Merge tag 'v4.7' into for-linus/pstore
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75
76 /* Default doubles per-vcpu halt_poll_ns. */
77 static unsigned int halt_poll_ns_grow = 2;
78 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
79
80 /* Default resets per-vcpu halt_poll_ns . */
81 static unsigned int halt_poll_ns_shrink;
82 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
83
84 /*
85 * Ordering of locks:
86 *
87 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
88 */
89
90 DEFINE_SPINLOCK(kvm_lock);
91 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
92 LIST_HEAD(vm_list);
93
94 static cpumask_var_t cpus_hardware_enabled;
95 static int kvm_usage_count;
96 static atomic_t hardware_enable_failed;
97
98 struct kmem_cache *kvm_vcpu_cache;
99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
100
101 static __read_mostly struct preempt_ops kvm_preempt_ops;
102
103 struct dentry *kvm_debugfs_dir;
104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
105
106 static int kvm_debugfs_num_entries;
107 static const struct file_operations *stat_fops_per_vm[];
108
109 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
110 unsigned long arg);
111 #ifdef CONFIG_KVM_COMPAT
112 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
113 unsigned long arg);
114 #endif
115 static int hardware_enable_all(void);
116 static void hardware_disable_all(void);
117
118 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
119
120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
121 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
122
123 __visible bool kvm_rebooting;
124 EXPORT_SYMBOL_GPL(kvm_rebooting);
125
126 static bool largepages_enabled = true;
127
128 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
129 {
130 if (pfn_valid(pfn))
131 return PageReserved(pfn_to_page(pfn));
132
133 return true;
134 }
135
136 /*
137 * Switches to specified vcpu, until a matching vcpu_put()
138 */
139 int vcpu_load(struct kvm_vcpu *vcpu)
140 {
141 int cpu;
142
143 if (mutex_lock_killable(&vcpu->mutex))
144 return -EINTR;
145 cpu = get_cpu();
146 preempt_notifier_register(&vcpu->preempt_notifier);
147 kvm_arch_vcpu_load(vcpu, cpu);
148 put_cpu();
149 return 0;
150 }
151
152 void vcpu_put(struct kvm_vcpu *vcpu)
153 {
154 preempt_disable();
155 kvm_arch_vcpu_put(vcpu);
156 preempt_notifier_unregister(&vcpu->preempt_notifier);
157 preempt_enable();
158 mutex_unlock(&vcpu->mutex);
159 }
160
161 static void ack_flush(void *_completed)
162 {
163 }
164
165 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
166 {
167 int i, cpu, me;
168 cpumask_var_t cpus;
169 bool called = true;
170 struct kvm_vcpu *vcpu;
171
172 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
173
174 me = get_cpu();
175 kvm_for_each_vcpu(i, vcpu, kvm) {
176 kvm_make_request(req, vcpu);
177 cpu = vcpu->cpu;
178
179 /* Set ->requests bit before we read ->mode. */
180 smp_mb__after_atomic();
181
182 if (cpus != NULL && cpu != -1 && cpu != me &&
183 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
184 cpumask_set_cpu(cpu, cpus);
185 }
186 if (unlikely(cpus == NULL))
187 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
188 else if (!cpumask_empty(cpus))
189 smp_call_function_many(cpus, ack_flush, NULL, 1);
190 else
191 called = false;
192 put_cpu();
193 free_cpumask_var(cpus);
194 return called;
195 }
196
197 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
198 void kvm_flush_remote_tlbs(struct kvm *kvm)
199 {
200 /*
201 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
202 * kvm_make_all_cpus_request.
203 */
204 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
205
206 /*
207 * We want to publish modifications to the page tables before reading
208 * mode. Pairs with a memory barrier in arch-specific code.
209 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
210 * and smp_mb in walk_shadow_page_lockless_begin/end.
211 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
212 *
213 * There is already an smp_mb__after_atomic() before
214 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
215 * barrier here.
216 */
217 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
218 ++kvm->stat.remote_tlb_flush;
219 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
220 }
221 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
222 #endif
223
224 void kvm_reload_remote_mmus(struct kvm *kvm)
225 {
226 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
227 }
228
229 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
230 {
231 struct page *page;
232 int r;
233
234 mutex_init(&vcpu->mutex);
235 vcpu->cpu = -1;
236 vcpu->kvm = kvm;
237 vcpu->vcpu_id = id;
238 vcpu->pid = NULL;
239 init_swait_queue_head(&vcpu->wq);
240 kvm_async_pf_vcpu_init(vcpu);
241
242 vcpu->pre_pcpu = -1;
243 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
244
245 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
246 if (!page) {
247 r = -ENOMEM;
248 goto fail;
249 }
250 vcpu->run = page_address(page);
251
252 kvm_vcpu_set_in_spin_loop(vcpu, false);
253 kvm_vcpu_set_dy_eligible(vcpu, false);
254 vcpu->preempted = false;
255
256 r = kvm_arch_vcpu_init(vcpu);
257 if (r < 0)
258 goto fail_free_run;
259 return 0;
260
261 fail_free_run:
262 free_page((unsigned long)vcpu->run);
263 fail:
264 return r;
265 }
266 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
267
268 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
269 {
270 put_pid(vcpu->pid);
271 kvm_arch_vcpu_uninit(vcpu);
272 free_page((unsigned long)vcpu->run);
273 }
274 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
275
276 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
277 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
278 {
279 return container_of(mn, struct kvm, mmu_notifier);
280 }
281
282 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
283 struct mm_struct *mm,
284 unsigned long address)
285 {
286 struct kvm *kvm = mmu_notifier_to_kvm(mn);
287 int need_tlb_flush, idx;
288
289 /*
290 * When ->invalidate_page runs, the linux pte has been zapped
291 * already but the page is still allocated until
292 * ->invalidate_page returns. So if we increase the sequence
293 * here the kvm page fault will notice if the spte can't be
294 * established because the page is going to be freed. If
295 * instead the kvm page fault establishes the spte before
296 * ->invalidate_page runs, kvm_unmap_hva will release it
297 * before returning.
298 *
299 * The sequence increase only need to be seen at spin_unlock
300 * time, and not at spin_lock time.
301 *
302 * Increasing the sequence after the spin_unlock would be
303 * unsafe because the kvm page fault could then establish the
304 * pte after kvm_unmap_hva returned, without noticing the page
305 * is going to be freed.
306 */
307 idx = srcu_read_lock(&kvm->srcu);
308 spin_lock(&kvm->mmu_lock);
309
310 kvm->mmu_notifier_seq++;
311 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
312 /* we've to flush the tlb before the pages can be freed */
313 if (need_tlb_flush)
314 kvm_flush_remote_tlbs(kvm);
315
316 spin_unlock(&kvm->mmu_lock);
317
318 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
319
320 srcu_read_unlock(&kvm->srcu, idx);
321 }
322
323 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
324 struct mm_struct *mm,
325 unsigned long address,
326 pte_t pte)
327 {
328 struct kvm *kvm = mmu_notifier_to_kvm(mn);
329 int idx;
330
331 idx = srcu_read_lock(&kvm->srcu);
332 spin_lock(&kvm->mmu_lock);
333 kvm->mmu_notifier_seq++;
334 kvm_set_spte_hva(kvm, address, pte);
335 spin_unlock(&kvm->mmu_lock);
336 srcu_read_unlock(&kvm->srcu, idx);
337 }
338
339 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
340 struct mm_struct *mm,
341 unsigned long start,
342 unsigned long end)
343 {
344 struct kvm *kvm = mmu_notifier_to_kvm(mn);
345 int need_tlb_flush = 0, idx;
346
347 idx = srcu_read_lock(&kvm->srcu);
348 spin_lock(&kvm->mmu_lock);
349 /*
350 * The count increase must become visible at unlock time as no
351 * spte can be established without taking the mmu_lock and
352 * count is also read inside the mmu_lock critical section.
353 */
354 kvm->mmu_notifier_count++;
355 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
356 need_tlb_flush |= kvm->tlbs_dirty;
357 /* we've to flush the tlb before the pages can be freed */
358 if (need_tlb_flush)
359 kvm_flush_remote_tlbs(kvm);
360
361 spin_unlock(&kvm->mmu_lock);
362 srcu_read_unlock(&kvm->srcu, idx);
363 }
364
365 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
366 struct mm_struct *mm,
367 unsigned long start,
368 unsigned long end)
369 {
370 struct kvm *kvm = mmu_notifier_to_kvm(mn);
371
372 spin_lock(&kvm->mmu_lock);
373 /*
374 * This sequence increase will notify the kvm page fault that
375 * the page that is going to be mapped in the spte could have
376 * been freed.
377 */
378 kvm->mmu_notifier_seq++;
379 smp_wmb();
380 /*
381 * The above sequence increase must be visible before the
382 * below count decrease, which is ensured by the smp_wmb above
383 * in conjunction with the smp_rmb in mmu_notifier_retry().
384 */
385 kvm->mmu_notifier_count--;
386 spin_unlock(&kvm->mmu_lock);
387
388 BUG_ON(kvm->mmu_notifier_count < 0);
389 }
390
391 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
392 struct mm_struct *mm,
393 unsigned long start,
394 unsigned long end)
395 {
396 struct kvm *kvm = mmu_notifier_to_kvm(mn);
397 int young, idx;
398
399 idx = srcu_read_lock(&kvm->srcu);
400 spin_lock(&kvm->mmu_lock);
401
402 young = kvm_age_hva(kvm, start, end);
403 if (young)
404 kvm_flush_remote_tlbs(kvm);
405
406 spin_unlock(&kvm->mmu_lock);
407 srcu_read_unlock(&kvm->srcu, idx);
408
409 return young;
410 }
411
412 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
413 struct mm_struct *mm,
414 unsigned long start,
415 unsigned long end)
416 {
417 struct kvm *kvm = mmu_notifier_to_kvm(mn);
418 int young, idx;
419
420 idx = srcu_read_lock(&kvm->srcu);
421 spin_lock(&kvm->mmu_lock);
422 /*
423 * Even though we do not flush TLB, this will still adversely
424 * affect performance on pre-Haswell Intel EPT, where there is
425 * no EPT Access Bit to clear so that we have to tear down EPT
426 * tables instead. If we find this unacceptable, we can always
427 * add a parameter to kvm_age_hva so that it effectively doesn't
428 * do anything on clear_young.
429 *
430 * Also note that currently we never issue secondary TLB flushes
431 * from clear_young, leaving this job up to the regular system
432 * cadence. If we find this inaccurate, we might come up with a
433 * more sophisticated heuristic later.
434 */
435 young = kvm_age_hva(kvm, start, end);
436 spin_unlock(&kvm->mmu_lock);
437 srcu_read_unlock(&kvm->srcu, idx);
438
439 return young;
440 }
441
442 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
443 struct mm_struct *mm,
444 unsigned long address)
445 {
446 struct kvm *kvm = mmu_notifier_to_kvm(mn);
447 int young, idx;
448
449 idx = srcu_read_lock(&kvm->srcu);
450 spin_lock(&kvm->mmu_lock);
451 young = kvm_test_age_hva(kvm, address);
452 spin_unlock(&kvm->mmu_lock);
453 srcu_read_unlock(&kvm->srcu, idx);
454
455 return young;
456 }
457
458 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
459 struct mm_struct *mm)
460 {
461 struct kvm *kvm = mmu_notifier_to_kvm(mn);
462 int idx;
463
464 idx = srcu_read_lock(&kvm->srcu);
465 kvm_arch_flush_shadow_all(kvm);
466 srcu_read_unlock(&kvm->srcu, idx);
467 }
468
469 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
470 .invalidate_page = kvm_mmu_notifier_invalidate_page,
471 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
472 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
473 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
474 .clear_young = kvm_mmu_notifier_clear_young,
475 .test_young = kvm_mmu_notifier_test_young,
476 .change_pte = kvm_mmu_notifier_change_pte,
477 .release = kvm_mmu_notifier_release,
478 };
479
480 static int kvm_init_mmu_notifier(struct kvm *kvm)
481 {
482 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
483 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
484 }
485
486 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
487
488 static int kvm_init_mmu_notifier(struct kvm *kvm)
489 {
490 return 0;
491 }
492
493 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
494
495 static struct kvm_memslots *kvm_alloc_memslots(void)
496 {
497 int i;
498 struct kvm_memslots *slots;
499
500 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
501 if (!slots)
502 return NULL;
503
504 /*
505 * Init kvm generation close to the maximum to easily test the
506 * code of handling generation number wrap-around.
507 */
508 slots->generation = -150;
509 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
510 slots->id_to_index[i] = slots->memslots[i].id = i;
511
512 return slots;
513 }
514
515 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
516 {
517 if (!memslot->dirty_bitmap)
518 return;
519
520 kvfree(memslot->dirty_bitmap);
521 memslot->dirty_bitmap = NULL;
522 }
523
524 /*
525 * Free any memory in @free but not in @dont.
526 */
527 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
528 struct kvm_memory_slot *dont)
529 {
530 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
531 kvm_destroy_dirty_bitmap(free);
532
533 kvm_arch_free_memslot(kvm, free, dont);
534
535 free->npages = 0;
536 }
537
538 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
539 {
540 struct kvm_memory_slot *memslot;
541
542 if (!slots)
543 return;
544
545 kvm_for_each_memslot(memslot, slots)
546 kvm_free_memslot(kvm, memslot, NULL);
547
548 kvfree(slots);
549 }
550
551 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
552 {
553 int i;
554
555 if (!kvm->debugfs_dentry)
556 return;
557
558 debugfs_remove_recursive(kvm->debugfs_dentry);
559
560 for (i = 0; i < kvm_debugfs_num_entries; i++)
561 kfree(kvm->debugfs_stat_data[i]);
562 kfree(kvm->debugfs_stat_data);
563 }
564
565 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
566 {
567 char dir_name[ITOA_MAX_LEN * 2];
568 struct kvm_stat_data *stat_data;
569 struct kvm_stats_debugfs_item *p;
570
571 if (!debugfs_initialized())
572 return 0;
573
574 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
575 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
576 kvm_debugfs_dir);
577 if (!kvm->debugfs_dentry)
578 return -ENOMEM;
579
580 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
581 sizeof(*kvm->debugfs_stat_data),
582 GFP_KERNEL);
583 if (!kvm->debugfs_stat_data)
584 return -ENOMEM;
585
586 for (p = debugfs_entries; p->name; p++) {
587 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
588 if (!stat_data)
589 return -ENOMEM;
590
591 stat_data->kvm = kvm;
592 stat_data->offset = p->offset;
593 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
594 if (!debugfs_create_file(p->name, 0444,
595 kvm->debugfs_dentry,
596 stat_data,
597 stat_fops_per_vm[p->kind]))
598 return -ENOMEM;
599 }
600 return 0;
601 }
602
603 static struct kvm *kvm_create_vm(unsigned long type)
604 {
605 int r, i;
606 struct kvm *kvm = kvm_arch_alloc_vm();
607
608 if (!kvm)
609 return ERR_PTR(-ENOMEM);
610
611 spin_lock_init(&kvm->mmu_lock);
612 atomic_inc(&current->mm->mm_count);
613 kvm->mm = current->mm;
614 kvm_eventfd_init(kvm);
615 mutex_init(&kvm->lock);
616 mutex_init(&kvm->irq_lock);
617 mutex_init(&kvm->slots_lock);
618 atomic_set(&kvm->users_count, 1);
619 INIT_LIST_HEAD(&kvm->devices);
620
621 r = kvm_arch_init_vm(kvm, type);
622 if (r)
623 goto out_err_no_disable;
624
625 r = hardware_enable_all();
626 if (r)
627 goto out_err_no_disable;
628
629 #ifdef CONFIG_HAVE_KVM_IRQFD
630 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
631 #endif
632
633 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
634
635 r = -ENOMEM;
636 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
637 kvm->memslots[i] = kvm_alloc_memslots();
638 if (!kvm->memslots[i])
639 goto out_err_no_srcu;
640 }
641
642 if (init_srcu_struct(&kvm->srcu))
643 goto out_err_no_srcu;
644 if (init_srcu_struct(&kvm->irq_srcu))
645 goto out_err_no_irq_srcu;
646 for (i = 0; i < KVM_NR_BUSES; i++) {
647 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
648 GFP_KERNEL);
649 if (!kvm->buses[i])
650 goto out_err;
651 }
652
653 r = kvm_init_mmu_notifier(kvm);
654 if (r)
655 goto out_err;
656
657 spin_lock(&kvm_lock);
658 list_add(&kvm->vm_list, &vm_list);
659 spin_unlock(&kvm_lock);
660
661 preempt_notifier_inc();
662
663 return kvm;
664
665 out_err:
666 cleanup_srcu_struct(&kvm->irq_srcu);
667 out_err_no_irq_srcu:
668 cleanup_srcu_struct(&kvm->srcu);
669 out_err_no_srcu:
670 hardware_disable_all();
671 out_err_no_disable:
672 for (i = 0; i < KVM_NR_BUSES; i++)
673 kfree(kvm->buses[i]);
674 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
675 kvm_free_memslots(kvm, kvm->memslots[i]);
676 kvm_arch_free_vm(kvm);
677 mmdrop(current->mm);
678 return ERR_PTR(r);
679 }
680
681 /*
682 * Avoid using vmalloc for a small buffer.
683 * Should not be used when the size is statically known.
684 */
685 void *kvm_kvzalloc(unsigned long size)
686 {
687 if (size > PAGE_SIZE)
688 return vzalloc(size);
689 else
690 return kzalloc(size, GFP_KERNEL);
691 }
692
693 static void kvm_destroy_devices(struct kvm *kvm)
694 {
695 struct kvm_device *dev, *tmp;
696
697 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
698 list_del(&dev->vm_node);
699 dev->ops->destroy(dev);
700 }
701 }
702
703 static void kvm_destroy_vm(struct kvm *kvm)
704 {
705 int i;
706 struct mm_struct *mm = kvm->mm;
707
708 kvm_destroy_vm_debugfs(kvm);
709 kvm_arch_sync_events(kvm);
710 spin_lock(&kvm_lock);
711 list_del(&kvm->vm_list);
712 spin_unlock(&kvm_lock);
713 kvm_free_irq_routing(kvm);
714 for (i = 0; i < KVM_NR_BUSES; i++)
715 kvm_io_bus_destroy(kvm->buses[i]);
716 kvm_coalesced_mmio_free(kvm);
717 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
718 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
719 #else
720 kvm_arch_flush_shadow_all(kvm);
721 #endif
722 kvm_arch_destroy_vm(kvm);
723 kvm_destroy_devices(kvm);
724 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
725 kvm_free_memslots(kvm, kvm->memslots[i]);
726 cleanup_srcu_struct(&kvm->irq_srcu);
727 cleanup_srcu_struct(&kvm->srcu);
728 kvm_arch_free_vm(kvm);
729 preempt_notifier_dec();
730 hardware_disable_all();
731 mmdrop(mm);
732 }
733
734 void kvm_get_kvm(struct kvm *kvm)
735 {
736 atomic_inc(&kvm->users_count);
737 }
738 EXPORT_SYMBOL_GPL(kvm_get_kvm);
739
740 void kvm_put_kvm(struct kvm *kvm)
741 {
742 if (atomic_dec_and_test(&kvm->users_count))
743 kvm_destroy_vm(kvm);
744 }
745 EXPORT_SYMBOL_GPL(kvm_put_kvm);
746
747
748 static int kvm_vm_release(struct inode *inode, struct file *filp)
749 {
750 struct kvm *kvm = filp->private_data;
751
752 kvm_irqfd_release(kvm);
753
754 kvm_put_kvm(kvm);
755 return 0;
756 }
757
758 /*
759 * Allocation size is twice as large as the actual dirty bitmap size.
760 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
761 */
762 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
763 {
764 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
765
766 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
767 if (!memslot->dirty_bitmap)
768 return -ENOMEM;
769
770 return 0;
771 }
772
773 /*
774 * Insert memslot and re-sort memslots based on their GFN,
775 * so binary search could be used to lookup GFN.
776 * Sorting algorithm takes advantage of having initially
777 * sorted array and known changed memslot position.
778 */
779 static void update_memslots(struct kvm_memslots *slots,
780 struct kvm_memory_slot *new)
781 {
782 int id = new->id;
783 int i = slots->id_to_index[id];
784 struct kvm_memory_slot *mslots = slots->memslots;
785
786 WARN_ON(mslots[i].id != id);
787 if (!new->npages) {
788 WARN_ON(!mslots[i].npages);
789 if (mslots[i].npages)
790 slots->used_slots--;
791 } else {
792 if (!mslots[i].npages)
793 slots->used_slots++;
794 }
795
796 while (i < KVM_MEM_SLOTS_NUM - 1 &&
797 new->base_gfn <= mslots[i + 1].base_gfn) {
798 if (!mslots[i + 1].npages)
799 break;
800 mslots[i] = mslots[i + 1];
801 slots->id_to_index[mslots[i].id] = i;
802 i++;
803 }
804
805 /*
806 * The ">=" is needed when creating a slot with base_gfn == 0,
807 * so that it moves before all those with base_gfn == npages == 0.
808 *
809 * On the other hand, if new->npages is zero, the above loop has
810 * already left i pointing to the beginning of the empty part of
811 * mslots, and the ">=" would move the hole backwards in this
812 * case---which is wrong. So skip the loop when deleting a slot.
813 */
814 if (new->npages) {
815 while (i > 0 &&
816 new->base_gfn >= mslots[i - 1].base_gfn) {
817 mslots[i] = mslots[i - 1];
818 slots->id_to_index[mslots[i].id] = i;
819 i--;
820 }
821 } else
822 WARN_ON_ONCE(i != slots->used_slots);
823
824 mslots[i] = *new;
825 slots->id_to_index[mslots[i].id] = i;
826 }
827
828 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
829 {
830 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
831
832 #ifdef __KVM_HAVE_READONLY_MEM
833 valid_flags |= KVM_MEM_READONLY;
834 #endif
835
836 if (mem->flags & ~valid_flags)
837 return -EINVAL;
838
839 return 0;
840 }
841
842 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
843 int as_id, struct kvm_memslots *slots)
844 {
845 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
846
847 /*
848 * Set the low bit in the generation, which disables SPTE caching
849 * until the end of synchronize_srcu_expedited.
850 */
851 WARN_ON(old_memslots->generation & 1);
852 slots->generation = old_memslots->generation + 1;
853
854 rcu_assign_pointer(kvm->memslots[as_id], slots);
855 synchronize_srcu_expedited(&kvm->srcu);
856
857 /*
858 * Increment the new memslot generation a second time. This prevents
859 * vm exits that race with memslot updates from caching a memslot
860 * generation that will (potentially) be valid forever.
861 */
862 slots->generation++;
863
864 kvm_arch_memslots_updated(kvm, slots);
865
866 return old_memslots;
867 }
868
869 /*
870 * Allocate some memory and give it an address in the guest physical address
871 * space.
872 *
873 * Discontiguous memory is allowed, mostly for framebuffers.
874 *
875 * Must be called holding kvm->slots_lock for write.
876 */
877 int __kvm_set_memory_region(struct kvm *kvm,
878 const struct kvm_userspace_memory_region *mem)
879 {
880 int r;
881 gfn_t base_gfn;
882 unsigned long npages;
883 struct kvm_memory_slot *slot;
884 struct kvm_memory_slot old, new;
885 struct kvm_memslots *slots = NULL, *old_memslots;
886 int as_id, id;
887 enum kvm_mr_change change;
888
889 r = check_memory_region_flags(mem);
890 if (r)
891 goto out;
892
893 r = -EINVAL;
894 as_id = mem->slot >> 16;
895 id = (u16)mem->slot;
896
897 /* General sanity checks */
898 if (mem->memory_size & (PAGE_SIZE - 1))
899 goto out;
900 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
901 goto out;
902 /* We can read the guest memory with __xxx_user() later on. */
903 if ((id < KVM_USER_MEM_SLOTS) &&
904 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
905 !access_ok(VERIFY_WRITE,
906 (void __user *)(unsigned long)mem->userspace_addr,
907 mem->memory_size)))
908 goto out;
909 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
910 goto out;
911 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
912 goto out;
913
914 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
915 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
916 npages = mem->memory_size >> PAGE_SHIFT;
917
918 if (npages > KVM_MEM_MAX_NR_PAGES)
919 goto out;
920
921 new = old = *slot;
922
923 new.id = id;
924 new.base_gfn = base_gfn;
925 new.npages = npages;
926 new.flags = mem->flags;
927
928 if (npages) {
929 if (!old.npages)
930 change = KVM_MR_CREATE;
931 else { /* Modify an existing slot. */
932 if ((mem->userspace_addr != old.userspace_addr) ||
933 (npages != old.npages) ||
934 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
935 goto out;
936
937 if (base_gfn != old.base_gfn)
938 change = KVM_MR_MOVE;
939 else if (new.flags != old.flags)
940 change = KVM_MR_FLAGS_ONLY;
941 else { /* Nothing to change. */
942 r = 0;
943 goto out;
944 }
945 }
946 } else {
947 if (!old.npages)
948 goto out;
949
950 change = KVM_MR_DELETE;
951 new.base_gfn = 0;
952 new.flags = 0;
953 }
954
955 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
956 /* Check for overlaps */
957 r = -EEXIST;
958 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
959 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
960 (slot->id == id))
961 continue;
962 if (!((base_gfn + npages <= slot->base_gfn) ||
963 (base_gfn >= slot->base_gfn + slot->npages)))
964 goto out;
965 }
966 }
967
968 /* Free page dirty bitmap if unneeded */
969 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
970 new.dirty_bitmap = NULL;
971
972 r = -ENOMEM;
973 if (change == KVM_MR_CREATE) {
974 new.userspace_addr = mem->userspace_addr;
975
976 if (kvm_arch_create_memslot(kvm, &new, npages))
977 goto out_free;
978 }
979
980 /* Allocate page dirty bitmap if needed */
981 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
982 if (kvm_create_dirty_bitmap(&new) < 0)
983 goto out_free;
984 }
985
986 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
987 if (!slots)
988 goto out_free;
989 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
990
991 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
992 slot = id_to_memslot(slots, id);
993 slot->flags |= KVM_MEMSLOT_INVALID;
994
995 old_memslots = install_new_memslots(kvm, as_id, slots);
996
997 /* slot was deleted or moved, clear iommu mapping */
998 kvm_iommu_unmap_pages(kvm, &old);
999 /* From this point no new shadow pages pointing to a deleted,
1000 * or moved, memslot will be created.
1001 *
1002 * validation of sp->gfn happens in:
1003 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1004 * - kvm_is_visible_gfn (mmu_check_roots)
1005 */
1006 kvm_arch_flush_shadow_memslot(kvm, slot);
1007
1008 /*
1009 * We can re-use the old_memslots from above, the only difference
1010 * from the currently installed memslots is the invalid flag. This
1011 * will get overwritten by update_memslots anyway.
1012 */
1013 slots = old_memslots;
1014 }
1015
1016 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1017 if (r)
1018 goto out_slots;
1019
1020 /* actual memory is freed via old in kvm_free_memslot below */
1021 if (change == KVM_MR_DELETE) {
1022 new.dirty_bitmap = NULL;
1023 memset(&new.arch, 0, sizeof(new.arch));
1024 }
1025
1026 update_memslots(slots, &new);
1027 old_memslots = install_new_memslots(kvm, as_id, slots);
1028
1029 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1030
1031 kvm_free_memslot(kvm, &old, &new);
1032 kvfree(old_memslots);
1033
1034 /*
1035 * IOMMU mapping: New slots need to be mapped. Old slots need to be
1036 * un-mapped and re-mapped if their base changes. Since base change
1037 * unmapping is handled above with slot deletion, mapping alone is
1038 * needed here. Anything else the iommu might care about for existing
1039 * slots (size changes, userspace addr changes and read-only flag
1040 * changes) is disallowed above, so any other attribute changes getting
1041 * here can be skipped.
1042 */
1043 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1044 r = kvm_iommu_map_pages(kvm, &new);
1045 return r;
1046 }
1047
1048 return 0;
1049
1050 out_slots:
1051 kvfree(slots);
1052 out_free:
1053 kvm_free_memslot(kvm, &new, &old);
1054 out:
1055 return r;
1056 }
1057 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1058
1059 int kvm_set_memory_region(struct kvm *kvm,
1060 const struct kvm_userspace_memory_region *mem)
1061 {
1062 int r;
1063
1064 mutex_lock(&kvm->slots_lock);
1065 r = __kvm_set_memory_region(kvm, mem);
1066 mutex_unlock(&kvm->slots_lock);
1067 return r;
1068 }
1069 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1070
1071 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1072 struct kvm_userspace_memory_region *mem)
1073 {
1074 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1075 return -EINVAL;
1076
1077 return kvm_set_memory_region(kvm, mem);
1078 }
1079
1080 int kvm_get_dirty_log(struct kvm *kvm,
1081 struct kvm_dirty_log *log, int *is_dirty)
1082 {
1083 struct kvm_memslots *slots;
1084 struct kvm_memory_slot *memslot;
1085 int r, i, as_id, id;
1086 unsigned long n;
1087 unsigned long any = 0;
1088
1089 r = -EINVAL;
1090 as_id = log->slot >> 16;
1091 id = (u16)log->slot;
1092 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1093 goto out;
1094
1095 slots = __kvm_memslots(kvm, as_id);
1096 memslot = id_to_memslot(slots, id);
1097 r = -ENOENT;
1098 if (!memslot->dirty_bitmap)
1099 goto out;
1100
1101 n = kvm_dirty_bitmap_bytes(memslot);
1102
1103 for (i = 0; !any && i < n/sizeof(long); ++i)
1104 any = memslot->dirty_bitmap[i];
1105
1106 r = -EFAULT;
1107 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1108 goto out;
1109
1110 if (any)
1111 *is_dirty = 1;
1112
1113 r = 0;
1114 out:
1115 return r;
1116 }
1117 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1118
1119 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1120 /**
1121 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1122 * are dirty write protect them for next write.
1123 * @kvm: pointer to kvm instance
1124 * @log: slot id and address to which we copy the log
1125 * @is_dirty: flag set if any page is dirty
1126 *
1127 * We need to keep it in mind that VCPU threads can write to the bitmap
1128 * concurrently. So, to avoid losing track of dirty pages we keep the
1129 * following order:
1130 *
1131 * 1. Take a snapshot of the bit and clear it if needed.
1132 * 2. Write protect the corresponding page.
1133 * 3. Copy the snapshot to the userspace.
1134 * 4. Upon return caller flushes TLB's if needed.
1135 *
1136 * Between 2 and 4, the guest may write to the page using the remaining TLB
1137 * entry. This is not a problem because the page is reported dirty using
1138 * the snapshot taken before and step 4 ensures that writes done after
1139 * exiting to userspace will be logged for the next call.
1140 *
1141 */
1142 int kvm_get_dirty_log_protect(struct kvm *kvm,
1143 struct kvm_dirty_log *log, bool *is_dirty)
1144 {
1145 struct kvm_memslots *slots;
1146 struct kvm_memory_slot *memslot;
1147 int r, i, as_id, id;
1148 unsigned long n;
1149 unsigned long *dirty_bitmap;
1150 unsigned long *dirty_bitmap_buffer;
1151
1152 r = -EINVAL;
1153 as_id = log->slot >> 16;
1154 id = (u16)log->slot;
1155 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1156 goto out;
1157
1158 slots = __kvm_memslots(kvm, as_id);
1159 memslot = id_to_memslot(slots, id);
1160
1161 dirty_bitmap = memslot->dirty_bitmap;
1162 r = -ENOENT;
1163 if (!dirty_bitmap)
1164 goto out;
1165
1166 n = kvm_dirty_bitmap_bytes(memslot);
1167
1168 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1169 memset(dirty_bitmap_buffer, 0, n);
1170
1171 spin_lock(&kvm->mmu_lock);
1172 *is_dirty = false;
1173 for (i = 0; i < n / sizeof(long); i++) {
1174 unsigned long mask;
1175 gfn_t offset;
1176
1177 if (!dirty_bitmap[i])
1178 continue;
1179
1180 *is_dirty = true;
1181
1182 mask = xchg(&dirty_bitmap[i], 0);
1183 dirty_bitmap_buffer[i] = mask;
1184
1185 if (mask) {
1186 offset = i * BITS_PER_LONG;
1187 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1188 offset, mask);
1189 }
1190 }
1191
1192 spin_unlock(&kvm->mmu_lock);
1193
1194 r = -EFAULT;
1195 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1196 goto out;
1197
1198 r = 0;
1199 out:
1200 return r;
1201 }
1202 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1203 #endif
1204
1205 bool kvm_largepages_enabled(void)
1206 {
1207 return largepages_enabled;
1208 }
1209
1210 void kvm_disable_largepages(void)
1211 {
1212 largepages_enabled = false;
1213 }
1214 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1215
1216 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1217 {
1218 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1219 }
1220 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1221
1222 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1223 {
1224 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1225 }
1226
1227 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1228 {
1229 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1230
1231 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1232 memslot->flags & KVM_MEMSLOT_INVALID)
1233 return false;
1234
1235 return true;
1236 }
1237 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1238
1239 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1240 {
1241 struct vm_area_struct *vma;
1242 unsigned long addr, size;
1243
1244 size = PAGE_SIZE;
1245
1246 addr = gfn_to_hva(kvm, gfn);
1247 if (kvm_is_error_hva(addr))
1248 return PAGE_SIZE;
1249
1250 down_read(&current->mm->mmap_sem);
1251 vma = find_vma(current->mm, addr);
1252 if (!vma)
1253 goto out;
1254
1255 size = vma_kernel_pagesize(vma);
1256
1257 out:
1258 up_read(&current->mm->mmap_sem);
1259
1260 return size;
1261 }
1262
1263 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1264 {
1265 return slot->flags & KVM_MEM_READONLY;
1266 }
1267
1268 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1269 gfn_t *nr_pages, bool write)
1270 {
1271 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1272 return KVM_HVA_ERR_BAD;
1273
1274 if (memslot_is_readonly(slot) && write)
1275 return KVM_HVA_ERR_RO_BAD;
1276
1277 if (nr_pages)
1278 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1279
1280 return __gfn_to_hva_memslot(slot, gfn);
1281 }
1282
1283 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1284 gfn_t *nr_pages)
1285 {
1286 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1287 }
1288
1289 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1290 gfn_t gfn)
1291 {
1292 return gfn_to_hva_many(slot, gfn, NULL);
1293 }
1294 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1295
1296 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1297 {
1298 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1299 }
1300 EXPORT_SYMBOL_GPL(gfn_to_hva);
1301
1302 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1303 {
1304 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1305 }
1306 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1307
1308 /*
1309 * If writable is set to false, the hva returned by this function is only
1310 * allowed to be read.
1311 */
1312 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1313 gfn_t gfn, bool *writable)
1314 {
1315 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1316
1317 if (!kvm_is_error_hva(hva) && writable)
1318 *writable = !memslot_is_readonly(slot);
1319
1320 return hva;
1321 }
1322
1323 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1324 {
1325 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1326
1327 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1328 }
1329
1330 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1331 {
1332 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1333
1334 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1335 }
1336
1337 static int get_user_page_nowait(unsigned long start, int write,
1338 struct page **page)
1339 {
1340 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1341
1342 if (write)
1343 flags |= FOLL_WRITE;
1344
1345 return __get_user_pages(current, current->mm, start, 1, flags, page,
1346 NULL, NULL);
1347 }
1348
1349 static inline int check_user_page_hwpoison(unsigned long addr)
1350 {
1351 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1352
1353 rc = __get_user_pages(current, current->mm, addr, 1,
1354 flags, NULL, NULL, NULL);
1355 return rc == -EHWPOISON;
1356 }
1357
1358 /*
1359 * The atomic path to get the writable pfn which will be stored in @pfn,
1360 * true indicates success, otherwise false is returned.
1361 */
1362 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1363 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1364 {
1365 struct page *page[1];
1366 int npages;
1367
1368 if (!(async || atomic))
1369 return false;
1370
1371 /*
1372 * Fast pin a writable pfn only if it is a write fault request
1373 * or the caller allows to map a writable pfn for a read fault
1374 * request.
1375 */
1376 if (!(write_fault || writable))
1377 return false;
1378
1379 npages = __get_user_pages_fast(addr, 1, 1, page);
1380 if (npages == 1) {
1381 *pfn = page_to_pfn(page[0]);
1382
1383 if (writable)
1384 *writable = true;
1385 return true;
1386 }
1387
1388 return false;
1389 }
1390
1391 /*
1392 * The slow path to get the pfn of the specified host virtual address,
1393 * 1 indicates success, -errno is returned if error is detected.
1394 */
1395 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1396 bool *writable, kvm_pfn_t *pfn)
1397 {
1398 struct page *page[1];
1399 int npages = 0;
1400
1401 might_sleep();
1402
1403 if (writable)
1404 *writable = write_fault;
1405
1406 if (async) {
1407 down_read(&current->mm->mmap_sem);
1408 npages = get_user_page_nowait(addr, write_fault, page);
1409 up_read(&current->mm->mmap_sem);
1410 } else
1411 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1412 write_fault, 0, page,
1413 FOLL_TOUCH|FOLL_HWPOISON);
1414 if (npages != 1)
1415 return npages;
1416
1417 /* map read fault as writable if possible */
1418 if (unlikely(!write_fault) && writable) {
1419 struct page *wpage[1];
1420
1421 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1422 if (npages == 1) {
1423 *writable = true;
1424 put_page(page[0]);
1425 page[0] = wpage[0];
1426 }
1427
1428 npages = 1;
1429 }
1430 *pfn = page_to_pfn(page[0]);
1431 return npages;
1432 }
1433
1434 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1435 {
1436 if (unlikely(!(vma->vm_flags & VM_READ)))
1437 return false;
1438
1439 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1440 return false;
1441
1442 return true;
1443 }
1444
1445 /*
1446 * Pin guest page in memory and return its pfn.
1447 * @addr: host virtual address which maps memory to the guest
1448 * @atomic: whether this function can sleep
1449 * @async: whether this function need to wait IO complete if the
1450 * host page is not in the memory
1451 * @write_fault: whether we should get a writable host page
1452 * @writable: whether it allows to map a writable host page for !@write_fault
1453 *
1454 * The function will map a writable host page for these two cases:
1455 * 1): @write_fault = true
1456 * 2): @write_fault = false && @writable, @writable will tell the caller
1457 * whether the mapping is writable.
1458 */
1459 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1460 bool write_fault, bool *writable)
1461 {
1462 struct vm_area_struct *vma;
1463 kvm_pfn_t pfn = 0;
1464 int npages;
1465
1466 /* we can do it either atomically or asynchronously, not both */
1467 BUG_ON(atomic && async);
1468
1469 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1470 return pfn;
1471
1472 if (atomic)
1473 return KVM_PFN_ERR_FAULT;
1474
1475 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1476 if (npages == 1)
1477 return pfn;
1478
1479 down_read(&current->mm->mmap_sem);
1480 if (npages == -EHWPOISON ||
1481 (!async && check_user_page_hwpoison(addr))) {
1482 pfn = KVM_PFN_ERR_HWPOISON;
1483 goto exit;
1484 }
1485
1486 vma = find_vma_intersection(current->mm, addr, addr + 1);
1487
1488 if (vma == NULL)
1489 pfn = KVM_PFN_ERR_FAULT;
1490 else if ((vma->vm_flags & VM_PFNMAP)) {
1491 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1492 vma->vm_pgoff;
1493 BUG_ON(!kvm_is_reserved_pfn(pfn));
1494 } else {
1495 if (async && vma_is_valid(vma, write_fault))
1496 *async = true;
1497 pfn = KVM_PFN_ERR_FAULT;
1498 }
1499 exit:
1500 up_read(&current->mm->mmap_sem);
1501 return pfn;
1502 }
1503
1504 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1505 bool atomic, bool *async, bool write_fault,
1506 bool *writable)
1507 {
1508 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1509
1510 if (addr == KVM_HVA_ERR_RO_BAD) {
1511 if (writable)
1512 *writable = false;
1513 return KVM_PFN_ERR_RO_FAULT;
1514 }
1515
1516 if (kvm_is_error_hva(addr)) {
1517 if (writable)
1518 *writable = false;
1519 return KVM_PFN_NOSLOT;
1520 }
1521
1522 /* Do not map writable pfn in the readonly memslot. */
1523 if (writable && memslot_is_readonly(slot)) {
1524 *writable = false;
1525 writable = NULL;
1526 }
1527
1528 return hva_to_pfn(addr, atomic, async, write_fault,
1529 writable);
1530 }
1531 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1532
1533 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1534 bool *writable)
1535 {
1536 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1537 write_fault, writable);
1538 }
1539 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1540
1541 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1542 {
1543 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1544 }
1545 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1546
1547 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1548 {
1549 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1550 }
1551 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1552
1553 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1554 {
1555 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1556 }
1557 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1558
1559 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1560 {
1561 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1562 }
1563 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1564
1565 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1566 {
1567 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1568 }
1569 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1570
1571 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1572 {
1573 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1574 }
1575 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1576
1577 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1578 struct page **pages, int nr_pages)
1579 {
1580 unsigned long addr;
1581 gfn_t entry;
1582
1583 addr = gfn_to_hva_many(slot, gfn, &entry);
1584 if (kvm_is_error_hva(addr))
1585 return -1;
1586
1587 if (entry < nr_pages)
1588 return 0;
1589
1590 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1591 }
1592 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1593
1594 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1595 {
1596 if (is_error_noslot_pfn(pfn))
1597 return KVM_ERR_PTR_BAD_PAGE;
1598
1599 if (kvm_is_reserved_pfn(pfn)) {
1600 WARN_ON(1);
1601 return KVM_ERR_PTR_BAD_PAGE;
1602 }
1603
1604 return pfn_to_page(pfn);
1605 }
1606
1607 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1608 {
1609 kvm_pfn_t pfn;
1610
1611 pfn = gfn_to_pfn(kvm, gfn);
1612
1613 return kvm_pfn_to_page(pfn);
1614 }
1615 EXPORT_SYMBOL_GPL(gfn_to_page);
1616
1617 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1618 {
1619 kvm_pfn_t pfn;
1620
1621 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1622
1623 return kvm_pfn_to_page(pfn);
1624 }
1625 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1626
1627 void kvm_release_page_clean(struct page *page)
1628 {
1629 WARN_ON(is_error_page(page));
1630
1631 kvm_release_pfn_clean(page_to_pfn(page));
1632 }
1633 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1634
1635 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1636 {
1637 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1638 put_page(pfn_to_page(pfn));
1639 }
1640 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1641
1642 void kvm_release_page_dirty(struct page *page)
1643 {
1644 WARN_ON(is_error_page(page));
1645
1646 kvm_release_pfn_dirty(page_to_pfn(page));
1647 }
1648 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1649
1650 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1651 {
1652 kvm_set_pfn_dirty(pfn);
1653 kvm_release_pfn_clean(pfn);
1654 }
1655
1656 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1657 {
1658 if (!kvm_is_reserved_pfn(pfn)) {
1659 struct page *page = pfn_to_page(pfn);
1660
1661 if (!PageReserved(page))
1662 SetPageDirty(page);
1663 }
1664 }
1665 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1666
1667 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1668 {
1669 if (!kvm_is_reserved_pfn(pfn))
1670 mark_page_accessed(pfn_to_page(pfn));
1671 }
1672 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1673
1674 void kvm_get_pfn(kvm_pfn_t pfn)
1675 {
1676 if (!kvm_is_reserved_pfn(pfn))
1677 get_page(pfn_to_page(pfn));
1678 }
1679 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1680
1681 static int next_segment(unsigned long len, int offset)
1682 {
1683 if (len > PAGE_SIZE - offset)
1684 return PAGE_SIZE - offset;
1685 else
1686 return len;
1687 }
1688
1689 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1690 void *data, int offset, int len)
1691 {
1692 int r;
1693 unsigned long addr;
1694
1695 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1696 if (kvm_is_error_hva(addr))
1697 return -EFAULT;
1698 r = __copy_from_user(data, (void __user *)addr + offset, len);
1699 if (r)
1700 return -EFAULT;
1701 return 0;
1702 }
1703
1704 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1705 int len)
1706 {
1707 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1708
1709 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1712
1713 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1714 int offset, int len)
1715 {
1716 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1717
1718 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1719 }
1720 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1721
1722 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1723 {
1724 gfn_t gfn = gpa >> PAGE_SHIFT;
1725 int seg;
1726 int offset = offset_in_page(gpa);
1727 int ret;
1728
1729 while ((seg = next_segment(len, offset)) != 0) {
1730 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1731 if (ret < 0)
1732 return ret;
1733 offset = 0;
1734 len -= seg;
1735 data += seg;
1736 ++gfn;
1737 }
1738 return 0;
1739 }
1740 EXPORT_SYMBOL_GPL(kvm_read_guest);
1741
1742 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1743 {
1744 gfn_t gfn = gpa >> PAGE_SHIFT;
1745 int seg;
1746 int offset = offset_in_page(gpa);
1747 int ret;
1748
1749 while ((seg = next_segment(len, offset)) != 0) {
1750 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1751 if (ret < 0)
1752 return ret;
1753 offset = 0;
1754 len -= seg;
1755 data += seg;
1756 ++gfn;
1757 }
1758 return 0;
1759 }
1760 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1761
1762 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1763 void *data, int offset, unsigned long len)
1764 {
1765 int r;
1766 unsigned long addr;
1767
1768 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1769 if (kvm_is_error_hva(addr))
1770 return -EFAULT;
1771 pagefault_disable();
1772 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1773 pagefault_enable();
1774 if (r)
1775 return -EFAULT;
1776 return 0;
1777 }
1778
1779 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1780 unsigned long len)
1781 {
1782 gfn_t gfn = gpa >> PAGE_SHIFT;
1783 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1784 int offset = offset_in_page(gpa);
1785
1786 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1787 }
1788 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1789
1790 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1791 void *data, unsigned long len)
1792 {
1793 gfn_t gfn = gpa >> PAGE_SHIFT;
1794 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1795 int offset = offset_in_page(gpa);
1796
1797 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1798 }
1799 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1800
1801 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1802 const void *data, int offset, int len)
1803 {
1804 int r;
1805 unsigned long addr;
1806
1807 addr = gfn_to_hva_memslot(memslot, gfn);
1808 if (kvm_is_error_hva(addr))
1809 return -EFAULT;
1810 r = __copy_to_user((void __user *)addr + offset, data, len);
1811 if (r)
1812 return -EFAULT;
1813 mark_page_dirty_in_slot(memslot, gfn);
1814 return 0;
1815 }
1816
1817 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1818 const void *data, int offset, int len)
1819 {
1820 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1821
1822 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1823 }
1824 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1825
1826 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1827 const void *data, int offset, int len)
1828 {
1829 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1830
1831 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1832 }
1833 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1834
1835 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1836 unsigned long len)
1837 {
1838 gfn_t gfn = gpa >> PAGE_SHIFT;
1839 int seg;
1840 int offset = offset_in_page(gpa);
1841 int ret;
1842
1843 while ((seg = next_segment(len, offset)) != 0) {
1844 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1845 if (ret < 0)
1846 return ret;
1847 offset = 0;
1848 len -= seg;
1849 data += seg;
1850 ++gfn;
1851 }
1852 return 0;
1853 }
1854 EXPORT_SYMBOL_GPL(kvm_write_guest);
1855
1856 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1857 unsigned long len)
1858 {
1859 gfn_t gfn = gpa >> PAGE_SHIFT;
1860 int seg;
1861 int offset = offset_in_page(gpa);
1862 int ret;
1863
1864 while ((seg = next_segment(len, offset)) != 0) {
1865 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1866 if (ret < 0)
1867 return ret;
1868 offset = 0;
1869 len -= seg;
1870 data += seg;
1871 ++gfn;
1872 }
1873 return 0;
1874 }
1875 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1876
1877 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1878 gpa_t gpa, unsigned long len)
1879 {
1880 struct kvm_memslots *slots = kvm_memslots(kvm);
1881 int offset = offset_in_page(gpa);
1882 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1883 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1884 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1885 gfn_t nr_pages_avail;
1886
1887 ghc->gpa = gpa;
1888 ghc->generation = slots->generation;
1889 ghc->len = len;
1890 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1891 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1892 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1893 ghc->hva += offset;
1894 } else {
1895 /*
1896 * If the requested region crosses two memslots, we still
1897 * verify that the entire region is valid here.
1898 */
1899 while (start_gfn <= end_gfn) {
1900 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1901 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1902 &nr_pages_avail);
1903 if (kvm_is_error_hva(ghc->hva))
1904 return -EFAULT;
1905 start_gfn += nr_pages_avail;
1906 }
1907 /* Use the slow path for cross page reads and writes. */
1908 ghc->memslot = NULL;
1909 }
1910 return 0;
1911 }
1912 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1913
1914 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1915 void *data, unsigned long len)
1916 {
1917 struct kvm_memslots *slots = kvm_memslots(kvm);
1918 int r;
1919
1920 BUG_ON(len > ghc->len);
1921
1922 if (slots->generation != ghc->generation)
1923 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1924
1925 if (unlikely(!ghc->memslot))
1926 return kvm_write_guest(kvm, ghc->gpa, data, len);
1927
1928 if (kvm_is_error_hva(ghc->hva))
1929 return -EFAULT;
1930
1931 r = __copy_to_user((void __user *)ghc->hva, data, len);
1932 if (r)
1933 return -EFAULT;
1934 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1935
1936 return 0;
1937 }
1938 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1939
1940 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1941 void *data, unsigned long len)
1942 {
1943 struct kvm_memslots *slots = kvm_memslots(kvm);
1944 int r;
1945
1946 BUG_ON(len > ghc->len);
1947
1948 if (slots->generation != ghc->generation)
1949 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1950
1951 if (unlikely(!ghc->memslot))
1952 return kvm_read_guest(kvm, ghc->gpa, data, len);
1953
1954 if (kvm_is_error_hva(ghc->hva))
1955 return -EFAULT;
1956
1957 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1958 if (r)
1959 return -EFAULT;
1960
1961 return 0;
1962 }
1963 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1964
1965 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1966 {
1967 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1968
1969 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1970 }
1971 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1972
1973 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1974 {
1975 gfn_t gfn = gpa >> PAGE_SHIFT;
1976 int seg;
1977 int offset = offset_in_page(gpa);
1978 int ret;
1979
1980 while ((seg = next_segment(len, offset)) != 0) {
1981 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1982 if (ret < 0)
1983 return ret;
1984 offset = 0;
1985 len -= seg;
1986 ++gfn;
1987 }
1988 return 0;
1989 }
1990 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1991
1992 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1993 gfn_t gfn)
1994 {
1995 if (memslot && memslot->dirty_bitmap) {
1996 unsigned long rel_gfn = gfn - memslot->base_gfn;
1997
1998 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1999 }
2000 }
2001
2002 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2003 {
2004 struct kvm_memory_slot *memslot;
2005
2006 memslot = gfn_to_memslot(kvm, gfn);
2007 mark_page_dirty_in_slot(memslot, gfn);
2008 }
2009 EXPORT_SYMBOL_GPL(mark_page_dirty);
2010
2011 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2012 {
2013 struct kvm_memory_slot *memslot;
2014
2015 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2016 mark_page_dirty_in_slot(memslot, gfn);
2017 }
2018 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2019
2020 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2021 {
2022 unsigned int old, val, grow;
2023
2024 old = val = vcpu->halt_poll_ns;
2025 grow = READ_ONCE(halt_poll_ns_grow);
2026 /* 10us base */
2027 if (val == 0 && grow)
2028 val = 10000;
2029 else
2030 val *= grow;
2031
2032 if (val > halt_poll_ns)
2033 val = halt_poll_ns;
2034
2035 vcpu->halt_poll_ns = val;
2036 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2037 }
2038
2039 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2040 {
2041 unsigned int old, val, shrink;
2042
2043 old = val = vcpu->halt_poll_ns;
2044 shrink = READ_ONCE(halt_poll_ns_shrink);
2045 if (shrink == 0)
2046 val = 0;
2047 else
2048 val /= shrink;
2049
2050 vcpu->halt_poll_ns = val;
2051 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2052 }
2053
2054 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2055 {
2056 if (kvm_arch_vcpu_runnable(vcpu)) {
2057 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2058 return -EINTR;
2059 }
2060 if (kvm_cpu_has_pending_timer(vcpu))
2061 return -EINTR;
2062 if (signal_pending(current))
2063 return -EINTR;
2064
2065 return 0;
2066 }
2067
2068 /*
2069 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2070 */
2071 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2072 {
2073 ktime_t start, cur;
2074 DECLARE_SWAITQUEUE(wait);
2075 bool waited = false;
2076 u64 block_ns;
2077
2078 start = cur = ktime_get();
2079 if (vcpu->halt_poll_ns) {
2080 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2081
2082 ++vcpu->stat.halt_attempted_poll;
2083 do {
2084 /*
2085 * This sets KVM_REQ_UNHALT if an interrupt
2086 * arrives.
2087 */
2088 if (kvm_vcpu_check_block(vcpu) < 0) {
2089 ++vcpu->stat.halt_successful_poll;
2090 if (!vcpu_valid_wakeup(vcpu))
2091 ++vcpu->stat.halt_poll_invalid;
2092 goto out;
2093 }
2094 cur = ktime_get();
2095 } while (single_task_running() && ktime_before(cur, stop));
2096 }
2097
2098 kvm_arch_vcpu_blocking(vcpu);
2099
2100 for (;;) {
2101 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2102
2103 if (kvm_vcpu_check_block(vcpu) < 0)
2104 break;
2105
2106 waited = true;
2107 schedule();
2108 }
2109
2110 finish_swait(&vcpu->wq, &wait);
2111 cur = ktime_get();
2112
2113 kvm_arch_vcpu_unblocking(vcpu);
2114 out:
2115 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2116
2117 if (!vcpu_valid_wakeup(vcpu))
2118 shrink_halt_poll_ns(vcpu);
2119 else if (halt_poll_ns) {
2120 if (block_ns <= vcpu->halt_poll_ns)
2121 ;
2122 /* we had a long block, shrink polling */
2123 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2124 shrink_halt_poll_ns(vcpu);
2125 /* we had a short halt and our poll time is too small */
2126 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2127 block_ns < halt_poll_ns)
2128 grow_halt_poll_ns(vcpu);
2129 } else
2130 vcpu->halt_poll_ns = 0;
2131
2132 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2133 kvm_arch_vcpu_block_finish(vcpu);
2134 }
2135 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2136
2137 #ifndef CONFIG_S390
2138 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2139 {
2140 struct swait_queue_head *wqp;
2141
2142 wqp = kvm_arch_vcpu_wq(vcpu);
2143 if (swait_active(wqp)) {
2144 swake_up(wqp);
2145 ++vcpu->stat.halt_wakeup;
2146 }
2147
2148 }
2149 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2150
2151 /*
2152 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2153 */
2154 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2155 {
2156 int me;
2157 int cpu = vcpu->cpu;
2158
2159 kvm_vcpu_wake_up(vcpu);
2160 me = get_cpu();
2161 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2162 if (kvm_arch_vcpu_should_kick(vcpu))
2163 smp_send_reschedule(cpu);
2164 put_cpu();
2165 }
2166 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2167 #endif /* !CONFIG_S390 */
2168
2169 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2170 {
2171 struct pid *pid;
2172 struct task_struct *task = NULL;
2173 int ret = 0;
2174
2175 rcu_read_lock();
2176 pid = rcu_dereference(target->pid);
2177 if (pid)
2178 task = get_pid_task(pid, PIDTYPE_PID);
2179 rcu_read_unlock();
2180 if (!task)
2181 return ret;
2182 ret = yield_to(task, 1);
2183 put_task_struct(task);
2184
2185 return ret;
2186 }
2187 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2188
2189 /*
2190 * Helper that checks whether a VCPU is eligible for directed yield.
2191 * Most eligible candidate to yield is decided by following heuristics:
2192 *
2193 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2194 * (preempted lock holder), indicated by @in_spin_loop.
2195 * Set at the beiginning and cleared at the end of interception/PLE handler.
2196 *
2197 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2198 * chance last time (mostly it has become eligible now since we have probably
2199 * yielded to lockholder in last iteration. This is done by toggling
2200 * @dy_eligible each time a VCPU checked for eligibility.)
2201 *
2202 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2203 * to preempted lock-holder could result in wrong VCPU selection and CPU
2204 * burning. Giving priority for a potential lock-holder increases lock
2205 * progress.
2206 *
2207 * Since algorithm is based on heuristics, accessing another VCPU data without
2208 * locking does not harm. It may result in trying to yield to same VCPU, fail
2209 * and continue with next VCPU and so on.
2210 */
2211 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2212 {
2213 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2214 bool eligible;
2215
2216 eligible = !vcpu->spin_loop.in_spin_loop ||
2217 vcpu->spin_loop.dy_eligible;
2218
2219 if (vcpu->spin_loop.in_spin_loop)
2220 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2221
2222 return eligible;
2223 #else
2224 return true;
2225 #endif
2226 }
2227
2228 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2229 {
2230 struct kvm *kvm = me->kvm;
2231 struct kvm_vcpu *vcpu;
2232 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2233 int yielded = 0;
2234 int try = 3;
2235 int pass;
2236 int i;
2237
2238 kvm_vcpu_set_in_spin_loop(me, true);
2239 /*
2240 * We boost the priority of a VCPU that is runnable but not
2241 * currently running, because it got preempted by something
2242 * else and called schedule in __vcpu_run. Hopefully that
2243 * VCPU is holding the lock that we need and will release it.
2244 * We approximate round-robin by starting at the last boosted VCPU.
2245 */
2246 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2247 kvm_for_each_vcpu(i, vcpu, kvm) {
2248 if (!pass && i <= last_boosted_vcpu) {
2249 i = last_boosted_vcpu;
2250 continue;
2251 } else if (pass && i > last_boosted_vcpu)
2252 break;
2253 if (!ACCESS_ONCE(vcpu->preempted))
2254 continue;
2255 if (vcpu == me)
2256 continue;
2257 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2258 continue;
2259 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2260 continue;
2261
2262 yielded = kvm_vcpu_yield_to(vcpu);
2263 if (yielded > 0) {
2264 kvm->last_boosted_vcpu = i;
2265 break;
2266 } else if (yielded < 0) {
2267 try--;
2268 if (!try)
2269 break;
2270 }
2271 }
2272 }
2273 kvm_vcpu_set_in_spin_loop(me, false);
2274
2275 /* Ensure vcpu is not eligible during next spinloop */
2276 kvm_vcpu_set_dy_eligible(me, false);
2277 }
2278 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2279
2280 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2281 {
2282 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2283 struct page *page;
2284
2285 if (vmf->pgoff == 0)
2286 page = virt_to_page(vcpu->run);
2287 #ifdef CONFIG_X86
2288 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2289 page = virt_to_page(vcpu->arch.pio_data);
2290 #endif
2291 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2292 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2293 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2294 #endif
2295 else
2296 return kvm_arch_vcpu_fault(vcpu, vmf);
2297 get_page(page);
2298 vmf->page = page;
2299 return 0;
2300 }
2301
2302 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2303 .fault = kvm_vcpu_fault,
2304 };
2305
2306 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2307 {
2308 vma->vm_ops = &kvm_vcpu_vm_ops;
2309 return 0;
2310 }
2311
2312 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2313 {
2314 struct kvm_vcpu *vcpu = filp->private_data;
2315
2316 kvm_put_kvm(vcpu->kvm);
2317 return 0;
2318 }
2319
2320 static struct file_operations kvm_vcpu_fops = {
2321 .release = kvm_vcpu_release,
2322 .unlocked_ioctl = kvm_vcpu_ioctl,
2323 #ifdef CONFIG_KVM_COMPAT
2324 .compat_ioctl = kvm_vcpu_compat_ioctl,
2325 #endif
2326 .mmap = kvm_vcpu_mmap,
2327 .llseek = noop_llseek,
2328 };
2329
2330 /*
2331 * Allocates an inode for the vcpu.
2332 */
2333 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2334 {
2335 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2336 }
2337
2338 /*
2339 * Creates some virtual cpus. Good luck creating more than one.
2340 */
2341 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2342 {
2343 int r;
2344 struct kvm_vcpu *vcpu;
2345
2346 if (id >= KVM_MAX_VCPU_ID)
2347 return -EINVAL;
2348
2349 vcpu = kvm_arch_vcpu_create(kvm, id);
2350 if (IS_ERR(vcpu))
2351 return PTR_ERR(vcpu);
2352
2353 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2354
2355 r = kvm_arch_vcpu_setup(vcpu);
2356 if (r)
2357 goto vcpu_destroy;
2358
2359 mutex_lock(&kvm->lock);
2360 if (!kvm_vcpu_compatible(vcpu)) {
2361 r = -EINVAL;
2362 goto unlock_vcpu_destroy;
2363 }
2364 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2365 r = -EINVAL;
2366 goto unlock_vcpu_destroy;
2367 }
2368 if (kvm_get_vcpu_by_id(kvm, id)) {
2369 r = -EEXIST;
2370 goto unlock_vcpu_destroy;
2371 }
2372
2373 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2374
2375 /* Now it's all set up, let userspace reach it */
2376 kvm_get_kvm(kvm);
2377 r = create_vcpu_fd(vcpu);
2378 if (r < 0) {
2379 kvm_put_kvm(kvm);
2380 goto unlock_vcpu_destroy;
2381 }
2382
2383 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2384
2385 /*
2386 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2387 * before kvm->online_vcpu's incremented value.
2388 */
2389 smp_wmb();
2390 atomic_inc(&kvm->online_vcpus);
2391
2392 mutex_unlock(&kvm->lock);
2393 kvm_arch_vcpu_postcreate(vcpu);
2394 return r;
2395
2396 unlock_vcpu_destroy:
2397 mutex_unlock(&kvm->lock);
2398 vcpu_destroy:
2399 kvm_arch_vcpu_destroy(vcpu);
2400 return r;
2401 }
2402
2403 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2404 {
2405 if (sigset) {
2406 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2407 vcpu->sigset_active = 1;
2408 vcpu->sigset = *sigset;
2409 } else
2410 vcpu->sigset_active = 0;
2411 return 0;
2412 }
2413
2414 static long kvm_vcpu_ioctl(struct file *filp,
2415 unsigned int ioctl, unsigned long arg)
2416 {
2417 struct kvm_vcpu *vcpu = filp->private_data;
2418 void __user *argp = (void __user *)arg;
2419 int r;
2420 struct kvm_fpu *fpu = NULL;
2421 struct kvm_sregs *kvm_sregs = NULL;
2422
2423 if (vcpu->kvm->mm != current->mm)
2424 return -EIO;
2425
2426 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2427 return -EINVAL;
2428
2429 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2430 /*
2431 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2432 * so vcpu_load() would break it.
2433 */
2434 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2435 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2436 #endif
2437
2438
2439 r = vcpu_load(vcpu);
2440 if (r)
2441 return r;
2442 switch (ioctl) {
2443 case KVM_RUN:
2444 r = -EINVAL;
2445 if (arg)
2446 goto out;
2447 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2448 /* The thread running this VCPU changed. */
2449 struct pid *oldpid = vcpu->pid;
2450 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2451
2452 rcu_assign_pointer(vcpu->pid, newpid);
2453 if (oldpid)
2454 synchronize_rcu();
2455 put_pid(oldpid);
2456 }
2457 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2458 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2459 break;
2460 case KVM_GET_REGS: {
2461 struct kvm_regs *kvm_regs;
2462
2463 r = -ENOMEM;
2464 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2465 if (!kvm_regs)
2466 goto out;
2467 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2468 if (r)
2469 goto out_free1;
2470 r = -EFAULT;
2471 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2472 goto out_free1;
2473 r = 0;
2474 out_free1:
2475 kfree(kvm_regs);
2476 break;
2477 }
2478 case KVM_SET_REGS: {
2479 struct kvm_regs *kvm_regs;
2480
2481 r = -ENOMEM;
2482 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2483 if (IS_ERR(kvm_regs)) {
2484 r = PTR_ERR(kvm_regs);
2485 goto out;
2486 }
2487 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2488 kfree(kvm_regs);
2489 break;
2490 }
2491 case KVM_GET_SREGS: {
2492 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2493 r = -ENOMEM;
2494 if (!kvm_sregs)
2495 goto out;
2496 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2497 if (r)
2498 goto out;
2499 r = -EFAULT;
2500 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2501 goto out;
2502 r = 0;
2503 break;
2504 }
2505 case KVM_SET_SREGS: {
2506 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2507 if (IS_ERR(kvm_sregs)) {
2508 r = PTR_ERR(kvm_sregs);
2509 kvm_sregs = NULL;
2510 goto out;
2511 }
2512 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2513 break;
2514 }
2515 case KVM_GET_MP_STATE: {
2516 struct kvm_mp_state mp_state;
2517
2518 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2519 if (r)
2520 goto out;
2521 r = -EFAULT;
2522 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2523 goto out;
2524 r = 0;
2525 break;
2526 }
2527 case KVM_SET_MP_STATE: {
2528 struct kvm_mp_state mp_state;
2529
2530 r = -EFAULT;
2531 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2532 goto out;
2533 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2534 break;
2535 }
2536 case KVM_TRANSLATE: {
2537 struct kvm_translation tr;
2538
2539 r = -EFAULT;
2540 if (copy_from_user(&tr, argp, sizeof(tr)))
2541 goto out;
2542 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2543 if (r)
2544 goto out;
2545 r = -EFAULT;
2546 if (copy_to_user(argp, &tr, sizeof(tr)))
2547 goto out;
2548 r = 0;
2549 break;
2550 }
2551 case KVM_SET_GUEST_DEBUG: {
2552 struct kvm_guest_debug dbg;
2553
2554 r = -EFAULT;
2555 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2556 goto out;
2557 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2558 break;
2559 }
2560 case KVM_SET_SIGNAL_MASK: {
2561 struct kvm_signal_mask __user *sigmask_arg = argp;
2562 struct kvm_signal_mask kvm_sigmask;
2563 sigset_t sigset, *p;
2564
2565 p = NULL;
2566 if (argp) {
2567 r = -EFAULT;
2568 if (copy_from_user(&kvm_sigmask, argp,
2569 sizeof(kvm_sigmask)))
2570 goto out;
2571 r = -EINVAL;
2572 if (kvm_sigmask.len != sizeof(sigset))
2573 goto out;
2574 r = -EFAULT;
2575 if (copy_from_user(&sigset, sigmask_arg->sigset,
2576 sizeof(sigset)))
2577 goto out;
2578 p = &sigset;
2579 }
2580 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2581 break;
2582 }
2583 case KVM_GET_FPU: {
2584 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2585 r = -ENOMEM;
2586 if (!fpu)
2587 goto out;
2588 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2589 if (r)
2590 goto out;
2591 r = -EFAULT;
2592 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2593 goto out;
2594 r = 0;
2595 break;
2596 }
2597 case KVM_SET_FPU: {
2598 fpu = memdup_user(argp, sizeof(*fpu));
2599 if (IS_ERR(fpu)) {
2600 r = PTR_ERR(fpu);
2601 fpu = NULL;
2602 goto out;
2603 }
2604 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2605 break;
2606 }
2607 default:
2608 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2609 }
2610 out:
2611 vcpu_put(vcpu);
2612 kfree(fpu);
2613 kfree(kvm_sregs);
2614 return r;
2615 }
2616
2617 #ifdef CONFIG_KVM_COMPAT
2618 static long kvm_vcpu_compat_ioctl(struct file *filp,
2619 unsigned int ioctl, unsigned long arg)
2620 {
2621 struct kvm_vcpu *vcpu = filp->private_data;
2622 void __user *argp = compat_ptr(arg);
2623 int r;
2624
2625 if (vcpu->kvm->mm != current->mm)
2626 return -EIO;
2627
2628 switch (ioctl) {
2629 case KVM_SET_SIGNAL_MASK: {
2630 struct kvm_signal_mask __user *sigmask_arg = argp;
2631 struct kvm_signal_mask kvm_sigmask;
2632 compat_sigset_t csigset;
2633 sigset_t sigset;
2634
2635 if (argp) {
2636 r = -EFAULT;
2637 if (copy_from_user(&kvm_sigmask, argp,
2638 sizeof(kvm_sigmask)))
2639 goto out;
2640 r = -EINVAL;
2641 if (kvm_sigmask.len != sizeof(csigset))
2642 goto out;
2643 r = -EFAULT;
2644 if (copy_from_user(&csigset, sigmask_arg->sigset,
2645 sizeof(csigset)))
2646 goto out;
2647 sigset_from_compat(&sigset, &csigset);
2648 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2649 } else
2650 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2651 break;
2652 }
2653 default:
2654 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2655 }
2656
2657 out:
2658 return r;
2659 }
2660 #endif
2661
2662 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2663 int (*accessor)(struct kvm_device *dev,
2664 struct kvm_device_attr *attr),
2665 unsigned long arg)
2666 {
2667 struct kvm_device_attr attr;
2668
2669 if (!accessor)
2670 return -EPERM;
2671
2672 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2673 return -EFAULT;
2674
2675 return accessor(dev, &attr);
2676 }
2677
2678 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2679 unsigned long arg)
2680 {
2681 struct kvm_device *dev = filp->private_data;
2682
2683 switch (ioctl) {
2684 case KVM_SET_DEVICE_ATTR:
2685 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2686 case KVM_GET_DEVICE_ATTR:
2687 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2688 case KVM_HAS_DEVICE_ATTR:
2689 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2690 default:
2691 if (dev->ops->ioctl)
2692 return dev->ops->ioctl(dev, ioctl, arg);
2693
2694 return -ENOTTY;
2695 }
2696 }
2697
2698 static int kvm_device_release(struct inode *inode, struct file *filp)
2699 {
2700 struct kvm_device *dev = filp->private_data;
2701 struct kvm *kvm = dev->kvm;
2702
2703 kvm_put_kvm(kvm);
2704 return 0;
2705 }
2706
2707 static const struct file_operations kvm_device_fops = {
2708 .unlocked_ioctl = kvm_device_ioctl,
2709 #ifdef CONFIG_KVM_COMPAT
2710 .compat_ioctl = kvm_device_ioctl,
2711 #endif
2712 .release = kvm_device_release,
2713 };
2714
2715 struct kvm_device *kvm_device_from_filp(struct file *filp)
2716 {
2717 if (filp->f_op != &kvm_device_fops)
2718 return NULL;
2719
2720 return filp->private_data;
2721 }
2722
2723 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2724 #ifdef CONFIG_KVM_MPIC
2725 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2726 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2727 #endif
2728
2729 #ifdef CONFIG_KVM_XICS
2730 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2731 #endif
2732 };
2733
2734 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2735 {
2736 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2737 return -ENOSPC;
2738
2739 if (kvm_device_ops_table[type] != NULL)
2740 return -EEXIST;
2741
2742 kvm_device_ops_table[type] = ops;
2743 return 0;
2744 }
2745
2746 void kvm_unregister_device_ops(u32 type)
2747 {
2748 if (kvm_device_ops_table[type] != NULL)
2749 kvm_device_ops_table[type] = NULL;
2750 }
2751
2752 static int kvm_ioctl_create_device(struct kvm *kvm,
2753 struct kvm_create_device *cd)
2754 {
2755 struct kvm_device_ops *ops = NULL;
2756 struct kvm_device *dev;
2757 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2758 int ret;
2759
2760 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2761 return -ENODEV;
2762
2763 ops = kvm_device_ops_table[cd->type];
2764 if (ops == NULL)
2765 return -ENODEV;
2766
2767 if (test)
2768 return 0;
2769
2770 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2771 if (!dev)
2772 return -ENOMEM;
2773
2774 dev->ops = ops;
2775 dev->kvm = kvm;
2776
2777 ret = ops->create(dev, cd->type);
2778 if (ret < 0) {
2779 kfree(dev);
2780 return ret;
2781 }
2782
2783 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2784 if (ret < 0) {
2785 ops->destroy(dev);
2786 return ret;
2787 }
2788
2789 list_add(&dev->vm_node, &kvm->devices);
2790 kvm_get_kvm(kvm);
2791 cd->fd = ret;
2792 return 0;
2793 }
2794
2795 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2796 {
2797 switch (arg) {
2798 case KVM_CAP_USER_MEMORY:
2799 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2800 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2801 case KVM_CAP_INTERNAL_ERROR_DATA:
2802 #ifdef CONFIG_HAVE_KVM_MSI
2803 case KVM_CAP_SIGNAL_MSI:
2804 #endif
2805 #ifdef CONFIG_HAVE_KVM_IRQFD
2806 case KVM_CAP_IRQFD:
2807 case KVM_CAP_IRQFD_RESAMPLE:
2808 #endif
2809 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2810 case KVM_CAP_CHECK_EXTENSION_VM:
2811 return 1;
2812 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2813 case KVM_CAP_IRQ_ROUTING:
2814 return KVM_MAX_IRQ_ROUTES;
2815 #endif
2816 #if KVM_ADDRESS_SPACE_NUM > 1
2817 case KVM_CAP_MULTI_ADDRESS_SPACE:
2818 return KVM_ADDRESS_SPACE_NUM;
2819 #endif
2820 case KVM_CAP_MAX_VCPU_ID:
2821 return KVM_MAX_VCPU_ID;
2822 default:
2823 break;
2824 }
2825 return kvm_vm_ioctl_check_extension(kvm, arg);
2826 }
2827
2828 static long kvm_vm_ioctl(struct file *filp,
2829 unsigned int ioctl, unsigned long arg)
2830 {
2831 struct kvm *kvm = filp->private_data;
2832 void __user *argp = (void __user *)arg;
2833 int r;
2834
2835 if (kvm->mm != current->mm)
2836 return -EIO;
2837 switch (ioctl) {
2838 case KVM_CREATE_VCPU:
2839 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2840 break;
2841 case KVM_SET_USER_MEMORY_REGION: {
2842 struct kvm_userspace_memory_region kvm_userspace_mem;
2843
2844 r = -EFAULT;
2845 if (copy_from_user(&kvm_userspace_mem, argp,
2846 sizeof(kvm_userspace_mem)))
2847 goto out;
2848
2849 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2850 break;
2851 }
2852 case KVM_GET_DIRTY_LOG: {
2853 struct kvm_dirty_log log;
2854
2855 r = -EFAULT;
2856 if (copy_from_user(&log, argp, sizeof(log)))
2857 goto out;
2858 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2859 break;
2860 }
2861 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2862 case KVM_REGISTER_COALESCED_MMIO: {
2863 struct kvm_coalesced_mmio_zone zone;
2864
2865 r = -EFAULT;
2866 if (copy_from_user(&zone, argp, sizeof(zone)))
2867 goto out;
2868 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2869 break;
2870 }
2871 case KVM_UNREGISTER_COALESCED_MMIO: {
2872 struct kvm_coalesced_mmio_zone zone;
2873
2874 r = -EFAULT;
2875 if (copy_from_user(&zone, argp, sizeof(zone)))
2876 goto out;
2877 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2878 break;
2879 }
2880 #endif
2881 case KVM_IRQFD: {
2882 struct kvm_irqfd data;
2883
2884 r = -EFAULT;
2885 if (copy_from_user(&data, argp, sizeof(data)))
2886 goto out;
2887 r = kvm_irqfd(kvm, &data);
2888 break;
2889 }
2890 case KVM_IOEVENTFD: {
2891 struct kvm_ioeventfd data;
2892
2893 r = -EFAULT;
2894 if (copy_from_user(&data, argp, sizeof(data)))
2895 goto out;
2896 r = kvm_ioeventfd(kvm, &data);
2897 break;
2898 }
2899 #ifdef CONFIG_HAVE_KVM_MSI
2900 case KVM_SIGNAL_MSI: {
2901 struct kvm_msi msi;
2902
2903 r = -EFAULT;
2904 if (copy_from_user(&msi, argp, sizeof(msi)))
2905 goto out;
2906 r = kvm_send_userspace_msi(kvm, &msi);
2907 break;
2908 }
2909 #endif
2910 #ifdef __KVM_HAVE_IRQ_LINE
2911 case KVM_IRQ_LINE_STATUS:
2912 case KVM_IRQ_LINE: {
2913 struct kvm_irq_level irq_event;
2914
2915 r = -EFAULT;
2916 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2917 goto out;
2918
2919 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2920 ioctl == KVM_IRQ_LINE_STATUS);
2921 if (r)
2922 goto out;
2923
2924 r = -EFAULT;
2925 if (ioctl == KVM_IRQ_LINE_STATUS) {
2926 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2927 goto out;
2928 }
2929
2930 r = 0;
2931 break;
2932 }
2933 #endif
2934 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2935 case KVM_SET_GSI_ROUTING: {
2936 struct kvm_irq_routing routing;
2937 struct kvm_irq_routing __user *urouting;
2938 struct kvm_irq_routing_entry *entries = NULL;
2939
2940 r = -EFAULT;
2941 if (copy_from_user(&routing, argp, sizeof(routing)))
2942 goto out;
2943 r = -EINVAL;
2944 if (routing.nr > KVM_MAX_IRQ_ROUTES)
2945 goto out;
2946 if (routing.flags)
2947 goto out;
2948 if (routing.nr) {
2949 r = -ENOMEM;
2950 entries = vmalloc(routing.nr * sizeof(*entries));
2951 if (!entries)
2952 goto out;
2953 r = -EFAULT;
2954 urouting = argp;
2955 if (copy_from_user(entries, urouting->entries,
2956 routing.nr * sizeof(*entries)))
2957 goto out_free_irq_routing;
2958 }
2959 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2960 routing.flags);
2961 out_free_irq_routing:
2962 vfree(entries);
2963 break;
2964 }
2965 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2966 case KVM_CREATE_DEVICE: {
2967 struct kvm_create_device cd;
2968
2969 r = -EFAULT;
2970 if (copy_from_user(&cd, argp, sizeof(cd)))
2971 goto out;
2972
2973 r = kvm_ioctl_create_device(kvm, &cd);
2974 if (r)
2975 goto out;
2976
2977 r = -EFAULT;
2978 if (copy_to_user(argp, &cd, sizeof(cd)))
2979 goto out;
2980
2981 r = 0;
2982 break;
2983 }
2984 case KVM_CHECK_EXTENSION:
2985 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2986 break;
2987 default:
2988 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2989 }
2990 out:
2991 return r;
2992 }
2993
2994 #ifdef CONFIG_KVM_COMPAT
2995 struct compat_kvm_dirty_log {
2996 __u32 slot;
2997 __u32 padding1;
2998 union {
2999 compat_uptr_t dirty_bitmap; /* one bit per page */
3000 __u64 padding2;
3001 };
3002 };
3003
3004 static long kvm_vm_compat_ioctl(struct file *filp,
3005 unsigned int ioctl, unsigned long arg)
3006 {
3007 struct kvm *kvm = filp->private_data;
3008 int r;
3009
3010 if (kvm->mm != current->mm)
3011 return -EIO;
3012 switch (ioctl) {
3013 case KVM_GET_DIRTY_LOG: {
3014 struct compat_kvm_dirty_log compat_log;
3015 struct kvm_dirty_log log;
3016
3017 r = -EFAULT;
3018 if (copy_from_user(&compat_log, (void __user *)arg,
3019 sizeof(compat_log)))
3020 goto out;
3021 log.slot = compat_log.slot;
3022 log.padding1 = compat_log.padding1;
3023 log.padding2 = compat_log.padding2;
3024 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3025
3026 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3027 break;
3028 }
3029 default:
3030 r = kvm_vm_ioctl(filp, ioctl, arg);
3031 }
3032
3033 out:
3034 return r;
3035 }
3036 #endif
3037
3038 static struct file_operations kvm_vm_fops = {
3039 .release = kvm_vm_release,
3040 .unlocked_ioctl = kvm_vm_ioctl,
3041 #ifdef CONFIG_KVM_COMPAT
3042 .compat_ioctl = kvm_vm_compat_ioctl,
3043 #endif
3044 .llseek = noop_llseek,
3045 };
3046
3047 static int kvm_dev_ioctl_create_vm(unsigned long type)
3048 {
3049 int r;
3050 struct kvm *kvm;
3051
3052 kvm = kvm_create_vm(type);
3053 if (IS_ERR(kvm))
3054 return PTR_ERR(kvm);
3055 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3056 r = kvm_coalesced_mmio_init(kvm);
3057 if (r < 0) {
3058 kvm_put_kvm(kvm);
3059 return r;
3060 }
3061 #endif
3062 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
3063 if (r < 0) {
3064 kvm_put_kvm(kvm);
3065 return r;
3066 }
3067
3068 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3069 kvm_put_kvm(kvm);
3070 return -ENOMEM;
3071 }
3072
3073 return r;
3074 }
3075
3076 static long kvm_dev_ioctl(struct file *filp,
3077 unsigned int ioctl, unsigned long arg)
3078 {
3079 long r = -EINVAL;
3080
3081 switch (ioctl) {
3082 case KVM_GET_API_VERSION:
3083 if (arg)
3084 goto out;
3085 r = KVM_API_VERSION;
3086 break;
3087 case KVM_CREATE_VM:
3088 r = kvm_dev_ioctl_create_vm(arg);
3089 break;
3090 case KVM_CHECK_EXTENSION:
3091 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3092 break;
3093 case KVM_GET_VCPU_MMAP_SIZE:
3094 if (arg)
3095 goto out;
3096 r = PAGE_SIZE; /* struct kvm_run */
3097 #ifdef CONFIG_X86
3098 r += PAGE_SIZE; /* pio data page */
3099 #endif
3100 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3101 r += PAGE_SIZE; /* coalesced mmio ring page */
3102 #endif
3103 break;
3104 case KVM_TRACE_ENABLE:
3105 case KVM_TRACE_PAUSE:
3106 case KVM_TRACE_DISABLE:
3107 r = -EOPNOTSUPP;
3108 break;
3109 default:
3110 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3111 }
3112 out:
3113 return r;
3114 }
3115
3116 static struct file_operations kvm_chardev_ops = {
3117 .unlocked_ioctl = kvm_dev_ioctl,
3118 .compat_ioctl = kvm_dev_ioctl,
3119 .llseek = noop_llseek,
3120 };
3121
3122 static struct miscdevice kvm_dev = {
3123 KVM_MINOR,
3124 "kvm",
3125 &kvm_chardev_ops,
3126 };
3127
3128 static void hardware_enable_nolock(void *junk)
3129 {
3130 int cpu = raw_smp_processor_id();
3131 int r;
3132
3133 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3134 return;
3135
3136 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3137
3138 r = kvm_arch_hardware_enable();
3139
3140 if (r) {
3141 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3142 atomic_inc(&hardware_enable_failed);
3143 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3144 }
3145 }
3146
3147 static void hardware_enable(void)
3148 {
3149 raw_spin_lock(&kvm_count_lock);
3150 if (kvm_usage_count)
3151 hardware_enable_nolock(NULL);
3152 raw_spin_unlock(&kvm_count_lock);
3153 }
3154
3155 static void hardware_disable_nolock(void *junk)
3156 {
3157 int cpu = raw_smp_processor_id();
3158
3159 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3160 return;
3161 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3162 kvm_arch_hardware_disable();
3163 }
3164
3165 static void hardware_disable(void)
3166 {
3167 raw_spin_lock(&kvm_count_lock);
3168 if (kvm_usage_count)
3169 hardware_disable_nolock(NULL);
3170 raw_spin_unlock(&kvm_count_lock);
3171 }
3172
3173 static void hardware_disable_all_nolock(void)
3174 {
3175 BUG_ON(!kvm_usage_count);
3176
3177 kvm_usage_count--;
3178 if (!kvm_usage_count)
3179 on_each_cpu(hardware_disable_nolock, NULL, 1);
3180 }
3181
3182 static void hardware_disable_all(void)
3183 {
3184 raw_spin_lock(&kvm_count_lock);
3185 hardware_disable_all_nolock();
3186 raw_spin_unlock(&kvm_count_lock);
3187 }
3188
3189 static int hardware_enable_all(void)
3190 {
3191 int r = 0;
3192
3193 raw_spin_lock(&kvm_count_lock);
3194
3195 kvm_usage_count++;
3196 if (kvm_usage_count == 1) {
3197 atomic_set(&hardware_enable_failed, 0);
3198 on_each_cpu(hardware_enable_nolock, NULL, 1);
3199
3200 if (atomic_read(&hardware_enable_failed)) {
3201 hardware_disable_all_nolock();
3202 r = -EBUSY;
3203 }
3204 }
3205
3206 raw_spin_unlock(&kvm_count_lock);
3207
3208 return r;
3209 }
3210
3211 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3212 void *v)
3213 {
3214 val &= ~CPU_TASKS_FROZEN;
3215 switch (val) {
3216 case CPU_DYING:
3217 hardware_disable();
3218 break;
3219 case CPU_STARTING:
3220 hardware_enable();
3221 break;
3222 }
3223 return NOTIFY_OK;
3224 }
3225
3226 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3227 void *v)
3228 {
3229 /*
3230 * Some (well, at least mine) BIOSes hang on reboot if
3231 * in vmx root mode.
3232 *
3233 * And Intel TXT required VMX off for all cpu when system shutdown.
3234 */
3235 pr_info("kvm: exiting hardware virtualization\n");
3236 kvm_rebooting = true;
3237 on_each_cpu(hardware_disable_nolock, NULL, 1);
3238 return NOTIFY_OK;
3239 }
3240
3241 static struct notifier_block kvm_reboot_notifier = {
3242 .notifier_call = kvm_reboot,
3243 .priority = 0,
3244 };
3245
3246 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3247 {
3248 int i;
3249
3250 for (i = 0; i < bus->dev_count; i++) {
3251 struct kvm_io_device *pos = bus->range[i].dev;
3252
3253 kvm_iodevice_destructor(pos);
3254 }
3255 kfree(bus);
3256 }
3257
3258 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3259 const struct kvm_io_range *r2)
3260 {
3261 gpa_t addr1 = r1->addr;
3262 gpa_t addr2 = r2->addr;
3263
3264 if (addr1 < addr2)
3265 return -1;
3266
3267 /* If r2->len == 0, match the exact address. If r2->len != 0,
3268 * accept any overlapping write. Any order is acceptable for
3269 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3270 * we process all of them.
3271 */
3272 if (r2->len) {
3273 addr1 += r1->len;
3274 addr2 += r2->len;
3275 }
3276
3277 if (addr1 > addr2)
3278 return 1;
3279
3280 return 0;
3281 }
3282
3283 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3284 {
3285 return kvm_io_bus_cmp(p1, p2);
3286 }
3287
3288 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3289 gpa_t addr, int len)
3290 {
3291 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3292 .addr = addr,
3293 .len = len,
3294 .dev = dev,
3295 };
3296
3297 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3298 kvm_io_bus_sort_cmp, NULL);
3299
3300 return 0;
3301 }
3302
3303 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3304 gpa_t addr, int len)
3305 {
3306 struct kvm_io_range *range, key;
3307 int off;
3308
3309 key = (struct kvm_io_range) {
3310 .addr = addr,
3311 .len = len,
3312 };
3313
3314 range = bsearch(&key, bus->range, bus->dev_count,
3315 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3316 if (range == NULL)
3317 return -ENOENT;
3318
3319 off = range - bus->range;
3320
3321 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3322 off--;
3323
3324 return off;
3325 }
3326
3327 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3328 struct kvm_io_range *range, const void *val)
3329 {
3330 int idx;
3331
3332 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3333 if (idx < 0)
3334 return -EOPNOTSUPP;
3335
3336 while (idx < bus->dev_count &&
3337 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3338 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3339 range->len, val))
3340 return idx;
3341 idx++;
3342 }
3343
3344 return -EOPNOTSUPP;
3345 }
3346
3347 /* kvm_io_bus_write - called under kvm->slots_lock */
3348 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3349 int len, const void *val)
3350 {
3351 struct kvm_io_bus *bus;
3352 struct kvm_io_range range;
3353 int r;
3354
3355 range = (struct kvm_io_range) {
3356 .addr = addr,
3357 .len = len,
3358 };
3359
3360 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3361 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3362 return r < 0 ? r : 0;
3363 }
3364
3365 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3366 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3367 gpa_t addr, int len, const void *val, long cookie)
3368 {
3369 struct kvm_io_bus *bus;
3370 struct kvm_io_range range;
3371
3372 range = (struct kvm_io_range) {
3373 .addr = addr,
3374 .len = len,
3375 };
3376
3377 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3378
3379 /* First try the device referenced by cookie. */
3380 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3381 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3382 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3383 val))
3384 return cookie;
3385
3386 /*
3387 * cookie contained garbage; fall back to search and return the
3388 * correct cookie value.
3389 */
3390 return __kvm_io_bus_write(vcpu, bus, &range, val);
3391 }
3392
3393 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3394 struct kvm_io_range *range, void *val)
3395 {
3396 int idx;
3397
3398 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3399 if (idx < 0)
3400 return -EOPNOTSUPP;
3401
3402 while (idx < bus->dev_count &&
3403 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3404 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3405 range->len, val))
3406 return idx;
3407 idx++;
3408 }
3409
3410 return -EOPNOTSUPP;
3411 }
3412 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3413
3414 /* kvm_io_bus_read - called under kvm->slots_lock */
3415 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3416 int len, void *val)
3417 {
3418 struct kvm_io_bus *bus;
3419 struct kvm_io_range range;
3420 int r;
3421
3422 range = (struct kvm_io_range) {
3423 .addr = addr,
3424 .len = len,
3425 };
3426
3427 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3428 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3429 return r < 0 ? r : 0;
3430 }
3431
3432
3433 /* Caller must hold slots_lock. */
3434 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3435 int len, struct kvm_io_device *dev)
3436 {
3437 struct kvm_io_bus *new_bus, *bus;
3438
3439 bus = kvm->buses[bus_idx];
3440 /* exclude ioeventfd which is limited by maximum fd */
3441 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3442 return -ENOSPC;
3443
3444 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3445 sizeof(struct kvm_io_range)), GFP_KERNEL);
3446 if (!new_bus)
3447 return -ENOMEM;
3448 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3449 sizeof(struct kvm_io_range)));
3450 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3451 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3452 synchronize_srcu_expedited(&kvm->srcu);
3453 kfree(bus);
3454
3455 return 0;
3456 }
3457
3458 /* Caller must hold slots_lock. */
3459 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3460 struct kvm_io_device *dev)
3461 {
3462 int i, r;
3463 struct kvm_io_bus *new_bus, *bus;
3464
3465 bus = kvm->buses[bus_idx];
3466 r = -ENOENT;
3467 for (i = 0; i < bus->dev_count; i++)
3468 if (bus->range[i].dev == dev) {
3469 r = 0;
3470 break;
3471 }
3472
3473 if (r)
3474 return r;
3475
3476 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3477 sizeof(struct kvm_io_range)), GFP_KERNEL);
3478 if (!new_bus)
3479 return -ENOMEM;
3480
3481 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3482 new_bus->dev_count--;
3483 memcpy(new_bus->range + i, bus->range + i + 1,
3484 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3485
3486 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3487 synchronize_srcu_expedited(&kvm->srcu);
3488 kfree(bus);
3489 return r;
3490 }
3491
3492 static struct notifier_block kvm_cpu_notifier = {
3493 .notifier_call = kvm_cpu_hotplug,
3494 };
3495
3496 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3497 int (*get)(void *, u64 *), int (*set)(void *, u64),
3498 const char *fmt)
3499 {
3500 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3501 inode->i_private;
3502
3503 /* The debugfs files are a reference to the kvm struct which
3504 * is still valid when kvm_destroy_vm is called.
3505 * To avoid the race between open and the removal of the debugfs
3506 * directory we test against the users count.
3507 */
3508 if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3509 return -ENOENT;
3510
3511 if (simple_attr_open(inode, file, get, set, fmt)) {
3512 kvm_put_kvm(stat_data->kvm);
3513 return -ENOMEM;
3514 }
3515
3516 return 0;
3517 }
3518
3519 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3520 {
3521 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3522 inode->i_private;
3523
3524 simple_attr_release(inode, file);
3525 kvm_put_kvm(stat_data->kvm);
3526
3527 return 0;
3528 }
3529
3530 static int vm_stat_get_per_vm(void *data, u64 *val)
3531 {
3532 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3533
3534 *val = *(u32 *)((void *)stat_data->kvm + stat_data->offset);
3535
3536 return 0;
3537 }
3538
3539 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3540 {
3541 __simple_attr_check_format("%llu\n", 0ull);
3542 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3543 NULL, "%llu\n");
3544 }
3545
3546 static const struct file_operations vm_stat_get_per_vm_fops = {
3547 .owner = THIS_MODULE,
3548 .open = vm_stat_get_per_vm_open,
3549 .release = kvm_debugfs_release,
3550 .read = simple_attr_read,
3551 .write = simple_attr_write,
3552 .llseek = generic_file_llseek,
3553 };
3554
3555 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3556 {
3557 int i;
3558 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3559 struct kvm_vcpu *vcpu;
3560
3561 *val = 0;
3562
3563 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3564 *val += *(u32 *)((void *)vcpu + stat_data->offset);
3565
3566 return 0;
3567 }
3568
3569 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3570 {
3571 __simple_attr_check_format("%llu\n", 0ull);
3572 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3573 NULL, "%llu\n");
3574 }
3575
3576 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3577 .owner = THIS_MODULE,
3578 .open = vcpu_stat_get_per_vm_open,
3579 .release = kvm_debugfs_release,
3580 .read = simple_attr_read,
3581 .write = simple_attr_write,
3582 .llseek = generic_file_llseek,
3583 };
3584
3585 static const struct file_operations *stat_fops_per_vm[] = {
3586 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3587 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3588 };
3589
3590 static int vm_stat_get(void *_offset, u64 *val)
3591 {
3592 unsigned offset = (long)_offset;
3593 struct kvm *kvm;
3594 struct kvm_stat_data stat_tmp = {.offset = offset};
3595 u64 tmp_val;
3596
3597 *val = 0;
3598 spin_lock(&kvm_lock);
3599 list_for_each_entry(kvm, &vm_list, vm_list) {
3600 stat_tmp.kvm = kvm;
3601 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3602 *val += tmp_val;
3603 }
3604 spin_unlock(&kvm_lock);
3605 return 0;
3606 }
3607
3608 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3609
3610 static int vcpu_stat_get(void *_offset, u64 *val)
3611 {
3612 unsigned offset = (long)_offset;
3613 struct kvm *kvm;
3614 struct kvm_stat_data stat_tmp = {.offset = offset};
3615 u64 tmp_val;
3616
3617 *val = 0;
3618 spin_lock(&kvm_lock);
3619 list_for_each_entry(kvm, &vm_list, vm_list) {
3620 stat_tmp.kvm = kvm;
3621 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3622 *val += tmp_val;
3623 }
3624 spin_unlock(&kvm_lock);
3625 return 0;
3626 }
3627
3628 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3629
3630 static const struct file_operations *stat_fops[] = {
3631 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3632 [KVM_STAT_VM] = &vm_stat_fops,
3633 };
3634
3635 static int kvm_init_debug(void)
3636 {
3637 int r = -EEXIST;
3638 struct kvm_stats_debugfs_item *p;
3639
3640 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3641 if (kvm_debugfs_dir == NULL)
3642 goto out;
3643
3644 kvm_debugfs_num_entries = 0;
3645 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3646 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3647 (void *)(long)p->offset,
3648 stat_fops[p->kind]))
3649 goto out_dir;
3650 }
3651
3652 return 0;
3653
3654 out_dir:
3655 debugfs_remove_recursive(kvm_debugfs_dir);
3656 out:
3657 return r;
3658 }
3659
3660 static int kvm_suspend(void)
3661 {
3662 if (kvm_usage_count)
3663 hardware_disable_nolock(NULL);
3664 return 0;
3665 }
3666
3667 static void kvm_resume(void)
3668 {
3669 if (kvm_usage_count) {
3670 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3671 hardware_enable_nolock(NULL);
3672 }
3673 }
3674
3675 static struct syscore_ops kvm_syscore_ops = {
3676 .suspend = kvm_suspend,
3677 .resume = kvm_resume,
3678 };
3679
3680 static inline
3681 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3682 {
3683 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3684 }
3685
3686 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3687 {
3688 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3689
3690 if (vcpu->preempted)
3691 vcpu->preempted = false;
3692
3693 kvm_arch_sched_in(vcpu, cpu);
3694
3695 kvm_arch_vcpu_load(vcpu, cpu);
3696 }
3697
3698 static void kvm_sched_out(struct preempt_notifier *pn,
3699 struct task_struct *next)
3700 {
3701 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3702
3703 if (current->state == TASK_RUNNING)
3704 vcpu->preempted = true;
3705 kvm_arch_vcpu_put(vcpu);
3706 }
3707
3708 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3709 struct module *module)
3710 {
3711 int r;
3712 int cpu;
3713
3714 r = kvm_arch_init(opaque);
3715 if (r)
3716 goto out_fail;
3717
3718 /*
3719 * kvm_arch_init makes sure there's at most one caller
3720 * for architectures that support multiple implementations,
3721 * like intel and amd on x86.
3722 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3723 * conflicts in case kvm is already setup for another implementation.
3724 */
3725 r = kvm_irqfd_init();
3726 if (r)
3727 goto out_irqfd;
3728
3729 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3730 r = -ENOMEM;
3731 goto out_free_0;
3732 }
3733
3734 r = kvm_arch_hardware_setup();
3735 if (r < 0)
3736 goto out_free_0a;
3737
3738 for_each_online_cpu(cpu) {
3739 smp_call_function_single(cpu,
3740 kvm_arch_check_processor_compat,
3741 &r, 1);
3742 if (r < 0)
3743 goto out_free_1;
3744 }
3745
3746 r = register_cpu_notifier(&kvm_cpu_notifier);
3747 if (r)
3748 goto out_free_2;
3749 register_reboot_notifier(&kvm_reboot_notifier);
3750
3751 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3752 if (!vcpu_align)
3753 vcpu_align = __alignof__(struct kvm_vcpu);
3754 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3755 0, NULL);
3756 if (!kvm_vcpu_cache) {
3757 r = -ENOMEM;
3758 goto out_free_3;
3759 }
3760
3761 r = kvm_async_pf_init();
3762 if (r)
3763 goto out_free;
3764
3765 kvm_chardev_ops.owner = module;
3766 kvm_vm_fops.owner = module;
3767 kvm_vcpu_fops.owner = module;
3768
3769 r = misc_register(&kvm_dev);
3770 if (r) {
3771 pr_err("kvm: misc device register failed\n");
3772 goto out_unreg;
3773 }
3774
3775 register_syscore_ops(&kvm_syscore_ops);
3776
3777 kvm_preempt_ops.sched_in = kvm_sched_in;
3778 kvm_preempt_ops.sched_out = kvm_sched_out;
3779
3780 r = kvm_init_debug();
3781 if (r) {
3782 pr_err("kvm: create debugfs files failed\n");
3783 goto out_undebugfs;
3784 }
3785
3786 r = kvm_vfio_ops_init();
3787 WARN_ON(r);
3788
3789 return 0;
3790
3791 out_undebugfs:
3792 unregister_syscore_ops(&kvm_syscore_ops);
3793 misc_deregister(&kvm_dev);
3794 out_unreg:
3795 kvm_async_pf_deinit();
3796 out_free:
3797 kmem_cache_destroy(kvm_vcpu_cache);
3798 out_free_3:
3799 unregister_reboot_notifier(&kvm_reboot_notifier);
3800 unregister_cpu_notifier(&kvm_cpu_notifier);
3801 out_free_2:
3802 out_free_1:
3803 kvm_arch_hardware_unsetup();
3804 out_free_0a:
3805 free_cpumask_var(cpus_hardware_enabled);
3806 out_free_0:
3807 kvm_irqfd_exit();
3808 out_irqfd:
3809 kvm_arch_exit();
3810 out_fail:
3811 return r;
3812 }
3813 EXPORT_SYMBOL_GPL(kvm_init);
3814
3815 void kvm_exit(void)
3816 {
3817 debugfs_remove_recursive(kvm_debugfs_dir);
3818 misc_deregister(&kvm_dev);
3819 kmem_cache_destroy(kvm_vcpu_cache);
3820 kvm_async_pf_deinit();
3821 unregister_syscore_ops(&kvm_syscore_ops);
3822 unregister_reboot_notifier(&kvm_reboot_notifier);
3823 unregister_cpu_notifier(&kvm_cpu_notifier);
3824 on_each_cpu(hardware_disable_nolock, NULL, 1);
3825 kvm_arch_hardware_unsetup();
3826 kvm_arch_exit();
3827 kvm_irqfd_exit();
3828 free_cpumask_var(cpus_hardware_enabled);
3829 kvm_vfio_ops_exit();
3830 }
3831 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.119897 seconds and 5 git commands to generate.