Merge branch 'for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck...
[deliverable/linux.git] / tools / perf / util / evsel.c
1 /*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3 *
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
6 *
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/debugfs.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <sys/resource.h>
17 #include "asm/bug.h"
18 #include "callchain.h"
19 #include "cgroup.h"
20 #include "evsel.h"
21 #include "evlist.h"
22 #include "util.h"
23 #include "cpumap.h"
24 #include "thread_map.h"
25 #include "target.h"
26 #include "perf_regs.h"
27 #include "debug.h"
28 #include "trace-event.h"
29 #include "stat.h"
30
31 static struct {
32 bool sample_id_all;
33 bool exclude_guest;
34 bool mmap2;
35 bool cloexec;
36 bool clockid;
37 bool clockid_wrong;
38 } perf_missing_features;
39
40 static clockid_t clockid;
41
42 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
43 {
44 return 0;
45 }
46
47 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
48 {
49 }
50
51 static struct {
52 size_t size;
53 int (*init)(struct perf_evsel *evsel);
54 void (*fini)(struct perf_evsel *evsel);
55 } perf_evsel__object = {
56 .size = sizeof(struct perf_evsel),
57 .init = perf_evsel__no_extra_init,
58 .fini = perf_evsel__no_extra_fini,
59 };
60
61 int perf_evsel__object_config(size_t object_size,
62 int (*init)(struct perf_evsel *evsel),
63 void (*fini)(struct perf_evsel *evsel))
64 {
65
66 if (object_size == 0)
67 goto set_methods;
68
69 if (perf_evsel__object.size > object_size)
70 return -EINVAL;
71
72 perf_evsel__object.size = object_size;
73
74 set_methods:
75 if (init != NULL)
76 perf_evsel__object.init = init;
77
78 if (fini != NULL)
79 perf_evsel__object.fini = fini;
80
81 return 0;
82 }
83
84 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
85
86 int __perf_evsel__sample_size(u64 sample_type)
87 {
88 u64 mask = sample_type & PERF_SAMPLE_MASK;
89 int size = 0;
90 int i;
91
92 for (i = 0; i < 64; i++) {
93 if (mask & (1ULL << i))
94 size++;
95 }
96
97 size *= sizeof(u64);
98
99 return size;
100 }
101
102 /**
103 * __perf_evsel__calc_id_pos - calculate id_pos.
104 * @sample_type: sample type
105 *
106 * This function returns the position of the event id (PERF_SAMPLE_ID or
107 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
108 * sample_event.
109 */
110 static int __perf_evsel__calc_id_pos(u64 sample_type)
111 {
112 int idx = 0;
113
114 if (sample_type & PERF_SAMPLE_IDENTIFIER)
115 return 0;
116
117 if (!(sample_type & PERF_SAMPLE_ID))
118 return -1;
119
120 if (sample_type & PERF_SAMPLE_IP)
121 idx += 1;
122
123 if (sample_type & PERF_SAMPLE_TID)
124 idx += 1;
125
126 if (sample_type & PERF_SAMPLE_TIME)
127 idx += 1;
128
129 if (sample_type & PERF_SAMPLE_ADDR)
130 idx += 1;
131
132 return idx;
133 }
134
135 /**
136 * __perf_evsel__calc_is_pos - calculate is_pos.
137 * @sample_type: sample type
138 *
139 * This function returns the position (counting backwards) of the event id
140 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
141 * sample_id_all is used there is an id sample appended to non-sample events.
142 */
143 static int __perf_evsel__calc_is_pos(u64 sample_type)
144 {
145 int idx = 1;
146
147 if (sample_type & PERF_SAMPLE_IDENTIFIER)
148 return 1;
149
150 if (!(sample_type & PERF_SAMPLE_ID))
151 return -1;
152
153 if (sample_type & PERF_SAMPLE_CPU)
154 idx += 1;
155
156 if (sample_type & PERF_SAMPLE_STREAM_ID)
157 idx += 1;
158
159 return idx;
160 }
161
162 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
163 {
164 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
165 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
166 }
167
168 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
169 enum perf_event_sample_format bit)
170 {
171 if (!(evsel->attr.sample_type & bit)) {
172 evsel->attr.sample_type |= bit;
173 evsel->sample_size += sizeof(u64);
174 perf_evsel__calc_id_pos(evsel);
175 }
176 }
177
178 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
179 enum perf_event_sample_format bit)
180 {
181 if (evsel->attr.sample_type & bit) {
182 evsel->attr.sample_type &= ~bit;
183 evsel->sample_size -= sizeof(u64);
184 perf_evsel__calc_id_pos(evsel);
185 }
186 }
187
188 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
189 bool can_sample_identifier)
190 {
191 if (can_sample_identifier) {
192 perf_evsel__reset_sample_bit(evsel, ID);
193 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
194 } else {
195 perf_evsel__set_sample_bit(evsel, ID);
196 }
197 evsel->attr.read_format |= PERF_FORMAT_ID;
198 }
199
200 void perf_evsel__init(struct perf_evsel *evsel,
201 struct perf_event_attr *attr, int idx)
202 {
203 evsel->idx = idx;
204 evsel->tracking = !idx;
205 evsel->attr = *attr;
206 evsel->leader = evsel;
207 evsel->unit = "";
208 evsel->scale = 1.0;
209 INIT_LIST_HEAD(&evsel->node);
210 perf_evsel__object.init(evsel);
211 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
212 perf_evsel__calc_id_pos(evsel);
213 }
214
215 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
216 {
217 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
218
219 if (evsel != NULL)
220 perf_evsel__init(evsel, attr, idx);
221
222 return evsel;
223 }
224
225 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
226 {
227 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
228
229 if (evsel != NULL) {
230 struct perf_event_attr attr = {
231 .type = PERF_TYPE_TRACEPOINT,
232 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
233 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
234 };
235
236 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
237 goto out_free;
238
239 evsel->tp_format = trace_event__tp_format(sys, name);
240 if (evsel->tp_format == NULL)
241 goto out_free;
242
243 event_attr_init(&attr);
244 attr.config = evsel->tp_format->id;
245 attr.sample_period = 1;
246 perf_evsel__init(evsel, &attr, idx);
247 }
248
249 return evsel;
250
251 out_free:
252 zfree(&evsel->name);
253 free(evsel);
254 return NULL;
255 }
256
257 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
258 "cycles",
259 "instructions",
260 "cache-references",
261 "cache-misses",
262 "branches",
263 "branch-misses",
264 "bus-cycles",
265 "stalled-cycles-frontend",
266 "stalled-cycles-backend",
267 "ref-cycles",
268 };
269
270 static const char *__perf_evsel__hw_name(u64 config)
271 {
272 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
273 return perf_evsel__hw_names[config];
274
275 return "unknown-hardware";
276 }
277
278 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
279 {
280 int colon = 0, r = 0;
281 struct perf_event_attr *attr = &evsel->attr;
282 bool exclude_guest_default = false;
283
284 #define MOD_PRINT(context, mod) do { \
285 if (!attr->exclude_##context) { \
286 if (!colon) colon = ++r; \
287 r += scnprintf(bf + r, size - r, "%c", mod); \
288 } } while(0)
289
290 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
291 MOD_PRINT(kernel, 'k');
292 MOD_PRINT(user, 'u');
293 MOD_PRINT(hv, 'h');
294 exclude_guest_default = true;
295 }
296
297 if (attr->precise_ip) {
298 if (!colon)
299 colon = ++r;
300 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
301 exclude_guest_default = true;
302 }
303
304 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
305 MOD_PRINT(host, 'H');
306 MOD_PRINT(guest, 'G');
307 }
308 #undef MOD_PRINT
309 if (colon)
310 bf[colon - 1] = ':';
311 return r;
312 }
313
314 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
315 {
316 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
317 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
318 }
319
320 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
321 "cpu-clock",
322 "task-clock",
323 "page-faults",
324 "context-switches",
325 "cpu-migrations",
326 "minor-faults",
327 "major-faults",
328 "alignment-faults",
329 "emulation-faults",
330 "dummy",
331 };
332
333 static const char *__perf_evsel__sw_name(u64 config)
334 {
335 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
336 return perf_evsel__sw_names[config];
337 return "unknown-software";
338 }
339
340 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
341 {
342 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
343 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
344 }
345
346 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
347 {
348 int r;
349
350 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
351
352 if (type & HW_BREAKPOINT_R)
353 r += scnprintf(bf + r, size - r, "r");
354
355 if (type & HW_BREAKPOINT_W)
356 r += scnprintf(bf + r, size - r, "w");
357
358 if (type & HW_BREAKPOINT_X)
359 r += scnprintf(bf + r, size - r, "x");
360
361 return r;
362 }
363
364 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
365 {
366 struct perf_event_attr *attr = &evsel->attr;
367 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
368 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
369 }
370
371 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
372 [PERF_EVSEL__MAX_ALIASES] = {
373 { "L1-dcache", "l1-d", "l1d", "L1-data", },
374 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
375 { "LLC", "L2", },
376 { "dTLB", "d-tlb", "Data-TLB", },
377 { "iTLB", "i-tlb", "Instruction-TLB", },
378 { "branch", "branches", "bpu", "btb", "bpc", },
379 { "node", },
380 };
381
382 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
383 [PERF_EVSEL__MAX_ALIASES] = {
384 { "load", "loads", "read", },
385 { "store", "stores", "write", },
386 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
387 };
388
389 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
390 [PERF_EVSEL__MAX_ALIASES] = {
391 { "refs", "Reference", "ops", "access", },
392 { "misses", "miss", },
393 };
394
395 #define C(x) PERF_COUNT_HW_CACHE_##x
396 #define CACHE_READ (1 << C(OP_READ))
397 #define CACHE_WRITE (1 << C(OP_WRITE))
398 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
399 #define COP(x) (1 << x)
400
401 /*
402 * cache operartion stat
403 * L1I : Read and prefetch only
404 * ITLB and BPU : Read-only
405 */
406 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
407 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
408 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
409 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
410 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
411 [C(ITLB)] = (CACHE_READ),
412 [C(BPU)] = (CACHE_READ),
413 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
414 };
415
416 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
417 {
418 if (perf_evsel__hw_cache_stat[type] & COP(op))
419 return true; /* valid */
420 else
421 return false; /* invalid */
422 }
423
424 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
425 char *bf, size_t size)
426 {
427 if (result) {
428 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
429 perf_evsel__hw_cache_op[op][0],
430 perf_evsel__hw_cache_result[result][0]);
431 }
432
433 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
434 perf_evsel__hw_cache_op[op][1]);
435 }
436
437 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
438 {
439 u8 op, result, type = (config >> 0) & 0xff;
440 const char *err = "unknown-ext-hardware-cache-type";
441
442 if (type > PERF_COUNT_HW_CACHE_MAX)
443 goto out_err;
444
445 op = (config >> 8) & 0xff;
446 err = "unknown-ext-hardware-cache-op";
447 if (op > PERF_COUNT_HW_CACHE_OP_MAX)
448 goto out_err;
449
450 result = (config >> 16) & 0xff;
451 err = "unknown-ext-hardware-cache-result";
452 if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
453 goto out_err;
454
455 err = "invalid-cache";
456 if (!perf_evsel__is_cache_op_valid(type, op))
457 goto out_err;
458
459 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
460 out_err:
461 return scnprintf(bf, size, "%s", err);
462 }
463
464 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
465 {
466 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
467 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
468 }
469
470 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
471 {
472 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
473 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
474 }
475
476 const char *perf_evsel__name(struct perf_evsel *evsel)
477 {
478 char bf[128];
479
480 if (evsel->name)
481 return evsel->name;
482
483 switch (evsel->attr.type) {
484 case PERF_TYPE_RAW:
485 perf_evsel__raw_name(evsel, bf, sizeof(bf));
486 break;
487
488 case PERF_TYPE_HARDWARE:
489 perf_evsel__hw_name(evsel, bf, sizeof(bf));
490 break;
491
492 case PERF_TYPE_HW_CACHE:
493 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
494 break;
495
496 case PERF_TYPE_SOFTWARE:
497 perf_evsel__sw_name(evsel, bf, sizeof(bf));
498 break;
499
500 case PERF_TYPE_TRACEPOINT:
501 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
502 break;
503
504 case PERF_TYPE_BREAKPOINT:
505 perf_evsel__bp_name(evsel, bf, sizeof(bf));
506 break;
507
508 default:
509 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
510 evsel->attr.type);
511 break;
512 }
513
514 evsel->name = strdup(bf);
515
516 return evsel->name ?: "unknown";
517 }
518
519 const char *perf_evsel__group_name(struct perf_evsel *evsel)
520 {
521 return evsel->group_name ?: "anon group";
522 }
523
524 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
525 {
526 int ret;
527 struct perf_evsel *pos;
528 const char *group_name = perf_evsel__group_name(evsel);
529
530 ret = scnprintf(buf, size, "%s", group_name);
531
532 ret += scnprintf(buf + ret, size - ret, " { %s",
533 perf_evsel__name(evsel));
534
535 for_each_group_member(pos, evsel)
536 ret += scnprintf(buf + ret, size - ret, ", %s",
537 perf_evsel__name(pos));
538
539 ret += scnprintf(buf + ret, size - ret, " }");
540
541 return ret;
542 }
543
544 static void
545 perf_evsel__config_callgraph(struct perf_evsel *evsel,
546 struct record_opts *opts)
547 {
548 bool function = perf_evsel__is_function_event(evsel);
549 struct perf_event_attr *attr = &evsel->attr;
550
551 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
552
553 if (callchain_param.record_mode == CALLCHAIN_LBR) {
554 if (!opts->branch_stack) {
555 if (attr->exclude_user) {
556 pr_warning("LBR callstack option is only available "
557 "to get user callchain information. "
558 "Falling back to framepointers.\n");
559 } else {
560 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
561 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
562 PERF_SAMPLE_BRANCH_CALL_STACK;
563 }
564 } else
565 pr_warning("Cannot use LBR callstack with branch stack. "
566 "Falling back to framepointers.\n");
567 }
568
569 if (callchain_param.record_mode == CALLCHAIN_DWARF) {
570 if (!function) {
571 perf_evsel__set_sample_bit(evsel, REGS_USER);
572 perf_evsel__set_sample_bit(evsel, STACK_USER);
573 attr->sample_regs_user = PERF_REGS_MASK;
574 attr->sample_stack_user = callchain_param.dump_size;
575 attr->exclude_callchain_user = 1;
576 } else {
577 pr_info("Cannot use DWARF unwind for function trace event,"
578 " falling back to framepointers.\n");
579 }
580 }
581
582 if (function) {
583 pr_info("Disabling user space callchains for function trace event.\n");
584 attr->exclude_callchain_user = 1;
585 }
586 }
587
588 /*
589 * The enable_on_exec/disabled value strategy:
590 *
591 * 1) For any type of traced program:
592 * - all independent events and group leaders are disabled
593 * - all group members are enabled
594 *
595 * Group members are ruled by group leaders. They need to
596 * be enabled, because the group scheduling relies on that.
597 *
598 * 2) For traced programs executed by perf:
599 * - all independent events and group leaders have
600 * enable_on_exec set
601 * - we don't specifically enable or disable any event during
602 * the record command
603 *
604 * Independent events and group leaders are initially disabled
605 * and get enabled by exec. Group members are ruled by group
606 * leaders as stated in 1).
607 *
608 * 3) For traced programs attached by perf (pid/tid):
609 * - we specifically enable or disable all events during
610 * the record command
611 *
612 * When attaching events to already running traced we
613 * enable/disable events specifically, as there's no
614 * initial traced exec call.
615 */
616 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
617 {
618 struct perf_evsel *leader = evsel->leader;
619 struct perf_event_attr *attr = &evsel->attr;
620 int track = evsel->tracking;
621 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
622
623 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
624 attr->inherit = !opts->no_inherit;
625
626 perf_evsel__set_sample_bit(evsel, IP);
627 perf_evsel__set_sample_bit(evsel, TID);
628
629 if (evsel->sample_read) {
630 perf_evsel__set_sample_bit(evsel, READ);
631
632 /*
633 * We need ID even in case of single event, because
634 * PERF_SAMPLE_READ process ID specific data.
635 */
636 perf_evsel__set_sample_id(evsel, false);
637
638 /*
639 * Apply group format only if we belong to group
640 * with more than one members.
641 */
642 if (leader->nr_members > 1) {
643 attr->read_format |= PERF_FORMAT_GROUP;
644 attr->inherit = 0;
645 }
646 }
647
648 /*
649 * We default some events to have a default interval. But keep
650 * it a weak assumption overridable by the user.
651 */
652 if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
653 opts->user_interval != ULLONG_MAX)) {
654 if (opts->freq) {
655 perf_evsel__set_sample_bit(evsel, PERIOD);
656 attr->freq = 1;
657 attr->sample_freq = opts->freq;
658 } else {
659 attr->sample_period = opts->default_interval;
660 }
661 }
662
663 /*
664 * Disable sampling for all group members other
665 * than leader in case leader 'leads' the sampling.
666 */
667 if ((leader != evsel) && leader->sample_read) {
668 attr->sample_freq = 0;
669 attr->sample_period = 0;
670 }
671
672 if (opts->no_samples)
673 attr->sample_freq = 0;
674
675 if (opts->inherit_stat)
676 attr->inherit_stat = 1;
677
678 if (opts->sample_address) {
679 perf_evsel__set_sample_bit(evsel, ADDR);
680 attr->mmap_data = track;
681 }
682
683 /*
684 * We don't allow user space callchains for function trace
685 * event, due to issues with page faults while tracing page
686 * fault handler and its overall trickiness nature.
687 */
688 if (perf_evsel__is_function_event(evsel))
689 evsel->attr.exclude_callchain_user = 1;
690
691 if (callchain_param.enabled && !evsel->no_aux_samples)
692 perf_evsel__config_callgraph(evsel, opts);
693
694 if (opts->sample_intr_regs) {
695 attr->sample_regs_intr = PERF_REGS_MASK;
696 perf_evsel__set_sample_bit(evsel, REGS_INTR);
697 }
698
699 if (target__has_cpu(&opts->target))
700 perf_evsel__set_sample_bit(evsel, CPU);
701
702 if (opts->period)
703 perf_evsel__set_sample_bit(evsel, PERIOD);
704
705 /*
706 * When the user explicitely disabled time don't force it here.
707 */
708 if (opts->sample_time &&
709 (!perf_missing_features.sample_id_all &&
710 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu)))
711 perf_evsel__set_sample_bit(evsel, TIME);
712
713 if (opts->raw_samples && !evsel->no_aux_samples) {
714 perf_evsel__set_sample_bit(evsel, TIME);
715 perf_evsel__set_sample_bit(evsel, RAW);
716 perf_evsel__set_sample_bit(evsel, CPU);
717 }
718
719 if (opts->sample_address)
720 perf_evsel__set_sample_bit(evsel, DATA_SRC);
721
722 if (opts->no_buffering) {
723 attr->watermark = 0;
724 attr->wakeup_events = 1;
725 }
726 if (opts->branch_stack && !evsel->no_aux_samples) {
727 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
728 attr->branch_sample_type = opts->branch_stack;
729 }
730
731 if (opts->sample_weight)
732 perf_evsel__set_sample_bit(evsel, WEIGHT);
733
734 attr->task = track;
735 attr->mmap = track;
736 attr->mmap2 = track && !perf_missing_features.mmap2;
737 attr->comm = track;
738
739 if (opts->sample_transaction)
740 perf_evsel__set_sample_bit(evsel, TRANSACTION);
741
742 if (opts->running_time) {
743 evsel->attr.read_format |=
744 PERF_FORMAT_TOTAL_TIME_ENABLED |
745 PERF_FORMAT_TOTAL_TIME_RUNNING;
746 }
747
748 /*
749 * XXX see the function comment above
750 *
751 * Disabling only independent events or group leaders,
752 * keeping group members enabled.
753 */
754 if (perf_evsel__is_group_leader(evsel))
755 attr->disabled = 1;
756
757 /*
758 * Setting enable_on_exec for independent events and
759 * group leaders for traced executed by perf.
760 */
761 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
762 !opts->initial_delay)
763 attr->enable_on_exec = 1;
764
765 if (evsel->immediate) {
766 attr->disabled = 0;
767 attr->enable_on_exec = 0;
768 }
769
770 clockid = opts->clockid;
771 if (opts->use_clockid) {
772 attr->use_clockid = 1;
773 attr->clockid = opts->clockid;
774 }
775 }
776
777 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
778 {
779 int cpu, thread;
780
781 if (evsel->system_wide)
782 nthreads = 1;
783
784 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
785
786 if (evsel->fd) {
787 for (cpu = 0; cpu < ncpus; cpu++) {
788 for (thread = 0; thread < nthreads; thread++) {
789 FD(evsel, cpu, thread) = -1;
790 }
791 }
792 }
793
794 return evsel->fd != NULL ? 0 : -ENOMEM;
795 }
796
797 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
798 int ioc, void *arg)
799 {
800 int cpu, thread;
801
802 if (evsel->system_wide)
803 nthreads = 1;
804
805 for (cpu = 0; cpu < ncpus; cpu++) {
806 for (thread = 0; thread < nthreads; thread++) {
807 int fd = FD(evsel, cpu, thread),
808 err = ioctl(fd, ioc, arg);
809
810 if (err)
811 return err;
812 }
813 }
814
815 return 0;
816 }
817
818 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
819 const char *filter)
820 {
821 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
822 PERF_EVENT_IOC_SET_FILTER,
823 (void *)filter);
824 }
825
826 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
827 {
828 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
829 PERF_EVENT_IOC_ENABLE,
830 0);
831 }
832
833 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
834 {
835 if (ncpus == 0 || nthreads == 0)
836 return 0;
837
838 if (evsel->system_wide)
839 nthreads = 1;
840
841 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
842 if (evsel->sample_id == NULL)
843 return -ENOMEM;
844
845 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
846 if (evsel->id == NULL) {
847 xyarray__delete(evsel->sample_id);
848 evsel->sample_id = NULL;
849 return -ENOMEM;
850 }
851
852 return 0;
853 }
854
855 static void perf_evsel__free_fd(struct perf_evsel *evsel)
856 {
857 xyarray__delete(evsel->fd);
858 evsel->fd = NULL;
859 }
860
861 static void perf_evsel__free_id(struct perf_evsel *evsel)
862 {
863 xyarray__delete(evsel->sample_id);
864 evsel->sample_id = NULL;
865 zfree(&evsel->id);
866 }
867
868 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
869 {
870 int cpu, thread;
871
872 if (evsel->system_wide)
873 nthreads = 1;
874
875 for (cpu = 0; cpu < ncpus; cpu++)
876 for (thread = 0; thread < nthreads; ++thread) {
877 close(FD(evsel, cpu, thread));
878 FD(evsel, cpu, thread) = -1;
879 }
880 }
881
882 void perf_evsel__exit(struct perf_evsel *evsel)
883 {
884 assert(list_empty(&evsel->node));
885 perf_evsel__free_fd(evsel);
886 perf_evsel__free_id(evsel);
887 close_cgroup(evsel->cgrp);
888 cpu_map__put(evsel->cpus);
889 thread_map__put(evsel->threads);
890 zfree(&evsel->group_name);
891 zfree(&evsel->name);
892 perf_evsel__object.fini(evsel);
893 }
894
895 void perf_evsel__delete(struct perf_evsel *evsel)
896 {
897 perf_evsel__exit(evsel);
898 free(evsel);
899 }
900
901 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
902 struct perf_counts_values *count)
903 {
904 struct perf_counts_values tmp;
905
906 if (!evsel->prev_raw_counts)
907 return;
908
909 if (cpu == -1) {
910 tmp = evsel->prev_raw_counts->aggr;
911 evsel->prev_raw_counts->aggr = *count;
912 } else {
913 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
914 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
915 }
916
917 count->val = count->val - tmp.val;
918 count->ena = count->ena - tmp.ena;
919 count->run = count->run - tmp.run;
920 }
921
922 void perf_counts_values__scale(struct perf_counts_values *count,
923 bool scale, s8 *pscaled)
924 {
925 s8 scaled = 0;
926
927 if (scale) {
928 if (count->run == 0) {
929 scaled = -1;
930 count->val = 0;
931 } else if (count->run < count->ena) {
932 scaled = 1;
933 count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
934 }
935 } else
936 count->ena = count->run = 0;
937
938 if (pscaled)
939 *pscaled = scaled;
940 }
941
942 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
943 struct perf_counts_values *count)
944 {
945 memset(count, 0, sizeof(*count));
946
947 if (FD(evsel, cpu, thread) < 0)
948 return -EINVAL;
949
950 if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0)
951 return -errno;
952
953 return 0;
954 }
955
956 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
957 int cpu, int thread, bool scale)
958 {
959 struct perf_counts_values count;
960 size_t nv = scale ? 3 : 1;
961
962 if (FD(evsel, cpu, thread) < 0)
963 return -EINVAL;
964
965 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
966 return -ENOMEM;
967
968 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
969 return -errno;
970
971 perf_evsel__compute_deltas(evsel, cpu, thread, &count);
972 perf_counts_values__scale(&count, scale, NULL);
973 *perf_counts(evsel->counts, cpu, thread) = count;
974 return 0;
975 }
976
977 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
978 {
979 struct perf_evsel *leader = evsel->leader;
980 int fd;
981
982 if (perf_evsel__is_group_leader(evsel))
983 return -1;
984
985 /*
986 * Leader must be already processed/open,
987 * if not it's a bug.
988 */
989 BUG_ON(!leader->fd);
990
991 fd = FD(leader, cpu, thread);
992 BUG_ON(fd == -1);
993
994 return fd;
995 }
996
997 struct bit_names {
998 int bit;
999 const char *name;
1000 };
1001
1002 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1003 {
1004 bool first_bit = true;
1005 int i = 0;
1006
1007 do {
1008 if (value & bits[i].bit) {
1009 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1010 first_bit = false;
1011 }
1012 } while (bits[++i].name != NULL);
1013 }
1014
1015 static void __p_sample_type(char *buf, size_t size, u64 value)
1016 {
1017 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1018 struct bit_names bits[] = {
1019 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1020 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1021 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1022 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1023 bit_name(IDENTIFIER), bit_name(REGS_INTR),
1024 { .name = NULL, }
1025 };
1026 #undef bit_name
1027 __p_bits(buf, size, value, bits);
1028 }
1029
1030 static void __p_read_format(char *buf, size_t size, u64 value)
1031 {
1032 #define bit_name(n) { PERF_FORMAT_##n, #n }
1033 struct bit_names bits[] = {
1034 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1035 bit_name(ID), bit_name(GROUP),
1036 { .name = NULL, }
1037 };
1038 #undef bit_name
1039 __p_bits(buf, size, value, bits);
1040 }
1041
1042 #define BUF_SIZE 1024
1043
1044 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1045 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1046 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1047 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
1048 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
1049
1050 #define PRINT_ATTRn(_n, _f, _p) \
1051 do { \
1052 if (attr->_f) { \
1053 _p(attr->_f); \
1054 ret += attr__fprintf(fp, _n, buf, priv);\
1055 } \
1056 } while (0)
1057
1058 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
1059
1060 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1061 attr__fprintf_f attr__fprintf, void *priv)
1062 {
1063 char buf[BUF_SIZE];
1064 int ret = 0;
1065
1066 PRINT_ATTRf(type, p_unsigned);
1067 PRINT_ATTRf(size, p_unsigned);
1068 PRINT_ATTRf(config, p_hex);
1069 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1070 PRINT_ATTRf(sample_type, p_sample_type);
1071 PRINT_ATTRf(read_format, p_read_format);
1072
1073 PRINT_ATTRf(disabled, p_unsigned);
1074 PRINT_ATTRf(inherit, p_unsigned);
1075 PRINT_ATTRf(pinned, p_unsigned);
1076 PRINT_ATTRf(exclusive, p_unsigned);
1077 PRINT_ATTRf(exclude_user, p_unsigned);
1078 PRINT_ATTRf(exclude_kernel, p_unsigned);
1079 PRINT_ATTRf(exclude_hv, p_unsigned);
1080 PRINT_ATTRf(exclude_idle, p_unsigned);
1081 PRINT_ATTRf(mmap, p_unsigned);
1082 PRINT_ATTRf(comm, p_unsigned);
1083 PRINT_ATTRf(freq, p_unsigned);
1084 PRINT_ATTRf(inherit_stat, p_unsigned);
1085 PRINT_ATTRf(enable_on_exec, p_unsigned);
1086 PRINT_ATTRf(task, p_unsigned);
1087 PRINT_ATTRf(watermark, p_unsigned);
1088 PRINT_ATTRf(precise_ip, p_unsigned);
1089 PRINT_ATTRf(mmap_data, p_unsigned);
1090 PRINT_ATTRf(sample_id_all, p_unsigned);
1091 PRINT_ATTRf(exclude_host, p_unsigned);
1092 PRINT_ATTRf(exclude_guest, p_unsigned);
1093 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1094 PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1095 PRINT_ATTRf(mmap2, p_unsigned);
1096 PRINT_ATTRf(comm_exec, p_unsigned);
1097 PRINT_ATTRf(use_clockid, p_unsigned);
1098
1099 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1100 PRINT_ATTRf(bp_type, p_unsigned);
1101 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1102 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1103 PRINT_ATTRf(sample_regs_user, p_hex);
1104 PRINT_ATTRf(sample_stack_user, p_unsigned);
1105 PRINT_ATTRf(clockid, p_signed);
1106 PRINT_ATTRf(sample_regs_intr, p_hex);
1107 PRINT_ATTRf(aux_watermark, p_unsigned);
1108
1109 return ret;
1110 }
1111
1112 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1113 void *priv __attribute__((unused)))
1114 {
1115 return fprintf(fp, " %-32s %s\n", name, val);
1116 }
1117
1118 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1119 struct thread_map *threads)
1120 {
1121 int cpu, thread, nthreads;
1122 unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1123 int pid = -1, err;
1124 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1125
1126 if (evsel->system_wide)
1127 nthreads = 1;
1128 else
1129 nthreads = threads->nr;
1130
1131 if (evsel->fd == NULL &&
1132 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1133 return -ENOMEM;
1134
1135 if (evsel->cgrp) {
1136 flags |= PERF_FLAG_PID_CGROUP;
1137 pid = evsel->cgrp->fd;
1138 }
1139
1140 fallback_missing_features:
1141 if (perf_missing_features.clockid_wrong)
1142 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1143 if (perf_missing_features.clockid) {
1144 evsel->attr.use_clockid = 0;
1145 evsel->attr.clockid = 0;
1146 }
1147 if (perf_missing_features.cloexec)
1148 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1149 if (perf_missing_features.mmap2)
1150 evsel->attr.mmap2 = 0;
1151 if (perf_missing_features.exclude_guest)
1152 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1153 retry_sample_id:
1154 if (perf_missing_features.sample_id_all)
1155 evsel->attr.sample_id_all = 0;
1156
1157 if (verbose >= 2) {
1158 fprintf(stderr, "%.60s\n", graph_dotted_line);
1159 fprintf(stderr, "perf_event_attr:\n");
1160 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1161 fprintf(stderr, "%.60s\n", graph_dotted_line);
1162 }
1163
1164 for (cpu = 0; cpu < cpus->nr; cpu++) {
1165
1166 for (thread = 0; thread < nthreads; thread++) {
1167 int group_fd;
1168
1169 if (!evsel->cgrp && !evsel->system_wide)
1170 pid = thread_map__pid(threads, thread);
1171
1172 group_fd = get_group_fd(evsel, cpu, thread);
1173 retry_open:
1174 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx\n",
1175 pid, cpus->map[cpu], group_fd, flags);
1176
1177 FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1178 pid,
1179 cpus->map[cpu],
1180 group_fd, flags);
1181 if (FD(evsel, cpu, thread) < 0) {
1182 err = -errno;
1183 pr_debug2("sys_perf_event_open failed, error %d\n",
1184 err);
1185 goto try_fallback;
1186 }
1187 set_rlimit = NO_CHANGE;
1188
1189 /*
1190 * If we succeeded but had to kill clockid, fail and
1191 * have perf_evsel__open_strerror() print us a nice
1192 * error.
1193 */
1194 if (perf_missing_features.clockid ||
1195 perf_missing_features.clockid_wrong) {
1196 err = -EINVAL;
1197 goto out_close;
1198 }
1199 }
1200 }
1201
1202 return 0;
1203
1204 try_fallback:
1205 /*
1206 * perf stat needs between 5 and 22 fds per CPU. When we run out
1207 * of them try to increase the limits.
1208 */
1209 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1210 struct rlimit l;
1211 int old_errno = errno;
1212
1213 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1214 if (set_rlimit == NO_CHANGE)
1215 l.rlim_cur = l.rlim_max;
1216 else {
1217 l.rlim_cur = l.rlim_max + 1000;
1218 l.rlim_max = l.rlim_cur;
1219 }
1220 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1221 set_rlimit++;
1222 errno = old_errno;
1223 goto retry_open;
1224 }
1225 }
1226 errno = old_errno;
1227 }
1228
1229 if (err != -EINVAL || cpu > 0 || thread > 0)
1230 goto out_close;
1231
1232 /*
1233 * Must probe features in the order they were added to the
1234 * perf_event_attr interface.
1235 */
1236 if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1237 perf_missing_features.clockid_wrong = true;
1238 goto fallback_missing_features;
1239 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1240 perf_missing_features.clockid = true;
1241 goto fallback_missing_features;
1242 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1243 perf_missing_features.cloexec = true;
1244 goto fallback_missing_features;
1245 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1246 perf_missing_features.mmap2 = true;
1247 goto fallback_missing_features;
1248 } else if (!perf_missing_features.exclude_guest &&
1249 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1250 perf_missing_features.exclude_guest = true;
1251 goto fallback_missing_features;
1252 } else if (!perf_missing_features.sample_id_all) {
1253 perf_missing_features.sample_id_all = true;
1254 goto retry_sample_id;
1255 }
1256
1257 out_close:
1258 do {
1259 while (--thread >= 0) {
1260 close(FD(evsel, cpu, thread));
1261 FD(evsel, cpu, thread) = -1;
1262 }
1263 thread = nthreads;
1264 } while (--cpu >= 0);
1265 return err;
1266 }
1267
1268 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1269 {
1270 if (evsel->fd == NULL)
1271 return;
1272
1273 perf_evsel__close_fd(evsel, ncpus, nthreads);
1274 perf_evsel__free_fd(evsel);
1275 }
1276
1277 static struct {
1278 struct cpu_map map;
1279 int cpus[1];
1280 } empty_cpu_map = {
1281 .map.nr = 1,
1282 .cpus = { -1, },
1283 };
1284
1285 static struct {
1286 struct thread_map map;
1287 int threads[1];
1288 } empty_thread_map = {
1289 .map.nr = 1,
1290 .threads = { -1, },
1291 };
1292
1293 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1294 struct thread_map *threads)
1295 {
1296 if (cpus == NULL) {
1297 /* Work around old compiler warnings about strict aliasing */
1298 cpus = &empty_cpu_map.map;
1299 }
1300
1301 if (threads == NULL)
1302 threads = &empty_thread_map.map;
1303
1304 return __perf_evsel__open(evsel, cpus, threads);
1305 }
1306
1307 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1308 struct cpu_map *cpus)
1309 {
1310 return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1311 }
1312
1313 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1314 struct thread_map *threads)
1315 {
1316 return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1317 }
1318
1319 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1320 const union perf_event *event,
1321 struct perf_sample *sample)
1322 {
1323 u64 type = evsel->attr.sample_type;
1324 const u64 *array = event->sample.array;
1325 bool swapped = evsel->needs_swap;
1326 union u64_swap u;
1327
1328 array += ((event->header.size -
1329 sizeof(event->header)) / sizeof(u64)) - 1;
1330
1331 if (type & PERF_SAMPLE_IDENTIFIER) {
1332 sample->id = *array;
1333 array--;
1334 }
1335
1336 if (type & PERF_SAMPLE_CPU) {
1337 u.val64 = *array;
1338 if (swapped) {
1339 /* undo swap of u64, then swap on individual u32s */
1340 u.val64 = bswap_64(u.val64);
1341 u.val32[0] = bswap_32(u.val32[0]);
1342 }
1343
1344 sample->cpu = u.val32[0];
1345 array--;
1346 }
1347
1348 if (type & PERF_SAMPLE_STREAM_ID) {
1349 sample->stream_id = *array;
1350 array--;
1351 }
1352
1353 if (type & PERF_SAMPLE_ID) {
1354 sample->id = *array;
1355 array--;
1356 }
1357
1358 if (type & PERF_SAMPLE_TIME) {
1359 sample->time = *array;
1360 array--;
1361 }
1362
1363 if (type & PERF_SAMPLE_TID) {
1364 u.val64 = *array;
1365 if (swapped) {
1366 /* undo swap of u64, then swap on individual u32s */
1367 u.val64 = bswap_64(u.val64);
1368 u.val32[0] = bswap_32(u.val32[0]);
1369 u.val32[1] = bswap_32(u.val32[1]);
1370 }
1371
1372 sample->pid = u.val32[0];
1373 sample->tid = u.val32[1];
1374 array--;
1375 }
1376
1377 return 0;
1378 }
1379
1380 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1381 u64 size)
1382 {
1383 return size > max_size || offset + size > endp;
1384 }
1385
1386 #define OVERFLOW_CHECK(offset, size, max_size) \
1387 do { \
1388 if (overflow(endp, (max_size), (offset), (size))) \
1389 return -EFAULT; \
1390 } while (0)
1391
1392 #define OVERFLOW_CHECK_u64(offset) \
1393 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1394
1395 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1396 struct perf_sample *data)
1397 {
1398 u64 type = evsel->attr.sample_type;
1399 bool swapped = evsel->needs_swap;
1400 const u64 *array;
1401 u16 max_size = event->header.size;
1402 const void *endp = (void *)event + max_size;
1403 u64 sz;
1404
1405 /*
1406 * used for cross-endian analysis. See git commit 65014ab3
1407 * for why this goofiness is needed.
1408 */
1409 union u64_swap u;
1410
1411 memset(data, 0, sizeof(*data));
1412 data->cpu = data->pid = data->tid = -1;
1413 data->stream_id = data->id = data->time = -1ULL;
1414 data->period = evsel->attr.sample_period;
1415 data->weight = 0;
1416
1417 if (event->header.type != PERF_RECORD_SAMPLE) {
1418 if (!evsel->attr.sample_id_all)
1419 return 0;
1420 return perf_evsel__parse_id_sample(evsel, event, data);
1421 }
1422
1423 array = event->sample.array;
1424
1425 /*
1426 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1427 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
1428 * check the format does not go past the end of the event.
1429 */
1430 if (evsel->sample_size + sizeof(event->header) > event->header.size)
1431 return -EFAULT;
1432
1433 data->id = -1ULL;
1434 if (type & PERF_SAMPLE_IDENTIFIER) {
1435 data->id = *array;
1436 array++;
1437 }
1438
1439 if (type & PERF_SAMPLE_IP) {
1440 data->ip = *array;
1441 array++;
1442 }
1443
1444 if (type & PERF_SAMPLE_TID) {
1445 u.val64 = *array;
1446 if (swapped) {
1447 /* undo swap of u64, then swap on individual u32s */
1448 u.val64 = bswap_64(u.val64);
1449 u.val32[0] = bswap_32(u.val32[0]);
1450 u.val32[1] = bswap_32(u.val32[1]);
1451 }
1452
1453 data->pid = u.val32[0];
1454 data->tid = u.val32[1];
1455 array++;
1456 }
1457
1458 if (type & PERF_SAMPLE_TIME) {
1459 data->time = *array;
1460 array++;
1461 }
1462
1463 data->addr = 0;
1464 if (type & PERF_SAMPLE_ADDR) {
1465 data->addr = *array;
1466 array++;
1467 }
1468
1469 if (type & PERF_SAMPLE_ID) {
1470 data->id = *array;
1471 array++;
1472 }
1473
1474 if (type & PERF_SAMPLE_STREAM_ID) {
1475 data->stream_id = *array;
1476 array++;
1477 }
1478
1479 if (type & PERF_SAMPLE_CPU) {
1480
1481 u.val64 = *array;
1482 if (swapped) {
1483 /* undo swap of u64, then swap on individual u32s */
1484 u.val64 = bswap_64(u.val64);
1485 u.val32[0] = bswap_32(u.val32[0]);
1486 }
1487
1488 data->cpu = u.val32[0];
1489 array++;
1490 }
1491
1492 if (type & PERF_SAMPLE_PERIOD) {
1493 data->period = *array;
1494 array++;
1495 }
1496
1497 if (type & PERF_SAMPLE_READ) {
1498 u64 read_format = evsel->attr.read_format;
1499
1500 OVERFLOW_CHECK_u64(array);
1501 if (read_format & PERF_FORMAT_GROUP)
1502 data->read.group.nr = *array;
1503 else
1504 data->read.one.value = *array;
1505
1506 array++;
1507
1508 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1509 OVERFLOW_CHECK_u64(array);
1510 data->read.time_enabled = *array;
1511 array++;
1512 }
1513
1514 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1515 OVERFLOW_CHECK_u64(array);
1516 data->read.time_running = *array;
1517 array++;
1518 }
1519
1520 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1521 if (read_format & PERF_FORMAT_GROUP) {
1522 const u64 max_group_nr = UINT64_MAX /
1523 sizeof(struct sample_read_value);
1524
1525 if (data->read.group.nr > max_group_nr)
1526 return -EFAULT;
1527 sz = data->read.group.nr *
1528 sizeof(struct sample_read_value);
1529 OVERFLOW_CHECK(array, sz, max_size);
1530 data->read.group.values =
1531 (struct sample_read_value *)array;
1532 array = (void *)array + sz;
1533 } else {
1534 OVERFLOW_CHECK_u64(array);
1535 data->read.one.id = *array;
1536 array++;
1537 }
1538 }
1539
1540 if (type & PERF_SAMPLE_CALLCHAIN) {
1541 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1542
1543 OVERFLOW_CHECK_u64(array);
1544 data->callchain = (struct ip_callchain *)array++;
1545 if (data->callchain->nr > max_callchain_nr)
1546 return -EFAULT;
1547 sz = data->callchain->nr * sizeof(u64);
1548 OVERFLOW_CHECK(array, sz, max_size);
1549 array = (void *)array + sz;
1550 }
1551
1552 if (type & PERF_SAMPLE_RAW) {
1553 OVERFLOW_CHECK_u64(array);
1554 u.val64 = *array;
1555 if (WARN_ONCE(swapped,
1556 "Endianness of raw data not corrected!\n")) {
1557 /* undo swap of u64, then swap on individual u32s */
1558 u.val64 = bswap_64(u.val64);
1559 u.val32[0] = bswap_32(u.val32[0]);
1560 u.val32[1] = bswap_32(u.val32[1]);
1561 }
1562 data->raw_size = u.val32[0];
1563 array = (void *)array + sizeof(u32);
1564
1565 OVERFLOW_CHECK(array, data->raw_size, max_size);
1566 data->raw_data = (void *)array;
1567 array = (void *)array + data->raw_size;
1568 }
1569
1570 if (type & PERF_SAMPLE_BRANCH_STACK) {
1571 const u64 max_branch_nr = UINT64_MAX /
1572 sizeof(struct branch_entry);
1573
1574 OVERFLOW_CHECK_u64(array);
1575 data->branch_stack = (struct branch_stack *)array++;
1576
1577 if (data->branch_stack->nr > max_branch_nr)
1578 return -EFAULT;
1579 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1580 OVERFLOW_CHECK(array, sz, max_size);
1581 array = (void *)array + sz;
1582 }
1583
1584 if (type & PERF_SAMPLE_REGS_USER) {
1585 OVERFLOW_CHECK_u64(array);
1586 data->user_regs.abi = *array;
1587 array++;
1588
1589 if (data->user_regs.abi) {
1590 u64 mask = evsel->attr.sample_regs_user;
1591
1592 sz = hweight_long(mask) * sizeof(u64);
1593 OVERFLOW_CHECK(array, sz, max_size);
1594 data->user_regs.mask = mask;
1595 data->user_regs.regs = (u64 *)array;
1596 array = (void *)array + sz;
1597 }
1598 }
1599
1600 if (type & PERF_SAMPLE_STACK_USER) {
1601 OVERFLOW_CHECK_u64(array);
1602 sz = *array++;
1603
1604 data->user_stack.offset = ((char *)(array - 1)
1605 - (char *) event);
1606
1607 if (!sz) {
1608 data->user_stack.size = 0;
1609 } else {
1610 OVERFLOW_CHECK(array, sz, max_size);
1611 data->user_stack.data = (char *)array;
1612 array = (void *)array + sz;
1613 OVERFLOW_CHECK_u64(array);
1614 data->user_stack.size = *array++;
1615 if (WARN_ONCE(data->user_stack.size > sz,
1616 "user stack dump failure\n"))
1617 return -EFAULT;
1618 }
1619 }
1620
1621 data->weight = 0;
1622 if (type & PERF_SAMPLE_WEIGHT) {
1623 OVERFLOW_CHECK_u64(array);
1624 data->weight = *array;
1625 array++;
1626 }
1627
1628 data->data_src = PERF_MEM_DATA_SRC_NONE;
1629 if (type & PERF_SAMPLE_DATA_SRC) {
1630 OVERFLOW_CHECK_u64(array);
1631 data->data_src = *array;
1632 array++;
1633 }
1634
1635 data->transaction = 0;
1636 if (type & PERF_SAMPLE_TRANSACTION) {
1637 OVERFLOW_CHECK_u64(array);
1638 data->transaction = *array;
1639 array++;
1640 }
1641
1642 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1643 if (type & PERF_SAMPLE_REGS_INTR) {
1644 OVERFLOW_CHECK_u64(array);
1645 data->intr_regs.abi = *array;
1646 array++;
1647
1648 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1649 u64 mask = evsel->attr.sample_regs_intr;
1650
1651 sz = hweight_long(mask) * sizeof(u64);
1652 OVERFLOW_CHECK(array, sz, max_size);
1653 data->intr_regs.mask = mask;
1654 data->intr_regs.regs = (u64 *)array;
1655 array = (void *)array + sz;
1656 }
1657 }
1658
1659 return 0;
1660 }
1661
1662 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1663 u64 read_format)
1664 {
1665 size_t sz, result = sizeof(struct sample_event);
1666
1667 if (type & PERF_SAMPLE_IDENTIFIER)
1668 result += sizeof(u64);
1669
1670 if (type & PERF_SAMPLE_IP)
1671 result += sizeof(u64);
1672
1673 if (type & PERF_SAMPLE_TID)
1674 result += sizeof(u64);
1675
1676 if (type & PERF_SAMPLE_TIME)
1677 result += sizeof(u64);
1678
1679 if (type & PERF_SAMPLE_ADDR)
1680 result += sizeof(u64);
1681
1682 if (type & PERF_SAMPLE_ID)
1683 result += sizeof(u64);
1684
1685 if (type & PERF_SAMPLE_STREAM_ID)
1686 result += sizeof(u64);
1687
1688 if (type & PERF_SAMPLE_CPU)
1689 result += sizeof(u64);
1690
1691 if (type & PERF_SAMPLE_PERIOD)
1692 result += sizeof(u64);
1693
1694 if (type & PERF_SAMPLE_READ) {
1695 result += sizeof(u64);
1696 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1697 result += sizeof(u64);
1698 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1699 result += sizeof(u64);
1700 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1701 if (read_format & PERF_FORMAT_GROUP) {
1702 sz = sample->read.group.nr *
1703 sizeof(struct sample_read_value);
1704 result += sz;
1705 } else {
1706 result += sizeof(u64);
1707 }
1708 }
1709
1710 if (type & PERF_SAMPLE_CALLCHAIN) {
1711 sz = (sample->callchain->nr + 1) * sizeof(u64);
1712 result += sz;
1713 }
1714
1715 if (type & PERF_SAMPLE_RAW) {
1716 result += sizeof(u32);
1717 result += sample->raw_size;
1718 }
1719
1720 if (type & PERF_SAMPLE_BRANCH_STACK) {
1721 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1722 sz += sizeof(u64);
1723 result += sz;
1724 }
1725
1726 if (type & PERF_SAMPLE_REGS_USER) {
1727 if (sample->user_regs.abi) {
1728 result += sizeof(u64);
1729 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1730 result += sz;
1731 } else {
1732 result += sizeof(u64);
1733 }
1734 }
1735
1736 if (type & PERF_SAMPLE_STACK_USER) {
1737 sz = sample->user_stack.size;
1738 result += sizeof(u64);
1739 if (sz) {
1740 result += sz;
1741 result += sizeof(u64);
1742 }
1743 }
1744
1745 if (type & PERF_SAMPLE_WEIGHT)
1746 result += sizeof(u64);
1747
1748 if (type & PERF_SAMPLE_DATA_SRC)
1749 result += sizeof(u64);
1750
1751 if (type & PERF_SAMPLE_TRANSACTION)
1752 result += sizeof(u64);
1753
1754 if (type & PERF_SAMPLE_REGS_INTR) {
1755 if (sample->intr_regs.abi) {
1756 result += sizeof(u64);
1757 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1758 result += sz;
1759 } else {
1760 result += sizeof(u64);
1761 }
1762 }
1763
1764 return result;
1765 }
1766
1767 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1768 u64 read_format,
1769 const struct perf_sample *sample,
1770 bool swapped)
1771 {
1772 u64 *array;
1773 size_t sz;
1774 /*
1775 * used for cross-endian analysis. See git commit 65014ab3
1776 * for why this goofiness is needed.
1777 */
1778 union u64_swap u;
1779
1780 array = event->sample.array;
1781
1782 if (type & PERF_SAMPLE_IDENTIFIER) {
1783 *array = sample->id;
1784 array++;
1785 }
1786
1787 if (type & PERF_SAMPLE_IP) {
1788 *array = sample->ip;
1789 array++;
1790 }
1791
1792 if (type & PERF_SAMPLE_TID) {
1793 u.val32[0] = sample->pid;
1794 u.val32[1] = sample->tid;
1795 if (swapped) {
1796 /*
1797 * Inverse of what is done in perf_evsel__parse_sample
1798 */
1799 u.val32[0] = bswap_32(u.val32[0]);
1800 u.val32[1] = bswap_32(u.val32[1]);
1801 u.val64 = bswap_64(u.val64);
1802 }
1803
1804 *array = u.val64;
1805 array++;
1806 }
1807
1808 if (type & PERF_SAMPLE_TIME) {
1809 *array = sample->time;
1810 array++;
1811 }
1812
1813 if (type & PERF_SAMPLE_ADDR) {
1814 *array = sample->addr;
1815 array++;
1816 }
1817
1818 if (type & PERF_SAMPLE_ID) {
1819 *array = sample->id;
1820 array++;
1821 }
1822
1823 if (type & PERF_SAMPLE_STREAM_ID) {
1824 *array = sample->stream_id;
1825 array++;
1826 }
1827
1828 if (type & PERF_SAMPLE_CPU) {
1829 u.val32[0] = sample->cpu;
1830 if (swapped) {
1831 /*
1832 * Inverse of what is done in perf_evsel__parse_sample
1833 */
1834 u.val32[0] = bswap_32(u.val32[0]);
1835 u.val64 = bswap_64(u.val64);
1836 }
1837 *array = u.val64;
1838 array++;
1839 }
1840
1841 if (type & PERF_SAMPLE_PERIOD) {
1842 *array = sample->period;
1843 array++;
1844 }
1845
1846 if (type & PERF_SAMPLE_READ) {
1847 if (read_format & PERF_FORMAT_GROUP)
1848 *array = sample->read.group.nr;
1849 else
1850 *array = sample->read.one.value;
1851 array++;
1852
1853 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1854 *array = sample->read.time_enabled;
1855 array++;
1856 }
1857
1858 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1859 *array = sample->read.time_running;
1860 array++;
1861 }
1862
1863 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1864 if (read_format & PERF_FORMAT_GROUP) {
1865 sz = sample->read.group.nr *
1866 sizeof(struct sample_read_value);
1867 memcpy(array, sample->read.group.values, sz);
1868 array = (void *)array + sz;
1869 } else {
1870 *array = sample->read.one.id;
1871 array++;
1872 }
1873 }
1874
1875 if (type & PERF_SAMPLE_CALLCHAIN) {
1876 sz = (sample->callchain->nr + 1) * sizeof(u64);
1877 memcpy(array, sample->callchain, sz);
1878 array = (void *)array + sz;
1879 }
1880
1881 if (type & PERF_SAMPLE_RAW) {
1882 u.val32[0] = sample->raw_size;
1883 if (WARN_ONCE(swapped,
1884 "Endianness of raw data not corrected!\n")) {
1885 /*
1886 * Inverse of what is done in perf_evsel__parse_sample
1887 */
1888 u.val32[0] = bswap_32(u.val32[0]);
1889 u.val32[1] = bswap_32(u.val32[1]);
1890 u.val64 = bswap_64(u.val64);
1891 }
1892 *array = u.val64;
1893 array = (void *)array + sizeof(u32);
1894
1895 memcpy(array, sample->raw_data, sample->raw_size);
1896 array = (void *)array + sample->raw_size;
1897 }
1898
1899 if (type & PERF_SAMPLE_BRANCH_STACK) {
1900 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1901 sz += sizeof(u64);
1902 memcpy(array, sample->branch_stack, sz);
1903 array = (void *)array + sz;
1904 }
1905
1906 if (type & PERF_SAMPLE_REGS_USER) {
1907 if (sample->user_regs.abi) {
1908 *array++ = sample->user_regs.abi;
1909 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1910 memcpy(array, sample->user_regs.regs, sz);
1911 array = (void *)array + sz;
1912 } else {
1913 *array++ = 0;
1914 }
1915 }
1916
1917 if (type & PERF_SAMPLE_STACK_USER) {
1918 sz = sample->user_stack.size;
1919 *array++ = sz;
1920 if (sz) {
1921 memcpy(array, sample->user_stack.data, sz);
1922 array = (void *)array + sz;
1923 *array++ = sz;
1924 }
1925 }
1926
1927 if (type & PERF_SAMPLE_WEIGHT) {
1928 *array = sample->weight;
1929 array++;
1930 }
1931
1932 if (type & PERF_SAMPLE_DATA_SRC) {
1933 *array = sample->data_src;
1934 array++;
1935 }
1936
1937 if (type & PERF_SAMPLE_TRANSACTION) {
1938 *array = sample->transaction;
1939 array++;
1940 }
1941
1942 if (type & PERF_SAMPLE_REGS_INTR) {
1943 if (sample->intr_regs.abi) {
1944 *array++ = sample->intr_regs.abi;
1945 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1946 memcpy(array, sample->intr_regs.regs, sz);
1947 array = (void *)array + sz;
1948 } else {
1949 *array++ = 0;
1950 }
1951 }
1952
1953 return 0;
1954 }
1955
1956 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1957 {
1958 return pevent_find_field(evsel->tp_format, name);
1959 }
1960
1961 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1962 const char *name)
1963 {
1964 struct format_field *field = perf_evsel__field(evsel, name);
1965 int offset;
1966
1967 if (!field)
1968 return NULL;
1969
1970 offset = field->offset;
1971
1972 if (field->flags & FIELD_IS_DYNAMIC) {
1973 offset = *(int *)(sample->raw_data + field->offset);
1974 offset &= 0xffff;
1975 }
1976
1977 return sample->raw_data + offset;
1978 }
1979
1980 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1981 const char *name)
1982 {
1983 struct format_field *field = perf_evsel__field(evsel, name);
1984 void *ptr;
1985 u64 value;
1986
1987 if (!field)
1988 return 0;
1989
1990 ptr = sample->raw_data + field->offset;
1991
1992 switch (field->size) {
1993 case 1:
1994 return *(u8 *)ptr;
1995 case 2:
1996 value = *(u16 *)ptr;
1997 break;
1998 case 4:
1999 value = *(u32 *)ptr;
2000 break;
2001 case 8:
2002 memcpy(&value, ptr, sizeof(u64));
2003 break;
2004 default:
2005 return 0;
2006 }
2007
2008 if (!evsel->needs_swap)
2009 return value;
2010
2011 switch (field->size) {
2012 case 2:
2013 return bswap_16(value);
2014 case 4:
2015 return bswap_32(value);
2016 case 8:
2017 return bswap_64(value);
2018 default:
2019 return 0;
2020 }
2021
2022 return 0;
2023 }
2024
2025 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
2026 {
2027 va_list args;
2028 int ret = 0;
2029
2030 if (!*first) {
2031 ret += fprintf(fp, ",");
2032 } else {
2033 ret += fprintf(fp, ":");
2034 *first = false;
2035 }
2036
2037 va_start(args, fmt);
2038 ret += vfprintf(fp, fmt, args);
2039 va_end(args);
2040 return ret;
2041 }
2042
2043 static int __print_attr__fprintf(FILE *fp, const char *name, const char *val, void *priv)
2044 {
2045 return comma_fprintf(fp, (bool *)priv, " %s: %s", name, val);
2046 }
2047
2048 int perf_evsel__fprintf(struct perf_evsel *evsel,
2049 struct perf_attr_details *details, FILE *fp)
2050 {
2051 bool first = true;
2052 int printed = 0;
2053
2054 if (details->event_group) {
2055 struct perf_evsel *pos;
2056
2057 if (!perf_evsel__is_group_leader(evsel))
2058 return 0;
2059
2060 if (evsel->nr_members > 1)
2061 printed += fprintf(fp, "%s{", evsel->group_name ?: "");
2062
2063 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2064 for_each_group_member(pos, evsel)
2065 printed += fprintf(fp, ",%s", perf_evsel__name(pos));
2066
2067 if (evsel->nr_members > 1)
2068 printed += fprintf(fp, "}");
2069 goto out;
2070 }
2071
2072 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2073
2074 if (details->verbose) {
2075 printed += perf_event_attr__fprintf(fp, &evsel->attr,
2076 __print_attr__fprintf, &first);
2077 } else if (details->freq) {
2078 printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
2079 (u64)evsel->attr.sample_freq);
2080 }
2081 out:
2082 fputc('\n', fp);
2083 return ++printed;
2084 }
2085
2086 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2087 char *msg, size_t msgsize)
2088 {
2089 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2090 evsel->attr.type == PERF_TYPE_HARDWARE &&
2091 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2092 /*
2093 * If it's cycles then fall back to hrtimer based
2094 * cpu-clock-tick sw counter, which is always available even if
2095 * no PMU support.
2096 *
2097 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2098 * b0a873e).
2099 */
2100 scnprintf(msg, msgsize, "%s",
2101 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2102
2103 evsel->attr.type = PERF_TYPE_SOFTWARE;
2104 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2105
2106 zfree(&evsel->name);
2107 return true;
2108 }
2109
2110 return false;
2111 }
2112
2113 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2114 int err, char *msg, size_t size)
2115 {
2116 char sbuf[STRERR_BUFSIZE];
2117
2118 switch (err) {
2119 case EPERM:
2120 case EACCES:
2121 return scnprintf(msg, size,
2122 "You may not have permission to collect %sstats.\n"
2123 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
2124 " -1 - Not paranoid at all\n"
2125 " 0 - Disallow raw tracepoint access for unpriv\n"
2126 " 1 - Disallow cpu events for unpriv\n"
2127 " 2 - Disallow kernel profiling for unpriv",
2128 target->system_wide ? "system-wide " : "");
2129 case ENOENT:
2130 return scnprintf(msg, size, "The %s event is not supported.",
2131 perf_evsel__name(evsel));
2132 case EMFILE:
2133 return scnprintf(msg, size, "%s",
2134 "Too many events are opened.\n"
2135 "Probably the maximum number of open file descriptors has been reached.\n"
2136 "Hint: Try again after reducing the number of events.\n"
2137 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2138 case ENODEV:
2139 if (target->cpu_list)
2140 return scnprintf(msg, size, "%s",
2141 "No such device - did you specify an out-of-range profile CPU?\n");
2142 break;
2143 case EOPNOTSUPP:
2144 if (evsel->attr.precise_ip)
2145 return scnprintf(msg, size, "%s",
2146 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2147 #if defined(__i386__) || defined(__x86_64__)
2148 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2149 return scnprintf(msg, size, "%s",
2150 "No hardware sampling interrupt available.\n"
2151 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2152 #endif
2153 break;
2154 case EBUSY:
2155 if (find_process("oprofiled"))
2156 return scnprintf(msg, size,
2157 "The PMU counters are busy/taken by another profiler.\n"
2158 "We found oprofile daemon running, please stop it and try again.");
2159 break;
2160 case EINVAL:
2161 if (perf_missing_features.clockid)
2162 return scnprintf(msg, size, "clockid feature not supported.");
2163 if (perf_missing_features.clockid_wrong)
2164 return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2165 break;
2166 default:
2167 break;
2168 }
2169
2170 return scnprintf(msg, size,
2171 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2172 "/bin/dmesg may provide additional information.\n"
2173 "No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2174 err, strerror_r(err, sbuf, sizeof(sbuf)),
2175 perf_evsel__name(evsel));
2176 }
This page took 0.079438 seconds and 5 git commands to generate.