer_relayd_sock_pair *relayd = NULL;
3612 int (*data_pending)(struct lttng_consumer_stream *);
3613
3614 DBG("Consumer data pending command on session id %" PRIu64, id);
3615
3616 rcu_read_lock();
3617 pthread_mutex_lock(&consumer_data.lock);
3618
3619 switch (consumer_data.type) {
3620 case LTTNG_CONSUMER_KERNEL:
3621 data_pending = lttng_kconsumer_data_pending;
3622 break;
3623 case LTTNG_CONSUMER32_UST:
3624 case LTTNG_CONSUMER64_UST:
3625 data_pending = lttng_ustconsumer_data_pending;
3626 break;
3627 default:
3628 ERR("Unknown consumer data type");
3629 assert(0);
3630 }
3631
3632 /* Ease our life a bit */
3633 ht = consumer_data.stream_list_ht;
3634
3635 relayd = find_relayd_by_session_id(id);
3636 if (relayd) {
3637 /* Send init command for data pending. */
3638 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3639 ret = relayd_begin_data_pending(&relayd->control_sock,
3640 relayd->relayd_session_id);
3641 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3642 if (ret < 0) {
3643 /* Communication error thus the relayd so no data pending. */
3644 goto data_not_pending;
3645 }
3646 }
3647
3648 cds_lfht_for_each_entry_duplicate(ht->ht,
3649 ht->hash_fct(&id, lttng_ht_seed),
3650 ht->match_fct, &id,
3651 &iter.iter, stream, node_session_id.node) {
3652 /* If this call fails, the stream is being used hence data pending. */
3653 ret = stream_try_lock(stream);
3654 if (!ret) {
3655 goto data_pending;
3656 }
3657
3658 /*
3659 * A removed node from the hash table indicates that the stream has
3660 * been deleted thus having a guarantee that the buffers are closed
3661 * on the consumer side. However, data can still be transmitted
3662 * over the network so don't skip the relayd check.
3663 */
3664 ret = cds_lfht_is_node_deleted(&stream->node.node);
3665 if (!ret) {
3666 /* Check the stream if there is data in the buffers. */
3667 ret = data_pending(stream);
3668 if (ret == 1) {
3669 pthread_mutex_unlock(&stream->lock);
3670 goto data_pending;
3671 }
3672 }
3673
3674 /* Relayd check */
3675 if (relayd) {
3676 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3677 if (stream->metadata_flag) {
3678 ret = relayd_quiescent_control(&relayd->control_sock,
3679 stream->relayd_stream_id);
3680 } else {
3681 ret = relayd_data_pending(&relayd->control_sock,
3682 stream->relayd_stream_id,
3683 stream->next_net_seq_num - 1);
3684 }
3685 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3686 if (ret == 1) {
3687 pthread_mutex_unlock(&stream->lock);
3688 goto data_pending;
3689 }
3690 }
3691 pthread_mutex_unlock(&stream->lock);
3692 }
3693
3694 if (relayd) {
3695 unsigned int is_data_inflight = 0;
3696
3697 /* Send init command for data pending. */
3698 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3699 ret = relayd_end_data_pending(&relayd->control_sock,
3700 relayd->relayd_session_id, &is_data_inflight);
3701 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3702 if (ret < 0) {
3703 goto data_not_pending;
3704 }
3705 if (is_data_inflight) {
3706 goto data_pending;
3707 }
3708 }
3709
3710 /*
3711 * Finding _no_ node in the hash table and no inflight data means that the
3712 * stream(s) have been removed thus data is guaranteed to be available for
3713 * analysis from the trace files.
3714 */
3715
3716 data_not_pending:
3717 /* Data is available to be read by a viewer. */
3718 pthread_mutex_unlock(&consumer_data.lock);
3719 rcu_read_unlock();
3720 return 0;
3721
3722 data_pending:
3723 /* Data is still being extracted from buffers. */
3724 pthread_mutex_unlock(&consumer_data.lock);
3725 rcu_read_unlock();
3726 return 1;
3727 }
3728
3729 /*
3730 * Send a ret code status message to the sessiond daemon.
3731 *
3732 * Return the sendmsg() return value.
3733 */
3734 int consumer_send_status_msg(int sock, int ret_code)
3735 {
3736 struct lttcomm_consumer_status_msg msg;
3737
3738 memset(&msg, 0, sizeof(msg));
3739 msg.ret_code = ret_code;
3740
3741 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3742 }
3743
3744 /*
3745 * Send a channel status message to the sessiond daemon.
3746 *
3747 * Return the sendmsg() return value.
3748 */
3749 int consumer_send_status_channel(int sock,
3750 struct lttng_consumer_channel *channel)
3751 {
3752 struct lttcomm_consumer_status_channel msg;
3753
3754 assert(sock >= 0);
3755
3756 memset(&msg, 0, sizeof(msg));
3757 if (!channel) {
3758 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3759 } else {
3760 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3761 msg.key = channel->key;
3762 msg.stream_count = channel->streams.count;
3763 }
3764
3765 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3766 }
3767
3768 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3769 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3770 uint64_t max_sb_size)
3771 {
3772 unsigned long start_pos;
3773
3774 if (!nb_packets_per_stream) {
3775 return consumed_pos; /* Grab everything */
3776 }
3777 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3778 start_pos -= max_sb_size * nb_packets_per_stream;
3779 if ((long) (start_pos - consumed_pos) < 0) {
3780 return consumed_pos; /* Grab everything */
3781 }
3782 return start_pos;
3783 }
This page took 0.110023 seconds and 5 git commands to generate.