perf tools: Rename ordered_samples bool to ordered_events
[deliverable/linux.git] / tools / perf / builtin-timechart.c
1 /*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15 #include <traceevent/event-parse.h>
16
17 #include "builtin.h"
18
19 #include "util/util.h"
20
21 #include "util/color.h"
22 #include <linux/list.h>
23 #include "util/cache.h"
24 #include "util/evlist.h"
25 #include "util/evsel.h"
26 #include <linux/rbtree.h>
27 #include "util/symbol.h"
28 #include "util/callchain.h"
29 #include "util/strlist.h"
30
31 #include "perf.h"
32 #include "util/header.h"
33 #include "util/parse-options.h"
34 #include "util/parse-events.h"
35 #include "util/event.h"
36 #include "util/session.h"
37 #include "util/svghelper.h"
38 #include "util/tool.h"
39 #include "util/data.h"
40 #include "util/debug.h"
41
42 #define SUPPORT_OLD_POWER_EVENTS 1
43 #define PWR_EVENT_EXIT -1
44
45 struct per_pid;
46 struct power_event;
47 struct wake_event;
48
49 struct timechart {
50 struct perf_tool tool;
51 struct per_pid *all_data;
52 struct power_event *power_events;
53 struct wake_event *wake_events;
54 int proc_num;
55 unsigned int numcpus;
56 u64 min_freq, /* Lowest CPU frequency seen */
57 max_freq, /* Highest CPU frequency seen */
58 turbo_frequency,
59 first_time, last_time;
60 bool power_only,
61 tasks_only,
62 with_backtrace,
63 topology;
64 /* IO related settings */
65 u64 io_events;
66 bool io_only,
67 skip_eagain;
68 u64 min_time,
69 merge_dist;
70 };
71
72 struct per_pidcomm;
73 struct cpu_sample;
74 struct io_sample;
75
76 /*
77 * Datastructure layout:
78 * We keep an list of "pid"s, matching the kernels notion of a task struct.
79 * Each "pid" entry, has a list of "comm"s.
80 * this is because we want to track different programs different, while
81 * exec will reuse the original pid (by design).
82 * Each comm has a list of samples that will be used to draw
83 * final graph.
84 */
85
86 struct per_pid {
87 struct per_pid *next;
88
89 int pid;
90 int ppid;
91
92 u64 start_time;
93 u64 end_time;
94 u64 total_time;
95 u64 total_bytes;
96 int display;
97
98 struct per_pidcomm *all;
99 struct per_pidcomm *current;
100 };
101
102
103 struct per_pidcomm {
104 struct per_pidcomm *next;
105
106 u64 start_time;
107 u64 end_time;
108 u64 total_time;
109 u64 max_bytes;
110 u64 total_bytes;
111
112 int Y;
113 int display;
114
115 long state;
116 u64 state_since;
117
118 char *comm;
119
120 struct cpu_sample *samples;
121 struct io_sample *io_samples;
122 };
123
124 struct sample_wrapper {
125 struct sample_wrapper *next;
126
127 u64 timestamp;
128 unsigned char data[0];
129 };
130
131 #define TYPE_NONE 0
132 #define TYPE_RUNNING 1
133 #define TYPE_WAITING 2
134 #define TYPE_BLOCKED 3
135
136 struct cpu_sample {
137 struct cpu_sample *next;
138
139 u64 start_time;
140 u64 end_time;
141 int type;
142 int cpu;
143 const char *backtrace;
144 };
145
146 enum {
147 IOTYPE_READ,
148 IOTYPE_WRITE,
149 IOTYPE_SYNC,
150 IOTYPE_TX,
151 IOTYPE_RX,
152 IOTYPE_POLL,
153 };
154
155 struct io_sample {
156 struct io_sample *next;
157
158 u64 start_time;
159 u64 end_time;
160 u64 bytes;
161 int type;
162 int fd;
163 int err;
164 int merges;
165 };
166
167 #define CSTATE 1
168 #define PSTATE 2
169
170 struct power_event {
171 struct power_event *next;
172 int type;
173 int state;
174 u64 start_time;
175 u64 end_time;
176 int cpu;
177 };
178
179 struct wake_event {
180 struct wake_event *next;
181 int waker;
182 int wakee;
183 u64 time;
184 const char *backtrace;
185 };
186
187 struct process_filter {
188 char *name;
189 int pid;
190 struct process_filter *next;
191 };
192
193 static struct process_filter *process_filter;
194
195
196 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
197 {
198 struct per_pid *cursor = tchart->all_data;
199
200 while (cursor) {
201 if (cursor->pid == pid)
202 return cursor;
203 cursor = cursor->next;
204 }
205 cursor = zalloc(sizeof(*cursor));
206 assert(cursor != NULL);
207 cursor->pid = pid;
208 cursor->next = tchart->all_data;
209 tchart->all_data = cursor;
210 return cursor;
211 }
212
213 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
214 {
215 struct per_pid *p;
216 struct per_pidcomm *c;
217 p = find_create_pid(tchart, pid);
218 c = p->all;
219 while (c) {
220 if (c->comm && strcmp(c->comm, comm) == 0) {
221 p->current = c;
222 return;
223 }
224 if (!c->comm) {
225 c->comm = strdup(comm);
226 p->current = c;
227 return;
228 }
229 c = c->next;
230 }
231 c = zalloc(sizeof(*c));
232 assert(c != NULL);
233 c->comm = strdup(comm);
234 p->current = c;
235 c->next = p->all;
236 p->all = c;
237 }
238
239 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
240 {
241 struct per_pid *p, *pp;
242 p = find_create_pid(tchart, pid);
243 pp = find_create_pid(tchart, ppid);
244 p->ppid = ppid;
245 if (pp->current && pp->current->comm && !p->current)
246 pid_set_comm(tchart, pid, pp->current->comm);
247
248 p->start_time = timestamp;
249 if (p->current && !p->current->start_time) {
250 p->current->start_time = timestamp;
251 p->current->state_since = timestamp;
252 }
253 }
254
255 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
256 {
257 struct per_pid *p;
258 p = find_create_pid(tchart, pid);
259 p->end_time = timestamp;
260 if (p->current)
261 p->current->end_time = timestamp;
262 }
263
264 static void pid_put_sample(struct timechart *tchart, int pid, int type,
265 unsigned int cpu, u64 start, u64 end,
266 const char *backtrace)
267 {
268 struct per_pid *p;
269 struct per_pidcomm *c;
270 struct cpu_sample *sample;
271
272 p = find_create_pid(tchart, pid);
273 c = p->current;
274 if (!c) {
275 c = zalloc(sizeof(*c));
276 assert(c != NULL);
277 p->current = c;
278 c->next = p->all;
279 p->all = c;
280 }
281
282 sample = zalloc(sizeof(*sample));
283 assert(sample != NULL);
284 sample->start_time = start;
285 sample->end_time = end;
286 sample->type = type;
287 sample->next = c->samples;
288 sample->cpu = cpu;
289 sample->backtrace = backtrace;
290 c->samples = sample;
291
292 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
293 c->total_time += (end-start);
294 p->total_time += (end-start);
295 }
296
297 if (c->start_time == 0 || c->start_time > start)
298 c->start_time = start;
299 if (p->start_time == 0 || p->start_time > start)
300 p->start_time = start;
301 }
302
303 #define MAX_CPUS 4096
304
305 static u64 cpus_cstate_start_times[MAX_CPUS];
306 static int cpus_cstate_state[MAX_CPUS];
307 static u64 cpus_pstate_start_times[MAX_CPUS];
308 static u64 cpus_pstate_state[MAX_CPUS];
309
310 static int process_comm_event(struct perf_tool *tool,
311 union perf_event *event,
312 struct perf_sample *sample __maybe_unused,
313 struct machine *machine __maybe_unused)
314 {
315 struct timechart *tchart = container_of(tool, struct timechart, tool);
316 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
317 return 0;
318 }
319
320 static int process_fork_event(struct perf_tool *tool,
321 union perf_event *event,
322 struct perf_sample *sample __maybe_unused,
323 struct machine *machine __maybe_unused)
324 {
325 struct timechart *tchart = container_of(tool, struct timechart, tool);
326 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
327 return 0;
328 }
329
330 static int process_exit_event(struct perf_tool *tool,
331 union perf_event *event,
332 struct perf_sample *sample __maybe_unused,
333 struct machine *machine __maybe_unused)
334 {
335 struct timechart *tchart = container_of(tool, struct timechart, tool);
336 pid_exit(tchart, event->fork.pid, event->fork.time);
337 return 0;
338 }
339
340 #ifdef SUPPORT_OLD_POWER_EVENTS
341 static int use_old_power_events;
342 #endif
343
344 static void c_state_start(int cpu, u64 timestamp, int state)
345 {
346 cpus_cstate_start_times[cpu] = timestamp;
347 cpus_cstate_state[cpu] = state;
348 }
349
350 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
351 {
352 struct power_event *pwr = zalloc(sizeof(*pwr));
353
354 if (!pwr)
355 return;
356
357 pwr->state = cpus_cstate_state[cpu];
358 pwr->start_time = cpus_cstate_start_times[cpu];
359 pwr->end_time = timestamp;
360 pwr->cpu = cpu;
361 pwr->type = CSTATE;
362 pwr->next = tchart->power_events;
363
364 tchart->power_events = pwr;
365 }
366
367 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
368 {
369 struct power_event *pwr;
370
371 if (new_freq > 8000000) /* detect invalid data */
372 return;
373
374 pwr = zalloc(sizeof(*pwr));
375 if (!pwr)
376 return;
377
378 pwr->state = cpus_pstate_state[cpu];
379 pwr->start_time = cpus_pstate_start_times[cpu];
380 pwr->end_time = timestamp;
381 pwr->cpu = cpu;
382 pwr->type = PSTATE;
383 pwr->next = tchart->power_events;
384
385 if (!pwr->start_time)
386 pwr->start_time = tchart->first_time;
387
388 tchart->power_events = pwr;
389
390 cpus_pstate_state[cpu] = new_freq;
391 cpus_pstate_start_times[cpu] = timestamp;
392
393 if ((u64)new_freq > tchart->max_freq)
394 tchart->max_freq = new_freq;
395
396 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
397 tchart->min_freq = new_freq;
398
399 if (new_freq == tchart->max_freq - 1000)
400 tchart->turbo_frequency = tchart->max_freq;
401 }
402
403 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
404 int waker, int wakee, u8 flags, const char *backtrace)
405 {
406 struct per_pid *p;
407 struct wake_event *we = zalloc(sizeof(*we));
408
409 if (!we)
410 return;
411
412 we->time = timestamp;
413 we->waker = waker;
414 we->backtrace = backtrace;
415
416 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
417 we->waker = -1;
418
419 we->wakee = wakee;
420 we->next = tchart->wake_events;
421 tchart->wake_events = we;
422 p = find_create_pid(tchart, we->wakee);
423
424 if (p && p->current && p->current->state == TYPE_NONE) {
425 p->current->state_since = timestamp;
426 p->current->state = TYPE_WAITING;
427 }
428 if (p && p->current && p->current->state == TYPE_BLOCKED) {
429 pid_put_sample(tchart, p->pid, p->current->state, cpu,
430 p->current->state_since, timestamp, NULL);
431 p->current->state_since = timestamp;
432 p->current->state = TYPE_WAITING;
433 }
434 }
435
436 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
437 int prev_pid, int next_pid, u64 prev_state,
438 const char *backtrace)
439 {
440 struct per_pid *p = NULL, *prev_p;
441
442 prev_p = find_create_pid(tchart, prev_pid);
443
444 p = find_create_pid(tchart, next_pid);
445
446 if (prev_p->current && prev_p->current->state != TYPE_NONE)
447 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
448 prev_p->current->state_since, timestamp,
449 backtrace);
450 if (p && p->current) {
451 if (p->current->state != TYPE_NONE)
452 pid_put_sample(tchart, next_pid, p->current->state, cpu,
453 p->current->state_since, timestamp,
454 backtrace);
455
456 p->current->state_since = timestamp;
457 p->current->state = TYPE_RUNNING;
458 }
459
460 if (prev_p->current) {
461 prev_p->current->state = TYPE_NONE;
462 prev_p->current->state_since = timestamp;
463 if (prev_state & 2)
464 prev_p->current->state = TYPE_BLOCKED;
465 if (prev_state == 0)
466 prev_p->current->state = TYPE_WAITING;
467 }
468 }
469
470 static const char *cat_backtrace(union perf_event *event,
471 struct perf_sample *sample,
472 struct machine *machine)
473 {
474 struct addr_location al;
475 unsigned int i;
476 char *p = NULL;
477 size_t p_len;
478 u8 cpumode = PERF_RECORD_MISC_USER;
479 struct addr_location tal;
480 struct ip_callchain *chain = sample->callchain;
481 FILE *f = open_memstream(&p, &p_len);
482
483 if (!f) {
484 perror("open_memstream error");
485 return NULL;
486 }
487
488 if (!chain)
489 goto exit;
490
491 if (perf_event__preprocess_sample(event, machine, &al, sample) < 0) {
492 fprintf(stderr, "problem processing %d event, skipping it.\n",
493 event->header.type);
494 goto exit;
495 }
496
497 for (i = 0; i < chain->nr; i++) {
498 u64 ip;
499
500 if (callchain_param.order == ORDER_CALLEE)
501 ip = chain->ips[i];
502 else
503 ip = chain->ips[chain->nr - i - 1];
504
505 if (ip >= PERF_CONTEXT_MAX) {
506 switch (ip) {
507 case PERF_CONTEXT_HV:
508 cpumode = PERF_RECORD_MISC_HYPERVISOR;
509 break;
510 case PERF_CONTEXT_KERNEL:
511 cpumode = PERF_RECORD_MISC_KERNEL;
512 break;
513 case PERF_CONTEXT_USER:
514 cpumode = PERF_RECORD_MISC_USER;
515 break;
516 default:
517 pr_debug("invalid callchain context: "
518 "%"PRId64"\n", (s64) ip);
519
520 /*
521 * It seems the callchain is corrupted.
522 * Discard all.
523 */
524 zfree(&p);
525 goto exit;
526 }
527 continue;
528 }
529
530 tal.filtered = 0;
531 thread__find_addr_location(al.thread, machine, cpumode,
532 MAP__FUNCTION, ip, &tal);
533
534 if (tal.sym)
535 fprintf(f, "..... %016" PRIx64 " %s\n", ip,
536 tal.sym->name);
537 else
538 fprintf(f, "..... %016" PRIx64 "\n", ip);
539 }
540
541 exit:
542 fclose(f);
543
544 return p;
545 }
546
547 typedef int (*tracepoint_handler)(struct timechart *tchart,
548 struct perf_evsel *evsel,
549 struct perf_sample *sample,
550 const char *backtrace);
551
552 static int process_sample_event(struct perf_tool *tool,
553 union perf_event *event,
554 struct perf_sample *sample,
555 struct perf_evsel *evsel,
556 struct machine *machine)
557 {
558 struct timechart *tchart = container_of(tool, struct timechart, tool);
559
560 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
561 if (!tchart->first_time || tchart->first_time > sample->time)
562 tchart->first_time = sample->time;
563 if (tchart->last_time < sample->time)
564 tchart->last_time = sample->time;
565 }
566
567 if (evsel->handler != NULL) {
568 tracepoint_handler f = evsel->handler;
569 return f(tchart, evsel, sample,
570 cat_backtrace(event, sample, machine));
571 }
572
573 return 0;
574 }
575
576 static int
577 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
578 struct perf_evsel *evsel,
579 struct perf_sample *sample,
580 const char *backtrace __maybe_unused)
581 {
582 u32 state = perf_evsel__intval(evsel, sample, "state");
583 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
584
585 if (state == (u32)PWR_EVENT_EXIT)
586 c_state_end(tchart, cpu_id, sample->time);
587 else
588 c_state_start(cpu_id, sample->time, state);
589 return 0;
590 }
591
592 static int
593 process_sample_cpu_frequency(struct timechart *tchart,
594 struct perf_evsel *evsel,
595 struct perf_sample *sample,
596 const char *backtrace __maybe_unused)
597 {
598 u32 state = perf_evsel__intval(evsel, sample, "state");
599 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
600
601 p_state_change(tchart, cpu_id, sample->time, state);
602 return 0;
603 }
604
605 static int
606 process_sample_sched_wakeup(struct timechart *tchart,
607 struct perf_evsel *evsel,
608 struct perf_sample *sample,
609 const char *backtrace)
610 {
611 u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
612 int waker = perf_evsel__intval(evsel, sample, "common_pid");
613 int wakee = perf_evsel__intval(evsel, sample, "pid");
614
615 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
616 return 0;
617 }
618
619 static int
620 process_sample_sched_switch(struct timechart *tchart,
621 struct perf_evsel *evsel,
622 struct perf_sample *sample,
623 const char *backtrace)
624 {
625 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
626 int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
627 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
628
629 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
630 prev_state, backtrace);
631 return 0;
632 }
633
634 #ifdef SUPPORT_OLD_POWER_EVENTS
635 static int
636 process_sample_power_start(struct timechart *tchart __maybe_unused,
637 struct perf_evsel *evsel,
638 struct perf_sample *sample,
639 const char *backtrace __maybe_unused)
640 {
641 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
642 u64 value = perf_evsel__intval(evsel, sample, "value");
643
644 c_state_start(cpu_id, sample->time, value);
645 return 0;
646 }
647
648 static int
649 process_sample_power_end(struct timechart *tchart,
650 struct perf_evsel *evsel __maybe_unused,
651 struct perf_sample *sample,
652 const char *backtrace __maybe_unused)
653 {
654 c_state_end(tchart, sample->cpu, sample->time);
655 return 0;
656 }
657
658 static int
659 process_sample_power_frequency(struct timechart *tchart,
660 struct perf_evsel *evsel,
661 struct perf_sample *sample,
662 const char *backtrace __maybe_unused)
663 {
664 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
665 u64 value = perf_evsel__intval(evsel, sample, "value");
666
667 p_state_change(tchart, cpu_id, sample->time, value);
668 return 0;
669 }
670 #endif /* SUPPORT_OLD_POWER_EVENTS */
671
672 /*
673 * After the last sample we need to wrap up the current C/P state
674 * and close out each CPU for these.
675 */
676 static void end_sample_processing(struct timechart *tchart)
677 {
678 u64 cpu;
679 struct power_event *pwr;
680
681 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
682 /* C state */
683 #if 0
684 pwr = zalloc(sizeof(*pwr));
685 if (!pwr)
686 return;
687
688 pwr->state = cpus_cstate_state[cpu];
689 pwr->start_time = cpus_cstate_start_times[cpu];
690 pwr->end_time = tchart->last_time;
691 pwr->cpu = cpu;
692 pwr->type = CSTATE;
693 pwr->next = tchart->power_events;
694
695 tchart->power_events = pwr;
696 #endif
697 /* P state */
698
699 pwr = zalloc(sizeof(*pwr));
700 if (!pwr)
701 return;
702
703 pwr->state = cpus_pstate_state[cpu];
704 pwr->start_time = cpus_pstate_start_times[cpu];
705 pwr->end_time = tchart->last_time;
706 pwr->cpu = cpu;
707 pwr->type = PSTATE;
708 pwr->next = tchart->power_events;
709
710 if (!pwr->start_time)
711 pwr->start_time = tchart->first_time;
712 if (!pwr->state)
713 pwr->state = tchart->min_freq;
714 tchart->power_events = pwr;
715 }
716 }
717
718 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
719 u64 start, int fd)
720 {
721 struct per_pid *p = find_create_pid(tchart, pid);
722 struct per_pidcomm *c = p->current;
723 struct io_sample *sample;
724 struct io_sample *prev;
725
726 if (!c) {
727 c = zalloc(sizeof(*c));
728 if (!c)
729 return -ENOMEM;
730 p->current = c;
731 c->next = p->all;
732 p->all = c;
733 }
734
735 prev = c->io_samples;
736
737 if (prev && prev->start_time && !prev->end_time) {
738 pr_warning("Skip invalid start event: "
739 "previous event already started!\n");
740
741 /* remove previous event that has been started,
742 * we are not sure we will ever get an end for it */
743 c->io_samples = prev->next;
744 free(prev);
745 return 0;
746 }
747
748 sample = zalloc(sizeof(*sample));
749 if (!sample)
750 return -ENOMEM;
751 sample->start_time = start;
752 sample->type = type;
753 sample->fd = fd;
754 sample->next = c->io_samples;
755 c->io_samples = sample;
756
757 if (c->start_time == 0 || c->start_time > start)
758 c->start_time = start;
759
760 return 0;
761 }
762
763 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
764 u64 end, long ret)
765 {
766 struct per_pid *p = find_create_pid(tchart, pid);
767 struct per_pidcomm *c = p->current;
768 struct io_sample *sample, *prev;
769
770 if (!c) {
771 pr_warning("Invalid pidcomm!\n");
772 return -1;
773 }
774
775 sample = c->io_samples;
776
777 if (!sample) /* skip partially captured events */
778 return 0;
779
780 if (sample->end_time) {
781 pr_warning("Skip invalid end event: "
782 "previous event already ended!\n");
783 return 0;
784 }
785
786 if (sample->type != type) {
787 pr_warning("Skip invalid end event: invalid event type!\n");
788 return 0;
789 }
790
791 sample->end_time = end;
792 prev = sample->next;
793
794 /* we want to be able to see small and fast transfers, so make them
795 * at least min_time long, but don't overlap them */
796 if (sample->end_time - sample->start_time < tchart->min_time)
797 sample->end_time = sample->start_time + tchart->min_time;
798 if (prev && sample->start_time < prev->end_time) {
799 if (prev->err) /* try to make errors more visible */
800 sample->start_time = prev->end_time;
801 else
802 prev->end_time = sample->start_time;
803 }
804
805 if (ret < 0) {
806 sample->err = ret;
807 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
808 type == IOTYPE_TX || type == IOTYPE_RX) {
809
810 if ((u64)ret > c->max_bytes)
811 c->max_bytes = ret;
812
813 c->total_bytes += ret;
814 p->total_bytes += ret;
815 sample->bytes = ret;
816 }
817
818 /* merge two requests to make svg smaller and render-friendly */
819 if (prev &&
820 prev->type == sample->type &&
821 prev->err == sample->err &&
822 prev->fd == sample->fd &&
823 prev->end_time + tchart->merge_dist >= sample->start_time) {
824
825 sample->bytes += prev->bytes;
826 sample->merges += prev->merges + 1;
827
828 sample->start_time = prev->start_time;
829 sample->next = prev->next;
830 free(prev);
831
832 if (!sample->err && sample->bytes > c->max_bytes)
833 c->max_bytes = sample->bytes;
834 }
835
836 tchart->io_events++;
837
838 return 0;
839 }
840
841 static int
842 process_enter_read(struct timechart *tchart,
843 struct perf_evsel *evsel,
844 struct perf_sample *sample)
845 {
846 long fd = perf_evsel__intval(evsel, sample, "fd");
847 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
848 sample->time, fd);
849 }
850
851 static int
852 process_exit_read(struct timechart *tchart,
853 struct perf_evsel *evsel,
854 struct perf_sample *sample)
855 {
856 long ret = perf_evsel__intval(evsel, sample, "ret");
857 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
858 sample->time, ret);
859 }
860
861 static int
862 process_enter_write(struct timechart *tchart,
863 struct perf_evsel *evsel,
864 struct perf_sample *sample)
865 {
866 long fd = perf_evsel__intval(evsel, sample, "fd");
867 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
868 sample->time, fd);
869 }
870
871 static int
872 process_exit_write(struct timechart *tchart,
873 struct perf_evsel *evsel,
874 struct perf_sample *sample)
875 {
876 long ret = perf_evsel__intval(evsel, sample, "ret");
877 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
878 sample->time, ret);
879 }
880
881 static int
882 process_enter_sync(struct timechart *tchart,
883 struct perf_evsel *evsel,
884 struct perf_sample *sample)
885 {
886 long fd = perf_evsel__intval(evsel, sample, "fd");
887 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
888 sample->time, fd);
889 }
890
891 static int
892 process_exit_sync(struct timechart *tchart,
893 struct perf_evsel *evsel,
894 struct perf_sample *sample)
895 {
896 long ret = perf_evsel__intval(evsel, sample, "ret");
897 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
898 sample->time, ret);
899 }
900
901 static int
902 process_enter_tx(struct timechart *tchart,
903 struct perf_evsel *evsel,
904 struct perf_sample *sample)
905 {
906 long fd = perf_evsel__intval(evsel, sample, "fd");
907 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
908 sample->time, fd);
909 }
910
911 static int
912 process_exit_tx(struct timechart *tchart,
913 struct perf_evsel *evsel,
914 struct perf_sample *sample)
915 {
916 long ret = perf_evsel__intval(evsel, sample, "ret");
917 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
918 sample->time, ret);
919 }
920
921 static int
922 process_enter_rx(struct timechart *tchart,
923 struct perf_evsel *evsel,
924 struct perf_sample *sample)
925 {
926 long fd = perf_evsel__intval(evsel, sample, "fd");
927 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
928 sample->time, fd);
929 }
930
931 static int
932 process_exit_rx(struct timechart *tchart,
933 struct perf_evsel *evsel,
934 struct perf_sample *sample)
935 {
936 long ret = perf_evsel__intval(evsel, sample, "ret");
937 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
938 sample->time, ret);
939 }
940
941 static int
942 process_enter_poll(struct timechart *tchart,
943 struct perf_evsel *evsel,
944 struct perf_sample *sample)
945 {
946 long fd = perf_evsel__intval(evsel, sample, "fd");
947 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
948 sample->time, fd);
949 }
950
951 static int
952 process_exit_poll(struct timechart *tchart,
953 struct perf_evsel *evsel,
954 struct perf_sample *sample)
955 {
956 long ret = perf_evsel__intval(evsel, sample, "ret");
957 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
958 sample->time, ret);
959 }
960
961 /*
962 * Sort the pid datastructure
963 */
964 static void sort_pids(struct timechart *tchart)
965 {
966 struct per_pid *new_list, *p, *cursor, *prev;
967 /* sort by ppid first, then by pid, lowest to highest */
968
969 new_list = NULL;
970
971 while (tchart->all_data) {
972 p = tchart->all_data;
973 tchart->all_data = p->next;
974 p->next = NULL;
975
976 if (new_list == NULL) {
977 new_list = p;
978 p->next = NULL;
979 continue;
980 }
981 prev = NULL;
982 cursor = new_list;
983 while (cursor) {
984 if (cursor->ppid > p->ppid ||
985 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
986 /* must insert before */
987 if (prev) {
988 p->next = prev->next;
989 prev->next = p;
990 cursor = NULL;
991 continue;
992 } else {
993 p->next = new_list;
994 new_list = p;
995 cursor = NULL;
996 continue;
997 }
998 }
999
1000 prev = cursor;
1001 cursor = cursor->next;
1002 if (!cursor)
1003 prev->next = p;
1004 }
1005 }
1006 tchart->all_data = new_list;
1007 }
1008
1009
1010 static void draw_c_p_states(struct timechart *tchart)
1011 {
1012 struct power_event *pwr;
1013 pwr = tchart->power_events;
1014
1015 /*
1016 * two pass drawing so that the P state bars are on top of the C state blocks
1017 */
1018 while (pwr) {
1019 if (pwr->type == CSTATE)
1020 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1021 pwr = pwr->next;
1022 }
1023
1024 pwr = tchart->power_events;
1025 while (pwr) {
1026 if (pwr->type == PSTATE) {
1027 if (!pwr->state)
1028 pwr->state = tchart->min_freq;
1029 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1030 }
1031 pwr = pwr->next;
1032 }
1033 }
1034
1035 static void draw_wakeups(struct timechart *tchart)
1036 {
1037 struct wake_event *we;
1038 struct per_pid *p;
1039 struct per_pidcomm *c;
1040
1041 we = tchart->wake_events;
1042 while (we) {
1043 int from = 0, to = 0;
1044 char *task_from = NULL, *task_to = NULL;
1045
1046 /* locate the column of the waker and wakee */
1047 p = tchart->all_data;
1048 while (p) {
1049 if (p->pid == we->waker || p->pid == we->wakee) {
1050 c = p->all;
1051 while (c) {
1052 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1053 if (p->pid == we->waker && !from) {
1054 from = c->Y;
1055 task_from = strdup(c->comm);
1056 }
1057 if (p->pid == we->wakee && !to) {
1058 to = c->Y;
1059 task_to = strdup(c->comm);
1060 }
1061 }
1062 c = c->next;
1063 }
1064 c = p->all;
1065 while (c) {
1066 if (p->pid == we->waker && !from) {
1067 from = c->Y;
1068 task_from = strdup(c->comm);
1069 }
1070 if (p->pid == we->wakee && !to) {
1071 to = c->Y;
1072 task_to = strdup(c->comm);
1073 }
1074 c = c->next;
1075 }
1076 }
1077 p = p->next;
1078 }
1079
1080 if (!task_from) {
1081 task_from = malloc(40);
1082 sprintf(task_from, "[%i]", we->waker);
1083 }
1084 if (!task_to) {
1085 task_to = malloc(40);
1086 sprintf(task_to, "[%i]", we->wakee);
1087 }
1088
1089 if (we->waker == -1)
1090 svg_interrupt(we->time, to, we->backtrace);
1091 else if (from && to && abs(from - to) == 1)
1092 svg_wakeline(we->time, from, to, we->backtrace);
1093 else
1094 svg_partial_wakeline(we->time, from, task_from, to,
1095 task_to, we->backtrace);
1096 we = we->next;
1097
1098 free(task_from);
1099 free(task_to);
1100 }
1101 }
1102
1103 static void draw_cpu_usage(struct timechart *tchart)
1104 {
1105 struct per_pid *p;
1106 struct per_pidcomm *c;
1107 struct cpu_sample *sample;
1108 p = tchart->all_data;
1109 while (p) {
1110 c = p->all;
1111 while (c) {
1112 sample = c->samples;
1113 while (sample) {
1114 if (sample->type == TYPE_RUNNING) {
1115 svg_process(sample->cpu,
1116 sample->start_time,
1117 sample->end_time,
1118 p->pid,
1119 c->comm,
1120 sample->backtrace);
1121 }
1122
1123 sample = sample->next;
1124 }
1125 c = c->next;
1126 }
1127 p = p->next;
1128 }
1129 }
1130
1131 static void draw_io_bars(struct timechart *tchart)
1132 {
1133 const char *suf;
1134 double bytes;
1135 char comm[256];
1136 struct per_pid *p;
1137 struct per_pidcomm *c;
1138 struct io_sample *sample;
1139 int Y = 1;
1140
1141 p = tchart->all_data;
1142 while (p) {
1143 c = p->all;
1144 while (c) {
1145 if (!c->display) {
1146 c->Y = 0;
1147 c = c->next;
1148 continue;
1149 }
1150
1151 svg_box(Y, c->start_time, c->end_time, "process3");
1152 sample = c->io_samples;
1153 for (sample = c->io_samples; sample; sample = sample->next) {
1154 double h = (double)sample->bytes / c->max_bytes;
1155
1156 if (tchart->skip_eagain &&
1157 sample->err == -EAGAIN)
1158 continue;
1159
1160 if (sample->err)
1161 h = 1;
1162
1163 if (sample->type == IOTYPE_SYNC)
1164 svg_fbox(Y,
1165 sample->start_time,
1166 sample->end_time,
1167 1,
1168 sample->err ? "error" : "sync",
1169 sample->fd,
1170 sample->err,
1171 sample->merges);
1172 else if (sample->type == IOTYPE_POLL)
1173 svg_fbox(Y,
1174 sample->start_time,
1175 sample->end_time,
1176 1,
1177 sample->err ? "error" : "poll",
1178 sample->fd,
1179 sample->err,
1180 sample->merges);
1181 else if (sample->type == IOTYPE_READ)
1182 svg_ubox(Y,
1183 sample->start_time,
1184 sample->end_time,
1185 h,
1186 sample->err ? "error" : "disk",
1187 sample->fd,
1188 sample->err,
1189 sample->merges);
1190 else if (sample->type == IOTYPE_WRITE)
1191 svg_lbox(Y,
1192 sample->start_time,
1193 sample->end_time,
1194 h,
1195 sample->err ? "error" : "disk",
1196 sample->fd,
1197 sample->err,
1198 sample->merges);
1199 else if (sample->type == IOTYPE_RX)
1200 svg_ubox(Y,
1201 sample->start_time,
1202 sample->end_time,
1203 h,
1204 sample->err ? "error" : "net",
1205 sample->fd,
1206 sample->err,
1207 sample->merges);
1208 else if (sample->type == IOTYPE_TX)
1209 svg_lbox(Y,
1210 sample->start_time,
1211 sample->end_time,
1212 h,
1213 sample->err ? "error" : "net",
1214 sample->fd,
1215 sample->err,
1216 sample->merges);
1217 }
1218
1219 suf = "";
1220 bytes = c->total_bytes;
1221 if (bytes > 1024) {
1222 bytes = bytes / 1024;
1223 suf = "K";
1224 }
1225 if (bytes > 1024) {
1226 bytes = bytes / 1024;
1227 suf = "M";
1228 }
1229 if (bytes > 1024) {
1230 bytes = bytes / 1024;
1231 suf = "G";
1232 }
1233
1234
1235 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1236 svg_text(Y, c->start_time, comm);
1237
1238 c->Y = Y;
1239 Y++;
1240 c = c->next;
1241 }
1242 p = p->next;
1243 }
1244 }
1245
1246 static void draw_process_bars(struct timechart *tchart)
1247 {
1248 struct per_pid *p;
1249 struct per_pidcomm *c;
1250 struct cpu_sample *sample;
1251 int Y = 0;
1252
1253 Y = 2 * tchart->numcpus + 2;
1254
1255 p = tchart->all_data;
1256 while (p) {
1257 c = p->all;
1258 while (c) {
1259 if (!c->display) {
1260 c->Y = 0;
1261 c = c->next;
1262 continue;
1263 }
1264
1265 svg_box(Y, c->start_time, c->end_time, "process");
1266 sample = c->samples;
1267 while (sample) {
1268 if (sample->type == TYPE_RUNNING)
1269 svg_running(Y, sample->cpu,
1270 sample->start_time,
1271 sample->end_time,
1272 sample->backtrace);
1273 if (sample->type == TYPE_BLOCKED)
1274 svg_blocked(Y, sample->cpu,
1275 sample->start_time,
1276 sample->end_time,
1277 sample->backtrace);
1278 if (sample->type == TYPE_WAITING)
1279 svg_waiting(Y, sample->cpu,
1280 sample->start_time,
1281 sample->end_time,
1282 sample->backtrace);
1283 sample = sample->next;
1284 }
1285
1286 if (c->comm) {
1287 char comm[256];
1288 if (c->total_time > 5000000000) /* 5 seconds */
1289 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
1290 else
1291 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
1292
1293 svg_text(Y, c->start_time, comm);
1294 }
1295 c->Y = Y;
1296 Y++;
1297 c = c->next;
1298 }
1299 p = p->next;
1300 }
1301 }
1302
1303 static void add_process_filter(const char *string)
1304 {
1305 int pid = strtoull(string, NULL, 10);
1306 struct process_filter *filt = malloc(sizeof(*filt));
1307
1308 if (!filt)
1309 return;
1310
1311 filt->name = strdup(string);
1312 filt->pid = pid;
1313 filt->next = process_filter;
1314
1315 process_filter = filt;
1316 }
1317
1318 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1319 {
1320 struct process_filter *filt;
1321 if (!process_filter)
1322 return 1;
1323
1324 filt = process_filter;
1325 while (filt) {
1326 if (filt->pid && p->pid == filt->pid)
1327 return 1;
1328 if (strcmp(filt->name, c->comm) == 0)
1329 return 1;
1330 filt = filt->next;
1331 }
1332 return 0;
1333 }
1334
1335 static int determine_display_tasks_filtered(struct timechart *tchart)
1336 {
1337 struct per_pid *p;
1338 struct per_pidcomm *c;
1339 int count = 0;
1340
1341 p = tchart->all_data;
1342 while (p) {
1343 p->display = 0;
1344 if (p->start_time == 1)
1345 p->start_time = tchart->first_time;
1346
1347 /* no exit marker, task kept running to the end */
1348 if (p->end_time == 0)
1349 p->end_time = tchart->last_time;
1350
1351 c = p->all;
1352
1353 while (c) {
1354 c->display = 0;
1355
1356 if (c->start_time == 1)
1357 c->start_time = tchart->first_time;
1358
1359 if (passes_filter(p, c)) {
1360 c->display = 1;
1361 p->display = 1;
1362 count++;
1363 }
1364
1365 if (c->end_time == 0)
1366 c->end_time = tchart->last_time;
1367
1368 c = c->next;
1369 }
1370 p = p->next;
1371 }
1372 return count;
1373 }
1374
1375 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1376 {
1377 struct per_pid *p;
1378 struct per_pidcomm *c;
1379 int count = 0;
1380
1381 p = tchart->all_data;
1382 while (p) {
1383 p->display = 0;
1384 if (p->start_time == 1)
1385 p->start_time = tchart->first_time;
1386
1387 /* no exit marker, task kept running to the end */
1388 if (p->end_time == 0)
1389 p->end_time = tchart->last_time;
1390 if (p->total_time >= threshold)
1391 p->display = 1;
1392
1393 c = p->all;
1394
1395 while (c) {
1396 c->display = 0;
1397
1398 if (c->start_time == 1)
1399 c->start_time = tchart->first_time;
1400
1401 if (c->total_time >= threshold) {
1402 c->display = 1;
1403 count++;
1404 }
1405
1406 if (c->end_time == 0)
1407 c->end_time = tchart->last_time;
1408
1409 c = c->next;
1410 }
1411 p = p->next;
1412 }
1413 return count;
1414 }
1415
1416 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1417 {
1418 struct per_pid *p;
1419 struct per_pidcomm *c;
1420 int count = 0;
1421
1422 p = timechart->all_data;
1423 while (p) {
1424 /* no exit marker, task kept running to the end */
1425 if (p->end_time == 0)
1426 p->end_time = timechart->last_time;
1427
1428 c = p->all;
1429
1430 while (c) {
1431 c->display = 0;
1432
1433 if (c->total_bytes >= threshold) {
1434 c->display = 1;
1435 count++;
1436 }
1437
1438 if (c->end_time == 0)
1439 c->end_time = timechart->last_time;
1440
1441 c = c->next;
1442 }
1443 p = p->next;
1444 }
1445 return count;
1446 }
1447
1448 #define BYTES_THRESH (1 * 1024 * 1024)
1449 #define TIME_THRESH 10000000
1450
1451 static void write_svg_file(struct timechart *tchart, const char *filename)
1452 {
1453 u64 i;
1454 int count;
1455 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1456
1457 if (tchart->power_only)
1458 tchart->proc_num = 0;
1459
1460 /* We'd like to show at least proc_num tasks;
1461 * be less picky if we have fewer */
1462 do {
1463 if (process_filter)
1464 count = determine_display_tasks_filtered(tchart);
1465 else if (tchart->io_events)
1466 count = determine_display_io_tasks(tchart, thresh);
1467 else
1468 count = determine_display_tasks(tchart, thresh);
1469 thresh /= 10;
1470 } while (!process_filter && thresh && count < tchart->proc_num);
1471
1472 if (!tchart->proc_num)
1473 count = 0;
1474
1475 if (tchart->io_events) {
1476 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1477
1478 svg_time_grid(0.5);
1479 svg_io_legenda();
1480
1481 draw_io_bars(tchart);
1482 } else {
1483 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1484
1485 svg_time_grid(0);
1486
1487 svg_legenda();
1488
1489 for (i = 0; i < tchart->numcpus; i++)
1490 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1491
1492 draw_cpu_usage(tchart);
1493 if (tchart->proc_num)
1494 draw_process_bars(tchart);
1495 if (!tchart->tasks_only)
1496 draw_c_p_states(tchart);
1497 if (tchart->proc_num)
1498 draw_wakeups(tchart);
1499 }
1500
1501 svg_close();
1502 }
1503
1504 static int process_header(struct perf_file_section *section __maybe_unused,
1505 struct perf_header *ph,
1506 int feat,
1507 int fd __maybe_unused,
1508 void *data)
1509 {
1510 struct timechart *tchart = data;
1511
1512 switch (feat) {
1513 case HEADER_NRCPUS:
1514 tchart->numcpus = ph->env.nr_cpus_avail;
1515 break;
1516
1517 case HEADER_CPU_TOPOLOGY:
1518 if (!tchart->topology)
1519 break;
1520
1521 if (svg_build_topology_map(ph->env.sibling_cores,
1522 ph->env.nr_sibling_cores,
1523 ph->env.sibling_threads,
1524 ph->env.nr_sibling_threads))
1525 fprintf(stderr, "problem building topology\n");
1526 break;
1527
1528 default:
1529 break;
1530 }
1531
1532 return 0;
1533 }
1534
1535 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1536 {
1537 const struct perf_evsel_str_handler power_tracepoints[] = {
1538 { "power:cpu_idle", process_sample_cpu_idle },
1539 { "power:cpu_frequency", process_sample_cpu_frequency },
1540 { "sched:sched_wakeup", process_sample_sched_wakeup },
1541 { "sched:sched_switch", process_sample_sched_switch },
1542 #ifdef SUPPORT_OLD_POWER_EVENTS
1543 { "power:power_start", process_sample_power_start },
1544 { "power:power_end", process_sample_power_end },
1545 { "power:power_frequency", process_sample_power_frequency },
1546 #endif
1547
1548 { "syscalls:sys_enter_read", process_enter_read },
1549 { "syscalls:sys_enter_pread64", process_enter_read },
1550 { "syscalls:sys_enter_readv", process_enter_read },
1551 { "syscalls:sys_enter_preadv", process_enter_read },
1552 { "syscalls:sys_enter_write", process_enter_write },
1553 { "syscalls:sys_enter_pwrite64", process_enter_write },
1554 { "syscalls:sys_enter_writev", process_enter_write },
1555 { "syscalls:sys_enter_pwritev", process_enter_write },
1556 { "syscalls:sys_enter_sync", process_enter_sync },
1557 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1558 { "syscalls:sys_enter_fsync", process_enter_sync },
1559 { "syscalls:sys_enter_msync", process_enter_sync },
1560 { "syscalls:sys_enter_recvfrom", process_enter_rx },
1561 { "syscalls:sys_enter_recvmmsg", process_enter_rx },
1562 { "syscalls:sys_enter_recvmsg", process_enter_rx },
1563 { "syscalls:sys_enter_sendto", process_enter_tx },
1564 { "syscalls:sys_enter_sendmsg", process_enter_tx },
1565 { "syscalls:sys_enter_sendmmsg", process_enter_tx },
1566 { "syscalls:sys_enter_epoll_pwait", process_enter_poll },
1567 { "syscalls:sys_enter_epoll_wait", process_enter_poll },
1568 { "syscalls:sys_enter_poll", process_enter_poll },
1569 { "syscalls:sys_enter_ppoll", process_enter_poll },
1570 { "syscalls:sys_enter_pselect6", process_enter_poll },
1571 { "syscalls:sys_enter_select", process_enter_poll },
1572
1573 { "syscalls:sys_exit_read", process_exit_read },
1574 { "syscalls:sys_exit_pread64", process_exit_read },
1575 { "syscalls:sys_exit_readv", process_exit_read },
1576 { "syscalls:sys_exit_preadv", process_exit_read },
1577 { "syscalls:sys_exit_write", process_exit_write },
1578 { "syscalls:sys_exit_pwrite64", process_exit_write },
1579 { "syscalls:sys_exit_writev", process_exit_write },
1580 { "syscalls:sys_exit_pwritev", process_exit_write },
1581 { "syscalls:sys_exit_sync", process_exit_sync },
1582 { "syscalls:sys_exit_sync_file_range", process_exit_sync },
1583 { "syscalls:sys_exit_fsync", process_exit_sync },
1584 { "syscalls:sys_exit_msync", process_exit_sync },
1585 { "syscalls:sys_exit_recvfrom", process_exit_rx },
1586 { "syscalls:sys_exit_recvmmsg", process_exit_rx },
1587 { "syscalls:sys_exit_recvmsg", process_exit_rx },
1588 { "syscalls:sys_exit_sendto", process_exit_tx },
1589 { "syscalls:sys_exit_sendmsg", process_exit_tx },
1590 { "syscalls:sys_exit_sendmmsg", process_exit_tx },
1591 { "syscalls:sys_exit_epoll_pwait", process_exit_poll },
1592 { "syscalls:sys_exit_epoll_wait", process_exit_poll },
1593 { "syscalls:sys_exit_poll", process_exit_poll },
1594 { "syscalls:sys_exit_ppoll", process_exit_poll },
1595 { "syscalls:sys_exit_pselect6", process_exit_poll },
1596 { "syscalls:sys_exit_select", process_exit_poll },
1597 };
1598 struct perf_data_file file = {
1599 .path = input_name,
1600 .mode = PERF_DATA_MODE_READ,
1601 };
1602
1603 struct perf_session *session = perf_session__new(&file, false,
1604 &tchart->tool);
1605 int ret = -EINVAL;
1606
1607 if (session == NULL)
1608 return -ENOMEM;
1609
1610 (void)perf_header__process_sections(&session->header,
1611 perf_data_file__fd(session->file),
1612 tchart,
1613 process_header);
1614
1615 if (!perf_session__has_traces(session, "timechart record"))
1616 goto out_delete;
1617
1618 if (perf_session__set_tracepoints_handlers(session,
1619 power_tracepoints)) {
1620 pr_err("Initializing session tracepoint handlers failed\n");
1621 goto out_delete;
1622 }
1623
1624 ret = perf_session__process_events(session, &tchart->tool);
1625 if (ret)
1626 goto out_delete;
1627
1628 end_sample_processing(tchart);
1629
1630 sort_pids(tchart);
1631
1632 write_svg_file(tchart, output_name);
1633
1634 pr_info("Written %2.1f seconds of trace to %s.\n",
1635 (tchart->last_time - tchart->first_time) / 1000000000.0, output_name);
1636 out_delete:
1637 perf_session__delete(session);
1638 return ret;
1639 }
1640
1641 static int timechart__io_record(int argc, const char **argv)
1642 {
1643 unsigned int rec_argc, i;
1644 const char **rec_argv;
1645 const char **p;
1646 char *filter = NULL;
1647
1648 const char * const common_args[] = {
1649 "record", "-a", "-R", "-c", "1",
1650 };
1651 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1652
1653 const char * const disk_events[] = {
1654 "syscalls:sys_enter_read",
1655 "syscalls:sys_enter_pread64",
1656 "syscalls:sys_enter_readv",
1657 "syscalls:sys_enter_preadv",
1658 "syscalls:sys_enter_write",
1659 "syscalls:sys_enter_pwrite64",
1660 "syscalls:sys_enter_writev",
1661 "syscalls:sys_enter_pwritev",
1662 "syscalls:sys_enter_sync",
1663 "syscalls:sys_enter_sync_file_range",
1664 "syscalls:sys_enter_fsync",
1665 "syscalls:sys_enter_msync",
1666
1667 "syscalls:sys_exit_read",
1668 "syscalls:sys_exit_pread64",
1669 "syscalls:sys_exit_readv",
1670 "syscalls:sys_exit_preadv",
1671 "syscalls:sys_exit_write",
1672 "syscalls:sys_exit_pwrite64",
1673 "syscalls:sys_exit_writev",
1674 "syscalls:sys_exit_pwritev",
1675 "syscalls:sys_exit_sync",
1676 "syscalls:sys_exit_sync_file_range",
1677 "syscalls:sys_exit_fsync",
1678 "syscalls:sys_exit_msync",
1679 };
1680 unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1681
1682 const char * const net_events[] = {
1683 "syscalls:sys_enter_recvfrom",
1684 "syscalls:sys_enter_recvmmsg",
1685 "syscalls:sys_enter_recvmsg",
1686 "syscalls:sys_enter_sendto",
1687 "syscalls:sys_enter_sendmsg",
1688 "syscalls:sys_enter_sendmmsg",
1689
1690 "syscalls:sys_exit_recvfrom",
1691 "syscalls:sys_exit_recvmmsg",
1692 "syscalls:sys_exit_recvmsg",
1693 "syscalls:sys_exit_sendto",
1694 "syscalls:sys_exit_sendmsg",
1695 "syscalls:sys_exit_sendmmsg",
1696 };
1697 unsigned int net_events_nr = ARRAY_SIZE(net_events);
1698
1699 const char * const poll_events[] = {
1700 "syscalls:sys_enter_epoll_pwait",
1701 "syscalls:sys_enter_epoll_wait",
1702 "syscalls:sys_enter_poll",
1703 "syscalls:sys_enter_ppoll",
1704 "syscalls:sys_enter_pselect6",
1705 "syscalls:sys_enter_select",
1706
1707 "syscalls:sys_exit_epoll_pwait",
1708 "syscalls:sys_exit_epoll_wait",
1709 "syscalls:sys_exit_poll",
1710 "syscalls:sys_exit_ppoll",
1711 "syscalls:sys_exit_pselect6",
1712 "syscalls:sys_exit_select",
1713 };
1714 unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1715
1716 rec_argc = common_args_nr +
1717 disk_events_nr * 4 +
1718 net_events_nr * 4 +
1719 poll_events_nr * 4 +
1720 argc;
1721 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1722
1723 if (rec_argv == NULL)
1724 return -ENOMEM;
1725
1726 if (asprintf(&filter, "common_pid != %d", getpid()) < 0)
1727 return -ENOMEM;
1728
1729 p = rec_argv;
1730 for (i = 0; i < common_args_nr; i++)
1731 *p++ = strdup(common_args[i]);
1732
1733 for (i = 0; i < disk_events_nr; i++) {
1734 if (!is_valid_tracepoint(disk_events[i])) {
1735 rec_argc -= 4;
1736 continue;
1737 }
1738
1739 *p++ = "-e";
1740 *p++ = strdup(disk_events[i]);
1741 *p++ = "--filter";
1742 *p++ = filter;
1743 }
1744 for (i = 0; i < net_events_nr; i++) {
1745 if (!is_valid_tracepoint(net_events[i])) {
1746 rec_argc -= 4;
1747 continue;
1748 }
1749
1750 *p++ = "-e";
1751 *p++ = strdup(net_events[i]);
1752 *p++ = "--filter";
1753 *p++ = filter;
1754 }
1755 for (i = 0; i < poll_events_nr; i++) {
1756 if (!is_valid_tracepoint(poll_events[i])) {
1757 rec_argc -= 4;
1758 continue;
1759 }
1760
1761 *p++ = "-e";
1762 *p++ = strdup(poll_events[i]);
1763 *p++ = "--filter";
1764 *p++ = filter;
1765 }
1766
1767 for (i = 0; i < (unsigned int)argc; i++)
1768 *p++ = argv[i];
1769
1770 return cmd_record(rec_argc, rec_argv, NULL);
1771 }
1772
1773
1774 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1775 {
1776 unsigned int rec_argc, i, j;
1777 const char **rec_argv;
1778 const char **p;
1779 unsigned int record_elems;
1780
1781 const char * const common_args[] = {
1782 "record", "-a", "-R", "-c", "1",
1783 };
1784 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1785
1786 const char * const backtrace_args[] = {
1787 "-g",
1788 };
1789 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1790
1791 const char * const power_args[] = {
1792 "-e", "power:cpu_frequency",
1793 "-e", "power:cpu_idle",
1794 };
1795 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1796
1797 const char * const old_power_args[] = {
1798 #ifdef SUPPORT_OLD_POWER_EVENTS
1799 "-e", "power:power_start",
1800 "-e", "power:power_end",
1801 "-e", "power:power_frequency",
1802 #endif
1803 };
1804 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1805
1806 const char * const tasks_args[] = {
1807 "-e", "sched:sched_wakeup",
1808 "-e", "sched:sched_switch",
1809 };
1810 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1811
1812 #ifdef SUPPORT_OLD_POWER_EVENTS
1813 if (!is_valid_tracepoint("power:cpu_idle") &&
1814 is_valid_tracepoint("power:power_start")) {
1815 use_old_power_events = 1;
1816 power_args_nr = 0;
1817 } else {
1818 old_power_args_nr = 0;
1819 }
1820 #endif
1821
1822 if (tchart->power_only)
1823 tasks_args_nr = 0;
1824
1825 if (tchart->tasks_only) {
1826 power_args_nr = 0;
1827 old_power_args_nr = 0;
1828 }
1829
1830 if (!tchart->with_backtrace)
1831 backtrace_args_no = 0;
1832
1833 record_elems = common_args_nr + tasks_args_nr +
1834 power_args_nr + old_power_args_nr + backtrace_args_no;
1835
1836 rec_argc = record_elems + argc;
1837 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1838
1839 if (rec_argv == NULL)
1840 return -ENOMEM;
1841
1842 p = rec_argv;
1843 for (i = 0; i < common_args_nr; i++)
1844 *p++ = strdup(common_args[i]);
1845
1846 for (i = 0; i < backtrace_args_no; i++)
1847 *p++ = strdup(backtrace_args[i]);
1848
1849 for (i = 0; i < tasks_args_nr; i++)
1850 *p++ = strdup(tasks_args[i]);
1851
1852 for (i = 0; i < power_args_nr; i++)
1853 *p++ = strdup(power_args[i]);
1854
1855 for (i = 0; i < old_power_args_nr; i++)
1856 *p++ = strdup(old_power_args[i]);
1857
1858 for (j = 0; j < (unsigned int)argc; j++)
1859 *p++ = argv[j];
1860
1861 return cmd_record(rec_argc, rec_argv, NULL);
1862 }
1863
1864 static int
1865 parse_process(const struct option *opt __maybe_unused, const char *arg,
1866 int __maybe_unused unset)
1867 {
1868 if (arg)
1869 add_process_filter(arg);
1870 return 0;
1871 }
1872
1873 static int
1874 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1875 int __maybe_unused unset)
1876 {
1877 unsigned long duration = strtoul(arg, NULL, 0);
1878
1879 if (svg_highlight || svg_highlight_name)
1880 return -1;
1881
1882 if (duration)
1883 svg_highlight = duration;
1884 else
1885 svg_highlight_name = strdup(arg);
1886
1887 return 0;
1888 }
1889
1890 static int
1891 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1892 {
1893 char unit = 'n';
1894 u64 *value = opt->value;
1895
1896 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1897 switch (unit) {
1898 case 'm':
1899 *value *= 1000000;
1900 break;
1901 case 'u':
1902 *value *= 1000;
1903 break;
1904 case 'n':
1905 break;
1906 default:
1907 return -1;
1908 }
1909 }
1910
1911 return 0;
1912 }
1913
1914 int cmd_timechart(int argc, const char **argv,
1915 const char *prefix __maybe_unused)
1916 {
1917 struct timechart tchart = {
1918 .tool = {
1919 .comm = process_comm_event,
1920 .fork = process_fork_event,
1921 .exit = process_exit_event,
1922 .sample = process_sample_event,
1923 .ordered_events = true,
1924 },
1925 .proc_num = 15,
1926 .min_time = 1000000,
1927 .merge_dist = 1000,
1928 };
1929 const char *output_name = "output.svg";
1930 const struct option timechart_options[] = {
1931 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1932 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1933 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1934 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1935 "highlight tasks. Pass duration in ns or process name.",
1936 parse_highlight),
1937 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1938 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1939 "output processes data only"),
1940 OPT_CALLBACK('p', "process", NULL, "process",
1941 "process selector. Pass a pid or process name.",
1942 parse_process),
1943 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1944 "Look for files with symbols relative to this directory"),
1945 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1946 "min. number of tasks to print"),
1947 OPT_BOOLEAN('t', "topology", &tchart.topology,
1948 "sort CPUs according to topology"),
1949 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1950 "skip EAGAIN errors"),
1951 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1952 "all IO faster than min-time will visually appear longer",
1953 parse_time),
1954 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1955 "merge events that are merge-dist us apart",
1956 parse_time),
1957 OPT_END()
1958 };
1959 const char * const timechart_usage[] = {
1960 "perf timechart [<options>] {record}",
1961 NULL
1962 };
1963
1964 const struct option record_options[] = {
1965 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1966 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1967 "output processes data only"),
1968 OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1969 "record only IO data"),
1970 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1971 OPT_END()
1972 };
1973 const char * const record_usage[] = {
1974 "perf timechart record [<options>]",
1975 NULL
1976 };
1977 argc = parse_options(argc, argv, timechart_options, timechart_usage,
1978 PARSE_OPT_STOP_AT_NON_OPTION);
1979
1980 if (tchart.power_only && tchart.tasks_only) {
1981 pr_err("-P and -T options cannot be used at the same time.\n");
1982 return -1;
1983 }
1984
1985 symbol__init();
1986
1987 if (argc && !strncmp(argv[0], "rec", 3)) {
1988 argc = parse_options(argc, argv, record_options, record_usage,
1989 PARSE_OPT_STOP_AT_NON_OPTION);
1990
1991 if (tchart.power_only && tchart.tasks_only) {
1992 pr_err("-P and -T options cannot be used at the same time.\n");
1993 return -1;
1994 }
1995
1996 if (tchart.io_only)
1997 return timechart__io_record(argc, argv);
1998 else
1999 return timechart__record(&tchart, argc, argv);
2000 } else if (argc)
2001 usage_with_options(timechart_usage, timechart_options);
2002
2003 setup_pager();
2004
2005 return __cmd_timechart(&tchart, output_name);
2006 }
This page took 0.083019 seconds and 5 git commands to generate.