ftrace, sched: Add TRACE_FLAG_PREEMPT_RESCHED
[deliverable/linux.git] / tools / perf / util / evsel.c
1 /*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3 *
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
6 *
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <lk/debugfs.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <sys/resource.h>
17 #include "asm/bug.h"
18 #include "evsel.h"
19 #include "evlist.h"
20 #include "util.h"
21 #include "cpumap.h"
22 #include "thread_map.h"
23 #include "target.h"
24 #include "perf_regs.h"
25 #include "debug.h"
26
27 static struct {
28 bool sample_id_all;
29 bool exclude_guest;
30 bool mmap2;
31 } perf_missing_features;
32
33 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
34
35 int __perf_evsel__sample_size(u64 sample_type)
36 {
37 u64 mask = sample_type & PERF_SAMPLE_MASK;
38 int size = 0;
39 int i;
40
41 for (i = 0; i < 64; i++) {
42 if (mask & (1ULL << i))
43 size++;
44 }
45
46 size *= sizeof(u64);
47
48 return size;
49 }
50
51 /**
52 * __perf_evsel__calc_id_pos - calculate id_pos.
53 * @sample_type: sample type
54 *
55 * This function returns the position of the event id (PERF_SAMPLE_ID or
56 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
57 * sample_event.
58 */
59 static int __perf_evsel__calc_id_pos(u64 sample_type)
60 {
61 int idx = 0;
62
63 if (sample_type & PERF_SAMPLE_IDENTIFIER)
64 return 0;
65
66 if (!(sample_type & PERF_SAMPLE_ID))
67 return -1;
68
69 if (sample_type & PERF_SAMPLE_IP)
70 idx += 1;
71
72 if (sample_type & PERF_SAMPLE_TID)
73 idx += 1;
74
75 if (sample_type & PERF_SAMPLE_TIME)
76 idx += 1;
77
78 if (sample_type & PERF_SAMPLE_ADDR)
79 idx += 1;
80
81 return idx;
82 }
83
84 /**
85 * __perf_evsel__calc_is_pos - calculate is_pos.
86 * @sample_type: sample type
87 *
88 * This function returns the position (counting backwards) of the event id
89 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
90 * sample_id_all is used there is an id sample appended to non-sample events.
91 */
92 static int __perf_evsel__calc_is_pos(u64 sample_type)
93 {
94 int idx = 1;
95
96 if (sample_type & PERF_SAMPLE_IDENTIFIER)
97 return 1;
98
99 if (!(sample_type & PERF_SAMPLE_ID))
100 return -1;
101
102 if (sample_type & PERF_SAMPLE_CPU)
103 idx += 1;
104
105 if (sample_type & PERF_SAMPLE_STREAM_ID)
106 idx += 1;
107
108 return idx;
109 }
110
111 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
112 {
113 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
114 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
115 }
116
117 void hists__init(struct hists *hists)
118 {
119 memset(hists, 0, sizeof(*hists));
120 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
121 hists->entries_in = &hists->entries_in_array[0];
122 hists->entries_collapsed = RB_ROOT;
123 hists->entries = RB_ROOT;
124 pthread_mutex_init(&hists->lock, NULL);
125 }
126
127 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
128 enum perf_event_sample_format bit)
129 {
130 if (!(evsel->attr.sample_type & bit)) {
131 evsel->attr.sample_type |= bit;
132 evsel->sample_size += sizeof(u64);
133 perf_evsel__calc_id_pos(evsel);
134 }
135 }
136
137 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
138 enum perf_event_sample_format bit)
139 {
140 if (evsel->attr.sample_type & bit) {
141 evsel->attr.sample_type &= ~bit;
142 evsel->sample_size -= sizeof(u64);
143 perf_evsel__calc_id_pos(evsel);
144 }
145 }
146
147 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
148 bool can_sample_identifier)
149 {
150 if (can_sample_identifier) {
151 perf_evsel__reset_sample_bit(evsel, ID);
152 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
153 } else {
154 perf_evsel__set_sample_bit(evsel, ID);
155 }
156 evsel->attr.read_format |= PERF_FORMAT_ID;
157 }
158
159 void perf_evsel__init(struct perf_evsel *evsel,
160 struct perf_event_attr *attr, int idx)
161 {
162 evsel->idx = idx;
163 evsel->attr = *attr;
164 evsel->leader = evsel;
165 INIT_LIST_HEAD(&evsel->node);
166 hists__init(&evsel->hists);
167 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
168 perf_evsel__calc_id_pos(evsel);
169 }
170
171 struct perf_evsel *perf_evsel__new(struct perf_event_attr *attr, int idx)
172 {
173 struct perf_evsel *evsel = zalloc(sizeof(*evsel));
174
175 if (evsel != NULL)
176 perf_evsel__init(evsel, attr, idx);
177
178 return evsel;
179 }
180
181 struct event_format *event_format__new(const char *sys, const char *name)
182 {
183 int fd, n;
184 char *filename;
185 void *bf = NULL, *nbf;
186 size_t size = 0, alloc_size = 0;
187 struct event_format *format = NULL;
188
189 if (asprintf(&filename, "%s/%s/%s/format", tracing_events_path, sys, name) < 0)
190 goto out;
191
192 fd = open(filename, O_RDONLY);
193 if (fd < 0)
194 goto out_free_filename;
195
196 do {
197 if (size == alloc_size) {
198 alloc_size += BUFSIZ;
199 nbf = realloc(bf, alloc_size);
200 if (nbf == NULL)
201 goto out_free_bf;
202 bf = nbf;
203 }
204
205 n = read(fd, bf + size, alloc_size - size);
206 if (n < 0)
207 goto out_free_bf;
208 size += n;
209 } while (n > 0);
210
211 pevent_parse_format(&format, bf, size, sys);
212
213 out_free_bf:
214 free(bf);
215 close(fd);
216 out_free_filename:
217 free(filename);
218 out:
219 return format;
220 }
221
222 struct perf_evsel *perf_evsel__newtp(const char *sys, const char *name, int idx)
223 {
224 struct perf_evsel *evsel = zalloc(sizeof(*evsel));
225
226 if (evsel != NULL) {
227 struct perf_event_attr attr = {
228 .type = PERF_TYPE_TRACEPOINT,
229 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
230 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
231 };
232
233 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
234 goto out_free;
235
236 evsel->tp_format = event_format__new(sys, name);
237 if (evsel->tp_format == NULL)
238 goto out_free;
239
240 event_attr_init(&attr);
241 attr.config = evsel->tp_format->id;
242 attr.sample_period = 1;
243 perf_evsel__init(evsel, &attr, idx);
244 }
245
246 return evsel;
247
248 out_free:
249 free(evsel->name);
250 free(evsel);
251 return NULL;
252 }
253
254 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
255 "cycles",
256 "instructions",
257 "cache-references",
258 "cache-misses",
259 "branches",
260 "branch-misses",
261 "bus-cycles",
262 "stalled-cycles-frontend",
263 "stalled-cycles-backend",
264 "ref-cycles",
265 };
266
267 static const char *__perf_evsel__hw_name(u64 config)
268 {
269 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
270 return perf_evsel__hw_names[config];
271
272 return "unknown-hardware";
273 }
274
275 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
276 {
277 int colon = 0, r = 0;
278 struct perf_event_attr *attr = &evsel->attr;
279 bool exclude_guest_default = false;
280
281 #define MOD_PRINT(context, mod) do { \
282 if (!attr->exclude_##context) { \
283 if (!colon) colon = ++r; \
284 r += scnprintf(bf + r, size - r, "%c", mod); \
285 } } while(0)
286
287 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
288 MOD_PRINT(kernel, 'k');
289 MOD_PRINT(user, 'u');
290 MOD_PRINT(hv, 'h');
291 exclude_guest_default = true;
292 }
293
294 if (attr->precise_ip) {
295 if (!colon)
296 colon = ++r;
297 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
298 exclude_guest_default = true;
299 }
300
301 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
302 MOD_PRINT(host, 'H');
303 MOD_PRINT(guest, 'G');
304 }
305 #undef MOD_PRINT
306 if (colon)
307 bf[colon - 1] = ':';
308 return r;
309 }
310
311 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
312 {
313 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
314 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
315 }
316
317 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
318 "cpu-clock",
319 "task-clock",
320 "page-faults",
321 "context-switches",
322 "cpu-migrations",
323 "minor-faults",
324 "major-faults",
325 "alignment-faults",
326 "emulation-faults",
327 "dummy",
328 };
329
330 static const char *__perf_evsel__sw_name(u64 config)
331 {
332 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
333 return perf_evsel__sw_names[config];
334 return "unknown-software";
335 }
336
337 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
338 {
339 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
340 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
341 }
342
343 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
344 {
345 int r;
346
347 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
348
349 if (type & HW_BREAKPOINT_R)
350 r += scnprintf(bf + r, size - r, "r");
351
352 if (type & HW_BREAKPOINT_W)
353 r += scnprintf(bf + r, size - r, "w");
354
355 if (type & HW_BREAKPOINT_X)
356 r += scnprintf(bf + r, size - r, "x");
357
358 return r;
359 }
360
361 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
362 {
363 struct perf_event_attr *attr = &evsel->attr;
364 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
365 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
366 }
367
368 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
369 [PERF_EVSEL__MAX_ALIASES] = {
370 { "L1-dcache", "l1-d", "l1d", "L1-data", },
371 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
372 { "LLC", "L2", },
373 { "dTLB", "d-tlb", "Data-TLB", },
374 { "iTLB", "i-tlb", "Instruction-TLB", },
375 { "branch", "branches", "bpu", "btb", "bpc", },
376 { "node", },
377 };
378
379 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
380 [PERF_EVSEL__MAX_ALIASES] = {
381 { "load", "loads", "read", },
382 { "store", "stores", "write", },
383 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
384 };
385
386 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
387 [PERF_EVSEL__MAX_ALIASES] = {
388 { "refs", "Reference", "ops", "access", },
389 { "misses", "miss", },
390 };
391
392 #define C(x) PERF_COUNT_HW_CACHE_##x
393 #define CACHE_READ (1 << C(OP_READ))
394 #define CACHE_WRITE (1 << C(OP_WRITE))
395 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
396 #define COP(x) (1 << x)
397
398 /*
399 * cache operartion stat
400 * L1I : Read and prefetch only
401 * ITLB and BPU : Read-only
402 */
403 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
404 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
405 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
406 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
407 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
408 [C(ITLB)] = (CACHE_READ),
409 [C(BPU)] = (CACHE_READ),
410 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
411 };
412
413 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
414 {
415 if (perf_evsel__hw_cache_stat[type] & COP(op))
416 return true; /* valid */
417 else
418 return false; /* invalid */
419 }
420
421 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
422 char *bf, size_t size)
423 {
424 if (result) {
425 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
426 perf_evsel__hw_cache_op[op][0],
427 perf_evsel__hw_cache_result[result][0]);
428 }
429
430 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
431 perf_evsel__hw_cache_op[op][1]);
432 }
433
434 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
435 {
436 u8 op, result, type = (config >> 0) & 0xff;
437 const char *err = "unknown-ext-hardware-cache-type";
438
439 if (type > PERF_COUNT_HW_CACHE_MAX)
440 goto out_err;
441
442 op = (config >> 8) & 0xff;
443 err = "unknown-ext-hardware-cache-op";
444 if (op > PERF_COUNT_HW_CACHE_OP_MAX)
445 goto out_err;
446
447 result = (config >> 16) & 0xff;
448 err = "unknown-ext-hardware-cache-result";
449 if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
450 goto out_err;
451
452 err = "invalid-cache";
453 if (!perf_evsel__is_cache_op_valid(type, op))
454 goto out_err;
455
456 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
457 out_err:
458 return scnprintf(bf, size, "%s", err);
459 }
460
461 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
462 {
463 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
464 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
465 }
466
467 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
468 {
469 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
470 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
471 }
472
473 const char *perf_evsel__name(struct perf_evsel *evsel)
474 {
475 char bf[128];
476
477 if (evsel->name)
478 return evsel->name;
479
480 switch (evsel->attr.type) {
481 case PERF_TYPE_RAW:
482 perf_evsel__raw_name(evsel, bf, sizeof(bf));
483 break;
484
485 case PERF_TYPE_HARDWARE:
486 perf_evsel__hw_name(evsel, bf, sizeof(bf));
487 break;
488
489 case PERF_TYPE_HW_CACHE:
490 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
491 break;
492
493 case PERF_TYPE_SOFTWARE:
494 perf_evsel__sw_name(evsel, bf, sizeof(bf));
495 break;
496
497 case PERF_TYPE_TRACEPOINT:
498 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
499 break;
500
501 case PERF_TYPE_BREAKPOINT:
502 perf_evsel__bp_name(evsel, bf, sizeof(bf));
503 break;
504
505 default:
506 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
507 evsel->attr.type);
508 break;
509 }
510
511 evsel->name = strdup(bf);
512
513 return evsel->name ?: "unknown";
514 }
515
516 const char *perf_evsel__group_name(struct perf_evsel *evsel)
517 {
518 return evsel->group_name ?: "anon group";
519 }
520
521 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
522 {
523 int ret;
524 struct perf_evsel *pos;
525 const char *group_name = perf_evsel__group_name(evsel);
526
527 ret = scnprintf(buf, size, "%s", group_name);
528
529 ret += scnprintf(buf + ret, size - ret, " { %s",
530 perf_evsel__name(evsel));
531
532 for_each_group_member(pos, evsel)
533 ret += scnprintf(buf + ret, size - ret, ", %s",
534 perf_evsel__name(pos));
535
536 ret += scnprintf(buf + ret, size - ret, " }");
537
538 return ret;
539 }
540
541 /*
542 * The enable_on_exec/disabled value strategy:
543 *
544 * 1) For any type of traced program:
545 * - all independent events and group leaders are disabled
546 * - all group members are enabled
547 *
548 * Group members are ruled by group leaders. They need to
549 * be enabled, because the group scheduling relies on that.
550 *
551 * 2) For traced programs executed by perf:
552 * - all independent events and group leaders have
553 * enable_on_exec set
554 * - we don't specifically enable or disable any event during
555 * the record command
556 *
557 * Independent events and group leaders are initially disabled
558 * and get enabled by exec. Group members are ruled by group
559 * leaders as stated in 1).
560 *
561 * 3) For traced programs attached by perf (pid/tid):
562 * - we specifically enable or disable all events during
563 * the record command
564 *
565 * When attaching events to already running traced we
566 * enable/disable events specifically, as there's no
567 * initial traced exec call.
568 */
569 void perf_evsel__config(struct perf_evsel *evsel,
570 struct perf_record_opts *opts)
571 {
572 struct perf_evsel *leader = evsel->leader;
573 struct perf_event_attr *attr = &evsel->attr;
574 int track = !evsel->idx; /* only the first counter needs these */
575
576 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
577 attr->inherit = !opts->no_inherit;
578
579 perf_evsel__set_sample_bit(evsel, IP);
580 perf_evsel__set_sample_bit(evsel, TID);
581
582 if (evsel->sample_read) {
583 perf_evsel__set_sample_bit(evsel, READ);
584
585 /*
586 * We need ID even in case of single event, because
587 * PERF_SAMPLE_READ process ID specific data.
588 */
589 perf_evsel__set_sample_id(evsel, false);
590
591 /*
592 * Apply group format only if we belong to group
593 * with more than one members.
594 */
595 if (leader->nr_members > 1) {
596 attr->read_format |= PERF_FORMAT_GROUP;
597 attr->inherit = 0;
598 }
599 }
600
601 /*
602 * We default some events to a 1 default interval. But keep
603 * it a weak assumption overridable by the user.
604 */
605 if (!attr->sample_period || (opts->user_freq != UINT_MAX &&
606 opts->user_interval != ULLONG_MAX)) {
607 if (opts->freq) {
608 perf_evsel__set_sample_bit(evsel, PERIOD);
609 attr->freq = 1;
610 attr->sample_freq = opts->freq;
611 } else {
612 attr->sample_period = opts->default_interval;
613 }
614 }
615
616 /*
617 * Disable sampling for all group members other
618 * than leader in case leader 'leads' the sampling.
619 */
620 if ((leader != evsel) && leader->sample_read) {
621 attr->sample_freq = 0;
622 attr->sample_period = 0;
623 }
624
625 if (opts->no_samples)
626 attr->sample_freq = 0;
627
628 if (opts->inherit_stat)
629 attr->inherit_stat = 1;
630
631 if (opts->sample_address) {
632 perf_evsel__set_sample_bit(evsel, ADDR);
633 attr->mmap_data = track;
634 }
635
636 if (opts->call_graph) {
637 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
638
639 if (opts->call_graph == CALLCHAIN_DWARF) {
640 perf_evsel__set_sample_bit(evsel, REGS_USER);
641 perf_evsel__set_sample_bit(evsel, STACK_USER);
642 attr->sample_regs_user = PERF_REGS_MASK;
643 attr->sample_stack_user = opts->stack_dump_size;
644 attr->exclude_callchain_user = 1;
645 }
646 }
647
648 if (perf_target__has_cpu(&opts->target))
649 perf_evsel__set_sample_bit(evsel, CPU);
650
651 if (opts->period)
652 perf_evsel__set_sample_bit(evsel, PERIOD);
653
654 if (!perf_missing_features.sample_id_all &&
655 (opts->sample_time || !opts->no_inherit ||
656 perf_target__has_cpu(&opts->target)))
657 perf_evsel__set_sample_bit(evsel, TIME);
658
659 if (opts->raw_samples) {
660 perf_evsel__set_sample_bit(evsel, TIME);
661 perf_evsel__set_sample_bit(evsel, RAW);
662 perf_evsel__set_sample_bit(evsel, CPU);
663 }
664
665 if (opts->sample_address)
666 attr->sample_type |= PERF_SAMPLE_DATA_SRC;
667
668 if (opts->no_delay) {
669 attr->watermark = 0;
670 attr->wakeup_events = 1;
671 }
672 if (opts->branch_stack) {
673 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
674 attr->branch_sample_type = opts->branch_stack;
675 }
676
677 if (opts->sample_weight)
678 attr->sample_type |= PERF_SAMPLE_WEIGHT;
679
680 attr->mmap = track;
681 attr->comm = track;
682
683 /*
684 * XXX see the function comment above
685 *
686 * Disabling only independent events or group leaders,
687 * keeping group members enabled.
688 */
689 if (perf_evsel__is_group_leader(evsel))
690 attr->disabled = 1;
691
692 /*
693 * Setting enable_on_exec for independent events and
694 * group leaders for traced executed by perf.
695 */
696 if (perf_target__none(&opts->target) && perf_evsel__is_group_leader(evsel))
697 attr->enable_on_exec = 1;
698 }
699
700 int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
701 {
702 int cpu, thread;
703 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
704
705 if (evsel->fd) {
706 for (cpu = 0; cpu < ncpus; cpu++) {
707 for (thread = 0; thread < nthreads; thread++) {
708 FD(evsel, cpu, thread) = -1;
709 }
710 }
711 }
712
713 return evsel->fd != NULL ? 0 : -ENOMEM;
714 }
715
716 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
717 int ioc, void *arg)
718 {
719 int cpu, thread;
720
721 for (cpu = 0; cpu < ncpus; cpu++) {
722 for (thread = 0; thread < nthreads; thread++) {
723 int fd = FD(evsel, cpu, thread),
724 err = ioctl(fd, ioc, arg);
725
726 if (err)
727 return err;
728 }
729 }
730
731 return 0;
732 }
733
734 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
735 const char *filter)
736 {
737 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
738 PERF_EVENT_IOC_SET_FILTER,
739 (void *)filter);
740 }
741
742 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
743 {
744 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
745 PERF_EVENT_IOC_ENABLE,
746 0);
747 }
748
749 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
750 {
751 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
752 if (evsel->sample_id == NULL)
753 return -ENOMEM;
754
755 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
756 if (evsel->id == NULL) {
757 xyarray__delete(evsel->sample_id);
758 evsel->sample_id = NULL;
759 return -ENOMEM;
760 }
761
762 return 0;
763 }
764
765 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
766 {
767 memset(evsel->counts, 0, (sizeof(*evsel->counts) +
768 (ncpus * sizeof(struct perf_counts_values))));
769 }
770
771 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
772 {
773 evsel->counts = zalloc((sizeof(*evsel->counts) +
774 (ncpus * sizeof(struct perf_counts_values))));
775 return evsel->counts != NULL ? 0 : -ENOMEM;
776 }
777
778 void perf_evsel__free_fd(struct perf_evsel *evsel)
779 {
780 xyarray__delete(evsel->fd);
781 evsel->fd = NULL;
782 }
783
784 void perf_evsel__free_id(struct perf_evsel *evsel)
785 {
786 xyarray__delete(evsel->sample_id);
787 evsel->sample_id = NULL;
788 free(evsel->id);
789 evsel->id = NULL;
790 }
791
792 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
793 {
794 int cpu, thread;
795
796 for (cpu = 0; cpu < ncpus; cpu++)
797 for (thread = 0; thread < nthreads; ++thread) {
798 close(FD(evsel, cpu, thread));
799 FD(evsel, cpu, thread) = -1;
800 }
801 }
802
803 void perf_evsel__free_counts(struct perf_evsel *evsel)
804 {
805 free(evsel->counts);
806 }
807
808 void perf_evsel__exit(struct perf_evsel *evsel)
809 {
810 assert(list_empty(&evsel->node));
811 perf_evsel__free_fd(evsel);
812 perf_evsel__free_id(evsel);
813 }
814
815 void perf_evsel__delete(struct perf_evsel *evsel)
816 {
817 perf_evsel__exit(evsel);
818 close_cgroup(evsel->cgrp);
819 free(evsel->group_name);
820 if (evsel->tp_format)
821 pevent_free_format(evsel->tp_format);
822 free(evsel->name);
823 free(evsel);
824 }
825
826 static inline void compute_deltas(struct perf_evsel *evsel,
827 int cpu,
828 struct perf_counts_values *count)
829 {
830 struct perf_counts_values tmp;
831
832 if (!evsel->prev_raw_counts)
833 return;
834
835 if (cpu == -1) {
836 tmp = evsel->prev_raw_counts->aggr;
837 evsel->prev_raw_counts->aggr = *count;
838 } else {
839 tmp = evsel->prev_raw_counts->cpu[cpu];
840 evsel->prev_raw_counts->cpu[cpu] = *count;
841 }
842
843 count->val = count->val - tmp.val;
844 count->ena = count->ena - tmp.ena;
845 count->run = count->run - tmp.run;
846 }
847
848 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
849 int cpu, int thread, bool scale)
850 {
851 struct perf_counts_values count;
852 size_t nv = scale ? 3 : 1;
853
854 if (FD(evsel, cpu, thread) < 0)
855 return -EINVAL;
856
857 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
858 return -ENOMEM;
859
860 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
861 return -errno;
862
863 compute_deltas(evsel, cpu, &count);
864
865 if (scale) {
866 if (count.run == 0)
867 count.val = 0;
868 else if (count.run < count.ena)
869 count.val = (u64)((double)count.val * count.ena / count.run + 0.5);
870 } else
871 count.ena = count.run = 0;
872
873 evsel->counts->cpu[cpu] = count;
874 return 0;
875 }
876
877 int __perf_evsel__read(struct perf_evsel *evsel,
878 int ncpus, int nthreads, bool scale)
879 {
880 size_t nv = scale ? 3 : 1;
881 int cpu, thread;
882 struct perf_counts_values *aggr = &evsel->counts->aggr, count;
883
884 aggr->val = aggr->ena = aggr->run = 0;
885
886 for (cpu = 0; cpu < ncpus; cpu++) {
887 for (thread = 0; thread < nthreads; thread++) {
888 if (FD(evsel, cpu, thread) < 0)
889 continue;
890
891 if (readn(FD(evsel, cpu, thread),
892 &count, nv * sizeof(u64)) < 0)
893 return -errno;
894
895 aggr->val += count.val;
896 if (scale) {
897 aggr->ena += count.ena;
898 aggr->run += count.run;
899 }
900 }
901 }
902
903 compute_deltas(evsel, -1, aggr);
904
905 evsel->counts->scaled = 0;
906 if (scale) {
907 if (aggr->run == 0) {
908 evsel->counts->scaled = -1;
909 aggr->val = 0;
910 return 0;
911 }
912
913 if (aggr->run < aggr->ena) {
914 evsel->counts->scaled = 1;
915 aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5);
916 }
917 } else
918 aggr->ena = aggr->run = 0;
919
920 return 0;
921 }
922
923 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
924 {
925 struct perf_evsel *leader = evsel->leader;
926 int fd;
927
928 if (perf_evsel__is_group_leader(evsel))
929 return -1;
930
931 /*
932 * Leader must be already processed/open,
933 * if not it's a bug.
934 */
935 BUG_ON(!leader->fd);
936
937 fd = FD(leader, cpu, thread);
938 BUG_ON(fd == -1);
939
940 return fd;
941 }
942
943 #define __PRINT_ATTR(fmt, cast, field) \
944 fprintf(fp, " %-19s "fmt"\n", #field, cast attr->field)
945
946 #define PRINT_ATTR_U32(field) __PRINT_ATTR("%u" , , field)
947 #define PRINT_ATTR_X32(field) __PRINT_ATTR("%#x", , field)
948 #define PRINT_ATTR_U64(field) __PRINT_ATTR("%" PRIu64, (uint64_t), field)
949 #define PRINT_ATTR_X64(field) __PRINT_ATTR("%#"PRIx64, (uint64_t), field)
950
951 #define PRINT_ATTR2N(name1, field1, name2, field2) \
952 fprintf(fp, " %-19s %u %-19s %u\n", \
953 name1, attr->field1, name2, attr->field2)
954
955 #define PRINT_ATTR2(field1, field2) \
956 PRINT_ATTR2N(#field1, field1, #field2, field2)
957
958 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp)
959 {
960 size_t ret = 0;
961
962 ret += fprintf(fp, "%.60s\n", graph_dotted_line);
963 ret += fprintf(fp, "perf_event_attr:\n");
964
965 ret += PRINT_ATTR_U32(type);
966 ret += PRINT_ATTR_U32(size);
967 ret += PRINT_ATTR_X64(config);
968 ret += PRINT_ATTR_U64(sample_period);
969 ret += PRINT_ATTR_U64(sample_freq);
970 ret += PRINT_ATTR_X64(sample_type);
971 ret += PRINT_ATTR_X64(read_format);
972
973 ret += PRINT_ATTR2(disabled, inherit);
974 ret += PRINT_ATTR2(pinned, exclusive);
975 ret += PRINT_ATTR2(exclude_user, exclude_kernel);
976 ret += PRINT_ATTR2(exclude_hv, exclude_idle);
977 ret += PRINT_ATTR2(mmap, comm);
978 ret += PRINT_ATTR2(freq, inherit_stat);
979 ret += PRINT_ATTR2(enable_on_exec, task);
980 ret += PRINT_ATTR2(watermark, precise_ip);
981 ret += PRINT_ATTR2(mmap_data, sample_id_all);
982 ret += PRINT_ATTR2(exclude_host, exclude_guest);
983 ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel,
984 "excl.callchain_user", exclude_callchain_user);
985
986 ret += PRINT_ATTR_U32(wakeup_events);
987 ret += PRINT_ATTR_U32(wakeup_watermark);
988 ret += PRINT_ATTR_X32(bp_type);
989 ret += PRINT_ATTR_X64(bp_addr);
990 ret += PRINT_ATTR_X64(config1);
991 ret += PRINT_ATTR_U64(bp_len);
992 ret += PRINT_ATTR_X64(config2);
993 ret += PRINT_ATTR_X64(branch_sample_type);
994 ret += PRINT_ATTR_X64(sample_regs_user);
995 ret += PRINT_ATTR_U32(sample_stack_user);
996
997 ret += fprintf(fp, "%.60s\n", graph_dotted_line);
998
999 return ret;
1000 }
1001
1002 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1003 struct thread_map *threads)
1004 {
1005 int cpu, thread;
1006 unsigned long flags = 0;
1007 int pid = -1, err;
1008 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1009
1010 if (evsel->fd == NULL &&
1011 perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0)
1012 return -ENOMEM;
1013
1014 if (evsel->cgrp) {
1015 flags = PERF_FLAG_PID_CGROUP;
1016 pid = evsel->cgrp->fd;
1017 }
1018
1019 fallback_missing_features:
1020 if (perf_missing_features.mmap2)
1021 evsel->attr.mmap2 = 0;
1022 if (perf_missing_features.exclude_guest)
1023 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1024 retry_sample_id:
1025 if (perf_missing_features.sample_id_all)
1026 evsel->attr.sample_id_all = 0;
1027
1028 if (verbose >= 2)
1029 perf_event_attr__fprintf(&evsel->attr, stderr);
1030
1031 for (cpu = 0; cpu < cpus->nr; cpu++) {
1032
1033 for (thread = 0; thread < threads->nr; thread++) {
1034 int group_fd;
1035
1036 if (!evsel->cgrp)
1037 pid = threads->map[thread];
1038
1039 group_fd = get_group_fd(evsel, cpu, thread);
1040 retry_open:
1041 pr_debug2("perf_event_open: pid %d cpu %d group_fd %d flags %#lx\n",
1042 pid, cpus->map[cpu], group_fd, flags);
1043
1044 FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1045 pid,
1046 cpus->map[cpu],
1047 group_fd, flags);
1048 if (FD(evsel, cpu, thread) < 0) {
1049 err = -errno;
1050 goto try_fallback;
1051 }
1052 set_rlimit = NO_CHANGE;
1053 }
1054 }
1055
1056 return 0;
1057
1058 try_fallback:
1059 /*
1060 * perf stat needs between 5 and 22 fds per CPU. When we run out
1061 * of them try to increase the limits.
1062 */
1063 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1064 struct rlimit l;
1065 int old_errno = errno;
1066
1067 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1068 if (set_rlimit == NO_CHANGE)
1069 l.rlim_cur = l.rlim_max;
1070 else {
1071 l.rlim_cur = l.rlim_max + 1000;
1072 l.rlim_max = l.rlim_cur;
1073 }
1074 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1075 set_rlimit++;
1076 errno = old_errno;
1077 goto retry_open;
1078 }
1079 }
1080 errno = old_errno;
1081 }
1082
1083 if (err != -EINVAL || cpu > 0 || thread > 0)
1084 goto out_close;
1085
1086 if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1087 perf_missing_features.mmap2 = true;
1088 goto fallback_missing_features;
1089 } else if (!perf_missing_features.exclude_guest &&
1090 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1091 perf_missing_features.exclude_guest = true;
1092 goto fallback_missing_features;
1093 } else if (!perf_missing_features.sample_id_all) {
1094 perf_missing_features.sample_id_all = true;
1095 goto retry_sample_id;
1096 }
1097
1098 out_close:
1099 do {
1100 while (--thread >= 0) {
1101 close(FD(evsel, cpu, thread));
1102 FD(evsel, cpu, thread) = -1;
1103 }
1104 thread = threads->nr;
1105 } while (--cpu >= 0);
1106 return err;
1107 }
1108
1109 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1110 {
1111 if (evsel->fd == NULL)
1112 return;
1113
1114 perf_evsel__close_fd(evsel, ncpus, nthreads);
1115 perf_evsel__free_fd(evsel);
1116 evsel->fd = NULL;
1117 }
1118
1119 static struct {
1120 struct cpu_map map;
1121 int cpus[1];
1122 } empty_cpu_map = {
1123 .map.nr = 1,
1124 .cpus = { -1, },
1125 };
1126
1127 static struct {
1128 struct thread_map map;
1129 int threads[1];
1130 } empty_thread_map = {
1131 .map.nr = 1,
1132 .threads = { -1, },
1133 };
1134
1135 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1136 struct thread_map *threads)
1137 {
1138 if (cpus == NULL) {
1139 /* Work around old compiler warnings about strict aliasing */
1140 cpus = &empty_cpu_map.map;
1141 }
1142
1143 if (threads == NULL)
1144 threads = &empty_thread_map.map;
1145
1146 return __perf_evsel__open(evsel, cpus, threads);
1147 }
1148
1149 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1150 struct cpu_map *cpus)
1151 {
1152 return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1153 }
1154
1155 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1156 struct thread_map *threads)
1157 {
1158 return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1159 }
1160
1161 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1162 const union perf_event *event,
1163 struct perf_sample *sample)
1164 {
1165 u64 type = evsel->attr.sample_type;
1166 const u64 *array = event->sample.array;
1167 bool swapped = evsel->needs_swap;
1168 union u64_swap u;
1169
1170 array += ((event->header.size -
1171 sizeof(event->header)) / sizeof(u64)) - 1;
1172
1173 if (type & PERF_SAMPLE_IDENTIFIER) {
1174 sample->id = *array;
1175 array--;
1176 }
1177
1178 if (type & PERF_SAMPLE_CPU) {
1179 u.val64 = *array;
1180 if (swapped) {
1181 /* undo swap of u64, then swap on individual u32s */
1182 u.val64 = bswap_64(u.val64);
1183 u.val32[0] = bswap_32(u.val32[0]);
1184 }
1185
1186 sample->cpu = u.val32[0];
1187 array--;
1188 }
1189
1190 if (type & PERF_SAMPLE_STREAM_ID) {
1191 sample->stream_id = *array;
1192 array--;
1193 }
1194
1195 if (type & PERF_SAMPLE_ID) {
1196 sample->id = *array;
1197 array--;
1198 }
1199
1200 if (type & PERF_SAMPLE_TIME) {
1201 sample->time = *array;
1202 array--;
1203 }
1204
1205 if (type & PERF_SAMPLE_TID) {
1206 u.val64 = *array;
1207 if (swapped) {
1208 /* undo swap of u64, then swap on individual u32s */
1209 u.val64 = bswap_64(u.val64);
1210 u.val32[0] = bswap_32(u.val32[0]);
1211 u.val32[1] = bswap_32(u.val32[1]);
1212 }
1213
1214 sample->pid = u.val32[0];
1215 sample->tid = u.val32[1];
1216 }
1217
1218 return 0;
1219 }
1220
1221 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1222 u64 size)
1223 {
1224 return size > max_size || offset + size > endp;
1225 }
1226
1227 #define OVERFLOW_CHECK(offset, size, max_size) \
1228 do { \
1229 if (overflow(endp, (max_size), (offset), (size))) \
1230 return -EFAULT; \
1231 } while (0)
1232
1233 #define OVERFLOW_CHECK_u64(offset) \
1234 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1235
1236 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1237 struct perf_sample *data)
1238 {
1239 u64 type = evsel->attr.sample_type;
1240 bool swapped = evsel->needs_swap;
1241 const u64 *array;
1242 u16 max_size = event->header.size;
1243 const void *endp = (void *)event + max_size;
1244 u64 sz;
1245
1246 /*
1247 * used for cross-endian analysis. See git commit 65014ab3
1248 * for why this goofiness is needed.
1249 */
1250 union u64_swap u;
1251
1252 memset(data, 0, sizeof(*data));
1253 data->cpu = data->pid = data->tid = -1;
1254 data->stream_id = data->id = data->time = -1ULL;
1255 data->period = 1;
1256 data->weight = 0;
1257
1258 if (event->header.type != PERF_RECORD_SAMPLE) {
1259 if (!evsel->attr.sample_id_all)
1260 return 0;
1261 return perf_evsel__parse_id_sample(evsel, event, data);
1262 }
1263
1264 array = event->sample.array;
1265
1266 /*
1267 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1268 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
1269 * check the format does not go past the end of the event.
1270 */
1271 if (evsel->sample_size + sizeof(event->header) > event->header.size)
1272 return -EFAULT;
1273
1274 data->id = -1ULL;
1275 if (type & PERF_SAMPLE_IDENTIFIER) {
1276 data->id = *array;
1277 array++;
1278 }
1279
1280 if (type & PERF_SAMPLE_IP) {
1281 data->ip = *array;
1282 array++;
1283 }
1284
1285 if (type & PERF_SAMPLE_TID) {
1286 u.val64 = *array;
1287 if (swapped) {
1288 /* undo swap of u64, then swap on individual u32s */
1289 u.val64 = bswap_64(u.val64);
1290 u.val32[0] = bswap_32(u.val32[0]);
1291 u.val32[1] = bswap_32(u.val32[1]);
1292 }
1293
1294 data->pid = u.val32[0];
1295 data->tid = u.val32[1];
1296 array++;
1297 }
1298
1299 if (type & PERF_SAMPLE_TIME) {
1300 data->time = *array;
1301 array++;
1302 }
1303
1304 data->addr = 0;
1305 if (type & PERF_SAMPLE_ADDR) {
1306 data->addr = *array;
1307 array++;
1308 }
1309
1310 if (type & PERF_SAMPLE_ID) {
1311 data->id = *array;
1312 array++;
1313 }
1314
1315 if (type & PERF_SAMPLE_STREAM_ID) {
1316 data->stream_id = *array;
1317 array++;
1318 }
1319
1320 if (type & PERF_SAMPLE_CPU) {
1321
1322 u.val64 = *array;
1323 if (swapped) {
1324 /* undo swap of u64, then swap on individual u32s */
1325 u.val64 = bswap_64(u.val64);
1326 u.val32[0] = bswap_32(u.val32[0]);
1327 }
1328
1329 data->cpu = u.val32[0];
1330 array++;
1331 }
1332
1333 if (type & PERF_SAMPLE_PERIOD) {
1334 data->period = *array;
1335 array++;
1336 }
1337
1338 if (type & PERF_SAMPLE_READ) {
1339 u64 read_format = evsel->attr.read_format;
1340
1341 OVERFLOW_CHECK_u64(array);
1342 if (read_format & PERF_FORMAT_GROUP)
1343 data->read.group.nr = *array;
1344 else
1345 data->read.one.value = *array;
1346
1347 array++;
1348
1349 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1350 OVERFLOW_CHECK_u64(array);
1351 data->read.time_enabled = *array;
1352 array++;
1353 }
1354
1355 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1356 OVERFLOW_CHECK_u64(array);
1357 data->read.time_running = *array;
1358 array++;
1359 }
1360
1361 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1362 if (read_format & PERF_FORMAT_GROUP) {
1363 const u64 max_group_nr = UINT64_MAX /
1364 sizeof(struct sample_read_value);
1365
1366 if (data->read.group.nr > max_group_nr)
1367 return -EFAULT;
1368 sz = data->read.group.nr *
1369 sizeof(struct sample_read_value);
1370 OVERFLOW_CHECK(array, sz, max_size);
1371 data->read.group.values =
1372 (struct sample_read_value *)array;
1373 array = (void *)array + sz;
1374 } else {
1375 OVERFLOW_CHECK_u64(array);
1376 data->read.one.id = *array;
1377 array++;
1378 }
1379 }
1380
1381 if (type & PERF_SAMPLE_CALLCHAIN) {
1382 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1383
1384 OVERFLOW_CHECK_u64(array);
1385 data->callchain = (struct ip_callchain *)array++;
1386 if (data->callchain->nr > max_callchain_nr)
1387 return -EFAULT;
1388 sz = data->callchain->nr * sizeof(u64);
1389 OVERFLOW_CHECK(array, sz, max_size);
1390 array = (void *)array + sz;
1391 }
1392
1393 if (type & PERF_SAMPLE_RAW) {
1394 OVERFLOW_CHECK_u64(array);
1395 u.val64 = *array;
1396 if (WARN_ONCE(swapped,
1397 "Endianness of raw data not corrected!\n")) {
1398 /* undo swap of u64, then swap on individual u32s */
1399 u.val64 = bswap_64(u.val64);
1400 u.val32[0] = bswap_32(u.val32[0]);
1401 u.val32[1] = bswap_32(u.val32[1]);
1402 }
1403 data->raw_size = u.val32[0];
1404 array = (void *)array + sizeof(u32);
1405
1406 OVERFLOW_CHECK(array, data->raw_size, max_size);
1407 data->raw_data = (void *)array;
1408 array = (void *)array + data->raw_size;
1409 }
1410
1411 if (type & PERF_SAMPLE_BRANCH_STACK) {
1412 const u64 max_branch_nr = UINT64_MAX /
1413 sizeof(struct branch_entry);
1414
1415 OVERFLOW_CHECK_u64(array);
1416 data->branch_stack = (struct branch_stack *)array++;
1417
1418 if (data->branch_stack->nr > max_branch_nr)
1419 return -EFAULT;
1420 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1421 OVERFLOW_CHECK(array, sz, max_size);
1422 array = (void *)array + sz;
1423 }
1424
1425 if (type & PERF_SAMPLE_REGS_USER) {
1426 OVERFLOW_CHECK_u64(array);
1427 data->user_regs.abi = *array;
1428 array++;
1429
1430 if (data->user_regs.abi) {
1431 u64 regs_user = evsel->attr.sample_regs_user;
1432
1433 sz = hweight_long(regs_user) * sizeof(u64);
1434 OVERFLOW_CHECK(array, sz, max_size);
1435 data->user_regs.regs = (u64 *)array;
1436 array = (void *)array + sz;
1437 }
1438 }
1439
1440 if (type & PERF_SAMPLE_STACK_USER) {
1441 OVERFLOW_CHECK_u64(array);
1442 sz = *array++;
1443
1444 data->user_stack.offset = ((char *)(array - 1)
1445 - (char *) event);
1446
1447 if (!sz) {
1448 data->user_stack.size = 0;
1449 } else {
1450 OVERFLOW_CHECK(array, sz, max_size);
1451 data->user_stack.data = (char *)array;
1452 array = (void *)array + sz;
1453 OVERFLOW_CHECK_u64(array);
1454 data->user_stack.size = *array++;
1455 }
1456 }
1457
1458 data->weight = 0;
1459 if (type & PERF_SAMPLE_WEIGHT) {
1460 OVERFLOW_CHECK_u64(array);
1461 data->weight = *array;
1462 array++;
1463 }
1464
1465 data->data_src = PERF_MEM_DATA_SRC_NONE;
1466 if (type & PERF_SAMPLE_DATA_SRC) {
1467 OVERFLOW_CHECK_u64(array);
1468 data->data_src = *array;
1469 array++;
1470 }
1471
1472 return 0;
1473 }
1474
1475 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1476 u64 sample_regs_user, u64 read_format)
1477 {
1478 size_t sz, result = sizeof(struct sample_event);
1479
1480 if (type & PERF_SAMPLE_IDENTIFIER)
1481 result += sizeof(u64);
1482
1483 if (type & PERF_SAMPLE_IP)
1484 result += sizeof(u64);
1485
1486 if (type & PERF_SAMPLE_TID)
1487 result += sizeof(u64);
1488
1489 if (type & PERF_SAMPLE_TIME)
1490 result += sizeof(u64);
1491
1492 if (type & PERF_SAMPLE_ADDR)
1493 result += sizeof(u64);
1494
1495 if (type & PERF_SAMPLE_ID)
1496 result += sizeof(u64);
1497
1498 if (type & PERF_SAMPLE_STREAM_ID)
1499 result += sizeof(u64);
1500
1501 if (type & PERF_SAMPLE_CPU)
1502 result += sizeof(u64);
1503
1504 if (type & PERF_SAMPLE_PERIOD)
1505 result += sizeof(u64);
1506
1507 if (type & PERF_SAMPLE_READ) {
1508 result += sizeof(u64);
1509 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1510 result += sizeof(u64);
1511 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1512 result += sizeof(u64);
1513 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1514 if (read_format & PERF_FORMAT_GROUP) {
1515 sz = sample->read.group.nr *
1516 sizeof(struct sample_read_value);
1517 result += sz;
1518 } else {
1519 result += sizeof(u64);
1520 }
1521 }
1522
1523 if (type & PERF_SAMPLE_CALLCHAIN) {
1524 sz = (sample->callchain->nr + 1) * sizeof(u64);
1525 result += sz;
1526 }
1527
1528 if (type & PERF_SAMPLE_RAW) {
1529 result += sizeof(u32);
1530 result += sample->raw_size;
1531 }
1532
1533 if (type & PERF_SAMPLE_BRANCH_STACK) {
1534 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1535 sz += sizeof(u64);
1536 result += sz;
1537 }
1538
1539 if (type & PERF_SAMPLE_REGS_USER) {
1540 if (sample->user_regs.abi) {
1541 result += sizeof(u64);
1542 sz = hweight_long(sample_regs_user) * sizeof(u64);
1543 result += sz;
1544 } else {
1545 result += sizeof(u64);
1546 }
1547 }
1548
1549 if (type & PERF_SAMPLE_STACK_USER) {
1550 sz = sample->user_stack.size;
1551 result += sizeof(u64);
1552 if (sz) {
1553 result += sz;
1554 result += sizeof(u64);
1555 }
1556 }
1557
1558 if (type & PERF_SAMPLE_WEIGHT)
1559 result += sizeof(u64);
1560
1561 if (type & PERF_SAMPLE_DATA_SRC)
1562 result += sizeof(u64);
1563
1564 return result;
1565 }
1566
1567 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1568 u64 sample_regs_user, u64 read_format,
1569 const struct perf_sample *sample,
1570 bool swapped)
1571 {
1572 u64 *array;
1573 size_t sz;
1574 /*
1575 * used for cross-endian analysis. See git commit 65014ab3
1576 * for why this goofiness is needed.
1577 */
1578 union u64_swap u;
1579
1580 array = event->sample.array;
1581
1582 if (type & PERF_SAMPLE_IDENTIFIER) {
1583 *array = sample->id;
1584 array++;
1585 }
1586
1587 if (type & PERF_SAMPLE_IP) {
1588 *array = sample->ip;
1589 array++;
1590 }
1591
1592 if (type & PERF_SAMPLE_TID) {
1593 u.val32[0] = sample->pid;
1594 u.val32[1] = sample->tid;
1595 if (swapped) {
1596 /*
1597 * Inverse of what is done in perf_evsel__parse_sample
1598 */
1599 u.val32[0] = bswap_32(u.val32[0]);
1600 u.val32[1] = bswap_32(u.val32[1]);
1601 u.val64 = bswap_64(u.val64);
1602 }
1603
1604 *array = u.val64;
1605 array++;
1606 }
1607
1608 if (type & PERF_SAMPLE_TIME) {
1609 *array = sample->time;
1610 array++;
1611 }
1612
1613 if (type & PERF_SAMPLE_ADDR) {
1614 *array = sample->addr;
1615 array++;
1616 }
1617
1618 if (type & PERF_SAMPLE_ID) {
1619 *array = sample->id;
1620 array++;
1621 }
1622
1623 if (type & PERF_SAMPLE_STREAM_ID) {
1624 *array = sample->stream_id;
1625 array++;
1626 }
1627
1628 if (type & PERF_SAMPLE_CPU) {
1629 u.val32[0] = sample->cpu;
1630 if (swapped) {
1631 /*
1632 * Inverse of what is done in perf_evsel__parse_sample
1633 */
1634 u.val32[0] = bswap_32(u.val32[0]);
1635 u.val64 = bswap_64(u.val64);
1636 }
1637 *array = u.val64;
1638 array++;
1639 }
1640
1641 if (type & PERF_SAMPLE_PERIOD) {
1642 *array = sample->period;
1643 array++;
1644 }
1645
1646 if (type & PERF_SAMPLE_READ) {
1647 if (read_format & PERF_FORMAT_GROUP)
1648 *array = sample->read.group.nr;
1649 else
1650 *array = sample->read.one.value;
1651 array++;
1652
1653 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1654 *array = sample->read.time_enabled;
1655 array++;
1656 }
1657
1658 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1659 *array = sample->read.time_running;
1660 array++;
1661 }
1662
1663 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1664 if (read_format & PERF_FORMAT_GROUP) {
1665 sz = sample->read.group.nr *
1666 sizeof(struct sample_read_value);
1667 memcpy(array, sample->read.group.values, sz);
1668 array = (void *)array + sz;
1669 } else {
1670 *array = sample->read.one.id;
1671 array++;
1672 }
1673 }
1674
1675 if (type & PERF_SAMPLE_CALLCHAIN) {
1676 sz = (sample->callchain->nr + 1) * sizeof(u64);
1677 memcpy(array, sample->callchain, sz);
1678 array = (void *)array + sz;
1679 }
1680
1681 if (type & PERF_SAMPLE_RAW) {
1682 u.val32[0] = sample->raw_size;
1683 if (WARN_ONCE(swapped,
1684 "Endianness of raw data not corrected!\n")) {
1685 /*
1686 * Inverse of what is done in perf_evsel__parse_sample
1687 */
1688 u.val32[0] = bswap_32(u.val32[0]);
1689 u.val32[1] = bswap_32(u.val32[1]);
1690 u.val64 = bswap_64(u.val64);
1691 }
1692 *array = u.val64;
1693 array = (void *)array + sizeof(u32);
1694
1695 memcpy(array, sample->raw_data, sample->raw_size);
1696 array = (void *)array + sample->raw_size;
1697 }
1698
1699 if (type & PERF_SAMPLE_BRANCH_STACK) {
1700 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1701 sz += sizeof(u64);
1702 memcpy(array, sample->branch_stack, sz);
1703 array = (void *)array + sz;
1704 }
1705
1706 if (type & PERF_SAMPLE_REGS_USER) {
1707 if (sample->user_regs.abi) {
1708 *array++ = sample->user_regs.abi;
1709 sz = hweight_long(sample_regs_user) * sizeof(u64);
1710 memcpy(array, sample->user_regs.regs, sz);
1711 array = (void *)array + sz;
1712 } else {
1713 *array++ = 0;
1714 }
1715 }
1716
1717 if (type & PERF_SAMPLE_STACK_USER) {
1718 sz = sample->user_stack.size;
1719 *array++ = sz;
1720 if (sz) {
1721 memcpy(array, sample->user_stack.data, sz);
1722 array = (void *)array + sz;
1723 *array++ = sz;
1724 }
1725 }
1726
1727 if (type & PERF_SAMPLE_WEIGHT) {
1728 *array = sample->weight;
1729 array++;
1730 }
1731
1732 if (type & PERF_SAMPLE_DATA_SRC) {
1733 *array = sample->data_src;
1734 array++;
1735 }
1736
1737 return 0;
1738 }
1739
1740 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1741 {
1742 return pevent_find_field(evsel->tp_format, name);
1743 }
1744
1745 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1746 const char *name)
1747 {
1748 struct format_field *field = perf_evsel__field(evsel, name);
1749 int offset;
1750
1751 if (!field)
1752 return NULL;
1753
1754 offset = field->offset;
1755
1756 if (field->flags & FIELD_IS_DYNAMIC) {
1757 offset = *(int *)(sample->raw_data + field->offset);
1758 offset &= 0xffff;
1759 }
1760
1761 return sample->raw_data + offset;
1762 }
1763
1764 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1765 const char *name)
1766 {
1767 struct format_field *field = perf_evsel__field(evsel, name);
1768 void *ptr;
1769 u64 value;
1770
1771 if (!field)
1772 return 0;
1773
1774 ptr = sample->raw_data + field->offset;
1775
1776 switch (field->size) {
1777 case 1:
1778 return *(u8 *)ptr;
1779 case 2:
1780 value = *(u16 *)ptr;
1781 break;
1782 case 4:
1783 value = *(u32 *)ptr;
1784 break;
1785 case 8:
1786 value = *(u64 *)ptr;
1787 break;
1788 default:
1789 return 0;
1790 }
1791
1792 if (!evsel->needs_swap)
1793 return value;
1794
1795 switch (field->size) {
1796 case 2:
1797 return bswap_16(value);
1798 case 4:
1799 return bswap_32(value);
1800 case 8:
1801 return bswap_64(value);
1802 default:
1803 return 0;
1804 }
1805
1806 return 0;
1807 }
1808
1809 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
1810 {
1811 va_list args;
1812 int ret = 0;
1813
1814 if (!*first) {
1815 ret += fprintf(fp, ",");
1816 } else {
1817 ret += fprintf(fp, ":");
1818 *first = false;
1819 }
1820
1821 va_start(args, fmt);
1822 ret += vfprintf(fp, fmt, args);
1823 va_end(args);
1824 return ret;
1825 }
1826
1827 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value)
1828 {
1829 if (value == 0)
1830 return 0;
1831
1832 return comma_fprintf(fp, first, " %s: %" PRIu64, field, value);
1833 }
1834
1835 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field)
1836
1837 struct bit_names {
1838 int bit;
1839 const char *name;
1840 };
1841
1842 static int bits__fprintf(FILE *fp, const char *field, u64 value,
1843 struct bit_names *bits, bool *first)
1844 {
1845 int i = 0, printed = comma_fprintf(fp, first, " %s: ", field);
1846 bool first_bit = true;
1847
1848 do {
1849 if (value & bits[i].bit) {
1850 printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name);
1851 first_bit = false;
1852 }
1853 } while (bits[++i].name != NULL);
1854
1855 return printed;
1856 }
1857
1858 static int sample_type__fprintf(FILE *fp, bool *first, u64 value)
1859 {
1860 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1861 struct bit_names bits[] = {
1862 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1863 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1864 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1865 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1866 bit_name(IDENTIFIER),
1867 { .name = NULL, }
1868 };
1869 #undef bit_name
1870 return bits__fprintf(fp, "sample_type", value, bits, first);
1871 }
1872
1873 static int read_format__fprintf(FILE *fp, bool *first, u64 value)
1874 {
1875 #define bit_name(n) { PERF_FORMAT_##n, #n }
1876 struct bit_names bits[] = {
1877 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1878 bit_name(ID), bit_name(GROUP),
1879 { .name = NULL, }
1880 };
1881 #undef bit_name
1882 return bits__fprintf(fp, "read_format", value, bits, first);
1883 }
1884
1885 int perf_evsel__fprintf(struct perf_evsel *evsel,
1886 struct perf_attr_details *details, FILE *fp)
1887 {
1888 bool first = true;
1889 int printed = 0;
1890
1891 if (details->event_group) {
1892 struct perf_evsel *pos;
1893
1894 if (!perf_evsel__is_group_leader(evsel))
1895 return 0;
1896
1897 if (evsel->nr_members > 1)
1898 printed += fprintf(fp, "%s{", evsel->group_name ?: "");
1899
1900 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1901 for_each_group_member(pos, evsel)
1902 printed += fprintf(fp, ",%s", perf_evsel__name(pos));
1903
1904 if (evsel->nr_members > 1)
1905 printed += fprintf(fp, "}");
1906 goto out;
1907 }
1908
1909 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1910
1911 if (details->verbose || details->freq) {
1912 printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
1913 (u64)evsel->attr.sample_freq);
1914 }
1915
1916 if (details->verbose) {
1917 if_print(type);
1918 if_print(config);
1919 if_print(config1);
1920 if_print(config2);
1921 if_print(size);
1922 printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type);
1923 if (evsel->attr.read_format)
1924 printed += read_format__fprintf(fp, &first, evsel->attr.read_format);
1925 if_print(disabled);
1926 if_print(inherit);
1927 if_print(pinned);
1928 if_print(exclusive);
1929 if_print(exclude_user);
1930 if_print(exclude_kernel);
1931 if_print(exclude_hv);
1932 if_print(exclude_idle);
1933 if_print(mmap);
1934 if_print(mmap2);
1935 if_print(comm);
1936 if_print(freq);
1937 if_print(inherit_stat);
1938 if_print(enable_on_exec);
1939 if_print(task);
1940 if_print(watermark);
1941 if_print(precise_ip);
1942 if_print(mmap_data);
1943 if_print(sample_id_all);
1944 if_print(exclude_host);
1945 if_print(exclude_guest);
1946 if_print(__reserved_1);
1947 if_print(wakeup_events);
1948 if_print(bp_type);
1949 if_print(branch_sample_type);
1950 }
1951 out:
1952 fputc('\n', fp);
1953 return ++printed;
1954 }
1955
1956 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
1957 char *msg, size_t msgsize)
1958 {
1959 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
1960 evsel->attr.type == PERF_TYPE_HARDWARE &&
1961 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
1962 /*
1963 * If it's cycles then fall back to hrtimer based
1964 * cpu-clock-tick sw counter, which is always available even if
1965 * no PMU support.
1966 *
1967 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
1968 * b0a873e).
1969 */
1970 scnprintf(msg, msgsize, "%s",
1971 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
1972
1973 evsel->attr.type = PERF_TYPE_SOFTWARE;
1974 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
1975
1976 free(evsel->name);
1977 evsel->name = NULL;
1978 return true;
1979 }
1980
1981 return false;
1982 }
1983
1984 int perf_evsel__open_strerror(struct perf_evsel *evsel,
1985 struct perf_target *target,
1986 int err, char *msg, size_t size)
1987 {
1988 switch (err) {
1989 case EPERM:
1990 case EACCES:
1991 return scnprintf(msg, size,
1992 "You may not have permission to collect %sstats.\n"
1993 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
1994 " -1 - Not paranoid at all\n"
1995 " 0 - Disallow raw tracepoint access for unpriv\n"
1996 " 1 - Disallow cpu events for unpriv\n"
1997 " 2 - Disallow kernel profiling for unpriv",
1998 target->system_wide ? "system-wide " : "");
1999 case ENOENT:
2000 return scnprintf(msg, size, "The %s event is not supported.",
2001 perf_evsel__name(evsel));
2002 case EMFILE:
2003 return scnprintf(msg, size, "%s",
2004 "Too many events are opened.\n"
2005 "Try again after reducing the number of events.");
2006 case ENODEV:
2007 if (target->cpu_list)
2008 return scnprintf(msg, size, "%s",
2009 "No such device - did you specify an out-of-range profile CPU?\n");
2010 break;
2011 case EOPNOTSUPP:
2012 if (evsel->attr.precise_ip)
2013 return scnprintf(msg, size, "%s",
2014 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2015 #if defined(__i386__) || defined(__x86_64__)
2016 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2017 return scnprintf(msg, size, "%s",
2018 "No hardware sampling interrupt available.\n"
2019 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2020 #endif
2021 break;
2022 default:
2023 break;
2024 }
2025
2026 return scnprintf(msg, size,
2027 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s). \n"
2028 "/bin/dmesg may provide additional information.\n"
2029 "No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2030 err, strerror(err), perf_evsel__name(evsel));
2031 }
This page took 0.232402 seconds and 5 git commands to generate.