2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
27 #include <sys/socket.h>
28 #include <sys/types.h>
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/compat/endian.h>
38 #include <common/index/index.h>
39 #include <common/kernel-ctl/kernel-ctl.h>
40 #include <common/sessiond-comm/relayd.h>
41 #include <common/sessiond-comm/sessiond-comm.h>
42 #include <common/kernel-consumer/kernel-consumer.h>
43 #include <common/relayd/relayd.h>
44 #include <common/ust-consumer/ust-consumer.h>
45 #include <common/consumer/consumer-timer.h>
46 #include <common/consumer/consumer.h>
47 #include <common/consumer/consumer-stream.h>
48 #include <common/consumer/consumer-testpoint.h>
49 #include <common/align.h>
50 #include <common/consumer/consumer-metadata-cache.h>
52 struct lttng_consumer_global_data consumer_data
= {
55 .type
= LTTNG_CONSUMER_UNKNOWN
,
58 enum consumer_channel_action
{
61 CONSUMER_CHANNEL_QUIT
,
64 struct consumer_channel_msg
{
65 enum consumer_channel_action action
;
66 struct lttng_consumer_channel
*chan
; /* add */
67 uint64_t key
; /* del */
70 /* Flag used to temporarily pause data consumption from testpoints. */
71 int data_consumption_paused
;
74 * Flag to inform the polling thread to quit when all fd hung up. Updated by
75 * the consumer_thread_receive_fds when it notices that all fds has hung up.
76 * Also updated by the signal handler (consumer_should_exit()). Read by the
82 * Global hash table containing respectively metadata and data streams. The
83 * stream element in this ht should only be updated by the metadata poll thread
84 * for the metadata and the data poll thread for the data.
86 static struct lttng_ht
*metadata_ht
;
87 static struct lttng_ht
*data_ht
;
90 * Notify a thread lttng pipe to poll back again. This usually means that some
91 * global state has changed so we just send back the thread in a poll wait
94 static void notify_thread_lttng_pipe(struct lttng_pipe
*pipe
)
96 struct lttng_consumer_stream
*null_stream
= NULL
;
100 (void) lttng_pipe_write(pipe
, &null_stream
, sizeof(null_stream
));
103 static void notify_health_quit_pipe(int *pipe
)
107 ret
= lttng_write(pipe
[1], "4", 1);
109 PERROR("write consumer health quit");
113 static void notify_channel_pipe(struct lttng_consumer_local_data
*ctx
,
114 struct lttng_consumer_channel
*chan
,
116 enum consumer_channel_action action
)
118 struct consumer_channel_msg msg
;
121 memset(&msg
, 0, sizeof(msg
));
126 ret
= lttng_write(ctx
->consumer_channel_pipe
[1], &msg
, sizeof(msg
));
127 if (ret
< sizeof(msg
)) {
128 PERROR("notify_channel_pipe write error");
132 void notify_thread_del_channel(struct lttng_consumer_local_data
*ctx
,
135 notify_channel_pipe(ctx
, NULL
, key
, CONSUMER_CHANNEL_DEL
);
138 static int read_channel_pipe(struct lttng_consumer_local_data
*ctx
,
139 struct lttng_consumer_channel
**chan
,
141 enum consumer_channel_action
*action
)
143 struct consumer_channel_msg msg
;
146 ret
= lttng_read(ctx
->consumer_channel_pipe
[0], &msg
, sizeof(msg
));
147 if (ret
< sizeof(msg
)) {
151 *action
= msg
.action
;
159 * Cleanup the stream list of a channel. Those streams are not yet globally
162 static void clean_channel_stream_list(struct lttng_consumer_channel
*channel
)
164 struct lttng_consumer_stream
*stream
, *stmp
;
168 /* Delete streams that might have been left in the stream list. */
169 cds_list_for_each_entry_safe(stream
, stmp
, &channel
->streams
.head
,
171 cds_list_del(&stream
->send_node
);
173 * Once a stream is added to this list, the buffers were created so we
174 * have a guarantee that this call will succeed. Setting the monitor
175 * mode to 0 so we don't lock nor try to delete the stream from the
179 consumer_stream_destroy(stream
, NULL
);
184 * Find a stream. The consumer_data.lock must be locked during this
187 static struct lttng_consumer_stream
*find_stream(uint64_t key
,
190 struct lttng_ht_iter iter
;
191 struct lttng_ht_node_u64
*node
;
192 struct lttng_consumer_stream
*stream
= NULL
;
196 /* -1ULL keys are lookup failures */
197 if (key
== (uint64_t) -1ULL) {
203 lttng_ht_lookup(ht
, &key
, &iter
);
204 node
= lttng_ht_iter_get_node_u64(&iter
);
206 stream
= caa_container_of(node
, struct lttng_consumer_stream
, node
);
214 static void steal_stream_key(uint64_t key
, struct lttng_ht
*ht
)
216 struct lttng_consumer_stream
*stream
;
219 stream
= find_stream(key
, ht
);
221 stream
->key
= (uint64_t) -1ULL;
223 * We don't want the lookup to match, but we still need
224 * to iterate on this stream when iterating over the hash table. Just
225 * change the node key.
227 stream
->node
.key
= (uint64_t) -1ULL;
233 * Return a channel object for the given key.
235 * RCU read side lock MUST be acquired before calling this function and
236 * protects the channel ptr.
238 struct lttng_consumer_channel
*consumer_find_channel(uint64_t key
)
240 struct lttng_ht_iter iter
;
241 struct lttng_ht_node_u64
*node
;
242 struct lttng_consumer_channel
*channel
= NULL
;
244 /* -1ULL keys are lookup failures */
245 if (key
== (uint64_t) -1ULL) {
249 lttng_ht_lookup(consumer_data
.channel_ht
, &key
, &iter
);
250 node
= lttng_ht_iter_get_node_u64(&iter
);
252 channel
= caa_container_of(node
, struct lttng_consumer_channel
, node
);
259 * There is a possibility that the consumer does not have enough time between
260 * the close of the channel on the session daemon and the cleanup in here thus
261 * once we have a channel add with an existing key, we know for sure that this
262 * channel will eventually get cleaned up by all streams being closed.
264 * This function just nullifies the already existing channel key.
266 static void steal_channel_key(uint64_t key
)
268 struct lttng_consumer_channel
*channel
;
271 channel
= consumer_find_channel(key
);
273 channel
->key
= (uint64_t) -1ULL;
275 * We don't want the lookup to match, but we still need to iterate on
276 * this channel when iterating over the hash table. Just change the
279 channel
->node
.key
= (uint64_t) -1ULL;
284 static void free_channel_rcu(struct rcu_head
*head
)
286 struct lttng_ht_node_u64
*node
=
287 caa_container_of(head
, struct lttng_ht_node_u64
, head
);
288 struct lttng_consumer_channel
*channel
=
289 caa_container_of(node
, struct lttng_consumer_channel
, node
);
291 switch (consumer_data
.type
) {
292 case LTTNG_CONSUMER_KERNEL
:
294 case LTTNG_CONSUMER32_UST
:
295 case LTTNG_CONSUMER64_UST
:
296 lttng_ustconsumer_free_channel(channel
);
299 ERR("Unknown consumer_data type");
306 * RCU protected relayd socket pair free.
308 static void free_relayd_rcu(struct rcu_head
*head
)
310 struct lttng_ht_node_u64
*node
=
311 caa_container_of(head
, struct lttng_ht_node_u64
, head
);
312 struct consumer_relayd_sock_pair
*relayd
=
313 caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
316 * Close all sockets. This is done in the call RCU since we don't want the
317 * socket fds to be reassigned thus potentially creating bad state of the
320 * We do not have to lock the control socket mutex here since at this stage
321 * there is no one referencing to this relayd object.
323 (void) relayd_close(&relayd
->control_sock
);
324 (void) relayd_close(&relayd
->data_sock
);
330 * Destroy and free relayd socket pair object.
332 void consumer_destroy_relayd(struct consumer_relayd_sock_pair
*relayd
)
335 struct lttng_ht_iter iter
;
337 if (relayd
== NULL
) {
341 DBG("Consumer destroy and close relayd socket pair");
343 iter
.iter
.node
= &relayd
->node
.node
;
344 ret
= lttng_ht_del(consumer_data
.relayd_ht
, &iter
);
346 /* We assume the relayd is being or is destroyed */
350 /* RCU free() call */
351 call_rcu(&relayd
->node
.head
, free_relayd_rcu
);
355 * Remove a channel from the global list protected by a mutex. This function is
356 * also responsible for freeing its data structures.
358 void consumer_del_channel(struct lttng_consumer_channel
*channel
)
361 struct lttng_ht_iter iter
;
363 DBG("Consumer delete channel key %" PRIu64
, channel
->key
);
365 pthread_mutex_lock(&consumer_data
.lock
);
366 pthread_mutex_lock(&channel
->lock
);
368 /* Destroy streams that might have been left in the stream list. */
369 clean_channel_stream_list(channel
);
371 if (channel
->live_timer_enabled
== 1) {
372 consumer_timer_live_stop(channel
);
374 if (channel
->monitor_timer_enabled
== 1) {
375 consumer_timer_monitor_stop(channel
);
378 switch (consumer_data
.type
) {
379 case LTTNG_CONSUMER_KERNEL
:
381 case LTTNG_CONSUMER32_UST
:
382 case LTTNG_CONSUMER64_UST
:
383 lttng_ustconsumer_del_channel(channel
);
386 ERR("Unknown consumer_data type");
392 iter
.iter
.node
= &channel
->node
.node
;
393 ret
= lttng_ht_del(consumer_data
.channel_ht
, &iter
);
397 call_rcu(&channel
->node
.head
, free_channel_rcu
);
399 pthread_mutex_unlock(&channel
->lock
);
400 pthread_mutex_unlock(&consumer_data
.lock
);
404 * Iterate over the relayd hash table and destroy each element. Finally,
405 * destroy the whole hash table.
407 static void cleanup_relayd_ht(void)
409 struct lttng_ht_iter iter
;
410 struct consumer_relayd_sock_pair
*relayd
;
414 cds_lfht_for_each_entry(consumer_data
.relayd_ht
->ht
, &iter
.iter
, relayd
,
416 consumer_destroy_relayd(relayd
);
421 lttng_ht_destroy(consumer_data
.relayd_ht
);
425 * Update the end point status of all streams having the given network sequence
426 * index (relayd index).
428 * It's atomically set without having the stream mutex locked which is fine
429 * because we handle the write/read race with a pipe wakeup for each thread.
431 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx
,
432 enum consumer_endpoint_status status
)
434 struct lttng_ht_iter iter
;
435 struct lttng_consumer_stream
*stream
;
437 DBG("Consumer set delete flag on stream by idx %" PRIu64
, net_seq_idx
);
441 /* Let's begin with metadata */
442 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
443 if (stream
->net_seq_idx
== net_seq_idx
) {
444 uatomic_set(&stream
->endpoint_status
, status
);
445 DBG("Delete flag set to metadata stream %d", stream
->wait_fd
);
449 /* Follow up by the data streams */
450 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
451 if (stream
->net_seq_idx
== net_seq_idx
) {
452 uatomic_set(&stream
->endpoint_status
, status
);
453 DBG("Delete flag set to data stream %d", stream
->wait_fd
);
460 * Cleanup a relayd object by flagging every associated streams for deletion,
461 * destroying the object meaning removing it from the relayd hash table,
462 * closing the sockets and freeing the memory in a RCU call.
464 * If a local data context is available, notify the threads that the streams'
465 * state have changed.
467 static void cleanup_relayd(struct consumer_relayd_sock_pair
*relayd
,
468 struct lttng_consumer_local_data
*ctx
)
474 DBG("Cleaning up relayd sockets");
476 /* Save the net sequence index before destroying the object */
477 netidx
= relayd
->net_seq_idx
;
480 * Delete the relayd from the relayd hash table, close the sockets and free
481 * the object in a RCU call.
483 consumer_destroy_relayd(relayd
);
485 /* Set inactive endpoint to all streams */
486 update_endpoint_status_by_netidx(netidx
, CONSUMER_ENDPOINT_INACTIVE
);
489 * With a local data context, notify the threads that the streams' state
490 * have changed. The write() action on the pipe acts as an "implicit"
491 * memory barrier ordering the updates of the end point status from the
492 * read of this status which happens AFTER receiving this notify.
495 notify_thread_lttng_pipe(ctx
->consumer_data_pipe
);
496 notify_thread_lttng_pipe(ctx
->consumer_metadata_pipe
);
501 * Flag a relayd socket pair for destruction. Destroy it if the refcount
504 * RCU read side lock MUST be aquired before calling this function.
506 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair
*relayd
)
510 /* Set destroy flag for this object */
511 uatomic_set(&relayd
->destroy_flag
, 1);
513 /* Destroy the relayd if refcount is 0 */
514 if (uatomic_read(&relayd
->refcount
) == 0) {
515 consumer_destroy_relayd(relayd
);
520 * Completly destroy stream from every visiable data structure and the given
523 * One this call returns, the stream object is not longer usable nor visible.
525 void consumer_del_stream(struct lttng_consumer_stream
*stream
,
528 consumer_stream_destroy(stream
, ht
);
532 * XXX naming of del vs destroy is all mixed up.
534 void consumer_del_stream_for_data(struct lttng_consumer_stream
*stream
)
536 consumer_stream_destroy(stream
, data_ht
);
539 void consumer_del_stream_for_metadata(struct lttng_consumer_stream
*stream
)
541 consumer_stream_destroy(stream
, metadata_ht
);
544 struct lttng_consumer_stream
*consumer_allocate_stream(uint64_t channel_key
,
546 enum lttng_consumer_stream_state state
,
547 const char *channel_name
,
554 enum consumer_channel_type type
,
555 unsigned int monitor
)
558 struct lttng_consumer_stream
*stream
;
560 stream
= zmalloc(sizeof(*stream
));
561 if (stream
== NULL
) {
562 PERROR("malloc struct lttng_consumer_stream");
569 stream
->key
= stream_key
;
571 stream
->out_fd_offset
= 0;
572 stream
->output_written
= 0;
573 stream
->state
= state
;
576 stream
->net_seq_idx
= relayd_id
;
577 stream
->session_id
= session_id
;
578 stream
->monitor
= monitor
;
579 stream
->endpoint_status
= CONSUMER_ENDPOINT_ACTIVE
;
580 stream
->index_file
= NULL
;
581 stream
->last_sequence_number
= -1ULL;
582 pthread_mutex_init(&stream
->lock
, NULL
);
583 pthread_mutex_init(&stream
->metadata_timer_lock
, NULL
);
585 /* If channel is the metadata, flag this stream as metadata. */
586 if (type
== CONSUMER_CHANNEL_TYPE_METADATA
) {
587 stream
->metadata_flag
= 1;
588 /* Metadata is flat out. */
589 strncpy(stream
->name
, DEFAULT_METADATA_NAME
, sizeof(stream
->name
));
590 /* Live rendez-vous point. */
591 pthread_cond_init(&stream
->metadata_rdv
, NULL
);
592 pthread_mutex_init(&stream
->metadata_rdv_lock
, NULL
);
594 /* Format stream name to <channel_name>_<cpu_number> */
595 ret
= snprintf(stream
->name
, sizeof(stream
->name
), "%s_%d",
598 PERROR("snprintf stream name");
603 /* Key is always the wait_fd for streams. */
604 lttng_ht_node_init_u64(&stream
->node
, stream
->key
);
606 /* Init node per channel id key */
607 lttng_ht_node_init_u64(&stream
->node_channel_id
, channel_key
);
609 /* Init session id node with the stream session id */
610 lttng_ht_node_init_u64(&stream
->node_session_id
, stream
->session_id
);
612 DBG3("Allocated stream %s (key %" PRIu64
", chan_key %" PRIu64
613 " relayd_id %" PRIu64
", session_id %" PRIu64
,
614 stream
->name
, stream
->key
, channel_key
,
615 stream
->net_seq_idx
, stream
->session_id
);
631 * Add a stream to the global list protected by a mutex.
633 int consumer_add_data_stream(struct lttng_consumer_stream
*stream
)
635 struct lttng_ht
*ht
= data_ht
;
641 DBG3("Adding consumer stream %" PRIu64
, stream
->key
);
643 pthread_mutex_lock(&consumer_data
.lock
);
644 pthread_mutex_lock(&stream
->chan
->lock
);
645 pthread_mutex_lock(&stream
->chan
->timer_lock
);
646 pthread_mutex_lock(&stream
->lock
);
649 /* Steal stream identifier to avoid having streams with the same key */
650 steal_stream_key(stream
->key
, ht
);
652 lttng_ht_add_unique_u64(ht
, &stream
->node
);
654 lttng_ht_add_u64(consumer_data
.stream_per_chan_id_ht
,
655 &stream
->node_channel_id
);
658 * Add stream to the stream_list_ht of the consumer data. No need to steal
659 * the key since the HT does not use it and we allow to add redundant keys
662 lttng_ht_add_u64(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
665 * When nb_init_stream_left reaches 0, we don't need to trigger any action
666 * in terms of destroying the associated channel, because the action that
667 * causes the count to become 0 also causes a stream to be added. The
668 * channel deletion will thus be triggered by the following removal of this
671 if (uatomic_read(&stream
->chan
->nb_init_stream_left
) > 0) {
672 /* Increment refcount before decrementing nb_init_stream_left */
674 uatomic_dec(&stream
->chan
->nb_init_stream_left
);
677 /* Update consumer data once the node is inserted. */
678 consumer_data
.stream_count
++;
679 consumer_data
.need_update
= 1;
682 pthread_mutex_unlock(&stream
->lock
);
683 pthread_mutex_unlock(&stream
->chan
->timer_lock
);
684 pthread_mutex_unlock(&stream
->chan
->lock
);
685 pthread_mutex_unlock(&consumer_data
.lock
);
690 void consumer_del_data_stream(struct lttng_consumer_stream
*stream
)
692 consumer_del_stream(stream
, data_ht
);
696 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
697 * be acquired before calling this.
699 static int add_relayd(struct consumer_relayd_sock_pair
*relayd
)
702 struct lttng_ht_node_u64
*node
;
703 struct lttng_ht_iter iter
;
707 lttng_ht_lookup(consumer_data
.relayd_ht
,
708 &relayd
->net_seq_idx
, &iter
);
709 node
= lttng_ht_iter_get_node_u64(&iter
);
713 lttng_ht_add_unique_u64(consumer_data
.relayd_ht
, &relayd
->node
);
720 * Allocate and return a consumer relayd socket.
722 static struct consumer_relayd_sock_pair
*consumer_allocate_relayd_sock_pair(
723 uint64_t net_seq_idx
)
725 struct consumer_relayd_sock_pair
*obj
= NULL
;
727 /* net sequence index of -1 is a failure */
728 if (net_seq_idx
== (uint64_t) -1ULL) {
732 obj
= zmalloc(sizeof(struct consumer_relayd_sock_pair
));
734 PERROR("zmalloc relayd sock");
738 obj
->net_seq_idx
= net_seq_idx
;
740 obj
->destroy_flag
= 0;
741 obj
->control_sock
.sock
.fd
= -1;
742 obj
->data_sock
.sock
.fd
= -1;
743 lttng_ht_node_init_u64(&obj
->node
, obj
->net_seq_idx
);
744 pthread_mutex_init(&obj
->ctrl_sock_mutex
, NULL
);
751 * Find a relayd socket pair in the global consumer data.
753 * Return the object if found else NULL.
754 * RCU read-side lock must be held across this call and while using the
757 struct consumer_relayd_sock_pair
*consumer_find_relayd(uint64_t key
)
759 struct lttng_ht_iter iter
;
760 struct lttng_ht_node_u64
*node
;
761 struct consumer_relayd_sock_pair
*relayd
= NULL
;
763 /* Negative keys are lookup failures */
764 if (key
== (uint64_t) -1ULL) {
768 lttng_ht_lookup(consumer_data
.relayd_ht
, &key
,
770 node
= lttng_ht_iter_get_node_u64(&iter
);
772 relayd
= caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
780 * Find a relayd and send the stream
782 * Returns 0 on success, < 0 on error
784 int consumer_send_relayd_stream(struct lttng_consumer_stream
*stream
,
788 struct consumer_relayd_sock_pair
*relayd
;
791 assert(stream
->net_seq_idx
!= -1ULL);
794 /* The stream is not metadata. Get relayd reference if exists. */
796 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
797 if (relayd
!= NULL
) {
798 /* Add stream on the relayd */
799 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
800 ret
= relayd_add_stream(&relayd
->control_sock
, stream
->name
,
801 path
, &stream
->relayd_stream_id
,
802 stream
->chan
->tracefile_size
, stream
->chan
->tracefile_count
);
803 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
808 uatomic_inc(&relayd
->refcount
);
809 stream
->sent_to_relayd
= 1;
811 ERR("Stream %" PRIu64
" relayd ID %" PRIu64
" unknown. Can't send it.",
812 stream
->key
, stream
->net_seq_idx
);
817 DBG("Stream %s with key %" PRIu64
" sent to relayd id %" PRIu64
,
818 stream
->name
, stream
->key
, stream
->net_seq_idx
);
826 * Find a relayd and send the streams sent message
828 * Returns 0 on success, < 0 on error
830 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx
)
833 struct consumer_relayd_sock_pair
*relayd
;
835 assert(net_seq_idx
!= -1ULL);
837 /* The stream is not metadata. Get relayd reference if exists. */
839 relayd
= consumer_find_relayd(net_seq_idx
);
840 if (relayd
!= NULL
) {
841 /* Add stream on the relayd */
842 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
843 ret
= relayd_streams_sent(&relayd
->control_sock
);
844 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
849 ERR("Relayd ID %" PRIu64
" unknown. Can't send streams_sent.",
856 DBG("All streams sent relayd id %" PRIu64
, net_seq_idx
);
864 * Find a relayd and close the stream
866 void close_relayd_stream(struct lttng_consumer_stream
*stream
)
868 struct consumer_relayd_sock_pair
*relayd
;
870 /* The stream is not metadata. Get relayd reference if exists. */
872 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
874 consumer_stream_relayd_close(stream
, relayd
);
880 * Handle stream for relayd transmission if the stream applies for network
881 * streaming where the net sequence index is set.
883 * Return destination file descriptor or negative value on error.
885 static int write_relayd_stream_header(struct lttng_consumer_stream
*stream
,
886 size_t data_size
, unsigned long padding
,
887 struct consumer_relayd_sock_pair
*relayd
)
890 struct lttcomm_relayd_data_hdr data_hdr
;
896 /* Reset data header */
897 memset(&data_hdr
, 0, sizeof(data_hdr
));
899 if (stream
->metadata_flag
) {
900 /* Caller MUST acquire the relayd control socket lock */
901 ret
= relayd_send_metadata(&relayd
->control_sock
, data_size
);
906 /* Metadata are always sent on the control socket. */
907 outfd
= relayd
->control_sock
.sock
.fd
;
909 /* Set header with stream information */
910 data_hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
911 data_hdr
.data_size
= htobe32(data_size
);
912 data_hdr
.padding_size
= htobe32(padding
);
914 * Note that net_seq_num below is assigned with the *current* value of
915 * next_net_seq_num and only after that the next_net_seq_num will be
916 * increment. This is why when issuing a command on the relayd using
917 * this next value, 1 should always be substracted in order to compare
918 * the last seen sequence number on the relayd side to the last sent.
920 data_hdr
.net_seq_num
= htobe64(stream
->next_net_seq_num
);
921 /* Other fields are zeroed previously */
923 ret
= relayd_send_data_hdr(&relayd
->data_sock
, &data_hdr
,
929 ++stream
->next_net_seq_num
;
931 /* Set to go on data socket */
932 outfd
= relayd
->data_sock
.sock
.fd
;
940 * Allocate and return a new lttng_consumer_channel object using the given key
941 * to initialize the hash table node.
943 * On error, return NULL.
945 struct lttng_consumer_channel
*consumer_allocate_channel(uint64_t key
,
947 const char *pathname
,
952 enum lttng_event_output output
,
953 uint64_t tracefile_size
,
954 uint64_t tracefile_count
,
955 uint64_t session_id_per_pid
,
956 unsigned int monitor
,
957 unsigned int live_timer_interval
,
958 const char *root_shm_path
,
959 const char *shm_path
)
961 struct lttng_consumer_channel
*channel
;
963 channel
= zmalloc(sizeof(*channel
));
964 if (channel
== NULL
) {
965 PERROR("malloc struct lttng_consumer_channel");
970 channel
->refcount
= 0;
971 channel
->session_id
= session_id
;
972 channel
->session_id_per_pid
= session_id_per_pid
;
975 channel
->relayd_id
= relayd_id
;
976 channel
->tracefile_size
= tracefile_size
;
977 channel
->tracefile_count
= tracefile_count
;
978 channel
->monitor
= monitor
;
979 channel
->live_timer_interval
= live_timer_interval
;
980 pthread_mutex_init(&channel
->lock
, NULL
);
981 pthread_mutex_init(&channel
->timer_lock
, NULL
);
984 case LTTNG_EVENT_SPLICE
:
985 channel
->output
= CONSUMER_CHANNEL_SPLICE
;
987 case LTTNG_EVENT_MMAP
:
988 channel
->output
= CONSUMER_CHANNEL_MMAP
;
998 * In monitor mode, the streams associated with the channel will be put in
999 * a special list ONLY owned by this channel. So, the refcount is set to 1
1000 * here meaning that the channel itself has streams that are referenced.
1002 * On a channel deletion, once the channel is no longer visible, the
1003 * refcount is decremented and checked for a zero value to delete it. With
1004 * streams in no monitor mode, it will now be safe to destroy the channel.
1006 if (!channel
->monitor
) {
1007 channel
->refcount
= 1;
1010 strncpy(channel
->pathname
, pathname
, sizeof(channel
->pathname
));
1011 channel
->pathname
[sizeof(channel
->pathname
) - 1] = '\0';
1013 strncpy(channel
->name
, name
, sizeof(channel
->name
));
1014 channel
->name
[sizeof(channel
->name
) - 1] = '\0';
1016 if (root_shm_path
) {
1017 strncpy(channel
->root_shm_path
, root_shm_path
, sizeof(channel
->root_shm_path
));
1018 channel
->root_shm_path
[sizeof(channel
->root_shm_path
) - 1] = '\0';
1021 strncpy(channel
->shm_path
, shm_path
, sizeof(channel
->shm_path
));
1022 channel
->shm_path
[sizeof(channel
->shm_path
) - 1] = '\0';
1025 lttng_ht_node_init_u64(&channel
->node
, channel
->key
);
1027 channel
->wait_fd
= -1;
1029 CDS_INIT_LIST_HEAD(&channel
->streams
.head
);
1031 DBG("Allocated channel (key %" PRIu64
")", channel
->key
);
1038 * Add a channel to the global list protected by a mutex.
1040 * Always return 0 indicating success.
1042 int consumer_add_channel(struct lttng_consumer_channel
*channel
,
1043 struct lttng_consumer_local_data
*ctx
)
1045 pthread_mutex_lock(&consumer_data
.lock
);
1046 pthread_mutex_lock(&channel
->lock
);
1047 pthread_mutex_lock(&channel
->timer_lock
);
1050 * This gives us a guarantee that the channel we are about to add to the
1051 * channel hash table will be unique. See this function comment on the why
1052 * we need to steel the channel key at this stage.
1054 steal_channel_key(channel
->key
);
1057 lttng_ht_add_unique_u64(consumer_data
.channel_ht
, &channel
->node
);
1060 pthread_mutex_unlock(&channel
->timer_lock
);
1061 pthread_mutex_unlock(&channel
->lock
);
1062 pthread_mutex_unlock(&consumer_data
.lock
);
1064 if (channel
->wait_fd
!= -1 && channel
->type
== CONSUMER_CHANNEL_TYPE_DATA
) {
1065 notify_channel_pipe(ctx
, channel
, -1, CONSUMER_CHANNEL_ADD
);
1072 * Allocate the pollfd structure and the local view of the out fds to avoid
1073 * doing a lookup in the linked list and concurrency issues when writing is
1074 * needed. Called with consumer_data.lock held.
1076 * Returns the number of fds in the structures.
1078 static int update_poll_array(struct lttng_consumer_local_data
*ctx
,
1079 struct pollfd
**pollfd
, struct lttng_consumer_stream
**local_stream
,
1080 struct lttng_ht
*ht
)
1083 struct lttng_ht_iter iter
;
1084 struct lttng_consumer_stream
*stream
;
1089 assert(local_stream
);
1091 DBG("Updating poll fd array");
1093 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1095 * Only active streams with an active end point can be added to the
1096 * poll set and local stream storage of the thread.
1098 * There is a potential race here for endpoint_status to be updated
1099 * just after the check. However, this is OK since the stream(s) will
1100 * be deleted once the thread is notified that the end point state has
1101 * changed where this function will be called back again.
1103 if (stream
->state
!= LTTNG_CONSUMER_ACTIVE_STREAM
||
1104 stream
->endpoint_status
== CONSUMER_ENDPOINT_INACTIVE
) {
1108 * This clobbers way too much the debug output. Uncomment that if you
1109 * need it for debugging purposes.
1111 * DBG("Active FD %d", stream->wait_fd);
1113 (*pollfd
)[i
].fd
= stream
->wait_fd
;
1114 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
1115 local_stream
[i
] = stream
;
1121 * Insert the consumer_data_pipe at the end of the array and don't
1122 * increment i so nb_fd is the number of real FD.
1124 (*pollfd
)[i
].fd
= lttng_pipe_get_readfd(ctx
->consumer_data_pipe
);
1125 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
1127 (*pollfd
)[i
+ 1].fd
= lttng_pipe_get_readfd(ctx
->consumer_wakeup_pipe
);
1128 (*pollfd
)[i
+ 1].events
= POLLIN
| POLLPRI
;
1133 * Poll on the should_quit pipe and the command socket return -1 on
1134 * error, 1 if should exit, 0 if data is available on the command socket
1136 int lttng_consumer_poll_socket(struct pollfd
*consumer_sockpoll
)
1141 num_rdy
= poll(consumer_sockpoll
, 2, -1);
1142 if (num_rdy
== -1) {
1144 * Restart interrupted system call.
1146 if (errno
== EINTR
) {
1149 PERROR("Poll error");
1152 if (consumer_sockpoll
[0].revents
& (POLLIN
| POLLPRI
)) {
1153 DBG("consumer_should_quit wake up");
1160 * Set the error socket.
1162 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data
*ctx
,
1165 ctx
->consumer_error_socket
= sock
;
1169 * Set the command socket path.
1171 void lttng_consumer_set_command_sock_path(
1172 struct lttng_consumer_local_data
*ctx
, char *sock
)
1174 ctx
->consumer_command_sock_path
= sock
;
1178 * Send return code to the session daemon.
1179 * If the socket is not defined, we return 0, it is not a fatal error
1181 int lttng_consumer_send_error(struct lttng_consumer_local_data
*ctx
, int cmd
)
1183 if (ctx
->consumer_error_socket
> 0) {
1184 return lttcomm_send_unix_sock(ctx
->consumer_error_socket
, &cmd
,
1185 sizeof(enum lttcomm_sessiond_command
));
1192 * Close all the tracefiles and stream fds and MUST be called when all
1193 * instances are destroyed i.e. when all threads were joined and are ended.
1195 void lttng_consumer_cleanup(void)
1197 struct lttng_ht_iter iter
;
1198 struct lttng_consumer_channel
*channel
;
1202 cds_lfht_for_each_entry(consumer_data
.channel_ht
->ht
, &iter
.iter
, channel
,
1204 consumer_del_channel(channel
);
1209 lttng_ht_destroy(consumer_data
.channel_ht
);
1211 cleanup_relayd_ht();
1213 lttng_ht_destroy(consumer_data
.stream_per_chan_id_ht
);
1216 * This HT contains streams that are freed by either the metadata thread or
1217 * the data thread so we do *nothing* on the hash table and simply destroy
1220 lttng_ht_destroy(consumer_data
.stream_list_ht
);
1224 * Called from signal handler.
1226 void lttng_consumer_should_exit(struct lttng_consumer_local_data
*ctx
)
1230 CMM_STORE_SHARED(consumer_quit
, 1);
1231 ret
= lttng_write(ctx
->consumer_should_quit
[1], "4", 1);
1233 PERROR("write consumer quit");
1236 DBG("Consumer flag that it should quit");
1241 * Flush pending writes to trace output disk file.
1244 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream
*stream
,
1248 int outfd
= stream
->out_fd
;
1251 * This does a blocking write-and-wait on any page that belongs to the
1252 * subbuffer prior to the one we just wrote.
1253 * Don't care about error values, as these are just hints and ways to
1254 * limit the amount of page cache used.
1256 if (orig_offset
< stream
->max_sb_size
) {
1259 lttng_sync_file_range(outfd
, orig_offset
- stream
->max_sb_size
,
1260 stream
->max_sb_size
,
1261 SYNC_FILE_RANGE_WAIT_BEFORE
1262 | SYNC_FILE_RANGE_WRITE
1263 | SYNC_FILE_RANGE_WAIT_AFTER
);
1265 * Give hints to the kernel about how we access the file:
1266 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1269 * We need to call fadvise again after the file grows because the
1270 * kernel does not seem to apply fadvise to non-existing parts of the
1273 * Call fadvise _after_ having waited for the page writeback to
1274 * complete because the dirty page writeback semantic is not well
1275 * defined. So it can be expected to lead to lower throughput in
1278 ret
= posix_fadvise(outfd
, orig_offset
- stream
->max_sb_size
,
1279 stream
->max_sb_size
, POSIX_FADV_DONTNEED
);
1280 if (ret
&& ret
!= -ENOSYS
) {
1282 PERROR("posix_fadvise on fd %i", outfd
);
1287 * Initialise the necessary environnement :
1288 * - create a new context
1289 * - create the poll_pipe
1290 * - create the should_quit pipe (for signal handler)
1291 * - create the thread pipe (for splice)
1293 * Takes a function pointer as argument, this function is called when data is
1294 * available on a buffer. This function is responsible to do the
1295 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1296 * buffer configuration and then kernctl_put_next_subbuf at the end.
1298 * Returns a pointer to the new context or NULL on error.
1300 struct lttng_consumer_local_data
*lttng_consumer_create(
1301 enum lttng_consumer_type type
,
1302 ssize_t (*buffer_ready
)(struct lttng_consumer_stream
*stream
,
1303 struct lttng_consumer_local_data
*ctx
),
1304 int (*recv_channel
)(struct lttng_consumer_channel
*channel
),
1305 int (*recv_stream
)(struct lttng_consumer_stream
*stream
),
1306 int (*update_stream
)(uint64_t stream_key
, uint32_t state
))
1309 struct lttng_consumer_local_data
*ctx
;
1311 assert(consumer_data
.type
== LTTNG_CONSUMER_UNKNOWN
||
1312 consumer_data
.type
== type
);
1313 consumer_data
.type
= type
;
1315 ctx
= zmalloc(sizeof(struct lttng_consumer_local_data
));
1317 PERROR("allocating context");
1321 ctx
->consumer_error_socket
= -1;
1322 ctx
->consumer_metadata_socket
= -1;
1323 pthread_mutex_init(&ctx
->metadata_socket_lock
, NULL
);
1324 /* assign the callbacks */
1325 ctx
->on_buffer_ready
= buffer_ready
;
1326 ctx
->on_recv_channel
= recv_channel
;
1327 ctx
->on_recv_stream
= recv_stream
;
1328 ctx
->on_update_stream
= update_stream
;
1330 ctx
->consumer_data_pipe
= lttng_pipe_open(0);
1331 if (!ctx
->consumer_data_pipe
) {
1332 goto error_poll_pipe
;
1335 ctx
->consumer_wakeup_pipe
= lttng_pipe_open(0);
1336 if (!ctx
->consumer_wakeup_pipe
) {
1337 goto error_wakeup_pipe
;
1340 ret
= pipe(ctx
->consumer_should_quit
);
1342 PERROR("Error creating recv pipe");
1343 goto error_quit_pipe
;
1346 ret
= pipe(ctx
->consumer_channel_pipe
);
1348 PERROR("Error creating channel pipe");
1349 goto error_channel_pipe
;
1352 ctx
->consumer_metadata_pipe
= lttng_pipe_open(0);
1353 if (!ctx
->consumer_metadata_pipe
) {
1354 goto error_metadata_pipe
;
1357 ctx
->channel_monitor_pipe
= -1;
1361 error_metadata_pipe
:
1362 utils_close_pipe(ctx
->consumer_channel_pipe
);
1364 utils_close_pipe(ctx
->consumer_should_quit
);
1366 lttng_pipe_destroy(ctx
->consumer_wakeup_pipe
);
1368 lttng_pipe_destroy(ctx
->consumer_data_pipe
);
1376 * Iterate over all streams of the hashtable and free them properly.
1378 static void destroy_data_stream_ht(struct lttng_ht
*ht
)
1380 struct lttng_ht_iter iter
;
1381 struct lttng_consumer_stream
*stream
;
1388 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1390 * Ignore return value since we are currently cleaning up so any error
1393 (void) consumer_del_stream(stream
, ht
);
1397 lttng_ht_destroy(ht
);
1401 * Iterate over all streams of the metadata hashtable and free them
1404 static void destroy_metadata_stream_ht(struct lttng_ht
*ht
)
1406 struct lttng_ht_iter iter
;
1407 struct lttng_consumer_stream
*stream
;
1414 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1416 * Ignore return value since we are currently cleaning up so any error
1419 (void) consumer_del_metadata_stream(stream
, ht
);
1423 lttng_ht_destroy(ht
);
1427 * Close all fds associated with the instance and free the context.
1429 void lttng_consumer_destroy(struct lttng_consumer_local_data
*ctx
)
1433 DBG("Consumer destroying it. Closing everything.");
1439 destroy_data_stream_ht(data_ht
);
1440 destroy_metadata_stream_ht(metadata_ht
);
1442 ret
= close(ctx
->consumer_error_socket
);
1446 ret
= close(ctx
->consumer_metadata_socket
);
1450 utils_close_pipe(ctx
->consumer_channel_pipe
);
1451 lttng_pipe_destroy(ctx
->consumer_data_pipe
);
1452 lttng_pipe_destroy(ctx
->consumer_metadata_pipe
);
1453 lttng_pipe_destroy(ctx
->consumer_wakeup_pipe
);
1454 utils_close_pipe(ctx
->consumer_should_quit
);
1456 unlink(ctx
->consumer_command_sock_path
);
1461 * Write the metadata stream id on the specified file descriptor.
1463 static int write_relayd_metadata_id(int fd
,
1464 struct lttng_consumer_stream
*stream
,
1465 struct consumer_relayd_sock_pair
*relayd
, unsigned long padding
)
1468 struct lttcomm_relayd_metadata_payload hdr
;
1470 hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
1471 hdr
.padding_size
= htobe32(padding
);
1472 ret
= lttng_write(fd
, (void *) &hdr
, sizeof(hdr
));
1473 if (ret
< sizeof(hdr
)) {
1475 * This error means that the fd's end is closed so ignore the PERROR
1476 * not to clubber the error output since this can happen in a normal
1479 if (errno
!= EPIPE
) {
1480 PERROR("write metadata stream id");
1482 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno
);
1484 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1485 * handle writting the missing part so report that as an error and
1486 * don't lie to the caller.
1491 DBG("Metadata stream id %" PRIu64
" with padding %lu written before data",
1492 stream
->relayd_stream_id
, padding
);
1499 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1500 * core function for writing trace buffers to either the local filesystem or
1503 * It must be called with the stream lock held.
1505 * Careful review MUST be put if any changes occur!
1507 * Returns the number of bytes written
1509 ssize_t
lttng_consumer_on_read_subbuffer_mmap(
1510 struct lttng_consumer_local_data
*ctx
,
1511 struct lttng_consumer_stream
*stream
, unsigned long len
,
1512 unsigned long padding
,
1513 struct ctf_packet_index
*index
)
1515 unsigned long mmap_offset
;
1518 off_t orig_offset
= stream
->out_fd_offset
;
1519 /* Default is on the disk */
1520 int outfd
= stream
->out_fd
;
1521 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1522 unsigned int relayd_hang_up
= 0;
1524 /* RCU lock for the relayd pointer */
1527 /* Flag that the current stream if set for network streaming. */
1528 if (stream
->net_seq_idx
!= (uint64_t) -1ULL) {
1529 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1530 if (relayd
== NULL
) {
1536 /* get the offset inside the fd to mmap */
1537 switch (consumer_data
.type
) {
1538 case LTTNG_CONSUMER_KERNEL
:
1539 mmap_base
= stream
->mmap_base
;
1540 ret
= kernctl_get_mmap_read_offset(stream
->wait_fd
, &mmap_offset
);
1542 PERROR("tracer ctl get_mmap_read_offset");
1546 case LTTNG_CONSUMER32_UST
:
1547 case LTTNG_CONSUMER64_UST
:
1548 mmap_base
= lttng_ustctl_get_mmap_base(stream
);
1550 ERR("read mmap get mmap base for stream %s", stream
->name
);
1554 ret
= lttng_ustctl_get_mmap_read_offset(stream
, &mmap_offset
);
1556 PERROR("tracer ctl get_mmap_read_offset");
1562 ERR("Unknown consumer_data type");
1566 /* Handle stream on the relayd if the output is on the network */
1568 unsigned long netlen
= len
;
1571 * Lock the control socket for the complete duration of the function
1572 * since from this point on we will use the socket.
1574 if (stream
->metadata_flag
) {
1575 /* Metadata requires the control socket. */
1576 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1577 if (stream
->reset_metadata_flag
) {
1578 ret
= relayd_reset_metadata(&relayd
->control_sock
,
1579 stream
->relayd_stream_id
,
1580 stream
->metadata_version
);
1585 stream
->reset_metadata_flag
= 0;
1587 netlen
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1590 ret
= write_relayd_stream_header(stream
, netlen
, padding
, relayd
);
1595 /* Use the returned socket. */
1598 /* Write metadata stream id before payload */
1599 if (stream
->metadata_flag
) {
1600 ret
= write_relayd_metadata_id(outfd
, stream
, relayd
, padding
);
1607 /* No streaming, we have to set the len with the full padding */
1610 if (stream
->metadata_flag
&& stream
->reset_metadata_flag
) {
1611 ret
= utils_truncate_stream_file(stream
->out_fd
, 0);
1613 ERR("Reset metadata file");
1616 stream
->reset_metadata_flag
= 0;
1620 * Check if we need to change the tracefile before writing the packet.
1622 if (stream
->chan
->tracefile_size
> 0 &&
1623 (stream
->tracefile_size_current
+ len
) >
1624 stream
->chan
->tracefile_size
) {
1625 ret
= utils_rotate_stream_file(stream
->chan
->pathname
,
1626 stream
->name
, stream
->chan
->tracefile_size
,
1627 stream
->chan
->tracefile_count
, stream
->uid
, stream
->gid
,
1628 stream
->out_fd
, &(stream
->tracefile_count_current
),
1631 ERR("Rotating output file");
1634 outfd
= stream
->out_fd
;
1636 if (stream
->index_file
) {
1637 lttng_index_file_put(stream
->index_file
);
1638 stream
->index_file
= lttng_index_file_create(stream
->chan
->pathname
,
1639 stream
->name
, stream
->uid
, stream
->gid
,
1640 stream
->chan
->tracefile_size
,
1641 stream
->tracefile_count_current
,
1642 CTF_INDEX_MAJOR
, CTF_INDEX_MINOR
);
1643 if (!stream
->index_file
) {
1648 /* Reset current size because we just perform a rotation. */
1649 stream
->tracefile_size_current
= 0;
1650 stream
->out_fd_offset
= 0;
1653 stream
->tracefile_size_current
+= len
;
1655 index
->offset
= htobe64(stream
->out_fd_offset
);
1660 * This call guarantee that len or less is returned. It's impossible to
1661 * receive a ret value that is bigger than len.
1663 ret
= lttng_write(outfd
, mmap_base
+ mmap_offset
, len
);
1664 DBG("Consumer mmap write() ret %zd (len %lu)", ret
, len
);
1665 if (ret
< 0 || ((size_t) ret
!= len
)) {
1667 * Report error to caller if nothing was written else at least send the
1675 /* Socket operation failed. We consider the relayd dead */
1676 if (errno
== EPIPE
|| errno
== EINVAL
|| errno
== EBADF
) {
1678 * This is possible if the fd is closed on the other side
1679 * (outfd) or any write problem. It can be verbose a bit for a
1680 * normal execution if for instance the relayd is stopped
1681 * abruptly. This can happen so set this to a DBG statement.
1683 DBG("Consumer mmap write detected relayd hang up");
1685 /* Unhandled error, print it and stop function right now. */
1686 PERROR("Error in write mmap (ret %zd != len %lu)", ret
, len
);
1690 stream
->output_written
+= ret
;
1692 /* This call is useless on a socket so better save a syscall. */
1694 /* This won't block, but will start writeout asynchronously */
1695 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, len
,
1696 SYNC_FILE_RANGE_WRITE
);
1697 stream
->out_fd_offset
+= len
;
1698 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1703 * This is a special case that the relayd has closed its socket. Let's
1704 * cleanup the relayd object and all associated streams.
1706 if (relayd
&& relayd_hang_up
) {
1707 cleanup_relayd(relayd
, ctx
);
1711 /* Unlock only if ctrl socket used */
1712 if (relayd
&& stream
->metadata_flag
) {
1713 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1721 * Splice the data from the ring buffer to the tracefile.
1723 * It must be called with the stream lock held.
1725 * Returns the number of bytes spliced.
1727 ssize_t
lttng_consumer_on_read_subbuffer_splice(
1728 struct lttng_consumer_local_data
*ctx
,
1729 struct lttng_consumer_stream
*stream
, unsigned long len
,
1730 unsigned long padding
,
1731 struct ctf_packet_index
*index
)
1733 ssize_t ret
= 0, written
= 0, ret_splice
= 0;
1735 off_t orig_offset
= stream
->out_fd_offset
;
1736 int fd
= stream
->wait_fd
;
1737 /* Default is on the disk */
1738 int outfd
= stream
->out_fd
;
1739 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1741 unsigned int relayd_hang_up
= 0;
1743 switch (consumer_data
.type
) {
1744 case LTTNG_CONSUMER_KERNEL
:
1746 case LTTNG_CONSUMER32_UST
:
1747 case LTTNG_CONSUMER64_UST
:
1748 /* Not supported for user space tracing */
1751 ERR("Unknown consumer_data type");
1755 /* RCU lock for the relayd pointer */
1758 /* Flag that the current stream if set for network streaming. */
1759 if (stream
->net_seq_idx
!= (uint64_t) -1ULL) {
1760 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1761 if (relayd
== NULL
) {
1766 splice_pipe
= stream
->splice_pipe
;
1768 /* Write metadata stream id before payload */
1770 unsigned long total_len
= len
;
1772 if (stream
->metadata_flag
) {
1774 * Lock the control socket for the complete duration of the function
1775 * since from this point on we will use the socket.
1777 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1779 if (stream
->reset_metadata_flag
) {
1780 ret
= relayd_reset_metadata(&relayd
->control_sock
,
1781 stream
->relayd_stream_id
,
1782 stream
->metadata_version
);
1787 stream
->reset_metadata_flag
= 0;
1789 ret
= write_relayd_metadata_id(splice_pipe
[1], stream
, relayd
,
1797 total_len
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1800 ret
= write_relayd_stream_header(stream
, total_len
, padding
, relayd
);
1806 /* Use the returned socket. */
1809 /* No streaming, we have to set the len with the full padding */
1812 if (stream
->metadata_flag
&& stream
->reset_metadata_flag
) {
1813 ret
= utils_truncate_stream_file(stream
->out_fd
, 0);
1815 ERR("Reset metadata file");
1818 stream
->reset_metadata_flag
= 0;
1821 * Check if we need to change the tracefile before writing the packet.
1823 if (stream
->chan
->tracefile_size
> 0 &&
1824 (stream
->tracefile_size_current
+ len
) >
1825 stream
->chan
->tracefile_size
) {
1826 ret
= utils_rotate_stream_file(stream
->chan
->pathname
,
1827 stream
->name
, stream
->chan
->tracefile_size
,
1828 stream
->chan
->tracefile_count
, stream
->uid
, stream
->gid
,
1829 stream
->out_fd
, &(stream
->tracefile_count_current
),
1833 ERR("Rotating output file");
1836 outfd
= stream
->out_fd
;
1838 if (stream
->index_file
) {
1839 lttng_index_file_put(stream
->index_file
);
1840 stream
->index_file
= lttng_index_file_create(stream
->chan
->pathname
,
1841 stream
->name
, stream
->uid
, stream
->gid
,
1842 stream
->chan
->tracefile_size
,
1843 stream
->tracefile_count_current
,
1844 CTF_INDEX_MAJOR
, CTF_INDEX_MINOR
);
1845 if (!stream
->index_file
) {
1850 /* Reset current size because we just perform a rotation. */
1851 stream
->tracefile_size_current
= 0;
1852 stream
->out_fd_offset
= 0;
1855 stream
->tracefile_size_current
+= len
;
1856 index
->offset
= htobe64(stream
->out_fd_offset
);
1860 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1861 (unsigned long)offset
, len
, fd
, splice_pipe
[1]);
1862 ret_splice
= splice(fd
, &offset
, splice_pipe
[1], NULL
, len
,
1863 SPLICE_F_MOVE
| SPLICE_F_MORE
);
1864 DBG("splice chan to pipe, ret %zd", ret_splice
);
1865 if (ret_splice
< 0) {
1868 PERROR("Error in relay splice");
1872 /* Handle stream on the relayd if the output is on the network */
1873 if (relayd
&& stream
->metadata_flag
) {
1874 size_t metadata_payload_size
=
1875 sizeof(struct lttcomm_relayd_metadata_payload
);
1877 /* Update counter to fit the spliced data */
1878 ret_splice
+= metadata_payload_size
;
1879 len
+= metadata_payload_size
;
1881 * We do this so the return value can match the len passed as
1882 * argument to this function.
1884 written
-= metadata_payload_size
;
1887 /* Splice data out */
1888 ret_splice
= splice(splice_pipe
[0], NULL
, outfd
, NULL
,
1889 ret_splice
, SPLICE_F_MOVE
| SPLICE_F_MORE
);
1890 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1892 if (ret_splice
< 0) {
1897 } else if (ret_splice
> len
) {
1899 * We don't expect this code path to be executed but you never know
1900 * so this is an extra protection agains a buggy splice().
1903 written
+= ret_splice
;
1904 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice
,
1908 /* All good, update current len and continue. */
1912 /* This call is useless on a socket so better save a syscall. */
1914 /* This won't block, but will start writeout asynchronously */
1915 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, ret_splice
,
1916 SYNC_FILE_RANGE_WRITE
);
1917 stream
->out_fd_offset
+= ret_splice
;
1919 stream
->output_written
+= ret_splice
;
1920 written
+= ret_splice
;
1923 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1929 * This is a special case that the relayd has closed its socket. Let's
1930 * cleanup the relayd object and all associated streams.
1932 if (relayd
&& relayd_hang_up
) {
1933 cleanup_relayd(relayd
, ctx
);
1934 /* Skip splice error so the consumer does not fail */
1939 /* send the appropriate error description to sessiond */
1942 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_EINVAL
);
1945 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ENOMEM
);
1948 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ESPIPE
);
1953 if (relayd
&& stream
->metadata_flag
) {
1954 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1962 * Take a snapshot for a specific fd
1964 * Returns 0 on success, < 0 on error
1966 int lttng_consumer_take_snapshot(struct lttng_consumer_stream
*stream
)
1968 switch (consumer_data
.type
) {
1969 case LTTNG_CONSUMER_KERNEL
:
1970 return lttng_kconsumer_take_snapshot(stream
);
1971 case LTTNG_CONSUMER32_UST
:
1972 case LTTNG_CONSUMER64_UST
:
1973 return lttng_ustconsumer_take_snapshot(stream
);
1975 ERR("Unknown consumer_data type");
1982 * Get the produced position
1984 * Returns 0 on success, < 0 on error
1986 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream
*stream
,
1989 switch (consumer_data
.type
) {
1990 case LTTNG_CONSUMER_KERNEL
:
1991 return lttng_kconsumer_get_produced_snapshot(stream
, pos
);
1992 case LTTNG_CONSUMER32_UST
:
1993 case LTTNG_CONSUMER64_UST
:
1994 return lttng_ustconsumer_get_produced_snapshot(stream
, pos
);
1996 ERR("Unknown consumer_data type");
2002 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data
*ctx
,
2003 int sock
, struct pollfd
*consumer_sockpoll
)
2005 switch (consumer_data
.type
) {
2006 case LTTNG_CONSUMER_KERNEL
:
2007 return lttng_kconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
2008 case LTTNG_CONSUMER32_UST
:
2009 case LTTNG_CONSUMER64_UST
:
2010 return lttng_ustconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
2012 ERR("Unknown consumer_data type");
2018 void lttng_consumer_close_all_metadata(void)
2020 switch (consumer_data
.type
) {
2021 case LTTNG_CONSUMER_KERNEL
:
2023 * The Kernel consumer has a different metadata scheme so we don't
2024 * close anything because the stream will be closed by the session
2028 case LTTNG_CONSUMER32_UST
:
2029 case LTTNG_CONSUMER64_UST
:
2031 * Close all metadata streams. The metadata hash table is passed and
2032 * this call iterates over it by closing all wakeup fd. This is safe
2033 * because at this point we are sure that the metadata producer is
2034 * either dead or blocked.
2036 lttng_ustconsumer_close_all_metadata(metadata_ht
);
2039 ERR("Unknown consumer_data type");
2045 * Clean up a metadata stream and free its memory.
2047 void consumer_del_metadata_stream(struct lttng_consumer_stream
*stream
,
2048 struct lttng_ht
*ht
)
2050 struct lttng_consumer_channel
*free_chan
= NULL
;
2054 * This call should NEVER receive regular stream. It must always be
2055 * metadata stream and this is crucial for data structure synchronization.
2057 assert(stream
->metadata_flag
);
2059 DBG3("Consumer delete metadata stream %d", stream
->wait_fd
);
2061 pthread_mutex_lock(&consumer_data
.lock
);
2062 pthread_mutex_lock(&stream
->chan
->lock
);
2063 pthread_mutex_lock(&stream
->lock
);
2064 if (stream
->chan
->metadata_cache
) {
2065 /* Only applicable to userspace consumers. */
2066 pthread_mutex_lock(&stream
->chan
->metadata_cache
->lock
);
2069 /* Remove any reference to that stream. */
2070 consumer_stream_delete(stream
, ht
);
2072 /* Close down everything including the relayd if one. */
2073 consumer_stream_close(stream
);
2074 /* Destroy tracer buffers of the stream. */
2075 consumer_stream_destroy_buffers(stream
);
2077 /* Atomically decrement channel refcount since other threads can use it. */
2078 if (!uatomic_sub_return(&stream
->chan
->refcount
, 1)
2079 && !uatomic_read(&stream
->chan
->nb_init_stream_left
)) {
2080 /* Go for channel deletion! */
2081 free_chan
= stream
->chan
;
2085 * Nullify the stream reference so it is not used after deletion. The
2086 * channel lock MUST be acquired before being able to check for a NULL
2089 stream
->chan
->metadata_stream
= NULL
;
2091 if (stream
->chan
->metadata_cache
) {
2092 pthread_mutex_unlock(&stream
->chan
->metadata_cache
->lock
);
2094 pthread_mutex_unlock(&stream
->lock
);
2095 pthread_mutex_unlock(&stream
->chan
->lock
);
2096 pthread_mutex_unlock(&consumer_data
.lock
);
2099 consumer_del_channel(free_chan
);
2102 consumer_stream_free(stream
);
2106 * Action done with the metadata stream when adding it to the consumer internal
2107 * data structures to handle it.
2109 int consumer_add_metadata_stream(struct lttng_consumer_stream
*stream
)
2111 struct lttng_ht
*ht
= metadata_ht
;
2113 struct lttng_ht_iter iter
;
2114 struct lttng_ht_node_u64
*node
;
2119 DBG3("Adding metadata stream %" PRIu64
" to hash table", stream
->key
);
2121 pthread_mutex_lock(&consumer_data
.lock
);
2122 pthread_mutex_lock(&stream
->chan
->lock
);
2123 pthread_mutex_lock(&stream
->chan
->timer_lock
);
2124 pthread_mutex_lock(&stream
->lock
);
2127 * From here, refcounts are updated so be _careful_ when returning an error
2134 * Lookup the stream just to make sure it does not exist in our internal
2135 * state. This should NEVER happen.
2137 lttng_ht_lookup(ht
, &stream
->key
, &iter
);
2138 node
= lttng_ht_iter_get_node_u64(&iter
);
2142 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2143 * in terms of destroying the associated channel, because the action that
2144 * causes the count to become 0 also causes a stream to be added. The
2145 * channel deletion will thus be triggered by the following removal of this
2148 if (uatomic_read(&stream
->chan
->nb_init_stream_left
) > 0) {
2149 /* Increment refcount before decrementing nb_init_stream_left */
2151 uatomic_dec(&stream
->chan
->nb_init_stream_left
);
2154 lttng_ht_add_unique_u64(ht
, &stream
->node
);
2156 lttng_ht_add_unique_u64(consumer_data
.stream_per_chan_id_ht
,
2157 &stream
->node_channel_id
);
2160 * Add stream to the stream_list_ht of the consumer data. No need to steal
2161 * the key since the HT does not use it and we allow to add redundant keys
2164 lttng_ht_add_u64(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
2168 pthread_mutex_unlock(&stream
->lock
);
2169 pthread_mutex_unlock(&stream
->chan
->lock
);
2170 pthread_mutex_unlock(&stream
->chan
->timer_lock
);
2171 pthread_mutex_unlock(&consumer_data
.lock
);
2176 * Delete data stream that are flagged for deletion (endpoint_status).
2178 static void validate_endpoint_status_data_stream(void)
2180 struct lttng_ht_iter iter
;
2181 struct lttng_consumer_stream
*stream
;
2183 DBG("Consumer delete flagged data stream");
2186 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2187 /* Validate delete flag of the stream */
2188 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2191 /* Delete it right now */
2192 consumer_del_stream(stream
, data_ht
);
2198 * Delete metadata stream that are flagged for deletion (endpoint_status).
2200 static void validate_endpoint_status_metadata_stream(
2201 struct lttng_poll_event
*pollset
)
2203 struct lttng_ht_iter iter
;
2204 struct lttng_consumer_stream
*stream
;
2206 DBG("Consumer delete flagged metadata stream");
2211 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2212 /* Validate delete flag of the stream */
2213 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2217 * Remove from pollset so the metadata thread can continue without
2218 * blocking on a deleted stream.
2220 lttng_poll_del(pollset
, stream
->wait_fd
);
2222 /* Delete it right now */
2223 consumer_del_metadata_stream(stream
, metadata_ht
);
2229 * Thread polls on metadata file descriptor and write them on disk or on the
2232 void *consumer_thread_metadata_poll(void *data
)
2234 int ret
, i
, pollfd
, err
= -1;
2235 uint32_t revents
, nb_fd
;
2236 struct lttng_consumer_stream
*stream
= NULL
;
2237 struct lttng_ht_iter iter
;
2238 struct lttng_ht_node_u64
*node
;
2239 struct lttng_poll_event events
;
2240 struct lttng_consumer_local_data
*ctx
= data
;
2243 rcu_register_thread();
2245 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_METADATA
);
2247 if (testpoint(consumerd_thread_metadata
)) {
2248 goto error_testpoint
;
2251 health_code_update();
2253 DBG("Thread metadata poll started");
2255 /* Size is set to 1 for the consumer_metadata pipe */
2256 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
2258 ERR("Poll set creation failed");
2262 ret
= lttng_poll_add(&events
,
2263 lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
), LPOLLIN
);
2269 DBG("Metadata main loop started");
2273 health_code_update();
2274 health_poll_entry();
2275 DBG("Metadata poll wait");
2276 ret
= lttng_poll_wait(&events
, -1);
2277 DBG("Metadata poll return from wait with %d fd(s)",
2278 LTTNG_POLL_GETNB(&events
));
2280 DBG("Metadata event caught in thread");
2282 if (errno
== EINTR
) {
2283 ERR("Poll EINTR caught");
2286 if (LTTNG_POLL_GETNB(&events
) == 0) {
2287 err
= 0; /* All is OK */
2294 /* From here, the event is a metadata wait fd */
2295 for (i
= 0; i
< nb_fd
; i
++) {
2296 health_code_update();
2298 revents
= LTTNG_POLL_GETEV(&events
, i
);
2299 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2302 /* No activity for this FD (poll implementation). */
2306 if (pollfd
== lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
)) {
2307 if (revents
& LPOLLIN
) {
2310 pipe_len
= lttng_pipe_read(ctx
->consumer_metadata_pipe
,
2311 &stream
, sizeof(stream
));
2312 if (pipe_len
< sizeof(stream
)) {
2314 PERROR("read metadata stream");
2317 * Remove the pipe from the poll set and continue the loop
2318 * since their might be data to consume.
2320 lttng_poll_del(&events
,
2321 lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
));
2322 lttng_pipe_read_close(ctx
->consumer_metadata_pipe
);
2326 /* A NULL stream means that the state has changed. */
2327 if (stream
== NULL
) {
2328 /* Check for deleted streams. */
2329 validate_endpoint_status_metadata_stream(&events
);
2333 DBG("Adding metadata stream %d to poll set",
2336 /* Add metadata stream to the global poll events list */
2337 lttng_poll_add(&events
, stream
->wait_fd
,
2338 LPOLLIN
| LPOLLPRI
| LPOLLHUP
);
2339 } else if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2340 DBG("Metadata thread pipe hung up");
2342 * Remove the pipe from the poll set and continue the loop
2343 * since their might be data to consume.
2345 lttng_poll_del(&events
,
2346 lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
));
2347 lttng_pipe_read_close(ctx
->consumer_metadata_pipe
);
2350 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
2354 /* Handle other stream */
2360 uint64_t tmp_id
= (uint64_t) pollfd
;
2362 lttng_ht_lookup(metadata_ht
, &tmp_id
, &iter
);
2364 node
= lttng_ht_iter_get_node_u64(&iter
);
2367 stream
= caa_container_of(node
, struct lttng_consumer_stream
,
2370 if (revents
& (LPOLLIN
| LPOLLPRI
)) {
2371 /* Get the data out of the metadata file descriptor */
2372 DBG("Metadata available on fd %d", pollfd
);
2373 assert(stream
->wait_fd
== pollfd
);
2376 health_code_update();
2378 len
= ctx
->on_buffer_ready(stream
, ctx
);
2380 * We don't check the return value here since if we get
2381 * a negative len, it means an error occurred thus we
2382 * simply remove it from the poll set and free the
2387 /* It's ok to have an unavailable sub-buffer */
2388 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2389 /* Clean up stream from consumer and free it. */
2390 lttng_poll_del(&events
, stream
->wait_fd
);
2391 consumer_del_metadata_stream(stream
, metadata_ht
);
2393 } else if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2394 DBG("Metadata fd %d is hup|err.", pollfd
);
2395 if (!stream
->hangup_flush_done
2396 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2397 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2398 DBG("Attempting to flush and consume the UST buffers");
2399 lttng_ustconsumer_on_stream_hangup(stream
);
2401 /* We just flushed the stream now read it. */
2403 health_code_update();
2405 len
= ctx
->on_buffer_ready(stream
, ctx
);
2407 * We don't check the return value here since if we get
2408 * a negative len, it means an error occurred thus we
2409 * simply remove it from the poll set and free the
2415 lttng_poll_del(&events
, stream
->wait_fd
);
2417 * This call update the channel states, closes file descriptors
2418 * and securely free the stream.
2420 consumer_del_metadata_stream(stream
, metadata_ht
);
2422 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
2426 /* Release RCU lock for the stream looked up */
2434 DBG("Metadata poll thread exiting");
2436 lttng_poll_clean(&events
);
2441 ERR("Health error occurred in %s", __func__
);
2443 health_unregister(health_consumerd
);
2444 rcu_unregister_thread();
2449 * This thread polls the fds in the set to consume the data and write
2450 * it to tracefile if necessary.
2452 void *consumer_thread_data_poll(void *data
)
2454 int num_rdy
, num_hup
, high_prio
, ret
, i
, err
= -1;
2455 struct pollfd
*pollfd
= NULL
;
2456 /* local view of the streams */
2457 struct lttng_consumer_stream
**local_stream
= NULL
, *new_stream
= NULL
;
2458 /* local view of consumer_data.fds_count */
2460 struct lttng_consumer_local_data
*ctx
= data
;
2463 rcu_register_thread();
2465 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_DATA
);
2467 if (testpoint(consumerd_thread_data
)) {
2468 goto error_testpoint
;
2471 health_code_update();
2473 local_stream
= zmalloc(sizeof(struct lttng_consumer_stream
*));
2474 if (local_stream
== NULL
) {
2475 PERROR("local_stream malloc");
2480 health_code_update();
2486 * the fds set has been updated, we need to update our
2487 * local array as well
2489 pthread_mutex_lock(&consumer_data
.lock
);
2490 if (consumer_data
.need_update
) {
2495 local_stream
= NULL
;
2498 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2501 pollfd
= zmalloc((consumer_data
.stream_count
+ 2) * sizeof(struct pollfd
));
2502 if (pollfd
== NULL
) {
2503 PERROR("pollfd malloc");
2504 pthread_mutex_unlock(&consumer_data
.lock
);
2508 local_stream
= zmalloc((consumer_data
.stream_count
+ 2) *
2509 sizeof(struct lttng_consumer_stream
*));
2510 if (local_stream
== NULL
) {
2511 PERROR("local_stream malloc");
2512 pthread_mutex_unlock(&consumer_data
.lock
);
2515 ret
= update_poll_array(ctx
, &pollfd
, local_stream
,
2518 ERR("Error in allocating pollfd or local_outfds");
2519 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2520 pthread_mutex_unlock(&consumer_data
.lock
);
2524 consumer_data
.need_update
= 0;
2526 pthread_mutex_unlock(&consumer_data
.lock
);
2528 /* No FDs and consumer_quit, consumer_cleanup the thread */
2529 if (nb_fd
== 0 && CMM_LOAD_SHARED(consumer_quit
) == 1) {
2530 err
= 0; /* All is OK */
2533 /* poll on the array of fds */
2535 DBG("polling on %d fd", nb_fd
+ 2);
2536 if (testpoint(consumerd_thread_data_poll
)) {
2539 health_poll_entry();
2540 num_rdy
= poll(pollfd
, nb_fd
+ 2, -1);
2542 DBG("poll num_rdy : %d", num_rdy
);
2543 if (num_rdy
== -1) {
2545 * Restart interrupted system call.
2547 if (errno
== EINTR
) {
2550 PERROR("Poll error");
2551 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2553 } else if (num_rdy
== 0) {
2554 DBG("Polling thread timed out");
2558 if (caa_unlikely(data_consumption_paused
)) {
2559 DBG("Data consumption paused, sleeping...");
2565 * If the consumer_data_pipe triggered poll go directly to the
2566 * beginning of the loop to update the array. We want to prioritize
2567 * array update over low-priority reads.
2569 if (pollfd
[nb_fd
].revents
& (POLLIN
| POLLPRI
)) {
2570 ssize_t pipe_readlen
;
2572 DBG("consumer_data_pipe wake up");
2573 pipe_readlen
= lttng_pipe_read(ctx
->consumer_data_pipe
,
2574 &new_stream
, sizeof(new_stream
));
2575 if (pipe_readlen
< sizeof(new_stream
)) {
2576 PERROR("Consumer data pipe");
2577 /* Continue so we can at least handle the current stream(s). */
2582 * If the stream is NULL, just ignore it. It's also possible that
2583 * the sessiond poll thread changed the consumer_quit state and is
2584 * waking us up to test it.
2586 if (new_stream
== NULL
) {
2587 validate_endpoint_status_data_stream();
2591 /* Continue to update the local streams and handle prio ones */
2595 /* Handle wakeup pipe. */
2596 if (pollfd
[nb_fd
+ 1].revents
& (POLLIN
| POLLPRI
)) {
2598 ssize_t pipe_readlen
;
2600 pipe_readlen
= lttng_pipe_read(ctx
->consumer_wakeup_pipe
, &dummy
,
2602 if (pipe_readlen
< 0) {
2603 PERROR("Consumer data wakeup pipe");
2605 /* We've been awakened to handle stream(s). */
2606 ctx
->has_wakeup
= 0;
2609 /* Take care of high priority channels first. */
2610 for (i
= 0; i
< nb_fd
; i
++) {
2611 health_code_update();
2613 if (local_stream
[i
] == NULL
) {
2616 if (pollfd
[i
].revents
& POLLPRI
) {
2617 DBG("Urgent read on fd %d", pollfd
[i
].fd
);
2619 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2620 /* it's ok to have an unavailable sub-buffer */
2621 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2622 /* Clean the stream and free it. */
2623 consumer_del_stream(local_stream
[i
], data_ht
);
2624 local_stream
[i
] = NULL
;
2625 } else if (len
> 0) {
2626 local_stream
[i
]->data_read
= 1;
2632 * If we read high prio channel in this loop, try again
2633 * for more high prio data.
2639 /* Take care of low priority channels. */
2640 for (i
= 0; i
< nb_fd
; i
++) {
2641 health_code_update();
2643 if (local_stream
[i
] == NULL
) {
2646 if ((pollfd
[i
].revents
& POLLIN
) ||
2647 local_stream
[i
]->hangup_flush_done
||
2648 local_stream
[i
]->has_data
) {
2649 DBG("Normal read on fd %d", pollfd
[i
].fd
);
2650 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2651 /* it's ok to have an unavailable sub-buffer */
2652 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2653 /* Clean the stream and free it. */
2654 consumer_del_stream(local_stream
[i
], data_ht
);
2655 local_stream
[i
] = NULL
;
2656 } else if (len
> 0) {
2657 local_stream
[i
]->data_read
= 1;
2662 /* Handle hangup and errors */
2663 for (i
= 0; i
< nb_fd
; i
++) {
2664 health_code_update();
2666 if (local_stream
[i
] == NULL
) {
2669 if (!local_stream
[i
]->hangup_flush_done
2670 && (pollfd
[i
].revents
& (POLLHUP
| POLLERR
| POLLNVAL
))
2671 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2672 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2673 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2675 lttng_ustconsumer_on_stream_hangup(local_stream
[i
]);
2676 /* Attempt read again, for the data we just flushed. */
2677 local_stream
[i
]->data_read
= 1;
2680 * If the poll flag is HUP/ERR/NVAL and we have
2681 * read no data in this pass, we can remove the
2682 * stream from its hash table.
2684 if ((pollfd
[i
].revents
& POLLHUP
)) {
2685 DBG("Polling fd %d tells it has hung up.", pollfd
[i
].fd
);
2686 if (!local_stream
[i
]->data_read
) {
2687 consumer_del_stream(local_stream
[i
], data_ht
);
2688 local_stream
[i
] = NULL
;
2691 } else if (pollfd
[i
].revents
& POLLERR
) {
2692 ERR("Error returned in polling fd %d.", pollfd
[i
].fd
);
2693 if (!local_stream
[i
]->data_read
) {
2694 consumer_del_stream(local_stream
[i
], data_ht
);
2695 local_stream
[i
] = NULL
;
2698 } else if (pollfd
[i
].revents
& POLLNVAL
) {
2699 ERR("Polling fd %d tells fd is not open.", pollfd
[i
].fd
);
2700 if (!local_stream
[i
]->data_read
) {
2701 consumer_del_stream(local_stream
[i
], data_ht
);
2702 local_stream
[i
] = NULL
;
2706 if (local_stream
[i
] != NULL
) {
2707 local_stream
[i
]->data_read
= 0;
2714 DBG("polling thread exiting");
2719 * Close the write side of the pipe so epoll_wait() in
2720 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2721 * read side of the pipe. If we close them both, epoll_wait strangely does
2722 * not return and could create a endless wait period if the pipe is the
2723 * only tracked fd in the poll set. The thread will take care of closing
2726 (void) lttng_pipe_write_close(ctx
->consumer_metadata_pipe
);
2731 ERR("Health error occurred in %s", __func__
);
2733 health_unregister(health_consumerd
);
2735 rcu_unregister_thread();
2740 * Close wake-up end of each stream belonging to the channel. This will
2741 * allow the poll() on the stream read-side to detect when the
2742 * write-side (application) finally closes them.
2745 void consumer_close_channel_streams(struct lttng_consumer_channel
*channel
)
2747 struct lttng_ht
*ht
;
2748 struct lttng_consumer_stream
*stream
;
2749 struct lttng_ht_iter iter
;
2751 ht
= consumer_data
.stream_per_chan_id_ht
;
2754 cds_lfht_for_each_entry_duplicate(ht
->ht
,
2755 ht
->hash_fct(&channel
->key
, lttng_ht_seed
),
2756 ht
->match_fct
, &channel
->key
,
2757 &iter
.iter
, stream
, node_channel_id
.node
) {
2759 * Protect against teardown with mutex.
2761 pthread_mutex_lock(&stream
->lock
);
2762 if (cds_lfht_is_node_deleted(&stream
->node
.node
)) {
2765 switch (consumer_data
.type
) {
2766 case LTTNG_CONSUMER_KERNEL
:
2768 case LTTNG_CONSUMER32_UST
:
2769 case LTTNG_CONSUMER64_UST
:
2770 if (stream
->metadata_flag
) {
2771 /* Safe and protected by the stream lock. */
2772 lttng_ustconsumer_close_metadata(stream
->chan
);
2775 * Note: a mutex is taken internally within
2776 * liblttng-ust-ctl to protect timer wakeup_fd
2777 * use from concurrent close.
2779 lttng_ustconsumer_close_stream_wakeup(stream
);
2783 ERR("Unknown consumer_data type");
2787 pthread_mutex_unlock(&stream
->lock
);
2792 static void destroy_channel_ht(struct lttng_ht
*ht
)
2794 struct lttng_ht_iter iter
;
2795 struct lttng_consumer_channel
*channel
;
2803 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, channel
, wait_fd_node
.node
) {
2804 ret
= lttng_ht_del(ht
, &iter
);
2809 lttng_ht_destroy(ht
);
2813 * This thread polls the channel fds to detect when they are being
2814 * closed. It closes all related streams if the channel is detected as
2815 * closed. It is currently only used as a shim layer for UST because the
2816 * consumerd needs to keep the per-stream wakeup end of pipes open for
2819 void *consumer_thread_channel_poll(void *data
)
2821 int ret
, i
, pollfd
, err
= -1;
2822 uint32_t revents
, nb_fd
;
2823 struct lttng_consumer_channel
*chan
= NULL
;
2824 struct lttng_ht_iter iter
;
2825 struct lttng_ht_node_u64
*node
;
2826 struct lttng_poll_event events
;
2827 struct lttng_consumer_local_data
*ctx
= data
;
2828 struct lttng_ht
*channel_ht
;
2830 rcu_register_thread();
2832 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_CHANNEL
);
2834 if (testpoint(consumerd_thread_channel
)) {
2835 goto error_testpoint
;
2838 health_code_update();
2840 channel_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
2842 /* ENOMEM at this point. Better to bail out. */
2846 DBG("Thread channel poll started");
2848 /* Size is set to 1 for the consumer_channel pipe */
2849 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
2851 ERR("Poll set creation failed");
2855 ret
= lttng_poll_add(&events
, ctx
->consumer_channel_pipe
[0], LPOLLIN
);
2861 DBG("Channel main loop started");
2865 health_code_update();
2866 DBG("Channel poll wait");
2867 health_poll_entry();
2868 ret
= lttng_poll_wait(&events
, -1);
2869 DBG("Channel poll return from wait with %d fd(s)",
2870 LTTNG_POLL_GETNB(&events
));
2872 DBG("Channel event caught in thread");
2874 if (errno
== EINTR
) {
2875 ERR("Poll EINTR caught");
2878 if (LTTNG_POLL_GETNB(&events
) == 0) {
2879 err
= 0; /* All is OK */
2886 /* From here, the event is a channel wait fd */
2887 for (i
= 0; i
< nb_fd
; i
++) {
2888 health_code_update();
2890 revents
= LTTNG_POLL_GETEV(&events
, i
);
2891 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2894 /* No activity for this FD (poll implementation). */
2898 if (pollfd
== ctx
->consumer_channel_pipe
[0]) {
2899 if (revents
& LPOLLIN
) {
2900 enum consumer_channel_action action
;
2903 ret
= read_channel_pipe(ctx
, &chan
, &key
, &action
);
2906 ERR("Error reading channel pipe");
2908 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
2913 case CONSUMER_CHANNEL_ADD
:
2914 DBG("Adding channel %d to poll set",
2917 lttng_ht_node_init_u64(&chan
->wait_fd_node
,
2920 lttng_ht_add_unique_u64(channel_ht
,
2921 &chan
->wait_fd_node
);
2923 /* Add channel to the global poll events list */
2924 lttng_poll_add(&events
, chan
->wait_fd
,
2925 LPOLLERR
| LPOLLHUP
);
2927 case CONSUMER_CHANNEL_DEL
:
2930 * This command should never be called if the channel
2931 * has streams monitored by either the data or metadata
2932 * thread. The consumer only notify this thread with a
2933 * channel del. command if it receives a destroy
2934 * channel command from the session daemon that send it
2935 * if a command prior to the GET_CHANNEL failed.
2939 chan
= consumer_find_channel(key
);
2942 ERR("UST consumer get channel key %" PRIu64
" not found for del channel", key
);
2945 lttng_poll_del(&events
, chan
->wait_fd
);
2946 iter
.iter
.node
= &chan
->wait_fd_node
.node
;
2947 ret
= lttng_ht_del(channel_ht
, &iter
);
2950 switch (consumer_data
.type
) {
2951 case LTTNG_CONSUMER_KERNEL
:
2953 case LTTNG_CONSUMER32_UST
:
2954 case LTTNG_CONSUMER64_UST
:
2955 health_code_update();
2956 /* Destroy streams that might have been left in the stream list. */
2957 clean_channel_stream_list(chan
);
2960 ERR("Unknown consumer_data type");
2965 * Release our own refcount. Force channel deletion even if
2966 * streams were not initialized.
2968 if (!uatomic_sub_return(&chan
->refcount
, 1)) {
2969 consumer_del_channel(chan
);
2974 case CONSUMER_CHANNEL_QUIT
:
2976 * Remove the pipe from the poll set and continue the loop
2977 * since their might be data to consume.
2979 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
2982 ERR("Unknown action");
2985 } else if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2986 DBG("Channel thread pipe hung up");
2988 * Remove the pipe from the poll set and continue the loop
2989 * since their might be data to consume.
2991 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
2994 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
2998 /* Handle other stream */
3004 uint64_t tmp_id
= (uint64_t) pollfd
;
3006 lttng_ht_lookup(channel_ht
, &tmp_id
, &iter
);
3008 node
= lttng_ht_iter_get_node_u64(&iter
);
3011 chan
= caa_container_of(node
, struct lttng_consumer_channel
,
3014 /* Check for error event */
3015 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
3016 DBG("Channel fd %d is hup|err.", pollfd
);
3018 lttng_poll_del(&events
, chan
->wait_fd
);
3019 ret
= lttng_ht_del(channel_ht
, &iter
);
3023 * This will close the wait fd for each stream associated to
3024 * this channel AND monitored by the data/metadata thread thus
3025 * will be clean by the right thread.
3027 consumer_close_channel_streams(chan
);
3029 /* Release our own refcount */
3030 if (!uatomic_sub_return(&chan
->refcount
, 1)
3031 && !uatomic_read(&chan
->nb_init_stream_left
)) {
3032 consumer_del_channel(chan
);
3035 ERR("Unexpected poll events %u for sock %d", revents
, pollfd
);
3040 /* Release RCU lock for the channel looked up */
3048 lttng_poll_clean(&events
);
3050 destroy_channel_ht(channel_ht
);
3053 DBG("Channel poll thread exiting");
3056 ERR("Health error occurred in %s", __func__
);
3058 health_unregister(health_consumerd
);
3059 rcu_unregister_thread();
3063 static int set_metadata_socket(struct lttng_consumer_local_data
*ctx
,
3064 struct pollfd
*sockpoll
, int client_socket
)
3071 ret
= lttng_consumer_poll_socket(sockpoll
);
3075 DBG("Metadata connection on client_socket");
3077 /* Blocking call, waiting for transmission */
3078 ctx
->consumer_metadata_socket
= lttcomm_accept_unix_sock(client_socket
);
3079 if (ctx
->consumer_metadata_socket
< 0) {
3080 WARN("On accept metadata");
3091 * This thread listens on the consumerd socket and receives the file
3092 * descriptors from the session daemon.
3094 void *consumer_thread_sessiond_poll(void *data
)
3096 int sock
= -1, client_socket
, ret
, err
= -1;
3098 * structure to poll for incoming data on communication socket avoids
3099 * making blocking sockets.
3101 struct pollfd consumer_sockpoll
[2];
3102 struct lttng_consumer_local_data
*ctx
= data
;
3104 rcu_register_thread();
3106 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_SESSIOND
);
3108 if (testpoint(consumerd_thread_sessiond
)) {
3109 goto error_testpoint
;
3112 health_code_update();
3114 DBG("Creating command socket %s", ctx
->consumer_command_sock_path
);
3115 unlink(ctx
->consumer_command_sock_path
);
3116 client_socket
= lttcomm_create_unix_sock(ctx
->consumer_command_sock_path
);
3117 if (client_socket
< 0) {
3118 ERR("Cannot create command socket");
3122 ret
= lttcomm_listen_unix_sock(client_socket
);
3127 DBG("Sending ready command to lttng-sessiond");
3128 ret
= lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY
);
3129 /* return < 0 on error, but == 0 is not fatal */
3131 ERR("Error sending ready command to lttng-sessiond");
3135 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3136 consumer_sockpoll
[0].fd
= ctx
->consumer_should_quit
[0];
3137 consumer_sockpoll
[0].events
= POLLIN
| POLLPRI
;
3138 consumer_sockpoll
[1].fd
= client_socket
;
3139 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
3141 ret
= lttng_consumer_poll_socket(consumer_sockpoll
);
3149 DBG("Connection on client_socket");
3151 /* Blocking call, waiting for transmission */
3152 sock
= lttcomm_accept_unix_sock(client_socket
);
3159 * Setup metadata socket which is the second socket connection on the
3160 * command unix socket.
3162 ret
= set_metadata_socket(ctx
, consumer_sockpoll
, client_socket
);
3171 /* This socket is not useful anymore. */
3172 ret
= close(client_socket
);
3174 PERROR("close client_socket");
3178 /* update the polling structure to poll on the established socket */
3179 consumer_sockpoll
[1].fd
= sock
;
3180 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
3183 health_code_update();
3185 health_poll_entry();
3186 ret
= lttng_consumer_poll_socket(consumer_sockpoll
);
3195 DBG("Incoming command on sock");
3196 ret
= lttng_consumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
3199 * This could simply be a session daemon quitting. Don't output
3202 DBG("Communication interrupted on command socket");
3206 if (CMM_LOAD_SHARED(consumer_quit
)) {
3207 DBG("consumer_thread_receive_fds received quit from signal");
3208 err
= 0; /* All is OK */
3211 DBG("received command on sock");
3217 DBG("Consumer thread sessiond poll exiting");
3220 * Close metadata streams since the producer is the session daemon which
3223 * NOTE: for now, this only applies to the UST tracer.
3225 lttng_consumer_close_all_metadata();
3228 * when all fds have hung up, the polling thread
3231 CMM_STORE_SHARED(consumer_quit
, 1);
3234 * Notify the data poll thread to poll back again and test the
3235 * consumer_quit state that we just set so to quit gracefully.
3237 notify_thread_lttng_pipe(ctx
->consumer_data_pipe
);
3239 notify_channel_pipe(ctx
, NULL
, -1, CONSUMER_CHANNEL_QUIT
);
3241 notify_health_quit_pipe(health_quit_pipe
);
3243 /* Cleaning up possibly open sockets. */
3247 PERROR("close sock sessiond poll");
3250 if (client_socket
>= 0) {
3251 ret
= close(client_socket
);
3253 PERROR("close client_socket sessiond poll");
3260 ERR("Health error occurred in %s", __func__
);
3262 health_unregister(health_consumerd
);
3264 rcu_unregister_thread();
3268 ssize_t
lttng_consumer_read_subbuffer(struct lttng_consumer_stream
*stream
,
3269 struct lttng_consumer_local_data
*ctx
)
3273 pthread_mutex_lock(&stream
->lock
);
3274 if (stream
->metadata_flag
) {
3275 pthread_mutex_lock(&stream
->metadata_rdv_lock
);
3278 switch (consumer_data
.type
) {
3279 case LTTNG_CONSUMER_KERNEL
:
3280 ret
= lttng_kconsumer_read_subbuffer(stream
, ctx
);
3282 case LTTNG_CONSUMER32_UST
:
3283 case LTTNG_CONSUMER64_UST
:
3284 ret
= lttng_ustconsumer_read_subbuffer(stream
, ctx
);
3287 ERR("Unknown consumer_data type");
3293 if (stream
->metadata_flag
) {
3294 pthread_cond_broadcast(&stream
->metadata_rdv
);
3295 pthread_mutex_unlock(&stream
->metadata_rdv_lock
);
3297 pthread_mutex_unlock(&stream
->lock
);
3301 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream
*stream
)
3303 switch (consumer_data
.type
) {
3304 case LTTNG_CONSUMER_KERNEL
:
3305 return lttng_kconsumer_on_recv_stream(stream
);
3306 case LTTNG_CONSUMER32_UST
:
3307 case LTTNG_CONSUMER64_UST
:
3308 return lttng_ustconsumer_on_recv_stream(stream
);
3310 ERR("Unknown consumer_data type");
3317 * Allocate and set consumer data hash tables.
3319 int lttng_consumer_init(void)
3321 consumer_data
.channel_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3322 if (!consumer_data
.channel_ht
) {
3326 consumer_data
.relayd_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3327 if (!consumer_data
.relayd_ht
) {
3331 consumer_data
.stream_list_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3332 if (!consumer_data
.stream_list_ht
) {
3336 consumer_data
.stream_per_chan_id_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3337 if (!consumer_data
.stream_per_chan_id_ht
) {
3341 data_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3346 metadata_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3358 * Process the ADD_RELAYD command receive by a consumer.
3360 * This will create a relayd socket pair and add it to the relayd hash table.
3361 * The caller MUST acquire a RCU read side lock before calling it.
3363 int consumer_add_relayd_socket(uint64_t net_seq_idx
, int sock_type
,
3364 struct lttng_consumer_local_data
*ctx
, int sock
,
3365 struct pollfd
*consumer_sockpoll
,
3366 struct lttcomm_relayd_sock
*relayd_sock
, uint64_t sessiond_id
,
3367 uint64_t relayd_session_id
)
3369 int fd
= -1, ret
= -1, relayd_created
= 0;
3370 enum lttcomm_return_code ret_code
= LTTCOMM_CONSUMERD_SUCCESS
;
3371 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3374 assert(relayd_sock
);
3376 DBG("Consumer adding relayd socket (idx: %" PRIu64
")", net_seq_idx
);
3378 /* Get relayd reference if exists. */
3379 relayd
= consumer_find_relayd(net_seq_idx
);
3380 if (relayd
== NULL
) {
3381 assert(sock_type
== LTTNG_STREAM_CONTROL
);
3382 /* Not found. Allocate one. */
3383 relayd
= consumer_allocate_relayd_sock_pair(net_seq_idx
);
3384 if (relayd
== NULL
) {
3385 ret_code
= LTTCOMM_CONSUMERD_ENOMEM
;
3388 relayd
->sessiond_session_id
= sessiond_id
;
3393 * This code path MUST continue to the consumer send status message to
3394 * we can notify the session daemon and continue our work without
3395 * killing everything.
3399 * relayd key should never be found for control socket.
3401 assert(sock_type
!= LTTNG_STREAM_CONTROL
);
3404 /* First send a status message before receiving the fds. */
3405 ret
= consumer_send_status_msg(sock
, LTTCOMM_CONSUMERD_SUCCESS
);
3407 /* Somehow, the session daemon is not responding anymore. */
3408 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_FATAL
);
3409 goto error_nosignal
;
3412 /* Poll on consumer socket. */
3413 ret
= lttng_consumer_poll_socket(consumer_sockpoll
);
3415 /* Needing to exit in the middle of a command: error. */
3416 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
3417 goto error_nosignal
;
3420 /* Get relayd socket from session daemon */
3421 ret
= lttcomm_recv_fds_unix_sock(sock
, &fd
, 1);
3422 if (ret
!= sizeof(fd
)) {
3423 fd
= -1; /* Just in case it gets set with an invalid value. */
3426 * Failing to receive FDs might indicate a major problem such as
3427 * reaching a fd limit during the receive where the kernel returns a
3428 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3429 * don't take any chances and stop everything.
3431 * XXX: Feature request #558 will fix that and avoid this possible
3432 * issue when reaching the fd limit.
3434 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_ERROR_RECV_FD
);
3435 ret_code
= LTTCOMM_CONSUMERD_ERROR_RECV_FD
;
3439 /* Copy socket information and received FD */
3440 switch (sock_type
) {
3441 case LTTNG_STREAM_CONTROL
:
3442 /* Copy received lttcomm socket */
3443 lttcomm_copy_sock(&relayd
->control_sock
.sock
, &relayd_sock
->sock
);
3444 ret
= lttcomm_create_sock(&relayd
->control_sock
.sock
);
3445 /* Handle create_sock error. */
3447 ret_code
= LTTCOMM_CONSUMERD_ENOMEM
;
3451 * Close the socket created internally by
3452 * lttcomm_create_sock, so we can replace it by the one
3453 * received from sessiond.
3455 if (close(relayd
->control_sock
.sock
.fd
)) {
3459 /* Assign new file descriptor */
3460 relayd
->control_sock
.sock
.fd
= fd
;
3461 fd
= -1; /* For error path */
3462 /* Assign version values. */
3463 relayd
->control_sock
.major
= relayd_sock
->major
;
3464 relayd
->control_sock
.minor
= relayd_sock
->minor
;
3466 relayd
->relayd_session_id
= relayd_session_id
;
3469 case LTTNG_STREAM_DATA
:
3470 /* Copy received lttcomm socket */
3471 lttcomm_copy_sock(&relayd
->data_sock
.sock
, &relayd_sock
->sock
);
3472 ret
= lttcomm_create_sock(&relayd
->data_sock
.sock
);
3473 /* Handle create_sock error. */
3475 ret_code
= LTTCOMM_CONSUMERD_ENOMEM
;
3479 * Close the socket created internally by
3480 * lttcomm_create_sock, so we can replace it by the one
3481 * received from sessiond.
3483 if (close(relayd
->data_sock
.sock
.fd
)) {
3487 /* Assign new file descriptor */
3488 relayd
->data_sock
.sock
.fd
= fd
;
3489 fd
= -1; /* for eventual error paths */
3490 /* Assign version values. */
3491 relayd
->data_sock
.major
= relayd_sock
->major
;
3492 relayd
->data_sock
.minor
= relayd_sock
->minor
;
3495 ERR("Unknown relayd socket type (%d)", sock_type
);
3496 ret_code
= LTTCOMM_CONSUMERD_FATAL
;
3500 DBG("Consumer %s socket created successfully with net idx %" PRIu64
" (fd: %d)",
3501 sock_type
== LTTNG_STREAM_CONTROL
? "control" : "data",
3502 relayd
->net_seq_idx
, fd
);
3504 /* We successfully added the socket. Send status back. */
3505 ret
= consumer_send_status_msg(sock
, ret_code
);
3507 /* Somehow, the session daemon is not responding anymore. */
3508 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_FATAL
);
3509 goto error_nosignal
;
3513 * Add relayd socket pair to consumer data hashtable. If object already
3514 * exists or on error, the function gracefully returns.
3522 if (consumer_send_status_msg(sock
, ret_code
) < 0) {
3523 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_FATAL
);
3527 /* Close received socket if valid. */
3530 PERROR("close received socket");
3534 if (relayd_created
) {
3542 * Try to lock the stream mutex.
3544 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3546 static int stream_try_lock(struct lttng_consumer_stream
*stream
)
3553 * Try to lock the stream mutex. On failure, we know that the stream is
3554 * being used else where hence there is data still being extracted.
3556 ret
= pthread_mutex_trylock(&stream
->lock
);
3558 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3570 * Search for a relayd associated to the session id and return the reference.
3572 * A rcu read side lock MUST be acquire before calling this function and locked
3573 * until the relayd object is no longer necessary.
3575 static struct consumer_relayd_sock_pair
*find_relayd_by_session_id(uint64_t id
)
3577 struct lttng_ht_iter iter
;
3578 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3580 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3581 cds_lfht_for_each_entry(consumer_data
.relayd_ht
->ht
, &iter
.iter
, relayd
,
3584 * Check by sessiond id which is unique here where the relayd session
3585 * id might not be when having multiple relayd.
3587 if (relayd
->sessiond_session_id
== id
) {
3588 /* Found the relayd. There can be only one per id. */
3600 * Check if for a given session id there is still data needed to be extract
3603 * Return 1 if data is pending or else 0 meaning ready to be read.
3605 int consumer_data_pending(uint64_t id
)
3608 struct lttng_ht_iter iter
;
3609 struct lttng_ht
*ht
;
3610 struct lttng_consumer_stream
*stream
;
3611 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3612 int (*data_pending
)(struct lttng_consumer_stream
*);
3614 DBG("Consumer data pending command on session id %" PRIu64
, id
);
3617 pthread_mutex_lock(&consumer_data
.lock
);
3619 switch (consumer_data
.type
) {
3620 case LTTNG_CONSUMER_KERNEL
:
3621 data_pending
= lttng_kconsumer_data_pending
;
3623 case LTTNG_CONSUMER32_UST
:
3624 case LTTNG_CONSUMER64_UST
:
3625 data_pending
= lttng_ustconsumer_data_pending
;
3628 ERR("Unknown consumer data type");
3632 /* Ease our life a bit */
3633 ht
= consumer_data
.stream_list_ht
;
3635 relayd
= find_relayd_by_session_id(id
);
3637 /* Send init command for data pending. */
3638 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3639 ret
= relayd_begin_data_pending(&relayd
->control_sock
,
3640 relayd
->relayd_session_id
);
3641 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3643 /* Communication error thus the relayd so no data pending. */
3644 goto data_not_pending
;
3648 cds_lfht_for_each_entry_duplicate(ht
->ht
,
3649 ht
->hash_fct(&id
, lttng_ht_seed
),
3651 &iter
.iter
, stream
, node_session_id
.node
) {
3652 /* If this call fails, the stream is being used hence data pending. */
3653 ret
= stream_try_lock(stream
);
3659 * A removed node from the hash table indicates that the stream has
3660 * been deleted thus having a guarantee that the buffers are closed
3661 * on the consumer side. However, data can still be transmitted
3662 * over the network so don't skip the relayd check.
3664 ret
= cds_lfht_is_node_deleted(&stream
->node
.node
);
3666 /* Check the stream if there is data in the buffers. */
3667 ret
= data_pending(stream
);
3669 pthread_mutex_unlock(&stream
->lock
);
3676 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3677 if (stream
->metadata_flag
) {
3678 ret
= relayd_quiescent_control(&relayd
->control_sock
,
3679 stream
->relayd_stream_id
);
3681 ret
= relayd_data_pending(&relayd
->control_sock
,
3682 stream
->relayd_stream_id
,
3683 stream
->next_net_seq_num
- 1);
3685 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3687 pthread_mutex_unlock(&stream
->lock
);
3691 pthread_mutex_unlock(&stream
->lock
);
3695 unsigned int is_data_inflight
= 0;
3697 /* Send init command for data pending. */
3698 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3699 ret
= relayd_end_data_pending(&relayd
->control_sock
,
3700 relayd
->relayd_session_id
, &is_data_inflight
);
3701 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3703 goto data_not_pending
;
3705 if (is_data_inflight
) {
3711 * Finding _no_ node in the hash table and no inflight data means that the
3712 * stream(s) have been removed thus data is guaranteed to be available for
3713 * analysis from the trace files.
3717 /* Data is available to be read by a viewer. */
3718 pthread_mutex_unlock(&consumer_data
.lock
);
3723 /* Data is still being extracted from buffers. */
3724 pthread_mutex_unlock(&consumer_data
.lock
);
3730 * Send a ret code status message to the sessiond daemon.
3732 * Return the sendmsg() return value.
3734 int consumer_send_status_msg(int sock
, int ret_code
)
3736 struct lttcomm_consumer_status_msg msg
;
3738 memset(&msg
, 0, sizeof(msg
));
3739 msg
.ret_code
= ret_code
;
3741 return lttcomm_send_unix_sock(sock
, &msg
, sizeof(msg
));
3745 * Send a channel status message to the sessiond daemon.
3747 * Return the sendmsg() return value.
3749 int consumer_send_status_channel(int sock
,
3750 struct lttng_consumer_channel
*channel
)
3752 struct lttcomm_consumer_status_channel msg
;
3756 memset(&msg
, 0, sizeof(msg
));
3758 msg
.ret_code
= LTTCOMM_CONSUMERD_CHANNEL_FAIL
;
3760 msg
.ret_code
= LTTCOMM_CONSUMERD_SUCCESS
;
3761 msg
.key
= channel
->key
;
3762 msg
.stream_count
= channel
->streams
.count
;
3765 return lttcomm_send_unix_sock(sock
, &msg
, sizeof(msg
));
3768 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos
,
3769 unsigned long produced_pos
, uint64_t nb_packets_per_stream
,
3770 uint64_t max_sb_size
)
3772 unsigned long start_pos
;
3774 if (!nb_packets_per_stream
) {
3775 return consumed_pos
; /* Grab everything */
3777 start_pos
= produced_pos
- offset_align_floor(produced_pos
, max_sb_size
);
3778 start_pos
-= max_sb_size
* nb_packets_per_stream
;
3779 if ((long) (start_pos
- consumed_pos
) < 0) {
3780 return consumed_pos
; /* Grab everything */