2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
27 #include <sys/socket.h>
28 #include <sys/types.h>
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/compat/endian.h>
38 #include <common/index/index.h>
39 #include <common/kernel-ctl/kernel-ctl.h>
40 #include <common/sessiond-comm/relayd.h>
41 #include <common/sessiond-comm/sessiond-comm.h>
42 #include <common/kernel-consumer/kernel-consumer.h>
43 #include <common/relayd/relayd.h>
44 #include <common/ust-consumer/ust-consumer.h>
45 #include <common/consumer-timer.h>
48 #include "consumer-stream.h"
49 #include "consumer-testpoint.h"
51 struct lttng_consumer_global_data consumer_data
= {
54 .type
= LTTNG_CONSUMER_UNKNOWN
,
57 enum consumer_channel_action
{
60 CONSUMER_CHANNEL_QUIT
,
63 struct consumer_channel_msg
{
64 enum consumer_channel_action action
;
65 struct lttng_consumer_channel
*chan
; /* add */
66 uint64_t key
; /* del */
70 * Flag to inform the polling thread to quit when all fd hung up. Updated by
71 * the consumer_thread_receive_fds when it notices that all fds has hung up.
72 * Also updated by the signal handler (consumer_should_exit()). Read by the
75 volatile int consumer_quit
;
78 * Global hash table containing respectively metadata and data streams. The
79 * stream element in this ht should only be updated by the metadata poll thread
80 * for the metadata and the data poll thread for the data.
82 static struct lttng_ht
*metadata_ht
;
83 static struct lttng_ht
*data_ht
;
86 * Notify a thread lttng pipe to poll back again. This usually means that some
87 * global state has changed so we just send back the thread in a poll wait
90 static void notify_thread_lttng_pipe(struct lttng_pipe
*pipe
)
92 struct lttng_consumer_stream
*null_stream
= NULL
;
96 (void) lttng_pipe_write(pipe
, &null_stream
, sizeof(null_stream
));
99 static void notify_health_quit_pipe(int *pipe
)
103 ret
= lttng_write(pipe
[1], "4", 1);
105 PERROR("write consumer health quit");
109 static void notify_channel_pipe(struct lttng_consumer_local_data
*ctx
,
110 struct lttng_consumer_channel
*chan
,
112 enum consumer_channel_action action
)
114 struct consumer_channel_msg msg
;
117 memset(&msg
, 0, sizeof(msg
));
122 ret
= lttng_write(ctx
->consumer_channel_pipe
[1], &msg
, sizeof(msg
));
123 if (ret
< sizeof(msg
)) {
124 PERROR("notify_channel_pipe write error");
128 void notify_thread_del_channel(struct lttng_consumer_local_data
*ctx
,
131 notify_channel_pipe(ctx
, NULL
, key
, CONSUMER_CHANNEL_DEL
);
134 static int read_channel_pipe(struct lttng_consumer_local_data
*ctx
,
135 struct lttng_consumer_channel
**chan
,
137 enum consumer_channel_action
*action
)
139 struct consumer_channel_msg msg
;
142 ret
= lttng_read(ctx
->consumer_channel_pipe
[0], &msg
, sizeof(msg
));
143 if (ret
< sizeof(msg
)) {
147 *action
= msg
.action
;
155 * Cleanup the stream list of a channel. Those streams are not yet globally
158 static void clean_channel_stream_list(struct lttng_consumer_channel
*channel
)
160 struct lttng_consumer_stream
*stream
, *stmp
;
164 /* Delete streams that might have been left in the stream list. */
165 cds_list_for_each_entry_safe(stream
, stmp
, &channel
->streams
.head
,
167 cds_list_del(&stream
->send_node
);
169 * Once a stream is added to this list, the buffers were created so we
170 * have a guarantee that this call will succeed. Setting the monitor
171 * mode to 0 so we don't lock nor try to delete the stream from the
175 consumer_stream_destroy(stream
, NULL
);
180 * Find a stream. The consumer_data.lock must be locked during this
183 static struct lttng_consumer_stream
*find_stream(uint64_t key
,
186 struct lttng_ht_iter iter
;
187 struct lttng_ht_node_u64
*node
;
188 struct lttng_consumer_stream
*stream
= NULL
;
192 /* -1ULL keys are lookup failures */
193 if (key
== (uint64_t) -1ULL) {
199 lttng_ht_lookup(ht
, &key
, &iter
);
200 node
= lttng_ht_iter_get_node_u64(&iter
);
202 stream
= caa_container_of(node
, struct lttng_consumer_stream
, node
);
210 static void steal_stream_key(uint64_t key
, struct lttng_ht
*ht
)
212 struct lttng_consumer_stream
*stream
;
215 stream
= find_stream(key
, ht
);
217 stream
->key
= (uint64_t) -1ULL;
219 * We don't want the lookup to match, but we still need
220 * to iterate on this stream when iterating over the hash table. Just
221 * change the node key.
223 stream
->node
.key
= (uint64_t) -1ULL;
229 * Return a channel object for the given key.
231 * RCU read side lock MUST be acquired before calling this function and
232 * protects the channel ptr.
234 struct lttng_consumer_channel
*consumer_find_channel(uint64_t key
)
236 struct lttng_ht_iter iter
;
237 struct lttng_ht_node_u64
*node
;
238 struct lttng_consumer_channel
*channel
= NULL
;
240 /* -1ULL keys are lookup failures */
241 if (key
== (uint64_t) -1ULL) {
245 lttng_ht_lookup(consumer_data
.channel_ht
, &key
, &iter
);
246 node
= lttng_ht_iter_get_node_u64(&iter
);
248 channel
= caa_container_of(node
, struct lttng_consumer_channel
, node
);
255 * There is a possibility that the consumer does not have enough time between
256 * the close of the channel on the session daemon and the cleanup in here thus
257 * once we have a channel add with an existing key, we know for sure that this
258 * channel will eventually get cleaned up by all streams being closed.
260 * This function just nullifies the already existing channel key.
262 static void steal_channel_key(uint64_t key
)
264 struct lttng_consumer_channel
*channel
;
267 channel
= consumer_find_channel(key
);
269 channel
->key
= (uint64_t) -1ULL;
271 * We don't want the lookup to match, but we still need to iterate on
272 * this channel when iterating over the hash table. Just change the
275 channel
->node
.key
= (uint64_t) -1ULL;
280 static void free_channel_rcu(struct rcu_head
*head
)
282 struct lttng_ht_node_u64
*node
=
283 caa_container_of(head
, struct lttng_ht_node_u64
, head
);
284 struct lttng_consumer_channel
*channel
=
285 caa_container_of(node
, struct lttng_consumer_channel
, node
);
291 * RCU protected relayd socket pair free.
293 static void free_relayd_rcu(struct rcu_head
*head
)
295 struct lttng_ht_node_u64
*node
=
296 caa_container_of(head
, struct lttng_ht_node_u64
, head
);
297 struct consumer_relayd_sock_pair
*relayd
=
298 caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
301 * Close all sockets. This is done in the call RCU since we don't want the
302 * socket fds to be reassigned thus potentially creating bad state of the
305 * We do not have to lock the control socket mutex here since at this stage
306 * there is no one referencing to this relayd object.
308 (void) relayd_close(&relayd
->control_sock
);
309 (void) relayd_close(&relayd
->data_sock
);
315 * Destroy and free relayd socket pair object.
317 void consumer_destroy_relayd(struct consumer_relayd_sock_pair
*relayd
)
320 struct lttng_ht_iter iter
;
322 if (relayd
== NULL
) {
326 DBG("Consumer destroy and close relayd socket pair");
328 iter
.iter
.node
= &relayd
->node
.node
;
329 ret
= lttng_ht_del(consumer_data
.relayd_ht
, &iter
);
331 /* We assume the relayd is being or is destroyed */
335 /* RCU free() call */
336 call_rcu(&relayd
->node
.head
, free_relayd_rcu
);
340 * Remove a channel from the global list protected by a mutex. This function is
341 * also responsible for freeing its data structures.
343 void consumer_del_channel(struct lttng_consumer_channel
*channel
)
346 struct lttng_ht_iter iter
;
348 DBG("Consumer delete channel key %" PRIu64
, channel
->key
);
350 pthread_mutex_lock(&consumer_data
.lock
);
351 pthread_mutex_lock(&channel
->lock
);
353 /* Destroy streams that might have been left in the stream list. */
354 clean_channel_stream_list(channel
);
356 if (channel
->live_timer_enabled
== 1) {
357 consumer_timer_live_stop(channel
);
360 switch (consumer_data
.type
) {
361 case LTTNG_CONSUMER_KERNEL
:
363 case LTTNG_CONSUMER32_UST
:
364 case LTTNG_CONSUMER64_UST
:
365 lttng_ustconsumer_del_channel(channel
);
368 ERR("Unknown consumer_data type");
374 iter
.iter
.node
= &channel
->node
.node
;
375 ret
= lttng_ht_del(consumer_data
.channel_ht
, &iter
);
379 call_rcu(&channel
->node
.head
, free_channel_rcu
);
381 pthread_mutex_unlock(&channel
->lock
);
382 pthread_mutex_unlock(&consumer_data
.lock
);
386 * Iterate over the relayd hash table and destroy each element. Finally,
387 * destroy the whole hash table.
389 static void cleanup_relayd_ht(void)
391 struct lttng_ht_iter iter
;
392 struct consumer_relayd_sock_pair
*relayd
;
396 cds_lfht_for_each_entry(consumer_data
.relayd_ht
->ht
, &iter
.iter
, relayd
,
398 consumer_destroy_relayd(relayd
);
403 lttng_ht_destroy(consumer_data
.relayd_ht
);
407 * Update the end point status of all streams having the given network sequence
408 * index (relayd index).
410 * It's atomically set without having the stream mutex locked which is fine
411 * because we handle the write/read race with a pipe wakeup for each thread.
413 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx
,
414 enum consumer_endpoint_status status
)
416 struct lttng_ht_iter iter
;
417 struct lttng_consumer_stream
*stream
;
419 DBG("Consumer set delete flag on stream by idx %" PRIu64
, net_seq_idx
);
423 /* Let's begin with metadata */
424 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
425 if (stream
->net_seq_idx
== net_seq_idx
) {
426 uatomic_set(&stream
->endpoint_status
, status
);
427 DBG("Delete flag set to metadata stream %d", stream
->wait_fd
);
431 /* Follow up by the data streams */
432 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
433 if (stream
->net_seq_idx
== net_seq_idx
) {
434 uatomic_set(&stream
->endpoint_status
, status
);
435 DBG("Delete flag set to data stream %d", stream
->wait_fd
);
442 * Cleanup a relayd object by flagging every associated streams for deletion,
443 * destroying the object meaning removing it from the relayd hash table,
444 * closing the sockets and freeing the memory in a RCU call.
446 * If a local data context is available, notify the threads that the streams'
447 * state have changed.
449 static void cleanup_relayd(struct consumer_relayd_sock_pair
*relayd
,
450 struct lttng_consumer_local_data
*ctx
)
456 DBG("Cleaning up relayd sockets");
458 /* Save the net sequence index before destroying the object */
459 netidx
= relayd
->net_seq_idx
;
462 * Delete the relayd from the relayd hash table, close the sockets and free
463 * the object in a RCU call.
465 consumer_destroy_relayd(relayd
);
467 /* Set inactive endpoint to all streams */
468 update_endpoint_status_by_netidx(netidx
, CONSUMER_ENDPOINT_INACTIVE
);
471 * With a local data context, notify the threads that the streams' state
472 * have changed. The write() action on the pipe acts as an "implicit"
473 * memory barrier ordering the updates of the end point status from the
474 * read of this status which happens AFTER receiving this notify.
477 notify_thread_lttng_pipe(ctx
->consumer_data_pipe
);
478 notify_thread_lttng_pipe(ctx
->consumer_metadata_pipe
);
483 * Flag a relayd socket pair for destruction. Destroy it if the refcount
486 * RCU read side lock MUST be aquired before calling this function.
488 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair
*relayd
)
492 /* Set destroy flag for this object */
493 uatomic_set(&relayd
->destroy_flag
, 1);
495 /* Destroy the relayd if refcount is 0 */
496 if (uatomic_read(&relayd
->refcount
) == 0) {
497 consumer_destroy_relayd(relayd
);
502 * Completly destroy stream from every visiable data structure and the given
505 * One this call returns, the stream object is not longer usable nor visible.
507 void consumer_del_stream(struct lttng_consumer_stream
*stream
,
510 consumer_stream_destroy(stream
, ht
);
514 * XXX naming of del vs destroy is all mixed up.
516 void consumer_del_stream_for_data(struct lttng_consumer_stream
*stream
)
518 consumer_stream_destroy(stream
, data_ht
);
521 void consumer_del_stream_for_metadata(struct lttng_consumer_stream
*stream
)
523 consumer_stream_destroy(stream
, metadata_ht
);
526 struct lttng_consumer_stream
*consumer_allocate_stream(uint64_t channel_key
,
528 enum lttng_consumer_stream_state state
,
529 const char *channel_name
,
536 enum consumer_channel_type type
,
537 unsigned int monitor
)
540 struct lttng_consumer_stream
*stream
;
542 stream
= zmalloc(sizeof(*stream
));
543 if (stream
== NULL
) {
544 PERROR("malloc struct lttng_consumer_stream");
551 stream
->key
= stream_key
;
553 stream
->out_fd_offset
= 0;
554 stream
->output_written
= 0;
555 stream
->state
= state
;
558 stream
->net_seq_idx
= relayd_id
;
559 stream
->session_id
= session_id
;
560 stream
->monitor
= monitor
;
561 stream
->endpoint_status
= CONSUMER_ENDPOINT_ACTIVE
;
562 stream
->index_fd
= -1;
563 pthread_mutex_init(&stream
->lock
, NULL
);
565 /* If channel is the metadata, flag this stream as metadata. */
566 if (type
== CONSUMER_CHANNEL_TYPE_METADATA
) {
567 stream
->metadata_flag
= 1;
568 /* Metadata is flat out. */
569 strncpy(stream
->name
, DEFAULT_METADATA_NAME
, sizeof(stream
->name
));
570 /* Live rendez-vous point. */
571 pthread_cond_init(&stream
->metadata_rdv
, NULL
);
572 pthread_mutex_init(&stream
->metadata_rdv_lock
, NULL
);
574 /* Format stream name to <channel_name>_<cpu_number> */
575 ret
= snprintf(stream
->name
, sizeof(stream
->name
), "%s_%d",
578 PERROR("snprintf stream name");
583 /* Key is always the wait_fd for streams. */
584 lttng_ht_node_init_u64(&stream
->node
, stream
->key
);
586 /* Init node per channel id key */
587 lttng_ht_node_init_u64(&stream
->node_channel_id
, channel_key
);
589 /* Init session id node with the stream session id */
590 lttng_ht_node_init_u64(&stream
->node_session_id
, stream
->session_id
);
592 DBG3("Allocated stream %s (key %" PRIu64
", chan_key %" PRIu64
593 " relayd_id %" PRIu64
", session_id %" PRIu64
,
594 stream
->name
, stream
->key
, channel_key
,
595 stream
->net_seq_idx
, stream
->session_id
);
611 * Add a stream to the global list protected by a mutex.
613 int consumer_add_data_stream(struct lttng_consumer_stream
*stream
)
615 struct lttng_ht
*ht
= data_ht
;
621 DBG3("Adding consumer stream %" PRIu64
, stream
->key
);
623 pthread_mutex_lock(&consumer_data
.lock
);
624 pthread_mutex_lock(&stream
->chan
->lock
);
625 pthread_mutex_lock(&stream
->chan
->timer_lock
);
626 pthread_mutex_lock(&stream
->lock
);
629 /* Steal stream identifier to avoid having streams with the same key */
630 steal_stream_key(stream
->key
, ht
);
632 lttng_ht_add_unique_u64(ht
, &stream
->node
);
634 lttng_ht_add_u64(consumer_data
.stream_per_chan_id_ht
,
635 &stream
->node_channel_id
);
638 * Add stream to the stream_list_ht of the consumer data. No need to steal
639 * the key since the HT does not use it and we allow to add redundant keys
642 lttng_ht_add_u64(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
645 * When nb_init_stream_left reaches 0, we don't need to trigger any action
646 * in terms of destroying the associated channel, because the action that
647 * causes the count to become 0 also causes a stream to be added. The
648 * channel deletion will thus be triggered by the following removal of this
651 if (uatomic_read(&stream
->chan
->nb_init_stream_left
) > 0) {
652 /* Increment refcount before decrementing nb_init_stream_left */
654 uatomic_dec(&stream
->chan
->nb_init_stream_left
);
657 /* Update consumer data once the node is inserted. */
658 consumer_data
.stream_count
++;
659 consumer_data
.need_update
= 1;
662 pthread_mutex_unlock(&stream
->lock
);
663 pthread_mutex_unlock(&stream
->chan
->timer_lock
);
664 pthread_mutex_unlock(&stream
->chan
->lock
);
665 pthread_mutex_unlock(&consumer_data
.lock
);
670 void consumer_del_data_stream(struct lttng_consumer_stream
*stream
)
672 consumer_del_stream(stream
, data_ht
);
676 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
677 * be acquired before calling this.
679 static int add_relayd(struct consumer_relayd_sock_pair
*relayd
)
682 struct lttng_ht_node_u64
*node
;
683 struct lttng_ht_iter iter
;
687 lttng_ht_lookup(consumer_data
.relayd_ht
,
688 &relayd
->net_seq_idx
, &iter
);
689 node
= lttng_ht_iter_get_node_u64(&iter
);
693 lttng_ht_add_unique_u64(consumer_data
.relayd_ht
, &relayd
->node
);
700 * Allocate and return a consumer relayd socket.
702 struct consumer_relayd_sock_pair
*consumer_allocate_relayd_sock_pair(
703 uint64_t net_seq_idx
)
705 struct consumer_relayd_sock_pair
*obj
= NULL
;
707 /* net sequence index of -1 is a failure */
708 if (net_seq_idx
== (uint64_t) -1ULL) {
712 obj
= zmalloc(sizeof(struct consumer_relayd_sock_pair
));
714 PERROR("zmalloc relayd sock");
718 obj
->net_seq_idx
= net_seq_idx
;
720 obj
->destroy_flag
= 0;
721 obj
->control_sock
.sock
.fd
= -1;
722 obj
->data_sock
.sock
.fd
= -1;
723 lttng_ht_node_init_u64(&obj
->node
, obj
->net_seq_idx
);
724 pthread_mutex_init(&obj
->ctrl_sock_mutex
, NULL
);
731 * Find a relayd socket pair in the global consumer data.
733 * Return the object if found else NULL.
734 * RCU read-side lock must be held across this call and while using the
737 struct consumer_relayd_sock_pair
*consumer_find_relayd(uint64_t key
)
739 struct lttng_ht_iter iter
;
740 struct lttng_ht_node_u64
*node
;
741 struct consumer_relayd_sock_pair
*relayd
= NULL
;
743 /* Negative keys are lookup failures */
744 if (key
== (uint64_t) -1ULL) {
748 lttng_ht_lookup(consumer_data
.relayd_ht
, &key
,
750 node
= lttng_ht_iter_get_node_u64(&iter
);
752 relayd
= caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
760 * Find a relayd and send the stream
762 * Returns 0 on success, < 0 on error
764 int consumer_send_relayd_stream(struct lttng_consumer_stream
*stream
,
768 struct consumer_relayd_sock_pair
*relayd
;
771 assert(stream
->net_seq_idx
!= -1ULL);
774 /* The stream is not metadata. Get relayd reference if exists. */
776 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
777 if (relayd
!= NULL
) {
778 /* Add stream on the relayd */
779 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
780 ret
= relayd_add_stream(&relayd
->control_sock
, stream
->name
,
781 path
, &stream
->relayd_stream_id
,
782 stream
->chan
->tracefile_size
, stream
->chan
->tracefile_count
);
783 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
788 uatomic_inc(&relayd
->refcount
);
789 stream
->sent_to_relayd
= 1;
791 ERR("Stream %" PRIu64
" relayd ID %" PRIu64
" unknown. Can't send it.",
792 stream
->key
, stream
->net_seq_idx
);
797 DBG("Stream %s with key %" PRIu64
" sent to relayd id %" PRIu64
,
798 stream
->name
, stream
->key
, stream
->net_seq_idx
);
806 * Find a relayd and send the streams sent message
808 * Returns 0 on success, < 0 on error
810 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx
)
813 struct consumer_relayd_sock_pair
*relayd
;
815 assert(net_seq_idx
!= -1ULL);
817 /* The stream is not metadata. Get relayd reference if exists. */
819 relayd
= consumer_find_relayd(net_seq_idx
);
820 if (relayd
!= NULL
) {
821 /* Add stream on the relayd */
822 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
823 ret
= relayd_streams_sent(&relayd
->control_sock
);
824 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
829 ERR("Relayd ID %" PRIu64
" unknown. Can't send streams_sent.",
836 DBG("All streams sent relayd id %" PRIu64
, net_seq_idx
);
844 * Find a relayd and close the stream
846 void close_relayd_stream(struct lttng_consumer_stream
*stream
)
848 struct consumer_relayd_sock_pair
*relayd
;
850 /* The stream is not metadata. Get relayd reference if exists. */
852 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
854 consumer_stream_relayd_close(stream
, relayd
);
860 * Handle stream for relayd transmission if the stream applies for network
861 * streaming where the net sequence index is set.
863 * Return destination file descriptor or negative value on error.
865 static int write_relayd_stream_header(struct lttng_consumer_stream
*stream
,
866 size_t data_size
, unsigned long padding
,
867 struct consumer_relayd_sock_pair
*relayd
)
870 struct lttcomm_relayd_data_hdr data_hdr
;
876 /* Reset data header */
877 memset(&data_hdr
, 0, sizeof(data_hdr
));
879 if (stream
->metadata_flag
) {
880 /* Caller MUST acquire the relayd control socket lock */
881 ret
= relayd_send_metadata(&relayd
->control_sock
, data_size
);
886 /* Metadata are always sent on the control socket. */
887 outfd
= relayd
->control_sock
.sock
.fd
;
889 /* Set header with stream information */
890 data_hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
891 data_hdr
.data_size
= htobe32(data_size
);
892 data_hdr
.padding_size
= htobe32(padding
);
894 * Note that net_seq_num below is assigned with the *current* value of
895 * next_net_seq_num and only after that the next_net_seq_num will be
896 * increment. This is why when issuing a command on the relayd using
897 * this next value, 1 should always be substracted in order to compare
898 * the last seen sequence number on the relayd side to the last sent.
900 data_hdr
.net_seq_num
= htobe64(stream
->next_net_seq_num
);
901 /* Other fields are zeroed previously */
903 ret
= relayd_send_data_hdr(&relayd
->data_sock
, &data_hdr
,
909 ++stream
->next_net_seq_num
;
911 /* Set to go on data socket */
912 outfd
= relayd
->data_sock
.sock
.fd
;
920 * Allocate and return a new lttng_consumer_channel object using the given key
921 * to initialize the hash table node.
923 * On error, return NULL.
925 struct lttng_consumer_channel
*consumer_allocate_channel(uint64_t key
,
927 const char *pathname
,
932 enum lttng_event_output output
,
933 uint64_t tracefile_size
,
934 uint64_t tracefile_count
,
935 uint64_t session_id_per_pid
,
936 unsigned int monitor
,
937 unsigned int live_timer_interval
)
939 struct lttng_consumer_channel
*channel
;
941 channel
= zmalloc(sizeof(*channel
));
942 if (channel
== NULL
) {
943 PERROR("malloc struct lttng_consumer_channel");
948 channel
->refcount
= 0;
949 channel
->session_id
= session_id
;
950 channel
->session_id_per_pid
= session_id_per_pid
;
953 channel
->relayd_id
= relayd_id
;
954 channel
->tracefile_size
= tracefile_size
;
955 channel
->tracefile_count
= tracefile_count
;
956 channel
->monitor
= monitor
;
957 channel
->live_timer_interval
= live_timer_interval
;
958 pthread_mutex_init(&channel
->lock
, NULL
);
959 pthread_mutex_init(&channel
->timer_lock
, NULL
);
962 case LTTNG_EVENT_SPLICE
:
963 channel
->output
= CONSUMER_CHANNEL_SPLICE
;
965 case LTTNG_EVENT_MMAP
:
966 channel
->output
= CONSUMER_CHANNEL_MMAP
;
976 * In monitor mode, the streams associated with the channel will be put in
977 * a special list ONLY owned by this channel. So, the refcount is set to 1
978 * here meaning that the channel itself has streams that are referenced.
980 * On a channel deletion, once the channel is no longer visible, the
981 * refcount is decremented and checked for a zero value to delete it. With
982 * streams in no monitor mode, it will now be safe to destroy the channel.
984 if (!channel
->monitor
) {
985 channel
->refcount
= 1;
988 strncpy(channel
->pathname
, pathname
, sizeof(channel
->pathname
));
989 channel
->pathname
[sizeof(channel
->pathname
) - 1] = '\0';
991 strncpy(channel
->name
, name
, sizeof(channel
->name
));
992 channel
->name
[sizeof(channel
->name
) - 1] = '\0';
994 lttng_ht_node_init_u64(&channel
->node
, channel
->key
);
996 channel
->wait_fd
= -1;
998 CDS_INIT_LIST_HEAD(&channel
->streams
.head
);
1000 DBG("Allocated channel (key %" PRIu64
")", channel
->key
)
1007 * Add a channel to the global list protected by a mutex.
1009 * Always return 0 indicating success.
1011 int consumer_add_channel(struct lttng_consumer_channel
*channel
,
1012 struct lttng_consumer_local_data
*ctx
)
1014 pthread_mutex_lock(&consumer_data
.lock
);
1015 pthread_mutex_lock(&channel
->lock
);
1016 pthread_mutex_lock(&channel
->timer_lock
);
1019 * This gives us a guarantee that the channel we are about to add to the
1020 * channel hash table will be unique. See this function comment on the why
1021 * we need to steel the channel key at this stage.
1023 steal_channel_key(channel
->key
);
1026 lttng_ht_add_unique_u64(consumer_data
.channel_ht
, &channel
->node
);
1029 pthread_mutex_unlock(&channel
->timer_lock
);
1030 pthread_mutex_unlock(&channel
->lock
);
1031 pthread_mutex_unlock(&consumer_data
.lock
);
1033 if (channel
->wait_fd
!= -1 && channel
->type
== CONSUMER_CHANNEL_TYPE_DATA
) {
1034 notify_channel_pipe(ctx
, channel
, -1, CONSUMER_CHANNEL_ADD
);
1041 * Allocate the pollfd structure and the local view of the out fds to avoid
1042 * doing a lookup in the linked list and concurrency issues when writing is
1043 * needed. Called with consumer_data.lock held.
1045 * Returns the number of fds in the structures.
1047 static int update_poll_array(struct lttng_consumer_local_data
*ctx
,
1048 struct pollfd
**pollfd
, struct lttng_consumer_stream
**local_stream
,
1049 struct lttng_ht
*ht
)
1052 struct lttng_ht_iter iter
;
1053 struct lttng_consumer_stream
*stream
;
1058 assert(local_stream
);
1060 DBG("Updating poll fd array");
1062 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1064 * Only active streams with an active end point can be added to the
1065 * poll set and local stream storage of the thread.
1067 * There is a potential race here for endpoint_status to be updated
1068 * just after the check. However, this is OK since the stream(s) will
1069 * be deleted once the thread is notified that the end point state has
1070 * changed where this function will be called back again.
1072 if (stream
->state
!= LTTNG_CONSUMER_ACTIVE_STREAM
||
1073 stream
->endpoint_status
== CONSUMER_ENDPOINT_INACTIVE
) {
1077 * This clobbers way too much the debug output. Uncomment that if you
1078 * need it for debugging purposes.
1080 * DBG("Active FD %d", stream->wait_fd);
1082 (*pollfd
)[i
].fd
= stream
->wait_fd
;
1083 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
1084 local_stream
[i
] = stream
;
1090 * Insert the consumer_data_pipe at the end of the array and don't
1091 * increment i so nb_fd is the number of real FD.
1093 (*pollfd
)[i
].fd
= lttng_pipe_get_readfd(ctx
->consumer_data_pipe
);
1094 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
1096 (*pollfd
)[i
+ 1].fd
= lttng_pipe_get_readfd(ctx
->consumer_wakeup_pipe
);
1097 (*pollfd
)[i
+ 1].events
= POLLIN
| POLLPRI
;
1102 * Poll on the should_quit pipe and the command socket return -1 on
1103 * error, 1 if should exit, 0 if data is available on the command socket
1105 int lttng_consumer_poll_socket(struct pollfd
*consumer_sockpoll
)
1110 num_rdy
= poll(consumer_sockpoll
, 2, -1);
1111 if (num_rdy
== -1) {
1113 * Restart interrupted system call.
1115 if (errno
== EINTR
) {
1118 PERROR("Poll error");
1121 if (consumer_sockpoll
[0].revents
& (POLLIN
| POLLPRI
)) {
1122 DBG("consumer_should_quit wake up");
1129 * Set the error socket.
1131 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data
*ctx
,
1134 ctx
->consumer_error_socket
= sock
;
1138 * Set the command socket path.
1140 void lttng_consumer_set_command_sock_path(
1141 struct lttng_consumer_local_data
*ctx
, char *sock
)
1143 ctx
->consumer_command_sock_path
= sock
;
1147 * Send return code to the session daemon.
1148 * If the socket is not defined, we return 0, it is not a fatal error
1150 int lttng_consumer_send_error(struct lttng_consumer_local_data
*ctx
, int cmd
)
1152 if (ctx
->consumer_error_socket
> 0) {
1153 return lttcomm_send_unix_sock(ctx
->consumer_error_socket
, &cmd
,
1154 sizeof(enum lttcomm_sessiond_command
));
1161 * Close all the tracefiles and stream fds and MUST be called when all
1162 * instances are destroyed i.e. when all threads were joined and are ended.
1164 void lttng_consumer_cleanup(void)
1166 struct lttng_ht_iter iter
;
1167 struct lttng_consumer_channel
*channel
;
1171 cds_lfht_for_each_entry(consumer_data
.channel_ht
->ht
, &iter
.iter
, channel
,
1173 consumer_del_channel(channel
);
1178 lttng_ht_destroy(consumer_data
.channel_ht
);
1180 cleanup_relayd_ht();
1182 lttng_ht_destroy(consumer_data
.stream_per_chan_id_ht
);
1185 * This HT contains streams that are freed by either the metadata thread or
1186 * the data thread so we do *nothing* on the hash table and simply destroy
1189 lttng_ht_destroy(consumer_data
.stream_list_ht
);
1193 * Called from signal handler.
1195 void lttng_consumer_should_exit(struct lttng_consumer_local_data
*ctx
)
1200 ret
= lttng_write(ctx
->consumer_should_quit
[1], "4", 1);
1202 PERROR("write consumer quit");
1205 DBG("Consumer flag that it should quit");
1208 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream
*stream
,
1211 int outfd
= stream
->out_fd
;
1214 * This does a blocking write-and-wait on any page that belongs to the
1215 * subbuffer prior to the one we just wrote.
1216 * Don't care about error values, as these are just hints and ways to
1217 * limit the amount of page cache used.
1219 if (orig_offset
< stream
->max_sb_size
) {
1222 lttng_sync_file_range(outfd
, orig_offset
- stream
->max_sb_size
,
1223 stream
->max_sb_size
,
1224 SYNC_FILE_RANGE_WAIT_BEFORE
1225 | SYNC_FILE_RANGE_WRITE
1226 | SYNC_FILE_RANGE_WAIT_AFTER
);
1228 * Give hints to the kernel about how we access the file:
1229 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1232 * We need to call fadvise again after the file grows because the
1233 * kernel does not seem to apply fadvise to non-existing parts of the
1236 * Call fadvise _after_ having waited for the page writeback to
1237 * complete because the dirty page writeback semantic is not well
1238 * defined. So it can be expected to lead to lower throughput in
1241 posix_fadvise(outfd
, orig_offset
- stream
->max_sb_size
,
1242 stream
->max_sb_size
, POSIX_FADV_DONTNEED
);
1246 * Initialise the necessary environnement :
1247 * - create a new context
1248 * - create the poll_pipe
1249 * - create the should_quit pipe (for signal handler)
1250 * - create the thread pipe (for splice)
1252 * Takes a function pointer as argument, this function is called when data is
1253 * available on a buffer. This function is responsible to do the
1254 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1255 * buffer configuration and then kernctl_put_next_subbuf at the end.
1257 * Returns a pointer to the new context or NULL on error.
1259 struct lttng_consumer_local_data
*lttng_consumer_create(
1260 enum lttng_consumer_type type
,
1261 ssize_t (*buffer_ready
)(struct lttng_consumer_stream
*stream
,
1262 struct lttng_consumer_local_data
*ctx
),
1263 int (*recv_channel
)(struct lttng_consumer_channel
*channel
),
1264 int (*recv_stream
)(struct lttng_consumer_stream
*stream
),
1265 int (*update_stream
)(uint64_t stream_key
, uint32_t state
))
1268 struct lttng_consumer_local_data
*ctx
;
1270 assert(consumer_data
.type
== LTTNG_CONSUMER_UNKNOWN
||
1271 consumer_data
.type
== type
);
1272 consumer_data
.type
= type
;
1274 ctx
= zmalloc(sizeof(struct lttng_consumer_local_data
));
1276 PERROR("allocating context");
1280 ctx
->consumer_error_socket
= -1;
1281 ctx
->consumer_metadata_socket
= -1;
1282 pthread_mutex_init(&ctx
->metadata_socket_lock
, NULL
);
1283 /* assign the callbacks */
1284 ctx
->on_buffer_ready
= buffer_ready
;
1285 ctx
->on_recv_channel
= recv_channel
;
1286 ctx
->on_recv_stream
= recv_stream
;
1287 ctx
->on_update_stream
= update_stream
;
1289 ctx
->consumer_data_pipe
= lttng_pipe_open(0);
1290 if (!ctx
->consumer_data_pipe
) {
1291 goto error_poll_pipe
;
1294 ctx
->consumer_wakeup_pipe
= lttng_pipe_open(0);
1295 if (!ctx
->consumer_wakeup_pipe
) {
1296 goto error_wakeup_pipe
;
1299 ret
= pipe(ctx
->consumer_should_quit
);
1301 PERROR("Error creating recv pipe");
1302 goto error_quit_pipe
;
1305 ret
= pipe(ctx
->consumer_thread_pipe
);
1307 PERROR("Error creating thread pipe");
1308 goto error_thread_pipe
;
1311 ret
= pipe(ctx
->consumer_channel_pipe
);
1313 PERROR("Error creating channel pipe");
1314 goto error_channel_pipe
;
1317 ctx
->consumer_metadata_pipe
= lttng_pipe_open(0);
1318 if (!ctx
->consumer_metadata_pipe
) {
1319 goto error_metadata_pipe
;
1322 ret
= utils_create_pipe(ctx
->consumer_splice_metadata_pipe
);
1324 goto error_splice_pipe
;
1330 lttng_pipe_destroy(ctx
->consumer_metadata_pipe
);
1331 error_metadata_pipe
:
1332 utils_close_pipe(ctx
->consumer_channel_pipe
);
1334 utils_close_pipe(ctx
->consumer_thread_pipe
);
1336 utils_close_pipe(ctx
->consumer_should_quit
);
1338 lttng_pipe_destroy(ctx
->consumer_wakeup_pipe
);
1340 lttng_pipe_destroy(ctx
->consumer_data_pipe
);
1348 * Iterate over all streams of the hashtable and free them properly.
1350 static void destroy_data_stream_ht(struct lttng_ht
*ht
)
1352 struct lttng_ht_iter iter
;
1353 struct lttng_consumer_stream
*stream
;
1360 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1362 * Ignore return value since we are currently cleaning up so any error
1365 (void) consumer_del_stream(stream
, ht
);
1369 lttng_ht_destroy(ht
);
1373 * Iterate over all streams of the metadata hashtable and free them
1376 static void destroy_metadata_stream_ht(struct lttng_ht
*ht
)
1378 struct lttng_ht_iter iter
;
1379 struct lttng_consumer_stream
*stream
;
1386 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1388 * Ignore return value since we are currently cleaning up so any error
1391 (void) consumer_del_metadata_stream(stream
, ht
);
1395 lttng_ht_destroy(ht
);
1399 * Close all fds associated with the instance and free the context.
1401 void lttng_consumer_destroy(struct lttng_consumer_local_data
*ctx
)
1405 DBG("Consumer destroying it. Closing everything.");
1411 destroy_data_stream_ht(data_ht
);
1412 destroy_metadata_stream_ht(metadata_ht
);
1414 ret
= close(ctx
->consumer_error_socket
);
1418 ret
= close(ctx
->consumer_metadata_socket
);
1422 utils_close_pipe(ctx
->consumer_thread_pipe
);
1423 utils_close_pipe(ctx
->consumer_channel_pipe
);
1424 lttng_pipe_destroy(ctx
->consumer_data_pipe
);
1425 lttng_pipe_destroy(ctx
->consumer_metadata_pipe
);
1426 lttng_pipe_destroy(ctx
->consumer_wakeup_pipe
);
1427 utils_close_pipe(ctx
->consumer_should_quit
);
1428 utils_close_pipe(ctx
->consumer_splice_metadata_pipe
);
1430 unlink(ctx
->consumer_command_sock_path
);
1435 * Write the metadata stream id on the specified file descriptor.
1437 static int write_relayd_metadata_id(int fd
,
1438 struct lttng_consumer_stream
*stream
,
1439 struct consumer_relayd_sock_pair
*relayd
, unsigned long padding
)
1442 struct lttcomm_relayd_metadata_payload hdr
;
1444 hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
1445 hdr
.padding_size
= htobe32(padding
);
1446 ret
= lttng_write(fd
, (void *) &hdr
, sizeof(hdr
));
1447 if (ret
< sizeof(hdr
)) {
1449 * This error means that the fd's end is closed so ignore the perror
1450 * not to clubber the error output since this can happen in a normal
1453 if (errno
!= EPIPE
) {
1454 PERROR("write metadata stream id");
1456 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno
);
1458 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1459 * handle writting the missing part so report that as an error and
1460 * don't lie to the caller.
1465 DBG("Metadata stream id %" PRIu64
" with padding %lu written before data",
1466 stream
->relayd_stream_id
, padding
);
1473 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1474 * core function for writing trace buffers to either the local filesystem or
1477 * It must be called with the stream lock held.
1479 * Careful review MUST be put if any changes occur!
1481 * Returns the number of bytes written
1483 ssize_t
lttng_consumer_on_read_subbuffer_mmap(
1484 struct lttng_consumer_local_data
*ctx
,
1485 struct lttng_consumer_stream
*stream
, unsigned long len
,
1486 unsigned long padding
,
1487 struct ctf_packet_index
*index
)
1489 unsigned long mmap_offset
;
1492 off_t orig_offset
= stream
->out_fd_offset
;
1493 /* Default is on the disk */
1494 int outfd
= stream
->out_fd
;
1495 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1496 unsigned int relayd_hang_up
= 0;
1498 /* RCU lock for the relayd pointer */
1501 /* Flag that the current stream if set for network streaming. */
1502 if (stream
->net_seq_idx
!= (uint64_t) -1ULL) {
1503 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1504 if (relayd
== NULL
) {
1510 /* get the offset inside the fd to mmap */
1511 switch (consumer_data
.type
) {
1512 case LTTNG_CONSUMER_KERNEL
:
1513 mmap_base
= stream
->mmap_base
;
1514 ret
= kernctl_get_mmap_read_offset(stream
->wait_fd
, &mmap_offset
);
1517 PERROR("tracer ctl get_mmap_read_offset");
1521 case LTTNG_CONSUMER32_UST
:
1522 case LTTNG_CONSUMER64_UST
:
1523 mmap_base
= lttng_ustctl_get_mmap_base(stream
);
1525 ERR("read mmap get mmap base for stream %s", stream
->name
);
1529 ret
= lttng_ustctl_get_mmap_read_offset(stream
, &mmap_offset
);
1531 PERROR("tracer ctl get_mmap_read_offset");
1537 ERR("Unknown consumer_data type");
1541 /* Handle stream on the relayd if the output is on the network */
1543 unsigned long netlen
= len
;
1546 * Lock the control socket for the complete duration of the function
1547 * since from this point on we will use the socket.
1549 if (stream
->metadata_flag
) {
1550 /* Metadata requires the control socket. */
1551 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1552 netlen
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1555 ret
= write_relayd_stream_header(stream
, netlen
, padding
, relayd
);
1560 /* Use the returned socket. */
1563 /* Write metadata stream id before payload */
1564 if (stream
->metadata_flag
) {
1565 ret
= write_relayd_metadata_id(outfd
, stream
, relayd
, padding
);
1572 /* No streaming, we have to set the len with the full padding */
1576 * Check if we need to change the tracefile before writing the packet.
1578 if (stream
->chan
->tracefile_size
> 0 &&
1579 (stream
->tracefile_size_current
+ len
) >
1580 stream
->chan
->tracefile_size
) {
1581 ret
= utils_rotate_stream_file(stream
->chan
->pathname
,
1582 stream
->name
, stream
->chan
->tracefile_size
,
1583 stream
->chan
->tracefile_count
, stream
->uid
, stream
->gid
,
1584 stream
->out_fd
, &(stream
->tracefile_count_current
),
1587 ERR("Rotating output file");
1590 outfd
= stream
->out_fd
;
1592 if (stream
->index_fd
>= 0) {
1593 ret
= index_create_file(stream
->chan
->pathname
,
1594 stream
->name
, stream
->uid
, stream
->gid
,
1595 stream
->chan
->tracefile_size
,
1596 stream
->tracefile_count_current
);
1600 stream
->index_fd
= ret
;
1603 /* Reset current size because we just perform a rotation. */
1604 stream
->tracefile_size_current
= 0;
1605 stream
->out_fd_offset
= 0;
1608 stream
->tracefile_size_current
+= len
;
1610 index
->offset
= htobe64(stream
->out_fd_offset
);
1615 * This call guarantee that len or less is returned. It's impossible to
1616 * receive a ret value that is bigger than len.
1618 ret
= lttng_write(outfd
, mmap_base
+ mmap_offset
, len
);
1619 DBG("Consumer mmap write() ret %zd (len %lu)", ret
, len
);
1620 if (ret
< 0 || ((size_t) ret
!= len
)) {
1622 * Report error to caller if nothing was written else at least send the
1630 /* Socket operation failed. We consider the relayd dead */
1631 if (errno
== EPIPE
|| errno
== EINVAL
|| errno
== EBADF
) {
1633 * This is possible if the fd is closed on the other side
1634 * (outfd) or any write problem. It can be verbose a bit for a
1635 * normal execution if for instance the relayd is stopped
1636 * abruptly. This can happen so set this to a DBG statement.
1638 DBG("Consumer mmap write detected relayd hang up");
1640 /* Unhandled error, print it and stop function right now. */
1641 PERROR("Error in write mmap (ret %zd != len %lu)", ret
, len
);
1645 stream
->output_written
+= ret
;
1647 /* This call is useless on a socket so better save a syscall. */
1649 /* This won't block, but will start writeout asynchronously */
1650 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, len
,
1651 SYNC_FILE_RANGE_WRITE
);
1652 stream
->out_fd_offset
+= len
;
1654 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1658 * This is a special case that the relayd has closed its socket. Let's
1659 * cleanup the relayd object and all associated streams.
1661 if (relayd
&& relayd_hang_up
) {
1662 cleanup_relayd(relayd
, ctx
);
1666 /* Unlock only if ctrl socket used */
1667 if (relayd
&& stream
->metadata_flag
) {
1668 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1676 * Splice the data from the ring buffer to the tracefile.
1678 * It must be called with the stream lock held.
1680 * Returns the number of bytes spliced.
1682 ssize_t
lttng_consumer_on_read_subbuffer_splice(
1683 struct lttng_consumer_local_data
*ctx
,
1684 struct lttng_consumer_stream
*stream
, unsigned long len
,
1685 unsigned long padding
,
1686 struct ctf_packet_index
*index
)
1688 ssize_t ret
= 0, written
= 0, ret_splice
= 0;
1690 off_t orig_offset
= stream
->out_fd_offset
;
1691 int fd
= stream
->wait_fd
;
1692 /* Default is on the disk */
1693 int outfd
= stream
->out_fd
;
1694 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1696 unsigned int relayd_hang_up
= 0;
1698 switch (consumer_data
.type
) {
1699 case LTTNG_CONSUMER_KERNEL
:
1701 case LTTNG_CONSUMER32_UST
:
1702 case LTTNG_CONSUMER64_UST
:
1703 /* Not supported for user space tracing */
1706 ERR("Unknown consumer_data type");
1710 /* RCU lock for the relayd pointer */
1713 /* Flag that the current stream if set for network streaming. */
1714 if (stream
->net_seq_idx
!= (uint64_t) -1ULL) {
1715 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1716 if (relayd
== NULL
) {
1723 * Choose right pipe for splice. Metadata and trace data are handled by
1724 * different threads hence the use of two pipes in order not to race or
1725 * corrupt the written data.
1727 if (stream
->metadata_flag
) {
1728 splice_pipe
= ctx
->consumer_splice_metadata_pipe
;
1730 splice_pipe
= ctx
->consumer_thread_pipe
;
1733 /* Write metadata stream id before payload */
1735 unsigned long total_len
= len
;
1737 if (stream
->metadata_flag
) {
1739 * Lock the control socket for the complete duration of the function
1740 * since from this point on we will use the socket.
1742 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1744 ret
= write_relayd_metadata_id(splice_pipe
[1], stream
, relayd
,
1752 total_len
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1755 ret
= write_relayd_stream_header(stream
, total_len
, padding
, relayd
);
1761 /* Use the returned socket. */
1764 /* No streaming, we have to set the len with the full padding */
1768 * Check if we need to change the tracefile before writing the packet.
1770 if (stream
->chan
->tracefile_size
> 0 &&
1771 (stream
->tracefile_size_current
+ len
) >
1772 stream
->chan
->tracefile_size
) {
1773 ret
= utils_rotate_stream_file(stream
->chan
->pathname
,
1774 stream
->name
, stream
->chan
->tracefile_size
,
1775 stream
->chan
->tracefile_count
, stream
->uid
, stream
->gid
,
1776 stream
->out_fd
, &(stream
->tracefile_count_current
),
1780 ERR("Rotating output file");
1783 outfd
= stream
->out_fd
;
1785 if (stream
->index_fd
>= 0) {
1786 ret
= index_create_file(stream
->chan
->pathname
,
1787 stream
->name
, stream
->uid
, stream
->gid
,
1788 stream
->chan
->tracefile_size
,
1789 stream
->tracefile_count_current
);
1794 stream
->index_fd
= ret
;
1797 /* Reset current size because we just perform a rotation. */
1798 stream
->tracefile_size_current
= 0;
1799 stream
->out_fd_offset
= 0;
1802 stream
->tracefile_size_current
+= len
;
1803 index
->offset
= htobe64(stream
->out_fd_offset
);
1807 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1808 (unsigned long)offset
, len
, fd
, splice_pipe
[1]);
1809 ret_splice
= splice(fd
, &offset
, splice_pipe
[1], NULL
, len
,
1810 SPLICE_F_MOVE
| SPLICE_F_MORE
);
1811 DBG("splice chan to pipe, ret %zd", ret_splice
);
1812 if (ret_splice
< 0) {
1815 PERROR("Error in relay splice");
1819 /* Handle stream on the relayd if the output is on the network */
1820 if (relayd
&& stream
->metadata_flag
) {
1821 size_t metadata_payload_size
=
1822 sizeof(struct lttcomm_relayd_metadata_payload
);
1824 /* Update counter to fit the spliced data */
1825 ret_splice
+= metadata_payload_size
;
1826 len
+= metadata_payload_size
;
1828 * We do this so the return value can match the len passed as
1829 * argument to this function.
1831 written
-= metadata_payload_size
;
1834 /* Splice data out */
1835 ret_splice
= splice(splice_pipe
[0], NULL
, outfd
, NULL
,
1836 ret_splice
, SPLICE_F_MOVE
| SPLICE_F_MORE
);
1837 DBG("Consumer splice pipe to file, ret %zd", ret_splice
);
1838 if (ret_splice
< 0) {
1843 } else if (ret_splice
> len
) {
1845 * We don't expect this code path to be executed but you never know
1846 * so this is an extra protection agains a buggy splice().
1849 written
+= ret_splice
;
1850 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice
,
1854 /* All good, update current len and continue. */
1858 /* This call is useless on a socket so better save a syscall. */
1860 /* This won't block, but will start writeout asynchronously */
1861 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, ret_splice
,
1862 SYNC_FILE_RANGE_WRITE
);
1863 stream
->out_fd_offset
+= ret_splice
;
1865 stream
->output_written
+= ret_splice
;
1866 written
+= ret_splice
;
1868 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1873 * This is a special case that the relayd has closed its socket. Let's
1874 * cleanup the relayd object and all associated streams.
1876 if (relayd
&& relayd_hang_up
) {
1877 cleanup_relayd(relayd
, ctx
);
1878 /* Skip splice error so the consumer does not fail */
1883 /* send the appropriate error description to sessiond */
1886 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_EINVAL
);
1889 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ENOMEM
);
1892 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ESPIPE
);
1897 if (relayd
&& stream
->metadata_flag
) {
1898 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1906 * Take a snapshot for a specific fd
1908 * Returns 0 on success, < 0 on error
1910 int lttng_consumer_take_snapshot(struct lttng_consumer_stream
*stream
)
1912 switch (consumer_data
.type
) {
1913 case LTTNG_CONSUMER_KERNEL
:
1914 return lttng_kconsumer_take_snapshot(stream
);
1915 case LTTNG_CONSUMER32_UST
:
1916 case LTTNG_CONSUMER64_UST
:
1917 return lttng_ustconsumer_take_snapshot(stream
);
1919 ERR("Unknown consumer_data type");
1926 * Get the produced position
1928 * Returns 0 on success, < 0 on error
1930 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream
*stream
,
1933 switch (consumer_data
.type
) {
1934 case LTTNG_CONSUMER_KERNEL
:
1935 return lttng_kconsumer_get_produced_snapshot(stream
, pos
);
1936 case LTTNG_CONSUMER32_UST
:
1937 case LTTNG_CONSUMER64_UST
:
1938 return lttng_ustconsumer_get_produced_snapshot(stream
, pos
);
1940 ERR("Unknown consumer_data type");
1946 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data
*ctx
,
1947 int sock
, struct pollfd
*consumer_sockpoll
)
1949 switch (consumer_data
.type
) {
1950 case LTTNG_CONSUMER_KERNEL
:
1951 return lttng_kconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
1952 case LTTNG_CONSUMER32_UST
:
1953 case LTTNG_CONSUMER64_UST
:
1954 return lttng_ustconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
1956 ERR("Unknown consumer_data type");
1962 void lttng_consumer_close_all_metadata(void)
1964 switch (consumer_data
.type
) {
1965 case LTTNG_CONSUMER_KERNEL
:
1967 * The Kernel consumer has a different metadata scheme so we don't
1968 * close anything because the stream will be closed by the session
1972 case LTTNG_CONSUMER32_UST
:
1973 case LTTNG_CONSUMER64_UST
:
1975 * Close all metadata streams. The metadata hash table is passed and
1976 * this call iterates over it by closing all wakeup fd. This is safe
1977 * because at this point we are sure that the metadata producer is
1978 * either dead or blocked.
1980 lttng_ustconsumer_close_all_metadata(metadata_ht
);
1983 ERR("Unknown consumer_data type");
1989 * Clean up a metadata stream and free its memory.
1991 void consumer_del_metadata_stream(struct lttng_consumer_stream
*stream
,
1992 struct lttng_ht
*ht
)
1994 struct lttng_consumer_channel
*free_chan
= NULL
;
1998 * This call should NEVER receive regular stream. It must always be
1999 * metadata stream and this is crucial for data structure synchronization.
2001 assert(stream
->metadata_flag
);
2003 DBG3("Consumer delete metadata stream %d", stream
->wait_fd
);
2005 pthread_mutex_lock(&consumer_data
.lock
);
2006 pthread_mutex_lock(&stream
->chan
->lock
);
2007 pthread_mutex_lock(&stream
->lock
);
2009 /* Remove any reference to that stream. */
2010 consumer_stream_delete(stream
, ht
);
2012 /* Close down everything including the relayd if one. */
2013 consumer_stream_close(stream
);
2014 /* Destroy tracer buffers of the stream. */
2015 consumer_stream_destroy_buffers(stream
);
2017 /* Atomically decrement channel refcount since other threads can use it. */
2018 if (!uatomic_sub_return(&stream
->chan
->refcount
, 1)
2019 && !uatomic_read(&stream
->chan
->nb_init_stream_left
)) {
2020 /* Go for channel deletion! */
2021 free_chan
= stream
->chan
;
2025 * Nullify the stream reference so it is not used after deletion. The
2026 * channel lock MUST be acquired before being able to check for a NULL
2029 stream
->chan
->metadata_stream
= NULL
;
2031 pthread_mutex_unlock(&stream
->lock
);
2032 pthread_mutex_unlock(&stream
->chan
->lock
);
2033 pthread_mutex_unlock(&consumer_data
.lock
);
2036 consumer_del_channel(free_chan
);
2039 consumer_stream_free(stream
);
2043 * Action done with the metadata stream when adding it to the consumer internal
2044 * data structures to handle it.
2046 int consumer_add_metadata_stream(struct lttng_consumer_stream
*stream
)
2048 struct lttng_ht
*ht
= metadata_ht
;
2050 struct lttng_ht_iter iter
;
2051 struct lttng_ht_node_u64
*node
;
2056 DBG3("Adding metadata stream %" PRIu64
" to hash table", stream
->key
);
2058 pthread_mutex_lock(&consumer_data
.lock
);
2059 pthread_mutex_lock(&stream
->chan
->lock
);
2060 pthread_mutex_lock(&stream
->chan
->timer_lock
);
2061 pthread_mutex_lock(&stream
->lock
);
2064 * From here, refcounts are updated so be _careful_ when returning an error
2071 * Lookup the stream just to make sure it does not exist in our internal
2072 * state. This should NEVER happen.
2074 lttng_ht_lookup(ht
, &stream
->key
, &iter
);
2075 node
= lttng_ht_iter_get_node_u64(&iter
);
2079 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2080 * in terms of destroying the associated channel, because the action that
2081 * causes the count to become 0 also causes a stream to be added. The
2082 * channel deletion will thus be triggered by the following removal of this
2085 if (uatomic_read(&stream
->chan
->nb_init_stream_left
) > 0) {
2086 /* Increment refcount before decrementing nb_init_stream_left */
2088 uatomic_dec(&stream
->chan
->nb_init_stream_left
);
2091 lttng_ht_add_unique_u64(ht
, &stream
->node
);
2093 lttng_ht_add_unique_u64(consumer_data
.stream_per_chan_id_ht
,
2094 &stream
->node_channel_id
);
2097 * Add stream to the stream_list_ht of the consumer data. No need to steal
2098 * the key since the HT does not use it and we allow to add redundant keys
2101 lttng_ht_add_u64(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
2105 pthread_mutex_unlock(&stream
->lock
);
2106 pthread_mutex_unlock(&stream
->chan
->lock
);
2107 pthread_mutex_unlock(&stream
->chan
->timer_lock
);
2108 pthread_mutex_unlock(&consumer_data
.lock
);
2113 * Delete data stream that are flagged for deletion (endpoint_status).
2115 static void validate_endpoint_status_data_stream(void)
2117 struct lttng_ht_iter iter
;
2118 struct lttng_consumer_stream
*stream
;
2120 DBG("Consumer delete flagged data stream");
2123 cds_lfht_for_each_entry(data_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2124 /* Validate delete flag of the stream */
2125 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2128 /* Delete it right now */
2129 consumer_del_stream(stream
, data_ht
);
2135 * Delete metadata stream that are flagged for deletion (endpoint_status).
2137 static void validate_endpoint_status_metadata_stream(
2138 struct lttng_poll_event
*pollset
)
2140 struct lttng_ht_iter iter
;
2141 struct lttng_consumer_stream
*stream
;
2143 DBG("Consumer delete flagged metadata stream");
2148 cds_lfht_for_each_entry(metadata_ht
->ht
, &iter
.iter
, stream
, node
.node
) {
2149 /* Validate delete flag of the stream */
2150 if (stream
->endpoint_status
== CONSUMER_ENDPOINT_ACTIVE
) {
2154 * Remove from pollset so the metadata thread can continue without
2155 * blocking on a deleted stream.
2157 lttng_poll_del(pollset
, stream
->wait_fd
);
2159 /* Delete it right now */
2160 consumer_del_metadata_stream(stream
, metadata_ht
);
2166 * Thread polls on metadata file descriptor and write them on disk or on the
2169 void *consumer_thread_metadata_poll(void *data
)
2171 int ret
, i
, pollfd
, err
= -1;
2172 uint32_t revents
, nb_fd
;
2173 struct lttng_consumer_stream
*stream
= NULL
;
2174 struct lttng_ht_iter iter
;
2175 struct lttng_ht_node_u64
*node
;
2176 struct lttng_poll_event events
;
2177 struct lttng_consumer_local_data
*ctx
= data
;
2180 rcu_register_thread();
2182 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_METADATA
);
2184 if (testpoint(consumerd_thread_metadata
)) {
2185 goto error_testpoint
;
2188 health_code_update();
2190 DBG("Thread metadata poll started");
2192 /* Size is set to 1 for the consumer_metadata pipe */
2193 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
2195 ERR("Poll set creation failed");
2199 ret
= lttng_poll_add(&events
,
2200 lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
), LPOLLIN
);
2206 DBG("Metadata main loop started");
2209 health_code_update();
2211 /* Only the metadata pipe is set */
2212 if (LTTNG_POLL_GETNB(&events
) == 0 && consumer_quit
== 1) {
2213 err
= 0; /* All is OK */
2218 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events
));
2219 health_poll_entry();
2220 ret
= lttng_poll_wait(&events
, -1);
2222 DBG("Metadata event catched in thread");
2224 if (errno
== EINTR
) {
2225 ERR("Poll EINTR catched");
2233 /* From here, the event is a metadata wait fd */
2234 for (i
= 0; i
< nb_fd
; i
++) {
2235 health_code_update();
2237 revents
= LTTNG_POLL_GETEV(&events
, i
);
2238 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2240 if (pollfd
== lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
)) {
2241 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2242 DBG("Metadata thread pipe hung up");
2244 * Remove the pipe from the poll set and continue the loop
2245 * since their might be data to consume.
2247 lttng_poll_del(&events
,
2248 lttng_pipe_get_readfd(ctx
->consumer_metadata_pipe
));
2249 lttng_pipe_read_close(ctx
->consumer_metadata_pipe
);
2251 } else if (revents
& LPOLLIN
) {
2254 pipe_len
= lttng_pipe_read(ctx
->consumer_metadata_pipe
,
2255 &stream
, sizeof(stream
));
2256 if (pipe_len
< sizeof(stream
)) {
2257 PERROR("read metadata stream");
2259 * Continue here to handle the rest of the streams.
2264 /* A NULL stream means that the state has changed. */
2265 if (stream
== NULL
) {
2266 /* Check for deleted streams. */
2267 validate_endpoint_status_metadata_stream(&events
);
2271 DBG("Adding metadata stream %d to poll set",
2274 /* Add metadata stream to the global poll events list */
2275 lttng_poll_add(&events
, stream
->wait_fd
,
2276 LPOLLIN
| LPOLLPRI
| LPOLLHUP
);
2279 /* Handle other stream */
2285 uint64_t tmp_id
= (uint64_t) pollfd
;
2287 lttng_ht_lookup(metadata_ht
, &tmp_id
, &iter
);
2289 node
= lttng_ht_iter_get_node_u64(&iter
);
2292 stream
= caa_container_of(node
, struct lttng_consumer_stream
,
2295 /* Check for error event */
2296 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2297 DBG("Metadata fd %d is hup|err.", pollfd
);
2298 if (!stream
->hangup_flush_done
2299 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2300 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2301 DBG("Attempting to flush and consume the UST buffers");
2302 lttng_ustconsumer_on_stream_hangup(stream
);
2304 /* We just flushed the stream now read it. */
2306 health_code_update();
2308 len
= ctx
->on_buffer_ready(stream
, ctx
);
2310 * We don't check the return value here since if we get
2311 * a negative len, it means an error occured thus we
2312 * simply remove it from the poll set and free the
2318 lttng_poll_del(&events
, stream
->wait_fd
);
2320 * This call update the channel states, closes file descriptors
2321 * and securely free the stream.
2323 consumer_del_metadata_stream(stream
, metadata_ht
);
2324 } else if (revents
& (LPOLLIN
| LPOLLPRI
)) {
2325 /* Get the data out of the metadata file descriptor */
2326 DBG("Metadata available on fd %d", pollfd
);
2327 assert(stream
->wait_fd
== pollfd
);
2330 health_code_update();
2332 len
= ctx
->on_buffer_ready(stream
, ctx
);
2334 * We don't check the return value here since if we get
2335 * a negative len, it means an error occured thus we
2336 * simply remove it from the poll set and free the
2341 /* It's ok to have an unavailable sub-buffer */
2342 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2343 /* Clean up stream from consumer and free it. */
2344 lttng_poll_del(&events
, stream
->wait_fd
);
2345 consumer_del_metadata_stream(stream
, metadata_ht
);
2349 /* Release RCU lock for the stream looked up */
2358 DBG("Metadata poll thread exiting");
2360 lttng_poll_clean(&events
);
2365 ERR("Health error occurred in %s", __func__
);
2367 health_unregister(health_consumerd
);
2368 rcu_unregister_thread();
2373 * This thread polls the fds in the set to consume the data and write
2374 * it to tracefile if necessary.
2376 void *consumer_thread_data_poll(void *data
)
2378 int num_rdy
, num_hup
, high_prio
, ret
, i
, err
= -1;
2379 struct pollfd
*pollfd
= NULL
;
2380 /* local view of the streams */
2381 struct lttng_consumer_stream
**local_stream
= NULL
, *new_stream
= NULL
;
2382 /* local view of consumer_data.fds_count */
2384 struct lttng_consumer_local_data
*ctx
= data
;
2387 rcu_register_thread();
2389 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_DATA
);
2391 if (testpoint(consumerd_thread_data
)) {
2392 goto error_testpoint
;
2395 health_code_update();
2397 local_stream
= zmalloc(sizeof(struct lttng_consumer_stream
*));
2398 if (local_stream
== NULL
) {
2399 PERROR("local_stream malloc");
2404 health_code_update();
2410 * the fds set has been updated, we need to update our
2411 * local array as well
2413 pthread_mutex_lock(&consumer_data
.lock
);
2414 if (consumer_data
.need_update
) {
2419 local_stream
= NULL
;
2422 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2425 pollfd
= zmalloc((consumer_data
.stream_count
+ 2) * sizeof(struct pollfd
));
2426 if (pollfd
== NULL
) {
2427 PERROR("pollfd malloc");
2428 pthread_mutex_unlock(&consumer_data
.lock
);
2432 local_stream
= zmalloc((consumer_data
.stream_count
+ 2) *
2433 sizeof(struct lttng_consumer_stream
*));
2434 if (local_stream
== NULL
) {
2435 PERROR("local_stream malloc");
2436 pthread_mutex_unlock(&consumer_data
.lock
);
2439 ret
= update_poll_array(ctx
, &pollfd
, local_stream
,
2442 ERR("Error in allocating pollfd or local_outfds");
2443 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2444 pthread_mutex_unlock(&consumer_data
.lock
);
2448 consumer_data
.need_update
= 0;
2450 pthread_mutex_unlock(&consumer_data
.lock
);
2452 /* No FDs and consumer_quit, consumer_cleanup the thread */
2453 if (nb_fd
== 0 && consumer_quit
== 1) {
2454 err
= 0; /* All is OK */
2457 /* poll on the array of fds */
2459 DBG("polling on %d fd", nb_fd
+ 2);
2460 health_poll_entry();
2461 num_rdy
= poll(pollfd
, nb_fd
+ 2, -1);
2463 DBG("poll num_rdy : %d", num_rdy
);
2464 if (num_rdy
== -1) {
2466 * Restart interrupted system call.
2468 if (errno
== EINTR
) {
2471 PERROR("Poll error");
2472 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2474 } else if (num_rdy
== 0) {
2475 DBG("Polling thread timed out");
2480 * If the consumer_data_pipe triggered poll go directly to the
2481 * beginning of the loop to update the array. We want to prioritize
2482 * array update over low-priority reads.
2484 if (pollfd
[nb_fd
].revents
& (POLLIN
| POLLPRI
)) {
2485 ssize_t pipe_readlen
;
2487 DBG("consumer_data_pipe wake up");
2488 pipe_readlen
= lttng_pipe_read(ctx
->consumer_data_pipe
,
2489 &new_stream
, sizeof(new_stream
));
2490 if (pipe_readlen
< sizeof(new_stream
)) {
2491 PERROR("Consumer data pipe");
2492 /* Continue so we can at least handle the current stream(s). */
2497 * If the stream is NULL, just ignore it. It's also possible that
2498 * the sessiond poll thread changed the consumer_quit state and is
2499 * waking us up to test it.
2501 if (new_stream
== NULL
) {
2502 validate_endpoint_status_data_stream();
2506 /* Continue to update the local streams and handle prio ones */
2510 /* Handle wakeup pipe. */
2511 if (pollfd
[nb_fd
+ 1].revents
& (POLLIN
| POLLPRI
)) {
2513 ssize_t pipe_readlen
;
2515 pipe_readlen
= lttng_pipe_read(ctx
->consumer_wakeup_pipe
, &dummy
,
2517 if (pipe_readlen
< 0) {
2518 PERROR("Consumer data wakeup pipe");
2520 /* We've been awakened to handle stream(s). */
2521 ctx
->has_wakeup
= 0;
2524 /* Take care of high priority channels first. */
2525 for (i
= 0; i
< nb_fd
; i
++) {
2526 health_code_update();
2528 if (local_stream
[i
] == NULL
) {
2531 if (pollfd
[i
].revents
& POLLPRI
) {
2532 DBG("Urgent read on fd %d", pollfd
[i
].fd
);
2534 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2535 /* it's ok to have an unavailable sub-buffer */
2536 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2537 /* Clean the stream and free it. */
2538 consumer_del_stream(local_stream
[i
], data_ht
);
2539 local_stream
[i
] = NULL
;
2540 } else if (len
> 0) {
2541 local_stream
[i
]->data_read
= 1;
2547 * If we read high prio channel in this loop, try again
2548 * for more high prio data.
2554 /* Take care of low priority channels. */
2555 for (i
= 0; i
< nb_fd
; i
++) {
2556 health_code_update();
2558 if (local_stream
[i
] == NULL
) {
2561 if ((pollfd
[i
].revents
& POLLIN
) ||
2562 local_stream
[i
]->hangup_flush_done
||
2563 local_stream
[i
]->has_data
) {
2564 DBG("Normal read on fd %d", pollfd
[i
].fd
);
2565 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2566 /* it's ok to have an unavailable sub-buffer */
2567 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2568 /* Clean the stream and free it. */
2569 consumer_del_stream(local_stream
[i
], data_ht
);
2570 local_stream
[i
] = NULL
;
2571 } else if (len
> 0) {
2572 local_stream
[i
]->data_read
= 1;
2577 /* Handle hangup and errors */
2578 for (i
= 0; i
< nb_fd
; i
++) {
2579 health_code_update();
2581 if (local_stream
[i
] == NULL
) {
2584 if (!local_stream
[i
]->hangup_flush_done
2585 && (pollfd
[i
].revents
& (POLLHUP
| POLLERR
| POLLNVAL
))
2586 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2587 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2588 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2590 lttng_ustconsumer_on_stream_hangup(local_stream
[i
]);
2591 /* Attempt read again, for the data we just flushed. */
2592 local_stream
[i
]->data_read
= 1;
2595 * If the poll flag is HUP/ERR/NVAL and we have
2596 * read no data in this pass, we can remove the
2597 * stream from its hash table.
2599 if ((pollfd
[i
].revents
& POLLHUP
)) {
2600 DBG("Polling fd %d tells it has hung up.", pollfd
[i
].fd
);
2601 if (!local_stream
[i
]->data_read
) {
2602 consumer_del_stream(local_stream
[i
], data_ht
);
2603 local_stream
[i
] = NULL
;
2606 } else if (pollfd
[i
].revents
& POLLERR
) {
2607 ERR("Error returned in polling fd %d.", pollfd
[i
].fd
);
2608 if (!local_stream
[i
]->data_read
) {
2609 consumer_del_stream(local_stream
[i
], data_ht
);
2610 local_stream
[i
] = NULL
;
2613 } else if (pollfd
[i
].revents
& POLLNVAL
) {
2614 ERR("Polling fd %d tells fd is not open.", pollfd
[i
].fd
);
2615 if (!local_stream
[i
]->data_read
) {
2616 consumer_del_stream(local_stream
[i
], data_ht
);
2617 local_stream
[i
] = NULL
;
2621 if (local_stream
[i
] != NULL
) {
2622 local_stream
[i
]->data_read
= 0;
2629 DBG("polling thread exiting");
2634 * Close the write side of the pipe so epoll_wait() in
2635 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2636 * read side of the pipe. If we close them both, epoll_wait strangely does
2637 * not return and could create a endless wait period if the pipe is the
2638 * only tracked fd in the poll set. The thread will take care of closing
2641 (void) lttng_pipe_write_close(ctx
->consumer_metadata_pipe
);
2646 ERR("Health error occurred in %s", __func__
);
2648 health_unregister(health_consumerd
);
2650 rcu_unregister_thread();
2655 * Close wake-up end of each stream belonging to the channel. This will
2656 * allow the poll() on the stream read-side to detect when the
2657 * write-side (application) finally closes them.
2660 void consumer_close_channel_streams(struct lttng_consumer_channel
*channel
)
2662 struct lttng_ht
*ht
;
2663 struct lttng_consumer_stream
*stream
;
2664 struct lttng_ht_iter iter
;
2666 ht
= consumer_data
.stream_per_chan_id_ht
;
2669 cds_lfht_for_each_entry_duplicate(ht
->ht
,
2670 ht
->hash_fct(&channel
->key
, lttng_ht_seed
),
2671 ht
->match_fct
, &channel
->key
,
2672 &iter
.iter
, stream
, node_channel_id
.node
) {
2674 * Protect against teardown with mutex.
2676 pthread_mutex_lock(&stream
->lock
);
2677 if (cds_lfht_is_node_deleted(&stream
->node
.node
)) {
2680 switch (consumer_data
.type
) {
2681 case LTTNG_CONSUMER_KERNEL
:
2683 case LTTNG_CONSUMER32_UST
:
2684 case LTTNG_CONSUMER64_UST
:
2685 if (stream
->metadata_flag
) {
2686 /* Safe and protected by the stream lock. */
2687 lttng_ustconsumer_close_metadata(stream
->chan
);
2690 * Note: a mutex is taken internally within
2691 * liblttng-ust-ctl to protect timer wakeup_fd
2692 * use from concurrent close.
2694 lttng_ustconsumer_close_stream_wakeup(stream
);
2698 ERR("Unknown consumer_data type");
2702 pthread_mutex_unlock(&stream
->lock
);
2707 static void destroy_channel_ht(struct lttng_ht
*ht
)
2709 struct lttng_ht_iter iter
;
2710 struct lttng_consumer_channel
*channel
;
2718 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, channel
, wait_fd_node
.node
) {
2719 ret
= lttng_ht_del(ht
, &iter
);
2724 lttng_ht_destroy(ht
);
2728 * This thread polls the channel fds to detect when they are being
2729 * closed. It closes all related streams if the channel is detected as
2730 * closed. It is currently only used as a shim layer for UST because the
2731 * consumerd needs to keep the per-stream wakeup end of pipes open for
2734 void *consumer_thread_channel_poll(void *data
)
2736 int ret
, i
, pollfd
, err
= -1;
2737 uint32_t revents
, nb_fd
;
2738 struct lttng_consumer_channel
*chan
= NULL
;
2739 struct lttng_ht_iter iter
;
2740 struct lttng_ht_node_u64
*node
;
2741 struct lttng_poll_event events
;
2742 struct lttng_consumer_local_data
*ctx
= data
;
2743 struct lttng_ht
*channel_ht
;
2745 rcu_register_thread();
2747 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_CHANNEL
);
2749 if (testpoint(consumerd_thread_channel
)) {
2750 goto error_testpoint
;
2753 health_code_update();
2755 channel_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
2757 /* ENOMEM at this point. Better to bail out. */
2761 DBG("Thread channel poll started");
2763 /* Size is set to 1 for the consumer_channel pipe */
2764 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
2766 ERR("Poll set creation failed");
2770 ret
= lttng_poll_add(&events
, ctx
->consumer_channel_pipe
[0], LPOLLIN
);
2776 DBG("Channel main loop started");
2779 health_code_update();
2781 /* Only the channel pipe is set */
2782 if (LTTNG_POLL_GETNB(&events
) == 0 && consumer_quit
== 1) {
2783 err
= 0; /* All is OK */
2788 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events
));
2789 health_poll_entry();
2790 ret
= lttng_poll_wait(&events
, -1);
2792 DBG("Channel event catched in thread");
2794 if (errno
== EINTR
) {
2795 ERR("Poll EINTR catched");
2803 /* From here, the event is a channel wait fd */
2804 for (i
= 0; i
< nb_fd
; i
++) {
2805 health_code_update();
2807 revents
= LTTNG_POLL_GETEV(&events
, i
);
2808 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
2810 /* Just don't waste time if no returned events for the fd */
2814 if (pollfd
== ctx
->consumer_channel_pipe
[0]) {
2815 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2816 DBG("Channel thread pipe hung up");
2818 * Remove the pipe from the poll set and continue the loop
2819 * since their might be data to consume.
2821 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
2823 } else if (revents
& LPOLLIN
) {
2824 enum consumer_channel_action action
;
2827 ret
= read_channel_pipe(ctx
, &chan
, &key
, &action
);
2829 ERR("Error reading channel pipe");
2834 case CONSUMER_CHANNEL_ADD
:
2835 DBG("Adding channel %d to poll set",
2838 lttng_ht_node_init_u64(&chan
->wait_fd_node
,
2841 lttng_ht_add_unique_u64(channel_ht
,
2842 &chan
->wait_fd_node
);
2844 /* Add channel to the global poll events list */
2845 lttng_poll_add(&events
, chan
->wait_fd
,
2846 LPOLLIN
| LPOLLPRI
);
2848 case CONSUMER_CHANNEL_DEL
:
2851 * This command should never be called if the channel
2852 * has streams monitored by either the data or metadata
2853 * thread. The consumer only notify this thread with a
2854 * channel del. command if it receives a destroy
2855 * channel command from the session daemon that send it
2856 * if a command prior to the GET_CHANNEL failed.
2860 chan
= consumer_find_channel(key
);
2863 ERR("UST consumer get channel key %" PRIu64
" not found for del channel", key
);
2866 lttng_poll_del(&events
, chan
->wait_fd
);
2867 iter
.iter
.node
= &chan
->wait_fd_node
.node
;
2868 ret
= lttng_ht_del(channel_ht
, &iter
);
2871 switch (consumer_data
.type
) {
2872 case LTTNG_CONSUMER_KERNEL
:
2874 case LTTNG_CONSUMER32_UST
:
2875 case LTTNG_CONSUMER64_UST
:
2876 health_code_update();
2877 /* Destroy streams that might have been left in the stream list. */
2878 clean_channel_stream_list(chan
);
2881 ERR("Unknown consumer_data type");
2886 * Release our own refcount. Force channel deletion even if
2887 * streams were not initialized.
2889 if (!uatomic_sub_return(&chan
->refcount
, 1)) {
2890 consumer_del_channel(chan
);
2895 case CONSUMER_CHANNEL_QUIT
:
2897 * Remove the pipe from the poll set and continue the loop
2898 * since their might be data to consume.
2900 lttng_poll_del(&events
, ctx
->consumer_channel_pipe
[0]);
2903 ERR("Unknown action");
2908 /* Handle other stream */
2914 uint64_t tmp_id
= (uint64_t) pollfd
;
2916 lttng_ht_lookup(channel_ht
, &tmp_id
, &iter
);
2918 node
= lttng_ht_iter_get_node_u64(&iter
);
2921 chan
= caa_container_of(node
, struct lttng_consumer_channel
,
2924 /* Check for error event */
2925 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
2926 DBG("Channel fd %d is hup|err.", pollfd
);
2928 lttng_poll_del(&events
, chan
->wait_fd
);
2929 ret
= lttng_ht_del(channel_ht
, &iter
);
2933 * This will close the wait fd for each stream associated to
2934 * this channel AND monitored by the data/metadata thread thus
2935 * will be clean by the right thread.
2937 consumer_close_channel_streams(chan
);
2939 /* Release our own refcount */
2940 if (!uatomic_sub_return(&chan
->refcount
, 1)
2941 && !uatomic_read(&chan
->nb_init_stream_left
)) {
2942 consumer_del_channel(chan
);
2946 /* Release RCU lock for the channel looked up */
2954 lttng_poll_clean(&events
);
2956 destroy_channel_ht(channel_ht
);
2959 DBG("Channel poll thread exiting");
2962 ERR("Health error occurred in %s", __func__
);
2964 health_unregister(health_consumerd
);
2965 rcu_unregister_thread();
2969 static int set_metadata_socket(struct lttng_consumer_local_data
*ctx
,
2970 struct pollfd
*sockpoll
, int client_socket
)
2977 ret
= lttng_consumer_poll_socket(sockpoll
);
2981 DBG("Metadata connection on client_socket");
2983 /* Blocking call, waiting for transmission */
2984 ctx
->consumer_metadata_socket
= lttcomm_accept_unix_sock(client_socket
);
2985 if (ctx
->consumer_metadata_socket
< 0) {
2986 WARN("On accept metadata");
2997 * This thread listens on the consumerd socket and receives the file
2998 * descriptors from the session daemon.
3000 void *consumer_thread_sessiond_poll(void *data
)
3002 int sock
= -1, client_socket
, ret
, err
= -1;
3004 * structure to poll for incoming data on communication socket avoids
3005 * making blocking sockets.
3007 struct pollfd consumer_sockpoll
[2];
3008 struct lttng_consumer_local_data
*ctx
= data
;
3010 rcu_register_thread();
3012 health_register(health_consumerd
, HEALTH_CONSUMERD_TYPE_SESSIOND
);
3014 if (testpoint(consumerd_thread_sessiond
)) {
3015 goto error_testpoint
;
3018 health_code_update();
3020 DBG("Creating command socket %s", ctx
->consumer_command_sock_path
);
3021 unlink(ctx
->consumer_command_sock_path
);
3022 client_socket
= lttcomm_create_unix_sock(ctx
->consumer_command_sock_path
);
3023 if (client_socket
< 0) {
3024 ERR("Cannot create command socket");
3028 ret
= lttcomm_listen_unix_sock(client_socket
);
3033 DBG("Sending ready command to lttng-sessiond");
3034 ret
= lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY
);
3035 /* return < 0 on error, but == 0 is not fatal */
3037 ERR("Error sending ready command to lttng-sessiond");
3041 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3042 consumer_sockpoll
[0].fd
= ctx
->consumer_should_quit
[0];
3043 consumer_sockpoll
[0].events
= POLLIN
| POLLPRI
;
3044 consumer_sockpoll
[1].fd
= client_socket
;
3045 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
3047 ret
= lttng_consumer_poll_socket(consumer_sockpoll
);
3055 DBG("Connection on client_socket");
3057 /* Blocking call, waiting for transmission */
3058 sock
= lttcomm_accept_unix_sock(client_socket
);
3065 * Setup metadata socket which is the second socket connection on the
3066 * command unix socket.
3068 ret
= set_metadata_socket(ctx
, consumer_sockpoll
, client_socket
);
3077 /* This socket is not useful anymore. */
3078 ret
= close(client_socket
);
3080 PERROR("close client_socket");
3084 /* update the polling structure to poll on the established socket */
3085 consumer_sockpoll
[1].fd
= sock
;
3086 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
3089 health_code_update();
3091 health_poll_entry();
3092 ret
= lttng_consumer_poll_socket(consumer_sockpoll
);
3101 DBG("Incoming command on sock");
3102 ret
= lttng_consumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
3105 * This could simply be a session daemon quitting. Don't output
3108 DBG("Communication interrupted on command socket");
3112 if (consumer_quit
) {
3113 DBG("consumer_thread_receive_fds received quit from signal");
3114 err
= 0; /* All is OK */
3117 DBG("received command on sock");
3123 DBG("Consumer thread sessiond poll exiting");
3126 * Close metadata streams since the producer is the session daemon which
3129 * NOTE: for now, this only applies to the UST tracer.
3131 lttng_consumer_close_all_metadata();
3134 * when all fds have hung up, the polling thread
3140 * Notify the data poll thread to poll back again and test the
3141 * consumer_quit state that we just set so to quit gracefully.
3143 notify_thread_lttng_pipe(ctx
->consumer_data_pipe
);
3145 notify_channel_pipe(ctx
, NULL
, -1, CONSUMER_CHANNEL_QUIT
);
3147 notify_health_quit_pipe(health_quit_pipe
);
3149 /* Cleaning up possibly open sockets. */
3153 PERROR("close sock sessiond poll");
3156 if (client_socket
>= 0) {
3157 ret
= close(client_socket
);
3159 PERROR("close client_socket sessiond poll");
3166 ERR("Health error occurred in %s", __func__
);
3168 health_unregister(health_consumerd
);
3170 rcu_unregister_thread();
3174 ssize_t
lttng_consumer_read_subbuffer(struct lttng_consumer_stream
*stream
,
3175 struct lttng_consumer_local_data
*ctx
)
3179 pthread_mutex_lock(&stream
->lock
);
3180 if (stream
->metadata_flag
) {
3181 pthread_mutex_lock(&stream
->metadata_rdv_lock
);
3184 switch (consumer_data
.type
) {
3185 case LTTNG_CONSUMER_KERNEL
:
3186 ret
= lttng_kconsumer_read_subbuffer(stream
, ctx
);
3188 case LTTNG_CONSUMER32_UST
:
3189 case LTTNG_CONSUMER64_UST
:
3190 ret
= lttng_ustconsumer_read_subbuffer(stream
, ctx
);
3193 ERR("Unknown consumer_data type");
3199 if (stream
->metadata_flag
) {
3200 pthread_cond_broadcast(&stream
->metadata_rdv
);
3201 pthread_mutex_unlock(&stream
->metadata_rdv_lock
);
3203 pthread_mutex_unlock(&stream
->lock
);
3207 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream
*stream
)
3209 switch (consumer_data
.type
) {
3210 case LTTNG_CONSUMER_KERNEL
:
3211 return lttng_kconsumer_on_recv_stream(stream
);
3212 case LTTNG_CONSUMER32_UST
:
3213 case LTTNG_CONSUMER64_UST
:
3214 return lttng_ustconsumer_on_recv_stream(stream
);
3216 ERR("Unknown consumer_data type");
3223 * Allocate and set consumer data hash tables.
3225 int lttng_consumer_init(void)
3227 consumer_data
.channel_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3228 if (!consumer_data
.channel_ht
) {
3232 consumer_data
.relayd_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3233 if (!consumer_data
.relayd_ht
) {
3237 consumer_data
.stream_list_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3238 if (!consumer_data
.stream_list_ht
) {
3242 consumer_data
.stream_per_chan_id_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3243 if (!consumer_data
.stream_per_chan_id_ht
) {
3247 data_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3252 metadata_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_U64
);
3264 * Process the ADD_RELAYD command receive by a consumer.
3266 * This will create a relayd socket pair and add it to the relayd hash table.
3267 * The caller MUST acquire a RCU read side lock before calling it.
3269 int consumer_add_relayd_socket(uint64_t net_seq_idx
, int sock_type
,
3270 struct lttng_consumer_local_data
*ctx
, int sock
,
3271 struct pollfd
*consumer_sockpoll
,
3272 struct lttcomm_relayd_sock
*relayd_sock
, uint64_t sessiond_id
,
3273 uint64_t relayd_session_id
)
3275 int fd
= -1, ret
= -1, relayd_created
= 0;
3276 enum lttcomm_return_code ret_code
= LTTCOMM_CONSUMERD_SUCCESS
;
3277 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3280 assert(relayd_sock
);
3282 DBG("Consumer adding relayd socket (idx: %" PRIu64
")", net_seq_idx
);
3284 /* Get relayd reference if exists. */
3285 relayd
= consumer_find_relayd(net_seq_idx
);
3286 if (relayd
== NULL
) {
3287 assert(sock_type
== LTTNG_STREAM_CONTROL
);
3288 /* Not found. Allocate one. */
3289 relayd
= consumer_allocate_relayd_sock_pair(net_seq_idx
);
3290 if (relayd
== NULL
) {
3292 ret_code
= LTTCOMM_CONSUMERD_ENOMEM
;
3295 relayd
->sessiond_session_id
= sessiond_id
;
3300 * This code path MUST continue to the consumer send status message to
3301 * we can notify the session daemon and continue our work without
3302 * killing everything.
3306 * relayd key should never be found for control socket.
3308 assert(sock_type
!= LTTNG_STREAM_CONTROL
);
3311 /* First send a status message before receiving the fds. */
3312 ret
= consumer_send_status_msg(sock
, LTTCOMM_CONSUMERD_SUCCESS
);
3314 /* Somehow, the session daemon is not responding anymore. */
3315 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_FATAL
);
3316 goto error_nosignal
;
3319 /* Poll on consumer socket. */
3320 ret
= lttng_consumer_poll_socket(consumer_sockpoll
);
3322 /* Needing to exit in the middle of a command: error. */
3323 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
3325 goto error_nosignal
;
3328 /* Get relayd socket from session daemon */
3329 ret
= lttcomm_recv_fds_unix_sock(sock
, &fd
, 1);
3330 if (ret
!= sizeof(fd
)) {
3332 fd
= -1; /* Just in case it gets set with an invalid value. */
3335 * Failing to receive FDs might indicate a major problem such as
3336 * reaching a fd limit during the receive where the kernel returns a
3337 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3338 * don't take any chances and stop everything.
3340 * XXX: Feature request #558 will fix that and avoid this possible
3341 * issue when reaching the fd limit.
3343 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_ERROR_RECV_FD
);
3344 ret_code
= LTTCOMM_CONSUMERD_ERROR_RECV_FD
;
3348 /* Copy socket information and received FD */
3349 switch (sock_type
) {
3350 case LTTNG_STREAM_CONTROL
:
3351 /* Copy received lttcomm socket */
3352 lttcomm_copy_sock(&relayd
->control_sock
.sock
, &relayd_sock
->sock
);
3353 ret
= lttcomm_create_sock(&relayd
->control_sock
.sock
);
3354 /* Handle create_sock error. */
3356 ret_code
= LTTCOMM_CONSUMERD_ENOMEM
;
3360 * Close the socket created internally by
3361 * lttcomm_create_sock, so we can replace it by the one
3362 * received from sessiond.
3364 if (close(relayd
->control_sock
.sock
.fd
)) {
3368 /* Assign new file descriptor */
3369 relayd
->control_sock
.sock
.fd
= fd
;
3370 fd
= -1; /* For error path */
3371 /* Assign version values. */
3372 relayd
->control_sock
.major
= relayd_sock
->major
;
3373 relayd
->control_sock
.minor
= relayd_sock
->minor
;
3375 relayd
->relayd_session_id
= relayd_session_id
;
3378 case LTTNG_STREAM_DATA
:
3379 /* Copy received lttcomm socket */
3380 lttcomm_copy_sock(&relayd
->data_sock
.sock
, &relayd_sock
->sock
);
3381 ret
= lttcomm_create_sock(&relayd
->data_sock
.sock
);
3382 /* Handle create_sock error. */
3384 ret_code
= LTTCOMM_CONSUMERD_ENOMEM
;
3388 * Close the socket created internally by
3389 * lttcomm_create_sock, so we can replace it by the one
3390 * received from sessiond.
3392 if (close(relayd
->data_sock
.sock
.fd
)) {
3396 /* Assign new file descriptor */
3397 relayd
->data_sock
.sock
.fd
= fd
;
3398 fd
= -1; /* for eventual error paths */
3399 /* Assign version values. */
3400 relayd
->data_sock
.major
= relayd_sock
->major
;
3401 relayd
->data_sock
.minor
= relayd_sock
->minor
;
3404 ERR("Unknown relayd socket type (%d)", sock_type
);
3406 ret_code
= LTTCOMM_CONSUMERD_FATAL
;
3410 DBG("Consumer %s socket created successfully with net idx %" PRIu64
" (fd: %d)",
3411 sock_type
== LTTNG_STREAM_CONTROL
? "control" : "data",
3412 relayd
->net_seq_idx
, fd
);
3414 /* We successfully added the socket. Send status back. */
3415 ret
= consumer_send_status_msg(sock
, ret_code
);
3417 /* Somehow, the session daemon is not responding anymore. */
3418 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_FATAL
);
3419 goto error_nosignal
;
3423 * Add relayd socket pair to consumer data hashtable. If object already
3424 * exists or on error, the function gracefully returns.
3432 if (consumer_send_status_msg(sock
, ret_code
) < 0) {
3433 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_FATAL
);
3437 /* Close received socket if valid. */
3440 PERROR("close received socket");
3444 if (relayd_created
) {
3452 * Try to lock the stream mutex.
3454 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3456 static int stream_try_lock(struct lttng_consumer_stream
*stream
)
3463 * Try to lock the stream mutex. On failure, we know that the stream is
3464 * being used else where hence there is data still being extracted.
3466 ret
= pthread_mutex_trylock(&stream
->lock
);
3468 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3480 * Search for a relayd associated to the session id and return the reference.
3482 * A rcu read side lock MUST be acquire before calling this function and locked
3483 * until the relayd object is no longer necessary.
3485 static struct consumer_relayd_sock_pair
*find_relayd_by_session_id(uint64_t id
)
3487 struct lttng_ht_iter iter
;
3488 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3490 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3491 cds_lfht_for_each_entry(consumer_data
.relayd_ht
->ht
, &iter
.iter
, relayd
,
3494 * Check by sessiond id which is unique here where the relayd session
3495 * id might not be when having multiple relayd.
3497 if (relayd
->sessiond_session_id
== id
) {
3498 /* Found the relayd. There can be only one per id. */
3510 * Check if for a given session id there is still data needed to be extract
3513 * Return 1 if data is pending or else 0 meaning ready to be read.
3515 int consumer_data_pending(uint64_t id
)
3518 struct lttng_ht_iter iter
;
3519 struct lttng_ht
*ht
;
3520 struct lttng_consumer_stream
*stream
;
3521 struct consumer_relayd_sock_pair
*relayd
= NULL
;
3522 int (*data_pending
)(struct lttng_consumer_stream
*);
3524 DBG("Consumer data pending command on session id %" PRIu64
, id
);
3527 pthread_mutex_lock(&consumer_data
.lock
);
3529 switch (consumer_data
.type
) {
3530 case LTTNG_CONSUMER_KERNEL
:
3531 data_pending
= lttng_kconsumer_data_pending
;
3533 case LTTNG_CONSUMER32_UST
:
3534 case LTTNG_CONSUMER64_UST
:
3535 data_pending
= lttng_ustconsumer_data_pending
;
3538 ERR("Unknown consumer data type");
3542 /* Ease our life a bit */
3543 ht
= consumer_data
.stream_list_ht
;
3545 relayd
= find_relayd_by_session_id(id
);
3547 /* Send init command for data pending. */
3548 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3549 ret
= relayd_begin_data_pending(&relayd
->control_sock
,
3550 relayd
->relayd_session_id
);
3551 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3553 /* Communication error thus the relayd so no data pending. */
3554 goto data_not_pending
;
3558 cds_lfht_for_each_entry_duplicate(ht
->ht
,
3559 ht
->hash_fct(&id
, lttng_ht_seed
),
3561 &iter
.iter
, stream
, node_session_id
.node
) {
3562 /* If this call fails, the stream is being used hence data pending. */
3563 ret
= stream_try_lock(stream
);
3569 * A removed node from the hash table indicates that the stream has
3570 * been deleted thus having a guarantee that the buffers are closed
3571 * on the consumer side. However, data can still be transmitted
3572 * over the network so don't skip the relayd check.
3574 ret
= cds_lfht_is_node_deleted(&stream
->node
.node
);
3577 * An empty output file is not valid. We need at least one packet
3578 * generated per stream, even if it contains no event, so it
3579 * contains at least one packet header.
3581 if (stream
->output_written
== 0) {
3582 pthread_mutex_unlock(&stream
->lock
);
3585 /* Check the stream if there is data in the buffers. */
3586 ret
= data_pending(stream
);
3588 pthread_mutex_unlock(&stream
->lock
);
3595 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3596 if (stream
->metadata_flag
) {
3597 ret
= relayd_quiescent_control(&relayd
->control_sock
,
3598 stream
->relayd_stream_id
);
3600 ret
= relayd_data_pending(&relayd
->control_sock
,
3601 stream
->relayd_stream_id
,
3602 stream
->next_net_seq_num
- 1);
3604 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3606 pthread_mutex_unlock(&stream
->lock
);
3610 pthread_mutex_unlock(&stream
->lock
);
3614 unsigned int is_data_inflight
= 0;
3616 /* Send init command for data pending. */
3617 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
3618 ret
= relayd_end_data_pending(&relayd
->control_sock
,
3619 relayd
->relayd_session_id
, &is_data_inflight
);
3620 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
3622 goto data_not_pending
;
3624 if (is_data_inflight
) {
3630 * Finding _no_ node in the hash table and no inflight data means that the
3631 * stream(s) have been removed thus data is guaranteed to be available for
3632 * analysis from the trace files.
3636 /* Data is available to be read by a viewer. */
3637 pthread_mutex_unlock(&consumer_data
.lock
);
3642 /* Data is still being extracted from buffers. */
3643 pthread_mutex_unlock(&consumer_data
.lock
);
3649 * Send a ret code status message to the sessiond daemon.
3651 * Return the sendmsg() return value.
3653 int consumer_send_status_msg(int sock
, int ret_code
)
3655 struct lttcomm_consumer_status_msg msg
;
3657 memset(&msg
, 0, sizeof(msg
));
3658 msg
.ret_code
= ret_code
;
3660 return lttcomm_send_unix_sock(sock
, &msg
, sizeof(msg
));
3664 * Send a channel status message to the sessiond daemon.
3666 * Return the sendmsg() return value.
3668 int consumer_send_status_channel(int sock
,
3669 struct lttng_consumer_channel
*channel
)
3671 struct lttcomm_consumer_status_channel msg
;
3675 memset(&msg
, 0, sizeof(msg
));
3677 msg
.ret_code
= LTTCOMM_CONSUMERD_CHANNEL_FAIL
;
3679 msg
.ret_code
= LTTCOMM_CONSUMERD_SUCCESS
;
3680 msg
.key
= channel
->key
;
3681 msg
.stream_count
= channel
->streams
.count
;
3684 return lttcomm_send_unix_sock(sock
, &msg
, sizeof(msg
));
3688 * Using a maximum stream size with the produced and consumed position of a
3689 * stream, computes the new consumed position to be as close as possible to the
3690 * maximum possible stream size.
3692 * If maximum stream size is lower than the possible buffer size (produced -
3693 * consumed), the consumed_pos given is returned untouched else the new value
3696 unsigned long consumer_get_consumed_maxsize(unsigned long consumed_pos
,
3697 unsigned long produced_pos
, uint64_t max_stream_size
)
3699 if (max_stream_size
&& max_stream_size
< (produced_pos
- consumed_pos
)) {
3700 /* Offset from the produced position to get the latest buffers. */
3701 return produced_pos
- max_stream_size
;
3704 return consumed_pos
;