2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
27 #include <sys/socket.h>
28 #include <sys/types.h>
32 #include <common/common.h>
33 #include <common/utils.h>
34 #include <common/compat/poll.h>
35 #include <common/kernel-ctl/kernel-ctl.h>
36 #include <common/sessiond-comm/relayd.h>
37 #include <common/sessiond-comm/sessiond-comm.h>
38 #include <common/kernel-consumer/kernel-consumer.h>
39 #include <common/relayd/relayd.h>
40 #include <common/ust-consumer/ust-consumer.h>
44 struct lttng_consumer_global_data consumer_data
= {
47 .type
= LTTNG_CONSUMER_UNKNOWN
,
50 /* timeout parameter, to control the polling thread grace period. */
51 int consumer_poll_timeout
= -1;
54 * Flag to inform the polling thread to quit when all fd hung up. Updated by
55 * the consumer_thread_receive_fds when it notices that all fds has hung up.
56 * Also updated by the signal handler (consumer_should_exit()). Read by the
59 volatile int consumer_quit
= 0;
62 * The following two hash tables are visible by all threads which are separated
63 * in different source files.
65 * Global hash table containing respectively metadata and data streams. The
66 * stream element in this ht should only be updated by the metadata poll thread
67 * for the metadata and the data poll thread for the data.
69 struct lttng_ht
*metadata_ht
= NULL
;
70 struct lttng_ht
*data_ht
= NULL
;
73 * Find a stream. The consumer_data.lock must be locked during this
76 static struct lttng_consumer_stream
*consumer_find_stream(int key
,
79 struct lttng_ht_iter iter
;
80 struct lttng_ht_node_ulong
*node
;
81 struct lttng_consumer_stream
*stream
= NULL
;
85 /* Negative keys are lookup failures */
92 lttng_ht_lookup(ht
, (void *)((unsigned long) key
), &iter
);
93 node
= lttng_ht_iter_get_node_ulong(&iter
);
95 stream
= caa_container_of(node
, struct lttng_consumer_stream
, node
);
103 void consumer_steal_stream_key(int key
, struct lttng_ht
*ht
)
105 struct lttng_consumer_stream
*stream
;
108 stream
= consumer_find_stream(key
, ht
);
112 * We don't want the lookup to match, but we still need
113 * to iterate on this stream when iterating over the hash table. Just
114 * change the node key.
116 stream
->node
.key
= -1;
121 static struct lttng_consumer_channel
*consumer_find_channel(int key
)
123 struct lttng_ht_iter iter
;
124 struct lttng_ht_node_ulong
*node
;
125 struct lttng_consumer_channel
*channel
= NULL
;
127 /* Negative keys are lookup failures */
134 lttng_ht_lookup(consumer_data
.channel_ht
, (void *)((unsigned long) key
),
136 node
= lttng_ht_iter_get_node_ulong(&iter
);
138 channel
= caa_container_of(node
, struct lttng_consumer_channel
, node
);
146 static void consumer_steal_channel_key(int key
)
148 struct lttng_consumer_channel
*channel
;
151 channel
= consumer_find_channel(key
);
155 * We don't want the lookup to match, but we still need
156 * to iterate on this channel when iterating over the hash table. Just
157 * change the node key.
159 channel
->node
.key
= -1;
165 void consumer_free_stream(struct rcu_head
*head
)
167 struct lttng_ht_node_ulong
*node
=
168 caa_container_of(head
, struct lttng_ht_node_ulong
, head
);
169 struct lttng_consumer_stream
*stream
=
170 caa_container_of(node
, struct lttng_consumer_stream
, node
);
176 * RCU protected relayd socket pair free.
178 static void consumer_rcu_free_relayd(struct rcu_head
*head
)
180 struct lttng_ht_node_ulong
*node
=
181 caa_container_of(head
, struct lttng_ht_node_ulong
, head
);
182 struct consumer_relayd_sock_pair
*relayd
=
183 caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
189 * Destroy and free relayd socket pair object.
191 * This function MUST be called with the consumer_data lock acquired.
193 static void destroy_relayd(struct consumer_relayd_sock_pair
*relayd
)
196 struct lttng_ht_iter iter
;
198 if (relayd
== NULL
) {
202 DBG("Consumer destroy and close relayd socket pair");
204 iter
.iter
.node
= &relayd
->node
.node
;
205 ret
= lttng_ht_del(consumer_data
.relayd_ht
, &iter
);
207 /* We assume the relayd was already destroyed */
211 /* Close all sockets */
212 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
213 (void) relayd_close(&relayd
->control_sock
);
214 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
215 (void) relayd_close(&relayd
->data_sock
);
217 /* RCU free() call */
218 call_rcu(&relayd
->node
.head
, consumer_rcu_free_relayd
);
222 * Flag a relayd socket pair for destruction. Destroy it if the refcount
225 * RCU read side lock MUST be aquired before calling this function.
227 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair
*relayd
)
231 /* Set destroy flag for this object */
232 uatomic_set(&relayd
->destroy_flag
, 1);
234 /* Destroy the relayd if refcount is 0 */
235 if (uatomic_read(&relayd
->refcount
) == 0) {
236 destroy_relayd(relayd
);
241 * Remove a stream from the global list protected by a mutex. This
242 * function is also responsible for freeing its data structures.
244 void consumer_del_stream(struct lttng_consumer_stream
*stream
,
248 struct lttng_ht_iter iter
;
249 struct lttng_consumer_channel
*free_chan
= NULL
;
250 struct consumer_relayd_sock_pair
*relayd
;
255 /* Means the stream was allocated but not successfully added */
259 pthread_mutex_lock(&consumer_data
.lock
);
261 switch (consumer_data
.type
) {
262 case LTTNG_CONSUMER_KERNEL
:
263 if (stream
->mmap_base
!= NULL
) {
264 ret
= munmap(stream
->mmap_base
, stream
->mmap_len
);
270 case LTTNG_CONSUMER32_UST
:
271 case LTTNG_CONSUMER64_UST
:
272 lttng_ustconsumer_del_stream(stream
);
275 ERR("Unknown consumer_data type");
281 iter
.iter
.node
= &stream
->node
.node
;
282 ret
= lttng_ht_del(ht
, &iter
);
285 /* Remove node session id from the consumer_data stream ht */
286 iter
.iter
.node
= &stream
->node_session_id
.node
;
287 ret
= lttng_ht_del(consumer_data
.stream_list_ht
, &iter
);
291 assert(consumer_data
.stream_count
> 0);
292 consumer_data
.stream_count
--;
294 if (stream
->out_fd
>= 0) {
295 ret
= close(stream
->out_fd
);
300 if (stream
->wait_fd
>= 0 && !stream
->wait_fd_is_copy
) {
301 ret
= close(stream
->wait_fd
);
306 if (stream
->shm_fd
>= 0 && stream
->wait_fd
!= stream
->shm_fd
) {
307 ret
= close(stream
->shm_fd
);
313 /* Check and cleanup relayd */
315 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
316 if (relayd
!= NULL
) {
317 uatomic_dec(&relayd
->refcount
);
318 assert(uatomic_read(&relayd
->refcount
) >= 0);
320 /* Closing streams requires to lock the control socket. */
321 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
322 ret
= relayd_send_close_stream(&relayd
->control_sock
,
323 stream
->relayd_stream_id
,
324 stream
->next_net_seq_num
- 1);
325 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
327 DBG("Unable to close stream on the relayd. Continuing");
329 * Continue here. There is nothing we can do for the relayd.
330 * Chances are that the relayd has closed the socket so we just
331 * continue cleaning up.
335 /* Both conditions are met, we destroy the relayd. */
336 if (uatomic_read(&relayd
->refcount
) == 0 &&
337 uatomic_read(&relayd
->destroy_flag
)) {
338 destroy_relayd(relayd
);
343 uatomic_dec(&stream
->chan
->refcount
);
344 if (!uatomic_read(&stream
->chan
->refcount
)
345 && !uatomic_read(&stream
->chan
->nb_init_streams
)) {
346 free_chan
= stream
->chan
;
350 consumer_data
.need_update
= 1;
351 pthread_mutex_unlock(&consumer_data
.lock
);
354 consumer_del_channel(free_chan
);
358 call_rcu(&stream
->node
.head
, consumer_free_stream
);
361 struct lttng_consumer_stream
*consumer_allocate_stream(
362 int channel_key
, int stream_key
,
363 int shm_fd
, int wait_fd
,
364 enum lttng_consumer_stream_state state
,
366 enum lttng_event_output output
,
367 const char *path_name
,
375 struct lttng_consumer_stream
*stream
;
377 stream
= zmalloc(sizeof(*stream
));
378 if (stream
== NULL
) {
379 PERROR("malloc struct lttng_consumer_stream");
380 *alloc_ret
= -ENOMEM
;
385 * Get stream's channel reference. Needed when adding the stream to the
388 stream
->chan
= consumer_find_channel(channel_key
);
390 *alloc_ret
= -ENOENT
;
391 ERR("Unable to find channel for stream %d", stream_key
);
395 stream
->key
= stream_key
;
396 stream
->shm_fd
= shm_fd
;
397 stream
->wait_fd
= wait_fd
;
399 stream
->out_fd_offset
= 0;
400 stream
->state
= state
;
401 stream
->mmap_len
= mmap_len
;
402 stream
->mmap_base
= NULL
;
403 stream
->output
= output
;
406 stream
->net_seq_idx
= net_index
;
407 stream
->metadata_flag
= metadata_flag
;
408 stream
->session_id
= session_id
;
409 strncpy(stream
->path_name
, path_name
, sizeof(stream
->path_name
));
410 stream
->path_name
[sizeof(stream
->path_name
) - 1] = '\0';
411 pthread_mutex_init(&stream
->lock
, NULL
);
414 * Index differently the metadata node because the thread is using an
415 * internal hash table to match streams in the metadata_ht to the epoll set
419 lttng_ht_node_init_ulong(&stream
->node
, stream
->wait_fd
);
421 lttng_ht_node_init_ulong(&stream
->node
, stream
->key
);
424 /* Init session id node with the stream session id */
425 lttng_ht_node_init_ulong(&stream
->node_session_id
, stream
->session_id
);
428 * The cpu number is needed before using any ustctl_* actions. Ignored for
429 * the kernel so the value does not matter.
431 pthread_mutex_lock(&consumer_data
.lock
);
432 stream
->cpu
= stream
->chan
->cpucount
++;
433 pthread_mutex_unlock(&consumer_data
.lock
);
435 DBG3("Allocated stream %s (key %d, shm_fd %d, wait_fd %d, mmap_len %llu,"
436 " out_fd %d, net_seq_idx %d, session_id %" PRIu64
,
437 stream
->path_name
, stream
->key
, stream
->shm_fd
, stream
->wait_fd
,
438 (unsigned long long) stream
->mmap_len
, stream
->out_fd
,
439 stream
->net_seq_idx
, stream
->session_id
);
449 * Add a stream to the global list protected by a mutex.
451 static int consumer_add_stream(struct lttng_consumer_stream
*stream
,
455 struct consumer_relayd_sock_pair
*relayd
;
460 DBG3("Adding consumer stream %d", stream
->key
);
462 pthread_mutex_lock(&consumer_data
.lock
);
465 /* Steal stream identifier to avoid having streams with the same key */
466 consumer_steal_stream_key(stream
->key
, ht
);
468 lttng_ht_add_unique_ulong(ht
, &stream
->node
);
471 * Add stream to the stream_list_ht of the consumer data. No need to steal
472 * the key since the HT does not use it and we allow to add redundant keys
475 lttng_ht_add_ulong(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
477 /* Check and cleanup relayd */
478 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
479 if (relayd
!= NULL
) {
480 uatomic_inc(&relayd
->refcount
);
483 /* Update channel refcount once added without error(s). */
484 uatomic_inc(&stream
->chan
->refcount
);
487 * When nb_init_streams reaches 0, we don't need to trigger any action in
488 * terms of destroying the associated channel, because the action that
489 * causes the count to become 0 also causes a stream to be added. The
490 * channel deletion will thus be triggered by the following removal of this
493 if (uatomic_read(&stream
->chan
->nb_init_streams
) > 0) {
494 uatomic_dec(&stream
->chan
->nb_init_streams
);
497 /* Update consumer data once the node is inserted. */
498 consumer_data
.stream_count
++;
499 consumer_data
.need_update
= 1;
502 pthread_mutex_unlock(&consumer_data
.lock
);
508 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
509 * be acquired before calling this.
511 static int add_relayd(struct consumer_relayd_sock_pair
*relayd
)
514 struct lttng_ht_node_ulong
*node
;
515 struct lttng_ht_iter iter
;
517 if (relayd
== NULL
) {
522 lttng_ht_lookup(consumer_data
.relayd_ht
,
523 (void *)((unsigned long) relayd
->net_seq_idx
), &iter
);
524 node
= lttng_ht_iter_get_node_ulong(&iter
);
526 /* Relayd already exist. Ignore the insertion */
529 lttng_ht_add_unique_ulong(consumer_data
.relayd_ht
, &relayd
->node
);
536 * Allocate and return a consumer relayd socket.
538 struct consumer_relayd_sock_pair
*consumer_allocate_relayd_sock_pair(
541 struct consumer_relayd_sock_pair
*obj
= NULL
;
543 /* Negative net sequence index is a failure */
544 if (net_seq_idx
< 0) {
548 obj
= zmalloc(sizeof(struct consumer_relayd_sock_pair
));
550 PERROR("zmalloc relayd sock");
554 obj
->net_seq_idx
= net_seq_idx
;
556 obj
->destroy_flag
= 0;
557 lttng_ht_node_init_ulong(&obj
->node
, obj
->net_seq_idx
);
558 pthread_mutex_init(&obj
->ctrl_sock_mutex
, NULL
);
565 * Find a relayd socket pair in the global consumer data.
567 * Return the object if found else NULL.
568 * RCU read-side lock must be held across this call and while using the
571 struct consumer_relayd_sock_pair
*consumer_find_relayd(int key
)
573 struct lttng_ht_iter iter
;
574 struct lttng_ht_node_ulong
*node
;
575 struct consumer_relayd_sock_pair
*relayd
= NULL
;
577 /* Negative keys are lookup failures */
582 lttng_ht_lookup(consumer_data
.relayd_ht
, (void *)((unsigned long) key
),
584 node
= lttng_ht_iter_get_node_ulong(&iter
);
586 relayd
= caa_container_of(node
, struct consumer_relayd_sock_pair
, node
);
594 * Handle stream for relayd transmission if the stream applies for network
595 * streaming where the net sequence index is set.
597 * Return destination file descriptor or negative value on error.
599 static int write_relayd_stream_header(struct lttng_consumer_stream
*stream
,
600 size_t data_size
, unsigned long padding
,
601 struct consumer_relayd_sock_pair
*relayd
)
604 struct lttcomm_relayd_data_hdr data_hdr
;
610 /* Reset data header */
611 memset(&data_hdr
, 0, sizeof(data_hdr
));
613 if (stream
->metadata_flag
) {
614 /* Caller MUST acquire the relayd control socket lock */
615 ret
= relayd_send_metadata(&relayd
->control_sock
, data_size
);
620 /* Metadata are always sent on the control socket. */
621 outfd
= relayd
->control_sock
.fd
;
623 /* Set header with stream information */
624 data_hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
625 data_hdr
.data_size
= htobe32(data_size
);
626 data_hdr
.padding_size
= htobe32(padding
);
627 data_hdr
.net_seq_num
= htobe64(stream
->next_net_seq_num
++);
628 /* Other fields are zeroed previously */
630 ret
= relayd_send_data_hdr(&relayd
->data_sock
, &data_hdr
,
636 /* Set to go on data socket */
637 outfd
= relayd
->data_sock
.fd
;
645 void consumer_free_channel(struct rcu_head
*head
)
647 struct lttng_ht_node_ulong
*node
=
648 caa_container_of(head
, struct lttng_ht_node_ulong
, head
);
649 struct lttng_consumer_channel
*channel
=
650 caa_container_of(node
, struct lttng_consumer_channel
, node
);
656 * Remove a channel from the global list protected by a mutex. This
657 * function is also responsible for freeing its data structures.
659 void consumer_del_channel(struct lttng_consumer_channel
*channel
)
662 struct lttng_ht_iter iter
;
664 pthread_mutex_lock(&consumer_data
.lock
);
666 switch (consumer_data
.type
) {
667 case LTTNG_CONSUMER_KERNEL
:
669 case LTTNG_CONSUMER32_UST
:
670 case LTTNG_CONSUMER64_UST
:
671 lttng_ustconsumer_del_channel(channel
);
674 ERR("Unknown consumer_data type");
680 iter
.iter
.node
= &channel
->node
.node
;
681 ret
= lttng_ht_del(consumer_data
.channel_ht
, &iter
);
685 if (channel
->mmap_base
!= NULL
) {
686 ret
= munmap(channel
->mmap_base
, channel
->mmap_len
);
691 if (channel
->wait_fd
>= 0 && !channel
->wait_fd_is_copy
) {
692 ret
= close(channel
->wait_fd
);
697 if (channel
->shm_fd
>= 0 && channel
->wait_fd
!= channel
->shm_fd
) {
698 ret
= close(channel
->shm_fd
);
704 call_rcu(&channel
->node
.head
, consumer_free_channel
);
706 pthread_mutex_unlock(&consumer_data
.lock
);
709 struct lttng_consumer_channel
*consumer_allocate_channel(
711 int shm_fd
, int wait_fd
,
713 uint64_t max_sb_size
,
714 unsigned int nb_init_streams
)
716 struct lttng_consumer_channel
*channel
;
719 channel
= zmalloc(sizeof(*channel
));
720 if (channel
== NULL
) {
721 PERROR("malloc struct lttng_consumer_channel");
724 channel
->key
= channel_key
;
725 channel
->shm_fd
= shm_fd
;
726 channel
->wait_fd
= wait_fd
;
727 channel
->mmap_len
= mmap_len
;
728 channel
->max_sb_size
= max_sb_size
;
729 channel
->refcount
= 0;
730 channel
->nb_init_streams
= nb_init_streams
;
731 lttng_ht_node_init_ulong(&channel
->node
, channel
->key
);
733 switch (consumer_data
.type
) {
734 case LTTNG_CONSUMER_KERNEL
:
735 channel
->mmap_base
= NULL
;
736 channel
->mmap_len
= 0;
738 case LTTNG_CONSUMER32_UST
:
739 case LTTNG_CONSUMER64_UST
:
740 ret
= lttng_ustconsumer_allocate_channel(channel
);
747 ERR("Unknown consumer_data type");
751 DBG("Allocated channel (key %d, shm_fd %d, wait_fd %d, mmap_len %llu, max_sb_size %llu)",
752 channel
->key
, channel
->shm_fd
, channel
->wait_fd
,
753 (unsigned long long) channel
->mmap_len
,
754 (unsigned long long) channel
->max_sb_size
);
760 * Add a channel to the global list protected by a mutex.
762 int consumer_add_channel(struct lttng_consumer_channel
*channel
)
764 struct lttng_ht_node_ulong
*node
;
765 struct lttng_ht_iter iter
;
767 pthread_mutex_lock(&consumer_data
.lock
);
768 /* Steal channel identifier, for UST */
769 consumer_steal_channel_key(channel
->key
);
772 lttng_ht_lookup(consumer_data
.channel_ht
,
773 (void *)((unsigned long) channel
->key
), &iter
);
774 node
= lttng_ht_iter_get_node_ulong(&iter
);
776 /* Channel already exist. Ignore the insertion */
780 lttng_ht_add_unique_ulong(consumer_data
.channel_ht
, &channel
->node
);
784 pthread_mutex_unlock(&consumer_data
.lock
);
790 * Allocate the pollfd structure and the local view of the out fds to avoid
791 * doing a lookup in the linked list and concurrency issues when writing is
792 * needed. Called with consumer_data.lock held.
794 * Returns the number of fds in the structures.
796 static int consumer_update_poll_array(
797 struct lttng_consumer_local_data
*ctx
, struct pollfd
**pollfd
,
798 struct lttng_consumer_stream
**local_stream
, struct lttng_ht
*ht
)
801 struct lttng_ht_iter iter
;
802 struct lttng_consumer_stream
*stream
;
804 DBG("Updating poll fd array");
806 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
807 if (stream
->state
!= LTTNG_CONSUMER_ACTIVE_STREAM
) {
810 DBG("Active FD %d", stream
->wait_fd
);
811 (*pollfd
)[i
].fd
= stream
->wait_fd
;
812 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
813 local_stream
[i
] = stream
;
819 * Insert the consumer_data_pipe at the end of the array and don't
820 * increment i so nb_fd is the number of real FD.
822 (*pollfd
)[i
].fd
= ctx
->consumer_data_pipe
[0];
823 (*pollfd
)[i
].events
= POLLIN
| POLLPRI
;
828 * Poll on the should_quit pipe and the command socket return -1 on error and
829 * should exit, 0 if data is available on the command socket
831 int lttng_consumer_poll_socket(struct pollfd
*consumer_sockpoll
)
836 num_rdy
= poll(consumer_sockpoll
, 2, -1);
839 * Restart interrupted system call.
841 if (errno
== EINTR
) {
844 PERROR("Poll error");
847 if (consumer_sockpoll
[0].revents
& (POLLIN
| POLLPRI
)) {
848 DBG("consumer_should_quit wake up");
858 * Set the error socket.
860 void lttng_consumer_set_error_sock(
861 struct lttng_consumer_local_data
*ctx
, int sock
)
863 ctx
->consumer_error_socket
= sock
;
867 * Set the command socket path.
869 void lttng_consumer_set_command_sock_path(
870 struct lttng_consumer_local_data
*ctx
, char *sock
)
872 ctx
->consumer_command_sock_path
= sock
;
876 * Send return code to the session daemon.
877 * If the socket is not defined, we return 0, it is not a fatal error
879 int lttng_consumer_send_error(
880 struct lttng_consumer_local_data
*ctx
, int cmd
)
882 if (ctx
->consumer_error_socket
> 0) {
883 return lttcomm_send_unix_sock(ctx
->consumer_error_socket
, &cmd
,
884 sizeof(enum lttcomm_sessiond_command
));
891 * Close all the tracefiles and stream fds, should be called when all instances
894 void lttng_consumer_cleanup(void)
896 struct lttng_ht_iter iter
;
897 struct lttng_ht_node_ulong
*node
;
901 cds_lfht_for_each_entry(consumer_data
.channel_ht
->ht
, &iter
.iter
, node
,
903 struct lttng_consumer_channel
*channel
=
904 caa_container_of(node
, struct lttng_consumer_channel
, node
);
905 consumer_del_channel(channel
);
910 lttng_ht_destroy(consumer_data
.channel_ht
);
914 * Called from signal handler.
916 void lttng_consumer_should_exit(struct lttng_consumer_local_data
*ctx
)
921 ret
= write(ctx
->consumer_should_quit
[1], "4", 1);
922 } while (ret
< 0 && errno
== EINTR
);
924 PERROR("write consumer quit");
928 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream
*stream
,
931 int outfd
= stream
->out_fd
;
934 * This does a blocking write-and-wait on any page that belongs to the
935 * subbuffer prior to the one we just wrote.
936 * Don't care about error values, as these are just hints and ways to
937 * limit the amount of page cache used.
939 if (orig_offset
< stream
->chan
->max_sb_size
) {
942 lttng_sync_file_range(outfd
, orig_offset
- stream
->chan
->max_sb_size
,
943 stream
->chan
->max_sb_size
,
944 SYNC_FILE_RANGE_WAIT_BEFORE
945 | SYNC_FILE_RANGE_WRITE
946 | SYNC_FILE_RANGE_WAIT_AFTER
);
948 * Give hints to the kernel about how we access the file:
949 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
952 * We need to call fadvise again after the file grows because the
953 * kernel does not seem to apply fadvise to non-existing parts of the
956 * Call fadvise _after_ having waited for the page writeback to
957 * complete because the dirty page writeback semantic is not well
958 * defined. So it can be expected to lead to lower throughput in
961 posix_fadvise(outfd
, orig_offset
- stream
->chan
->max_sb_size
,
962 stream
->chan
->max_sb_size
, POSIX_FADV_DONTNEED
);
966 * Initialise the necessary environnement :
967 * - create a new context
968 * - create the poll_pipe
969 * - create the should_quit pipe (for signal handler)
970 * - create the thread pipe (for splice)
972 * Takes a function pointer as argument, this function is called when data is
973 * available on a buffer. This function is responsible to do the
974 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
975 * buffer configuration and then kernctl_put_next_subbuf at the end.
977 * Returns a pointer to the new context or NULL on error.
979 struct lttng_consumer_local_data
*lttng_consumer_create(
980 enum lttng_consumer_type type
,
981 ssize_t (*buffer_ready
)(struct lttng_consumer_stream
*stream
,
982 struct lttng_consumer_local_data
*ctx
),
983 int (*recv_channel
)(struct lttng_consumer_channel
*channel
),
984 int (*recv_stream
)(struct lttng_consumer_stream
*stream
),
985 int (*update_stream
)(int stream_key
, uint32_t state
))
988 struct lttng_consumer_local_data
*ctx
;
990 assert(consumer_data
.type
== LTTNG_CONSUMER_UNKNOWN
||
991 consumer_data
.type
== type
);
992 consumer_data
.type
= type
;
994 ctx
= zmalloc(sizeof(struct lttng_consumer_local_data
));
996 PERROR("allocating context");
1000 ctx
->consumer_error_socket
= -1;
1001 /* assign the callbacks */
1002 ctx
->on_buffer_ready
= buffer_ready
;
1003 ctx
->on_recv_channel
= recv_channel
;
1004 ctx
->on_recv_stream
= recv_stream
;
1005 ctx
->on_update_stream
= update_stream
;
1007 ret
= pipe(ctx
->consumer_data_pipe
);
1009 PERROR("Error creating poll pipe");
1010 goto error_poll_pipe
;
1013 /* set read end of the pipe to non-blocking */
1014 ret
= fcntl(ctx
->consumer_data_pipe
[0], F_SETFL
, O_NONBLOCK
);
1016 PERROR("fcntl O_NONBLOCK");
1017 goto error_poll_fcntl
;
1020 /* set write end of the pipe to non-blocking */
1021 ret
= fcntl(ctx
->consumer_data_pipe
[1], F_SETFL
, O_NONBLOCK
);
1023 PERROR("fcntl O_NONBLOCK");
1024 goto error_poll_fcntl
;
1027 ret
= pipe(ctx
->consumer_should_quit
);
1029 PERROR("Error creating recv pipe");
1030 goto error_quit_pipe
;
1033 ret
= pipe(ctx
->consumer_thread_pipe
);
1035 PERROR("Error creating thread pipe");
1036 goto error_thread_pipe
;
1039 ret
= utils_create_pipe(ctx
->consumer_metadata_pipe
);
1041 goto error_metadata_pipe
;
1044 ret
= utils_create_pipe(ctx
->consumer_splice_metadata_pipe
);
1046 goto error_splice_pipe
;
1052 utils_close_pipe(ctx
->consumer_metadata_pipe
);
1053 error_metadata_pipe
:
1054 utils_close_pipe(ctx
->consumer_thread_pipe
);
1056 for (i
= 0; i
< 2; i
++) {
1059 err
= close(ctx
->consumer_should_quit
[i
]);
1066 for (i
= 0; i
< 2; i
++) {
1069 err
= close(ctx
->consumer_data_pipe
[i
]);
1081 * Close all fds associated with the instance and free the context.
1083 void lttng_consumer_destroy(struct lttng_consumer_local_data
*ctx
)
1087 ret
= close(ctx
->consumer_error_socket
);
1091 ret
= close(ctx
->consumer_thread_pipe
[0]);
1095 ret
= close(ctx
->consumer_thread_pipe
[1]);
1099 ret
= close(ctx
->consumer_data_pipe
[0]);
1103 ret
= close(ctx
->consumer_data_pipe
[1]);
1107 ret
= close(ctx
->consumer_should_quit
[0]);
1111 ret
= close(ctx
->consumer_should_quit
[1]);
1115 utils_close_pipe(ctx
->consumer_splice_metadata_pipe
);
1117 unlink(ctx
->consumer_command_sock_path
);
1122 * Write the metadata stream id on the specified file descriptor.
1124 static int write_relayd_metadata_id(int fd
,
1125 struct lttng_consumer_stream
*stream
,
1126 struct consumer_relayd_sock_pair
*relayd
,
1127 unsigned long padding
)
1130 struct lttcomm_relayd_metadata_payload hdr
;
1132 hdr
.stream_id
= htobe64(stream
->relayd_stream_id
);
1133 hdr
.padding_size
= htobe32(padding
);
1135 ret
= write(fd
, (void *) &hdr
, sizeof(hdr
));
1136 } while (ret
< 0 && errno
== EINTR
);
1138 PERROR("write metadata stream id");
1141 DBG("Metadata stream id %" PRIu64
" with padding %lu written before data",
1142 stream
->relayd_stream_id
, padding
);
1149 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1150 * core function for writing trace buffers to either the local filesystem or
1153 * Careful review MUST be put if any changes occur!
1155 * Returns the number of bytes written
1157 ssize_t
lttng_consumer_on_read_subbuffer_mmap(
1158 struct lttng_consumer_local_data
*ctx
,
1159 struct lttng_consumer_stream
*stream
, unsigned long len
,
1160 unsigned long padding
)
1162 unsigned long mmap_offset
;
1163 ssize_t ret
= 0, written
= 0;
1164 off_t orig_offset
= stream
->out_fd_offset
;
1165 /* Default is on the disk */
1166 int outfd
= stream
->out_fd
;
1167 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1169 /* RCU lock for the relayd pointer */
1172 /* Flag that the current stream if set for network streaming. */
1173 if (stream
->net_seq_idx
!= -1) {
1174 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1175 if (relayd
== NULL
) {
1180 /* get the offset inside the fd to mmap */
1181 switch (consumer_data
.type
) {
1182 case LTTNG_CONSUMER_KERNEL
:
1183 ret
= kernctl_get_mmap_read_offset(stream
->wait_fd
, &mmap_offset
);
1185 case LTTNG_CONSUMER32_UST
:
1186 case LTTNG_CONSUMER64_UST
:
1187 ret
= lttng_ustctl_get_mmap_read_offset(stream
->chan
->handle
,
1188 stream
->buf
, &mmap_offset
);
1191 ERR("Unknown consumer_data type");
1196 PERROR("tracer ctl get_mmap_read_offset");
1201 /* Handle stream on the relayd if the output is on the network */
1203 unsigned long netlen
= len
;
1206 * Lock the control socket for the complete duration of the function
1207 * since from this point on we will use the socket.
1209 if (stream
->metadata_flag
) {
1210 /* Metadata requires the control socket. */
1211 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1212 netlen
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1215 ret
= write_relayd_stream_header(stream
, netlen
, padding
, relayd
);
1217 /* Use the returned socket. */
1220 /* Write metadata stream id before payload */
1221 if (stream
->metadata_flag
) {
1222 ret
= write_relayd_metadata_id(outfd
, stream
, relayd
, padding
);
1229 /* Else, use the default set before which is the filesystem. */
1231 /* No streaming, we have to set the len with the full padding */
1237 ret
= write(outfd
, stream
->mmap_base
+ mmap_offset
, len
);
1238 } while (ret
< 0 && errno
== EINTR
);
1239 DBG("Consumer mmap write() ret %zd (len %lu)", ret
, len
);
1241 PERROR("Error in file write");
1246 } else if (ret
> len
) {
1247 PERROR("Error in file write (ret %zd > len %lu)", ret
, len
);
1255 /* This call is useless on a socket so better save a syscall. */
1257 /* This won't block, but will start writeout asynchronously */
1258 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, ret
,
1259 SYNC_FILE_RANGE_WRITE
);
1260 stream
->out_fd_offset
+= ret
;
1264 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1267 /* Unlock only if ctrl socket used */
1268 if (relayd
&& stream
->metadata_flag
) {
1269 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1277 * Splice the data from the ring buffer to the tracefile.
1279 * Returns the number of bytes spliced.
1281 ssize_t
lttng_consumer_on_read_subbuffer_splice(
1282 struct lttng_consumer_local_data
*ctx
,
1283 struct lttng_consumer_stream
*stream
, unsigned long len
,
1284 unsigned long padding
)
1286 ssize_t ret
= 0, written
= 0, ret_splice
= 0;
1288 off_t orig_offset
= stream
->out_fd_offset
;
1289 int fd
= stream
->wait_fd
;
1290 /* Default is on the disk */
1291 int outfd
= stream
->out_fd
;
1292 struct consumer_relayd_sock_pair
*relayd
= NULL
;
1295 switch (consumer_data
.type
) {
1296 case LTTNG_CONSUMER_KERNEL
:
1298 case LTTNG_CONSUMER32_UST
:
1299 case LTTNG_CONSUMER64_UST
:
1300 /* Not supported for user space tracing */
1303 ERR("Unknown consumer_data type");
1307 /* RCU lock for the relayd pointer */
1310 /* Flag that the current stream if set for network streaming. */
1311 if (stream
->net_seq_idx
!= -1) {
1312 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1313 if (relayd
== NULL
) {
1319 * Choose right pipe for splice. Metadata and trace data are handled by
1320 * different threads hence the use of two pipes in order not to race or
1321 * corrupt the written data.
1323 if (stream
->metadata_flag
) {
1324 splice_pipe
= ctx
->consumer_splice_metadata_pipe
;
1326 splice_pipe
= ctx
->consumer_thread_pipe
;
1329 /* Write metadata stream id before payload */
1331 int total_len
= len
;
1333 if (stream
->metadata_flag
) {
1335 * Lock the control socket for the complete duration of the function
1336 * since from this point on we will use the socket.
1338 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1340 ret
= write_relayd_metadata_id(splice_pipe
[1], stream
, relayd
,
1347 total_len
+= sizeof(struct lttcomm_relayd_metadata_payload
);
1350 ret
= write_relayd_stream_header(stream
, total_len
, padding
, relayd
);
1352 /* Use the returned socket. */
1355 ERR("Remote relayd disconnected. Stopping");
1359 /* No streaming, we have to set the len with the full padding */
1364 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1365 (unsigned long)offset
, len
, fd
, splice_pipe
[1]);
1366 ret_splice
= splice(fd
, &offset
, splice_pipe
[1], NULL
, len
,
1367 SPLICE_F_MOVE
| SPLICE_F_MORE
);
1368 DBG("splice chan to pipe, ret %zd", ret_splice
);
1369 if (ret_splice
< 0) {
1370 PERROR("Error in relay splice");
1372 written
= ret_splice
;
1378 /* Handle stream on the relayd if the output is on the network */
1380 if (stream
->metadata_flag
) {
1381 size_t metadata_payload_size
=
1382 sizeof(struct lttcomm_relayd_metadata_payload
);
1384 /* Update counter to fit the spliced data */
1385 ret_splice
+= metadata_payload_size
;
1386 len
+= metadata_payload_size
;
1388 * We do this so the return value can match the len passed as
1389 * argument to this function.
1391 written
-= metadata_payload_size
;
1395 /* Splice data out */
1396 ret_splice
= splice(splice_pipe
[0], NULL
, outfd
, NULL
,
1397 ret_splice
, SPLICE_F_MOVE
| SPLICE_F_MORE
);
1398 DBG("Consumer splice pipe to file, ret %zd", ret_splice
);
1399 if (ret_splice
< 0) {
1400 PERROR("Error in file splice");
1402 written
= ret_splice
;
1406 } else if (ret_splice
> len
) {
1408 PERROR("Wrote more data than requested %zd (len: %lu)",
1410 written
+= ret_splice
;
1416 /* This call is useless on a socket so better save a syscall. */
1418 /* This won't block, but will start writeout asynchronously */
1419 lttng_sync_file_range(outfd
, stream
->out_fd_offset
, ret_splice
,
1420 SYNC_FILE_RANGE_WRITE
);
1421 stream
->out_fd_offset
+= ret_splice
;
1423 written
+= ret_splice
;
1425 lttng_consumer_sync_trace_file(stream
, orig_offset
);
1432 /* send the appropriate error description to sessiond */
1435 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_EBADF
);
1438 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_EINVAL
);
1441 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ENOMEM
);
1444 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_SPLICE_ESPIPE
);
1449 if (relayd
&& stream
->metadata_flag
) {
1450 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1458 * Take a snapshot for a specific fd
1460 * Returns 0 on success, < 0 on error
1462 int lttng_consumer_take_snapshot(struct lttng_consumer_local_data
*ctx
,
1463 struct lttng_consumer_stream
*stream
)
1465 switch (consumer_data
.type
) {
1466 case LTTNG_CONSUMER_KERNEL
:
1467 return lttng_kconsumer_take_snapshot(ctx
, stream
);
1468 case LTTNG_CONSUMER32_UST
:
1469 case LTTNG_CONSUMER64_UST
:
1470 return lttng_ustconsumer_take_snapshot(ctx
, stream
);
1472 ERR("Unknown consumer_data type");
1480 * Get the produced position
1482 * Returns 0 on success, < 0 on error
1484 int lttng_consumer_get_produced_snapshot(
1485 struct lttng_consumer_local_data
*ctx
,
1486 struct lttng_consumer_stream
*stream
,
1489 switch (consumer_data
.type
) {
1490 case LTTNG_CONSUMER_KERNEL
:
1491 return lttng_kconsumer_get_produced_snapshot(ctx
, stream
, pos
);
1492 case LTTNG_CONSUMER32_UST
:
1493 case LTTNG_CONSUMER64_UST
:
1494 return lttng_ustconsumer_get_produced_snapshot(ctx
, stream
, pos
);
1496 ERR("Unknown consumer_data type");
1502 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data
*ctx
,
1503 int sock
, struct pollfd
*consumer_sockpoll
)
1505 switch (consumer_data
.type
) {
1506 case LTTNG_CONSUMER_KERNEL
:
1507 return lttng_kconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
1508 case LTTNG_CONSUMER32_UST
:
1509 case LTTNG_CONSUMER64_UST
:
1510 return lttng_ustconsumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
1512 ERR("Unknown consumer_data type");
1519 * Iterate over all streams of the hashtable and free them properly.
1521 * WARNING: *MUST* be used with data stream only.
1523 static void destroy_data_stream_ht(struct lttng_ht
*ht
)
1526 struct lttng_ht_iter iter
;
1527 struct lttng_consumer_stream
*stream
;
1534 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1535 ret
= lttng_ht_del(ht
, &iter
);
1538 call_rcu(&stream
->node
.head
, consumer_free_stream
);
1542 lttng_ht_destroy(ht
);
1546 * Iterate over all streams of the hashtable and free them properly.
1548 * XXX: Should not be only for metadata stream or else use an other name.
1550 static void destroy_stream_ht(struct lttng_ht
*ht
)
1553 struct lttng_ht_iter iter
;
1554 struct lttng_consumer_stream
*stream
;
1561 cds_lfht_for_each_entry(ht
->ht
, &iter
.iter
, stream
, node
.node
) {
1562 ret
= lttng_ht_del(ht
, &iter
);
1565 call_rcu(&stream
->node
.head
, consumer_free_stream
);
1569 lttng_ht_destroy(ht
);
1573 * Clean up a metadata stream and free its memory.
1575 void consumer_del_metadata_stream(struct lttng_consumer_stream
*stream
,
1576 struct lttng_ht
*ht
)
1579 struct lttng_ht_iter iter
;
1580 struct lttng_consumer_channel
*free_chan
= NULL
;
1581 struct consumer_relayd_sock_pair
*relayd
;
1585 * This call should NEVER receive regular stream. It must always be
1586 * metadata stream and this is crucial for data structure synchronization.
1588 assert(stream
->metadata_flag
);
1590 DBG3("Consumer delete metadata stream %d", stream
->wait_fd
);
1593 /* Means the stream was allocated but not successfully added */
1597 pthread_mutex_lock(&consumer_data
.lock
);
1598 switch (consumer_data
.type
) {
1599 case LTTNG_CONSUMER_KERNEL
:
1600 if (stream
->mmap_base
!= NULL
) {
1601 ret
= munmap(stream
->mmap_base
, stream
->mmap_len
);
1603 PERROR("munmap metadata stream");
1607 case LTTNG_CONSUMER32_UST
:
1608 case LTTNG_CONSUMER64_UST
:
1609 lttng_ustconsumer_del_stream(stream
);
1612 ERR("Unknown consumer_data type");
1618 iter
.iter
.node
= &stream
->node
.node
;
1619 ret
= lttng_ht_del(ht
, &iter
);
1622 /* Remove node session id from the consumer_data stream ht */
1623 iter
.iter
.node
= &stream
->node_session_id
.node
;
1624 ret
= lttng_ht_del(consumer_data
.stream_list_ht
, &iter
);
1628 if (stream
->out_fd
>= 0) {
1629 ret
= close(stream
->out_fd
);
1635 if (stream
->wait_fd
>= 0 && !stream
->wait_fd_is_copy
) {
1636 ret
= close(stream
->wait_fd
);
1642 if (stream
->shm_fd
>= 0 && stream
->wait_fd
!= stream
->shm_fd
) {
1643 ret
= close(stream
->shm_fd
);
1649 /* Check and cleanup relayd */
1651 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1652 if (relayd
!= NULL
) {
1653 uatomic_dec(&relayd
->refcount
);
1654 assert(uatomic_read(&relayd
->refcount
) >= 0);
1656 /* Closing streams requires to lock the control socket. */
1657 pthread_mutex_lock(&relayd
->ctrl_sock_mutex
);
1658 ret
= relayd_send_close_stream(&relayd
->control_sock
,
1659 stream
->relayd_stream_id
, stream
->next_net_seq_num
- 1);
1660 pthread_mutex_unlock(&relayd
->ctrl_sock_mutex
);
1662 DBG("Unable to close stream on the relayd. Continuing");
1664 * Continue here. There is nothing we can do for the relayd.
1665 * Chances are that the relayd has closed the socket so we just
1666 * continue cleaning up.
1670 /* Both conditions are met, we destroy the relayd. */
1671 if (uatomic_read(&relayd
->refcount
) == 0 &&
1672 uatomic_read(&relayd
->destroy_flag
)) {
1673 destroy_relayd(relayd
);
1678 /* Atomically decrement channel refcount since other threads can use it. */
1679 uatomic_dec(&stream
->chan
->refcount
);
1680 if (!uatomic_read(&stream
->chan
->refcount
)
1681 && !uatomic_read(&stream
->chan
->nb_init_streams
)) {
1682 /* Go for channel deletion! */
1683 free_chan
= stream
->chan
;
1687 pthread_mutex_unlock(&consumer_data
.lock
);
1690 consumer_del_channel(free_chan
);
1694 call_rcu(&stream
->node
.head
, consumer_free_stream
);
1698 * Action done with the metadata stream when adding it to the consumer internal
1699 * data structures to handle it.
1701 static int consumer_add_metadata_stream(struct lttng_consumer_stream
*stream
,
1702 struct lttng_ht
*ht
)
1705 struct consumer_relayd_sock_pair
*relayd
;
1710 DBG3("Adding metadata stream %d to hash table", stream
->wait_fd
);
1712 pthread_mutex_lock(&consumer_data
.lock
);
1715 * From here, refcounts are updated so be _careful_ when returning an error
1720 /* Find relayd and, if one is found, increment refcount. */
1721 relayd
= consumer_find_relayd(stream
->net_seq_idx
);
1722 if (relayd
!= NULL
) {
1723 uatomic_inc(&relayd
->refcount
);
1726 /* Update channel refcount once added without error(s). */
1727 uatomic_inc(&stream
->chan
->refcount
);
1730 * When nb_init_streams reaches 0, we don't need to trigger any action in
1731 * terms of destroying the associated channel, because the action that
1732 * causes the count to become 0 also causes a stream to be added. The
1733 * channel deletion will thus be triggered by the following removal of this
1736 if (uatomic_read(&stream
->chan
->nb_init_streams
) > 0) {
1737 uatomic_dec(&stream
->chan
->nb_init_streams
);
1740 /* Steal stream identifier to avoid having streams with the same key */
1741 consumer_steal_stream_key(stream
->key
, ht
);
1743 lttng_ht_add_unique_ulong(ht
, &stream
->node
);
1746 * Add stream to the stream_list_ht of the consumer data. No need to steal
1747 * the key since the HT does not use it and we allow to add redundant keys
1750 lttng_ht_add_ulong(consumer_data
.stream_list_ht
, &stream
->node_session_id
);
1754 pthread_mutex_unlock(&consumer_data
.lock
);
1759 * Thread polls on metadata file descriptor and write them on disk or on the
1762 void *consumer_thread_metadata_poll(void *data
)
1765 uint32_t revents
, nb_fd
;
1766 struct lttng_consumer_stream
*stream
= NULL
;
1767 struct lttng_ht_iter iter
;
1768 struct lttng_ht_node_ulong
*node
;
1769 struct lttng_poll_event events
;
1770 struct lttng_consumer_local_data
*ctx
= data
;
1773 rcu_register_thread();
1775 DBG("Thread metadata poll started");
1777 /* Size is set to 1 for the consumer_metadata pipe */
1778 ret
= lttng_poll_create(&events
, 2, LTTNG_CLOEXEC
);
1780 ERR("Poll set creation failed");
1784 ret
= lttng_poll_add(&events
, ctx
->consumer_metadata_pipe
[0], LPOLLIN
);
1790 DBG("Metadata main loop started");
1793 lttng_poll_reset(&events
);
1795 nb_fd
= LTTNG_POLL_GETNB(&events
);
1797 /* Only the metadata pipe is set */
1798 if (nb_fd
== 0 && consumer_quit
== 1) {
1803 DBG("Metadata poll wait with %d fd(s)", nb_fd
);
1804 ret
= lttng_poll_wait(&events
, -1);
1805 DBG("Metadata event catched in thread");
1807 if (errno
== EINTR
) {
1808 ERR("Poll EINTR catched");
1814 /* From here, the event is a metadata wait fd */
1815 for (i
= 0; i
< nb_fd
; i
++) {
1816 revents
= LTTNG_POLL_GETEV(&events
, i
);
1817 pollfd
= LTTNG_POLL_GETFD(&events
, i
);
1819 /* Just don't waste time if no returned events for the fd */
1824 if (pollfd
== ctx
->consumer_metadata_pipe
[0]) {
1825 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
1826 DBG("Metadata thread pipe hung up");
1828 * Remove the pipe from the poll set and continue the loop
1829 * since their might be data to consume.
1831 lttng_poll_del(&events
, ctx
->consumer_metadata_pipe
[0]);
1832 close(ctx
->consumer_metadata_pipe
[0]);
1834 } else if (revents
& LPOLLIN
) {
1836 /* Get the stream pointer received */
1837 ret
= read(pollfd
, &stream
, sizeof(stream
));
1838 } while (ret
< 0 && errno
== EINTR
);
1840 ret
< sizeof(struct lttng_consumer_stream
*)) {
1841 PERROR("read metadata stream");
1843 * Let's continue here and hope we can still work
1844 * without stopping the consumer. XXX: Should we?
1849 DBG("Adding metadata stream %d to poll set",
1852 ret
= consumer_add_metadata_stream(stream
, metadata_ht
);
1854 ERR("Unable to add metadata stream");
1855 /* Stream was not setup properly. Continuing. */
1856 consumer_del_metadata_stream(stream
, NULL
);
1860 /* Add metadata stream to the global poll events list */
1861 lttng_poll_add(&events
, stream
->wait_fd
,
1862 LPOLLIN
| LPOLLPRI
);
1865 /* Handle other stream */
1870 lttng_ht_lookup(metadata_ht
, (void *)((unsigned long) pollfd
),
1872 node
= lttng_ht_iter_get_node_ulong(&iter
);
1875 stream
= caa_container_of(node
, struct lttng_consumer_stream
,
1878 /* Check for error event */
1879 if (revents
& (LPOLLERR
| LPOLLHUP
)) {
1880 DBG("Metadata fd %d is hup|err.", pollfd
);
1881 if (!stream
->hangup_flush_done
1882 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
1883 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
1884 DBG("Attempting to flush and consume the UST buffers");
1885 lttng_ustconsumer_on_stream_hangup(stream
);
1887 /* We just flushed the stream now read it. */
1889 len
= ctx
->on_buffer_ready(stream
, ctx
);
1891 * We don't check the return value here since if we get
1892 * a negative len, it means an error occured thus we
1893 * simply remove it from the poll set and free the
1899 lttng_poll_del(&events
, stream
->wait_fd
);
1901 * This call update the channel states, closes file descriptors
1902 * and securely free the stream.
1904 consumer_del_metadata_stream(stream
, metadata_ht
);
1905 } else if (revents
& (LPOLLIN
| LPOLLPRI
)) {
1906 /* Get the data out of the metadata file descriptor */
1907 DBG("Metadata available on fd %d", pollfd
);
1908 assert(stream
->wait_fd
== pollfd
);
1910 len
= ctx
->on_buffer_ready(stream
, ctx
);
1911 /* It's ok to have an unavailable sub-buffer */
1912 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
1915 } else if (len
> 0) {
1916 stream
->data_read
= 1;
1920 /* Release RCU lock for the stream looked up */
1927 DBG("Metadata poll thread exiting");
1928 lttng_poll_clean(&events
);
1931 destroy_stream_ht(metadata_ht
);
1934 rcu_unregister_thread();
1939 * This thread polls the fds in the set to consume the data and write
1940 * it to tracefile if necessary.
1942 void *consumer_thread_data_poll(void *data
)
1944 int num_rdy
, num_hup
, high_prio
, ret
, i
;
1945 struct pollfd
*pollfd
= NULL
;
1946 /* local view of the streams */
1947 struct lttng_consumer_stream
**local_stream
= NULL
, *new_stream
= NULL
;
1948 /* local view of consumer_data.fds_count */
1950 struct lttng_consumer_local_data
*ctx
= data
;
1953 rcu_register_thread();
1955 data_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
1956 if (data_ht
== NULL
) {
1960 local_stream
= zmalloc(sizeof(struct lttng_consumer_stream
));
1967 * the fds set has been updated, we need to update our
1968 * local array as well
1970 pthread_mutex_lock(&consumer_data
.lock
);
1971 if (consumer_data
.need_update
) {
1972 if (pollfd
!= NULL
) {
1976 if (local_stream
!= NULL
) {
1978 local_stream
= NULL
;
1981 /* allocate for all fds + 1 for the consumer_data_pipe */
1982 pollfd
= zmalloc((consumer_data
.stream_count
+ 1) * sizeof(struct pollfd
));
1983 if (pollfd
== NULL
) {
1984 PERROR("pollfd malloc");
1985 pthread_mutex_unlock(&consumer_data
.lock
);
1989 /* allocate for all fds + 1 for the consumer_data_pipe */
1990 local_stream
= zmalloc((consumer_data
.stream_count
+ 1) *
1991 sizeof(struct lttng_consumer_stream
));
1992 if (local_stream
== NULL
) {
1993 PERROR("local_stream malloc");
1994 pthread_mutex_unlock(&consumer_data
.lock
);
1997 ret
= consumer_update_poll_array(ctx
, &pollfd
, local_stream
,
2000 ERR("Error in allocating pollfd or local_outfds");
2001 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2002 pthread_mutex_unlock(&consumer_data
.lock
);
2006 consumer_data
.need_update
= 0;
2008 pthread_mutex_unlock(&consumer_data
.lock
);
2010 /* No FDs and consumer_quit, consumer_cleanup the thread */
2011 if (nb_fd
== 0 && consumer_quit
== 1) {
2014 /* poll on the array of fds */
2016 DBG("polling on %d fd", nb_fd
+ 1);
2017 num_rdy
= poll(pollfd
, nb_fd
+ 1, consumer_poll_timeout
);
2018 DBG("poll num_rdy : %d", num_rdy
);
2019 if (num_rdy
== -1) {
2021 * Restart interrupted system call.
2023 if (errno
== EINTR
) {
2026 PERROR("Poll error");
2027 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_POLL_ERROR
);
2029 } else if (num_rdy
== 0) {
2030 DBG("Polling thread timed out");
2035 * If the consumer_data_pipe triggered poll go directly to the
2036 * beginning of the loop to update the array. We want to prioritize
2037 * array update over low-priority reads.
2039 if (pollfd
[nb_fd
].revents
& (POLLIN
| POLLPRI
)) {
2040 size_t pipe_readlen
;
2042 DBG("consumer_data_pipe wake up");
2043 /* Consume 1 byte of pipe data */
2045 pipe_readlen
= read(ctx
->consumer_data_pipe
[0], &new_stream
,
2046 sizeof(new_stream
));
2047 } while (pipe_readlen
== -1 && errno
== EINTR
);
2050 * If the stream is NULL, just ignore it. It's also possible that
2051 * the sessiond poll thread changed the consumer_quit state and is
2052 * waking us up to test it.
2054 if (new_stream
== NULL
) {
2058 ret
= consumer_add_stream(new_stream
, data_ht
);
2060 ERR("Consumer add stream %d failed. Continuing",
2063 * At this point, if the add_stream fails, it is not in the
2064 * hash table thus passing the NULL value here.
2066 consumer_del_stream(new_stream
, NULL
);
2069 /* Continue to update the local streams and handle prio ones */
2073 /* Take care of high priority channels first. */
2074 for (i
= 0; i
< nb_fd
; i
++) {
2075 if (pollfd
[i
].revents
& POLLPRI
) {
2076 DBG("Urgent read on fd %d", pollfd
[i
].fd
);
2078 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2079 /* it's ok to have an unavailable sub-buffer */
2080 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2082 } else if (len
> 0) {
2083 local_stream
[i
]->data_read
= 1;
2089 * If we read high prio channel in this loop, try again
2090 * for more high prio data.
2096 /* Take care of low priority channels. */
2097 for (i
= 0; i
< nb_fd
; i
++) {
2098 if ((pollfd
[i
].revents
& POLLIN
) ||
2099 local_stream
[i
]->hangup_flush_done
) {
2100 DBG("Normal read on fd %d", pollfd
[i
].fd
);
2101 len
= ctx
->on_buffer_ready(local_stream
[i
], ctx
);
2102 /* it's ok to have an unavailable sub-buffer */
2103 if (len
< 0 && len
!= -EAGAIN
&& len
!= -ENODATA
) {
2105 } else if (len
> 0) {
2106 local_stream
[i
]->data_read
= 1;
2111 /* Handle hangup and errors */
2112 for (i
= 0; i
< nb_fd
; i
++) {
2113 if (!local_stream
[i
]->hangup_flush_done
2114 && (pollfd
[i
].revents
& (POLLHUP
| POLLERR
| POLLNVAL
))
2115 && (consumer_data
.type
== LTTNG_CONSUMER32_UST
2116 || consumer_data
.type
== LTTNG_CONSUMER64_UST
)) {
2117 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2119 lttng_ustconsumer_on_stream_hangup(local_stream
[i
]);
2120 /* Attempt read again, for the data we just flushed. */
2121 local_stream
[i
]->data_read
= 1;
2124 * If the poll flag is HUP/ERR/NVAL and we have
2125 * read no data in this pass, we can remove the
2126 * stream from its hash table.
2128 if ((pollfd
[i
].revents
& POLLHUP
)) {
2129 DBG("Polling fd %d tells it has hung up.", pollfd
[i
].fd
);
2130 if (!local_stream
[i
]->data_read
) {
2131 consumer_del_stream(local_stream
[i
], data_ht
);
2134 } else if (pollfd
[i
].revents
& POLLERR
) {
2135 ERR("Error returned in polling fd %d.", pollfd
[i
].fd
);
2136 if (!local_stream
[i
]->data_read
) {
2137 consumer_del_stream(local_stream
[i
], data_ht
);
2140 } else if (pollfd
[i
].revents
& POLLNVAL
) {
2141 ERR("Polling fd %d tells fd is not open.", pollfd
[i
].fd
);
2142 if (!local_stream
[i
]->data_read
) {
2143 consumer_del_stream(local_stream
[i
], data_ht
);
2147 local_stream
[i
]->data_read
= 0;
2151 DBG("polling thread exiting");
2152 if (pollfd
!= NULL
) {
2156 if (local_stream
!= NULL
) {
2158 local_stream
= NULL
;
2162 * Close the write side of the pipe so epoll_wait() in
2163 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2164 * read side of the pipe. If we close them both, epoll_wait strangely does
2165 * not return and could create a endless wait period if the pipe is the
2166 * only tracked fd in the poll set. The thread will take care of closing
2169 close(ctx
->consumer_metadata_pipe
[1]);
2172 destroy_data_stream_ht(data_ht
);
2175 rcu_unregister_thread();
2180 * This thread listens on the consumerd socket and receives the file
2181 * descriptors from the session daemon.
2183 void *consumer_thread_sessiond_poll(void *data
)
2185 int sock
, client_socket
, ret
;
2187 * structure to poll for incoming data on communication socket avoids
2188 * making blocking sockets.
2190 struct pollfd consumer_sockpoll
[2];
2191 struct lttng_consumer_local_data
*ctx
= data
;
2193 rcu_register_thread();
2195 DBG("Creating command socket %s", ctx
->consumer_command_sock_path
);
2196 unlink(ctx
->consumer_command_sock_path
);
2197 client_socket
= lttcomm_create_unix_sock(ctx
->consumer_command_sock_path
);
2198 if (client_socket
< 0) {
2199 ERR("Cannot create command socket");
2203 ret
= lttcomm_listen_unix_sock(client_socket
);
2208 DBG("Sending ready command to lttng-sessiond");
2209 ret
= lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY
);
2210 /* return < 0 on error, but == 0 is not fatal */
2212 ERR("Error sending ready command to lttng-sessiond");
2216 ret
= fcntl(client_socket
, F_SETFL
, O_NONBLOCK
);
2218 PERROR("fcntl O_NONBLOCK");
2222 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2223 consumer_sockpoll
[0].fd
= ctx
->consumer_should_quit
[0];
2224 consumer_sockpoll
[0].events
= POLLIN
| POLLPRI
;
2225 consumer_sockpoll
[1].fd
= client_socket
;
2226 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
2228 if (lttng_consumer_poll_socket(consumer_sockpoll
) < 0) {
2231 DBG("Connection on client_socket");
2233 /* Blocking call, waiting for transmission */
2234 sock
= lttcomm_accept_unix_sock(client_socket
);
2239 ret
= fcntl(sock
, F_SETFL
, O_NONBLOCK
);
2241 PERROR("fcntl O_NONBLOCK");
2245 /* update the polling structure to poll on the established socket */
2246 consumer_sockpoll
[1].fd
= sock
;
2247 consumer_sockpoll
[1].events
= POLLIN
| POLLPRI
;
2250 if (lttng_consumer_poll_socket(consumer_sockpoll
) < 0) {
2253 DBG("Incoming command on sock");
2254 ret
= lttng_consumer_recv_cmd(ctx
, sock
, consumer_sockpoll
);
2255 if (ret
== -ENOENT
) {
2256 DBG("Received STOP command");
2261 * This could simply be a session daemon quitting. Don't output
2264 DBG("Communication interrupted on command socket");
2267 if (consumer_quit
) {
2268 DBG("consumer_thread_receive_fds received quit from signal");
2271 DBG("received fds on sock");
2274 DBG("consumer_thread_receive_fds exiting");
2277 * when all fds have hung up, the polling thread
2283 * 2s of grace period, if no polling events occur during
2284 * this period, the polling thread will exit even if there
2285 * are still open FDs (should not happen, but safety mechanism).
2287 consumer_poll_timeout
= LTTNG_CONSUMER_POLL_TIMEOUT
;
2290 * Notify the data poll thread to poll back again and test the
2291 * consumer_quit state to quit gracefully.
2294 struct lttng_consumer_stream
*null_stream
= NULL
;
2296 ret
= write(ctx
->consumer_data_pipe
[1], &null_stream
,
2297 sizeof(null_stream
));
2298 } while (ret
< 0 && errno
== EINTR
);
2300 rcu_unregister_thread();
2304 ssize_t
lttng_consumer_read_subbuffer(struct lttng_consumer_stream
*stream
,
2305 struct lttng_consumer_local_data
*ctx
)
2307 switch (consumer_data
.type
) {
2308 case LTTNG_CONSUMER_KERNEL
:
2309 return lttng_kconsumer_read_subbuffer(stream
, ctx
);
2310 case LTTNG_CONSUMER32_UST
:
2311 case LTTNG_CONSUMER64_UST
:
2312 return lttng_ustconsumer_read_subbuffer(stream
, ctx
);
2314 ERR("Unknown consumer_data type");
2320 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream
*stream
)
2322 switch (consumer_data
.type
) {
2323 case LTTNG_CONSUMER_KERNEL
:
2324 return lttng_kconsumer_on_recv_stream(stream
);
2325 case LTTNG_CONSUMER32_UST
:
2326 case LTTNG_CONSUMER64_UST
:
2327 return lttng_ustconsumer_on_recv_stream(stream
);
2329 ERR("Unknown consumer_data type");
2336 * Allocate and set consumer data hash tables.
2338 void lttng_consumer_init(void)
2340 consumer_data
.channel_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2341 consumer_data
.relayd_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2342 consumer_data
.stream_list_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2344 metadata_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2345 assert(metadata_ht
);
2346 data_ht
= lttng_ht_new(0, LTTNG_HT_TYPE_ULONG
);
2351 * Process the ADD_RELAYD command receive by a consumer.
2353 * This will create a relayd socket pair and add it to the relayd hash table.
2354 * The caller MUST acquire a RCU read side lock before calling it.
2356 int consumer_add_relayd_socket(int net_seq_idx
, int sock_type
,
2357 struct lttng_consumer_local_data
*ctx
, int sock
,
2358 struct pollfd
*consumer_sockpoll
, struct lttcomm_sock
*relayd_sock
)
2361 struct consumer_relayd_sock_pair
*relayd
;
2363 DBG("Consumer adding relayd socket (idx: %d)", net_seq_idx
);
2365 /* Get relayd reference if exists. */
2366 relayd
= consumer_find_relayd(net_seq_idx
);
2367 if (relayd
== NULL
) {
2368 /* Not found. Allocate one. */
2369 relayd
= consumer_allocate_relayd_sock_pair(net_seq_idx
);
2370 if (relayd
== NULL
) {
2371 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_OUTFD_ERROR
);
2376 /* Poll on consumer socket. */
2377 if (lttng_consumer_poll_socket(consumer_sockpoll
) < 0) {
2382 /* Get relayd socket from session daemon */
2383 ret
= lttcomm_recv_fds_unix_sock(sock
, &fd
, 1);
2384 if (ret
!= sizeof(fd
)) {
2385 lttng_consumer_send_error(ctx
, LTTCOMM_CONSUMERD_ERROR_RECV_FD
);
2390 /* Copy socket information and received FD */
2391 switch (sock_type
) {
2392 case LTTNG_STREAM_CONTROL
:
2393 /* Copy received lttcomm socket */
2394 lttcomm_copy_sock(&relayd
->control_sock
, relayd_sock
);
2395 ret
= lttcomm_create_sock(&relayd
->control_sock
);
2400 /* Close the created socket fd which is useless */
2401 close(relayd
->control_sock
.fd
);
2403 /* Assign new file descriptor */
2404 relayd
->control_sock
.fd
= fd
;
2406 case LTTNG_STREAM_DATA
:
2407 /* Copy received lttcomm socket */
2408 lttcomm_copy_sock(&relayd
->data_sock
, relayd_sock
);
2409 ret
= lttcomm_create_sock(&relayd
->data_sock
);
2414 /* Close the created socket fd which is useless */
2415 close(relayd
->data_sock
.fd
);
2417 /* Assign new file descriptor */
2418 relayd
->data_sock
.fd
= fd
;
2421 ERR("Unknown relayd socket type (%d)", sock_type
);
2425 DBG("Consumer %s socket created successfully with net idx %d (fd: %d)",
2426 sock_type
== LTTNG_STREAM_CONTROL
? "control" : "data",
2427 relayd
->net_seq_idx
, fd
);
2430 * Add relayd socket pair to consumer data hashtable. If object already
2431 * exists or on error, the function gracefully returns.
2443 * Check if for a given session id there is still data needed to be extract
2446 * Return 1 if data is in fact available to be read or else 0.
2448 int consumer_data_available(uint64_t id
)
2451 struct lttng_ht_iter iter
;
2452 struct lttng_ht
*ht
;
2453 struct lttng_consumer_stream
*stream
;
2454 int (*data_available
)(struct lttng_consumer_stream
*);
2456 DBG("Consumer data available command on session id %" PRIu64
, id
);
2458 pthread_mutex_lock(&consumer_data
.lock
);
2460 switch (consumer_data
.type
) {
2461 case LTTNG_CONSUMER_KERNEL
:
2462 data_available
= lttng_kconsumer_data_available
;
2464 case LTTNG_CONSUMER32_UST
:
2465 case LTTNG_CONSUMER64_UST
:
2466 data_available
= lttng_ustconsumer_data_available
;
2469 ERR("Unknown consumer data type");
2473 /* Ease our life a bit */
2474 ht
= consumer_data
.stream_list_ht
;
2476 cds_lfht_for_each_entry_duplicate(ht
->ht
, (long unsigned int) ht
->hash_fct
,
2477 ht
->match_fct
, (void *)((unsigned long) id
),
2478 &iter
.iter
, stream
, node_session_id
.node
) {
2479 /* Check the stream for data. */
2480 ret
= data_available(stream
);
2482 goto data_not_available
;
2486 /* TODO: Support to ask the relayd if the streams are remote */
2489 * Finding _no_ node in the hash table means that the stream(s) have been
2490 * removed thus data is guaranteed to be available for analysis from the
2491 * trace files. This is *only* true for local consumer and not network
2495 /* Data is available to be read by a viewer. */
2496 pthread_mutex_unlock(&consumer_data
.lock
);
2500 /* Data is still being extracted from buffers. */
2501 pthread_mutex_unlock(&consumer_data
.lock
);