KVM: fix typo in copyright notice
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50
51 #include <asm/processor.h>
52 #include <asm/io.h>
53 #include <asm/uaccess.h>
54 #include <asm/pgtable.h>
55 #include <asm-generic/bitops/le.h>
56
57 #include "coalesced_mmio.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/kvm.h>
61
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
64
65 /*
66 * Ordering of locks:
67 *
68 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
69 */
70
71 DEFINE_SPINLOCK(kvm_lock);
72 LIST_HEAD(vm_list);
73
74 static cpumask_var_t cpus_hardware_enabled;
75 static int kvm_usage_count = 0;
76 static atomic_t hardware_enable_failed;
77
78 struct kmem_cache *kvm_vcpu_cache;
79 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
80
81 static __read_mostly struct preempt_ops kvm_preempt_ops;
82
83 struct dentry *kvm_debugfs_dir;
84
85 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
86 unsigned long arg);
87 static int hardware_enable_all(void);
88 static void hardware_disable_all(void);
89
90 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
91
92 static bool kvm_rebooting;
93
94 static bool largepages_enabled = true;
95
96 static struct page *hwpoison_page;
97 static pfn_t hwpoison_pfn;
98
99 static struct page *fault_page;
100 static pfn_t fault_pfn;
101
102 inline int kvm_is_mmio_pfn(pfn_t pfn)
103 {
104 if (pfn_valid(pfn)) {
105 struct page *page = compound_head(pfn_to_page(pfn));
106 return PageReserved(page);
107 }
108
109 return true;
110 }
111
112 /*
113 * Switches to specified vcpu, until a matching vcpu_put()
114 */
115 void vcpu_load(struct kvm_vcpu *vcpu)
116 {
117 int cpu;
118
119 mutex_lock(&vcpu->mutex);
120 cpu = get_cpu();
121 preempt_notifier_register(&vcpu->preempt_notifier);
122 kvm_arch_vcpu_load(vcpu, cpu);
123 put_cpu();
124 }
125
126 void vcpu_put(struct kvm_vcpu *vcpu)
127 {
128 preempt_disable();
129 kvm_arch_vcpu_put(vcpu);
130 preempt_notifier_unregister(&vcpu->preempt_notifier);
131 preempt_enable();
132 mutex_unlock(&vcpu->mutex);
133 }
134
135 static void ack_flush(void *_completed)
136 {
137 }
138
139 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
140 {
141 int i, cpu, me;
142 cpumask_var_t cpus;
143 bool called = true;
144 struct kvm_vcpu *vcpu;
145
146 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
147
148 raw_spin_lock(&kvm->requests_lock);
149 me = smp_processor_id();
150 kvm_for_each_vcpu(i, vcpu, kvm) {
151 if (kvm_make_check_request(req, vcpu))
152 continue;
153 cpu = vcpu->cpu;
154 if (cpus != NULL && cpu != -1 && cpu != me)
155 cpumask_set_cpu(cpu, cpus);
156 }
157 if (unlikely(cpus == NULL))
158 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
159 else if (!cpumask_empty(cpus))
160 smp_call_function_many(cpus, ack_flush, NULL, 1);
161 else
162 called = false;
163 raw_spin_unlock(&kvm->requests_lock);
164 free_cpumask_var(cpus);
165 return called;
166 }
167
168 void kvm_flush_remote_tlbs(struct kvm *kvm)
169 {
170 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
171 ++kvm->stat.remote_tlb_flush;
172 }
173
174 void kvm_reload_remote_mmus(struct kvm *kvm)
175 {
176 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
177 }
178
179 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
180 {
181 struct page *page;
182 int r;
183
184 mutex_init(&vcpu->mutex);
185 vcpu->cpu = -1;
186 vcpu->kvm = kvm;
187 vcpu->vcpu_id = id;
188 init_waitqueue_head(&vcpu->wq);
189
190 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
191 if (!page) {
192 r = -ENOMEM;
193 goto fail;
194 }
195 vcpu->run = page_address(page);
196
197 r = kvm_arch_vcpu_init(vcpu);
198 if (r < 0)
199 goto fail_free_run;
200 return 0;
201
202 fail_free_run:
203 free_page((unsigned long)vcpu->run);
204 fail:
205 return r;
206 }
207 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
208
209 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
210 {
211 kvm_arch_vcpu_uninit(vcpu);
212 free_page((unsigned long)vcpu->run);
213 }
214 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
215
216 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
217 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
218 {
219 return container_of(mn, struct kvm, mmu_notifier);
220 }
221
222 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
223 struct mm_struct *mm,
224 unsigned long address)
225 {
226 struct kvm *kvm = mmu_notifier_to_kvm(mn);
227 int need_tlb_flush, idx;
228
229 /*
230 * When ->invalidate_page runs, the linux pte has been zapped
231 * already but the page is still allocated until
232 * ->invalidate_page returns. So if we increase the sequence
233 * here the kvm page fault will notice if the spte can't be
234 * established because the page is going to be freed. If
235 * instead the kvm page fault establishes the spte before
236 * ->invalidate_page runs, kvm_unmap_hva will release it
237 * before returning.
238 *
239 * The sequence increase only need to be seen at spin_unlock
240 * time, and not at spin_lock time.
241 *
242 * Increasing the sequence after the spin_unlock would be
243 * unsafe because the kvm page fault could then establish the
244 * pte after kvm_unmap_hva returned, without noticing the page
245 * is going to be freed.
246 */
247 idx = srcu_read_lock(&kvm->srcu);
248 spin_lock(&kvm->mmu_lock);
249 kvm->mmu_notifier_seq++;
250 need_tlb_flush = kvm_unmap_hva(kvm, address);
251 spin_unlock(&kvm->mmu_lock);
252 srcu_read_unlock(&kvm->srcu, idx);
253
254 /* we've to flush the tlb before the pages can be freed */
255 if (need_tlb_flush)
256 kvm_flush_remote_tlbs(kvm);
257
258 }
259
260 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
261 struct mm_struct *mm,
262 unsigned long address,
263 pte_t pte)
264 {
265 struct kvm *kvm = mmu_notifier_to_kvm(mn);
266 int idx;
267
268 idx = srcu_read_lock(&kvm->srcu);
269 spin_lock(&kvm->mmu_lock);
270 kvm->mmu_notifier_seq++;
271 kvm_set_spte_hva(kvm, address, pte);
272 spin_unlock(&kvm->mmu_lock);
273 srcu_read_unlock(&kvm->srcu, idx);
274 }
275
276 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
277 struct mm_struct *mm,
278 unsigned long start,
279 unsigned long end)
280 {
281 struct kvm *kvm = mmu_notifier_to_kvm(mn);
282 int need_tlb_flush = 0, idx;
283
284 idx = srcu_read_lock(&kvm->srcu);
285 spin_lock(&kvm->mmu_lock);
286 /*
287 * The count increase must become visible at unlock time as no
288 * spte can be established without taking the mmu_lock and
289 * count is also read inside the mmu_lock critical section.
290 */
291 kvm->mmu_notifier_count++;
292 for (; start < end; start += PAGE_SIZE)
293 need_tlb_flush |= kvm_unmap_hva(kvm, start);
294 spin_unlock(&kvm->mmu_lock);
295 srcu_read_unlock(&kvm->srcu, idx);
296
297 /* we've to flush the tlb before the pages can be freed */
298 if (need_tlb_flush)
299 kvm_flush_remote_tlbs(kvm);
300 }
301
302 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
303 struct mm_struct *mm,
304 unsigned long start,
305 unsigned long end)
306 {
307 struct kvm *kvm = mmu_notifier_to_kvm(mn);
308
309 spin_lock(&kvm->mmu_lock);
310 /*
311 * This sequence increase will notify the kvm page fault that
312 * the page that is going to be mapped in the spte could have
313 * been freed.
314 */
315 kvm->mmu_notifier_seq++;
316 /*
317 * The above sequence increase must be visible before the
318 * below count decrease but both values are read by the kvm
319 * page fault under mmu_lock spinlock so we don't need to add
320 * a smb_wmb() here in between the two.
321 */
322 kvm->mmu_notifier_count--;
323 spin_unlock(&kvm->mmu_lock);
324
325 BUG_ON(kvm->mmu_notifier_count < 0);
326 }
327
328 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
329 struct mm_struct *mm,
330 unsigned long address)
331 {
332 struct kvm *kvm = mmu_notifier_to_kvm(mn);
333 int young, idx;
334
335 idx = srcu_read_lock(&kvm->srcu);
336 spin_lock(&kvm->mmu_lock);
337 young = kvm_age_hva(kvm, address);
338 spin_unlock(&kvm->mmu_lock);
339 srcu_read_unlock(&kvm->srcu, idx);
340
341 if (young)
342 kvm_flush_remote_tlbs(kvm);
343
344 return young;
345 }
346
347 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
348 struct mm_struct *mm)
349 {
350 struct kvm *kvm = mmu_notifier_to_kvm(mn);
351 int idx;
352
353 idx = srcu_read_lock(&kvm->srcu);
354 kvm_arch_flush_shadow(kvm);
355 srcu_read_unlock(&kvm->srcu, idx);
356 }
357
358 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
359 .invalidate_page = kvm_mmu_notifier_invalidate_page,
360 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
361 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
362 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
363 .change_pte = kvm_mmu_notifier_change_pte,
364 .release = kvm_mmu_notifier_release,
365 };
366
367 static int kvm_init_mmu_notifier(struct kvm *kvm)
368 {
369 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
370 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
371 }
372
373 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
374
375 static int kvm_init_mmu_notifier(struct kvm *kvm)
376 {
377 return 0;
378 }
379
380 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
381
382 static struct kvm *kvm_create_vm(void)
383 {
384 int r = 0, i;
385 struct kvm *kvm = kvm_arch_create_vm();
386
387 if (IS_ERR(kvm))
388 goto out;
389
390 r = hardware_enable_all();
391 if (r)
392 goto out_err_nodisable;
393
394 #ifdef CONFIG_HAVE_KVM_IRQCHIP
395 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
396 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
397 #endif
398
399 r = -ENOMEM;
400 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
401 if (!kvm->memslots)
402 goto out_err;
403 if (init_srcu_struct(&kvm->srcu))
404 goto out_err;
405 for (i = 0; i < KVM_NR_BUSES; i++) {
406 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
407 GFP_KERNEL);
408 if (!kvm->buses[i]) {
409 cleanup_srcu_struct(&kvm->srcu);
410 goto out_err;
411 }
412 }
413
414 r = kvm_init_mmu_notifier(kvm);
415 if (r) {
416 cleanup_srcu_struct(&kvm->srcu);
417 goto out_err;
418 }
419
420 kvm->mm = current->mm;
421 atomic_inc(&kvm->mm->mm_count);
422 spin_lock_init(&kvm->mmu_lock);
423 raw_spin_lock_init(&kvm->requests_lock);
424 kvm_eventfd_init(kvm);
425 mutex_init(&kvm->lock);
426 mutex_init(&kvm->irq_lock);
427 mutex_init(&kvm->slots_lock);
428 atomic_set(&kvm->users_count, 1);
429 spin_lock(&kvm_lock);
430 list_add(&kvm->vm_list, &vm_list);
431 spin_unlock(&kvm_lock);
432 out:
433 return kvm;
434
435 out_err:
436 hardware_disable_all();
437 out_err_nodisable:
438 for (i = 0; i < KVM_NR_BUSES; i++)
439 kfree(kvm->buses[i]);
440 kfree(kvm->memslots);
441 kfree(kvm);
442 return ERR_PTR(r);
443 }
444
445 /*
446 * Free any memory in @free but not in @dont.
447 */
448 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
449 struct kvm_memory_slot *dont)
450 {
451 int i;
452
453 if (!dont || free->rmap != dont->rmap)
454 vfree(free->rmap);
455
456 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
457 vfree(free->dirty_bitmap);
458
459
460 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
461 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
462 vfree(free->lpage_info[i]);
463 free->lpage_info[i] = NULL;
464 }
465 }
466
467 free->npages = 0;
468 free->dirty_bitmap = NULL;
469 free->rmap = NULL;
470 }
471
472 void kvm_free_physmem(struct kvm *kvm)
473 {
474 int i;
475 struct kvm_memslots *slots = kvm->memslots;
476
477 for (i = 0; i < slots->nmemslots; ++i)
478 kvm_free_physmem_slot(&slots->memslots[i], NULL);
479
480 kfree(kvm->memslots);
481 }
482
483 static void kvm_destroy_vm(struct kvm *kvm)
484 {
485 int i;
486 struct mm_struct *mm = kvm->mm;
487
488 kvm_arch_sync_events(kvm);
489 spin_lock(&kvm_lock);
490 list_del(&kvm->vm_list);
491 spin_unlock(&kvm_lock);
492 kvm_free_irq_routing(kvm);
493 for (i = 0; i < KVM_NR_BUSES; i++)
494 kvm_io_bus_destroy(kvm->buses[i]);
495 kvm_coalesced_mmio_free(kvm);
496 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
497 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
498 #else
499 kvm_arch_flush_shadow(kvm);
500 #endif
501 kvm_arch_destroy_vm(kvm);
502 hardware_disable_all();
503 mmdrop(mm);
504 }
505
506 void kvm_get_kvm(struct kvm *kvm)
507 {
508 atomic_inc(&kvm->users_count);
509 }
510 EXPORT_SYMBOL_GPL(kvm_get_kvm);
511
512 void kvm_put_kvm(struct kvm *kvm)
513 {
514 if (atomic_dec_and_test(&kvm->users_count))
515 kvm_destroy_vm(kvm);
516 }
517 EXPORT_SYMBOL_GPL(kvm_put_kvm);
518
519
520 static int kvm_vm_release(struct inode *inode, struct file *filp)
521 {
522 struct kvm *kvm = filp->private_data;
523
524 kvm_irqfd_release(kvm);
525
526 kvm_put_kvm(kvm);
527 return 0;
528 }
529
530 /*
531 * Allocate some memory and give it an address in the guest physical address
532 * space.
533 *
534 * Discontiguous memory is allowed, mostly for framebuffers.
535 *
536 * Must be called holding mmap_sem for write.
537 */
538 int __kvm_set_memory_region(struct kvm *kvm,
539 struct kvm_userspace_memory_region *mem,
540 int user_alloc)
541 {
542 int r, flush_shadow = 0;
543 gfn_t base_gfn;
544 unsigned long npages;
545 unsigned long i;
546 struct kvm_memory_slot *memslot;
547 struct kvm_memory_slot old, new;
548 struct kvm_memslots *slots, *old_memslots;
549
550 r = -EINVAL;
551 /* General sanity checks */
552 if (mem->memory_size & (PAGE_SIZE - 1))
553 goto out;
554 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
555 goto out;
556 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
557 goto out;
558 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
559 goto out;
560 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
561 goto out;
562
563 memslot = &kvm->memslots->memslots[mem->slot];
564 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
565 npages = mem->memory_size >> PAGE_SHIFT;
566
567 r = -EINVAL;
568 if (npages > KVM_MEM_MAX_NR_PAGES)
569 goto out;
570
571 if (!npages)
572 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
573
574 new = old = *memslot;
575
576 new.id = mem->slot;
577 new.base_gfn = base_gfn;
578 new.npages = npages;
579 new.flags = mem->flags;
580
581 /* Disallow changing a memory slot's size. */
582 r = -EINVAL;
583 if (npages && old.npages && npages != old.npages)
584 goto out_free;
585
586 /* Check for overlaps */
587 r = -EEXIST;
588 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
589 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
590
591 if (s == memslot || !s->npages)
592 continue;
593 if (!((base_gfn + npages <= s->base_gfn) ||
594 (base_gfn >= s->base_gfn + s->npages)))
595 goto out_free;
596 }
597
598 /* Free page dirty bitmap if unneeded */
599 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
600 new.dirty_bitmap = NULL;
601
602 r = -ENOMEM;
603
604 /* Allocate if a slot is being created */
605 #ifndef CONFIG_S390
606 if (npages && !new.rmap) {
607 new.rmap = vmalloc(npages * sizeof(*new.rmap));
608
609 if (!new.rmap)
610 goto out_free;
611
612 memset(new.rmap, 0, npages * sizeof(*new.rmap));
613
614 new.user_alloc = user_alloc;
615 new.userspace_addr = mem->userspace_addr;
616 }
617 if (!npages)
618 goto skip_lpage;
619
620 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
621 unsigned long ugfn;
622 unsigned long j;
623 int lpages;
624 int level = i + 2;
625
626 /* Avoid unused variable warning if no large pages */
627 (void)level;
628
629 if (new.lpage_info[i])
630 continue;
631
632 lpages = 1 + ((base_gfn + npages - 1)
633 >> KVM_HPAGE_GFN_SHIFT(level));
634 lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
635
636 new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
637
638 if (!new.lpage_info[i])
639 goto out_free;
640
641 memset(new.lpage_info[i], 0,
642 lpages * sizeof(*new.lpage_info[i]));
643
644 if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
645 new.lpage_info[i][0].write_count = 1;
646 if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
647 new.lpage_info[i][lpages - 1].write_count = 1;
648 ugfn = new.userspace_addr >> PAGE_SHIFT;
649 /*
650 * If the gfn and userspace address are not aligned wrt each
651 * other, or if explicitly asked to, disable large page
652 * support for this slot
653 */
654 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
655 !largepages_enabled)
656 for (j = 0; j < lpages; ++j)
657 new.lpage_info[i][j].write_count = 1;
658 }
659
660 skip_lpage:
661
662 /* Allocate page dirty bitmap if needed */
663 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
664 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(&new);
665
666 new.dirty_bitmap = vmalloc(dirty_bytes);
667 if (!new.dirty_bitmap)
668 goto out_free;
669 memset(new.dirty_bitmap, 0, dirty_bytes);
670 /* destroy any largepage mappings for dirty tracking */
671 if (old.npages)
672 flush_shadow = 1;
673 }
674 #else /* not defined CONFIG_S390 */
675 new.user_alloc = user_alloc;
676 if (user_alloc)
677 new.userspace_addr = mem->userspace_addr;
678 #endif /* not defined CONFIG_S390 */
679
680 if (!npages) {
681 r = -ENOMEM;
682 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
683 if (!slots)
684 goto out_free;
685 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
686 if (mem->slot >= slots->nmemslots)
687 slots->nmemslots = mem->slot + 1;
688 slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
689
690 old_memslots = kvm->memslots;
691 rcu_assign_pointer(kvm->memslots, slots);
692 synchronize_srcu_expedited(&kvm->srcu);
693 /* From this point no new shadow pages pointing to a deleted
694 * memslot will be created.
695 *
696 * validation of sp->gfn happens in:
697 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
698 * - kvm_is_visible_gfn (mmu_check_roots)
699 */
700 kvm_arch_flush_shadow(kvm);
701 kfree(old_memslots);
702 }
703
704 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
705 if (r)
706 goto out_free;
707
708 #ifdef CONFIG_DMAR
709 /* map the pages in iommu page table */
710 if (npages) {
711 r = kvm_iommu_map_pages(kvm, &new);
712 if (r)
713 goto out_free;
714 }
715 #endif
716
717 r = -ENOMEM;
718 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
719 if (!slots)
720 goto out_free;
721 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
722 if (mem->slot >= slots->nmemslots)
723 slots->nmemslots = mem->slot + 1;
724
725 /* actual memory is freed via old in kvm_free_physmem_slot below */
726 if (!npages) {
727 new.rmap = NULL;
728 new.dirty_bitmap = NULL;
729 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
730 new.lpage_info[i] = NULL;
731 }
732
733 slots->memslots[mem->slot] = new;
734 old_memslots = kvm->memslots;
735 rcu_assign_pointer(kvm->memslots, slots);
736 synchronize_srcu_expedited(&kvm->srcu);
737
738 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
739
740 kvm_free_physmem_slot(&old, &new);
741 kfree(old_memslots);
742
743 if (flush_shadow)
744 kvm_arch_flush_shadow(kvm);
745
746 return 0;
747
748 out_free:
749 kvm_free_physmem_slot(&new, &old);
750 out:
751 return r;
752
753 }
754 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
755
756 int kvm_set_memory_region(struct kvm *kvm,
757 struct kvm_userspace_memory_region *mem,
758 int user_alloc)
759 {
760 int r;
761
762 mutex_lock(&kvm->slots_lock);
763 r = __kvm_set_memory_region(kvm, mem, user_alloc);
764 mutex_unlock(&kvm->slots_lock);
765 return r;
766 }
767 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
768
769 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
770 struct
771 kvm_userspace_memory_region *mem,
772 int user_alloc)
773 {
774 if (mem->slot >= KVM_MEMORY_SLOTS)
775 return -EINVAL;
776 return kvm_set_memory_region(kvm, mem, user_alloc);
777 }
778
779 int kvm_get_dirty_log(struct kvm *kvm,
780 struct kvm_dirty_log *log, int *is_dirty)
781 {
782 struct kvm_memory_slot *memslot;
783 int r, i;
784 unsigned long n;
785 unsigned long any = 0;
786
787 r = -EINVAL;
788 if (log->slot >= KVM_MEMORY_SLOTS)
789 goto out;
790
791 memslot = &kvm->memslots->memslots[log->slot];
792 r = -ENOENT;
793 if (!memslot->dirty_bitmap)
794 goto out;
795
796 n = kvm_dirty_bitmap_bytes(memslot);
797
798 for (i = 0; !any && i < n/sizeof(long); ++i)
799 any = memslot->dirty_bitmap[i];
800
801 r = -EFAULT;
802 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
803 goto out;
804
805 if (any)
806 *is_dirty = 1;
807
808 r = 0;
809 out:
810 return r;
811 }
812
813 void kvm_disable_largepages(void)
814 {
815 largepages_enabled = false;
816 }
817 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
818
819 int is_error_page(struct page *page)
820 {
821 return page == bad_page || page == hwpoison_page || page == fault_page;
822 }
823 EXPORT_SYMBOL_GPL(is_error_page);
824
825 int is_error_pfn(pfn_t pfn)
826 {
827 return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
828 }
829 EXPORT_SYMBOL_GPL(is_error_pfn);
830
831 int is_hwpoison_pfn(pfn_t pfn)
832 {
833 return pfn == hwpoison_pfn;
834 }
835 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
836
837 int is_fault_pfn(pfn_t pfn)
838 {
839 return pfn == fault_pfn;
840 }
841 EXPORT_SYMBOL_GPL(is_fault_pfn);
842
843 static inline unsigned long bad_hva(void)
844 {
845 return PAGE_OFFSET;
846 }
847
848 int kvm_is_error_hva(unsigned long addr)
849 {
850 return addr == bad_hva();
851 }
852 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
853
854 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
855 {
856 int i;
857 struct kvm_memslots *slots = kvm_memslots(kvm);
858
859 for (i = 0; i < slots->nmemslots; ++i) {
860 struct kvm_memory_slot *memslot = &slots->memslots[i];
861
862 if (gfn >= memslot->base_gfn
863 && gfn < memslot->base_gfn + memslot->npages)
864 return memslot;
865 }
866 return NULL;
867 }
868 EXPORT_SYMBOL_GPL(gfn_to_memslot);
869
870 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
871 {
872 int i;
873 struct kvm_memslots *slots = kvm_memslots(kvm);
874
875 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
876 struct kvm_memory_slot *memslot = &slots->memslots[i];
877
878 if (memslot->flags & KVM_MEMSLOT_INVALID)
879 continue;
880
881 if (gfn >= memslot->base_gfn
882 && gfn < memslot->base_gfn + memslot->npages)
883 return 1;
884 }
885 return 0;
886 }
887 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
888
889 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
890 {
891 struct vm_area_struct *vma;
892 unsigned long addr, size;
893
894 size = PAGE_SIZE;
895
896 addr = gfn_to_hva(kvm, gfn);
897 if (kvm_is_error_hva(addr))
898 return PAGE_SIZE;
899
900 down_read(&current->mm->mmap_sem);
901 vma = find_vma(current->mm, addr);
902 if (!vma)
903 goto out;
904
905 size = vma_kernel_pagesize(vma);
906
907 out:
908 up_read(&current->mm->mmap_sem);
909
910 return size;
911 }
912
913 int memslot_id(struct kvm *kvm, gfn_t gfn)
914 {
915 int i;
916 struct kvm_memslots *slots = kvm_memslots(kvm);
917 struct kvm_memory_slot *memslot = NULL;
918
919 for (i = 0; i < slots->nmemslots; ++i) {
920 memslot = &slots->memslots[i];
921
922 if (gfn >= memslot->base_gfn
923 && gfn < memslot->base_gfn + memslot->npages)
924 break;
925 }
926
927 return memslot - slots->memslots;
928 }
929
930 static unsigned long gfn_to_hva_many(struct kvm *kvm, gfn_t gfn,
931 gfn_t *nr_pages)
932 {
933 struct kvm_memory_slot *slot;
934
935 slot = gfn_to_memslot(kvm, gfn);
936 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
937 return bad_hva();
938
939 if (nr_pages)
940 *nr_pages = slot->npages - (gfn - slot->base_gfn);
941
942 return gfn_to_hva_memslot(slot, gfn);
943 }
944
945 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
946 {
947 return gfn_to_hva_many(kvm, gfn, NULL);
948 }
949 EXPORT_SYMBOL_GPL(gfn_to_hva);
950
951 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic)
952 {
953 struct page *page[1];
954 int npages;
955 pfn_t pfn;
956
957 if (atomic)
958 npages = __get_user_pages_fast(addr, 1, 1, page);
959 else {
960 might_sleep();
961 npages = get_user_pages_fast(addr, 1, 1, page);
962 }
963
964 if (unlikely(npages != 1)) {
965 struct vm_area_struct *vma;
966
967 if (atomic)
968 goto return_fault_page;
969
970 down_read(&current->mm->mmap_sem);
971 if (is_hwpoison_address(addr)) {
972 up_read(&current->mm->mmap_sem);
973 get_page(hwpoison_page);
974 return page_to_pfn(hwpoison_page);
975 }
976
977 vma = find_vma(current->mm, addr);
978
979 if (vma == NULL || addr < vma->vm_start ||
980 !(vma->vm_flags & VM_PFNMAP)) {
981 up_read(&current->mm->mmap_sem);
982 return_fault_page:
983 get_page(fault_page);
984 return page_to_pfn(fault_page);
985 }
986
987 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
988 up_read(&current->mm->mmap_sem);
989 BUG_ON(!kvm_is_mmio_pfn(pfn));
990 } else
991 pfn = page_to_pfn(page[0]);
992
993 return pfn;
994 }
995
996 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
997 {
998 return hva_to_pfn(kvm, addr, true);
999 }
1000 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1001
1002 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic)
1003 {
1004 unsigned long addr;
1005
1006 addr = gfn_to_hva(kvm, gfn);
1007 if (kvm_is_error_hva(addr)) {
1008 get_page(bad_page);
1009 return page_to_pfn(bad_page);
1010 }
1011
1012 return hva_to_pfn(kvm, addr, atomic);
1013 }
1014
1015 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1016 {
1017 return __gfn_to_pfn(kvm, gfn, true);
1018 }
1019 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1020
1021 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1022 {
1023 return __gfn_to_pfn(kvm, gfn, false);
1024 }
1025 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1026
1027 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1028 struct kvm_memory_slot *slot, gfn_t gfn)
1029 {
1030 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1031 return hva_to_pfn(kvm, addr, false);
1032 }
1033
1034 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1035 int nr_pages)
1036 {
1037 unsigned long addr;
1038 gfn_t entry;
1039
1040 addr = gfn_to_hva_many(kvm, gfn, &entry);
1041 if (kvm_is_error_hva(addr))
1042 return -1;
1043
1044 if (entry < nr_pages)
1045 return 0;
1046
1047 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1048 }
1049 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1050
1051 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1052 {
1053 pfn_t pfn;
1054
1055 pfn = gfn_to_pfn(kvm, gfn);
1056 if (!kvm_is_mmio_pfn(pfn))
1057 return pfn_to_page(pfn);
1058
1059 WARN_ON(kvm_is_mmio_pfn(pfn));
1060
1061 get_page(bad_page);
1062 return bad_page;
1063 }
1064
1065 EXPORT_SYMBOL_GPL(gfn_to_page);
1066
1067 void kvm_release_page_clean(struct page *page)
1068 {
1069 kvm_release_pfn_clean(page_to_pfn(page));
1070 }
1071 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1072
1073 void kvm_release_pfn_clean(pfn_t pfn)
1074 {
1075 if (!kvm_is_mmio_pfn(pfn))
1076 put_page(pfn_to_page(pfn));
1077 }
1078 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1079
1080 void kvm_release_page_dirty(struct page *page)
1081 {
1082 kvm_release_pfn_dirty(page_to_pfn(page));
1083 }
1084 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1085
1086 void kvm_release_pfn_dirty(pfn_t pfn)
1087 {
1088 kvm_set_pfn_dirty(pfn);
1089 kvm_release_pfn_clean(pfn);
1090 }
1091 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1092
1093 void kvm_set_page_dirty(struct page *page)
1094 {
1095 kvm_set_pfn_dirty(page_to_pfn(page));
1096 }
1097 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1098
1099 void kvm_set_pfn_dirty(pfn_t pfn)
1100 {
1101 if (!kvm_is_mmio_pfn(pfn)) {
1102 struct page *page = pfn_to_page(pfn);
1103 if (!PageReserved(page))
1104 SetPageDirty(page);
1105 }
1106 }
1107 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1108
1109 void kvm_set_pfn_accessed(pfn_t pfn)
1110 {
1111 if (!kvm_is_mmio_pfn(pfn))
1112 mark_page_accessed(pfn_to_page(pfn));
1113 }
1114 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1115
1116 void kvm_get_pfn(pfn_t pfn)
1117 {
1118 if (!kvm_is_mmio_pfn(pfn))
1119 get_page(pfn_to_page(pfn));
1120 }
1121 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1122
1123 static int next_segment(unsigned long len, int offset)
1124 {
1125 if (len > PAGE_SIZE - offset)
1126 return PAGE_SIZE - offset;
1127 else
1128 return len;
1129 }
1130
1131 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1132 int len)
1133 {
1134 int r;
1135 unsigned long addr;
1136
1137 addr = gfn_to_hva(kvm, gfn);
1138 if (kvm_is_error_hva(addr))
1139 return -EFAULT;
1140 r = copy_from_user(data, (void __user *)addr + offset, len);
1141 if (r)
1142 return -EFAULT;
1143 return 0;
1144 }
1145 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1146
1147 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1148 {
1149 gfn_t gfn = gpa >> PAGE_SHIFT;
1150 int seg;
1151 int offset = offset_in_page(gpa);
1152 int ret;
1153
1154 while ((seg = next_segment(len, offset)) != 0) {
1155 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1156 if (ret < 0)
1157 return ret;
1158 offset = 0;
1159 len -= seg;
1160 data += seg;
1161 ++gfn;
1162 }
1163 return 0;
1164 }
1165 EXPORT_SYMBOL_GPL(kvm_read_guest);
1166
1167 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1168 unsigned long len)
1169 {
1170 int r;
1171 unsigned long addr;
1172 gfn_t gfn = gpa >> PAGE_SHIFT;
1173 int offset = offset_in_page(gpa);
1174
1175 addr = gfn_to_hva(kvm, gfn);
1176 if (kvm_is_error_hva(addr))
1177 return -EFAULT;
1178 pagefault_disable();
1179 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1180 pagefault_enable();
1181 if (r)
1182 return -EFAULT;
1183 return 0;
1184 }
1185 EXPORT_SYMBOL(kvm_read_guest_atomic);
1186
1187 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1188 int offset, int len)
1189 {
1190 int r;
1191 unsigned long addr;
1192
1193 addr = gfn_to_hva(kvm, gfn);
1194 if (kvm_is_error_hva(addr))
1195 return -EFAULT;
1196 r = copy_to_user((void __user *)addr + offset, data, len);
1197 if (r)
1198 return -EFAULT;
1199 mark_page_dirty(kvm, gfn);
1200 return 0;
1201 }
1202 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1203
1204 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1205 unsigned long len)
1206 {
1207 gfn_t gfn = gpa >> PAGE_SHIFT;
1208 int seg;
1209 int offset = offset_in_page(gpa);
1210 int ret;
1211
1212 while ((seg = next_segment(len, offset)) != 0) {
1213 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1214 if (ret < 0)
1215 return ret;
1216 offset = 0;
1217 len -= seg;
1218 data += seg;
1219 ++gfn;
1220 }
1221 return 0;
1222 }
1223
1224 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1225 {
1226 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1227 }
1228 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1229
1230 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1231 {
1232 gfn_t gfn = gpa >> PAGE_SHIFT;
1233 int seg;
1234 int offset = offset_in_page(gpa);
1235 int ret;
1236
1237 while ((seg = next_segment(len, offset)) != 0) {
1238 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1239 if (ret < 0)
1240 return ret;
1241 offset = 0;
1242 len -= seg;
1243 ++gfn;
1244 }
1245 return 0;
1246 }
1247 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1248
1249 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1250 {
1251 struct kvm_memory_slot *memslot;
1252
1253 memslot = gfn_to_memslot(kvm, gfn);
1254 if (memslot && memslot->dirty_bitmap) {
1255 unsigned long rel_gfn = gfn - memslot->base_gfn;
1256
1257 generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
1258 }
1259 }
1260
1261 /*
1262 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1263 */
1264 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1265 {
1266 DEFINE_WAIT(wait);
1267
1268 for (;;) {
1269 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1270
1271 if (kvm_arch_vcpu_runnable(vcpu)) {
1272 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1273 break;
1274 }
1275 if (kvm_cpu_has_pending_timer(vcpu))
1276 break;
1277 if (signal_pending(current))
1278 break;
1279
1280 schedule();
1281 }
1282
1283 finish_wait(&vcpu->wq, &wait);
1284 }
1285
1286 void kvm_resched(struct kvm_vcpu *vcpu)
1287 {
1288 if (!need_resched())
1289 return;
1290 cond_resched();
1291 }
1292 EXPORT_SYMBOL_GPL(kvm_resched);
1293
1294 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
1295 {
1296 ktime_t expires;
1297 DEFINE_WAIT(wait);
1298
1299 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1300
1301 /* Sleep for 100 us, and hope lock-holder got scheduled */
1302 expires = ktime_add_ns(ktime_get(), 100000UL);
1303 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1304
1305 finish_wait(&vcpu->wq, &wait);
1306 }
1307 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1308
1309 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1310 {
1311 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1312 struct page *page;
1313
1314 if (vmf->pgoff == 0)
1315 page = virt_to_page(vcpu->run);
1316 #ifdef CONFIG_X86
1317 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1318 page = virt_to_page(vcpu->arch.pio_data);
1319 #endif
1320 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1321 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1322 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1323 #endif
1324 else
1325 return VM_FAULT_SIGBUS;
1326 get_page(page);
1327 vmf->page = page;
1328 return 0;
1329 }
1330
1331 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1332 .fault = kvm_vcpu_fault,
1333 };
1334
1335 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1336 {
1337 vma->vm_ops = &kvm_vcpu_vm_ops;
1338 return 0;
1339 }
1340
1341 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1342 {
1343 struct kvm_vcpu *vcpu = filp->private_data;
1344
1345 kvm_put_kvm(vcpu->kvm);
1346 return 0;
1347 }
1348
1349 static struct file_operations kvm_vcpu_fops = {
1350 .release = kvm_vcpu_release,
1351 .unlocked_ioctl = kvm_vcpu_ioctl,
1352 .compat_ioctl = kvm_vcpu_ioctl,
1353 .mmap = kvm_vcpu_mmap,
1354 };
1355
1356 /*
1357 * Allocates an inode for the vcpu.
1358 */
1359 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1360 {
1361 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1362 }
1363
1364 /*
1365 * Creates some virtual cpus. Good luck creating more than one.
1366 */
1367 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1368 {
1369 int r;
1370 struct kvm_vcpu *vcpu, *v;
1371
1372 vcpu = kvm_arch_vcpu_create(kvm, id);
1373 if (IS_ERR(vcpu))
1374 return PTR_ERR(vcpu);
1375
1376 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1377
1378 r = kvm_arch_vcpu_setup(vcpu);
1379 if (r)
1380 return r;
1381
1382 mutex_lock(&kvm->lock);
1383 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1384 r = -EINVAL;
1385 goto vcpu_destroy;
1386 }
1387
1388 kvm_for_each_vcpu(r, v, kvm)
1389 if (v->vcpu_id == id) {
1390 r = -EEXIST;
1391 goto vcpu_destroy;
1392 }
1393
1394 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1395
1396 /* Now it's all set up, let userspace reach it */
1397 kvm_get_kvm(kvm);
1398 r = create_vcpu_fd(vcpu);
1399 if (r < 0) {
1400 kvm_put_kvm(kvm);
1401 goto vcpu_destroy;
1402 }
1403
1404 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1405 smp_wmb();
1406 atomic_inc(&kvm->online_vcpus);
1407
1408 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1409 if (kvm->bsp_vcpu_id == id)
1410 kvm->bsp_vcpu = vcpu;
1411 #endif
1412 mutex_unlock(&kvm->lock);
1413 return r;
1414
1415 vcpu_destroy:
1416 mutex_unlock(&kvm->lock);
1417 kvm_arch_vcpu_destroy(vcpu);
1418 return r;
1419 }
1420
1421 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1422 {
1423 if (sigset) {
1424 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1425 vcpu->sigset_active = 1;
1426 vcpu->sigset = *sigset;
1427 } else
1428 vcpu->sigset_active = 0;
1429 return 0;
1430 }
1431
1432 static long kvm_vcpu_ioctl(struct file *filp,
1433 unsigned int ioctl, unsigned long arg)
1434 {
1435 struct kvm_vcpu *vcpu = filp->private_data;
1436 void __user *argp = (void __user *)arg;
1437 int r;
1438 struct kvm_fpu *fpu = NULL;
1439 struct kvm_sregs *kvm_sregs = NULL;
1440
1441 if (vcpu->kvm->mm != current->mm)
1442 return -EIO;
1443
1444 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1445 /*
1446 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1447 * so vcpu_load() would break it.
1448 */
1449 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1450 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1451 #endif
1452
1453
1454 vcpu_load(vcpu);
1455 switch (ioctl) {
1456 case KVM_RUN:
1457 r = -EINVAL;
1458 if (arg)
1459 goto out;
1460 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1461 break;
1462 case KVM_GET_REGS: {
1463 struct kvm_regs *kvm_regs;
1464
1465 r = -ENOMEM;
1466 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1467 if (!kvm_regs)
1468 goto out;
1469 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1470 if (r)
1471 goto out_free1;
1472 r = -EFAULT;
1473 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1474 goto out_free1;
1475 r = 0;
1476 out_free1:
1477 kfree(kvm_regs);
1478 break;
1479 }
1480 case KVM_SET_REGS: {
1481 struct kvm_regs *kvm_regs;
1482
1483 r = -ENOMEM;
1484 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1485 if (!kvm_regs)
1486 goto out;
1487 r = -EFAULT;
1488 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1489 goto out_free2;
1490 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1491 if (r)
1492 goto out_free2;
1493 r = 0;
1494 out_free2:
1495 kfree(kvm_regs);
1496 break;
1497 }
1498 case KVM_GET_SREGS: {
1499 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1500 r = -ENOMEM;
1501 if (!kvm_sregs)
1502 goto out;
1503 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1504 if (r)
1505 goto out;
1506 r = -EFAULT;
1507 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1508 goto out;
1509 r = 0;
1510 break;
1511 }
1512 case KVM_SET_SREGS: {
1513 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1514 r = -ENOMEM;
1515 if (!kvm_sregs)
1516 goto out;
1517 r = -EFAULT;
1518 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1519 goto out;
1520 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1521 if (r)
1522 goto out;
1523 r = 0;
1524 break;
1525 }
1526 case KVM_GET_MP_STATE: {
1527 struct kvm_mp_state mp_state;
1528
1529 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1530 if (r)
1531 goto out;
1532 r = -EFAULT;
1533 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1534 goto out;
1535 r = 0;
1536 break;
1537 }
1538 case KVM_SET_MP_STATE: {
1539 struct kvm_mp_state mp_state;
1540
1541 r = -EFAULT;
1542 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1543 goto out;
1544 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1545 if (r)
1546 goto out;
1547 r = 0;
1548 break;
1549 }
1550 case KVM_TRANSLATE: {
1551 struct kvm_translation tr;
1552
1553 r = -EFAULT;
1554 if (copy_from_user(&tr, argp, sizeof tr))
1555 goto out;
1556 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1557 if (r)
1558 goto out;
1559 r = -EFAULT;
1560 if (copy_to_user(argp, &tr, sizeof tr))
1561 goto out;
1562 r = 0;
1563 break;
1564 }
1565 case KVM_SET_GUEST_DEBUG: {
1566 struct kvm_guest_debug dbg;
1567
1568 r = -EFAULT;
1569 if (copy_from_user(&dbg, argp, sizeof dbg))
1570 goto out;
1571 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1572 if (r)
1573 goto out;
1574 r = 0;
1575 break;
1576 }
1577 case KVM_SET_SIGNAL_MASK: {
1578 struct kvm_signal_mask __user *sigmask_arg = argp;
1579 struct kvm_signal_mask kvm_sigmask;
1580 sigset_t sigset, *p;
1581
1582 p = NULL;
1583 if (argp) {
1584 r = -EFAULT;
1585 if (copy_from_user(&kvm_sigmask, argp,
1586 sizeof kvm_sigmask))
1587 goto out;
1588 r = -EINVAL;
1589 if (kvm_sigmask.len != sizeof sigset)
1590 goto out;
1591 r = -EFAULT;
1592 if (copy_from_user(&sigset, sigmask_arg->sigset,
1593 sizeof sigset))
1594 goto out;
1595 p = &sigset;
1596 }
1597 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1598 break;
1599 }
1600 case KVM_GET_FPU: {
1601 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1602 r = -ENOMEM;
1603 if (!fpu)
1604 goto out;
1605 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1606 if (r)
1607 goto out;
1608 r = -EFAULT;
1609 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1610 goto out;
1611 r = 0;
1612 break;
1613 }
1614 case KVM_SET_FPU: {
1615 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1616 r = -ENOMEM;
1617 if (!fpu)
1618 goto out;
1619 r = -EFAULT;
1620 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1621 goto out;
1622 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1623 if (r)
1624 goto out;
1625 r = 0;
1626 break;
1627 }
1628 default:
1629 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1630 }
1631 out:
1632 vcpu_put(vcpu);
1633 kfree(fpu);
1634 kfree(kvm_sregs);
1635 return r;
1636 }
1637
1638 static long kvm_vm_ioctl(struct file *filp,
1639 unsigned int ioctl, unsigned long arg)
1640 {
1641 struct kvm *kvm = filp->private_data;
1642 void __user *argp = (void __user *)arg;
1643 int r;
1644
1645 if (kvm->mm != current->mm)
1646 return -EIO;
1647 switch (ioctl) {
1648 case KVM_CREATE_VCPU:
1649 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1650 if (r < 0)
1651 goto out;
1652 break;
1653 case KVM_SET_USER_MEMORY_REGION: {
1654 struct kvm_userspace_memory_region kvm_userspace_mem;
1655
1656 r = -EFAULT;
1657 if (copy_from_user(&kvm_userspace_mem, argp,
1658 sizeof kvm_userspace_mem))
1659 goto out;
1660
1661 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1662 if (r)
1663 goto out;
1664 break;
1665 }
1666 case KVM_GET_DIRTY_LOG: {
1667 struct kvm_dirty_log log;
1668
1669 r = -EFAULT;
1670 if (copy_from_user(&log, argp, sizeof log))
1671 goto out;
1672 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1673 if (r)
1674 goto out;
1675 break;
1676 }
1677 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1678 case KVM_REGISTER_COALESCED_MMIO: {
1679 struct kvm_coalesced_mmio_zone zone;
1680 r = -EFAULT;
1681 if (copy_from_user(&zone, argp, sizeof zone))
1682 goto out;
1683 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1684 if (r)
1685 goto out;
1686 r = 0;
1687 break;
1688 }
1689 case KVM_UNREGISTER_COALESCED_MMIO: {
1690 struct kvm_coalesced_mmio_zone zone;
1691 r = -EFAULT;
1692 if (copy_from_user(&zone, argp, sizeof zone))
1693 goto out;
1694 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1695 if (r)
1696 goto out;
1697 r = 0;
1698 break;
1699 }
1700 #endif
1701 case KVM_IRQFD: {
1702 struct kvm_irqfd data;
1703
1704 r = -EFAULT;
1705 if (copy_from_user(&data, argp, sizeof data))
1706 goto out;
1707 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1708 break;
1709 }
1710 case KVM_IOEVENTFD: {
1711 struct kvm_ioeventfd data;
1712
1713 r = -EFAULT;
1714 if (copy_from_user(&data, argp, sizeof data))
1715 goto out;
1716 r = kvm_ioeventfd(kvm, &data);
1717 break;
1718 }
1719 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1720 case KVM_SET_BOOT_CPU_ID:
1721 r = 0;
1722 mutex_lock(&kvm->lock);
1723 if (atomic_read(&kvm->online_vcpus) != 0)
1724 r = -EBUSY;
1725 else
1726 kvm->bsp_vcpu_id = arg;
1727 mutex_unlock(&kvm->lock);
1728 break;
1729 #endif
1730 default:
1731 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1732 if (r == -ENOTTY)
1733 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1734 }
1735 out:
1736 return r;
1737 }
1738
1739 #ifdef CONFIG_COMPAT
1740 struct compat_kvm_dirty_log {
1741 __u32 slot;
1742 __u32 padding1;
1743 union {
1744 compat_uptr_t dirty_bitmap; /* one bit per page */
1745 __u64 padding2;
1746 };
1747 };
1748
1749 static long kvm_vm_compat_ioctl(struct file *filp,
1750 unsigned int ioctl, unsigned long arg)
1751 {
1752 struct kvm *kvm = filp->private_data;
1753 int r;
1754
1755 if (kvm->mm != current->mm)
1756 return -EIO;
1757 switch (ioctl) {
1758 case KVM_GET_DIRTY_LOG: {
1759 struct compat_kvm_dirty_log compat_log;
1760 struct kvm_dirty_log log;
1761
1762 r = -EFAULT;
1763 if (copy_from_user(&compat_log, (void __user *)arg,
1764 sizeof(compat_log)))
1765 goto out;
1766 log.slot = compat_log.slot;
1767 log.padding1 = compat_log.padding1;
1768 log.padding2 = compat_log.padding2;
1769 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
1770
1771 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1772 if (r)
1773 goto out;
1774 break;
1775 }
1776 default:
1777 r = kvm_vm_ioctl(filp, ioctl, arg);
1778 }
1779
1780 out:
1781 return r;
1782 }
1783 #endif
1784
1785 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1786 {
1787 struct page *page[1];
1788 unsigned long addr;
1789 int npages;
1790 gfn_t gfn = vmf->pgoff;
1791 struct kvm *kvm = vma->vm_file->private_data;
1792
1793 addr = gfn_to_hva(kvm, gfn);
1794 if (kvm_is_error_hva(addr))
1795 return VM_FAULT_SIGBUS;
1796
1797 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1798 NULL);
1799 if (unlikely(npages != 1))
1800 return VM_FAULT_SIGBUS;
1801
1802 vmf->page = page[0];
1803 return 0;
1804 }
1805
1806 static const struct vm_operations_struct kvm_vm_vm_ops = {
1807 .fault = kvm_vm_fault,
1808 };
1809
1810 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1811 {
1812 vma->vm_ops = &kvm_vm_vm_ops;
1813 return 0;
1814 }
1815
1816 static struct file_operations kvm_vm_fops = {
1817 .release = kvm_vm_release,
1818 .unlocked_ioctl = kvm_vm_ioctl,
1819 #ifdef CONFIG_COMPAT
1820 .compat_ioctl = kvm_vm_compat_ioctl,
1821 #endif
1822 .mmap = kvm_vm_mmap,
1823 };
1824
1825 static int kvm_dev_ioctl_create_vm(void)
1826 {
1827 int fd, r;
1828 struct kvm *kvm;
1829
1830 kvm = kvm_create_vm();
1831 if (IS_ERR(kvm))
1832 return PTR_ERR(kvm);
1833 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1834 r = kvm_coalesced_mmio_init(kvm);
1835 if (r < 0) {
1836 kvm_put_kvm(kvm);
1837 return r;
1838 }
1839 #endif
1840 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
1841 if (fd < 0)
1842 kvm_put_kvm(kvm);
1843
1844 return fd;
1845 }
1846
1847 static long kvm_dev_ioctl_check_extension_generic(long arg)
1848 {
1849 switch (arg) {
1850 case KVM_CAP_USER_MEMORY:
1851 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1852 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
1853 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1854 case KVM_CAP_SET_BOOT_CPU_ID:
1855 #endif
1856 case KVM_CAP_INTERNAL_ERROR_DATA:
1857 return 1;
1858 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1859 case KVM_CAP_IRQ_ROUTING:
1860 return KVM_MAX_IRQ_ROUTES;
1861 #endif
1862 default:
1863 break;
1864 }
1865 return kvm_dev_ioctl_check_extension(arg);
1866 }
1867
1868 static long kvm_dev_ioctl(struct file *filp,
1869 unsigned int ioctl, unsigned long arg)
1870 {
1871 long r = -EINVAL;
1872
1873 switch (ioctl) {
1874 case KVM_GET_API_VERSION:
1875 r = -EINVAL;
1876 if (arg)
1877 goto out;
1878 r = KVM_API_VERSION;
1879 break;
1880 case KVM_CREATE_VM:
1881 r = -EINVAL;
1882 if (arg)
1883 goto out;
1884 r = kvm_dev_ioctl_create_vm();
1885 break;
1886 case KVM_CHECK_EXTENSION:
1887 r = kvm_dev_ioctl_check_extension_generic(arg);
1888 break;
1889 case KVM_GET_VCPU_MMAP_SIZE:
1890 r = -EINVAL;
1891 if (arg)
1892 goto out;
1893 r = PAGE_SIZE; /* struct kvm_run */
1894 #ifdef CONFIG_X86
1895 r += PAGE_SIZE; /* pio data page */
1896 #endif
1897 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1898 r += PAGE_SIZE; /* coalesced mmio ring page */
1899 #endif
1900 break;
1901 case KVM_TRACE_ENABLE:
1902 case KVM_TRACE_PAUSE:
1903 case KVM_TRACE_DISABLE:
1904 r = -EOPNOTSUPP;
1905 break;
1906 default:
1907 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1908 }
1909 out:
1910 return r;
1911 }
1912
1913 static struct file_operations kvm_chardev_ops = {
1914 .unlocked_ioctl = kvm_dev_ioctl,
1915 .compat_ioctl = kvm_dev_ioctl,
1916 };
1917
1918 static struct miscdevice kvm_dev = {
1919 KVM_MINOR,
1920 "kvm",
1921 &kvm_chardev_ops,
1922 };
1923
1924 static void hardware_enable(void *junk)
1925 {
1926 int cpu = raw_smp_processor_id();
1927 int r;
1928
1929 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1930 return;
1931
1932 cpumask_set_cpu(cpu, cpus_hardware_enabled);
1933
1934 r = kvm_arch_hardware_enable(NULL);
1935
1936 if (r) {
1937 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1938 atomic_inc(&hardware_enable_failed);
1939 printk(KERN_INFO "kvm: enabling virtualization on "
1940 "CPU%d failed\n", cpu);
1941 }
1942 }
1943
1944 static void hardware_disable(void *junk)
1945 {
1946 int cpu = raw_smp_processor_id();
1947
1948 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1949 return;
1950 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1951 kvm_arch_hardware_disable(NULL);
1952 }
1953
1954 static void hardware_disable_all_nolock(void)
1955 {
1956 BUG_ON(!kvm_usage_count);
1957
1958 kvm_usage_count--;
1959 if (!kvm_usage_count)
1960 on_each_cpu(hardware_disable, NULL, 1);
1961 }
1962
1963 static void hardware_disable_all(void)
1964 {
1965 spin_lock(&kvm_lock);
1966 hardware_disable_all_nolock();
1967 spin_unlock(&kvm_lock);
1968 }
1969
1970 static int hardware_enable_all(void)
1971 {
1972 int r = 0;
1973
1974 spin_lock(&kvm_lock);
1975
1976 kvm_usage_count++;
1977 if (kvm_usage_count == 1) {
1978 atomic_set(&hardware_enable_failed, 0);
1979 on_each_cpu(hardware_enable, NULL, 1);
1980
1981 if (atomic_read(&hardware_enable_failed)) {
1982 hardware_disable_all_nolock();
1983 r = -EBUSY;
1984 }
1985 }
1986
1987 spin_unlock(&kvm_lock);
1988
1989 return r;
1990 }
1991
1992 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1993 void *v)
1994 {
1995 int cpu = (long)v;
1996
1997 if (!kvm_usage_count)
1998 return NOTIFY_OK;
1999
2000 val &= ~CPU_TASKS_FROZEN;
2001 switch (val) {
2002 case CPU_DYING:
2003 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2004 cpu);
2005 hardware_disable(NULL);
2006 break;
2007 case CPU_STARTING:
2008 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2009 cpu);
2010 spin_lock(&kvm_lock);
2011 hardware_enable(NULL);
2012 spin_unlock(&kvm_lock);
2013 break;
2014 }
2015 return NOTIFY_OK;
2016 }
2017
2018
2019 asmlinkage void kvm_handle_fault_on_reboot(void)
2020 {
2021 if (kvm_rebooting) {
2022 /* spin while reset goes on */
2023 local_irq_enable();
2024 while (true)
2025 cpu_relax();
2026 }
2027 /* Fault while not rebooting. We want the trace. */
2028 BUG();
2029 }
2030 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2031
2032 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2033 void *v)
2034 {
2035 /*
2036 * Some (well, at least mine) BIOSes hang on reboot if
2037 * in vmx root mode.
2038 *
2039 * And Intel TXT required VMX off for all cpu when system shutdown.
2040 */
2041 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2042 kvm_rebooting = true;
2043 on_each_cpu(hardware_disable, NULL, 1);
2044 return NOTIFY_OK;
2045 }
2046
2047 static struct notifier_block kvm_reboot_notifier = {
2048 .notifier_call = kvm_reboot,
2049 .priority = 0,
2050 };
2051
2052 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2053 {
2054 int i;
2055
2056 for (i = 0; i < bus->dev_count; i++) {
2057 struct kvm_io_device *pos = bus->devs[i];
2058
2059 kvm_iodevice_destructor(pos);
2060 }
2061 kfree(bus);
2062 }
2063
2064 /* kvm_io_bus_write - called under kvm->slots_lock */
2065 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2066 int len, const void *val)
2067 {
2068 int i;
2069 struct kvm_io_bus *bus;
2070
2071 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2072 for (i = 0; i < bus->dev_count; i++)
2073 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2074 return 0;
2075 return -EOPNOTSUPP;
2076 }
2077
2078 /* kvm_io_bus_read - called under kvm->slots_lock */
2079 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2080 int len, void *val)
2081 {
2082 int i;
2083 struct kvm_io_bus *bus;
2084
2085 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2086 for (i = 0; i < bus->dev_count; i++)
2087 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2088 return 0;
2089 return -EOPNOTSUPP;
2090 }
2091
2092 /* Caller must hold slots_lock. */
2093 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2094 struct kvm_io_device *dev)
2095 {
2096 struct kvm_io_bus *new_bus, *bus;
2097
2098 bus = kvm->buses[bus_idx];
2099 if (bus->dev_count > NR_IOBUS_DEVS-1)
2100 return -ENOSPC;
2101
2102 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2103 if (!new_bus)
2104 return -ENOMEM;
2105 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2106 new_bus->devs[new_bus->dev_count++] = dev;
2107 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2108 synchronize_srcu_expedited(&kvm->srcu);
2109 kfree(bus);
2110
2111 return 0;
2112 }
2113
2114 /* Caller must hold slots_lock. */
2115 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2116 struct kvm_io_device *dev)
2117 {
2118 int i, r;
2119 struct kvm_io_bus *new_bus, *bus;
2120
2121 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2122 if (!new_bus)
2123 return -ENOMEM;
2124
2125 bus = kvm->buses[bus_idx];
2126 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2127
2128 r = -ENOENT;
2129 for (i = 0; i < new_bus->dev_count; i++)
2130 if (new_bus->devs[i] == dev) {
2131 r = 0;
2132 new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2133 break;
2134 }
2135
2136 if (r) {
2137 kfree(new_bus);
2138 return r;
2139 }
2140
2141 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2142 synchronize_srcu_expedited(&kvm->srcu);
2143 kfree(bus);
2144 return r;
2145 }
2146
2147 static struct notifier_block kvm_cpu_notifier = {
2148 .notifier_call = kvm_cpu_hotplug,
2149 };
2150
2151 static int vm_stat_get(void *_offset, u64 *val)
2152 {
2153 unsigned offset = (long)_offset;
2154 struct kvm *kvm;
2155
2156 *val = 0;
2157 spin_lock(&kvm_lock);
2158 list_for_each_entry(kvm, &vm_list, vm_list)
2159 *val += *(u32 *)((void *)kvm + offset);
2160 spin_unlock(&kvm_lock);
2161 return 0;
2162 }
2163
2164 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2165
2166 static int vcpu_stat_get(void *_offset, u64 *val)
2167 {
2168 unsigned offset = (long)_offset;
2169 struct kvm *kvm;
2170 struct kvm_vcpu *vcpu;
2171 int i;
2172
2173 *val = 0;
2174 spin_lock(&kvm_lock);
2175 list_for_each_entry(kvm, &vm_list, vm_list)
2176 kvm_for_each_vcpu(i, vcpu, kvm)
2177 *val += *(u32 *)((void *)vcpu + offset);
2178
2179 spin_unlock(&kvm_lock);
2180 return 0;
2181 }
2182
2183 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2184
2185 static const struct file_operations *stat_fops[] = {
2186 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2187 [KVM_STAT_VM] = &vm_stat_fops,
2188 };
2189
2190 static void kvm_init_debug(void)
2191 {
2192 struct kvm_stats_debugfs_item *p;
2193
2194 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2195 for (p = debugfs_entries; p->name; ++p)
2196 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2197 (void *)(long)p->offset,
2198 stat_fops[p->kind]);
2199 }
2200
2201 static void kvm_exit_debug(void)
2202 {
2203 struct kvm_stats_debugfs_item *p;
2204
2205 for (p = debugfs_entries; p->name; ++p)
2206 debugfs_remove(p->dentry);
2207 debugfs_remove(kvm_debugfs_dir);
2208 }
2209
2210 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2211 {
2212 if (kvm_usage_count)
2213 hardware_disable(NULL);
2214 return 0;
2215 }
2216
2217 static int kvm_resume(struct sys_device *dev)
2218 {
2219 if (kvm_usage_count) {
2220 WARN_ON(spin_is_locked(&kvm_lock));
2221 hardware_enable(NULL);
2222 }
2223 return 0;
2224 }
2225
2226 static struct sysdev_class kvm_sysdev_class = {
2227 .name = "kvm",
2228 .suspend = kvm_suspend,
2229 .resume = kvm_resume,
2230 };
2231
2232 static struct sys_device kvm_sysdev = {
2233 .id = 0,
2234 .cls = &kvm_sysdev_class,
2235 };
2236
2237 struct page *bad_page;
2238 pfn_t bad_pfn;
2239
2240 static inline
2241 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2242 {
2243 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2244 }
2245
2246 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2247 {
2248 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2249
2250 kvm_arch_vcpu_load(vcpu, cpu);
2251 }
2252
2253 static void kvm_sched_out(struct preempt_notifier *pn,
2254 struct task_struct *next)
2255 {
2256 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2257
2258 kvm_arch_vcpu_put(vcpu);
2259 }
2260
2261 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2262 struct module *module)
2263 {
2264 int r;
2265 int cpu;
2266
2267 r = kvm_arch_init(opaque);
2268 if (r)
2269 goto out_fail;
2270
2271 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2272
2273 if (bad_page == NULL) {
2274 r = -ENOMEM;
2275 goto out;
2276 }
2277
2278 bad_pfn = page_to_pfn(bad_page);
2279
2280 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2281
2282 if (hwpoison_page == NULL) {
2283 r = -ENOMEM;
2284 goto out_free_0;
2285 }
2286
2287 hwpoison_pfn = page_to_pfn(hwpoison_page);
2288
2289 fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2290
2291 if (fault_page == NULL) {
2292 r = -ENOMEM;
2293 goto out_free_0;
2294 }
2295
2296 fault_pfn = page_to_pfn(fault_page);
2297
2298 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2299 r = -ENOMEM;
2300 goto out_free_0;
2301 }
2302
2303 r = kvm_arch_hardware_setup();
2304 if (r < 0)
2305 goto out_free_0a;
2306
2307 for_each_online_cpu(cpu) {
2308 smp_call_function_single(cpu,
2309 kvm_arch_check_processor_compat,
2310 &r, 1);
2311 if (r < 0)
2312 goto out_free_1;
2313 }
2314
2315 r = register_cpu_notifier(&kvm_cpu_notifier);
2316 if (r)
2317 goto out_free_2;
2318 register_reboot_notifier(&kvm_reboot_notifier);
2319
2320 r = sysdev_class_register(&kvm_sysdev_class);
2321 if (r)
2322 goto out_free_3;
2323
2324 r = sysdev_register(&kvm_sysdev);
2325 if (r)
2326 goto out_free_4;
2327
2328 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2329 if (!vcpu_align)
2330 vcpu_align = __alignof__(struct kvm_vcpu);
2331 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2332 0, NULL);
2333 if (!kvm_vcpu_cache) {
2334 r = -ENOMEM;
2335 goto out_free_5;
2336 }
2337
2338 kvm_chardev_ops.owner = module;
2339 kvm_vm_fops.owner = module;
2340 kvm_vcpu_fops.owner = module;
2341
2342 r = misc_register(&kvm_dev);
2343 if (r) {
2344 printk(KERN_ERR "kvm: misc device register failed\n");
2345 goto out_free;
2346 }
2347
2348 kvm_preempt_ops.sched_in = kvm_sched_in;
2349 kvm_preempt_ops.sched_out = kvm_sched_out;
2350
2351 kvm_init_debug();
2352
2353 return 0;
2354
2355 out_free:
2356 kmem_cache_destroy(kvm_vcpu_cache);
2357 out_free_5:
2358 sysdev_unregister(&kvm_sysdev);
2359 out_free_4:
2360 sysdev_class_unregister(&kvm_sysdev_class);
2361 out_free_3:
2362 unregister_reboot_notifier(&kvm_reboot_notifier);
2363 unregister_cpu_notifier(&kvm_cpu_notifier);
2364 out_free_2:
2365 out_free_1:
2366 kvm_arch_hardware_unsetup();
2367 out_free_0a:
2368 free_cpumask_var(cpus_hardware_enabled);
2369 out_free_0:
2370 if (fault_page)
2371 __free_page(fault_page);
2372 if (hwpoison_page)
2373 __free_page(hwpoison_page);
2374 __free_page(bad_page);
2375 out:
2376 kvm_arch_exit();
2377 out_fail:
2378 return r;
2379 }
2380 EXPORT_SYMBOL_GPL(kvm_init);
2381
2382 void kvm_exit(void)
2383 {
2384 kvm_exit_debug();
2385 misc_deregister(&kvm_dev);
2386 kmem_cache_destroy(kvm_vcpu_cache);
2387 sysdev_unregister(&kvm_sysdev);
2388 sysdev_class_unregister(&kvm_sysdev_class);
2389 unregister_reboot_notifier(&kvm_reboot_notifier);
2390 unregister_cpu_notifier(&kvm_cpu_notifier);
2391 on_each_cpu(hardware_disable, NULL, 1);
2392 kvm_arch_hardware_unsetup();
2393 kvm_arch_exit();
2394 free_cpumask_var(cpus_hardware_enabled);
2395 __free_page(hwpoison_page);
2396 __free_page(bad_page);
2397 }
2398 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.104678 seconds and 5 git commands to generate.