perf tools: Use kernel bitmap library
[deliverable/linux.git] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/cache.h"
6 #include "util/symbol.h"
7 #include "util/thread.h"
8 #include "util/header.h"
9
10 #include "util/parse-options.h"
11 #include "util/trace-event.h"
12
13 #include "util/debug.h"
14 #include "util/data_map.h"
15
16 #include <sys/types.h>
17 #include <sys/prctl.h>
18
19 #include <semaphore.h>
20 #include <pthread.h>
21 #include <math.h>
22
23 static char const *input_name = "perf.data";
24
25 static unsigned long total_comm = 0;
26
27 static struct perf_header *header;
28 static u64 sample_type;
29
30 static char default_sort_order[] = "avg, max, switch, runtime";
31 static char *sort_order = default_sort_order;
32
33 static int profile_cpu = -1;
34
35 static char *cwd;
36 static int cwdlen;
37
38 #define PR_SET_NAME 15 /* Set process name */
39 #define MAX_CPUS 4096
40
41 static u64 run_measurement_overhead;
42 static u64 sleep_measurement_overhead;
43
44 #define COMM_LEN 20
45 #define SYM_LEN 129
46
47 #define MAX_PID 65536
48
49 static unsigned long nr_tasks;
50
51 struct sched_atom;
52
53 struct task_desc {
54 unsigned long nr;
55 unsigned long pid;
56 char comm[COMM_LEN];
57
58 unsigned long nr_events;
59 unsigned long curr_event;
60 struct sched_atom **atoms;
61
62 pthread_t thread;
63 sem_t sleep_sem;
64
65 sem_t ready_for_work;
66 sem_t work_done_sem;
67
68 u64 cpu_usage;
69 };
70
71 enum sched_event_type {
72 SCHED_EVENT_RUN,
73 SCHED_EVENT_SLEEP,
74 SCHED_EVENT_WAKEUP,
75 SCHED_EVENT_MIGRATION,
76 };
77
78 struct sched_atom {
79 enum sched_event_type type;
80 u64 timestamp;
81 u64 duration;
82 unsigned long nr;
83 int specific_wait;
84 sem_t *wait_sem;
85 struct task_desc *wakee;
86 };
87
88 static struct task_desc *pid_to_task[MAX_PID];
89
90 static struct task_desc **tasks;
91
92 static pthread_mutex_t start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
93 static u64 start_time;
94
95 static pthread_mutex_t work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
96
97 static unsigned long nr_run_events;
98 static unsigned long nr_sleep_events;
99 static unsigned long nr_wakeup_events;
100
101 static unsigned long nr_sleep_corrections;
102 static unsigned long nr_run_events_optimized;
103
104 static unsigned long targetless_wakeups;
105 static unsigned long multitarget_wakeups;
106
107 static u64 cpu_usage;
108 static u64 runavg_cpu_usage;
109 static u64 parent_cpu_usage;
110 static u64 runavg_parent_cpu_usage;
111
112 static unsigned long nr_runs;
113 static u64 sum_runtime;
114 static u64 sum_fluct;
115 static u64 run_avg;
116
117 static unsigned long replay_repeat = 10;
118 static unsigned long nr_timestamps;
119 static unsigned long nr_unordered_timestamps;
120 static unsigned long nr_state_machine_bugs;
121 static unsigned long nr_context_switch_bugs;
122 static unsigned long nr_events;
123 static unsigned long nr_lost_chunks;
124 static unsigned long nr_lost_events;
125
126 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
127
128 enum thread_state {
129 THREAD_SLEEPING = 0,
130 THREAD_WAIT_CPU,
131 THREAD_SCHED_IN,
132 THREAD_IGNORE
133 };
134
135 struct work_atom {
136 struct list_head list;
137 enum thread_state state;
138 u64 sched_out_time;
139 u64 wake_up_time;
140 u64 sched_in_time;
141 u64 runtime;
142 };
143
144 struct work_atoms {
145 struct list_head work_list;
146 struct thread *thread;
147 struct rb_node node;
148 u64 max_lat;
149 u64 total_lat;
150 u64 nb_atoms;
151 u64 total_runtime;
152 };
153
154 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
155
156 static struct rb_root atom_root, sorted_atom_root;
157
158 static u64 all_runtime;
159 static u64 all_count;
160
161
162 static u64 get_nsecs(void)
163 {
164 struct timespec ts;
165
166 clock_gettime(CLOCK_MONOTONIC, &ts);
167
168 return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
169 }
170
171 static void burn_nsecs(u64 nsecs)
172 {
173 u64 T0 = get_nsecs(), T1;
174
175 do {
176 T1 = get_nsecs();
177 } while (T1 + run_measurement_overhead < T0 + nsecs);
178 }
179
180 static void sleep_nsecs(u64 nsecs)
181 {
182 struct timespec ts;
183
184 ts.tv_nsec = nsecs % 999999999;
185 ts.tv_sec = nsecs / 999999999;
186
187 nanosleep(&ts, NULL);
188 }
189
190 static void calibrate_run_measurement_overhead(void)
191 {
192 u64 T0, T1, delta, min_delta = 1000000000ULL;
193 int i;
194
195 for (i = 0; i < 10; i++) {
196 T0 = get_nsecs();
197 burn_nsecs(0);
198 T1 = get_nsecs();
199 delta = T1-T0;
200 min_delta = min(min_delta, delta);
201 }
202 run_measurement_overhead = min_delta;
203
204 printf("run measurement overhead: %Ld nsecs\n", min_delta);
205 }
206
207 static void calibrate_sleep_measurement_overhead(void)
208 {
209 u64 T0, T1, delta, min_delta = 1000000000ULL;
210 int i;
211
212 for (i = 0; i < 10; i++) {
213 T0 = get_nsecs();
214 sleep_nsecs(10000);
215 T1 = get_nsecs();
216 delta = T1-T0;
217 min_delta = min(min_delta, delta);
218 }
219 min_delta -= 10000;
220 sleep_measurement_overhead = min_delta;
221
222 printf("sleep measurement overhead: %Ld nsecs\n", min_delta);
223 }
224
225 static struct sched_atom *
226 get_new_event(struct task_desc *task, u64 timestamp)
227 {
228 struct sched_atom *event = calloc(1, sizeof(*event));
229 unsigned long idx = task->nr_events;
230 size_t size;
231
232 event->timestamp = timestamp;
233 event->nr = idx;
234
235 task->nr_events++;
236 size = sizeof(struct sched_atom *) * task->nr_events;
237 task->atoms = realloc(task->atoms, size);
238 BUG_ON(!task->atoms);
239
240 task->atoms[idx] = event;
241
242 return event;
243 }
244
245 static struct sched_atom *last_event(struct task_desc *task)
246 {
247 if (!task->nr_events)
248 return NULL;
249
250 return task->atoms[task->nr_events - 1];
251 }
252
253 static void
254 add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
255 {
256 struct sched_atom *event, *curr_event = last_event(task);
257
258 /*
259 * optimize an existing RUN event by merging this one
260 * to it:
261 */
262 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
263 nr_run_events_optimized++;
264 curr_event->duration += duration;
265 return;
266 }
267
268 event = get_new_event(task, timestamp);
269
270 event->type = SCHED_EVENT_RUN;
271 event->duration = duration;
272
273 nr_run_events++;
274 }
275
276 static void
277 add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
278 struct task_desc *wakee)
279 {
280 struct sched_atom *event, *wakee_event;
281
282 event = get_new_event(task, timestamp);
283 event->type = SCHED_EVENT_WAKEUP;
284 event->wakee = wakee;
285
286 wakee_event = last_event(wakee);
287 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
288 targetless_wakeups++;
289 return;
290 }
291 if (wakee_event->wait_sem) {
292 multitarget_wakeups++;
293 return;
294 }
295
296 wakee_event->wait_sem = calloc(1, sizeof(*wakee_event->wait_sem));
297 sem_init(wakee_event->wait_sem, 0, 0);
298 wakee_event->specific_wait = 1;
299 event->wait_sem = wakee_event->wait_sem;
300
301 nr_wakeup_events++;
302 }
303
304 static void
305 add_sched_event_sleep(struct task_desc *task, u64 timestamp,
306 u64 task_state __used)
307 {
308 struct sched_atom *event = get_new_event(task, timestamp);
309
310 event->type = SCHED_EVENT_SLEEP;
311
312 nr_sleep_events++;
313 }
314
315 static struct task_desc *register_pid(unsigned long pid, const char *comm)
316 {
317 struct task_desc *task;
318
319 BUG_ON(pid >= MAX_PID);
320
321 task = pid_to_task[pid];
322
323 if (task)
324 return task;
325
326 task = calloc(1, sizeof(*task));
327 task->pid = pid;
328 task->nr = nr_tasks;
329 strcpy(task->comm, comm);
330 /*
331 * every task starts in sleeping state - this gets ignored
332 * if there's no wakeup pointing to this sleep state:
333 */
334 add_sched_event_sleep(task, 0, 0);
335
336 pid_to_task[pid] = task;
337 nr_tasks++;
338 tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
339 BUG_ON(!tasks);
340 tasks[task->nr] = task;
341
342 if (verbose)
343 printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
344
345 return task;
346 }
347
348
349 static void print_task_traces(void)
350 {
351 struct task_desc *task;
352 unsigned long i;
353
354 for (i = 0; i < nr_tasks; i++) {
355 task = tasks[i];
356 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
357 task->nr, task->comm, task->pid, task->nr_events);
358 }
359 }
360
361 static void add_cross_task_wakeups(void)
362 {
363 struct task_desc *task1, *task2;
364 unsigned long i, j;
365
366 for (i = 0; i < nr_tasks; i++) {
367 task1 = tasks[i];
368 j = i + 1;
369 if (j == nr_tasks)
370 j = 0;
371 task2 = tasks[j];
372 add_sched_event_wakeup(task1, 0, task2);
373 }
374 }
375
376 static void
377 process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
378 {
379 int ret = 0;
380 u64 now;
381 long long delta;
382
383 now = get_nsecs();
384 delta = start_time + atom->timestamp - now;
385
386 switch (atom->type) {
387 case SCHED_EVENT_RUN:
388 burn_nsecs(atom->duration);
389 break;
390 case SCHED_EVENT_SLEEP:
391 if (atom->wait_sem)
392 ret = sem_wait(atom->wait_sem);
393 BUG_ON(ret);
394 break;
395 case SCHED_EVENT_WAKEUP:
396 if (atom->wait_sem)
397 ret = sem_post(atom->wait_sem);
398 BUG_ON(ret);
399 break;
400 case SCHED_EVENT_MIGRATION:
401 break;
402 default:
403 BUG_ON(1);
404 }
405 }
406
407 static u64 get_cpu_usage_nsec_parent(void)
408 {
409 struct rusage ru;
410 u64 sum;
411 int err;
412
413 err = getrusage(RUSAGE_SELF, &ru);
414 BUG_ON(err);
415
416 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
417 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
418
419 return sum;
420 }
421
422 static u64 get_cpu_usage_nsec_self(void)
423 {
424 char filename [] = "/proc/1234567890/sched";
425 unsigned long msecs, nsecs;
426 char *line = NULL;
427 u64 total = 0;
428 size_t len = 0;
429 ssize_t chars;
430 FILE *file;
431 int ret;
432
433 sprintf(filename, "/proc/%d/sched", getpid());
434 file = fopen(filename, "r");
435 BUG_ON(!file);
436
437 while ((chars = getline(&line, &len, file)) != -1) {
438 ret = sscanf(line, "se.sum_exec_runtime : %ld.%06ld\n",
439 &msecs, &nsecs);
440 if (ret == 2) {
441 total = msecs*1e6 + nsecs;
442 break;
443 }
444 }
445 if (line)
446 free(line);
447 fclose(file);
448
449 return total;
450 }
451
452 static void *thread_func(void *ctx)
453 {
454 struct task_desc *this_task = ctx;
455 u64 cpu_usage_0, cpu_usage_1;
456 unsigned long i, ret;
457 char comm2[22];
458
459 sprintf(comm2, ":%s", this_task->comm);
460 prctl(PR_SET_NAME, comm2);
461
462 again:
463 ret = sem_post(&this_task->ready_for_work);
464 BUG_ON(ret);
465 ret = pthread_mutex_lock(&start_work_mutex);
466 BUG_ON(ret);
467 ret = pthread_mutex_unlock(&start_work_mutex);
468 BUG_ON(ret);
469
470 cpu_usage_0 = get_cpu_usage_nsec_self();
471
472 for (i = 0; i < this_task->nr_events; i++) {
473 this_task->curr_event = i;
474 process_sched_event(this_task, this_task->atoms[i]);
475 }
476
477 cpu_usage_1 = get_cpu_usage_nsec_self();
478 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
479
480 ret = sem_post(&this_task->work_done_sem);
481 BUG_ON(ret);
482
483 ret = pthread_mutex_lock(&work_done_wait_mutex);
484 BUG_ON(ret);
485 ret = pthread_mutex_unlock(&work_done_wait_mutex);
486 BUG_ON(ret);
487
488 goto again;
489 }
490
491 static void create_tasks(void)
492 {
493 struct task_desc *task;
494 pthread_attr_t attr;
495 unsigned long i;
496 int err;
497
498 err = pthread_attr_init(&attr);
499 BUG_ON(err);
500 err = pthread_attr_setstacksize(&attr, (size_t)(16*1024));
501 BUG_ON(err);
502 err = pthread_mutex_lock(&start_work_mutex);
503 BUG_ON(err);
504 err = pthread_mutex_lock(&work_done_wait_mutex);
505 BUG_ON(err);
506 for (i = 0; i < nr_tasks; i++) {
507 task = tasks[i];
508 sem_init(&task->sleep_sem, 0, 0);
509 sem_init(&task->ready_for_work, 0, 0);
510 sem_init(&task->work_done_sem, 0, 0);
511 task->curr_event = 0;
512 err = pthread_create(&task->thread, &attr, thread_func, task);
513 BUG_ON(err);
514 }
515 }
516
517 static void wait_for_tasks(void)
518 {
519 u64 cpu_usage_0, cpu_usage_1;
520 struct task_desc *task;
521 unsigned long i, ret;
522
523 start_time = get_nsecs();
524 cpu_usage = 0;
525 pthread_mutex_unlock(&work_done_wait_mutex);
526
527 for (i = 0; i < nr_tasks; i++) {
528 task = tasks[i];
529 ret = sem_wait(&task->ready_for_work);
530 BUG_ON(ret);
531 sem_init(&task->ready_for_work, 0, 0);
532 }
533 ret = pthread_mutex_lock(&work_done_wait_mutex);
534 BUG_ON(ret);
535
536 cpu_usage_0 = get_cpu_usage_nsec_parent();
537
538 pthread_mutex_unlock(&start_work_mutex);
539
540 for (i = 0; i < nr_tasks; i++) {
541 task = tasks[i];
542 ret = sem_wait(&task->work_done_sem);
543 BUG_ON(ret);
544 sem_init(&task->work_done_sem, 0, 0);
545 cpu_usage += task->cpu_usage;
546 task->cpu_usage = 0;
547 }
548
549 cpu_usage_1 = get_cpu_usage_nsec_parent();
550 if (!runavg_cpu_usage)
551 runavg_cpu_usage = cpu_usage;
552 runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
553
554 parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
555 if (!runavg_parent_cpu_usage)
556 runavg_parent_cpu_usage = parent_cpu_usage;
557 runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
558 parent_cpu_usage)/10;
559
560 ret = pthread_mutex_lock(&start_work_mutex);
561 BUG_ON(ret);
562
563 for (i = 0; i < nr_tasks; i++) {
564 task = tasks[i];
565 sem_init(&task->sleep_sem, 0, 0);
566 task->curr_event = 0;
567 }
568 }
569
570 static void run_one_test(void)
571 {
572 u64 T0, T1, delta, avg_delta, fluct, std_dev;
573
574 T0 = get_nsecs();
575 wait_for_tasks();
576 T1 = get_nsecs();
577
578 delta = T1 - T0;
579 sum_runtime += delta;
580 nr_runs++;
581
582 avg_delta = sum_runtime / nr_runs;
583 if (delta < avg_delta)
584 fluct = avg_delta - delta;
585 else
586 fluct = delta - avg_delta;
587 sum_fluct += fluct;
588 std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
589 if (!run_avg)
590 run_avg = delta;
591 run_avg = (run_avg*9 + delta)/10;
592
593 printf("#%-3ld: %0.3f, ",
594 nr_runs, (double)delta/1000000.0);
595
596 printf("ravg: %0.2f, ",
597 (double)run_avg/1e6);
598
599 printf("cpu: %0.2f / %0.2f",
600 (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
601
602 #if 0
603 /*
604 * rusage statistics done by the parent, these are less
605 * accurate than the sum_exec_runtime based statistics:
606 */
607 printf(" [%0.2f / %0.2f]",
608 (double)parent_cpu_usage/1e6,
609 (double)runavg_parent_cpu_usage/1e6);
610 #endif
611
612 printf("\n");
613
614 if (nr_sleep_corrections)
615 printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
616 nr_sleep_corrections = 0;
617 }
618
619 static void test_calibrations(void)
620 {
621 u64 T0, T1;
622
623 T0 = get_nsecs();
624 burn_nsecs(1e6);
625 T1 = get_nsecs();
626
627 printf("the run test took %Ld nsecs\n", T1-T0);
628
629 T0 = get_nsecs();
630 sleep_nsecs(1e6);
631 T1 = get_nsecs();
632
633 printf("the sleep test took %Ld nsecs\n", T1-T0);
634 }
635
636 static int
637 process_comm_event(event_t *event, unsigned long offset, unsigned long head)
638 {
639 struct thread *thread = threads__findnew(event->comm.tid);
640
641 dump_printf("%p [%p]: perf_event_comm: %s:%d\n",
642 (void *)(offset + head),
643 (void *)(long)(event->header.size),
644 event->comm.comm, event->comm.pid);
645
646 if (thread == NULL ||
647 thread__set_comm(thread, event->comm.comm)) {
648 dump_printf("problem processing perf_event_comm, skipping event.\n");
649 return -1;
650 }
651 total_comm++;
652
653 return 0;
654 }
655
656
657 struct raw_event_sample {
658 u32 size;
659 char data[0];
660 };
661
662 #define FILL_FIELD(ptr, field, event, data) \
663 ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
664
665 #define FILL_ARRAY(ptr, array, event, data) \
666 do { \
667 void *__array = raw_field_ptr(event, #array, data); \
668 memcpy(ptr.array, __array, sizeof(ptr.array)); \
669 } while(0)
670
671 #define FILL_COMMON_FIELDS(ptr, event, data) \
672 do { \
673 FILL_FIELD(ptr, common_type, event, data); \
674 FILL_FIELD(ptr, common_flags, event, data); \
675 FILL_FIELD(ptr, common_preempt_count, event, data); \
676 FILL_FIELD(ptr, common_pid, event, data); \
677 FILL_FIELD(ptr, common_tgid, event, data); \
678 } while (0)
679
680
681
682 struct trace_switch_event {
683 u32 size;
684
685 u16 common_type;
686 u8 common_flags;
687 u8 common_preempt_count;
688 u32 common_pid;
689 u32 common_tgid;
690
691 char prev_comm[16];
692 u32 prev_pid;
693 u32 prev_prio;
694 u64 prev_state;
695 char next_comm[16];
696 u32 next_pid;
697 u32 next_prio;
698 };
699
700 struct trace_runtime_event {
701 u32 size;
702
703 u16 common_type;
704 u8 common_flags;
705 u8 common_preempt_count;
706 u32 common_pid;
707 u32 common_tgid;
708
709 char comm[16];
710 u32 pid;
711 u64 runtime;
712 u64 vruntime;
713 };
714
715 struct trace_wakeup_event {
716 u32 size;
717
718 u16 common_type;
719 u8 common_flags;
720 u8 common_preempt_count;
721 u32 common_pid;
722 u32 common_tgid;
723
724 char comm[16];
725 u32 pid;
726
727 u32 prio;
728 u32 success;
729 u32 cpu;
730 };
731
732 struct trace_fork_event {
733 u32 size;
734
735 u16 common_type;
736 u8 common_flags;
737 u8 common_preempt_count;
738 u32 common_pid;
739 u32 common_tgid;
740
741 char parent_comm[16];
742 u32 parent_pid;
743 char child_comm[16];
744 u32 child_pid;
745 };
746
747 struct trace_migrate_task_event {
748 u32 size;
749
750 u16 common_type;
751 u8 common_flags;
752 u8 common_preempt_count;
753 u32 common_pid;
754 u32 common_tgid;
755
756 char comm[16];
757 u32 pid;
758
759 u32 prio;
760 u32 cpu;
761 };
762
763 struct trace_sched_handler {
764 void (*switch_event)(struct trace_switch_event *,
765 struct event *,
766 int cpu,
767 u64 timestamp,
768 struct thread *thread);
769
770 void (*runtime_event)(struct trace_runtime_event *,
771 struct event *,
772 int cpu,
773 u64 timestamp,
774 struct thread *thread);
775
776 void (*wakeup_event)(struct trace_wakeup_event *,
777 struct event *,
778 int cpu,
779 u64 timestamp,
780 struct thread *thread);
781
782 void (*fork_event)(struct trace_fork_event *,
783 struct event *,
784 int cpu,
785 u64 timestamp,
786 struct thread *thread);
787
788 void (*migrate_task_event)(struct trace_migrate_task_event *,
789 struct event *,
790 int cpu,
791 u64 timestamp,
792 struct thread *thread);
793 };
794
795
796 static void
797 replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
798 struct event *event,
799 int cpu __used,
800 u64 timestamp __used,
801 struct thread *thread __used)
802 {
803 struct task_desc *waker, *wakee;
804
805 if (verbose) {
806 printf("sched_wakeup event %p\n", event);
807
808 printf(" ... pid %d woke up %s/%d\n",
809 wakeup_event->common_pid,
810 wakeup_event->comm,
811 wakeup_event->pid);
812 }
813
814 waker = register_pid(wakeup_event->common_pid, "<unknown>");
815 wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
816
817 add_sched_event_wakeup(waker, timestamp, wakee);
818 }
819
820 static u64 cpu_last_switched[MAX_CPUS];
821
822 static void
823 replay_switch_event(struct trace_switch_event *switch_event,
824 struct event *event,
825 int cpu,
826 u64 timestamp,
827 struct thread *thread __used)
828 {
829 struct task_desc *prev, *next;
830 u64 timestamp0;
831 s64 delta;
832
833 if (verbose)
834 printf("sched_switch event %p\n", event);
835
836 if (cpu >= MAX_CPUS || cpu < 0)
837 return;
838
839 timestamp0 = cpu_last_switched[cpu];
840 if (timestamp0)
841 delta = timestamp - timestamp0;
842 else
843 delta = 0;
844
845 if (delta < 0)
846 die("hm, delta: %Ld < 0 ?\n", delta);
847
848 if (verbose) {
849 printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n",
850 switch_event->prev_comm, switch_event->prev_pid,
851 switch_event->next_comm, switch_event->next_pid,
852 delta);
853 }
854
855 prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
856 next = register_pid(switch_event->next_pid, switch_event->next_comm);
857
858 cpu_last_switched[cpu] = timestamp;
859
860 add_sched_event_run(prev, timestamp, delta);
861 add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
862 }
863
864
865 static void
866 replay_fork_event(struct trace_fork_event *fork_event,
867 struct event *event,
868 int cpu __used,
869 u64 timestamp __used,
870 struct thread *thread __used)
871 {
872 if (verbose) {
873 printf("sched_fork event %p\n", event);
874 printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
875 printf("... child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
876 }
877 register_pid(fork_event->parent_pid, fork_event->parent_comm);
878 register_pid(fork_event->child_pid, fork_event->child_comm);
879 }
880
881 static struct trace_sched_handler replay_ops = {
882 .wakeup_event = replay_wakeup_event,
883 .switch_event = replay_switch_event,
884 .fork_event = replay_fork_event,
885 };
886
887 struct sort_dimension {
888 const char *name;
889 sort_fn_t cmp;
890 struct list_head list;
891 };
892
893 static LIST_HEAD(cmp_pid);
894
895 static int
896 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
897 {
898 struct sort_dimension *sort;
899 int ret = 0;
900
901 BUG_ON(list_empty(list));
902
903 list_for_each_entry(sort, list, list) {
904 ret = sort->cmp(l, r);
905 if (ret)
906 return ret;
907 }
908
909 return ret;
910 }
911
912 static struct work_atoms *
913 thread_atoms_search(struct rb_root *root, struct thread *thread,
914 struct list_head *sort_list)
915 {
916 struct rb_node *node = root->rb_node;
917 struct work_atoms key = { .thread = thread };
918
919 while (node) {
920 struct work_atoms *atoms;
921 int cmp;
922
923 atoms = container_of(node, struct work_atoms, node);
924
925 cmp = thread_lat_cmp(sort_list, &key, atoms);
926 if (cmp > 0)
927 node = node->rb_left;
928 else if (cmp < 0)
929 node = node->rb_right;
930 else {
931 BUG_ON(thread != atoms->thread);
932 return atoms;
933 }
934 }
935 return NULL;
936 }
937
938 static void
939 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
940 struct list_head *sort_list)
941 {
942 struct rb_node **new = &(root->rb_node), *parent = NULL;
943
944 while (*new) {
945 struct work_atoms *this;
946 int cmp;
947
948 this = container_of(*new, struct work_atoms, node);
949 parent = *new;
950
951 cmp = thread_lat_cmp(sort_list, data, this);
952
953 if (cmp > 0)
954 new = &((*new)->rb_left);
955 else
956 new = &((*new)->rb_right);
957 }
958
959 rb_link_node(&data->node, parent, new);
960 rb_insert_color(&data->node, root);
961 }
962
963 static void thread_atoms_insert(struct thread *thread)
964 {
965 struct work_atoms *atoms;
966
967 atoms = calloc(sizeof(*atoms), 1);
968 if (!atoms)
969 die("No memory");
970
971 atoms->thread = thread;
972 INIT_LIST_HEAD(&atoms->work_list);
973 __thread_latency_insert(&atom_root, atoms, &cmp_pid);
974 }
975
976 static void
977 latency_fork_event(struct trace_fork_event *fork_event __used,
978 struct event *event __used,
979 int cpu __used,
980 u64 timestamp __used,
981 struct thread *thread __used)
982 {
983 /* should insert the newcomer */
984 }
985
986 __used
987 static char sched_out_state(struct trace_switch_event *switch_event)
988 {
989 const char *str = TASK_STATE_TO_CHAR_STR;
990
991 return str[switch_event->prev_state];
992 }
993
994 static void
995 add_sched_out_event(struct work_atoms *atoms,
996 char run_state,
997 u64 timestamp)
998 {
999 struct work_atom *atom;
1000
1001 atom = calloc(sizeof(*atom), 1);
1002 if (!atom)
1003 die("Non memory");
1004
1005 atom->sched_out_time = timestamp;
1006
1007 if (run_state == 'R') {
1008 atom->state = THREAD_WAIT_CPU;
1009 atom->wake_up_time = atom->sched_out_time;
1010 }
1011
1012 list_add_tail(&atom->list, &atoms->work_list);
1013 }
1014
1015 static void
1016 add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
1017 {
1018 struct work_atom *atom;
1019
1020 BUG_ON(list_empty(&atoms->work_list));
1021
1022 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1023
1024 atom->runtime += delta;
1025 atoms->total_runtime += delta;
1026 }
1027
1028 static void
1029 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1030 {
1031 struct work_atom *atom;
1032 u64 delta;
1033
1034 if (list_empty(&atoms->work_list))
1035 return;
1036
1037 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1038
1039 if (atom->state != THREAD_WAIT_CPU)
1040 return;
1041
1042 if (timestamp < atom->wake_up_time) {
1043 atom->state = THREAD_IGNORE;
1044 return;
1045 }
1046
1047 atom->state = THREAD_SCHED_IN;
1048 atom->sched_in_time = timestamp;
1049
1050 delta = atom->sched_in_time - atom->wake_up_time;
1051 atoms->total_lat += delta;
1052 if (delta > atoms->max_lat)
1053 atoms->max_lat = delta;
1054 atoms->nb_atoms++;
1055 }
1056
1057 static void
1058 latency_switch_event(struct trace_switch_event *switch_event,
1059 struct event *event __used,
1060 int cpu,
1061 u64 timestamp,
1062 struct thread *thread __used)
1063 {
1064 struct work_atoms *out_events, *in_events;
1065 struct thread *sched_out, *sched_in;
1066 u64 timestamp0;
1067 s64 delta;
1068
1069 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1070
1071 timestamp0 = cpu_last_switched[cpu];
1072 cpu_last_switched[cpu] = timestamp;
1073 if (timestamp0)
1074 delta = timestamp - timestamp0;
1075 else
1076 delta = 0;
1077
1078 if (delta < 0)
1079 die("hm, delta: %Ld < 0 ?\n", delta);
1080
1081
1082 sched_out = threads__findnew(switch_event->prev_pid);
1083 sched_in = threads__findnew(switch_event->next_pid);
1084
1085 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1086 if (!out_events) {
1087 thread_atoms_insert(sched_out);
1088 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1089 if (!out_events)
1090 die("out-event: Internal tree error");
1091 }
1092 add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
1093
1094 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1095 if (!in_events) {
1096 thread_atoms_insert(sched_in);
1097 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1098 if (!in_events)
1099 die("in-event: Internal tree error");
1100 /*
1101 * Take came in we have not heard about yet,
1102 * add in an initial atom in runnable state:
1103 */
1104 add_sched_out_event(in_events, 'R', timestamp);
1105 }
1106 add_sched_in_event(in_events, timestamp);
1107 }
1108
1109 static void
1110 latency_runtime_event(struct trace_runtime_event *runtime_event,
1111 struct event *event __used,
1112 int cpu,
1113 u64 timestamp,
1114 struct thread *this_thread __used)
1115 {
1116 struct thread *thread = threads__findnew(runtime_event->pid);
1117 struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1118
1119 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1120 if (!atoms) {
1121 thread_atoms_insert(thread);
1122 atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1123 if (!atoms)
1124 die("in-event: Internal tree error");
1125 add_sched_out_event(atoms, 'R', timestamp);
1126 }
1127
1128 add_runtime_event(atoms, runtime_event->runtime, timestamp);
1129 }
1130
1131 static void
1132 latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1133 struct event *__event __used,
1134 int cpu __used,
1135 u64 timestamp,
1136 struct thread *thread __used)
1137 {
1138 struct work_atoms *atoms;
1139 struct work_atom *atom;
1140 struct thread *wakee;
1141
1142 /* Note for later, it may be interesting to observe the failing cases */
1143 if (!wakeup_event->success)
1144 return;
1145
1146 wakee = threads__findnew(wakeup_event->pid);
1147 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1148 if (!atoms) {
1149 thread_atoms_insert(wakee);
1150 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1151 if (!atoms)
1152 die("wakeup-event: Internal tree error");
1153 add_sched_out_event(atoms, 'S', timestamp);
1154 }
1155
1156 BUG_ON(list_empty(&atoms->work_list));
1157
1158 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1159
1160 /*
1161 * You WILL be missing events if you've recorded only
1162 * one CPU, or are only looking at only one, so don't
1163 * make useless noise.
1164 */
1165 if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1166 nr_state_machine_bugs++;
1167
1168 nr_timestamps++;
1169 if (atom->sched_out_time > timestamp) {
1170 nr_unordered_timestamps++;
1171 return;
1172 }
1173
1174 atom->state = THREAD_WAIT_CPU;
1175 atom->wake_up_time = timestamp;
1176 }
1177
1178 static void
1179 latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
1180 struct event *__event __used,
1181 int cpu __used,
1182 u64 timestamp,
1183 struct thread *thread __used)
1184 {
1185 struct work_atoms *atoms;
1186 struct work_atom *atom;
1187 struct thread *migrant;
1188
1189 /*
1190 * Only need to worry about migration when profiling one CPU.
1191 */
1192 if (profile_cpu == -1)
1193 return;
1194
1195 migrant = threads__findnew(migrate_task_event->pid);
1196 atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1197 if (!atoms) {
1198 thread_atoms_insert(migrant);
1199 register_pid(migrant->pid, migrant->comm);
1200 atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1201 if (!atoms)
1202 die("migration-event: Internal tree error");
1203 add_sched_out_event(atoms, 'R', timestamp);
1204 }
1205
1206 BUG_ON(list_empty(&atoms->work_list));
1207
1208 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1209 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1210
1211 nr_timestamps++;
1212
1213 if (atom->sched_out_time > timestamp)
1214 nr_unordered_timestamps++;
1215 }
1216
1217 static struct trace_sched_handler lat_ops = {
1218 .wakeup_event = latency_wakeup_event,
1219 .switch_event = latency_switch_event,
1220 .runtime_event = latency_runtime_event,
1221 .fork_event = latency_fork_event,
1222 .migrate_task_event = latency_migrate_task_event,
1223 };
1224
1225 static void output_lat_thread(struct work_atoms *work_list)
1226 {
1227 int i;
1228 int ret;
1229 u64 avg;
1230
1231 if (!work_list->nb_atoms)
1232 return;
1233 /*
1234 * Ignore idle threads:
1235 */
1236 if (!strcmp(work_list->thread->comm, "swapper"))
1237 return;
1238
1239 all_runtime += work_list->total_runtime;
1240 all_count += work_list->nb_atoms;
1241
1242 ret = printf(" %s:%d ", work_list->thread->comm, work_list->thread->pid);
1243
1244 for (i = 0; i < 24 - ret; i++)
1245 printf(" ");
1246
1247 avg = work_list->total_lat / work_list->nb_atoms;
1248
1249 printf("|%11.3f ms |%9llu | avg:%9.3f ms | max:%9.3f ms |\n",
1250 (double)work_list->total_runtime / 1e6,
1251 work_list->nb_atoms, (double)avg / 1e6,
1252 (double)work_list->max_lat / 1e6);
1253 }
1254
1255 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1256 {
1257 if (l->thread->pid < r->thread->pid)
1258 return -1;
1259 if (l->thread->pid > r->thread->pid)
1260 return 1;
1261
1262 return 0;
1263 }
1264
1265 static struct sort_dimension pid_sort_dimension = {
1266 .name = "pid",
1267 .cmp = pid_cmp,
1268 };
1269
1270 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1271 {
1272 u64 avgl, avgr;
1273
1274 if (!l->nb_atoms)
1275 return -1;
1276
1277 if (!r->nb_atoms)
1278 return 1;
1279
1280 avgl = l->total_lat / l->nb_atoms;
1281 avgr = r->total_lat / r->nb_atoms;
1282
1283 if (avgl < avgr)
1284 return -1;
1285 if (avgl > avgr)
1286 return 1;
1287
1288 return 0;
1289 }
1290
1291 static struct sort_dimension avg_sort_dimension = {
1292 .name = "avg",
1293 .cmp = avg_cmp,
1294 };
1295
1296 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1297 {
1298 if (l->max_lat < r->max_lat)
1299 return -1;
1300 if (l->max_lat > r->max_lat)
1301 return 1;
1302
1303 return 0;
1304 }
1305
1306 static struct sort_dimension max_sort_dimension = {
1307 .name = "max",
1308 .cmp = max_cmp,
1309 };
1310
1311 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1312 {
1313 if (l->nb_atoms < r->nb_atoms)
1314 return -1;
1315 if (l->nb_atoms > r->nb_atoms)
1316 return 1;
1317
1318 return 0;
1319 }
1320
1321 static struct sort_dimension switch_sort_dimension = {
1322 .name = "switch",
1323 .cmp = switch_cmp,
1324 };
1325
1326 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1327 {
1328 if (l->total_runtime < r->total_runtime)
1329 return -1;
1330 if (l->total_runtime > r->total_runtime)
1331 return 1;
1332
1333 return 0;
1334 }
1335
1336 static struct sort_dimension runtime_sort_dimension = {
1337 .name = "runtime",
1338 .cmp = runtime_cmp,
1339 };
1340
1341 static struct sort_dimension *available_sorts[] = {
1342 &pid_sort_dimension,
1343 &avg_sort_dimension,
1344 &max_sort_dimension,
1345 &switch_sort_dimension,
1346 &runtime_sort_dimension,
1347 };
1348
1349 #define NB_AVAILABLE_SORTS (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1350
1351 static LIST_HEAD(sort_list);
1352
1353 static int sort_dimension__add(const char *tok, struct list_head *list)
1354 {
1355 int i;
1356
1357 for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1358 if (!strcmp(available_sorts[i]->name, tok)) {
1359 list_add_tail(&available_sorts[i]->list, list);
1360
1361 return 0;
1362 }
1363 }
1364
1365 return -1;
1366 }
1367
1368 static void setup_sorting(void);
1369
1370 static void sort_lat(void)
1371 {
1372 struct rb_node *node;
1373
1374 for (;;) {
1375 struct work_atoms *data;
1376 node = rb_first(&atom_root);
1377 if (!node)
1378 break;
1379
1380 rb_erase(node, &atom_root);
1381 data = rb_entry(node, struct work_atoms, node);
1382 __thread_latency_insert(&sorted_atom_root, data, &sort_list);
1383 }
1384 }
1385
1386 static struct trace_sched_handler *trace_handler;
1387
1388 static void
1389 process_sched_wakeup_event(struct raw_event_sample *raw,
1390 struct event *event,
1391 int cpu __used,
1392 u64 timestamp __used,
1393 struct thread *thread __used)
1394 {
1395 struct trace_wakeup_event wakeup_event;
1396
1397 FILL_COMMON_FIELDS(wakeup_event, event, raw->data);
1398
1399 FILL_ARRAY(wakeup_event, comm, event, raw->data);
1400 FILL_FIELD(wakeup_event, pid, event, raw->data);
1401 FILL_FIELD(wakeup_event, prio, event, raw->data);
1402 FILL_FIELD(wakeup_event, success, event, raw->data);
1403 FILL_FIELD(wakeup_event, cpu, event, raw->data);
1404
1405 if (trace_handler->wakeup_event)
1406 trace_handler->wakeup_event(&wakeup_event, event, cpu, timestamp, thread);
1407 }
1408
1409 /*
1410 * Track the current task - that way we can know whether there's any
1411 * weird events, such as a task being switched away that is not current.
1412 */
1413 static int max_cpu;
1414
1415 static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
1416
1417 static struct thread *curr_thread[MAX_CPUS];
1418
1419 static char next_shortname1 = 'A';
1420 static char next_shortname2 = '0';
1421
1422 static void
1423 map_switch_event(struct trace_switch_event *switch_event,
1424 struct event *event __used,
1425 int this_cpu,
1426 u64 timestamp,
1427 struct thread *thread __used)
1428 {
1429 struct thread *sched_out, *sched_in;
1430 int new_shortname;
1431 u64 timestamp0;
1432 s64 delta;
1433 int cpu;
1434
1435 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1436
1437 if (this_cpu > max_cpu)
1438 max_cpu = this_cpu;
1439
1440 timestamp0 = cpu_last_switched[this_cpu];
1441 cpu_last_switched[this_cpu] = timestamp;
1442 if (timestamp0)
1443 delta = timestamp - timestamp0;
1444 else
1445 delta = 0;
1446
1447 if (delta < 0)
1448 die("hm, delta: %Ld < 0 ?\n", delta);
1449
1450
1451 sched_out = threads__findnew(switch_event->prev_pid);
1452 sched_in = threads__findnew(switch_event->next_pid);
1453
1454 curr_thread[this_cpu] = sched_in;
1455
1456 printf(" ");
1457
1458 new_shortname = 0;
1459 if (!sched_in->shortname[0]) {
1460 sched_in->shortname[0] = next_shortname1;
1461 sched_in->shortname[1] = next_shortname2;
1462
1463 if (next_shortname1 < 'Z') {
1464 next_shortname1++;
1465 } else {
1466 next_shortname1='A';
1467 if (next_shortname2 < '9') {
1468 next_shortname2++;
1469 } else {
1470 next_shortname2='0';
1471 }
1472 }
1473 new_shortname = 1;
1474 }
1475
1476 for (cpu = 0; cpu <= max_cpu; cpu++) {
1477 if (cpu != this_cpu)
1478 printf(" ");
1479 else
1480 printf("*");
1481
1482 if (curr_thread[cpu]) {
1483 if (curr_thread[cpu]->pid)
1484 printf("%2s ", curr_thread[cpu]->shortname);
1485 else
1486 printf(". ");
1487 } else
1488 printf(" ");
1489 }
1490
1491 printf(" %12.6f secs ", (double)timestamp/1e9);
1492 if (new_shortname) {
1493 printf("%s => %s:%d\n",
1494 sched_in->shortname, sched_in->comm, sched_in->pid);
1495 } else {
1496 printf("\n");
1497 }
1498 }
1499
1500
1501 static void
1502 process_sched_switch_event(struct raw_event_sample *raw,
1503 struct event *event,
1504 int this_cpu,
1505 u64 timestamp __used,
1506 struct thread *thread __used)
1507 {
1508 struct trace_switch_event switch_event;
1509
1510 FILL_COMMON_FIELDS(switch_event, event, raw->data);
1511
1512 FILL_ARRAY(switch_event, prev_comm, event, raw->data);
1513 FILL_FIELD(switch_event, prev_pid, event, raw->data);
1514 FILL_FIELD(switch_event, prev_prio, event, raw->data);
1515 FILL_FIELD(switch_event, prev_state, event, raw->data);
1516 FILL_ARRAY(switch_event, next_comm, event, raw->data);
1517 FILL_FIELD(switch_event, next_pid, event, raw->data);
1518 FILL_FIELD(switch_event, next_prio, event, raw->data);
1519
1520 if (curr_pid[this_cpu] != (u32)-1) {
1521 /*
1522 * Are we trying to switch away a PID that is
1523 * not current?
1524 */
1525 if (curr_pid[this_cpu] != switch_event.prev_pid)
1526 nr_context_switch_bugs++;
1527 }
1528 if (trace_handler->switch_event)
1529 trace_handler->switch_event(&switch_event, event, this_cpu, timestamp, thread);
1530
1531 curr_pid[this_cpu] = switch_event.next_pid;
1532 }
1533
1534 static void
1535 process_sched_runtime_event(struct raw_event_sample *raw,
1536 struct event *event,
1537 int cpu __used,
1538 u64 timestamp __used,
1539 struct thread *thread __used)
1540 {
1541 struct trace_runtime_event runtime_event;
1542
1543 FILL_ARRAY(runtime_event, comm, event, raw->data);
1544 FILL_FIELD(runtime_event, pid, event, raw->data);
1545 FILL_FIELD(runtime_event, runtime, event, raw->data);
1546 FILL_FIELD(runtime_event, vruntime, event, raw->data);
1547
1548 if (trace_handler->runtime_event)
1549 trace_handler->runtime_event(&runtime_event, event, cpu, timestamp, thread);
1550 }
1551
1552 static void
1553 process_sched_fork_event(struct raw_event_sample *raw,
1554 struct event *event,
1555 int cpu __used,
1556 u64 timestamp __used,
1557 struct thread *thread __used)
1558 {
1559 struct trace_fork_event fork_event;
1560
1561 FILL_COMMON_FIELDS(fork_event, event, raw->data);
1562
1563 FILL_ARRAY(fork_event, parent_comm, event, raw->data);
1564 FILL_FIELD(fork_event, parent_pid, event, raw->data);
1565 FILL_ARRAY(fork_event, child_comm, event, raw->data);
1566 FILL_FIELD(fork_event, child_pid, event, raw->data);
1567
1568 if (trace_handler->fork_event)
1569 trace_handler->fork_event(&fork_event, event, cpu, timestamp, thread);
1570 }
1571
1572 static void
1573 process_sched_exit_event(struct event *event,
1574 int cpu __used,
1575 u64 timestamp __used,
1576 struct thread *thread __used)
1577 {
1578 if (verbose)
1579 printf("sched_exit event %p\n", event);
1580 }
1581
1582 static void
1583 process_sched_migrate_task_event(struct raw_event_sample *raw,
1584 struct event *event,
1585 int cpu __used,
1586 u64 timestamp __used,
1587 struct thread *thread __used)
1588 {
1589 struct trace_migrate_task_event migrate_task_event;
1590
1591 FILL_COMMON_FIELDS(migrate_task_event, event, raw->data);
1592
1593 FILL_ARRAY(migrate_task_event, comm, event, raw->data);
1594 FILL_FIELD(migrate_task_event, pid, event, raw->data);
1595 FILL_FIELD(migrate_task_event, prio, event, raw->data);
1596 FILL_FIELD(migrate_task_event, cpu, event, raw->data);
1597
1598 if (trace_handler->migrate_task_event)
1599 trace_handler->migrate_task_event(&migrate_task_event, event, cpu, timestamp, thread);
1600 }
1601
1602 static void
1603 process_raw_event(event_t *raw_event __used, void *more_data,
1604 int cpu, u64 timestamp, struct thread *thread)
1605 {
1606 struct raw_event_sample *raw = more_data;
1607 struct event *event;
1608 int type;
1609
1610 type = trace_parse_common_type(raw->data);
1611 event = trace_find_event(type);
1612
1613 if (!strcmp(event->name, "sched_switch"))
1614 process_sched_switch_event(raw, event, cpu, timestamp, thread);
1615 if (!strcmp(event->name, "sched_stat_runtime"))
1616 process_sched_runtime_event(raw, event, cpu, timestamp, thread);
1617 if (!strcmp(event->name, "sched_wakeup"))
1618 process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
1619 if (!strcmp(event->name, "sched_wakeup_new"))
1620 process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
1621 if (!strcmp(event->name, "sched_process_fork"))
1622 process_sched_fork_event(raw, event, cpu, timestamp, thread);
1623 if (!strcmp(event->name, "sched_process_exit"))
1624 process_sched_exit_event(event, cpu, timestamp, thread);
1625 if (!strcmp(event->name, "sched_migrate_task"))
1626 process_sched_migrate_task_event(raw, event, cpu, timestamp, thread);
1627 }
1628
1629 static int
1630 process_sample_event(event_t *event, unsigned long offset, unsigned long head)
1631 {
1632 struct thread *thread;
1633 u64 ip = event->ip.ip;
1634 u64 timestamp = -1;
1635 u32 cpu = -1;
1636 u64 period = 1;
1637 void *more_data = event->ip.__more_data;
1638
1639 if (!(sample_type & PERF_SAMPLE_RAW))
1640 return 0;
1641
1642 thread = threads__findnew(event->ip.pid);
1643
1644 if (sample_type & PERF_SAMPLE_TIME) {
1645 timestamp = *(u64 *)more_data;
1646 more_data += sizeof(u64);
1647 }
1648
1649 if (sample_type & PERF_SAMPLE_CPU) {
1650 cpu = *(u32 *)more_data;
1651 more_data += sizeof(u32);
1652 more_data += sizeof(u32); /* reserved */
1653 }
1654
1655 if (sample_type & PERF_SAMPLE_PERIOD) {
1656 period = *(u64 *)more_data;
1657 more_data += sizeof(u64);
1658 }
1659
1660 dump_printf("%p [%p]: PERF_RECORD_SAMPLE (IP, %d): %d/%d: %p period: %Ld\n",
1661 (void *)(offset + head),
1662 (void *)(long)(event->header.size),
1663 event->header.misc,
1664 event->ip.pid, event->ip.tid,
1665 (void *)(long)ip,
1666 (long long)period);
1667
1668 if (thread == NULL) {
1669 eprintf("problem processing %d event, skipping it.\n",
1670 event->header.type);
1671 return -1;
1672 }
1673
1674 dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
1675
1676 if (profile_cpu != -1 && profile_cpu != (int) cpu)
1677 return 0;
1678
1679 process_raw_event(event, more_data, cpu, timestamp, thread);
1680
1681 return 0;
1682 }
1683
1684 static int
1685 process_lost_event(event_t *event __used,
1686 unsigned long offset __used,
1687 unsigned long head __used)
1688 {
1689 nr_lost_chunks++;
1690 nr_lost_events += event->lost.lost;
1691
1692 return 0;
1693 }
1694
1695 static int sample_type_check(u64 type)
1696 {
1697 sample_type = type;
1698
1699 if (!(sample_type & PERF_SAMPLE_RAW)) {
1700 fprintf(stderr,
1701 "No trace sample to read. Did you call perf record "
1702 "without -R?");
1703 return -1;
1704 }
1705
1706 return 0;
1707 }
1708
1709 static struct perf_file_handler file_handler = {
1710 .process_sample_event = process_sample_event,
1711 .process_comm_event = process_comm_event,
1712 .process_lost_event = process_lost_event,
1713 .sample_type_check = sample_type_check,
1714 };
1715
1716 static int read_events(void)
1717 {
1718 register_idle_thread();
1719 register_perf_file_handler(&file_handler);
1720
1721 return mmap_dispatch_perf_file(&header, input_name, 0, 0, &cwdlen, &cwd);
1722 }
1723
1724 static void print_bad_events(void)
1725 {
1726 if (nr_unordered_timestamps && nr_timestamps) {
1727 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1728 (double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1729 nr_unordered_timestamps, nr_timestamps);
1730 }
1731 if (nr_lost_events && nr_events) {
1732 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1733 (double)nr_lost_events/(double)nr_events*100.0,
1734 nr_lost_events, nr_events, nr_lost_chunks);
1735 }
1736 if (nr_state_machine_bugs && nr_timestamps) {
1737 printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)",
1738 (double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1739 nr_state_machine_bugs, nr_timestamps);
1740 if (nr_lost_events)
1741 printf(" (due to lost events?)");
1742 printf("\n");
1743 }
1744 if (nr_context_switch_bugs && nr_timestamps) {
1745 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1746 (double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1747 nr_context_switch_bugs, nr_timestamps);
1748 if (nr_lost_events)
1749 printf(" (due to lost events?)");
1750 printf("\n");
1751 }
1752 }
1753
1754 static void __cmd_lat(void)
1755 {
1756 struct rb_node *next;
1757
1758 setup_pager();
1759 read_events();
1760 sort_lat();
1761
1762 printf("\n -----------------------------------------------------------------------------------------\n");
1763 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms |\n");
1764 printf(" -----------------------------------------------------------------------------------------\n");
1765
1766 next = rb_first(&sorted_atom_root);
1767
1768 while (next) {
1769 struct work_atoms *work_list;
1770
1771 work_list = rb_entry(next, struct work_atoms, node);
1772 output_lat_thread(work_list);
1773 next = rb_next(next);
1774 }
1775
1776 printf(" -----------------------------------------------------------------------------------------\n");
1777 printf(" TOTAL: |%11.3f ms |%9Ld |\n",
1778 (double)all_runtime/1e6, all_count);
1779
1780 printf(" ---------------------------------------------------\n");
1781
1782 print_bad_events();
1783 printf("\n");
1784
1785 }
1786
1787 static struct trace_sched_handler map_ops = {
1788 .wakeup_event = NULL,
1789 .switch_event = map_switch_event,
1790 .runtime_event = NULL,
1791 .fork_event = NULL,
1792 };
1793
1794 static void __cmd_map(void)
1795 {
1796 max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1797
1798 setup_pager();
1799 read_events();
1800 print_bad_events();
1801 }
1802
1803 static void __cmd_replay(void)
1804 {
1805 unsigned long i;
1806
1807 calibrate_run_measurement_overhead();
1808 calibrate_sleep_measurement_overhead();
1809
1810 test_calibrations();
1811
1812 read_events();
1813
1814 printf("nr_run_events: %ld\n", nr_run_events);
1815 printf("nr_sleep_events: %ld\n", nr_sleep_events);
1816 printf("nr_wakeup_events: %ld\n", nr_wakeup_events);
1817
1818 if (targetless_wakeups)
1819 printf("target-less wakeups: %ld\n", targetless_wakeups);
1820 if (multitarget_wakeups)
1821 printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1822 if (nr_run_events_optimized)
1823 printf("run atoms optimized: %ld\n",
1824 nr_run_events_optimized);
1825
1826 print_task_traces();
1827 add_cross_task_wakeups();
1828
1829 create_tasks();
1830 printf("------------------------------------------------------------\n");
1831 for (i = 0; i < replay_repeat; i++)
1832 run_one_test();
1833 }
1834
1835
1836 static const char * const sched_usage[] = {
1837 "perf sched [<options>] {record|latency|map|replay|trace}",
1838 NULL
1839 };
1840
1841 static const struct option sched_options[] = {
1842 OPT_STRING('i', "input", &input_name, "file",
1843 "input file name"),
1844 OPT_BOOLEAN('v', "verbose", &verbose,
1845 "be more verbose (show symbol address, etc)"),
1846 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1847 "dump raw trace in ASCII"),
1848 OPT_END()
1849 };
1850
1851 static const char * const latency_usage[] = {
1852 "perf sched latency [<options>]",
1853 NULL
1854 };
1855
1856 static const struct option latency_options[] = {
1857 OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1858 "sort by key(s): runtime, switch, avg, max"),
1859 OPT_BOOLEAN('v', "verbose", &verbose,
1860 "be more verbose (show symbol address, etc)"),
1861 OPT_INTEGER('C', "CPU", &profile_cpu,
1862 "CPU to profile on"),
1863 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1864 "dump raw trace in ASCII"),
1865 OPT_END()
1866 };
1867
1868 static const char * const replay_usage[] = {
1869 "perf sched replay [<options>]",
1870 NULL
1871 };
1872
1873 static const struct option replay_options[] = {
1874 OPT_INTEGER('r', "repeat", &replay_repeat,
1875 "repeat the workload replay N times (-1: infinite)"),
1876 OPT_BOOLEAN('v', "verbose", &verbose,
1877 "be more verbose (show symbol address, etc)"),
1878 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1879 "dump raw trace in ASCII"),
1880 OPT_END()
1881 };
1882
1883 static void setup_sorting(void)
1884 {
1885 char *tmp, *tok, *str = strdup(sort_order);
1886
1887 for (tok = strtok_r(str, ", ", &tmp);
1888 tok; tok = strtok_r(NULL, ", ", &tmp)) {
1889 if (sort_dimension__add(tok, &sort_list) < 0) {
1890 error("Unknown --sort key: `%s'", tok);
1891 usage_with_options(latency_usage, latency_options);
1892 }
1893 }
1894
1895 free(str);
1896
1897 sort_dimension__add("pid", &cmp_pid);
1898 }
1899
1900 static const char *record_args[] = {
1901 "record",
1902 "-a",
1903 "-R",
1904 "-M",
1905 "-f",
1906 "-m", "1024",
1907 "-c", "1",
1908 "-e", "sched:sched_switch:r",
1909 "-e", "sched:sched_stat_wait:r",
1910 "-e", "sched:sched_stat_sleep:r",
1911 "-e", "sched:sched_stat_iowait:r",
1912 "-e", "sched:sched_stat_runtime:r",
1913 "-e", "sched:sched_process_exit:r",
1914 "-e", "sched:sched_process_fork:r",
1915 "-e", "sched:sched_wakeup:r",
1916 "-e", "sched:sched_migrate_task:r",
1917 };
1918
1919 static int __cmd_record(int argc, const char **argv)
1920 {
1921 unsigned int rec_argc, i, j;
1922 const char **rec_argv;
1923
1924 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1925 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1926
1927 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1928 rec_argv[i] = strdup(record_args[i]);
1929
1930 for (j = 1; j < (unsigned int)argc; j++, i++)
1931 rec_argv[i] = argv[j];
1932
1933 BUG_ON(i != rec_argc);
1934
1935 return cmd_record(i, rec_argv, NULL);
1936 }
1937
1938 int cmd_sched(int argc, const char **argv, const char *prefix __used)
1939 {
1940 symbol__init();
1941
1942 argc = parse_options(argc, argv, sched_options, sched_usage,
1943 PARSE_OPT_STOP_AT_NON_OPTION);
1944 if (!argc)
1945 usage_with_options(sched_usage, sched_options);
1946
1947 if (!strncmp(argv[0], "rec", 3)) {
1948 return __cmd_record(argc, argv);
1949 } else if (!strncmp(argv[0], "lat", 3)) {
1950 trace_handler = &lat_ops;
1951 if (argc > 1) {
1952 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1953 if (argc)
1954 usage_with_options(latency_usage, latency_options);
1955 }
1956 setup_sorting();
1957 __cmd_lat();
1958 } else if (!strcmp(argv[0], "map")) {
1959 trace_handler = &map_ops;
1960 setup_sorting();
1961 __cmd_map();
1962 } else if (!strncmp(argv[0], "rep", 3)) {
1963 trace_handler = &replay_ops;
1964 if (argc) {
1965 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1966 if (argc)
1967 usage_with_options(replay_usage, replay_options);
1968 }
1969 __cmd_replay();
1970 } else if (!strcmp(argv[0], "trace")) {
1971 /*
1972 * Aliased to 'perf trace' for now:
1973 */
1974 return cmd_trace(argc, argv, prefix);
1975 } else {
1976 usage_with_options(sched_usage, sched_options);
1977 }
1978
1979 return 0;
1980 }
This page took 0.191849 seconds and 5 git commands to generate.