KVM: fix kvm_init() error handling
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46
47 #include <asm/processor.h>
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50 #include <asm/pgtable.h>
51
52 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
53 #include "coalesced_mmio.h"
54 #endif
55
56 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
57 #include <linux/pci.h>
58 #include <linux/interrupt.h>
59 #include "irq.h"
60 #endif
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/kvm.h>
64
65 MODULE_AUTHOR("Qumranet");
66 MODULE_LICENSE("GPL");
67
68 /*
69 * Ordering of locks:
70 *
71 * kvm->slots_lock --> kvm->lock --> kvm->irq_lock
72 */
73
74 DEFINE_SPINLOCK(kvm_lock);
75 LIST_HEAD(vm_list);
76
77 static cpumask_var_t cpus_hardware_enabled;
78
79 struct kmem_cache *kvm_vcpu_cache;
80 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
81
82 static __read_mostly struct preempt_ops kvm_preempt_ops;
83
84 struct dentry *kvm_debugfs_dir;
85
86 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
87 unsigned long arg);
88
89 static bool kvm_rebooting;
90
91 static bool largepages_enabled = true;
92
93 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
94 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
95 int assigned_dev_id)
96 {
97 struct list_head *ptr;
98 struct kvm_assigned_dev_kernel *match;
99
100 list_for_each(ptr, head) {
101 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
102 if (match->assigned_dev_id == assigned_dev_id)
103 return match;
104 }
105 return NULL;
106 }
107
108 static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
109 *assigned_dev, int irq)
110 {
111 int i, index;
112 struct msix_entry *host_msix_entries;
113
114 host_msix_entries = assigned_dev->host_msix_entries;
115
116 index = -1;
117 for (i = 0; i < assigned_dev->entries_nr; i++)
118 if (irq == host_msix_entries[i].vector) {
119 index = i;
120 break;
121 }
122 if (index < 0) {
123 printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
124 return 0;
125 }
126
127 return index;
128 }
129
130 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
131 {
132 struct kvm_assigned_dev_kernel *assigned_dev;
133 struct kvm *kvm;
134 int i;
135
136 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
137 interrupt_work);
138 kvm = assigned_dev->kvm;
139
140 mutex_lock(&kvm->irq_lock);
141 spin_lock_irq(&assigned_dev->assigned_dev_lock);
142 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
143 struct kvm_guest_msix_entry *guest_entries =
144 assigned_dev->guest_msix_entries;
145 for (i = 0; i < assigned_dev->entries_nr; i++) {
146 if (!(guest_entries[i].flags &
147 KVM_ASSIGNED_MSIX_PENDING))
148 continue;
149 guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
150 kvm_set_irq(assigned_dev->kvm,
151 assigned_dev->irq_source_id,
152 guest_entries[i].vector, 1);
153 }
154 } else
155 kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
156 assigned_dev->guest_irq, 1);
157
158 spin_unlock_irq(&assigned_dev->assigned_dev_lock);
159 mutex_unlock(&assigned_dev->kvm->irq_lock);
160 }
161
162 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
163 {
164 unsigned long flags;
165 struct kvm_assigned_dev_kernel *assigned_dev =
166 (struct kvm_assigned_dev_kernel *) dev_id;
167
168 spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
169 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
170 int index = find_index_from_host_irq(assigned_dev, irq);
171 if (index < 0)
172 goto out;
173 assigned_dev->guest_msix_entries[index].flags |=
174 KVM_ASSIGNED_MSIX_PENDING;
175 }
176
177 schedule_work(&assigned_dev->interrupt_work);
178
179 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_GUEST_INTX) {
180 disable_irq_nosync(irq);
181 assigned_dev->host_irq_disabled = true;
182 }
183
184 out:
185 spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
186 return IRQ_HANDLED;
187 }
188
189 /* Ack the irq line for an assigned device */
190 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
191 {
192 struct kvm_assigned_dev_kernel *dev;
193 unsigned long flags;
194
195 if (kian->gsi == -1)
196 return;
197
198 dev = container_of(kian, struct kvm_assigned_dev_kernel,
199 ack_notifier);
200
201 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
202
203 /* The guest irq may be shared so this ack may be
204 * from another device.
205 */
206 spin_lock_irqsave(&dev->assigned_dev_lock, flags);
207 if (dev->host_irq_disabled) {
208 enable_irq(dev->host_irq);
209 dev->host_irq_disabled = false;
210 }
211 spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
212 }
213
214 static void deassign_guest_irq(struct kvm *kvm,
215 struct kvm_assigned_dev_kernel *assigned_dev)
216 {
217 kvm_unregister_irq_ack_notifier(kvm, &assigned_dev->ack_notifier);
218 assigned_dev->ack_notifier.gsi = -1;
219
220 if (assigned_dev->irq_source_id != -1)
221 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
222 assigned_dev->irq_source_id = -1;
223 assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
224 }
225
226 /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
227 static void deassign_host_irq(struct kvm *kvm,
228 struct kvm_assigned_dev_kernel *assigned_dev)
229 {
230 /*
231 * In kvm_free_device_irq, cancel_work_sync return true if:
232 * 1. work is scheduled, and then cancelled.
233 * 2. work callback is executed.
234 *
235 * The first one ensured that the irq is disabled and no more events
236 * would happen. But for the second one, the irq may be enabled (e.g.
237 * for MSI). So we disable irq here to prevent further events.
238 *
239 * Notice this maybe result in nested disable if the interrupt type is
240 * INTx, but it's OK for we are going to free it.
241 *
242 * If this function is a part of VM destroy, please ensure that till
243 * now, the kvm state is still legal for probably we also have to wait
244 * interrupt_work done.
245 */
246 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
247 int i;
248 for (i = 0; i < assigned_dev->entries_nr; i++)
249 disable_irq_nosync(assigned_dev->
250 host_msix_entries[i].vector);
251
252 cancel_work_sync(&assigned_dev->interrupt_work);
253
254 for (i = 0; i < assigned_dev->entries_nr; i++)
255 free_irq(assigned_dev->host_msix_entries[i].vector,
256 (void *)assigned_dev);
257
258 assigned_dev->entries_nr = 0;
259 kfree(assigned_dev->host_msix_entries);
260 kfree(assigned_dev->guest_msix_entries);
261 pci_disable_msix(assigned_dev->dev);
262 } else {
263 /* Deal with MSI and INTx */
264 disable_irq_nosync(assigned_dev->host_irq);
265 cancel_work_sync(&assigned_dev->interrupt_work);
266
267 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
268
269 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
270 pci_disable_msi(assigned_dev->dev);
271 }
272
273 assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
274 }
275
276 static int kvm_deassign_irq(struct kvm *kvm,
277 struct kvm_assigned_dev_kernel *assigned_dev,
278 unsigned long irq_requested_type)
279 {
280 unsigned long guest_irq_type, host_irq_type;
281
282 if (!irqchip_in_kernel(kvm))
283 return -EINVAL;
284 /* no irq assignment to deassign */
285 if (!assigned_dev->irq_requested_type)
286 return -ENXIO;
287
288 host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
289 guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
290
291 if (host_irq_type)
292 deassign_host_irq(kvm, assigned_dev);
293 if (guest_irq_type)
294 deassign_guest_irq(kvm, assigned_dev);
295
296 return 0;
297 }
298
299 static void kvm_free_assigned_irq(struct kvm *kvm,
300 struct kvm_assigned_dev_kernel *assigned_dev)
301 {
302 kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
303 }
304
305 static void kvm_free_assigned_device(struct kvm *kvm,
306 struct kvm_assigned_dev_kernel
307 *assigned_dev)
308 {
309 kvm_free_assigned_irq(kvm, assigned_dev);
310
311 pci_reset_function(assigned_dev->dev);
312
313 pci_release_regions(assigned_dev->dev);
314 pci_disable_device(assigned_dev->dev);
315 pci_dev_put(assigned_dev->dev);
316
317 list_del(&assigned_dev->list);
318 kfree(assigned_dev);
319 }
320
321 void kvm_free_all_assigned_devices(struct kvm *kvm)
322 {
323 struct list_head *ptr, *ptr2;
324 struct kvm_assigned_dev_kernel *assigned_dev;
325
326 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
327 assigned_dev = list_entry(ptr,
328 struct kvm_assigned_dev_kernel,
329 list);
330
331 kvm_free_assigned_device(kvm, assigned_dev);
332 }
333 }
334
335 static int assigned_device_enable_host_intx(struct kvm *kvm,
336 struct kvm_assigned_dev_kernel *dev)
337 {
338 dev->host_irq = dev->dev->irq;
339 /* Even though this is PCI, we don't want to use shared
340 * interrupts. Sharing host devices with guest-assigned devices
341 * on the same interrupt line is not a happy situation: there
342 * are going to be long delays in accepting, acking, etc.
343 */
344 if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
345 0, "kvm_assigned_intx_device", (void *)dev))
346 return -EIO;
347 return 0;
348 }
349
350 #ifdef __KVM_HAVE_MSI
351 static int assigned_device_enable_host_msi(struct kvm *kvm,
352 struct kvm_assigned_dev_kernel *dev)
353 {
354 int r;
355
356 if (!dev->dev->msi_enabled) {
357 r = pci_enable_msi(dev->dev);
358 if (r)
359 return r;
360 }
361
362 dev->host_irq = dev->dev->irq;
363 if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
364 "kvm_assigned_msi_device", (void *)dev)) {
365 pci_disable_msi(dev->dev);
366 return -EIO;
367 }
368
369 return 0;
370 }
371 #endif
372
373 #ifdef __KVM_HAVE_MSIX
374 static int assigned_device_enable_host_msix(struct kvm *kvm,
375 struct kvm_assigned_dev_kernel *dev)
376 {
377 int i, r = -EINVAL;
378
379 /* host_msix_entries and guest_msix_entries should have been
380 * initialized */
381 if (dev->entries_nr == 0)
382 return r;
383
384 r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
385 if (r)
386 return r;
387
388 for (i = 0; i < dev->entries_nr; i++) {
389 r = request_irq(dev->host_msix_entries[i].vector,
390 kvm_assigned_dev_intr, 0,
391 "kvm_assigned_msix_device",
392 (void *)dev);
393 /* FIXME: free requested_irq's on failure */
394 if (r)
395 return r;
396 }
397
398 return 0;
399 }
400
401 #endif
402
403 static int assigned_device_enable_guest_intx(struct kvm *kvm,
404 struct kvm_assigned_dev_kernel *dev,
405 struct kvm_assigned_irq *irq)
406 {
407 dev->guest_irq = irq->guest_irq;
408 dev->ack_notifier.gsi = irq->guest_irq;
409 return 0;
410 }
411
412 #ifdef __KVM_HAVE_MSI
413 static int assigned_device_enable_guest_msi(struct kvm *kvm,
414 struct kvm_assigned_dev_kernel *dev,
415 struct kvm_assigned_irq *irq)
416 {
417 dev->guest_irq = irq->guest_irq;
418 dev->ack_notifier.gsi = -1;
419 dev->host_irq_disabled = false;
420 return 0;
421 }
422 #endif
423 #ifdef __KVM_HAVE_MSIX
424 static int assigned_device_enable_guest_msix(struct kvm *kvm,
425 struct kvm_assigned_dev_kernel *dev,
426 struct kvm_assigned_irq *irq)
427 {
428 dev->guest_irq = irq->guest_irq;
429 dev->ack_notifier.gsi = -1;
430 dev->host_irq_disabled = false;
431 return 0;
432 }
433 #endif
434
435 static int assign_host_irq(struct kvm *kvm,
436 struct kvm_assigned_dev_kernel *dev,
437 __u32 host_irq_type)
438 {
439 int r = -EEXIST;
440
441 if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
442 return r;
443
444 switch (host_irq_type) {
445 case KVM_DEV_IRQ_HOST_INTX:
446 r = assigned_device_enable_host_intx(kvm, dev);
447 break;
448 #ifdef __KVM_HAVE_MSI
449 case KVM_DEV_IRQ_HOST_MSI:
450 r = assigned_device_enable_host_msi(kvm, dev);
451 break;
452 #endif
453 #ifdef __KVM_HAVE_MSIX
454 case KVM_DEV_IRQ_HOST_MSIX:
455 r = assigned_device_enable_host_msix(kvm, dev);
456 break;
457 #endif
458 default:
459 r = -EINVAL;
460 }
461
462 if (!r)
463 dev->irq_requested_type |= host_irq_type;
464
465 return r;
466 }
467
468 static int assign_guest_irq(struct kvm *kvm,
469 struct kvm_assigned_dev_kernel *dev,
470 struct kvm_assigned_irq *irq,
471 unsigned long guest_irq_type)
472 {
473 int id;
474 int r = -EEXIST;
475
476 if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
477 return r;
478
479 id = kvm_request_irq_source_id(kvm);
480 if (id < 0)
481 return id;
482
483 dev->irq_source_id = id;
484
485 switch (guest_irq_type) {
486 case KVM_DEV_IRQ_GUEST_INTX:
487 r = assigned_device_enable_guest_intx(kvm, dev, irq);
488 break;
489 #ifdef __KVM_HAVE_MSI
490 case KVM_DEV_IRQ_GUEST_MSI:
491 r = assigned_device_enable_guest_msi(kvm, dev, irq);
492 break;
493 #endif
494 #ifdef __KVM_HAVE_MSIX
495 case KVM_DEV_IRQ_GUEST_MSIX:
496 r = assigned_device_enable_guest_msix(kvm, dev, irq);
497 break;
498 #endif
499 default:
500 r = -EINVAL;
501 }
502
503 if (!r) {
504 dev->irq_requested_type |= guest_irq_type;
505 kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
506 } else
507 kvm_free_irq_source_id(kvm, dev->irq_source_id);
508
509 return r;
510 }
511
512 /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
513 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
514 struct kvm_assigned_irq *assigned_irq)
515 {
516 int r = -EINVAL;
517 struct kvm_assigned_dev_kernel *match;
518 unsigned long host_irq_type, guest_irq_type;
519
520 if (!capable(CAP_SYS_RAWIO))
521 return -EPERM;
522
523 if (!irqchip_in_kernel(kvm))
524 return r;
525
526 mutex_lock(&kvm->lock);
527 r = -ENODEV;
528 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
529 assigned_irq->assigned_dev_id);
530 if (!match)
531 goto out;
532
533 host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
534 guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
535
536 r = -EINVAL;
537 /* can only assign one type at a time */
538 if (hweight_long(host_irq_type) > 1)
539 goto out;
540 if (hweight_long(guest_irq_type) > 1)
541 goto out;
542 if (host_irq_type == 0 && guest_irq_type == 0)
543 goto out;
544
545 r = 0;
546 if (host_irq_type)
547 r = assign_host_irq(kvm, match, host_irq_type);
548 if (r)
549 goto out;
550
551 if (guest_irq_type)
552 r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
553 out:
554 mutex_unlock(&kvm->lock);
555 return r;
556 }
557
558 static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
559 struct kvm_assigned_irq
560 *assigned_irq)
561 {
562 int r = -ENODEV;
563 struct kvm_assigned_dev_kernel *match;
564
565 mutex_lock(&kvm->lock);
566
567 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
568 assigned_irq->assigned_dev_id);
569 if (!match)
570 goto out;
571
572 r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
573 out:
574 mutex_unlock(&kvm->lock);
575 return r;
576 }
577
578 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
579 struct kvm_assigned_pci_dev *assigned_dev)
580 {
581 int r = 0;
582 struct kvm_assigned_dev_kernel *match;
583 struct pci_dev *dev;
584
585 down_read(&kvm->slots_lock);
586 mutex_lock(&kvm->lock);
587
588 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
589 assigned_dev->assigned_dev_id);
590 if (match) {
591 /* device already assigned */
592 r = -EEXIST;
593 goto out;
594 }
595
596 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
597 if (match == NULL) {
598 printk(KERN_INFO "%s: Couldn't allocate memory\n",
599 __func__);
600 r = -ENOMEM;
601 goto out;
602 }
603 dev = pci_get_bus_and_slot(assigned_dev->busnr,
604 assigned_dev->devfn);
605 if (!dev) {
606 printk(KERN_INFO "%s: host device not found\n", __func__);
607 r = -EINVAL;
608 goto out_free;
609 }
610 if (pci_enable_device(dev)) {
611 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
612 r = -EBUSY;
613 goto out_put;
614 }
615 r = pci_request_regions(dev, "kvm_assigned_device");
616 if (r) {
617 printk(KERN_INFO "%s: Could not get access to device regions\n",
618 __func__);
619 goto out_disable;
620 }
621
622 pci_reset_function(dev);
623
624 match->assigned_dev_id = assigned_dev->assigned_dev_id;
625 match->host_busnr = assigned_dev->busnr;
626 match->host_devfn = assigned_dev->devfn;
627 match->flags = assigned_dev->flags;
628 match->dev = dev;
629 spin_lock_init(&match->assigned_dev_lock);
630 match->irq_source_id = -1;
631 match->kvm = kvm;
632 match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
633 INIT_WORK(&match->interrupt_work,
634 kvm_assigned_dev_interrupt_work_handler);
635
636 list_add(&match->list, &kvm->arch.assigned_dev_head);
637
638 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
639 if (!kvm->arch.iommu_domain) {
640 r = kvm_iommu_map_guest(kvm);
641 if (r)
642 goto out_list_del;
643 }
644 r = kvm_assign_device(kvm, match);
645 if (r)
646 goto out_list_del;
647 }
648
649 out:
650 mutex_unlock(&kvm->lock);
651 up_read(&kvm->slots_lock);
652 return r;
653 out_list_del:
654 list_del(&match->list);
655 pci_release_regions(dev);
656 out_disable:
657 pci_disable_device(dev);
658 out_put:
659 pci_dev_put(dev);
660 out_free:
661 kfree(match);
662 mutex_unlock(&kvm->lock);
663 up_read(&kvm->slots_lock);
664 return r;
665 }
666 #endif
667
668 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
669 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
670 struct kvm_assigned_pci_dev *assigned_dev)
671 {
672 int r = 0;
673 struct kvm_assigned_dev_kernel *match;
674
675 mutex_lock(&kvm->lock);
676
677 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
678 assigned_dev->assigned_dev_id);
679 if (!match) {
680 printk(KERN_INFO "%s: device hasn't been assigned before, "
681 "so cannot be deassigned\n", __func__);
682 r = -EINVAL;
683 goto out;
684 }
685
686 if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
687 kvm_deassign_device(kvm, match);
688
689 kvm_free_assigned_device(kvm, match);
690
691 out:
692 mutex_unlock(&kvm->lock);
693 return r;
694 }
695 #endif
696
697 inline int kvm_is_mmio_pfn(pfn_t pfn)
698 {
699 if (pfn_valid(pfn)) {
700 struct page *page = compound_head(pfn_to_page(pfn));
701 return PageReserved(page);
702 }
703
704 return true;
705 }
706
707 /*
708 * Switches to specified vcpu, until a matching vcpu_put()
709 */
710 void vcpu_load(struct kvm_vcpu *vcpu)
711 {
712 int cpu;
713
714 mutex_lock(&vcpu->mutex);
715 cpu = get_cpu();
716 preempt_notifier_register(&vcpu->preempt_notifier);
717 kvm_arch_vcpu_load(vcpu, cpu);
718 put_cpu();
719 }
720
721 void vcpu_put(struct kvm_vcpu *vcpu)
722 {
723 preempt_disable();
724 kvm_arch_vcpu_put(vcpu);
725 preempt_notifier_unregister(&vcpu->preempt_notifier);
726 preempt_enable();
727 mutex_unlock(&vcpu->mutex);
728 }
729
730 static void ack_flush(void *_completed)
731 {
732 }
733
734 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
735 {
736 int i, cpu, me;
737 cpumask_var_t cpus;
738 bool called = true;
739 struct kvm_vcpu *vcpu;
740
741 if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
742 cpumask_clear(cpus);
743
744 spin_lock(&kvm->requests_lock);
745 me = smp_processor_id();
746 kvm_for_each_vcpu(i, vcpu, kvm) {
747 if (test_and_set_bit(req, &vcpu->requests))
748 continue;
749 cpu = vcpu->cpu;
750 if (cpus != NULL && cpu != -1 && cpu != me)
751 cpumask_set_cpu(cpu, cpus);
752 }
753 if (unlikely(cpus == NULL))
754 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
755 else if (!cpumask_empty(cpus))
756 smp_call_function_many(cpus, ack_flush, NULL, 1);
757 else
758 called = false;
759 spin_unlock(&kvm->requests_lock);
760 free_cpumask_var(cpus);
761 return called;
762 }
763
764 void kvm_flush_remote_tlbs(struct kvm *kvm)
765 {
766 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
767 ++kvm->stat.remote_tlb_flush;
768 }
769
770 void kvm_reload_remote_mmus(struct kvm *kvm)
771 {
772 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
773 }
774
775 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
776 {
777 struct page *page;
778 int r;
779
780 mutex_init(&vcpu->mutex);
781 vcpu->cpu = -1;
782 vcpu->kvm = kvm;
783 vcpu->vcpu_id = id;
784 init_waitqueue_head(&vcpu->wq);
785
786 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
787 if (!page) {
788 r = -ENOMEM;
789 goto fail;
790 }
791 vcpu->run = page_address(page);
792
793 r = kvm_arch_vcpu_init(vcpu);
794 if (r < 0)
795 goto fail_free_run;
796 return 0;
797
798 fail_free_run:
799 free_page((unsigned long)vcpu->run);
800 fail:
801 return r;
802 }
803 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
804
805 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
806 {
807 kvm_arch_vcpu_uninit(vcpu);
808 free_page((unsigned long)vcpu->run);
809 }
810 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
811
812 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
813 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
814 {
815 return container_of(mn, struct kvm, mmu_notifier);
816 }
817
818 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
819 struct mm_struct *mm,
820 unsigned long address)
821 {
822 struct kvm *kvm = mmu_notifier_to_kvm(mn);
823 int need_tlb_flush;
824
825 /*
826 * When ->invalidate_page runs, the linux pte has been zapped
827 * already but the page is still allocated until
828 * ->invalidate_page returns. So if we increase the sequence
829 * here the kvm page fault will notice if the spte can't be
830 * established because the page is going to be freed. If
831 * instead the kvm page fault establishes the spte before
832 * ->invalidate_page runs, kvm_unmap_hva will release it
833 * before returning.
834 *
835 * The sequence increase only need to be seen at spin_unlock
836 * time, and not at spin_lock time.
837 *
838 * Increasing the sequence after the spin_unlock would be
839 * unsafe because the kvm page fault could then establish the
840 * pte after kvm_unmap_hva returned, without noticing the page
841 * is going to be freed.
842 */
843 spin_lock(&kvm->mmu_lock);
844 kvm->mmu_notifier_seq++;
845 need_tlb_flush = kvm_unmap_hva(kvm, address);
846 spin_unlock(&kvm->mmu_lock);
847
848 /* we've to flush the tlb before the pages can be freed */
849 if (need_tlb_flush)
850 kvm_flush_remote_tlbs(kvm);
851
852 }
853
854 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
855 struct mm_struct *mm,
856 unsigned long start,
857 unsigned long end)
858 {
859 struct kvm *kvm = mmu_notifier_to_kvm(mn);
860 int need_tlb_flush = 0;
861
862 spin_lock(&kvm->mmu_lock);
863 /*
864 * The count increase must become visible at unlock time as no
865 * spte can be established without taking the mmu_lock and
866 * count is also read inside the mmu_lock critical section.
867 */
868 kvm->mmu_notifier_count++;
869 for (; start < end; start += PAGE_SIZE)
870 need_tlb_flush |= kvm_unmap_hva(kvm, start);
871 spin_unlock(&kvm->mmu_lock);
872
873 /* we've to flush the tlb before the pages can be freed */
874 if (need_tlb_flush)
875 kvm_flush_remote_tlbs(kvm);
876 }
877
878 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
879 struct mm_struct *mm,
880 unsigned long start,
881 unsigned long end)
882 {
883 struct kvm *kvm = mmu_notifier_to_kvm(mn);
884
885 spin_lock(&kvm->mmu_lock);
886 /*
887 * This sequence increase will notify the kvm page fault that
888 * the page that is going to be mapped in the spte could have
889 * been freed.
890 */
891 kvm->mmu_notifier_seq++;
892 /*
893 * The above sequence increase must be visible before the
894 * below count decrease but both values are read by the kvm
895 * page fault under mmu_lock spinlock so we don't need to add
896 * a smb_wmb() here in between the two.
897 */
898 kvm->mmu_notifier_count--;
899 spin_unlock(&kvm->mmu_lock);
900
901 BUG_ON(kvm->mmu_notifier_count < 0);
902 }
903
904 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
905 struct mm_struct *mm,
906 unsigned long address)
907 {
908 struct kvm *kvm = mmu_notifier_to_kvm(mn);
909 int young;
910
911 spin_lock(&kvm->mmu_lock);
912 young = kvm_age_hva(kvm, address);
913 spin_unlock(&kvm->mmu_lock);
914
915 if (young)
916 kvm_flush_remote_tlbs(kvm);
917
918 return young;
919 }
920
921 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
922 struct mm_struct *mm)
923 {
924 struct kvm *kvm = mmu_notifier_to_kvm(mn);
925 kvm_arch_flush_shadow(kvm);
926 }
927
928 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
929 .invalidate_page = kvm_mmu_notifier_invalidate_page,
930 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
931 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
932 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
933 .release = kvm_mmu_notifier_release,
934 };
935 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
936
937 static struct kvm *kvm_create_vm(void)
938 {
939 struct kvm *kvm = kvm_arch_create_vm();
940 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
941 struct page *page;
942 #endif
943
944 if (IS_ERR(kvm))
945 goto out;
946 #ifdef CONFIG_HAVE_KVM_IRQCHIP
947 INIT_LIST_HEAD(&kvm->irq_routing);
948 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
949 #endif
950
951 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
952 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
953 if (!page) {
954 kfree(kvm);
955 return ERR_PTR(-ENOMEM);
956 }
957 kvm->coalesced_mmio_ring =
958 (struct kvm_coalesced_mmio_ring *)page_address(page);
959 #endif
960
961 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
962 {
963 int err;
964 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
965 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
966 if (err) {
967 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
968 put_page(page);
969 #endif
970 kfree(kvm);
971 return ERR_PTR(err);
972 }
973 }
974 #endif
975
976 kvm->mm = current->mm;
977 atomic_inc(&kvm->mm->mm_count);
978 spin_lock_init(&kvm->mmu_lock);
979 spin_lock_init(&kvm->requests_lock);
980 kvm_io_bus_init(&kvm->pio_bus);
981 kvm_eventfd_init(kvm);
982 mutex_init(&kvm->lock);
983 mutex_init(&kvm->irq_lock);
984 kvm_io_bus_init(&kvm->mmio_bus);
985 init_rwsem(&kvm->slots_lock);
986 atomic_set(&kvm->users_count, 1);
987 spin_lock(&kvm_lock);
988 list_add(&kvm->vm_list, &vm_list);
989 spin_unlock(&kvm_lock);
990 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
991 kvm_coalesced_mmio_init(kvm);
992 #endif
993 out:
994 return kvm;
995 }
996
997 /*
998 * Free any memory in @free but not in @dont.
999 */
1000 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
1001 struct kvm_memory_slot *dont)
1002 {
1003 int i;
1004
1005 if (!dont || free->rmap != dont->rmap)
1006 vfree(free->rmap);
1007
1008 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
1009 vfree(free->dirty_bitmap);
1010
1011
1012 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
1013 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
1014 vfree(free->lpage_info[i]);
1015 free->lpage_info[i] = NULL;
1016 }
1017 }
1018
1019 free->npages = 0;
1020 free->dirty_bitmap = NULL;
1021 free->rmap = NULL;
1022 }
1023
1024 void kvm_free_physmem(struct kvm *kvm)
1025 {
1026 int i;
1027
1028 for (i = 0; i < kvm->nmemslots; ++i)
1029 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
1030 }
1031
1032 static void kvm_destroy_vm(struct kvm *kvm)
1033 {
1034 struct mm_struct *mm = kvm->mm;
1035
1036 kvm_arch_sync_events(kvm);
1037 spin_lock(&kvm_lock);
1038 list_del(&kvm->vm_list);
1039 spin_unlock(&kvm_lock);
1040 kvm_free_irq_routing(kvm);
1041 kvm_io_bus_destroy(&kvm->pio_bus);
1042 kvm_io_bus_destroy(&kvm->mmio_bus);
1043 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1044 if (kvm->coalesced_mmio_ring != NULL)
1045 free_page((unsigned long)kvm->coalesced_mmio_ring);
1046 #endif
1047 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1048 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1049 #else
1050 kvm_arch_flush_shadow(kvm);
1051 #endif
1052 kvm_arch_destroy_vm(kvm);
1053 mmdrop(mm);
1054 }
1055
1056 void kvm_get_kvm(struct kvm *kvm)
1057 {
1058 atomic_inc(&kvm->users_count);
1059 }
1060 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1061
1062 void kvm_put_kvm(struct kvm *kvm)
1063 {
1064 if (atomic_dec_and_test(&kvm->users_count))
1065 kvm_destroy_vm(kvm);
1066 }
1067 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1068
1069
1070 static int kvm_vm_release(struct inode *inode, struct file *filp)
1071 {
1072 struct kvm *kvm = filp->private_data;
1073
1074 kvm_irqfd_release(kvm);
1075
1076 kvm_put_kvm(kvm);
1077 return 0;
1078 }
1079
1080 /*
1081 * Allocate some memory and give it an address in the guest physical address
1082 * space.
1083 *
1084 * Discontiguous memory is allowed, mostly for framebuffers.
1085 *
1086 * Must be called holding mmap_sem for write.
1087 */
1088 int __kvm_set_memory_region(struct kvm *kvm,
1089 struct kvm_userspace_memory_region *mem,
1090 int user_alloc)
1091 {
1092 int r;
1093 gfn_t base_gfn;
1094 unsigned long npages, ugfn;
1095 int lpages;
1096 unsigned long i, j;
1097 struct kvm_memory_slot *memslot;
1098 struct kvm_memory_slot old, new;
1099
1100 r = -EINVAL;
1101 /* General sanity checks */
1102 if (mem->memory_size & (PAGE_SIZE - 1))
1103 goto out;
1104 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1105 goto out;
1106 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
1107 goto out;
1108 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
1109 goto out;
1110 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1111 goto out;
1112
1113 memslot = &kvm->memslots[mem->slot];
1114 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1115 npages = mem->memory_size >> PAGE_SHIFT;
1116
1117 if (!npages)
1118 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1119
1120 new = old = *memslot;
1121
1122 new.base_gfn = base_gfn;
1123 new.npages = npages;
1124 new.flags = mem->flags;
1125
1126 /* Disallow changing a memory slot's size. */
1127 r = -EINVAL;
1128 if (npages && old.npages && npages != old.npages)
1129 goto out_free;
1130
1131 /* Check for overlaps */
1132 r = -EEXIST;
1133 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1134 struct kvm_memory_slot *s = &kvm->memslots[i];
1135
1136 if (s == memslot || !s->npages)
1137 continue;
1138 if (!((base_gfn + npages <= s->base_gfn) ||
1139 (base_gfn >= s->base_gfn + s->npages)))
1140 goto out_free;
1141 }
1142
1143 /* Free page dirty bitmap if unneeded */
1144 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1145 new.dirty_bitmap = NULL;
1146
1147 r = -ENOMEM;
1148
1149 /* Allocate if a slot is being created */
1150 #ifndef CONFIG_S390
1151 if (npages && !new.rmap) {
1152 new.rmap = vmalloc(npages * sizeof(struct page *));
1153
1154 if (!new.rmap)
1155 goto out_free;
1156
1157 memset(new.rmap, 0, npages * sizeof(*new.rmap));
1158
1159 new.user_alloc = user_alloc;
1160 /*
1161 * hva_to_rmmap() serialzies with the mmu_lock and to be
1162 * safe it has to ignore memslots with !user_alloc &&
1163 * !userspace_addr.
1164 */
1165 if (user_alloc)
1166 new.userspace_addr = mem->userspace_addr;
1167 else
1168 new.userspace_addr = 0;
1169 }
1170 if (!npages)
1171 goto skip_lpage;
1172
1173 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
1174 int level = i + 2;
1175
1176 /* Avoid unused variable warning if no large pages */
1177 (void)level;
1178
1179 if (new.lpage_info[i])
1180 continue;
1181
1182 lpages = 1 + (base_gfn + npages - 1) /
1183 KVM_PAGES_PER_HPAGE(level);
1184 lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
1185
1186 new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
1187
1188 if (!new.lpage_info[i])
1189 goto out_free;
1190
1191 memset(new.lpage_info[i], 0,
1192 lpages * sizeof(*new.lpage_info[i]));
1193
1194 if (base_gfn % KVM_PAGES_PER_HPAGE(level))
1195 new.lpage_info[i][0].write_count = 1;
1196 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
1197 new.lpage_info[i][lpages - 1].write_count = 1;
1198 ugfn = new.userspace_addr >> PAGE_SHIFT;
1199 /*
1200 * If the gfn and userspace address are not aligned wrt each
1201 * other, or if explicitly asked to, disable large page
1202 * support for this slot
1203 */
1204 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
1205 !largepages_enabled)
1206 for (j = 0; j < lpages; ++j)
1207 new.lpage_info[i][j].write_count = 1;
1208 }
1209
1210 skip_lpage:
1211
1212 /* Allocate page dirty bitmap if needed */
1213 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1214 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1215
1216 new.dirty_bitmap = vmalloc(dirty_bytes);
1217 if (!new.dirty_bitmap)
1218 goto out_free;
1219 memset(new.dirty_bitmap, 0, dirty_bytes);
1220 if (old.npages)
1221 kvm_arch_flush_shadow(kvm);
1222 }
1223 #else /* not defined CONFIG_S390 */
1224 new.user_alloc = user_alloc;
1225 if (user_alloc)
1226 new.userspace_addr = mem->userspace_addr;
1227 #endif /* not defined CONFIG_S390 */
1228
1229 if (!npages)
1230 kvm_arch_flush_shadow(kvm);
1231
1232 spin_lock(&kvm->mmu_lock);
1233 if (mem->slot >= kvm->nmemslots)
1234 kvm->nmemslots = mem->slot + 1;
1235
1236 *memslot = new;
1237 spin_unlock(&kvm->mmu_lock);
1238
1239 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1240 if (r) {
1241 spin_lock(&kvm->mmu_lock);
1242 *memslot = old;
1243 spin_unlock(&kvm->mmu_lock);
1244 goto out_free;
1245 }
1246
1247 kvm_free_physmem_slot(&old, npages ? &new : NULL);
1248 /* Slot deletion case: we have to update the current slot */
1249 spin_lock(&kvm->mmu_lock);
1250 if (!npages)
1251 *memslot = old;
1252 spin_unlock(&kvm->mmu_lock);
1253 #ifdef CONFIG_DMAR
1254 /* map the pages in iommu page table */
1255 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1256 if (r)
1257 goto out;
1258 #endif
1259 return 0;
1260
1261 out_free:
1262 kvm_free_physmem_slot(&new, &old);
1263 out:
1264 return r;
1265
1266 }
1267 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1268
1269 int kvm_set_memory_region(struct kvm *kvm,
1270 struct kvm_userspace_memory_region *mem,
1271 int user_alloc)
1272 {
1273 int r;
1274
1275 down_write(&kvm->slots_lock);
1276 r = __kvm_set_memory_region(kvm, mem, user_alloc);
1277 up_write(&kvm->slots_lock);
1278 return r;
1279 }
1280 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1281
1282 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1283 struct
1284 kvm_userspace_memory_region *mem,
1285 int user_alloc)
1286 {
1287 if (mem->slot >= KVM_MEMORY_SLOTS)
1288 return -EINVAL;
1289 return kvm_set_memory_region(kvm, mem, user_alloc);
1290 }
1291
1292 int kvm_get_dirty_log(struct kvm *kvm,
1293 struct kvm_dirty_log *log, int *is_dirty)
1294 {
1295 struct kvm_memory_slot *memslot;
1296 int r, i;
1297 int n;
1298 unsigned long any = 0;
1299
1300 r = -EINVAL;
1301 if (log->slot >= KVM_MEMORY_SLOTS)
1302 goto out;
1303
1304 memslot = &kvm->memslots[log->slot];
1305 r = -ENOENT;
1306 if (!memslot->dirty_bitmap)
1307 goto out;
1308
1309 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1310
1311 for (i = 0; !any && i < n/sizeof(long); ++i)
1312 any = memslot->dirty_bitmap[i];
1313
1314 r = -EFAULT;
1315 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1316 goto out;
1317
1318 if (any)
1319 *is_dirty = 1;
1320
1321 r = 0;
1322 out:
1323 return r;
1324 }
1325
1326 void kvm_disable_largepages(void)
1327 {
1328 largepages_enabled = false;
1329 }
1330 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1331
1332 int is_error_page(struct page *page)
1333 {
1334 return page == bad_page;
1335 }
1336 EXPORT_SYMBOL_GPL(is_error_page);
1337
1338 int is_error_pfn(pfn_t pfn)
1339 {
1340 return pfn == bad_pfn;
1341 }
1342 EXPORT_SYMBOL_GPL(is_error_pfn);
1343
1344 static inline unsigned long bad_hva(void)
1345 {
1346 return PAGE_OFFSET;
1347 }
1348
1349 int kvm_is_error_hva(unsigned long addr)
1350 {
1351 return addr == bad_hva();
1352 }
1353 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1354
1355 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1356 {
1357 int i;
1358
1359 for (i = 0; i < kvm->nmemslots; ++i) {
1360 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1361
1362 if (gfn >= memslot->base_gfn
1363 && gfn < memslot->base_gfn + memslot->npages)
1364 return memslot;
1365 }
1366 return NULL;
1367 }
1368 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1369
1370 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1371 {
1372 gfn = unalias_gfn(kvm, gfn);
1373 return gfn_to_memslot_unaliased(kvm, gfn);
1374 }
1375
1376 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1377 {
1378 int i;
1379
1380 gfn = unalias_gfn(kvm, gfn);
1381 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1382 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1383
1384 if (gfn >= memslot->base_gfn
1385 && gfn < memslot->base_gfn + memslot->npages)
1386 return 1;
1387 }
1388 return 0;
1389 }
1390 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1391
1392 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1393 {
1394 struct kvm_memory_slot *slot;
1395
1396 gfn = unalias_gfn(kvm, gfn);
1397 slot = gfn_to_memslot_unaliased(kvm, gfn);
1398 if (!slot)
1399 return bad_hva();
1400 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1401 }
1402 EXPORT_SYMBOL_GPL(gfn_to_hva);
1403
1404 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1405 {
1406 struct page *page[1];
1407 unsigned long addr;
1408 int npages;
1409 pfn_t pfn;
1410
1411 might_sleep();
1412
1413 addr = gfn_to_hva(kvm, gfn);
1414 if (kvm_is_error_hva(addr)) {
1415 get_page(bad_page);
1416 return page_to_pfn(bad_page);
1417 }
1418
1419 npages = get_user_pages_fast(addr, 1, 1, page);
1420
1421 if (unlikely(npages != 1)) {
1422 struct vm_area_struct *vma;
1423
1424 down_read(&current->mm->mmap_sem);
1425 vma = find_vma(current->mm, addr);
1426
1427 if (vma == NULL || addr < vma->vm_start ||
1428 !(vma->vm_flags & VM_PFNMAP)) {
1429 up_read(&current->mm->mmap_sem);
1430 get_page(bad_page);
1431 return page_to_pfn(bad_page);
1432 }
1433
1434 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1435 up_read(&current->mm->mmap_sem);
1436 BUG_ON(!kvm_is_mmio_pfn(pfn));
1437 } else
1438 pfn = page_to_pfn(page[0]);
1439
1440 return pfn;
1441 }
1442
1443 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1444
1445 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1446 {
1447 pfn_t pfn;
1448
1449 pfn = gfn_to_pfn(kvm, gfn);
1450 if (!kvm_is_mmio_pfn(pfn))
1451 return pfn_to_page(pfn);
1452
1453 WARN_ON(kvm_is_mmio_pfn(pfn));
1454
1455 get_page(bad_page);
1456 return bad_page;
1457 }
1458
1459 EXPORT_SYMBOL_GPL(gfn_to_page);
1460
1461 void kvm_release_page_clean(struct page *page)
1462 {
1463 kvm_release_pfn_clean(page_to_pfn(page));
1464 }
1465 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1466
1467 void kvm_release_pfn_clean(pfn_t pfn)
1468 {
1469 if (!kvm_is_mmio_pfn(pfn))
1470 put_page(pfn_to_page(pfn));
1471 }
1472 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1473
1474 void kvm_release_page_dirty(struct page *page)
1475 {
1476 kvm_release_pfn_dirty(page_to_pfn(page));
1477 }
1478 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1479
1480 void kvm_release_pfn_dirty(pfn_t pfn)
1481 {
1482 kvm_set_pfn_dirty(pfn);
1483 kvm_release_pfn_clean(pfn);
1484 }
1485 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1486
1487 void kvm_set_page_dirty(struct page *page)
1488 {
1489 kvm_set_pfn_dirty(page_to_pfn(page));
1490 }
1491 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1492
1493 void kvm_set_pfn_dirty(pfn_t pfn)
1494 {
1495 if (!kvm_is_mmio_pfn(pfn)) {
1496 struct page *page = pfn_to_page(pfn);
1497 if (!PageReserved(page))
1498 SetPageDirty(page);
1499 }
1500 }
1501 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1502
1503 void kvm_set_pfn_accessed(pfn_t pfn)
1504 {
1505 if (!kvm_is_mmio_pfn(pfn))
1506 mark_page_accessed(pfn_to_page(pfn));
1507 }
1508 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1509
1510 void kvm_get_pfn(pfn_t pfn)
1511 {
1512 if (!kvm_is_mmio_pfn(pfn))
1513 get_page(pfn_to_page(pfn));
1514 }
1515 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1516
1517 static int next_segment(unsigned long len, int offset)
1518 {
1519 if (len > PAGE_SIZE - offset)
1520 return PAGE_SIZE - offset;
1521 else
1522 return len;
1523 }
1524
1525 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1526 int len)
1527 {
1528 int r;
1529 unsigned long addr;
1530
1531 addr = gfn_to_hva(kvm, gfn);
1532 if (kvm_is_error_hva(addr))
1533 return -EFAULT;
1534 r = copy_from_user(data, (void __user *)addr + offset, len);
1535 if (r)
1536 return -EFAULT;
1537 return 0;
1538 }
1539 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1540
1541 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1542 {
1543 gfn_t gfn = gpa >> PAGE_SHIFT;
1544 int seg;
1545 int offset = offset_in_page(gpa);
1546 int ret;
1547
1548 while ((seg = next_segment(len, offset)) != 0) {
1549 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1550 if (ret < 0)
1551 return ret;
1552 offset = 0;
1553 len -= seg;
1554 data += seg;
1555 ++gfn;
1556 }
1557 return 0;
1558 }
1559 EXPORT_SYMBOL_GPL(kvm_read_guest);
1560
1561 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1562 unsigned long len)
1563 {
1564 int r;
1565 unsigned long addr;
1566 gfn_t gfn = gpa >> PAGE_SHIFT;
1567 int offset = offset_in_page(gpa);
1568
1569 addr = gfn_to_hva(kvm, gfn);
1570 if (kvm_is_error_hva(addr))
1571 return -EFAULT;
1572 pagefault_disable();
1573 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1574 pagefault_enable();
1575 if (r)
1576 return -EFAULT;
1577 return 0;
1578 }
1579 EXPORT_SYMBOL(kvm_read_guest_atomic);
1580
1581 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1582 int offset, int len)
1583 {
1584 int r;
1585 unsigned long addr;
1586
1587 addr = gfn_to_hva(kvm, gfn);
1588 if (kvm_is_error_hva(addr))
1589 return -EFAULT;
1590 r = copy_to_user((void __user *)addr + offset, data, len);
1591 if (r)
1592 return -EFAULT;
1593 mark_page_dirty(kvm, gfn);
1594 return 0;
1595 }
1596 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1597
1598 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1599 unsigned long len)
1600 {
1601 gfn_t gfn = gpa >> PAGE_SHIFT;
1602 int seg;
1603 int offset = offset_in_page(gpa);
1604 int ret;
1605
1606 while ((seg = next_segment(len, offset)) != 0) {
1607 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1608 if (ret < 0)
1609 return ret;
1610 offset = 0;
1611 len -= seg;
1612 data += seg;
1613 ++gfn;
1614 }
1615 return 0;
1616 }
1617
1618 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1619 {
1620 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1621 }
1622 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1623
1624 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1625 {
1626 gfn_t gfn = gpa >> PAGE_SHIFT;
1627 int seg;
1628 int offset = offset_in_page(gpa);
1629 int ret;
1630
1631 while ((seg = next_segment(len, offset)) != 0) {
1632 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1633 if (ret < 0)
1634 return ret;
1635 offset = 0;
1636 len -= seg;
1637 ++gfn;
1638 }
1639 return 0;
1640 }
1641 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1642
1643 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1644 {
1645 struct kvm_memory_slot *memslot;
1646
1647 gfn = unalias_gfn(kvm, gfn);
1648 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1649 if (memslot && memslot->dirty_bitmap) {
1650 unsigned long rel_gfn = gfn - memslot->base_gfn;
1651
1652 /* avoid RMW */
1653 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1654 set_bit(rel_gfn, memslot->dirty_bitmap);
1655 }
1656 }
1657
1658 /*
1659 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1660 */
1661 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1662 {
1663 DEFINE_WAIT(wait);
1664
1665 for (;;) {
1666 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1667
1668 if (kvm_arch_vcpu_runnable(vcpu)) {
1669 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1670 break;
1671 }
1672 if (kvm_cpu_has_pending_timer(vcpu))
1673 break;
1674 if (signal_pending(current))
1675 break;
1676
1677 vcpu_put(vcpu);
1678 schedule();
1679 vcpu_load(vcpu);
1680 }
1681
1682 finish_wait(&vcpu->wq, &wait);
1683 }
1684
1685 void kvm_resched(struct kvm_vcpu *vcpu)
1686 {
1687 if (!need_resched())
1688 return;
1689 cond_resched();
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_resched);
1692
1693 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1694 {
1695 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1696 struct page *page;
1697
1698 if (vmf->pgoff == 0)
1699 page = virt_to_page(vcpu->run);
1700 #ifdef CONFIG_X86
1701 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1702 page = virt_to_page(vcpu->arch.pio_data);
1703 #endif
1704 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1705 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1706 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1707 #endif
1708 else
1709 return VM_FAULT_SIGBUS;
1710 get_page(page);
1711 vmf->page = page;
1712 return 0;
1713 }
1714
1715 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1716 .fault = kvm_vcpu_fault,
1717 };
1718
1719 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1720 {
1721 vma->vm_ops = &kvm_vcpu_vm_ops;
1722 return 0;
1723 }
1724
1725 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1726 {
1727 struct kvm_vcpu *vcpu = filp->private_data;
1728
1729 kvm_put_kvm(vcpu->kvm);
1730 return 0;
1731 }
1732
1733 static struct file_operations kvm_vcpu_fops = {
1734 .release = kvm_vcpu_release,
1735 .unlocked_ioctl = kvm_vcpu_ioctl,
1736 .compat_ioctl = kvm_vcpu_ioctl,
1737 .mmap = kvm_vcpu_mmap,
1738 };
1739
1740 /*
1741 * Allocates an inode for the vcpu.
1742 */
1743 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1744 {
1745 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1746 }
1747
1748 /*
1749 * Creates some virtual cpus. Good luck creating more than one.
1750 */
1751 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1752 {
1753 int r;
1754 struct kvm_vcpu *vcpu, *v;
1755
1756 vcpu = kvm_arch_vcpu_create(kvm, id);
1757 if (IS_ERR(vcpu))
1758 return PTR_ERR(vcpu);
1759
1760 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1761
1762 r = kvm_arch_vcpu_setup(vcpu);
1763 if (r)
1764 return r;
1765
1766 mutex_lock(&kvm->lock);
1767 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1768 r = -EINVAL;
1769 goto vcpu_destroy;
1770 }
1771
1772 kvm_for_each_vcpu(r, v, kvm)
1773 if (v->vcpu_id == id) {
1774 r = -EEXIST;
1775 goto vcpu_destroy;
1776 }
1777
1778 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1779
1780 /* Now it's all set up, let userspace reach it */
1781 kvm_get_kvm(kvm);
1782 r = create_vcpu_fd(vcpu);
1783 if (r < 0) {
1784 kvm_put_kvm(kvm);
1785 goto vcpu_destroy;
1786 }
1787
1788 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1789 smp_wmb();
1790 atomic_inc(&kvm->online_vcpus);
1791
1792 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1793 if (kvm->bsp_vcpu_id == id)
1794 kvm->bsp_vcpu = vcpu;
1795 #endif
1796 mutex_unlock(&kvm->lock);
1797 return r;
1798
1799 vcpu_destroy:
1800 mutex_unlock(&kvm->lock);
1801 kvm_arch_vcpu_destroy(vcpu);
1802 return r;
1803 }
1804
1805 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1806 {
1807 if (sigset) {
1808 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1809 vcpu->sigset_active = 1;
1810 vcpu->sigset = *sigset;
1811 } else
1812 vcpu->sigset_active = 0;
1813 return 0;
1814 }
1815
1816 #ifdef __KVM_HAVE_MSIX
1817 static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
1818 struct kvm_assigned_msix_nr *entry_nr)
1819 {
1820 int r = 0;
1821 struct kvm_assigned_dev_kernel *adev;
1822
1823 mutex_lock(&kvm->lock);
1824
1825 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1826 entry_nr->assigned_dev_id);
1827 if (!adev) {
1828 r = -EINVAL;
1829 goto msix_nr_out;
1830 }
1831
1832 if (adev->entries_nr == 0) {
1833 adev->entries_nr = entry_nr->entry_nr;
1834 if (adev->entries_nr == 0 ||
1835 adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
1836 r = -EINVAL;
1837 goto msix_nr_out;
1838 }
1839
1840 adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
1841 entry_nr->entry_nr,
1842 GFP_KERNEL);
1843 if (!adev->host_msix_entries) {
1844 r = -ENOMEM;
1845 goto msix_nr_out;
1846 }
1847 adev->guest_msix_entries = kzalloc(
1848 sizeof(struct kvm_guest_msix_entry) *
1849 entry_nr->entry_nr, GFP_KERNEL);
1850 if (!adev->guest_msix_entries) {
1851 kfree(adev->host_msix_entries);
1852 r = -ENOMEM;
1853 goto msix_nr_out;
1854 }
1855 } else /* Not allowed set MSI-X number twice */
1856 r = -EINVAL;
1857 msix_nr_out:
1858 mutex_unlock(&kvm->lock);
1859 return r;
1860 }
1861
1862 static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
1863 struct kvm_assigned_msix_entry *entry)
1864 {
1865 int r = 0, i;
1866 struct kvm_assigned_dev_kernel *adev;
1867
1868 mutex_lock(&kvm->lock);
1869
1870 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1871 entry->assigned_dev_id);
1872
1873 if (!adev) {
1874 r = -EINVAL;
1875 goto msix_entry_out;
1876 }
1877
1878 for (i = 0; i < adev->entries_nr; i++)
1879 if (adev->guest_msix_entries[i].vector == 0 ||
1880 adev->guest_msix_entries[i].entry == entry->entry) {
1881 adev->guest_msix_entries[i].entry = entry->entry;
1882 adev->guest_msix_entries[i].vector = entry->gsi;
1883 adev->host_msix_entries[i].entry = entry->entry;
1884 break;
1885 }
1886 if (i == adev->entries_nr) {
1887 r = -ENOSPC;
1888 goto msix_entry_out;
1889 }
1890
1891 msix_entry_out:
1892 mutex_unlock(&kvm->lock);
1893
1894 return r;
1895 }
1896 #endif
1897
1898 static long kvm_vcpu_ioctl(struct file *filp,
1899 unsigned int ioctl, unsigned long arg)
1900 {
1901 struct kvm_vcpu *vcpu = filp->private_data;
1902 void __user *argp = (void __user *)arg;
1903 int r;
1904 struct kvm_fpu *fpu = NULL;
1905 struct kvm_sregs *kvm_sregs = NULL;
1906
1907 if (vcpu->kvm->mm != current->mm)
1908 return -EIO;
1909 switch (ioctl) {
1910 case KVM_RUN:
1911 r = -EINVAL;
1912 if (arg)
1913 goto out;
1914 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1915 break;
1916 case KVM_GET_REGS: {
1917 struct kvm_regs *kvm_regs;
1918
1919 r = -ENOMEM;
1920 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1921 if (!kvm_regs)
1922 goto out;
1923 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1924 if (r)
1925 goto out_free1;
1926 r = -EFAULT;
1927 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1928 goto out_free1;
1929 r = 0;
1930 out_free1:
1931 kfree(kvm_regs);
1932 break;
1933 }
1934 case KVM_SET_REGS: {
1935 struct kvm_regs *kvm_regs;
1936
1937 r = -ENOMEM;
1938 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1939 if (!kvm_regs)
1940 goto out;
1941 r = -EFAULT;
1942 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1943 goto out_free2;
1944 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1945 if (r)
1946 goto out_free2;
1947 r = 0;
1948 out_free2:
1949 kfree(kvm_regs);
1950 break;
1951 }
1952 case KVM_GET_SREGS: {
1953 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1954 r = -ENOMEM;
1955 if (!kvm_sregs)
1956 goto out;
1957 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1958 if (r)
1959 goto out;
1960 r = -EFAULT;
1961 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1962 goto out;
1963 r = 0;
1964 break;
1965 }
1966 case KVM_SET_SREGS: {
1967 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1968 r = -ENOMEM;
1969 if (!kvm_sregs)
1970 goto out;
1971 r = -EFAULT;
1972 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1973 goto out;
1974 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1975 if (r)
1976 goto out;
1977 r = 0;
1978 break;
1979 }
1980 case KVM_GET_MP_STATE: {
1981 struct kvm_mp_state mp_state;
1982
1983 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1984 if (r)
1985 goto out;
1986 r = -EFAULT;
1987 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1988 goto out;
1989 r = 0;
1990 break;
1991 }
1992 case KVM_SET_MP_STATE: {
1993 struct kvm_mp_state mp_state;
1994
1995 r = -EFAULT;
1996 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1997 goto out;
1998 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1999 if (r)
2000 goto out;
2001 r = 0;
2002 break;
2003 }
2004 case KVM_TRANSLATE: {
2005 struct kvm_translation tr;
2006
2007 r = -EFAULT;
2008 if (copy_from_user(&tr, argp, sizeof tr))
2009 goto out;
2010 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2011 if (r)
2012 goto out;
2013 r = -EFAULT;
2014 if (copy_to_user(argp, &tr, sizeof tr))
2015 goto out;
2016 r = 0;
2017 break;
2018 }
2019 case KVM_SET_GUEST_DEBUG: {
2020 struct kvm_guest_debug dbg;
2021
2022 r = -EFAULT;
2023 if (copy_from_user(&dbg, argp, sizeof dbg))
2024 goto out;
2025 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2026 if (r)
2027 goto out;
2028 r = 0;
2029 break;
2030 }
2031 case KVM_SET_SIGNAL_MASK: {
2032 struct kvm_signal_mask __user *sigmask_arg = argp;
2033 struct kvm_signal_mask kvm_sigmask;
2034 sigset_t sigset, *p;
2035
2036 p = NULL;
2037 if (argp) {
2038 r = -EFAULT;
2039 if (copy_from_user(&kvm_sigmask, argp,
2040 sizeof kvm_sigmask))
2041 goto out;
2042 r = -EINVAL;
2043 if (kvm_sigmask.len != sizeof sigset)
2044 goto out;
2045 r = -EFAULT;
2046 if (copy_from_user(&sigset, sigmask_arg->sigset,
2047 sizeof sigset))
2048 goto out;
2049 p = &sigset;
2050 }
2051 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2052 break;
2053 }
2054 case KVM_GET_FPU: {
2055 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2056 r = -ENOMEM;
2057 if (!fpu)
2058 goto out;
2059 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2060 if (r)
2061 goto out;
2062 r = -EFAULT;
2063 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2064 goto out;
2065 r = 0;
2066 break;
2067 }
2068 case KVM_SET_FPU: {
2069 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2070 r = -ENOMEM;
2071 if (!fpu)
2072 goto out;
2073 r = -EFAULT;
2074 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
2075 goto out;
2076 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2077 if (r)
2078 goto out;
2079 r = 0;
2080 break;
2081 }
2082 default:
2083 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2084 }
2085 out:
2086 kfree(fpu);
2087 kfree(kvm_sregs);
2088 return r;
2089 }
2090
2091 static long kvm_vm_ioctl(struct file *filp,
2092 unsigned int ioctl, unsigned long arg)
2093 {
2094 struct kvm *kvm = filp->private_data;
2095 void __user *argp = (void __user *)arg;
2096 int r;
2097
2098 if (kvm->mm != current->mm)
2099 return -EIO;
2100 switch (ioctl) {
2101 case KVM_CREATE_VCPU:
2102 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2103 if (r < 0)
2104 goto out;
2105 break;
2106 case KVM_SET_USER_MEMORY_REGION: {
2107 struct kvm_userspace_memory_region kvm_userspace_mem;
2108
2109 r = -EFAULT;
2110 if (copy_from_user(&kvm_userspace_mem, argp,
2111 sizeof kvm_userspace_mem))
2112 goto out;
2113
2114 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2115 if (r)
2116 goto out;
2117 break;
2118 }
2119 case KVM_GET_DIRTY_LOG: {
2120 struct kvm_dirty_log log;
2121
2122 r = -EFAULT;
2123 if (copy_from_user(&log, argp, sizeof log))
2124 goto out;
2125 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2126 if (r)
2127 goto out;
2128 break;
2129 }
2130 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2131 case KVM_REGISTER_COALESCED_MMIO: {
2132 struct kvm_coalesced_mmio_zone zone;
2133 r = -EFAULT;
2134 if (copy_from_user(&zone, argp, sizeof zone))
2135 goto out;
2136 r = -ENXIO;
2137 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2138 if (r)
2139 goto out;
2140 r = 0;
2141 break;
2142 }
2143 case KVM_UNREGISTER_COALESCED_MMIO: {
2144 struct kvm_coalesced_mmio_zone zone;
2145 r = -EFAULT;
2146 if (copy_from_user(&zone, argp, sizeof zone))
2147 goto out;
2148 r = -ENXIO;
2149 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2150 if (r)
2151 goto out;
2152 r = 0;
2153 break;
2154 }
2155 #endif
2156 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
2157 case KVM_ASSIGN_PCI_DEVICE: {
2158 struct kvm_assigned_pci_dev assigned_dev;
2159
2160 r = -EFAULT;
2161 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2162 goto out;
2163 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
2164 if (r)
2165 goto out;
2166 break;
2167 }
2168 case KVM_ASSIGN_IRQ: {
2169 r = -EOPNOTSUPP;
2170 break;
2171 }
2172 #ifdef KVM_CAP_ASSIGN_DEV_IRQ
2173 case KVM_ASSIGN_DEV_IRQ: {
2174 struct kvm_assigned_irq assigned_irq;
2175
2176 r = -EFAULT;
2177 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2178 goto out;
2179 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
2180 if (r)
2181 goto out;
2182 break;
2183 }
2184 case KVM_DEASSIGN_DEV_IRQ: {
2185 struct kvm_assigned_irq assigned_irq;
2186
2187 r = -EFAULT;
2188 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2189 goto out;
2190 r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
2191 if (r)
2192 goto out;
2193 break;
2194 }
2195 #endif
2196 #endif
2197 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
2198 case KVM_DEASSIGN_PCI_DEVICE: {
2199 struct kvm_assigned_pci_dev assigned_dev;
2200
2201 r = -EFAULT;
2202 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2203 goto out;
2204 r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
2205 if (r)
2206 goto out;
2207 break;
2208 }
2209 #endif
2210 #ifdef KVM_CAP_IRQ_ROUTING
2211 case KVM_SET_GSI_ROUTING: {
2212 struct kvm_irq_routing routing;
2213 struct kvm_irq_routing __user *urouting;
2214 struct kvm_irq_routing_entry *entries;
2215
2216 r = -EFAULT;
2217 if (copy_from_user(&routing, argp, sizeof(routing)))
2218 goto out;
2219 r = -EINVAL;
2220 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2221 goto out;
2222 if (routing.flags)
2223 goto out;
2224 r = -ENOMEM;
2225 entries = vmalloc(routing.nr * sizeof(*entries));
2226 if (!entries)
2227 goto out;
2228 r = -EFAULT;
2229 urouting = argp;
2230 if (copy_from_user(entries, urouting->entries,
2231 routing.nr * sizeof(*entries)))
2232 goto out_free_irq_routing;
2233 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2234 routing.flags);
2235 out_free_irq_routing:
2236 vfree(entries);
2237 break;
2238 }
2239 #ifdef __KVM_HAVE_MSIX
2240 case KVM_ASSIGN_SET_MSIX_NR: {
2241 struct kvm_assigned_msix_nr entry_nr;
2242 r = -EFAULT;
2243 if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
2244 goto out;
2245 r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
2246 if (r)
2247 goto out;
2248 break;
2249 }
2250 case KVM_ASSIGN_SET_MSIX_ENTRY: {
2251 struct kvm_assigned_msix_entry entry;
2252 r = -EFAULT;
2253 if (copy_from_user(&entry, argp, sizeof entry))
2254 goto out;
2255 r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
2256 if (r)
2257 goto out;
2258 break;
2259 }
2260 #endif
2261 #endif /* KVM_CAP_IRQ_ROUTING */
2262 case KVM_IRQFD: {
2263 struct kvm_irqfd data;
2264
2265 r = -EFAULT;
2266 if (copy_from_user(&data, argp, sizeof data))
2267 goto out;
2268 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2269 break;
2270 }
2271 case KVM_IOEVENTFD: {
2272 struct kvm_ioeventfd data;
2273
2274 r = -EFAULT;
2275 if (copy_from_user(&data, argp, sizeof data))
2276 goto out;
2277 r = kvm_ioeventfd(kvm, &data);
2278 break;
2279 }
2280 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2281 case KVM_SET_BOOT_CPU_ID:
2282 r = 0;
2283 mutex_lock(&kvm->lock);
2284 if (atomic_read(&kvm->online_vcpus) != 0)
2285 r = -EBUSY;
2286 else
2287 kvm->bsp_vcpu_id = arg;
2288 mutex_unlock(&kvm->lock);
2289 break;
2290 #endif
2291 default:
2292 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2293 }
2294 out:
2295 return r;
2296 }
2297
2298 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2299 {
2300 struct page *page[1];
2301 unsigned long addr;
2302 int npages;
2303 gfn_t gfn = vmf->pgoff;
2304 struct kvm *kvm = vma->vm_file->private_data;
2305
2306 addr = gfn_to_hva(kvm, gfn);
2307 if (kvm_is_error_hva(addr))
2308 return VM_FAULT_SIGBUS;
2309
2310 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2311 NULL);
2312 if (unlikely(npages != 1))
2313 return VM_FAULT_SIGBUS;
2314
2315 vmf->page = page[0];
2316 return 0;
2317 }
2318
2319 static struct vm_operations_struct kvm_vm_vm_ops = {
2320 .fault = kvm_vm_fault,
2321 };
2322
2323 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2324 {
2325 vma->vm_ops = &kvm_vm_vm_ops;
2326 return 0;
2327 }
2328
2329 static struct file_operations kvm_vm_fops = {
2330 .release = kvm_vm_release,
2331 .unlocked_ioctl = kvm_vm_ioctl,
2332 .compat_ioctl = kvm_vm_ioctl,
2333 .mmap = kvm_vm_mmap,
2334 };
2335
2336 static int kvm_dev_ioctl_create_vm(void)
2337 {
2338 int fd;
2339 struct kvm *kvm;
2340
2341 kvm = kvm_create_vm();
2342 if (IS_ERR(kvm))
2343 return PTR_ERR(kvm);
2344 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
2345 if (fd < 0)
2346 kvm_put_kvm(kvm);
2347
2348 return fd;
2349 }
2350
2351 static long kvm_dev_ioctl_check_extension_generic(long arg)
2352 {
2353 switch (arg) {
2354 case KVM_CAP_USER_MEMORY:
2355 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2356 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2357 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2358 case KVM_CAP_SET_BOOT_CPU_ID:
2359 #endif
2360 return 1;
2361 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2362 case KVM_CAP_IRQ_ROUTING:
2363 return KVM_MAX_IRQ_ROUTES;
2364 #endif
2365 default:
2366 break;
2367 }
2368 return kvm_dev_ioctl_check_extension(arg);
2369 }
2370
2371 static long kvm_dev_ioctl(struct file *filp,
2372 unsigned int ioctl, unsigned long arg)
2373 {
2374 long r = -EINVAL;
2375
2376 switch (ioctl) {
2377 case KVM_GET_API_VERSION:
2378 r = -EINVAL;
2379 if (arg)
2380 goto out;
2381 r = KVM_API_VERSION;
2382 break;
2383 case KVM_CREATE_VM:
2384 r = -EINVAL;
2385 if (arg)
2386 goto out;
2387 r = kvm_dev_ioctl_create_vm();
2388 break;
2389 case KVM_CHECK_EXTENSION:
2390 r = kvm_dev_ioctl_check_extension_generic(arg);
2391 break;
2392 case KVM_GET_VCPU_MMAP_SIZE:
2393 r = -EINVAL;
2394 if (arg)
2395 goto out;
2396 r = PAGE_SIZE; /* struct kvm_run */
2397 #ifdef CONFIG_X86
2398 r += PAGE_SIZE; /* pio data page */
2399 #endif
2400 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2401 r += PAGE_SIZE; /* coalesced mmio ring page */
2402 #endif
2403 break;
2404 case KVM_TRACE_ENABLE:
2405 case KVM_TRACE_PAUSE:
2406 case KVM_TRACE_DISABLE:
2407 r = -EOPNOTSUPP;
2408 break;
2409 default:
2410 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2411 }
2412 out:
2413 return r;
2414 }
2415
2416 static struct file_operations kvm_chardev_ops = {
2417 .unlocked_ioctl = kvm_dev_ioctl,
2418 .compat_ioctl = kvm_dev_ioctl,
2419 };
2420
2421 static struct miscdevice kvm_dev = {
2422 KVM_MINOR,
2423 "kvm",
2424 &kvm_chardev_ops,
2425 };
2426
2427 static void hardware_enable(void *junk)
2428 {
2429 int cpu = raw_smp_processor_id();
2430
2431 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2432 return;
2433 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2434 kvm_arch_hardware_enable(NULL);
2435 }
2436
2437 static void hardware_disable(void *junk)
2438 {
2439 int cpu = raw_smp_processor_id();
2440
2441 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2442 return;
2443 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2444 kvm_arch_hardware_disable(NULL);
2445 }
2446
2447 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2448 void *v)
2449 {
2450 int cpu = (long)v;
2451
2452 val &= ~CPU_TASKS_FROZEN;
2453 switch (val) {
2454 case CPU_DYING:
2455 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2456 cpu);
2457 hardware_disable(NULL);
2458 break;
2459 case CPU_UP_CANCELED:
2460 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2461 cpu);
2462 smp_call_function_single(cpu, hardware_disable, NULL, 1);
2463 break;
2464 case CPU_ONLINE:
2465 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2466 cpu);
2467 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2468 break;
2469 }
2470 return NOTIFY_OK;
2471 }
2472
2473
2474 asmlinkage void kvm_handle_fault_on_reboot(void)
2475 {
2476 if (kvm_rebooting)
2477 /* spin while reset goes on */
2478 while (true)
2479 ;
2480 /* Fault while not rebooting. We want the trace. */
2481 BUG();
2482 }
2483 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2484
2485 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2486 void *v)
2487 {
2488 /*
2489 * Some (well, at least mine) BIOSes hang on reboot if
2490 * in vmx root mode.
2491 *
2492 * And Intel TXT required VMX off for all cpu when system shutdown.
2493 */
2494 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2495 kvm_rebooting = true;
2496 on_each_cpu(hardware_disable, NULL, 1);
2497 return NOTIFY_OK;
2498 }
2499
2500 static struct notifier_block kvm_reboot_notifier = {
2501 .notifier_call = kvm_reboot,
2502 .priority = 0,
2503 };
2504
2505 void kvm_io_bus_init(struct kvm_io_bus *bus)
2506 {
2507 memset(bus, 0, sizeof(*bus));
2508 }
2509
2510 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2511 {
2512 int i;
2513
2514 for (i = 0; i < bus->dev_count; i++) {
2515 struct kvm_io_device *pos = bus->devs[i];
2516
2517 kvm_iodevice_destructor(pos);
2518 }
2519 }
2520
2521 /* kvm_io_bus_write - called under kvm->slots_lock */
2522 int kvm_io_bus_write(struct kvm_io_bus *bus, gpa_t addr,
2523 int len, const void *val)
2524 {
2525 int i;
2526 for (i = 0; i < bus->dev_count; i++)
2527 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2528 return 0;
2529 return -EOPNOTSUPP;
2530 }
2531
2532 /* kvm_io_bus_read - called under kvm->slots_lock */
2533 int kvm_io_bus_read(struct kvm_io_bus *bus, gpa_t addr, int len, void *val)
2534 {
2535 int i;
2536 for (i = 0; i < bus->dev_count; i++)
2537 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2538 return 0;
2539 return -EOPNOTSUPP;
2540 }
2541
2542 int kvm_io_bus_register_dev(struct kvm *kvm, struct kvm_io_bus *bus,
2543 struct kvm_io_device *dev)
2544 {
2545 int ret;
2546
2547 down_write(&kvm->slots_lock);
2548 ret = __kvm_io_bus_register_dev(bus, dev);
2549 up_write(&kvm->slots_lock);
2550
2551 return ret;
2552 }
2553
2554 /* An unlocked version. Caller must have write lock on slots_lock. */
2555 int __kvm_io_bus_register_dev(struct kvm_io_bus *bus,
2556 struct kvm_io_device *dev)
2557 {
2558 if (bus->dev_count > NR_IOBUS_DEVS-1)
2559 return -ENOSPC;
2560
2561 bus->devs[bus->dev_count++] = dev;
2562
2563 return 0;
2564 }
2565
2566 void kvm_io_bus_unregister_dev(struct kvm *kvm,
2567 struct kvm_io_bus *bus,
2568 struct kvm_io_device *dev)
2569 {
2570 down_write(&kvm->slots_lock);
2571 __kvm_io_bus_unregister_dev(bus, dev);
2572 up_write(&kvm->slots_lock);
2573 }
2574
2575 /* An unlocked version. Caller must have write lock on slots_lock. */
2576 void __kvm_io_bus_unregister_dev(struct kvm_io_bus *bus,
2577 struct kvm_io_device *dev)
2578 {
2579 int i;
2580
2581 for (i = 0; i < bus->dev_count; i++)
2582 if (bus->devs[i] == dev) {
2583 bus->devs[i] = bus->devs[--bus->dev_count];
2584 break;
2585 }
2586 }
2587
2588 static struct notifier_block kvm_cpu_notifier = {
2589 .notifier_call = kvm_cpu_hotplug,
2590 .priority = 20, /* must be > scheduler priority */
2591 };
2592
2593 static int vm_stat_get(void *_offset, u64 *val)
2594 {
2595 unsigned offset = (long)_offset;
2596 struct kvm *kvm;
2597
2598 *val = 0;
2599 spin_lock(&kvm_lock);
2600 list_for_each_entry(kvm, &vm_list, vm_list)
2601 *val += *(u32 *)((void *)kvm + offset);
2602 spin_unlock(&kvm_lock);
2603 return 0;
2604 }
2605
2606 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2607
2608 static int vcpu_stat_get(void *_offset, u64 *val)
2609 {
2610 unsigned offset = (long)_offset;
2611 struct kvm *kvm;
2612 struct kvm_vcpu *vcpu;
2613 int i;
2614
2615 *val = 0;
2616 spin_lock(&kvm_lock);
2617 list_for_each_entry(kvm, &vm_list, vm_list)
2618 kvm_for_each_vcpu(i, vcpu, kvm)
2619 *val += *(u32 *)((void *)vcpu + offset);
2620
2621 spin_unlock(&kvm_lock);
2622 return 0;
2623 }
2624
2625 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2626
2627 static struct file_operations *stat_fops[] = {
2628 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2629 [KVM_STAT_VM] = &vm_stat_fops,
2630 };
2631
2632 static void kvm_init_debug(void)
2633 {
2634 struct kvm_stats_debugfs_item *p;
2635
2636 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2637 for (p = debugfs_entries; p->name; ++p)
2638 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2639 (void *)(long)p->offset,
2640 stat_fops[p->kind]);
2641 }
2642
2643 static void kvm_exit_debug(void)
2644 {
2645 struct kvm_stats_debugfs_item *p;
2646
2647 for (p = debugfs_entries; p->name; ++p)
2648 debugfs_remove(p->dentry);
2649 debugfs_remove(kvm_debugfs_dir);
2650 }
2651
2652 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2653 {
2654 hardware_disable(NULL);
2655 return 0;
2656 }
2657
2658 static int kvm_resume(struct sys_device *dev)
2659 {
2660 hardware_enable(NULL);
2661 return 0;
2662 }
2663
2664 static struct sysdev_class kvm_sysdev_class = {
2665 .name = "kvm",
2666 .suspend = kvm_suspend,
2667 .resume = kvm_resume,
2668 };
2669
2670 static struct sys_device kvm_sysdev = {
2671 .id = 0,
2672 .cls = &kvm_sysdev_class,
2673 };
2674
2675 struct page *bad_page;
2676 pfn_t bad_pfn;
2677
2678 static inline
2679 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2680 {
2681 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2682 }
2683
2684 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2685 {
2686 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2687
2688 kvm_arch_vcpu_load(vcpu, cpu);
2689 }
2690
2691 static void kvm_sched_out(struct preempt_notifier *pn,
2692 struct task_struct *next)
2693 {
2694 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2695
2696 kvm_arch_vcpu_put(vcpu);
2697 }
2698
2699 int kvm_init(void *opaque, unsigned int vcpu_size,
2700 struct module *module)
2701 {
2702 int r;
2703 int cpu;
2704
2705 kvm_init_debug();
2706
2707 r = kvm_arch_init(opaque);
2708 if (r)
2709 goto out_fail;
2710
2711 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2712
2713 if (bad_page == NULL) {
2714 r = -ENOMEM;
2715 goto out;
2716 }
2717
2718 bad_pfn = page_to_pfn(bad_page);
2719
2720 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2721 r = -ENOMEM;
2722 goto out_free_0;
2723 }
2724
2725 r = kvm_arch_hardware_setup();
2726 if (r < 0)
2727 goto out_free_0a;
2728
2729 for_each_online_cpu(cpu) {
2730 smp_call_function_single(cpu,
2731 kvm_arch_check_processor_compat,
2732 &r, 1);
2733 if (r < 0)
2734 goto out_free_1;
2735 }
2736
2737 on_each_cpu(hardware_enable, NULL, 1);
2738 r = register_cpu_notifier(&kvm_cpu_notifier);
2739 if (r)
2740 goto out_free_2;
2741 register_reboot_notifier(&kvm_reboot_notifier);
2742
2743 r = sysdev_class_register(&kvm_sysdev_class);
2744 if (r)
2745 goto out_free_3;
2746
2747 r = sysdev_register(&kvm_sysdev);
2748 if (r)
2749 goto out_free_4;
2750
2751 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2752 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2753 __alignof__(struct kvm_vcpu),
2754 0, NULL);
2755 if (!kvm_vcpu_cache) {
2756 r = -ENOMEM;
2757 goto out_free_5;
2758 }
2759
2760 kvm_chardev_ops.owner = module;
2761 kvm_vm_fops.owner = module;
2762 kvm_vcpu_fops.owner = module;
2763
2764 r = misc_register(&kvm_dev);
2765 if (r) {
2766 printk(KERN_ERR "kvm: misc device register failed\n");
2767 goto out_free;
2768 }
2769
2770 kvm_preempt_ops.sched_in = kvm_sched_in;
2771 kvm_preempt_ops.sched_out = kvm_sched_out;
2772
2773 return 0;
2774
2775 out_free:
2776 kmem_cache_destroy(kvm_vcpu_cache);
2777 out_free_5:
2778 sysdev_unregister(&kvm_sysdev);
2779 out_free_4:
2780 sysdev_class_unregister(&kvm_sysdev_class);
2781 out_free_3:
2782 unregister_reboot_notifier(&kvm_reboot_notifier);
2783 unregister_cpu_notifier(&kvm_cpu_notifier);
2784 out_free_2:
2785 on_each_cpu(hardware_disable, NULL, 1);
2786 out_free_1:
2787 kvm_arch_hardware_unsetup();
2788 out_free_0a:
2789 free_cpumask_var(cpus_hardware_enabled);
2790 out_free_0:
2791 __free_page(bad_page);
2792 out:
2793 kvm_arch_exit();
2794 out_fail:
2795 kvm_exit_debug();
2796 return r;
2797 }
2798 EXPORT_SYMBOL_GPL(kvm_init);
2799
2800 void kvm_exit(void)
2801 {
2802 tracepoint_synchronize_unregister();
2803 misc_deregister(&kvm_dev);
2804 kmem_cache_destroy(kvm_vcpu_cache);
2805 sysdev_unregister(&kvm_sysdev);
2806 sysdev_class_unregister(&kvm_sysdev_class);
2807 unregister_reboot_notifier(&kvm_reboot_notifier);
2808 unregister_cpu_notifier(&kvm_cpu_notifier);
2809 on_each_cpu(hardware_disable, NULL, 1);
2810 kvm_arch_hardware_unsetup();
2811 kvm_arch_exit();
2812 kvm_exit_debug();
2813 free_cpumask_var(cpus_hardware_enabled);
2814 __free_page(bad_page);
2815 }
2816 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.102032 seconds and 5 git commands to generate.