a387b93bf87f0334365c3217c95537cf1487e29b
[lttng-tools.git] / src / common / kernel-ctl / kernel-ctl.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2 only,
7 * as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License along
15 * with this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19 #define __USE_LINUX_IOCTL_DEFS
20 #include <sys/ioctl.h>
21 #include <string.h>
22 #include <common/align.h>
23
24 #include "kernel-ctl.h"
25 #include "kernel-ioctl.h"
26
27 /*
28 * This flag indicates which version of the kernel ABI to use. The old
29 * ABI (namespace _old) does not support a 32-bit user-space when the
30 * kernel is 64-bit. The old ABI is kept here for compatibility but is
31 * deprecated and will be removed eventually.
32 */
33 static int lttng_kernel_use_old_abi = -1;
34
35 /*
36 * Execute the new or old ioctl depending on the ABI version.
37 * If the ABI version is not determined yet (lttng_kernel_use_old_abi = -1),
38 * this function tests if the new ABI is available and otherwise fallbacks
39 * on the old one.
40 * This function takes the fd on which the ioctl must be executed and the old
41 * and new request codes.
42 * It returns the return value of the ioctl executed.
43 */
44 static inline int compat_ioctl_no_arg(int fd, unsigned long oldname,
45 unsigned long newname)
46 {
47 int ret;
48
49 if (lttng_kernel_use_old_abi == -1) {
50 ret = ioctl(fd, newname);
51 if (!ret) {
52 lttng_kernel_use_old_abi = 0;
53 goto end;
54 }
55 lttng_kernel_use_old_abi = 1;
56 }
57 if (lttng_kernel_use_old_abi) {
58 ret = ioctl(fd, oldname);
59 } else {
60 ret = ioctl(fd, newname);
61 }
62
63 end:
64 return ret;
65 }
66
67 int kernctl_create_session(int fd)
68 {
69 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_SESSION,
70 LTTNG_KERNEL_SESSION);
71 }
72
73 /* open the metadata global channel */
74 int kernctl_open_metadata(int fd, struct lttng_channel_attr *chops)
75 {
76 struct lttng_kernel_old_channel old_channel;
77 struct lttng_kernel_channel channel;
78
79 if (lttng_kernel_use_old_abi) {
80 old_channel.overwrite = chops->overwrite;
81 old_channel.subbuf_size = chops->subbuf_size;
82 old_channel.num_subbuf = chops->num_subbuf;
83 old_channel.switch_timer_interval = chops->switch_timer_interval;
84 old_channel.read_timer_interval = chops->read_timer_interval;
85 old_channel.output = chops->output;
86
87 memset(old_channel.padding, 0, sizeof(old_channel.padding));
88 /*
89 * The new channel padding is smaller than the old ABI so we use the
90 * new ABI padding size for the memcpy.
91 */
92 memcpy(old_channel.padding, chops->padding, sizeof(chops->padding));
93
94 return ioctl(fd, LTTNG_KERNEL_OLD_METADATA, &old_channel);
95 }
96
97 channel.overwrite = chops->overwrite;
98 channel.subbuf_size = chops->subbuf_size;
99 channel.num_subbuf = chops->num_subbuf;
100 channel.switch_timer_interval = chops->switch_timer_interval;
101 channel.read_timer_interval = chops->read_timer_interval;
102 channel.output = chops->output;
103 memcpy(channel.padding, chops->padding, sizeof(chops->padding));
104
105 return ioctl(fd, LTTNG_KERNEL_METADATA, &channel);
106 }
107
108 int kernctl_create_channel(int fd, struct lttng_channel_attr *chops)
109 {
110 struct lttng_kernel_channel channel;
111
112 if (lttng_kernel_use_old_abi) {
113 struct lttng_kernel_old_channel old_channel;
114
115 old_channel.overwrite = chops->overwrite;
116 old_channel.subbuf_size = chops->subbuf_size;
117 old_channel.num_subbuf = chops->num_subbuf;
118 old_channel.switch_timer_interval = chops->switch_timer_interval;
119 old_channel.read_timer_interval = chops->read_timer_interval;
120 old_channel.output = chops->output;
121
122 memset(old_channel.padding, 0, sizeof(old_channel.padding));
123 /*
124 * The new channel padding is smaller than the old ABI so we use the
125 * new ABI padding size for the memcpy.
126 */
127 memcpy(old_channel.padding, chops->padding, sizeof(chops->padding));
128
129 return ioctl(fd, LTTNG_KERNEL_OLD_CHANNEL, &old_channel);
130 }
131
132 channel.overwrite = chops->overwrite;
133 channel.subbuf_size = chops->subbuf_size;
134 channel.num_subbuf = chops->num_subbuf;
135 channel.switch_timer_interval = chops->switch_timer_interval;
136 channel.read_timer_interval = chops->read_timer_interval;
137 channel.output = chops->output;
138 memcpy(channel.padding, chops->padding, sizeof(chops->padding));
139
140 return ioctl(fd, LTTNG_KERNEL_CHANNEL, &channel);
141 }
142
143 int kernctl_enable_syscall(int fd, const char *syscall_name)
144 {
145 struct lttng_kernel_event event;
146
147 memset(&event, 0, sizeof(event));
148 strncpy(event.name, syscall_name, sizeof(event.name));
149 event.name[sizeof(event.name) - 1] = '\0';
150 event.instrumentation = LTTNG_KERNEL_SYSCALL;
151 event.u.syscall.enable = 1;
152 return ioctl(fd, LTTNG_KERNEL_EVENT, &event);
153 }
154
155 int kernctl_disable_syscall(int fd, const char *syscall_name)
156 {
157 struct lttng_kernel_event event;
158
159 memset(&event, 0, sizeof(event));
160 strncpy(event.name, syscall_name, sizeof(event.name));
161 event.name[sizeof(event.name) - 1] = '\0';
162 event.instrumentation = LTTNG_KERNEL_SYSCALL;
163 event.u.syscall.enable = 0;
164 return ioctl(fd, LTTNG_KERNEL_EVENT, &event);
165 }
166
167 int kernctl_syscall_mask(int fd, char **syscall_mask, uint32_t *nr_bits)
168 {
169 struct lttng_kernel_syscall_mask kmask_len, *kmask = NULL;
170 size_t array_alloc_len;
171 char *new_mask;
172 int ret = 0;
173
174 if (!syscall_mask) {
175 ret = -1;
176 goto end;
177 }
178
179 if (!nr_bits) {
180 ret = -1;
181 goto end;
182 }
183
184 kmask_len.len = 0;
185 ret = ioctl(fd, LTTNG_KERNEL_SYSCALL_MASK, &kmask_len);
186 if (ret) {
187 goto end;
188 }
189
190 array_alloc_len = ALIGN(kmask_len.len, 8) >> 3;
191
192 kmask = zmalloc(sizeof(*kmask) + array_alloc_len);
193 if (!kmask) {
194 ret = -1;
195 goto end;
196 }
197
198 kmask->len = kmask_len.len;
199 ret = ioctl(fd, LTTNG_KERNEL_SYSCALL_MASK, kmask);
200 if (ret) {
201 goto end;
202 }
203
204 new_mask = realloc(*syscall_mask, array_alloc_len);
205 if (!new_mask) {
206 ret = -1;
207 goto end;
208 }
209 memcpy(new_mask, kmask->mask, array_alloc_len);
210 *syscall_mask = new_mask;
211 *nr_bits = kmask->len;
212
213 end:
214 free(kmask);
215 return ret;
216 }
217
218 int kernctl_create_stream(int fd)
219 {
220 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_STREAM,
221 LTTNG_KERNEL_STREAM);
222 }
223
224 int kernctl_create_event(int fd, struct lttng_kernel_event *ev)
225 {
226 if (lttng_kernel_use_old_abi) {
227 struct lttng_kernel_old_event old_event;
228
229 memcpy(old_event.name, ev->name, sizeof(old_event.name));
230 old_event.instrumentation = ev->instrumentation;
231 switch (ev->instrumentation) {
232 case LTTNG_KERNEL_KPROBE:
233 old_event.u.kprobe.addr = ev->u.kprobe.addr;
234 old_event.u.kprobe.offset = ev->u.kprobe.offset;
235 memcpy(old_event.u.kprobe.symbol_name,
236 ev->u.kprobe.symbol_name,
237 sizeof(old_event.u.kprobe.symbol_name));
238 break;
239 case LTTNG_KERNEL_KRETPROBE:
240 old_event.u.kretprobe.addr = ev->u.kretprobe.addr;
241 old_event.u.kretprobe.offset = ev->u.kretprobe.offset;
242 memcpy(old_event.u.kretprobe.symbol_name,
243 ev->u.kretprobe.symbol_name,
244 sizeof(old_event.u.kretprobe.symbol_name));
245 break;
246 case LTTNG_KERNEL_FUNCTION:
247 memcpy(old_event.u.ftrace.symbol_name,
248 ev->u.ftrace.symbol_name,
249 sizeof(old_event.u.ftrace.symbol_name));
250 break;
251 default:
252 break;
253 }
254
255 return ioctl(fd, LTTNG_KERNEL_OLD_EVENT, &old_event);
256 }
257 return ioctl(fd, LTTNG_KERNEL_EVENT, ev);
258 }
259
260 int kernctl_add_context(int fd, struct lttng_kernel_context *ctx)
261 {
262 if (lttng_kernel_use_old_abi) {
263 struct lttng_kernel_old_context old_ctx;
264
265 old_ctx.ctx = ctx->ctx;
266 /* only type that uses the union */
267 if (ctx->ctx == LTTNG_KERNEL_CONTEXT_PERF_CPU_COUNTER) {
268 old_ctx.u.perf_counter.type =
269 ctx->u.perf_counter.type;
270 old_ctx.u.perf_counter.config =
271 ctx->u.perf_counter.config;
272 memcpy(old_ctx.u.perf_counter.name,
273 ctx->u.perf_counter.name,
274 sizeof(old_ctx.u.perf_counter.name));
275 }
276 return ioctl(fd, LTTNG_KERNEL_OLD_CONTEXT, &old_ctx);
277 }
278 return ioctl(fd, LTTNG_KERNEL_CONTEXT, ctx);
279 }
280
281
282 /* Enable event, channel and session ioctl */
283 int kernctl_enable(int fd)
284 {
285 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_ENABLE,
286 LTTNG_KERNEL_ENABLE);
287 }
288
289 /* Disable event, channel and session ioctl */
290 int kernctl_disable(int fd)
291 {
292 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_DISABLE,
293 LTTNG_KERNEL_DISABLE);
294 }
295
296 int kernctl_start_session(int fd)
297 {
298 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_SESSION_START,
299 LTTNG_KERNEL_SESSION_START);
300 }
301
302 int kernctl_stop_session(int fd)
303 {
304 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_SESSION_STOP,
305 LTTNG_KERNEL_SESSION_STOP);
306 }
307
308 int kernctl_tracepoint_list(int fd)
309 {
310 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_TRACEPOINT_LIST,
311 LTTNG_KERNEL_TRACEPOINT_LIST);
312 }
313
314 int kernctl_syscall_list(int fd)
315 {
316 return ioctl(fd, LTTNG_KERNEL_SYSCALL_LIST);
317 }
318
319 int kernctl_tracer_version(int fd, struct lttng_kernel_tracer_version *v)
320 {
321 int ret;
322
323 if (lttng_kernel_use_old_abi == -1) {
324 ret = ioctl(fd, LTTNG_KERNEL_TRACER_VERSION, v);
325 if (!ret) {
326 lttng_kernel_use_old_abi = 0;
327 goto end;
328 }
329 lttng_kernel_use_old_abi = 1;
330 }
331 if (lttng_kernel_use_old_abi) {
332 struct lttng_kernel_old_tracer_version old_v;
333
334 ret = ioctl(fd, LTTNG_KERNEL_OLD_TRACER_VERSION, &old_v);
335 if (ret) {
336 goto end;
337 }
338 v->major = old_v.major;
339 v->minor = old_v.minor;
340 v->patchlevel = old_v.patchlevel;
341 } else {
342 ret = ioctl(fd, LTTNG_KERNEL_TRACER_VERSION, v);
343 }
344
345 end:
346 return ret;
347 }
348
349 int kernctl_wait_quiescent(int fd)
350 {
351 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_WAIT_QUIESCENT,
352 LTTNG_KERNEL_WAIT_QUIESCENT);
353 }
354
355 int kernctl_calibrate(int fd, struct lttng_kernel_calibrate *calibrate)
356 {
357 int ret;
358
359 if (lttng_kernel_use_old_abi == -1) {
360 ret = ioctl(fd, LTTNG_KERNEL_CALIBRATE, calibrate);
361 if (!ret) {
362 lttng_kernel_use_old_abi = 0;
363 goto end;
364 }
365 lttng_kernel_use_old_abi = 1;
366 }
367 if (lttng_kernel_use_old_abi) {
368 struct lttng_kernel_old_calibrate old_calibrate;
369
370 old_calibrate.type = calibrate->type;
371 ret = ioctl(fd, LTTNG_KERNEL_OLD_CALIBRATE, &old_calibrate);
372 if (ret) {
373 goto end;
374 }
375 calibrate->type = old_calibrate.type;
376 } else {
377 ret = ioctl(fd, LTTNG_KERNEL_CALIBRATE, calibrate);
378 }
379
380 end:
381 return ret;
382 }
383
384
385 int kernctl_buffer_flush(int fd)
386 {
387 return ioctl(fd, RING_BUFFER_FLUSH);
388 }
389
390
391 /* Buffer operations */
392
393 /* For mmap mode, readable without "get" operation */
394
395 /* returns the length to mmap. */
396 int kernctl_get_mmap_len(int fd, unsigned long *len)
397 {
398 return ioctl(fd, RING_BUFFER_GET_MMAP_LEN, len);
399 }
400
401 /* returns the maximum size for sub-buffers. */
402 int kernctl_get_max_subbuf_size(int fd, unsigned long *len)
403 {
404 return ioctl(fd, RING_BUFFER_GET_MAX_SUBBUF_SIZE, len);
405 }
406
407 /*
408 * For mmap mode, operate on the current packet (between get/put or
409 * get_next/put_next).
410 */
411
412 /* returns the offset of the subbuffer belonging to the mmap reader. */
413 int kernctl_get_mmap_read_offset(int fd, unsigned long *off)
414 {
415 return ioctl(fd, RING_BUFFER_GET_MMAP_READ_OFFSET, off);
416 }
417
418 /* returns the size of the current sub-buffer, without padding (for mmap). */
419 int kernctl_get_subbuf_size(int fd, unsigned long *len)
420 {
421 return ioctl(fd, RING_BUFFER_GET_SUBBUF_SIZE, len);
422 }
423
424 /* returns the size of the current sub-buffer, without padding (for mmap). */
425 int kernctl_get_padded_subbuf_size(int fd, unsigned long *len)
426 {
427 return ioctl(fd, RING_BUFFER_GET_PADDED_SUBBUF_SIZE, len);
428 }
429
430 /* Get exclusive read access to the next sub-buffer that can be read. */
431 int kernctl_get_next_subbuf(int fd)
432 {
433 return ioctl(fd, RING_BUFFER_GET_NEXT_SUBBUF);
434 }
435
436
437 /* Release exclusive sub-buffer access, move consumer forward. */
438 int kernctl_put_next_subbuf(int fd)
439 {
440 return ioctl(fd, RING_BUFFER_PUT_NEXT_SUBBUF);
441 }
442
443 /* snapshot */
444
445 /* Get a snapshot of the current ring buffer producer and consumer positions */
446 int kernctl_snapshot(int fd)
447 {
448 return ioctl(fd, RING_BUFFER_SNAPSHOT);
449 }
450
451 /* Get the consumer position (iteration start) */
452 int kernctl_snapshot_get_consumed(int fd, unsigned long *pos)
453 {
454 return ioctl(fd, RING_BUFFER_SNAPSHOT_GET_CONSUMED, pos);
455 }
456
457 /* Get the producer position (iteration end) */
458 int kernctl_snapshot_get_produced(int fd, unsigned long *pos)
459 {
460 return ioctl(fd, RING_BUFFER_SNAPSHOT_GET_PRODUCED, pos);
461 }
462
463 /* Get exclusive read access to the specified sub-buffer position */
464 int kernctl_get_subbuf(int fd, unsigned long *len)
465 {
466 return ioctl(fd, RING_BUFFER_GET_SUBBUF, len);
467 }
468
469 /* Release exclusive sub-buffer access */
470 int kernctl_put_subbuf(int fd)
471 {
472 return ioctl(fd, RING_BUFFER_PUT_SUBBUF);
473 }
474
475 /* Returns the timestamp begin of the current sub-buffer. */
476 int kernctl_get_timestamp_begin(int fd, uint64_t *timestamp_begin)
477 {
478 return ioctl(fd, LTTNG_RING_BUFFER_GET_TIMESTAMP_BEGIN, timestamp_begin);
479 }
480
481 /* Returns the timestamp end of the current sub-buffer. */
482 int kernctl_get_timestamp_end(int fd, uint64_t *timestamp_end)
483 {
484 return ioctl(fd, LTTNG_RING_BUFFER_GET_TIMESTAMP_END, timestamp_end);
485 }
486
487 /* Returns the number of discarded events in the current sub-buffer. */
488 int kernctl_get_events_discarded(int fd, uint64_t *events_discarded)
489 {
490 return ioctl(fd, LTTNG_RING_BUFFER_GET_EVENTS_DISCARDED, events_discarded);
491 }
492
493 /* Returns the content size in the current sub-buffer. */
494 int kernctl_get_content_size(int fd, uint64_t *content_size)
495 {
496 return ioctl(fd, LTTNG_RING_BUFFER_GET_CONTENT_SIZE, content_size);
497 }
498
499 /* Returns the packet size in the current sub-buffer. */
500 int kernctl_get_packet_size(int fd, uint64_t *packet_size)
501 {
502 return ioctl(fd, LTTNG_RING_BUFFER_GET_PACKET_SIZE, packet_size);
503 }
504
505 /* Returns the stream id of the current sub-buffer. */
506 int kernctl_get_stream_id(int fd, uint64_t *stream_id)
507 {
508 return ioctl(fd, LTTNG_RING_BUFFER_GET_STREAM_ID, stream_id);
509 }
510
511 /* Returns the current timestamp. */
512 int kernctl_get_current_timestamp(int fd, uint64_t *ts)
513 {
514 return ioctl(fd, LTTNG_RING_BUFFER_GET_CURRENT_TIMESTAMP, ts);
515 }
This page took 0.041116 seconds and 4 git commands to generate.