Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[deliverable/linux.git] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
13
14 #include "util/parse-options.h"
15 #include "util/trace-event.h"
16
17 #include "util/debug.h"
18
19 #include <sys/prctl.h>
20 #include <sys/resource.h>
21
22 #include <semaphore.h>
23 #include <pthread.h>
24 #include <math.h>
25
26 #define PR_SET_NAME 15 /* Set process name */
27 #define MAX_CPUS 4096
28 #define COMM_LEN 20
29 #define SYM_LEN 129
30 #define MAX_PID 65536
31
32 struct sched_atom;
33
34 struct task_desc {
35 unsigned long nr;
36 unsigned long pid;
37 char comm[COMM_LEN];
38
39 unsigned long nr_events;
40 unsigned long curr_event;
41 struct sched_atom **atoms;
42
43 pthread_t thread;
44 sem_t sleep_sem;
45
46 sem_t ready_for_work;
47 sem_t work_done_sem;
48
49 u64 cpu_usage;
50 };
51
52 enum sched_event_type {
53 SCHED_EVENT_RUN,
54 SCHED_EVENT_SLEEP,
55 SCHED_EVENT_WAKEUP,
56 SCHED_EVENT_MIGRATION,
57 };
58
59 struct sched_atom {
60 enum sched_event_type type;
61 int specific_wait;
62 u64 timestamp;
63 u64 duration;
64 unsigned long nr;
65 sem_t *wait_sem;
66 struct task_desc *wakee;
67 };
68
69 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
70
71 enum thread_state {
72 THREAD_SLEEPING = 0,
73 THREAD_WAIT_CPU,
74 THREAD_SCHED_IN,
75 THREAD_IGNORE
76 };
77
78 struct work_atom {
79 struct list_head list;
80 enum thread_state state;
81 u64 sched_out_time;
82 u64 wake_up_time;
83 u64 sched_in_time;
84 u64 runtime;
85 };
86
87 struct work_atoms {
88 struct list_head work_list;
89 struct thread *thread;
90 struct rb_node node;
91 u64 max_lat;
92 u64 max_lat_at;
93 u64 total_lat;
94 u64 nb_atoms;
95 u64 total_runtime;
96 };
97
98 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
99
100 struct perf_sched;
101
102 struct trace_sched_handler {
103 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
104 struct perf_sample *sample, struct machine *machine);
105
106 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
107 struct perf_sample *sample, struct machine *machine);
108
109 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
110 struct perf_sample *sample, struct machine *machine);
111
112 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
113 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
114 struct machine *machine);
115
116 int (*migrate_task_event)(struct perf_sched *sched,
117 struct perf_evsel *evsel,
118 struct perf_sample *sample,
119 struct machine *machine);
120 };
121
122 struct perf_sched {
123 struct perf_tool tool;
124 const char *sort_order;
125 unsigned long nr_tasks;
126 struct task_desc *pid_to_task[MAX_PID];
127 struct task_desc **tasks;
128 const struct trace_sched_handler *tp_handler;
129 pthread_mutex_t start_work_mutex;
130 pthread_mutex_t work_done_wait_mutex;
131 int profile_cpu;
132 /*
133 * Track the current task - that way we can know whether there's any
134 * weird events, such as a task being switched away that is not current.
135 */
136 int max_cpu;
137 u32 curr_pid[MAX_CPUS];
138 struct thread *curr_thread[MAX_CPUS];
139 char next_shortname1;
140 char next_shortname2;
141 unsigned int replay_repeat;
142 unsigned long nr_run_events;
143 unsigned long nr_sleep_events;
144 unsigned long nr_wakeup_events;
145 unsigned long nr_sleep_corrections;
146 unsigned long nr_run_events_optimized;
147 unsigned long targetless_wakeups;
148 unsigned long multitarget_wakeups;
149 unsigned long nr_runs;
150 unsigned long nr_timestamps;
151 unsigned long nr_unordered_timestamps;
152 unsigned long nr_context_switch_bugs;
153 unsigned long nr_events;
154 unsigned long nr_lost_chunks;
155 unsigned long nr_lost_events;
156 u64 run_measurement_overhead;
157 u64 sleep_measurement_overhead;
158 u64 start_time;
159 u64 cpu_usage;
160 u64 runavg_cpu_usage;
161 u64 parent_cpu_usage;
162 u64 runavg_parent_cpu_usage;
163 u64 sum_runtime;
164 u64 sum_fluct;
165 u64 run_avg;
166 u64 all_runtime;
167 u64 all_count;
168 u64 cpu_last_switched[MAX_CPUS];
169 struct rb_root atom_root, sorted_atom_root;
170 struct list_head sort_list, cmp_pid;
171 };
172
173 static u64 get_nsecs(void)
174 {
175 struct timespec ts;
176
177 clock_gettime(CLOCK_MONOTONIC, &ts);
178
179 return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
180 }
181
182 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
183 {
184 u64 T0 = get_nsecs(), T1;
185
186 do {
187 T1 = get_nsecs();
188 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
189 }
190
191 static void sleep_nsecs(u64 nsecs)
192 {
193 struct timespec ts;
194
195 ts.tv_nsec = nsecs % 999999999;
196 ts.tv_sec = nsecs / 999999999;
197
198 nanosleep(&ts, NULL);
199 }
200
201 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
202 {
203 u64 T0, T1, delta, min_delta = 1000000000ULL;
204 int i;
205
206 for (i = 0; i < 10; i++) {
207 T0 = get_nsecs();
208 burn_nsecs(sched, 0);
209 T1 = get_nsecs();
210 delta = T1-T0;
211 min_delta = min(min_delta, delta);
212 }
213 sched->run_measurement_overhead = min_delta;
214
215 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
216 }
217
218 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
219 {
220 u64 T0, T1, delta, min_delta = 1000000000ULL;
221 int i;
222
223 for (i = 0; i < 10; i++) {
224 T0 = get_nsecs();
225 sleep_nsecs(10000);
226 T1 = get_nsecs();
227 delta = T1-T0;
228 min_delta = min(min_delta, delta);
229 }
230 min_delta -= 10000;
231 sched->sleep_measurement_overhead = min_delta;
232
233 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
234 }
235
236 static struct sched_atom *
237 get_new_event(struct task_desc *task, u64 timestamp)
238 {
239 struct sched_atom *event = zalloc(sizeof(*event));
240 unsigned long idx = task->nr_events;
241 size_t size;
242
243 event->timestamp = timestamp;
244 event->nr = idx;
245
246 task->nr_events++;
247 size = sizeof(struct sched_atom *) * task->nr_events;
248 task->atoms = realloc(task->atoms, size);
249 BUG_ON(!task->atoms);
250
251 task->atoms[idx] = event;
252
253 return event;
254 }
255
256 static struct sched_atom *last_event(struct task_desc *task)
257 {
258 if (!task->nr_events)
259 return NULL;
260
261 return task->atoms[task->nr_events - 1];
262 }
263
264 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
265 u64 timestamp, u64 duration)
266 {
267 struct sched_atom *event, *curr_event = last_event(task);
268
269 /*
270 * optimize an existing RUN event by merging this one
271 * to it:
272 */
273 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
274 sched->nr_run_events_optimized++;
275 curr_event->duration += duration;
276 return;
277 }
278
279 event = get_new_event(task, timestamp);
280
281 event->type = SCHED_EVENT_RUN;
282 event->duration = duration;
283
284 sched->nr_run_events++;
285 }
286
287 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
288 u64 timestamp, struct task_desc *wakee)
289 {
290 struct sched_atom *event, *wakee_event;
291
292 event = get_new_event(task, timestamp);
293 event->type = SCHED_EVENT_WAKEUP;
294 event->wakee = wakee;
295
296 wakee_event = last_event(wakee);
297 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
298 sched->targetless_wakeups++;
299 return;
300 }
301 if (wakee_event->wait_sem) {
302 sched->multitarget_wakeups++;
303 return;
304 }
305
306 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
307 sem_init(wakee_event->wait_sem, 0, 0);
308 wakee_event->specific_wait = 1;
309 event->wait_sem = wakee_event->wait_sem;
310
311 sched->nr_wakeup_events++;
312 }
313
314 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
315 u64 timestamp, u64 task_state __maybe_unused)
316 {
317 struct sched_atom *event = get_new_event(task, timestamp);
318
319 event->type = SCHED_EVENT_SLEEP;
320
321 sched->nr_sleep_events++;
322 }
323
324 static struct task_desc *register_pid(struct perf_sched *sched,
325 unsigned long pid, const char *comm)
326 {
327 struct task_desc *task;
328
329 BUG_ON(pid >= MAX_PID);
330
331 task = sched->pid_to_task[pid];
332
333 if (task)
334 return task;
335
336 task = zalloc(sizeof(*task));
337 task->pid = pid;
338 task->nr = sched->nr_tasks;
339 strcpy(task->comm, comm);
340 /*
341 * every task starts in sleeping state - this gets ignored
342 * if there's no wakeup pointing to this sleep state:
343 */
344 add_sched_event_sleep(sched, task, 0, 0);
345
346 sched->pid_to_task[pid] = task;
347 sched->nr_tasks++;
348 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *));
349 BUG_ON(!sched->tasks);
350 sched->tasks[task->nr] = task;
351
352 if (verbose)
353 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
354
355 return task;
356 }
357
358
359 static void print_task_traces(struct perf_sched *sched)
360 {
361 struct task_desc *task;
362 unsigned long i;
363
364 for (i = 0; i < sched->nr_tasks; i++) {
365 task = sched->tasks[i];
366 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
367 task->nr, task->comm, task->pid, task->nr_events);
368 }
369 }
370
371 static void add_cross_task_wakeups(struct perf_sched *sched)
372 {
373 struct task_desc *task1, *task2;
374 unsigned long i, j;
375
376 for (i = 0; i < sched->nr_tasks; i++) {
377 task1 = sched->tasks[i];
378 j = i + 1;
379 if (j == sched->nr_tasks)
380 j = 0;
381 task2 = sched->tasks[j];
382 add_sched_event_wakeup(sched, task1, 0, task2);
383 }
384 }
385
386 static void perf_sched__process_event(struct perf_sched *sched,
387 struct sched_atom *atom)
388 {
389 int ret = 0;
390
391 switch (atom->type) {
392 case SCHED_EVENT_RUN:
393 burn_nsecs(sched, atom->duration);
394 break;
395 case SCHED_EVENT_SLEEP:
396 if (atom->wait_sem)
397 ret = sem_wait(atom->wait_sem);
398 BUG_ON(ret);
399 break;
400 case SCHED_EVENT_WAKEUP:
401 if (atom->wait_sem)
402 ret = sem_post(atom->wait_sem);
403 BUG_ON(ret);
404 break;
405 case SCHED_EVENT_MIGRATION:
406 break;
407 default:
408 BUG_ON(1);
409 }
410 }
411
412 static u64 get_cpu_usage_nsec_parent(void)
413 {
414 struct rusage ru;
415 u64 sum;
416 int err;
417
418 err = getrusage(RUSAGE_SELF, &ru);
419 BUG_ON(err);
420
421 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
422 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
423
424 return sum;
425 }
426
427 static int self_open_counters(void)
428 {
429 struct perf_event_attr attr;
430 int fd;
431
432 memset(&attr, 0, sizeof(attr));
433
434 attr.type = PERF_TYPE_SOFTWARE;
435 attr.config = PERF_COUNT_SW_TASK_CLOCK;
436
437 fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
438
439 if (fd < 0)
440 pr_err("Error: sys_perf_event_open() syscall returned "
441 "with %d (%s)\n", fd, strerror(errno));
442 return fd;
443 }
444
445 static u64 get_cpu_usage_nsec_self(int fd)
446 {
447 u64 runtime;
448 int ret;
449
450 ret = read(fd, &runtime, sizeof(runtime));
451 BUG_ON(ret != sizeof(runtime));
452
453 return runtime;
454 }
455
456 struct sched_thread_parms {
457 struct task_desc *task;
458 struct perf_sched *sched;
459 };
460
461 static void *thread_func(void *ctx)
462 {
463 struct sched_thread_parms *parms = ctx;
464 struct task_desc *this_task = parms->task;
465 struct perf_sched *sched = parms->sched;
466 u64 cpu_usage_0, cpu_usage_1;
467 unsigned long i, ret;
468 char comm2[22];
469 int fd;
470
471 zfree(&parms);
472
473 sprintf(comm2, ":%s", this_task->comm);
474 prctl(PR_SET_NAME, comm2);
475 fd = self_open_counters();
476 if (fd < 0)
477 return NULL;
478 again:
479 ret = sem_post(&this_task->ready_for_work);
480 BUG_ON(ret);
481 ret = pthread_mutex_lock(&sched->start_work_mutex);
482 BUG_ON(ret);
483 ret = pthread_mutex_unlock(&sched->start_work_mutex);
484 BUG_ON(ret);
485
486 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
487
488 for (i = 0; i < this_task->nr_events; i++) {
489 this_task->curr_event = i;
490 perf_sched__process_event(sched, this_task->atoms[i]);
491 }
492
493 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
494 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
495 ret = sem_post(&this_task->work_done_sem);
496 BUG_ON(ret);
497
498 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
499 BUG_ON(ret);
500 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
501 BUG_ON(ret);
502
503 goto again;
504 }
505
506 static void create_tasks(struct perf_sched *sched)
507 {
508 struct task_desc *task;
509 pthread_attr_t attr;
510 unsigned long i;
511 int err;
512
513 err = pthread_attr_init(&attr);
514 BUG_ON(err);
515 err = pthread_attr_setstacksize(&attr,
516 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
517 BUG_ON(err);
518 err = pthread_mutex_lock(&sched->start_work_mutex);
519 BUG_ON(err);
520 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
521 BUG_ON(err);
522 for (i = 0; i < sched->nr_tasks; i++) {
523 struct sched_thread_parms *parms = malloc(sizeof(*parms));
524 BUG_ON(parms == NULL);
525 parms->task = task = sched->tasks[i];
526 parms->sched = sched;
527 sem_init(&task->sleep_sem, 0, 0);
528 sem_init(&task->ready_for_work, 0, 0);
529 sem_init(&task->work_done_sem, 0, 0);
530 task->curr_event = 0;
531 err = pthread_create(&task->thread, &attr, thread_func, parms);
532 BUG_ON(err);
533 }
534 }
535
536 static void wait_for_tasks(struct perf_sched *sched)
537 {
538 u64 cpu_usage_0, cpu_usage_1;
539 struct task_desc *task;
540 unsigned long i, ret;
541
542 sched->start_time = get_nsecs();
543 sched->cpu_usage = 0;
544 pthread_mutex_unlock(&sched->work_done_wait_mutex);
545
546 for (i = 0; i < sched->nr_tasks; i++) {
547 task = sched->tasks[i];
548 ret = sem_wait(&task->ready_for_work);
549 BUG_ON(ret);
550 sem_init(&task->ready_for_work, 0, 0);
551 }
552 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
553 BUG_ON(ret);
554
555 cpu_usage_0 = get_cpu_usage_nsec_parent();
556
557 pthread_mutex_unlock(&sched->start_work_mutex);
558
559 for (i = 0; i < sched->nr_tasks; i++) {
560 task = sched->tasks[i];
561 ret = sem_wait(&task->work_done_sem);
562 BUG_ON(ret);
563 sem_init(&task->work_done_sem, 0, 0);
564 sched->cpu_usage += task->cpu_usage;
565 task->cpu_usage = 0;
566 }
567
568 cpu_usage_1 = get_cpu_usage_nsec_parent();
569 if (!sched->runavg_cpu_usage)
570 sched->runavg_cpu_usage = sched->cpu_usage;
571 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10;
572
573 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
574 if (!sched->runavg_parent_cpu_usage)
575 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
576 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 +
577 sched->parent_cpu_usage)/10;
578
579 ret = pthread_mutex_lock(&sched->start_work_mutex);
580 BUG_ON(ret);
581
582 for (i = 0; i < sched->nr_tasks; i++) {
583 task = sched->tasks[i];
584 sem_init(&task->sleep_sem, 0, 0);
585 task->curr_event = 0;
586 }
587 }
588
589 static void run_one_test(struct perf_sched *sched)
590 {
591 u64 T0, T1, delta, avg_delta, fluct;
592
593 T0 = get_nsecs();
594 wait_for_tasks(sched);
595 T1 = get_nsecs();
596
597 delta = T1 - T0;
598 sched->sum_runtime += delta;
599 sched->nr_runs++;
600
601 avg_delta = sched->sum_runtime / sched->nr_runs;
602 if (delta < avg_delta)
603 fluct = avg_delta - delta;
604 else
605 fluct = delta - avg_delta;
606 sched->sum_fluct += fluct;
607 if (!sched->run_avg)
608 sched->run_avg = delta;
609 sched->run_avg = (sched->run_avg * 9 + delta) / 10;
610
611 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
612
613 printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
614
615 printf("cpu: %0.2f / %0.2f",
616 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
617
618 #if 0
619 /*
620 * rusage statistics done by the parent, these are less
621 * accurate than the sched->sum_exec_runtime based statistics:
622 */
623 printf(" [%0.2f / %0.2f]",
624 (double)sched->parent_cpu_usage/1e6,
625 (double)sched->runavg_parent_cpu_usage/1e6);
626 #endif
627
628 printf("\n");
629
630 if (sched->nr_sleep_corrections)
631 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
632 sched->nr_sleep_corrections = 0;
633 }
634
635 static void test_calibrations(struct perf_sched *sched)
636 {
637 u64 T0, T1;
638
639 T0 = get_nsecs();
640 burn_nsecs(sched, 1e6);
641 T1 = get_nsecs();
642
643 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
644
645 T0 = get_nsecs();
646 sleep_nsecs(1e6);
647 T1 = get_nsecs();
648
649 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
650 }
651
652 static int
653 replay_wakeup_event(struct perf_sched *sched,
654 struct perf_evsel *evsel, struct perf_sample *sample,
655 struct machine *machine __maybe_unused)
656 {
657 const char *comm = perf_evsel__strval(evsel, sample, "comm");
658 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
659 struct task_desc *waker, *wakee;
660
661 if (verbose) {
662 printf("sched_wakeup event %p\n", evsel);
663
664 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
665 }
666
667 waker = register_pid(sched, sample->tid, "<unknown>");
668 wakee = register_pid(sched, pid, comm);
669
670 add_sched_event_wakeup(sched, waker, sample->time, wakee);
671 return 0;
672 }
673
674 static int replay_switch_event(struct perf_sched *sched,
675 struct perf_evsel *evsel,
676 struct perf_sample *sample,
677 struct machine *machine __maybe_unused)
678 {
679 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
680 *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
681 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
682 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
683 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
684 struct task_desc *prev, __maybe_unused *next;
685 u64 timestamp0, timestamp = sample->time;
686 int cpu = sample->cpu;
687 s64 delta;
688
689 if (verbose)
690 printf("sched_switch event %p\n", evsel);
691
692 if (cpu >= MAX_CPUS || cpu < 0)
693 return 0;
694
695 timestamp0 = sched->cpu_last_switched[cpu];
696 if (timestamp0)
697 delta = timestamp - timestamp0;
698 else
699 delta = 0;
700
701 if (delta < 0) {
702 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
703 return -1;
704 }
705
706 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
707 prev_comm, prev_pid, next_comm, next_pid, delta);
708
709 prev = register_pid(sched, prev_pid, prev_comm);
710 next = register_pid(sched, next_pid, next_comm);
711
712 sched->cpu_last_switched[cpu] = timestamp;
713
714 add_sched_event_run(sched, prev, timestamp, delta);
715 add_sched_event_sleep(sched, prev, timestamp, prev_state);
716
717 return 0;
718 }
719
720 static int replay_fork_event(struct perf_sched *sched,
721 union perf_event *event,
722 struct machine *machine)
723 {
724 struct thread *child, *parent;
725
726 child = machine__findnew_thread(machine, event->fork.pid,
727 event->fork.tid);
728 parent = machine__findnew_thread(machine, event->fork.ppid,
729 event->fork.ptid);
730
731 if (child == NULL || parent == NULL) {
732 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
733 child, parent);
734 return 0;
735 }
736
737 if (verbose) {
738 printf("fork event\n");
739 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
740 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
741 }
742
743 register_pid(sched, parent->tid, thread__comm_str(parent));
744 register_pid(sched, child->tid, thread__comm_str(child));
745 return 0;
746 }
747
748 struct sort_dimension {
749 const char *name;
750 sort_fn_t cmp;
751 struct list_head list;
752 };
753
754 static int
755 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
756 {
757 struct sort_dimension *sort;
758 int ret = 0;
759
760 BUG_ON(list_empty(list));
761
762 list_for_each_entry(sort, list, list) {
763 ret = sort->cmp(l, r);
764 if (ret)
765 return ret;
766 }
767
768 return ret;
769 }
770
771 static struct work_atoms *
772 thread_atoms_search(struct rb_root *root, struct thread *thread,
773 struct list_head *sort_list)
774 {
775 struct rb_node *node = root->rb_node;
776 struct work_atoms key = { .thread = thread };
777
778 while (node) {
779 struct work_atoms *atoms;
780 int cmp;
781
782 atoms = container_of(node, struct work_atoms, node);
783
784 cmp = thread_lat_cmp(sort_list, &key, atoms);
785 if (cmp > 0)
786 node = node->rb_left;
787 else if (cmp < 0)
788 node = node->rb_right;
789 else {
790 BUG_ON(thread != atoms->thread);
791 return atoms;
792 }
793 }
794 return NULL;
795 }
796
797 static void
798 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
799 struct list_head *sort_list)
800 {
801 struct rb_node **new = &(root->rb_node), *parent = NULL;
802
803 while (*new) {
804 struct work_atoms *this;
805 int cmp;
806
807 this = container_of(*new, struct work_atoms, node);
808 parent = *new;
809
810 cmp = thread_lat_cmp(sort_list, data, this);
811
812 if (cmp > 0)
813 new = &((*new)->rb_left);
814 else
815 new = &((*new)->rb_right);
816 }
817
818 rb_link_node(&data->node, parent, new);
819 rb_insert_color(&data->node, root);
820 }
821
822 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
823 {
824 struct work_atoms *atoms = zalloc(sizeof(*atoms));
825 if (!atoms) {
826 pr_err("No memory at %s\n", __func__);
827 return -1;
828 }
829
830 atoms->thread = thread;
831 INIT_LIST_HEAD(&atoms->work_list);
832 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
833 return 0;
834 }
835
836 static char sched_out_state(u64 prev_state)
837 {
838 const char *str = TASK_STATE_TO_CHAR_STR;
839
840 return str[prev_state];
841 }
842
843 static int
844 add_sched_out_event(struct work_atoms *atoms,
845 char run_state,
846 u64 timestamp)
847 {
848 struct work_atom *atom = zalloc(sizeof(*atom));
849 if (!atom) {
850 pr_err("Non memory at %s", __func__);
851 return -1;
852 }
853
854 atom->sched_out_time = timestamp;
855
856 if (run_state == 'R') {
857 atom->state = THREAD_WAIT_CPU;
858 atom->wake_up_time = atom->sched_out_time;
859 }
860
861 list_add_tail(&atom->list, &atoms->work_list);
862 return 0;
863 }
864
865 static void
866 add_runtime_event(struct work_atoms *atoms, u64 delta,
867 u64 timestamp __maybe_unused)
868 {
869 struct work_atom *atom;
870
871 BUG_ON(list_empty(&atoms->work_list));
872
873 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
874
875 atom->runtime += delta;
876 atoms->total_runtime += delta;
877 }
878
879 static void
880 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
881 {
882 struct work_atom *atom;
883 u64 delta;
884
885 if (list_empty(&atoms->work_list))
886 return;
887
888 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
889
890 if (atom->state != THREAD_WAIT_CPU)
891 return;
892
893 if (timestamp < atom->wake_up_time) {
894 atom->state = THREAD_IGNORE;
895 return;
896 }
897
898 atom->state = THREAD_SCHED_IN;
899 atom->sched_in_time = timestamp;
900
901 delta = atom->sched_in_time - atom->wake_up_time;
902 atoms->total_lat += delta;
903 if (delta > atoms->max_lat) {
904 atoms->max_lat = delta;
905 atoms->max_lat_at = timestamp;
906 }
907 atoms->nb_atoms++;
908 }
909
910 static int latency_switch_event(struct perf_sched *sched,
911 struct perf_evsel *evsel,
912 struct perf_sample *sample,
913 struct machine *machine)
914 {
915 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
916 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
917 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
918 struct work_atoms *out_events, *in_events;
919 struct thread *sched_out, *sched_in;
920 u64 timestamp0, timestamp = sample->time;
921 int cpu = sample->cpu;
922 s64 delta;
923
924 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
925
926 timestamp0 = sched->cpu_last_switched[cpu];
927 sched->cpu_last_switched[cpu] = timestamp;
928 if (timestamp0)
929 delta = timestamp - timestamp0;
930 else
931 delta = 0;
932
933 if (delta < 0) {
934 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
935 return -1;
936 }
937
938 sched_out = machine__findnew_thread(machine, 0, prev_pid);
939 sched_in = machine__findnew_thread(machine, 0, next_pid);
940
941 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
942 if (!out_events) {
943 if (thread_atoms_insert(sched, sched_out))
944 return -1;
945 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
946 if (!out_events) {
947 pr_err("out-event: Internal tree error");
948 return -1;
949 }
950 }
951 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
952 return -1;
953
954 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
955 if (!in_events) {
956 if (thread_atoms_insert(sched, sched_in))
957 return -1;
958 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
959 if (!in_events) {
960 pr_err("in-event: Internal tree error");
961 return -1;
962 }
963 /*
964 * Take came in we have not heard about yet,
965 * add in an initial atom in runnable state:
966 */
967 if (add_sched_out_event(in_events, 'R', timestamp))
968 return -1;
969 }
970 add_sched_in_event(in_events, timestamp);
971
972 return 0;
973 }
974
975 static int latency_runtime_event(struct perf_sched *sched,
976 struct perf_evsel *evsel,
977 struct perf_sample *sample,
978 struct machine *machine)
979 {
980 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
981 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
982 struct thread *thread = machine__findnew_thread(machine, 0, pid);
983 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
984 u64 timestamp = sample->time;
985 int cpu = sample->cpu;
986
987 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
988 if (!atoms) {
989 if (thread_atoms_insert(sched, thread))
990 return -1;
991 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
992 if (!atoms) {
993 pr_err("in-event: Internal tree error");
994 return -1;
995 }
996 if (add_sched_out_event(atoms, 'R', timestamp))
997 return -1;
998 }
999
1000 add_runtime_event(atoms, runtime, timestamp);
1001 return 0;
1002 }
1003
1004 static int latency_wakeup_event(struct perf_sched *sched,
1005 struct perf_evsel *evsel,
1006 struct perf_sample *sample,
1007 struct machine *machine)
1008 {
1009 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1010 struct work_atoms *atoms;
1011 struct work_atom *atom;
1012 struct thread *wakee;
1013 u64 timestamp = sample->time;
1014
1015 wakee = machine__findnew_thread(machine, 0, pid);
1016 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1017 if (!atoms) {
1018 if (thread_atoms_insert(sched, wakee))
1019 return -1;
1020 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1021 if (!atoms) {
1022 pr_err("wakeup-event: Internal tree error");
1023 return -1;
1024 }
1025 if (add_sched_out_event(atoms, 'S', timestamp))
1026 return -1;
1027 }
1028
1029 BUG_ON(list_empty(&atoms->work_list));
1030
1031 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1032
1033 /*
1034 * As we do not guarantee the wakeup event happens when
1035 * task is out of run queue, also may happen when task is
1036 * on run queue and wakeup only change ->state to TASK_RUNNING,
1037 * then we should not set the ->wake_up_time when wake up a
1038 * task which is on run queue.
1039 *
1040 * You WILL be missing events if you've recorded only
1041 * one CPU, or are only looking at only one, so don't
1042 * skip in this case.
1043 */
1044 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1045 return 0;
1046
1047 sched->nr_timestamps++;
1048 if (atom->sched_out_time > timestamp) {
1049 sched->nr_unordered_timestamps++;
1050 return 0;
1051 }
1052
1053 atom->state = THREAD_WAIT_CPU;
1054 atom->wake_up_time = timestamp;
1055 return 0;
1056 }
1057
1058 static int latency_migrate_task_event(struct perf_sched *sched,
1059 struct perf_evsel *evsel,
1060 struct perf_sample *sample,
1061 struct machine *machine)
1062 {
1063 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1064 u64 timestamp = sample->time;
1065 struct work_atoms *atoms;
1066 struct work_atom *atom;
1067 struct thread *migrant;
1068
1069 /*
1070 * Only need to worry about migration when profiling one CPU.
1071 */
1072 if (sched->profile_cpu == -1)
1073 return 0;
1074
1075 migrant = machine__findnew_thread(machine, 0, pid);
1076 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1077 if (!atoms) {
1078 if (thread_atoms_insert(sched, migrant))
1079 return -1;
1080 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1081 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1082 if (!atoms) {
1083 pr_err("migration-event: Internal tree error");
1084 return -1;
1085 }
1086 if (add_sched_out_event(atoms, 'R', timestamp))
1087 return -1;
1088 }
1089
1090 BUG_ON(list_empty(&atoms->work_list));
1091
1092 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1093 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1094
1095 sched->nr_timestamps++;
1096
1097 if (atom->sched_out_time > timestamp)
1098 sched->nr_unordered_timestamps++;
1099
1100 return 0;
1101 }
1102
1103 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1104 {
1105 int i;
1106 int ret;
1107 u64 avg;
1108
1109 if (!work_list->nb_atoms)
1110 return;
1111 /*
1112 * Ignore idle threads:
1113 */
1114 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1115 return;
1116
1117 sched->all_runtime += work_list->total_runtime;
1118 sched->all_count += work_list->nb_atoms;
1119
1120 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1121
1122 for (i = 0; i < 24 - ret; i++)
1123 printf(" ");
1124
1125 avg = work_list->total_lat / work_list->nb_atoms;
1126
1127 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1128 (double)work_list->total_runtime / 1e6,
1129 work_list->nb_atoms, (double)avg / 1e6,
1130 (double)work_list->max_lat / 1e6,
1131 (double)work_list->max_lat_at / 1e9);
1132 }
1133
1134 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1135 {
1136 if (l->thread->tid < r->thread->tid)
1137 return -1;
1138 if (l->thread->tid > r->thread->tid)
1139 return 1;
1140
1141 return 0;
1142 }
1143
1144 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1145 {
1146 u64 avgl, avgr;
1147
1148 if (!l->nb_atoms)
1149 return -1;
1150
1151 if (!r->nb_atoms)
1152 return 1;
1153
1154 avgl = l->total_lat / l->nb_atoms;
1155 avgr = r->total_lat / r->nb_atoms;
1156
1157 if (avgl < avgr)
1158 return -1;
1159 if (avgl > avgr)
1160 return 1;
1161
1162 return 0;
1163 }
1164
1165 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1166 {
1167 if (l->max_lat < r->max_lat)
1168 return -1;
1169 if (l->max_lat > r->max_lat)
1170 return 1;
1171
1172 return 0;
1173 }
1174
1175 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1176 {
1177 if (l->nb_atoms < r->nb_atoms)
1178 return -1;
1179 if (l->nb_atoms > r->nb_atoms)
1180 return 1;
1181
1182 return 0;
1183 }
1184
1185 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1186 {
1187 if (l->total_runtime < r->total_runtime)
1188 return -1;
1189 if (l->total_runtime > r->total_runtime)
1190 return 1;
1191
1192 return 0;
1193 }
1194
1195 static int sort_dimension__add(const char *tok, struct list_head *list)
1196 {
1197 size_t i;
1198 static struct sort_dimension avg_sort_dimension = {
1199 .name = "avg",
1200 .cmp = avg_cmp,
1201 };
1202 static struct sort_dimension max_sort_dimension = {
1203 .name = "max",
1204 .cmp = max_cmp,
1205 };
1206 static struct sort_dimension pid_sort_dimension = {
1207 .name = "pid",
1208 .cmp = pid_cmp,
1209 };
1210 static struct sort_dimension runtime_sort_dimension = {
1211 .name = "runtime",
1212 .cmp = runtime_cmp,
1213 };
1214 static struct sort_dimension switch_sort_dimension = {
1215 .name = "switch",
1216 .cmp = switch_cmp,
1217 };
1218 struct sort_dimension *available_sorts[] = {
1219 &pid_sort_dimension,
1220 &avg_sort_dimension,
1221 &max_sort_dimension,
1222 &switch_sort_dimension,
1223 &runtime_sort_dimension,
1224 };
1225
1226 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1227 if (!strcmp(available_sorts[i]->name, tok)) {
1228 list_add_tail(&available_sorts[i]->list, list);
1229
1230 return 0;
1231 }
1232 }
1233
1234 return -1;
1235 }
1236
1237 static void perf_sched__sort_lat(struct perf_sched *sched)
1238 {
1239 struct rb_node *node;
1240
1241 for (;;) {
1242 struct work_atoms *data;
1243 node = rb_first(&sched->atom_root);
1244 if (!node)
1245 break;
1246
1247 rb_erase(node, &sched->atom_root);
1248 data = rb_entry(node, struct work_atoms, node);
1249 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1250 }
1251 }
1252
1253 static int process_sched_wakeup_event(struct perf_tool *tool,
1254 struct perf_evsel *evsel,
1255 struct perf_sample *sample,
1256 struct machine *machine)
1257 {
1258 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1259
1260 if (sched->tp_handler->wakeup_event)
1261 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1262
1263 return 0;
1264 }
1265
1266 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1267 struct perf_sample *sample, struct machine *machine)
1268 {
1269 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1270 struct thread *sched_in;
1271 int new_shortname;
1272 u64 timestamp0, timestamp = sample->time;
1273 s64 delta;
1274 int cpu, this_cpu = sample->cpu;
1275
1276 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1277
1278 if (this_cpu > sched->max_cpu)
1279 sched->max_cpu = this_cpu;
1280
1281 timestamp0 = sched->cpu_last_switched[this_cpu];
1282 sched->cpu_last_switched[this_cpu] = timestamp;
1283 if (timestamp0)
1284 delta = timestamp - timestamp0;
1285 else
1286 delta = 0;
1287
1288 if (delta < 0) {
1289 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1290 return -1;
1291 }
1292
1293 sched_in = machine__findnew_thread(machine, 0, next_pid);
1294
1295 sched->curr_thread[this_cpu] = sched_in;
1296
1297 printf(" ");
1298
1299 new_shortname = 0;
1300 if (!sched_in->shortname[0]) {
1301 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1302 /*
1303 * Don't allocate a letter-number for swapper:0
1304 * as a shortname. Instead, we use '.' for it.
1305 */
1306 sched_in->shortname[0] = '.';
1307 sched_in->shortname[1] = ' ';
1308 } else {
1309 sched_in->shortname[0] = sched->next_shortname1;
1310 sched_in->shortname[1] = sched->next_shortname2;
1311
1312 if (sched->next_shortname1 < 'Z') {
1313 sched->next_shortname1++;
1314 } else {
1315 sched->next_shortname1 = 'A';
1316 if (sched->next_shortname2 < '9')
1317 sched->next_shortname2++;
1318 else
1319 sched->next_shortname2 = '0';
1320 }
1321 }
1322 new_shortname = 1;
1323 }
1324
1325 for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1326 if (cpu != this_cpu)
1327 printf(" ");
1328 else
1329 printf("*");
1330
1331 if (sched->curr_thread[cpu])
1332 printf("%2s ", sched->curr_thread[cpu]->shortname);
1333 else
1334 printf(" ");
1335 }
1336
1337 printf(" %12.6f secs ", (double)timestamp/1e9);
1338 if (new_shortname) {
1339 printf("%s => %s:%d\n",
1340 sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1341 } else {
1342 printf("\n");
1343 }
1344
1345 return 0;
1346 }
1347
1348 static int process_sched_switch_event(struct perf_tool *tool,
1349 struct perf_evsel *evsel,
1350 struct perf_sample *sample,
1351 struct machine *machine)
1352 {
1353 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1354 int this_cpu = sample->cpu, err = 0;
1355 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1356 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1357
1358 if (sched->curr_pid[this_cpu] != (u32)-1) {
1359 /*
1360 * Are we trying to switch away a PID that is
1361 * not current?
1362 */
1363 if (sched->curr_pid[this_cpu] != prev_pid)
1364 sched->nr_context_switch_bugs++;
1365 }
1366
1367 if (sched->tp_handler->switch_event)
1368 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1369
1370 sched->curr_pid[this_cpu] = next_pid;
1371 return err;
1372 }
1373
1374 static int process_sched_runtime_event(struct perf_tool *tool,
1375 struct perf_evsel *evsel,
1376 struct perf_sample *sample,
1377 struct machine *machine)
1378 {
1379 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1380
1381 if (sched->tp_handler->runtime_event)
1382 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1383
1384 return 0;
1385 }
1386
1387 static int perf_sched__process_fork_event(struct perf_tool *tool,
1388 union perf_event *event,
1389 struct perf_sample *sample,
1390 struct machine *machine)
1391 {
1392 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1393
1394 /* run the fork event through the perf machineruy */
1395 perf_event__process_fork(tool, event, sample, machine);
1396
1397 /* and then run additional processing needed for this command */
1398 if (sched->tp_handler->fork_event)
1399 return sched->tp_handler->fork_event(sched, event, machine);
1400
1401 return 0;
1402 }
1403
1404 static int process_sched_migrate_task_event(struct perf_tool *tool,
1405 struct perf_evsel *evsel,
1406 struct perf_sample *sample,
1407 struct machine *machine)
1408 {
1409 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1410
1411 if (sched->tp_handler->migrate_task_event)
1412 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1413
1414 return 0;
1415 }
1416
1417 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1418 struct perf_evsel *evsel,
1419 struct perf_sample *sample,
1420 struct machine *machine);
1421
1422 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1423 union perf_event *event __maybe_unused,
1424 struct perf_sample *sample,
1425 struct perf_evsel *evsel,
1426 struct machine *machine)
1427 {
1428 int err = 0;
1429
1430 evsel->hists.stats.total_period += sample->period;
1431 hists__inc_nr_samples(&evsel->hists, true);
1432
1433 if (evsel->handler != NULL) {
1434 tracepoint_handler f = evsel->handler;
1435 err = f(tool, evsel, sample, machine);
1436 }
1437
1438 return err;
1439 }
1440
1441 static int perf_sched__read_events(struct perf_sched *sched,
1442 struct perf_session **psession)
1443 {
1444 const struct perf_evsel_str_handler handlers[] = {
1445 { "sched:sched_switch", process_sched_switch_event, },
1446 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1447 { "sched:sched_wakeup", process_sched_wakeup_event, },
1448 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1449 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1450 };
1451 struct perf_session *session;
1452 struct perf_data_file file = {
1453 .path = input_name,
1454 .mode = PERF_DATA_MODE_READ,
1455 };
1456
1457 session = perf_session__new(&file, false, &sched->tool);
1458 if (session == NULL) {
1459 pr_debug("No Memory for session\n");
1460 return -1;
1461 }
1462
1463 if (perf_session__set_tracepoints_handlers(session, handlers))
1464 goto out_delete;
1465
1466 if (perf_session__has_traces(session, "record -R")) {
1467 int err = perf_session__process_events(session, &sched->tool);
1468 if (err) {
1469 pr_err("Failed to process events, error %d", err);
1470 goto out_delete;
1471 }
1472
1473 sched->nr_events = session->stats.nr_events[0];
1474 sched->nr_lost_events = session->stats.total_lost;
1475 sched->nr_lost_chunks = session->stats.nr_events[PERF_RECORD_LOST];
1476 }
1477
1478 if (psession)
1479 *psession = session;
1480 else
1481 perf_session__delete(session);
1482
1483 return 0;
1484
1485 out_delete:
1486 perf_session__delete(session);
1487 return -1;
1488 }
1489
1490 static void print_bad_events(struct perf_sched *sched)
1491 {
1492 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1493 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1494 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1495 sched->nr_unordered_timestamps, sched->nr_timestamps);
1496 }
1497 if (sched->nr_lost_events && sched->nr_events) {
1498 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1499 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1500 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1501 }
1502 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1503 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1504 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1505 sched->nr_context_switch_bugs, sched->nr_timestamps);
1506 if (sched->nr_lost_events)
1507 printf(" (due to lost events?)");
1508 printf("\n");
1509 }
1510 }
1511
1512 static int perf_sched__lat(struct perf_sched *sched)
1513 {
1514 struct rb_node *next;
1515 struct perf_session *session;
1516
1517 setup_pager();
1518
1519 /* save session -- references to threads are held in work_list */
1520 if (perf_sched__read_events(sched, &session))
1521 return -1;
1522
1523 perf_sched__sort_lat(sched);
1524
1525 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1526 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1527 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1528
1529 next = rb_first(&sched->sorted_atom_root);
1530
1531 while (next) {
1532 struct work_atoms *work_list;
1533
1534 work_list = rb_entry(next, struct work_atoms, node);
1535 output_lat_thread(sched, work_list);
1536 next = rb_next(next);
1537 }
1538
1539 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1540 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
1541 (double)sched->all_runtime / 1e6, sched->all_count);
1542
1543 printf(" ---------------------------------------------------\n");
1544
1545 print_bad_events(sched);
1546 printf("\n");
1547
1548 perf_session__delete(session);
1549 return 0;
1550 }
1551
1552 static int perf_sched__map(struct perf_sched *sched)
1553 {
1554 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1555
1556 setup_pager();
1557 if (perf_sched__read_events(sched, NULL))
1558 return -1;
1559 print_bad_events(sched);
1560 return 0;
1561 }
1562
1563 static int perf_sched__replay(struct perf_sched *sched)
1564 {
1565 unsigned long i;
1566
1567 calibrate_run_measurement_overhead(sched);
1568 calibrate_sleep_measurement_overhead(sched);
1569
1570 test_calibrations(sched);
1571
1572 if (perf_sched__read_events(sched, NULL))
1573 return -1;
1574
1575 printf("nr_run_events: %ld\n", sched->nr_run_events);
1576 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
1577 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
1578
1579 if (sched->targetless_wakeups)
1580 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
1581 if (sched->multitarget_wakeups)
1582 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1583 if (sched->nr_run_events_optimized)
1584 printf("run atoms optimized: %ld\n",
1585 sched->nr_run_events_optimized);
1586
1587 print_task_traces(sched);
1588 add_cross_task_wakeups(sched);
1589
1590 create_tasks(sched);
1591 printf("------------------------------------------------------------\n");
1592 for (i = 0; i < sched->replay_repeat; i++)
1593 run_one_test(sched);
1594
1595 return 0;
1596 }
1597
1598 static void setup_sorting(struct perf_sched *sched, const struct option *options,
1599 const char * const usage_msg[])
1600 {
1601 char *tmp, *tok, *str = strdup(sched->sort_order);
1602
1603 for (tok = strtok_r(str, ", ", &tmp);
1604 tok; tok = strtok_r(NULL, ", ", &tmp)) {
1605 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1606 error("Unknown --sort key: `%s'", tok);
1607 usage_with_options(usage_msg, options);
1608 }
1609 }
1610
1611 free(str);
1612
1613 sort_dimension__add("pid", &sched->cmp_pid);
1614 }
1615
1616 static int __cmd_record(int argc, const char **argv)
1617 {
1618 unsigned int rec_argc, i, j;
1619 const char **rec_argv;
1620 const char * const record_args[] = {
1621 "record",
1622 "-a",
1623 "-R",
1624 "-m", "1024",
1625 "-c", "1",
1626 "-e", "sched:sched_switch",
1627 "-e", "sched:sched_stat_wait",
1628 "-e", "sched:sched_stat_sleep",
1629 "-e", "sched:sched_stat_iowait",
1630 "-e", "sched:sched_stat_runtime",
1631 "-e", "sched:sched_process_fork",
1632 "-e", "sched:sched_wakeup",
1633 "-e", "sched:sched_wakeup_new",
1634 "-e", "sched:sched_migrate_task",
1635 };
1636
1637 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1638 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1639
1640 if (rec_argv == NULL)
1641 return -ENOMEM;
1642
1643 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1644 rec_argv[i] = strdup(record_args[i]);
1645
1646 for (j = 1; j < (unsigned int)argc; j++, i++)
1647 rec_argv[i] = argv[j];
1648
1649 BUG_ON(i != rec_argc);
1650
1651 return cmd_record(i, rec_argv, NULL);
1652 }
1653
1654 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1655 {
1656 const char default_sort_order[] = "avg, max, switch, runtime";
1657 struct perf_sched sched = {
1658 .tool = {
1659 .sample = perf_sched__process_tracepoint_sample,
1660 .comm = perf_event__process_comm,
1661 .lost = perf_event__process_lost,
1662 .fork = perf_sched__process_fork_event,
1663 .ordered_samples = true,
1664 },
1665 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
1666 .sort_list = LIST_HEAD_INIT(sched.sort_list),
1667 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
1668 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1669 .sort_order = default_sort_order,
1670 .replay_repeat = 10,
1671 .profile_cpu = -1,
1672 .next_shortname1 = 'A',
1673 .next_shortname2 = '0',
1674 };
1675 const struct option latency_options[] = {
1676 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1677 "sort by key(s): runtime, switch, avg, max"),
1678 OPT_INCR('v', "verbose", &verbose,
1679 "be more verbose (show symbol address, etc)"),
1680 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1681 "CPU to profile on"),
1682 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1683 "dump raw trace in ASCII"),
1684 OPT_END()
1685 };
1686 const struct option replay_options[] = {
1687 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1688 "repeat the workload replay N times (-1: infinite)"),
1689 OPT_INCR('v', "verbose", &verbose,
1690 "be more verbose (show symbol address, etc)"),
1691 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1692 "dump raw trace in ASCII"),
1693 OPT_END()
1694 };
1695 const struct option sched_options[] = {
1696 OPT_STRING('i', "input", &input_name, "file",
1697 "input file name"),
1698 OPT_INCR('v', "verbose", &verbose,
1699 "be more verbose (show symbol address, etc)"),
1700 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1701 "dump raw trace in ASCII"),
1702 OPT_END()
1703 };
1704 const char * const latency_usage[] = {
1705 "perf sched latency [<options>]",
1706 NULL
1707 };
1708 const char * const replay_usage[] = {
1709 "perf sched replay [<options>]",
1710 NULL
1711 };
1712 const char *const sched_subcommands[] = { "record", "latency", "map",
1713 "replay", "script", NULL };
1714 const char *sched_usage[] = {
1715 NULL,
1716 NULL
1717 };
1718 struct trace_sched_handler lat_ops = {
1719 .wakeup_event = latency_wakeup_event,
1720 .switch_event = latency_switch_event,
1721 .runtime_event = latency_runtime_event,
1722 .migrate_task_event = latency_migrate_task_event,
1723 };
1724 struct trace_sched_handler map_ops = {
1725 .switch_event = map_switch_event,
1726 };
1727 struct trace_sched_handler replay_ops = {
1728 .wakeup_event = replay_wakeup_event,
1729 .switch_event = replay_switch_event,
1730 .fork_event = replay_fork_event,
1731 };
1732 unsigned int i;
1733
1734 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
1735 sched.curr_pid[i] = -1;
1736
1737 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
1738 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1739 if (!argc)
1740 usage_with_options(sched_usage, sched_options);
1741
1742 /*
1743 * Aliased to 'perf script' for now:
1744 */
1745 if (!strcmp(argv[0], "script"))
1746 return cmd_script(argc, argv, prefix);
1747
1748 symbol__init();
1749 if (!strncmp(argv[0], "rec", 3)) {
1750 return __cmd_record(argc, argv);
1751 } else if (!strncmp(argv[0], "lat", 3)) {
1752 sched.tp_handler = &lat_ops;
1753 if (argc > 1) {
1754 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1755 if (argc)
1756 usage_with_options(latency_usage, latency_options);
1757 }
1758 setup_sorting(&sched, latency_options, latency_usage);
1759 return perf_sched__lat(&sched);
1760 } else if (!strcmp(argv[0], "map")) {
1761 sched.tp_handler = &map_ops;
1762 setup_sorting(&sched, latency_options, latency_usage);
1763 return perf_sched__map(&sched);
1764 } else if (!strncmp(argv[0], "rep", 3)) {
1765 sched.tp_handler = &replay_ops;
1766 if (argc) {
1767 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1768 if (argc)
1769 usage_with_options(replay_usage, replay_options);
1770 }
1771 return perf_sched__replay(&sched);
1772 } else {
1773 usage_with_options(sched_usage, sched_options);
1774 }
1775
1776 return 0;
1777 }
This page took 0.065546 seconds and 6 git commands to generate.