KVM: Call common update function when ioapic entry changed.
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 if (pfn_valid(pfn)) {
106 int reserved;
107 struct page *tail = pfn_to_page(pfn);
108 struct page *head = compound_trans_head(tail);
109 reserved = PageReserved(head);
110 if (head != tail) {
111 /*
112 * "head" is not a dangling pointer
113 * (compound_trans_head takes care of that)
114 * but the hugepage may have been splitted
115 * from under us (and we may not hold a
116 * reference count on the head page so it can
117 * be reused before we run PageReferenced), so
118 * we've to check PageTail before returning
119 * what we just read.
120 */
121 smp_rmb();
122 if (PageTail(tail))
123 return reserved;
124 }
125 return PageReserved(tail);
126 }
127
128 return true;
129 }
130
131 /*
132 * Switches to specified vcpu, until a matching vcpu_put()
133 */
134 int vcpu_load(struct kvm_vcpu *vcpu)
135 {
136 int cpu;
137
138 if (mutex_lock_killable(&vcpu->mutex))
139 return -EINTR;
140 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
141 /* The thread running this VCPU changed. */
142 struct pid *oldpid = vcpu->pid;
143 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
144 rcu_assign_pointer(vcpu->pid, newpid);
145 synchronize_rcu();
146 put_pid(oldpid);
147 }
148 cpu = get_cpu();
149 preempt_notifier_register(&vcpu->preempt_notifier);
150 kvm_arch_vcpu_load(vcpu, cpu);
151 put_cpu();
152 return 0;
153 }
154
155 void vcpu_put(struct kvm_vcpu *vcpu)
156 {
157 preempt_disable();
158 kvm_arch_vcpu_put(vcpu);
159 preempt_notifier_unregister(&vcpu->preempt_notifier);
160 preempt_enable();
161 mutex_unlock(&vcpu->mutex);
162 }
163
164 static void ack_flush(void *_completed)
165 {
166 }
167
168 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
169 {
170 int i, cpu, me;
171 cpumask_var_t cpus;
172 bool called = true;
173 struct kvm_vcpu *vcpu;
174
175 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
176
177 me = get_cpu();
178 kvm_for_each_vcpu(i, vcpu, kvm) {
179 kvm_make_request(req, vcpu);
180 cpu = vcpu->cpu;
181
182 /* Set ->requests bit before we read ->mode */
183 smp_mb();
184
185 if (cpus != NULL && cpu != -1 && cpu != me &&
186 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
187 cpumask_set_cpu(cpu, cpus);
188 }
189 if (unlikely(cpus == NULL))
190 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
191 else if (!cpumask_empty(cpus))
192 smp_call_function_many(cpus, ack_flush, NULL, 1);
193 else
194 called = false;
195 put_cpu();
196 free_cpumask_var(cpus);
197 return called;
198 }
199
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 long dirty_count = kvm->tlbs_dirty;
203
204 smp_mb();
205 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
206 ++kvm->stat.remote_tlb_flush;
207 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
208 }
209
210 void kvm_reload_remote_mmus(struct kvm *kvm)
211 {
212 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
213 }
214
215 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
216 {
217 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
218 }
219
220 void kvm_make_scan_ioapic_request(struct kvm *kvm)
221 {
222 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
223 }
224
225 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
226 {
227 struct page *page;
228 int r;
229
230 mutex_init(&vcpu->mutex);
231 vcpu->cpu = -1;
232 vcpu->kvm = kvm;
233 vcpu->vcpu_id = id;
234 vcpu->pid = NULL;
235 init_waitqueue_head(&vcpu->wq);
236 kvm_async_pf_vcpu_init(vcpu);
237
238 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
239 if (!page) {
240 r = -ENOMEM;
241 goto fail;
242 }
243 vcpu->run = page_address(page);
244
245 kvm_vcpu_set_in_spin_loop(vcpu, false);
246 kvm_vcpu_set_dy_eligible(vcpu, false);
247 vcpu->preempted = false;
248
249 r = kvm_arch_vcpu_init(vcpu);
250 if (r < 0)
251 goto fail_free_run;
252 return 0;
253
254 fail_free_run:
255 free_page((unsigned long)vcpu->run);
256 fail:
257 return r;
258 }
259 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
260
261 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
262 {
263 put_pid(vcpu->pid);
264 kvm_arch_vcpu_uninit(vcpu);
265 free_page((unsigned long)vcpu->run);
266 }
267 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
268
269 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
270 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
271 {
272 return container_of(mn, struct kvm, mmu_notifier);
273 }
274
275 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
276 struct mm_struct *mm,
277 unsigned long address)
278 {
279 struct kvm *kvm = mmu_notifier_to_kvm(mn);
280 int need_tlb_flush, idx;
281
282 /*
283 * When ->invalidate_page runs, the linux pte has been zapped
284 * already but the page is still allocated until
285 * ->invalidate_page returns. So if we increase the sequence
286 * here the kvm page fault will notice if the spte can't be
287 * established because the page is going to be freed. If
288 * instead the kvm page fault establishes the spte before
289 * ->invalidate_page runs, kvm_unmap_hva will release it
290 * before returning.
291 *
292 * The sequence increase only need to be seen at spin_unlock
293 * time, and not at spin_lock time.
294 *
295 * Increasing the sequence after the spin_unlock would be
296 * unsafe because the kvm page fault could then establish the
297 * pte after kvm_unmap_hva returned, without noticing the page
298 * is going to be freed.
299 */
300 idx = srcu_read_lock(&kvm->srcu);
301 spin_lock(&kvm->mmu_lock);
302
303 kvm->mmu_notifier_seq++;
304 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
305 /* we've to flush the tlb before the pages can be freed */
306 if (need_tlb_flush)
307 kvm_flush_remote_tlbs(kvm);
308
309 spin_unlock(&kvm->mmu_lock);
310 srcu_read_unlock(&kvm->srcu, idx);
311 }
312
313 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
314 struct mm_struct *mm,
315 unsigned long address,
316 pte_t pte)
317 {
318 struct kvm *kvm = mmu_notifier_to_kvm(mn);
319 int idx;
320
321 idx = srcu_read_lock(&kvm->srcu);
322 spin_lock(&kvm->mmu_lock);
323 kvm->mmu_notifier_seq++;
324 kvm_set_spte_hva(kvm, address, pte);
325 spin_unlock(&kvm->mmu_lock);
326 srcu_read_unlock(&kvm->srcu, idx);
327 }
328
329 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
330 struct mm_struct *mm,
331 unsigned long start,
332 unsigned long end)
333 {
334 struct kvm *kvm = mmu_notifier_to_kvm(mn);
335 int need_tlb_flush = 0, idx;
336
337 idx = srcu_read_lock(&kvm->srcu);
338 spin_lock(&kvm->mmu_lock);
339 /*
340 * The count increase must become visible at unlock time as no
341 * spte can be established without taking the mmu_lock and
342 * count is also read inside the mmu_lock critical section.
343 */
344 kvm->mmu_notifier_count++;
345 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
346 need_tlb_flush |= kvm->tlbs_dirty;
347 /* we've to flush the tlb before the pages can be freed */
348 if (need_tlb_flush)
349 kvm_flush_remote_tlbs(kvm);
350
351 spin_unlock(&kvm->mmu_lock);
352 srcu_read_unlock(&kvm->srcu, idx);
353 }
354
355 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
356 struct mm_struct *mm,
357 unsigned long start,
358 unsigned long end)
359 {
360 struct kvm *kvm = mmu_notifier_to_kvm(mn);
361
362 spin_lock(&kvm->mmu_lock);
363 /*
364 * This sequence increase will notify the kvm page fault that
365 * the page that is going to be mapped in the spte could have
366 * been freed.
367 */
368 kvm->mmu_notifier_seq++;
369 smp_wmb();
370 /*
371 * The above sequence increase must be visible before the
372 * below count decrease, which is ensured by the smp_wmb above
373 * in conjunction with the smp_rmb in mmu_notifier_retry().
374 */
375 kvm->mmu_notifier_count--;
376 spin_unlock(&kvm->mmu_lock);
377
378 BUG_ON(kvm->mmu_notifier_count < 0);
379 }
380
381 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
382 struct mm_struct *mm,
383 unsigned long address)
384 {
385 struct kvm *kvm = mmu_notifier_to_kvm(mn);
386 int young, idx;
387
388 idx = srcu_read_lock(&kvm->srcu);
389 spin_lock(&kvm->mmu_lock);
390
391 young = kvm_age_hva(kvm, address);
392 if (young)
393 kvm_flush_remote_tlbs(kvm);
394
395 spin_unlock(&kvm->mmu_lock);
396 srcu_read_unlock(&kvm->srcu, idx);
397
398 return young;
399 }
400
401 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
402 struct mm_struct *mm,
403 unsigned long address)
404 {
405 struct kvm *kvm = mmu_notifier_to_kvm(mn);
406 int young, idx;
407
408 idx = srcu_read_lock(&kvm->srcu);
409 spin_lock(&kvm->mmu_lock);
410 young = kvm_test_age_hva(kvm, address);
411 spin_unlock(&kvm->mmu_lock);
412 srcu_read_unlock(&kvm->srcu, idx);
413
414 return young;
415 }
416
417 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
418 struct mm_struct *mm)
419 {
420 struct kvm *kvm = mmu_notifier_to_kvm(mn);
421 int idx;
422
423 idx = srcu_read_lock(&kvm->srcu);
424 kvm_arch_flush_shadow_all(kvm);
425 srcu_read_unlock(&kvm->srcu, idx);
426 }
427
428 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
429 .invalidate_page = kvm_mmu_notifier_invalidate_page,
430 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
431 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
432 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
433 .test_young = kvm_mmu_notifier_test_young,
434 .change_pte = kvm_mmu_notifier_change_pte,
435 .release = kvm_mmu_notifier_release,
436 };
437
438 static int kvm_init_mmu_notifier(struct kvm *kvm)
439 {
440 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
441 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
442 }
443
444 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
445
446 static int kvm_init_mmu_notifier(struct kvm *kvm)
447 {
448 return 0;
449 }
450
451 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
452
453 static void kvm_init_memslots_id(struct kvm *kvm)
454 {
455 int i;
456 struct kvm_memslots *slots = kvm->memslots;
457
458 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
459 slots->id_to_index[i] = slots->memslots[i].id = i;
460 }
461
462 static struct kvm *kvm_create_vm(unsigned long type)
463 {
464 int r, i;
465 struct kvm *kvm = kvm_arch_alloc_vm();
466
467 if (!kvm)
468 return ERR_PTR(-ENOMEM);
469
470 r = kvm_arch_init_vm(kvm, type);
471 if (r)
472 goto out_err_nodisable;
473
474 r = hardware_enable_all();
475 if (r)
476 goto out_err_nodisable;
477
478 #ifdef CONFIG_HAVE_KVM_IRQCHIP
479 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
480 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
481 #endif
482
483 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
484
485 r = -ENOMEM;
486 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
487 if (!kvm->memslots)
488 goto out_err_nosrcu;
489 kvm_init_memslots_id(kvm);
490 if (init_srcu_struct(&kvm->srcu))
491 goto out_err_nosrcu;
492 for (i = 0; i < KVM_NR_BUSES; i++) {
493 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
494 GFP_KERNEL);
495 if (!kvm->buses[i])
496 goto out_err;
497 }
498
499 spin_lock_init(&kvm->mmu_lock);
500 kvm->mm = current->mm;
501 atomic_inc(&kvm->mm->mm_count);
502 kvm_eventfd_init(kvm);
503 mutex_init(&kvm->lock);
504 mutex_init(&kvm->irq_lock);
505 mutex_init(&kvm->slots_lock);
506 atomic_set(&kvm->users_count, 1);
507
508 r = kvm_init_mmu_notifier(kvm);
509 if (r)
510 goto out_err;
511
512 raw_spin_lock(&kvm_lock);
513 list_add(&kvm->vm_list, &vm_list);
514 raw_spin_unlock(&kvm_lock);
515
516 return kvm;
517
518 out_err:
519 cleanup_srcu_struct(&kvm->srcu);
520 out_err_nosrcu:
521 hardware_disable_all();
522 out_err_nodisable:
523 for (i = 0; i < KVM_NR_BUSES; i++)
524 kfree(kvm->buses[i]);
525 kfree(kvm->memslots);
526 kvm_arch_free_vm(kvm);
527 return ERR_PTR(r);
528 }
529
530 /*
531 * Avoid using vmalloc for a small buffer.
532 * Should not be used when the size is statically known.
533 */
534 void *kvm_kvzalloc(unsigned long size)
535 {
536 if (size > PAGE_SIZE)
537 return vzalloc(size);
538 else
539 return kzalloc(size, GFP_KERNEL);
540 }
541
542 void kvm_kvfree(const void *addr)
543 {
544 if (is_vmalloc_addr(addr))
545 vfree(addr);
546 else
547 kfree(addr);
548 }
549
550 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
551 {
552 if (!memslot->dirty_bitmap)
553 return;
554
555 kvm_kvfree(memslot->dirty_bitmap);
556 memslot->dirty_bitmap = NULL;
557 }
558
559 /*
560 * Free any memory in @free but not in @dont.
561 */
562 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
563 struct kvm_memory_slot *dont)
564 {
565 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
566 kvm_destroy_dirty_bitmap(free);
567
568 kvm_arch_free_memslot(free, dont);
569
570 free->npages = 0;
571 }
572
573 void kvm_free_physmem(struct kvm *kvm)
574 {
575 struct kvm_memslots *slots = kvm->memslots;
576 struct kvm_memory_slot *memslot;
577
578 kvm_for_each_memslot(memslot, slots)
579 kvm_free_physmem_slot(memslot, NULL);
580
581 kfree(kvm->memslots);
582 }
583
584 static void kvm_destroy_vm(struct kvm *kvm)
585 {
586 int i;
587 struct mm_struct *mm = kvm->mm;
588
589 kvm_arch_sync_events(kvm);
590 raw_spin_lock(&kvm_lock);
591 list_del(&kvm->vm_list);
592 raw_spin_unlock(&kvm_lock);
593 kvm_free_irq_routing(kvm);
594 for (i = 0; i < KVM_NR_BUSES; i++)
595 kvm_io_bus_destroy(kvm->buses[i]);
596 kvm_coalesced_mmio_free(kvm);
597 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
598 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
599 #else
600 kvm_arch_flush_shadow_all(kvm);
601 #endif
602 kvm_arch_destroy_vm(kvm);
603 kvm_free_physmem(kvm);
604 cleanup_srcu_struct(&kvm->srcu);
605 kvm_arch_free_vm(kvm);
606 hardware_disable_all();
607 mmdrop(mm);
608 }
609
610 void kvm_get_kvm(struct kvm *kvm)
611 {
612 atomic_inc(&kvm->users_count);
613 }
614 EXPORT_SYMBOL_GPL(kvm_get_kvm);
615
616 void kvm_put_kvm(struct kvm *kvm)
617 {
618 if (atomic_dec_and_test(&kvm->users_count))
619 kvm_destroy_vm(kvm);
620 }
621 EXPORT_SYMBOL_GPL(kvm_put_kvm);
622
623
624 static int kvm_vm_release(struct inode *inode, struct file *filp)
625 {
626 struct kvm *kvm = filp->private_data;
627
628 kvm_irqfd_release(kvm);
629
630 kvm_put_kvm(kvm);
631 return 0;
632 }
633
634 /*
635 * Allocation size is twice as large as the actual dirty bitmap size.
636 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
637 */
638 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
639 {
640 #ifndef CONFIG_S390
641 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
642
643 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
644 if (!memslot->dirty_bitmap)
645 return -ENOMEM;
646
647 #endif /* !CONFIG_S390 */
648 return 0;
649 }
650
651 static int cmp_memslot(const void *slot1, const void *slot2)
652 {
653 struct kvm_memory_slot *s1, *s2;
654
655 s1 = (struct kvm_memory_slot *)slot1;
656 s2 = (struct kvm_memory_slot *)slot2;
657
658 if (s1->npages < s2->npages)
659 return 1;
660 if (s1->npages > s2->npages)
661 return -1;
662
663 return 0;
664 }
665
666 /*
667 * Sort the memslots base on its size, so the larger slots
668 * will get better fit.
669 */
670 static void sort_memslots(struct kvm_memslots *slots)
671 {
672 int i;
673
674 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
675 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
676
677 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
678 slots->id_to_index[slots->memslots[i].id] = i;
679 }
680
681 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
682 u64 last_generation)
683 {
684 if (new) {
685 int id = new->id;
686 struct kvm_memory_slot *old = id_to_memslot(slots, id);
687 unsigned long npages = old->npages;
688
689 *old = *new;
690 if (new->npages != npages)
691 sort_memslots(slots);
692 }
693
694 slots->generation = last_generation + 1;
695 }
696
697 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
698 {
699 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
700
701 #ifdef KVM_CAP_READONLY_MEM
702 valid_flags |= KVM_MEM_READONLY;
703 #endif
704
705 if (mem->flags & ~valid_flags)
706 return -EINVAL;
707
708 return 0;
709 }
710
711 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
712 struct kvm_memslots *slots, struct kvm_memory_slot *new)
713 {
714 struct kvm_memslots *old_memslots = kvm->memslots;
715
716 update_memslots(slots, new, kvm->memslots->generation);
717 rcu_assign_pointer(kvm->memslots, slots);
718 synchronize_srcu_expedited(&kvm->srcu);
719 return old_memslots;
720 }
721
722 /*
723 * Allocate some memory and give it an address in the guest physical address
724 * space.
725 *
726 * Discontiguous memory is allowed, mostly for framebuffers.
727 *
728 * Must be called holding mmap_sem for write.
729 */
730 int __kvm_set_memory_region(struct kvm *kvm,
731 struct kvm_userspace_memory_region *mem)
732 {
733 int r;
734 gfn_t base_gfn;
735 unsigned long npages;
736 struct kvm_memory_slot *slot;
737 struct kvm_memory_slot old, new;
738 struct kvm_memslots *slots = NULL, *old_memslots;
739 enum kvm_mr_change change;
740
741 r = check_memory_region_flags(mem);
742 if (r)
743 goto out;
744
745 r = -EINVAL;
746 /* General sanity checks */
747 if (mem->memory_size & (PAGE_SIZE - 1))
748 goto out;
749 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
750 goto out;
751 /* We can read the guest memory with __xxx_user() later on. */
752 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
753 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
754 !access_ok(VERIFY_WRITE,
755 (void __user *)(unsigned long)mem->userspace_addr,
756 mem->memory_size)))
757 goto out;
758 if (mem->slot >= KVM_MEM_SLOTS_NUM)
759 goto out;
760 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
761 goto out;
762
763 slot = id_to_memslot(kvm->memslots, mem->slot);
764 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
765 npages = mem->memory_size >> PAGE_SHIFT;
766
767 r = -EINVAL;
768 if (npages > KVM_MEM_MAX_NR_PAGES)
769 goto out;
770
771 if (!npages)
772 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
773
774 new = old = *slot;
775
776 new.id = mem->slot;
777 new.base_gfn = base_gfn;
778 new.npages = npages;
779 new.flags = mem->flags;
780
781 r = -EINVAL;
782 if (npages) {
783 if (!old.npages)
784 change = KVM_MR_CREATE;
785 else { /* Modify an existing slot. */
786 if ((mem->userspace_addr != old.userspace_addr) ||
787 (npages != old.npages) ||
788 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
789 goto out;
790
791 if (base_gfn != old.base_gfn)
792 change = KVM_MR_MOVE;
793 else if (new.flags != old.flags)
794 change = KVM_MR_FLAGS_ONLY;
795 else { /* Nothing to change. */
796 r = 0;
797 goto out;
798 }
799 }
800 } else if (old.npages) {
801 change = KVM_MR_DELETE;
802 } else /* Modify a non-existent slot: disallowed. */
803 goto out;
804
805 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
806 /* Check for overlaps */
807 r = -EEXIST;
808 kvm_for_each_memslot(slot, kvm->memslots) {
809 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
810 (slot->id == mem->slot))
811 continue;
812 if (!((base_gfn + npages <= slot->base_gfn) ||
813 (base_gfn >= slot->base_gfn + slot->npages)))
814 goto out;
815 }
816 }
817
818 /* Free page dirty bitmap if unneeded */
819 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
820 new.dirty_bitmap = NULL;
821
822 r = -ENOMEM;
823 if (change == KVM_MR_CREATE) {
824 new.userspace_addr = mem->userspace_addr;
825
826 if (kvm_arch_create_memslot(&new, npages))
827 goto out_free;
828 }
829
830 /* Allocate page dirty bitmap if needed */
831 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
832 if (kvm_create_dirty_bitmap(&new) < 0)
833 goto out_free;
834 }
835
836 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
837 r = -ENOMEM;
838 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
839 GFP_KERNEL);
840 if (!slots)
841 goto out_free;
842 slot = id_to_memslot(slots, mem->slot);
843 slot->flags |= KVM_MEMSLOT_INVALID;
844
845 old_memslots = install_new_memslots(kvm, slots, NULL);
846
847 /* slot was deleted or moved, clear iommu mapping */
848 kvm_iommu_unmap_pages(kvm, &old);
849 /* From this point no new shadow pages pointing to a deleted,
850 * or moved, memslot will be created.
851 *
852 * validation of sp->gfn happens in:
853 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
854 * - kvm_is_visible_gfn (mmu_check_roots)
855 */
856 kvm_arch_flush_shadow_memslot(kvm, slot);
857 slots = old_memslots;
858 }
859
860 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
861 if (r)
862 goto out_slots;
863
864 r = -ENOMEM;
865 /*
866 * We can re-use the old_memslots from above, the only difference
867 * from the currently installed memslots is the invalid flag. This
868 * will get overwritten by update_memslots anyway.
869 */
870 if (!slots) {
871 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
872 GFP_KERNEL);
873 if (!slots)
874 goto out_free;
875 }
876
877 /*
878 * IOMMU mapping: New slots need to be mapped. Old slots need to be
879 * un-mapped and re-mapped if their base changes. Since base change
880 * unmapping is handled above with slot deletion, mapping alone is
881 * needed here. Anything else the iommu might care about for existing
882 * slots (size changes, userspace addr changes and read-only flag
883 * changes) is disallowed above, so any other attribute changes getting
884 * here can be skipped.
885 */
886 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
887 r = kvm_iommu_map_pages(kvm, &new);
888 if (r)
889 goto out_slots;
890 }
891
892 /* actual memory is freed via old in kvm_free_physmem_slot below */
893 if (change == KVM_MR_DELETE) {
894 new.dirty_bitmap = NULL;
895 memset(&new.arch, 0, sizeof(new.arch));
896 }
897
898 old_memslots = install_new_memslots(kvm, slots, &new);
899
900 kvm_arch_commit_memory_region(kvm, mem, &old, change);
901
902 kvm_free_physmem_slot(&old, &new);
903 kfree(old_memslots);
904
905 return 0;
906
907 out_slots:
908 kfree(slots);
909 out_free:
910 kvm_free_physmem_slot(&new, &old);
911 out:
912 return r;
913 }
914 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
915
916 int kvm_set_memory_region(struct kvm *kvm,
917 struct kvm_userspace_memory_region *mem)
918 {
919 int r;
920
921 mutex_lock(&kvm->slots_lock);
922 r = __kvm_set_memory_region(kvm, mem);
923 mutex_unlock(&kvm->slots_lock);
924 return r;
925 }
926 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
927
928 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
929 struct kvm_userspace_memory_region *mem)
930 {
931 if (mem->slot >= KVM_USER_MEM_SLOTS)
932 return -EINVAL;
933 return kvm_set_memory_region(kvm, mem);
934 }
935
936 int kvm_get_dirty_log(struct kvm *kvm,
937 struct kvm_dirty_log *log, int *is_dirty)
938 {
939 struct kvm_memory_slot *memslot;
940 int r, i;
941 unsigned long n;
942 unsigned long any = 0;
943
944 r = -EINVAL;
945 if (log->slot >= KVM_USER_MEM_SLOTS)
946 goto out;
947
948 memslot = id_to_memslot(kvm->memslots, log->slot);
949 r = -ENOENT;
950 if (!memslot->dirty_bitmap)
951 goto out;
952
953 n = kvm_dirty_bitmap_bytes(memslot);
954
955 for (i = 0; !any && i < n/sizeof(long); ++i)
956 any = memslot->dirty_bitmap[i];
957
958 r = -EFAULT;
959 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
960 goto out;
961
962 if (any)
963 *is_dirty = 1;
964
965 r = 0;
966 out:
967 return r;
968 }
969
970 bool kvm_largepages_enabled(void)
971 {
972 return largepages_enabled;
973 }
974
975 void kvm_disable_largepages(void)
976 {
977 largepages_enabled = false;
978 }
979 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
980
981 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
982 {
983 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
984 }
985 EXPORT_SYMBOL_GPL(gfn_to_memslot);
986
987 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
988 {
989 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
990
991 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
992 memslot->flags & KVM_MEMSLOT_INVALID)
993 return 0;
994
995 return 1;
996 }
997 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
998
999 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1000 {
1001 struct vm_area_struct *vma;
1002 unsigned long addr, size;
1003
1004 size = PAGE_SIZE;
1005
1006 addr = gfn_to_hva(kvm, gfn);
1007 if (kvm_is_error_hva(addr))
1008 return PAGE_SIZE;
1009
1010 down_read(&current->mm->mmap_sem);
1011 vma = find_vma(current->mm, addr);
1012 if (!vma)
1013 goto out;
1014
1015 size = vma_kernel_pagesize(vma);
1016
1017 out:
1018 up_read(&current->mm->mmap_sem);
1019
1020 return size;
1021 }
1022
1023 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1024 {
1025 return slot->flags & KVM_MEM_READONLY;
1026 }
1027
1028 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1029 gfn_t *nr_pages, bool write)
1030 {
1031 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1032 return KVM_HVA_ERR_BAD;
1033
1034 if (memslot_is_readonly(slot) && write)
1035 return KVM_HVA_ERR_RO_BAD;
1036
1037 if (nr_pages)
1038 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1039
1040 return __gfn_to_hva_memslot(slot, gfn);
1041 }
1042
1043 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1044 gfn_t *nr_pages)
1045 {
1046 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1047 }
1048
1049 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1050 gfn_t gfn)
1051 {
1052 return gfn_to_hva_many(slot, gfn, NULL);
1053 }
1054 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1055
1056 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1057 {
1058 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1059 }
1060 EXPORT_SYMBOL_GPL(gfn_to_hva);
1061
1062 /*
1063 * The hva returned by this function is only allowed to be read.
1064 * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1065 */
1066 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1067 {
1068 return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1069 }
1070
1071 static int kvm_read_hva(void *data, void __user *hva, int len)
1072 {
1073 return __copy_from_user(data, hva, len);
1074 }
1075
1076 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1077 {
1078 return __copy_from_user_inatomic(data, hva, len);
1079 }
1080
1081 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1082 unsigned long start, int write, struct page **page)
1083 {
1084 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1085
1086 if (write)
1087 flags |= FOLL_WRITE;
1088
1089 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1090 }
1091
1092 static inline int check_user_page_hwpoison(unsigned long addr)
1093 {
1094 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1095
1096 rc = __get_user_pages(current, current->mm, addr, 1,
1097 flags, NULL, NULL, NULL);
1098 return rc == -EHWPOISON;
1099 }
1100
1101 /*
1102 * The atomic path to get the writable pfn which will be stored in @pfn,
1103 * true indicates success, otherwise false is returned.
1104 */
1105 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1106 bool write_fault, bool *writable, pfn_t *pfn)
1107 {
1108 struct page *page[1];
1109 int npages;
1110
1111 if (!(async || atomic))
1112 return false;
1113
1114 /*
1115 * Fast pin a writable pfn only if it is a write fault request
1116 * or the caller allows to map a writable pfn for a read fault
1117 * request.
1118 */
1119 if (!(write_fault || writable))
1120 return false;
1121
1122 npages = __get_user_pages_fast(addr, 1, 1, page);
1123 if (npages == 1) {
1124 *pfn = page_to_pfn(page[0]);
1125
1126 if (writable)
1127 *writable = true;
1128 return true;
1129 }
1130
1131 return false;
1132 }
1133
1134 /*
1135 * The slow path to get the pfn of the specified host virtual address,
1136 * 1 indicates success, -errno is returned if error is detected.
1137 */
1138 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1139 bool *writable, pfn_t *pfn)
1140 {
1141 struct page *page[1];
1142 int npages = 0;
1143
1144 might_sleep();
1145
1146 if (writable)
1147 *writable = write_fault;
1148
1149 if (async) {
1150 down_read(&current->mm->mmap_sem);
1151 npages = get_user_page_nowait(current, current->mm,
1152 addr, write_fault, page);
1153 up_read(&current->mm->mmap_sem);
1154 } else
1155 npages = get_user_pages_fast(addr, 1, write_fault,
1156 page);
1157 if (npages != 1)
1158 return npages;
1159
1160 /* map read fault as writable if possible */
1161 if (unlikely(!write_fault) && writable) {
1162 struct page *wpage[1];
1163
1164 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1165 if (npages == 1) {
1166 *writable = true;
1167 put_page(page[0]);
1168 page[0] = wpage[0];
1169 }
1170
1171 npages = 1;
1172 }
1173 *pfn = page_to_pfn(page[0]);
1174 return npages;
1175 }
1176
1177 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1178 {
1179 if (unlikely(!(vma->vm_flags & VM_READ)))
1180 return false;
1181
1182 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1183 return false;
1184
1185 return true;
1186 }
1187
1188 /*
1189 * Pin guest page in memory and return its pfn.
1190 * @addr: host virtual address which maps memory to the guest
1191 * @atomic: whether this function can sleep
1192 * @async: whether this function need to wait IO complete if the
1193 * host page is not in the memory
1194 * @write_fault: whether we should get a writable host page
1195 * @writable: whether it allows to map a writable host page for !@write_fault
1196 *
1197 * The function will map a writable host page for these two cases:
1198 * 1): @write_fault = true
1199 * 2): @write_fault = false && @writable, @writable will tell the caller
1200 * whether the mapping is writable.
1201 */
1202 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1203 bool write_fault, bool *writable)
1204 {
1205 struct vm_area_struct *vma;
1206 pfn_t pfn = 0;
1207 int npages;
1208
1209 /* we can do it either atomically or asynchronously, not both */
1210 BUG_ON(atomic && async);
1211
1212 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1213 return pfn;
1214
1215 if (atomic)
1216 return KVM_PFN_ERR_FAULT;
1217
1218 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1219 if (npages == 1)
1220 return pfn;
1221
1222 down_read(&current->mm->mmap_sem);
1223 if (npages == -EHWPOISON ||
1224 (!async && check_user_page_hwpoison(addr))) {
1225 pfn = KVM_PFN_ERR_HWPOISON;
1226 goto exit;
1227 }
1228
1229 vma = find_vma_intersection(current->mm, addr, addr + 1);
1230
1231 if (vma == NULL)
1232 pfn = KVM_PFN_ERR_FAULT;
1233 else if ((vma->vm_flags & VM_PFNMAP)) {
1234 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1235 vma->vm_pgoff;
1236 BUG_ON(!kvm_is_mmio_pfn(pfn));
1237 } else {
1238 if (async && vma_is_valid(vma, write_fault))
1239 *async = true;
1240 pfn = KVM_PFN_ERR_FAULT;
1241 }
1242 exit:
1243 up_read(&current->mm->mmap_sem);
1244 return pfn;
1245 }
1246
1247 static pfn_t
1248 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1249 bool *async, bool write_fault, bool *writable)
1250 {
1251 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1252
1253 if (addr == KVM_HVA_ERR_RO_BAD)
1254 return KVM_PFN_ERR_RO_FAULT;
1255
1256 if (kvm_is_error_hva(addr))
1257 return KVM_PFN_NOSLOT;
1258
1259 /* Do not map writable pfn in the readonly memslot. */
1260 if (writable && memslot_is_readonly(slot)) {
1261 *writable = false;
1262 writable = NULL;
1263 }
1264
1265 return hva_to_pfn(addr, atomic, async, write_fault,
1266 writable);
1267 }
1268
1269 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1270 bool write_fault, bool *writable)
1271 {
1272 struct kvm_memory_slot *slot;
1273
1274 if (async)
1275 *async = false;
1276
1277 slot = gfn_to_memslot(kvm, gfn);
1278
1279 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1280 writable);
1281 }
1282
1283 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1284 {
1285 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1286 }
1287 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1288
1289 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1290 bool write_fault, bool *writable)
1291 {
1292 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1293 }
1294 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1295
1296 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1297 {
1298 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1299 }
1300 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1301
1302 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1303 bool *writable)
1304 {
1305 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1306 }
1307 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1308
1309 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1310 {
1311 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1312 }
1313
1314 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1315 {
1316 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1317 }
1318 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1319
1320 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1321 int nr_pages)
1322 {
1323 unsigned long addr;
1324 gfn_t entry;
1325
1326 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1327 if (kvm_is_error_hva(addr))
1328 return -1;
1329
1330 if (entry < nr_pages)
1331 return 0;
1332
1333 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1334 }
1335 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1336
1337 static struct page *kvm_pfn_to_page(pfn_t pfn)
1338 {
1339 if (is_error_noslot_pfn(pfn))
1340 return KVM_ERR_PTR_BAD_PAGE;
1341
1342 if (kvm_is_mmio_pfn(pfn)) {
1343 WARN_ON(1);
1344 return KVM_ERR_PTR_BAD_PAGE;
1345 }
1346
1347 return pfn_to_page(pfn);
1348 }
1349
1350 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1351 {
1352 pfn_t pfn;
1353
1354 pfn = gfn_to_pfn(kvm, gfn);
1355
1356 return kvm_pfn_to_page(pfn);
1357 }
1358
1359 EXPORT_SYMBOL_GPL(gfn_to_page);
1360
1361 void kvm_release_page_clean(struct page *page)
1362 {
1363 WARN_ON(is_error_page(page));
1364
1365 kvm_release_pfn_clean(page_to_pfn(page));
1366 }
1367 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1368
1369 void kvm_release_pfn_clean(pfn_t pfn)
1370 {
1371 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1372 put_page(pfn_to_page(pfn));
1373 }
1374 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1375
1376 void kvm_release_page_dirty(struct page *page)
1377 {
1378 WARN_ON(is_error_page(page));
1379
1380 kvm_release_pfn_dirty(page_to_pfn(page));
1381 }
1382 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1383
1384 void kvm_release_pfn_dirty(pfn_t pfn)
1385 {
1386 kvm_set_pfn_dirty(pfn);
1387 kvm_release_pfn_clean(pfn);
1388 }
1389 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1390
1391 void kvm_set_page_dirty(struct page *page)
1392 {
1393 kvm_set_pfn_dirty(page_to_pfn(page));
1394 }
1395 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1396
1397 void kvm_set_pfn_dirty(pfn_t pfn)
1398 {
1399 if (!kvm_is_mmio_pfn(pfn)) {
1400 struct page *page = pfn_to_page(pfn);
1401 if (!PageReserved(page))
1402 SetPageDirty(page);
1403 }
1404 }
1405 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1406
1407 void kvm_set_pfn_accessed(pfn_t pfn)
1408 {
1409 if (!kvm_is_mmio_pfn(pfn))
1410 mark_page_accessed(pfn_to_page(pfn));
1411 }
1412 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1413
1414 void kvm_get_pfn(pfn_t pfn)
1415 {
1416 if (!kvm_is_mmio_pfn(pfn))
1417 get_page(pfn_to_page(pfn));
1418 }
1419 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1420
1421 static int next_segment(unsigned long len, int offset)
1422 {
1423 if (len > PAGE_SIZE - offset)
1424 return PAGE_SIZE - offset;
1425 else
1426 return len;
1427 }
1428
1429 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1430 int len)
1431 {
1432 int r;
1433 unsigned long addr;
1434
1435 addr = gfn_to_hva_read(kvm, gfn);
1436 if (kvm_is_error_hva(addr))
1437 return -EFAULT;
1438 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1439 if (r)
1440 return -EFAULT;
1441 return 0;
1442 }
1443 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1444
1445 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1446 {
1447 gfn_t gfn = gpa >> PAGE_SHIFT;
1448 int seg;
1449 int offset = offset_in_page(gpa);
1450 int ret;
1451
1452 while ((seg = next_segment(len, offset)) != 0) {
1453 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1454 if (ret < 0)
1455 return ret;
1456 offset = 0;
1457 len -= seg;
1458 data += seg;
1459 ++gfn;
1460 }
1461 return 0;
1462 }
1463 EXPORT_SYMBOL_GPL(kvm_read_guest);
1464
1465 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1466 unsigned long len)
1467 {
1468 int r;
1469 unsigned long addr;
1470 gfn_t gfn = gpa >> PAGE_SHIFT;
1471 int offset = offset_in_page(gpa);
1472
1473 addr = gfn_to_hva_read(kvm, gfn);
1474 if (kvm_is_error_hva(addr))
1475 return -EFAULT;
1476 pagefault_disable();
1477 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1478 pagefault_enable();
1479 if (r)
1480 return -EFAULT;
1481 return 0;
1482 }
1483 EXPORT_SYMBOL(kvm_read_guest_atomic);
1484
1485 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1486 int offset, int len)
1487 {
1488 int r;
1489 unsigned long addr;
1490
1491 addr = gfn_to_hva(kvm, gfn);
1492 if (kvm_is_error_hva(addr))
1493 return -EFAULT;
1494 r = __copy_to_user((void __user *)addr + offset, data, len);
1495 if (r)
1496 return -EFAULT;
1497 mark_page_dirty(kvm, gfn);
1498 return 0;
1499 }
1500 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1501
1502 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1503 unsigned long len)
1504 {
1505 gfn_t gfn = gpa >> PAGE_SHIFT;
1506 int seg;
1507 int offset = offset_in_page(gpa);
1508 int ret;
1509
1510 while ((seg = next_segment(len, offset)) != 0) {
1511 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1512 if (ret < 0)
1513 return ret;
1514 offset = 0;
1515 len -= seg;
1516 data += seg;
1517 ++gfn;
1518 }
1519 return 0;
1520 }
1521
1522 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1523 gpa_t gpa)
1524 {
1525 struct kvm_memslots *slots = kvm_memslots(kvm);
1526 int offset = offset_in_page(gpa);
1527 gfn_t gfn = gpa >> PAGE_SHIFT;
1528
1529 ghc->gpa = gpa;
1530 ghc->generation = slots->generation;
1531 ghc->memslot = gfn_to_memslot(kvm, gfn);
1532 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1533 if (!kvm_is_error_hva(ghc->hva))
1534 ghc->hva += offset;
1535 else
1536 return -EFAULT;
1537
1538 return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1541
1542 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1543 void *data, unsigned long len)
1544 {
1545 struct kvm_memslots *slots = kvm_memslots(kvm);
1546 int r;
1547
1548 if (slots->generation != ghc->generation)
1549 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1550
1551 if (kvm_is_error_hva(ghc->hva))
1552 return -EFAULT;
1553
1554 r = __copy_to_user((void __user *)ghc->hva, data, len);
1555 if (r)
1556 return -EFAULT;
1557 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1558
1559 return 0;
1560 }
1561 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1562
1563 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1564 void *data, unsigned long len)
1565 {
1566 struct kvm_memslots *slots = kvm_memslots(kvm);
1567 int r;
1568
1569 if (slots->generation != ghc->generation)
1570 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1571
1572 if (kvm_is_error_hva(ghc->hva))
1573 return -EFAULT;
1574
1575 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1576 if (r)
1577 return -EFAULT;
1578
1579 return 0;
1580 }
1581 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1582
1583 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1584 {
1585 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1586 offset, len);
1587 }
1588 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1589
1590 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1591 {
1592 gfn_t gfn = gpa >> PAGE_SHIFT;
1593 int seg;
1594 int offset = offset_in_page(gpa);
1595 int ret;
1596
1597 while ((seg = next_segment(len, offset)) != 0) {
1598 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1599 if (ret < 0)
1600 return ret;
1601 offset = 0;
1602 len -= seg;
1603 ++gfn;
1604 }
1605 return 0;
1606 }
1607 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1608
1609 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1610 gfn_t gfn)
1611 {
1612 if (memslot && memslot->dirty_bitmap) {
1613 unsigned long rel_gfn = gfn - memslot->base_gfn;
1614
1615 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1616 }
1617 }
1618
1619 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1620 {
1621 struct kvm_memory_slot *memslot;
1622
1623 memslot = gfn_to_memslot(kvm, gfn);
1624 mark_page_dirty_in_slot(kvm, memslot, gfn);
1625 }
1626
1627 /*
1628 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1629 */
1630 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1631 {
1632 DEFINE_WAIT(wait);
1633
1634 for (;;) {
1635 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1636
1637 if (kvm_arch_vcpu_runnable(vcpu)) {
1638 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1639 break;
1640 }
1641 if (kvm_cpu_has_pending_timer(vcpu))
1642 break;
1643 if (signal_pending(current))
1644 break;
1645
1646 schedule();
1647 }
1648
1649 finish_wait(&vcpu->wq, &wait);
1650 }
1651
1652 #ifndef CONFIG_S390
1653 /*
1654 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1655 */
1656 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1657 {
1658 int me;
1659 int cpu = vcpu->cpu;
1660 wait_queue_head_t *wqp;
1661
1662 wqp = kvm_arch_vcpu_wq(vcpu);
1663 if (waitqueue_active(wqp)) {
1664 wake_up_interruptible(wqp);
1665 ++vcpu->stat.halt_wakeup;
1666 }
1667
1668 me = get_cpu();
1669 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1670 if (kvm_arch_vcpu_should_kick(vcpu))
1671 smp_send_reschedule(cpu);
1672 put_cpu();
1673 }
1674 #endif /* !CONFIG_S390 */
1675
1676 void kvm_resched(struct kvm_vcpu *vcpu)
1677 {
1678 if (!need_resched())
1679 return;
1680 cond_resched();
1681 }
1682 EXPORT_SYMBOL_GPL(kvm_resched);
1683
1684 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1685 {
1686 struct pid *pid;
1687 struct task_struct *task = NULL;
1688 bool ret = false;
1689
1690 rcu_read_lock();
1691 pid = rcu_dereference(target->pid);
1692 if (pid)
1693 task = get_pid_task(target->pid, PIDTYPE_PID);
1694 rcu_read_unlock();
1695 if (!task)
1696 return ret;
1697 if (task->flags & PF_VCPU) {
1698 put_task_struct(task);
1699 return ret;
1700 }
1701 ret = yield_to(task, 1);
1702 put_task_struct(task);
1703
1704 return ret;
1705 }
1706 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1707
1708 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1709 /*
1710 * Helper that checks whether a VCPU is eligible for directed yield.
1711 * Most eligible candidate to yield is decided by following heuristics:
1712 *
1713 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1714 * (preempted lock holder), indicated by @in_spin_loop.
1715 * Set at the beiginning and cleared at the end of interception/PLE handler.
1716 *
1717 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1718 * chance last time (mostly it has become eligible now since we have probably
1719 * yielded to lockholder in last iteration. This is done by toggling
1720 * @dy_eligible each time a VCPU checked for eligibility.)
1721 *
1722 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1723 * to preempted lock-holder could result in wrong VCPU selection and CPU
1724 * burning. Giving priority for a potential lock-holder increases lock
1725 * progress.
1726 *
1727 * Since algorithm is based on heuristics, accessing another VCPU data without
1728 * locking does not harm. It may result in trying to yield to same VCPU, fail
1729 * and continue with next VCPU and so on.
1730 */
1731 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1732 {
1733 bool eligible;
1734
1735 eligible = !vcpu->spin_loop.in_spin_loop ||
1736 (vcpu->spin_loop.in_spin_loop &&
1737 vcpu->spin_loop.dy_eligible);
1738
1739 if (vcpu->spin_loop.in_spin_loop)
1740 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1741
1742 return eligible;
1743 }
1744 #endif
1745
1746 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1747 {
1748 struct kvm *kvm = me->kvm;
1749 struct kvm_vcpu *vcpu;
1750 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1751 int yielded = 0;
1752 int try = 3;
1753 int pass;
1754 int i;
1755
1756 kvm_vcpu_set_in_spin_loop(me, true);
1757 /*
1758 * We boost the priority of a VCPU that is runnable but not
1759 * currently running, because it got preempted by something
1760 * else and called schedule in __vcpu_run. Hopefully that
1761 * VCPU is holding the lock that we need and will release it.
1762 * We approximate round-robin by starting at the last boosted VCPU.
1763 */
1764 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1765 kvm_for_each_vcpu(i, vcpu, kvm) {
1766 if (!pass && i <= last_boosted_vcpu) {
1767 i = last_boosted_vcpu;
1768 continue;
1769 } else if (pass && i > last_boosted_vcpu)
1770 break;
1771 if (!ACCESS_ONCE(vcpu->preempted))
1772 continue;
1773 if (vcpu == me)
1774 continue;
1775 if (waitqueue_active(&vcpu->wq))
1776 continue;
1777 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1778 continue;
1779
1780 yielded = kvm_vcpu_yield_to(vcpu);
1781 if (yielded > 0) {
1782 kvm->last_boosted_vcpu = i;
1783 break;
1784 } else if (yielded < 0) {
1785 try--;
1786 if (!try)
1787 break;
1788 }
1789 }
1790 }
1791 kvm_vcpu_set_in_spin_loop(me, false);
1792
1793 /* Ensure vcpu is not eligible during next spinloop */
1794 kvm_vcpu_set_dy_eligible(me, false);
1795 }
1796 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1797
1798 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1799 {
1800 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1801 struct page *page;
1802
1803 if (vmf->pgoff == 0)
1804 page = virt_to_page(vcpu->run);
1805 #ifdef CONFIG_X86
1806 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1807 page = virt_to_page(vcpu->arch.pio_data);
1808 #endif
1809 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1810 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1811 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1812 #endif
1813 else
1814 return kvm_arch_vcpu_fault(vcpu, vmf);
1815 get_page(page);
1816 vmf->page = page;
1817 return 0;
1818 }
1819
1820 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1821 .fault = kvm_vcpu_fault,
1822 };
1823
1824 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1825 {
1826 vma->vm_ops = &kvm_vcpu_vm_ops;
1827 return 0;
1828 }
1829
1830 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1831 {
1832 struct kvm_vcpu *vcpu = filp->private_data;
1833
1834 kvm_put_kvm(vcpu->kvm);
1835 return 0;
1836 }
1837
1838 static struct file_operations kvm_vcpu_fops = {
1839 .release = kvm_vcpu_release,
1840 .unlocked_ioctl = kvm_vcpu_ioctl,
1841 #ifdef CONFIG_COMPAT
1842 .compat_ioctl = kvm_vcpu_compat_ioctl,
1843 #endif
1844 .mmap = kvm_vcpu_mmap,
1845 .llseek = noop_llseek,
1846 };
1847
1848 /*
1849 * Allocates an inode for the vcpu.
1850 */
1851 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1852 {
1853 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1854 }
1855
1856 /*
1857 * Creates some virtual cpus. Good luck creating more than one.
1858 */
1859 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1860 {
1861 int r;
1862 struct kvm_vcpu *vcpu, *v;
1863
1864 vcpu = kvm_arch_vcpu_create(kvm, id);
1865 if (IS_ERR(vcpu))
1866 return PTR_ERR(vcpu);
1867
1868 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1869
1870 r = kvm_arch_vcpu_setup(vcpu);
1871 if (r)
1872 goto vcpu_destroy;
1873
1874 mutex_lock(&kvm->lock);
1875 if (!kvm_vcpu_compatible(vcpu)) {
1876 r = -EINVAL;
1877 goto unlock_vcpu_destroy;
1878 }
1879 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1880 r = -EINVAL;
1881 goto unlock_vcpu_destroy;
1882 }
1883
1884 kvm_for_each_vcpu(r, v, kvm)
1885 if (v->vcpu_id == id) {
1886 r = -EEXIST;
1887 goto unlock_vcpu_destroy;
1888 }
1889
1890 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1891
1892 /* Now it's all set up, let userspace reach it */
1893 kvm_get_kvm(kvm);
1894 r = create_vcpu_fd(vcpu);
1895 if (r < 0) {
1896 kvm_put_kvm(kvm);
1897 goto unlock_vcpu_destroy;
1898 }
1899
1900 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1901 smp_wmb();
1902 atomic_inc(&kvm->online_vcpus);
1903
1904 mutex_unlock(&kvm->lock);
1905 kvm_arch_vcpu_postcreate(vcpu);
1906 return r;
1907
1908 unlock_vcpu_destroy:
1909 mutex_unlock(&kvm->lock);
1910 vcpu_destroy:
1911 kvm_arch_vcpu_destroy(vcpu);
1912 return r;
1913 }
1914
1915 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1916 {
1917 if (sigset) {
1918 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1919 vcpu->sigset_active = 1;
1920 vcpu->sigset = *sigset;
1921 } else
1922 vcpu->sigset_active = 0;
1923 return 0;
1924 }
1925
1926 static long kvm_vcpu_ioctl(struct file *filp,
1927 unsigned int ioctl, unsigned long arg)
1928 {
1929 struct kvm_vcpu *vcpu = filp->private_data;
1930 void __user *argp = (void __user *)arg;
1931 int r;
1932 struct kvm_fpu *fpu = NULL;
1933 struct kvm_sregs *kvm_sregs = NULL;
1934
1935 if (vcpu->kvm->mm != current->mm)
1936 return -EIO;
1937
1938 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1939 /*
1940 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1941 * so vcpu_load() would break it.
1942 */
1943 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1944 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1945 #endif
1946
1947
1948 r = vcpu_load(vcpu);
1949 if (r)
1950 return r;
1951 switch (ioctl) {
1952 case KVM_RUN:
1953 r = -EINVAL;
1954 if (arg)
1955 goto out;
1956 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1957 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1958 break;
1959 case KVM_GET_REGS: {
1960 struct kvm_regs *kvm_regs;
1961
1962 r = -ENOMEM;
1963 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1964 if (!kvm_regs)
1965 goto out;
1966 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1967 if (r)
1968 goto out_free1;
1969 r = -EFAULT;
1970 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1971 goto out_free1;
1972 r = 0;
1973 out_free1:
1974 kfree(kvm_regs);
1975 break;
1976 }
1977 case KVM_SET_REGS: {
1978 struct kvm_regs *kvm_regs;
1979
1980 r = -ENOMEM;
1981 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1982 if (IS_ERR(kvm_regs)) {
1983 r = PTR_ERR(kvm_regs);
1984 goto out;
1985 }
1986 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1987 kfree(kvm_regs);
1988 break;
1989 }
1990 case KVM_GET_SREGS: {
1991 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1992 r = -ENOMEM;
1993 if (!kvm_sregs)
1994 goto out;
1995 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1996 if (r)
1997 goto out;
1998 r = -EFAULT;
1999 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2000 goto out;
2001 r = 0;
2002 break;
2003 }
2004 case KVM_SET_SREGS: {
2005 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2006 if (IS_ERR(kvm_sregs)) {
2007 r = PTR_ERR(kvm_sregs);
2008 kvm_sregs = NULL;
2009 goto out;
2010 }
2011 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2012 break;
2013 }
2014 case KVM_GET_MP_STATE: {
2015 struct kvm_mp_state mp_state;
2016
2017 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2018 if (r)
2019 goto out;
2020 r = -EFAULT;
2021 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2022 goto out;
2023 r = 0;
2024 break;
2025 }
2026 case KVM_SET_MP_STATE: {
2027 struct kvm_mp_state mp_state;
2028
2029 r = -EFAULT;
2030 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2031 goto out;
2032 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2033 break;
2034 }
2035 case KVM_TRANSLATE: {
2036 struct kvm_translation tr;
2037
2038 r = -EFAULT;
2039 if (copy_from_user(&tr, argp, sizeof tr))
2040 goto out;
2041 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2042 if (r)
2043 goto out;
2044 r = -EFAULT;
2045 if (copy_to_user(argp, &tr, sizeof tr))
2046 goto out;
2047 r = 0;
2048 break;
2049 }
2050 case KVM_SET_GUEST_DEBUG: {
2051 struct kvm_guest_debug dbg;
2052
2053 r = -EFAULT;
2054 if (copy_from_user(&dbg, argp, sizeof dbg))
2055 goto out;
2056 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2057 break;
2058 }
2059 case KVM_SET_SIGNAL_MASK: {
2060 struct kvm_signal_mask __user *sigmask_arg = argp;
2061 struct kvm_signal_mask kvm_sigmask;
2062 sigset_t sigset, *p;
2063
2064 p = NULL;
2065 if (argp) {
2066 r = -EFAULT;
2067 if (copy_from_user(&kvm_sigmask, argp,
2068 sizeof kvm_sigmask))
2069 goto out;
2070 r = -EINVAL;
2071 if (kvm_sigmask.len != sizeof sigset)
2072 goto out;
2073 r = -EFAULT;
2074 if (copy_from_user(&sigset, sigmask_arg->sigset,
2075 sizeof sigset))
2076 goto out;
2077 p = &sigset;
2078 }
2079 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2080 break;
2081 }
2082 case KVM_GET_FPU: {
2083 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2084 r = -ENOMEM;
2085 if (!fpu)
2086 goto out;
2087 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2088 if (r)
2089 goto out;
2090 r = -EFAULT;
2091 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2092 goto out;
2093 r = 0;
2094 break;
2095 }
2096 case KVM_SET_FPU: {
2097 fpu = memdup_user(argp, sizeof(*fpu));
2098 if (IS_ERR(fpu)) {
2099 r = PTR_ERR(fpu);
2100 fpu = NULL;
2101 goto out;
2102 }
2103 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2104 break;
2105 }
2106 default:
2107 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2108 }
2109 out:
2110 vcpu_put(vcpu);
2111 kfree(fpu);
2112 kfree(kvm_sregs);
2113 return r;
2114 }
2115
2116 #ifdef CONFIG_COMPAT
2117 static long kvm_vcpu_compat_ioctl(struct file *filp,
2118 unsigned int ioctl, unsigned long arg)
2119 {
2120 struct kvm_vcpu *vcpu = filp->private_data;
2121 void __user *argp = compat_ptr(arg);
2122 int r;
2123
2124 if (vcpu->kvm->mm != current->mm)
2125 return -EIO;
2126
2127 switch (ioctl) {
2128 case KVM_SET_SIGNAL_MASK: {
2129 struct kvm_signal_mask __user *sigmask_arg = argp;
2130 struct kvm_signal_mask kvm_sigmask;
2131 compat_sigset_t csigset;
2132 sigset_t sigset;
2133
2134 if (argp) {
2135 r = -EFAULT;
2136 if (copy_from_user(&kvm_sigmask, argp,
2137 sizeof kvm_sigmask))
2138 goto out;
2139 r = -EINVAL;
2140 if (kvm_sigmask.len != sizeof csigset)
2141 goto out;
2142 r = -EFAULT;
2143 if (copy_from_user(&csigset, sigmask_arg->sigset,
2144 sizeof csigset))
2145 goto out;
2146 sigset_from_compat(&sigset, &csigset);
2147 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2148 } else
2149 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2150 break;
2151 }
2152 default:
2153 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2154 }
2155
2156 out:
2157 return r;
2158 }
2159 #endif
2160
2161 static long kvm_vm_ioctl(struct file *filp,
2162 unsigned int ioctl, unsigned long arg)
2163 {
2164 struct kvm *kvm = filp->private_data;
2165 void __user *argp = (void __user *)arg;
2166 int r;
2167
2168 if (kvm->mm != current->mm)
2169 return -EIO;
2170 switch (ioctl) {
2171 case KVM_CREATE_VCPU:
2172 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2173 break;
2174 case KVM_SET_USER_MEMORY_REGION: {
2175 struct kvm_userspace_memory_region kvm_userspace_mem;
2176
2177 r = -EFAULT;
2178 if (copy_from_user(&kvm_userspace_mem, argp,
2179 sizeof kvm_userspace_mem))
2180 goto out;
2181
2182 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2183 break;
2184 }
2185 case KVM_GET_DIRTY_LOG: {
2186 struct kvm_dirty_log log;
2187
2188 r = -EFAULT;
2189 if (copy_from_user(&log, argp, sizeof log))
2190 goto out;
2191 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2192 break;
2193 }
2194 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2195 case KVM_REGISTER_COALESCED_MMIO: {
2196 struct kvm_coalesced_mmio_zone zone;
2197 r = -EFAULT;
2198 if (copy_from_user(&zone, argp, sizeof zone))
2199 goto out;
2200 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2201 break;
2202 }
2203 case KVM_UNREGISTER_COALESCED_MMIO: {
2204 struct kvm_coalesced_mmio_zone zone;
2205 r = -EFAULT;
2206 if (copy_from_user(&zone, argp, sizeof zone))
2207 goto out;
2208 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2209 break;
2210 }
2211 #endif
2212 case KVM_IRQFD: {
2213 struct kvm_irqfd data;
2214
2215 r = -EFAULT;
2216 if (copy_from_user(&data, argp, sizeof data))
2217 goto out;
2218 r = kvm_irqfd(kvm, &data);
2219 break;
2220 }
2221 case KVM_IOEVENTFD: {
2222 struct kvm_ioeventfd data;
2223
2224 r = -EFAULT;
2225 if (copy_from_user(&data, argp, sizeof data))
2226 goto out;
2227 r = kvm_ioeventfd(kvm, &data);
2228 break;
2229 }
2230 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2231 case KVM_SET_BOOT_CPU_ID:
2232 r = 0;
2233 mutex_lock(&kvm->lock);
2234 if (atomic_read(&kvm->online_vcpus) != 0)
2235 r = -EBUSY;
2236 else
2237 kvm->bsp_vcpu_id = arg;
2238 mutex_unlock(&kvm->lock);
2239 break;
2240 #endif
2241 #ifdef CONFIG_HAVE_KVM_MSI
2242 case KVM_SIGNAL_MSI: {
2243 struct kvm_msi msi;
2244
2245 r = -EFAULT;
2246 if (copy_from_user(&msi, argp, sizeof msi))
2247 goto out;
2248 r = kvm_send_userspace_msi(kvm, &msi);
2249 break;
2250 }
2251 #endif
2252 #ifdef __KVM_HAVE_IRQ_LINE
2253 case KVM_IRQ_LINE_STATUS:
2254 case KVM_IRQ_LINE: {
2255 struct kvm_irq_level irq_event;
2256
2257 r = -EFAULT;
2258 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2259 goto out;
2260
2261 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2262 ioctl == KVM_IRQ_LINE_STATUS);
2263 if (r)
2264 goto out;
2265
2266 r = -EFAULT;
2267 if (ioctl == KVM_IRQ_LINE_STATUS) {
2268 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2269 goto out;
2270 }
2271
2272 r = 0;
2273 break;
2274 }
2275 #endif
2276 default:
2277 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2278 if (r == -ENOTTY)
2279 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2280 }
2281 out:
2282 return r;
2283 }
2284
2285 #ifdef CONFIG_COMPAT
2286 struct compat_kvm_dirty_log {
2287 __u32 slot;
2288 __u32 padding1;
2289 union {
2290 compat_uptr_t dirty_bitmap; /* one bit per page */
2291 __u64 padding2;
2292 };
2293 };
2294
2295 static long kvm_vm_compat_ioctl(struct file *filp,
2296 unsigned int ioctl, unsigned long arg)
2297 {
2298 struct kvm *kvm = filp->private_data;
2299 int r;
2300
2301 if (kvm->mm != current->mm)
2302 return -EIO;
2303 switch (ioctl) {
2304 case KVM_GET_DIRTY_LOG: {
2305 struct compat_kvm_dirty_log compat_log;
2306 struct kvm_dirty_log log;
2307
2308 r = -EFAULT;
2309 if (copy_from_user(&compat_log, (void __user *)arg,
2310 sizeof(compat_log)))
2311 goto out;
2312 log.slot = compat_log.slot;
2313 log.padding1 = compat_log.padding1;
2314 log.padding2 = compat_log.padding2;
2315 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2316
2317 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2318 break;
2319 }
2320 default:
2321 r = kvm_vm_ioctl(filp, ioctl, arg);
2322 }
2323
2324 out:
2325 return r;
2326 }
2327 #endif
2328
2329 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2330 {
2331 struct page *page[1];
2332 unsigned long addr;
2333 int npages;
2334 gfn_t gfn = vmf->pgoff;
2335 struct kvm *kvm = vma->vm_file->private_data;
2336
2337 addr = gfn_to_hva(kvm, gfn);
2338 if (kvm_is_error_hva(addr))
2339 return VM_FAULT_SIGBUS;
2340
2341 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2342 NULL);
2343 if (unlikely(npages != 1))
2344 return VM_FAULT_SIGBUS;
2345
2346 vmf->page = page[0];
2347 return 0;
2348 }
2349
2350 static const struct vm_operations_struct kvm_vm_vm_ops = {
2351 .fault = kvm_vm_fault,
2352 };
2353
2354 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2355 {
2356 vma->vm_ops = &kvm_vm_vm_ops;
2357 return 0;
2358 }
2359
2360 static struct file_operations kvm_vm_fops = {
2361 .release = kvm_vm_release,
2362 .unlocked_ioctl = kvm_vm_ioctl,
2363 #ifdef CONFIG_COMPAT
2364 .compat_ioctl = kvm_vm_compat_ioctl,
2365 #endif
2366 .mmap = kvm_vm_mmap,
2367 .llseek = noop_llseek,
2368 };
2369
2370 static int kvm_dev_ioctl_create_vm(unsigned long type)
2371 {
2372 int r;
2373 struct kvm *kvm;
2374
2375 kvm = kvm_create_vm(type);
2376 if (IS_ERR(kvm))
2377 return PTR_ERR(kvm);
2378 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2379 r = kvm_coalesced_mmio_init(kvm);
2380 if (r < 0) {
2381 kvm_put_kvm(kvm);
2382 return r;
2383 }
2384 #endif
2385 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2386 if (r < 0)
2387 kvm_put_kvm(kvm);
2388
2389 return r;
2390 }
2391
2392 static long kvm_dev_ioctl_check_extension_generic(long arg)
2393 {
2394 switch (arg) {
2395 case KVM_CAP_USER_MEMORY:
2396 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2397 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2398 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2399 case KVM_CAP_SET_BOOT_CPU_ID:
2400 #endif
2401 case KVM_CAP_INTERNAL_ERROR_DATA:
2402 #ifdef CONFIG_HAVE_KVM_MSI
2403 case KVM_CAP_SIGNAL_MSI:
2404 #endif
2405 return 1;
2406 #ifdef KVM_CAP_IRQ_ROUTING
2407 case KVM_CAP_IRQ_ROUTING:
2408 return KVM_MAX_IRQ_ROUTES;
2409 #endif
2410 default:
2411 break;
2412 }
2413 return kvm_dev_ioctl_check_extension(arg);
2414 }
2415
2416 static long kvm_dev_ioctl(struct file *filp,
2417 unsigned int ioctl, unsigned long arg)
2418 {
2419 long r = -EINVAL;
2420
2421 switch (ioctl) {
2422 case KVM_GET_API_VERSION:
2423 r = -EINVAL;
2424 if (arg)
2425 goto out;
2426 r = KVM_API_VERSION;
2427 break;
2428 case KVM_CREATE_VM:
2429 r = kvm_dev_ioctl_create_vm(arg);
2430 break;
2431 case KVM_CHECK_EXTENSION:
2432 r = kvm_dev_ioctl_check_extension_generic(arg);
2433 break;
2434 case KVM_GET_VCPU_MMAP_SIZE:
2435 r = -EINVAL;
2436 if (arg)
2437 goto out;
2438 r = PAGE_SIZE; /* struct kvm_run */
2439 #ifdef CONFIG_X86
2440 r += PAGE_SIZE; /* pio data page */
2441 #endif
2442 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2443 r += PAGE_SIZE; /* coalesced mmio ring page */
2444 #endif
2445 break;
2446 case KVM_TRACE_ENABLE:
2447 case KVM_TRACE_PAUSE:
2448 case KVM_TRACE_DISABLE:
2449 r = -EOPNOTSUPP;
2450 break;
2451 default:
2452 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2453 }
2454 out:
2455 return r;
2456 }
2457
2458 static struct file_operations kvm_chardev_ops = {
2459 .unlocked_ioctl = kvm_dev_ioctl,
2460 .compat_ioctl = kvm_dev_ioctl,
2461 .llseek = noop_llseek,
2462 };
2463
2464 static struct miscdevice kvm_dev = {
2465 KVM_MINOR,
2466 "kvm",
2467 &kvm_chardev_ops,
2468 };
2469
2470 static void hardware_enable_nolock(void *junk)
2471 {
2472 int cpu = raw_smp_processor_id();
2473 int r;
2474
2475 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2476 return;
2477
2478 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2479
2480 r = kvm_arch_hardware_enable(NULL);
2481
2482 if (r) {
2483 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2484 atomic_inc(&hardware_enable_failed);
2485 printk(KERN_INFO "kvm: enabling virtualization on "
2486 "CPU%d failed\n", cpu);
2487 }
2488 }
2489
2490 static void hardware_enable(void *junk)
2491 {
2492 raw_spin_lock(&kvm_lock);
2493 hardware_enable_nolock(junk);
2494 raw_spin_unlock(&kvm_lock);
2495 }
2496
2497 static void hardware_disable_nolock(void *junk)
2498 {
2499 int cpu = raw_smp_processor_id();
2500
2501 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2502 return;
2503 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2504 kvm_arch_hardware_disable(NULL);
2505 }
2506
2507 static void hardware_disable(void *junk)
2508 {
2509 raw_spin_lock(&kvm_lock);
2510 hardware_disable_nolock(junk);
2511 raw_spin_unlock(&kvm_lock);
2512 }
2513
2514 static void hardware_disable_all_nolock(void)
2515 {
2516 BUG_ON(!kvm_usage_count);
2517
2518 kvm_usage_count--;
2519 if (!kvm_usage_count)
2520 on_each_cpu(hardware_disable_nolock, NULL, 1);
2521 }
2522
2523 static void hardware_disable_all(void)
2524 {
2525 raw_spin_lock(&kvm_lock);
2526 hardware_disable_all_nolock();
2527 raw_spin_unlock(&kvm_lock);
2528 }
2529
2530 static int hardware_enable_all(void)
2531 {
2532 int r = 0;
2533
2534 raw_spin_lock(&kvm_lock);
2535
2536 kvm_usage_count++;
2537 if (kvm_usage_count == 1) {
2538 atomic_set(&hardware_enable_failed, 0);
2539 on_each_cpu(hardware_enable_nolock, NULL, 1);
2540
2541 if (atomic_read(&hardware_enable_failed)) {
2542 hardware_disable_all_nolock();
2543 r = -EBUSY;
2544 }
2545 }
2546
2547 raw_spin_unlock(&kvm_lock);
2548
2549 return r;
2550 }
2551
2552 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2553 void *v)
2554 {
2555 int cpu = (long)v;
2556
2557 if (!kvm_usage_count)
2558 return NOTIFY_OK;
2559
2560 val &= ~CPU_TASKS_FROZEN;
2561 switch (val) {
2562 case CPU_DYING:
2563 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2564 cpu);
2565 hardware_disable(NULL);
2566 break;
2567 case CPU_STARTING:
2568 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2569 cpu);
2570 hardware_enable(NULL);
2571 break;
2572 }
2573 return NOTIFY_OK;
2574 }
2575
2576 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2577 void *v)
2578 {
2579 /*
2580 * Some (well, at least mine) BIOSes hang on reboot if
2581 * in vmx root mode.
2582 *
2583 * And Intel TXT required VMX off for all cpu when system shutdown.
2584 */
2585 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2586 kvm_rebooting = true;
2587 on_each_cpu(hardware_disable_nolock, NULL, 1);
2588 return NOTIFY_OK;
2589 }
2590
2591 static struct notifier_block kvm_reboot_notifier = {
2592 .notifier_call = kvm_reboot,
2593 .priority = 0,
2594 };
2595
2596 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2597 {
2598 int i;
2599
2600 for (i = 0; i < bus->dev_count; i++) {
2601 struct kvm_io_device *pos = bus->range[i].dev;
2602
2603 kvm_iodevice_destructor(pos);
2604 }
2605 kfree(bus);
2606 }
2607
2608 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2609 {
2610 const struct kvm_io_range *r1 = p1;
2611 const struct kvm_io_range *r2 = p2;
2612
2613 if (r1->addr < r2->addr)
2614 return -1;
2615 if (r1->addr + r1->len > r2->addr + r2->len)
2616 return 1;
2617 return 0;
2618 }
2619
2620 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2621 gpa_t addr, int len)
2622 {
2623 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2624 .addr = addr,
2625 .len = len,
2626 .dev = dev,
2627 };
2628
2629 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2630 kvm_io_bus_sort_cmp, NULL);
2631
2632 return 0;
2633 }
2634
2635 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2636 gpa_t addr, int len)
2637 {
2638 struct kvm_io_range *range, key;
2639 int off;
2640
2641 key = (struct kvm_io_range) {
2642 .addr = addr,
2643 .len = len,
2644 };
2645
2646 range = bsearch(&key, bus->range, bus->dev_count,
2647 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2648 if (range == NULL)
2649 return -ENOENT;
2650
2651 off = range - bus->range;
2652
2653 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2654 off--;
2655
2656 return off;
2657 }
2658
2659 /* kvm_io_bus_write - called under kvm->slots_lock */
2660 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2661 int len, const void *val)
2662 {
2663 int idx;
2664 struct kvm_io_bus *bus;
2665 struct kvm_io_range range;
2666
2667 range = (struct kvm_io_range) {
2668 .addr = addr,
2669 .len = len,
2670 };
2671
2672 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2673 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2674 if (idx < 0)
2675 return -EOPNOTSUPP;
2676
2677 while (idx < bus->dev_count &&
2678 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2679 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2680 return 0;
2681 idx++;
2682 }
2683
2684 return -EOPNOTSUPP;
2685 }
2686
2687 /* kvm_io_bus_read - called under kvm->slots_lock */
2688 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2689 int len, void *val)
2690 {
2691 int idx;
2692 struct kvm_io_bus *bus;
2693 struct kvm_io_range range;
2694
2695 range = (struct kvm_io_range) {
2696 .addr = addr,
2697 .len = len,
2698 };
2699
2700 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2701 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2702 if (idx < 0)
2703 return -EOPNOTSUPP;
2704
2705 while (idx < bus->dev_count &&
2706 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2707 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2708 return 0;
2709 idx++;
2710 }
2711
2712 return -EOPNOTSUPP;
2713 }
2714
2715 /* Caller must hold slots_lock. */
2716 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2717 int len, struct kvm_io_device *dev)
2718 {
2719 struct kvm_io_bus *new_bus, *bus;
2720
2721 bus = kvm->buses[bus_idx];
2722 if (bus->dev_count > NR_IOBUS_DEVS - 1)
2723 return -ENOSPC;
2724
2725 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2726 sizeof(struct kvm_io_range)), GFP_KERNEL);
2727 if (!new_bus)
2728 return -ENOMEM;
2729 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2730 sizeof(struct kvm_io_range)));
2731 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2732 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2733 synchronize_srcu_expedited(&kvm->srcu);
2734 kfree(bus);
2735
2736 return 0;
2737 }
2738
2739 /* Caller must hold slots_lock. */
2740 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2741 struct kvm_io_device *dev)
2742 {
2743 int i, r;
2744 struct kvm_io_bus *new_bus, *bus;
2745
2746 bus = kvm->buses[bus_idx];
2747 r = -ENOENT;
2748 for (i = 0; i < bus->dev_count; i++)
2749 if (bus->range[i].dev == dev) {
2750 r = 0;
2751 break;
2752 }
2753
2754 if (r)
2755 return r;
2756
2757 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2758 sizeof(struct kvm_io_range)), GFP_KERNEL);
2759 if (!new_bus)
2760 return -ENOMEM;
2761
2762 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2763 new_bus->dev_count--;
2764 memcpy(new_bus->range + i, bus->range + i + 1,
2765 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2766
2767 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2768 synchronize_srcu_expedited(&kvm->srcu);
2769 kfree(bus);
2770 return r;
2771 }
2772
2773 static struct notifier_block kvm_cpu_notifier = {
2774 .notifier_call = kvm_cpu_hotplug,
2775 };
2776
2777 static int vm_stat_get(void *_offset, u64 *val)
2778 {
2779 unsigned offset = (long)_offset;
2780 struct kvm *kvm;
2781
2782 *val = 0;
2783 raw_spin_lock(&kvm_lock);
2784 list_for_each_entry(kvm, &vm_list, vm_list)
2785 *val += *(u32 *)((void *)kvm + offset);
2786 raw_spin_unlock(&kvm_lock);
2787 return 0;
2788 }
2789
2790 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2791
2792 static int vcpu_stat_get(void *_offset, u64 *val)
2793 {
2794 unsigned offset = (long)_offset;
2795 struct kvm *kvm;
2796 struct kvm_vcpu *vcpu;
2797 int i;
2798
2799 *val = 0;
2800 raw_spin_lock(&kvm_lock);
2801 list_for_each_entry(kvm, &vm_list, vm_list)
2802 kvm_for_each_vcpu(i, vcpu, kvm)
2803 *val += *(u32 *)((void *)vcpu + offset);
2804
2805 raw_spin_unlock(&kvm_lock);
2806 return 0;
2807 }
2808
2809 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2810
2811 static const struct file_operations *stat_fops[] = {
2812 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2813 [KVM_STAT_VM] = &vm_stat_fops,
2814 };
2815
2816 static int kvm_init_debug(void)
2817 {
2818 int r = -EFAULT;
2819 struct kvm_stats_debugfs_item *p;
2820
2821 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2822 if (kvm_debugfs_dir == NULL)
2823 goto out;
2824
2825 for (p = debugfs_entries; p->name; ++p) {
2826 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2827 (void *)(long)p->offset,
2828 stat_fops[p->kind]);
2829 if (p->dentry == NULL)
2830 goto out_dir;
2831 }
2832
2833 return 0;
2834
2835 out_dir:
2836 debugfs_remove_recursive(kvm_debugfs_dir);
2837 out:
2838 return r;
2839 }
2840
2841 static void kvm_exit_debug(void)
2842 {
2843 struct kvm_stats_debugfs_item *p;
2844
2845 for (p = debugfs_entries; p->name; ++p)
2846 debugfs_remove(p->dentry);
2847 debugfs_remove(kvm_debugfs_dir);
2848 }
2849
2850 static int kvm_suspend(void)
2851 {
2852 if (kvm_usage_count)
2853 hardware_disable_nolock(NULL);
2854 return 0;
2855 }
2856
2857 static void kvm_resume(void)
2858 {
2859 if (kvm_usage_count) {
2860 WARN_ON(raw_spin_is_locked(&kvm_lock));
2861 hardware_enable_nolock(NULL);
2862 }
2863 }
2864
2865 static struct syscore_ops kvm_syscore_ops = {
2866 .suspend = kvm_suspend,
2867 .resume = kvm_resume,
2868 };
2869
2870 static inline
2871 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2872 {
2873 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2874 }
2875
2876 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2877 {
2878 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2879 if (vcpu->preempted)
2880 vcpu->preempted = false;
2881
2882 kvm_arch_vcpu_load(vcpu, cpu);
2883 }
2884
2885 static void kvm_sched_out(struct preempt_notifier *pn,
2886 struct task_struct *next)
2887 {
2888 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2889
2890 if (current->state == TASK_RUNNING)
2891 vcpu->preempted = true;
2892 kvm_arch_vcpu_put(vcpu);
2893 }
2894
2895 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2896 struct module *module)
2897 {
2898 int r;
2899 int cpu;
2900
2901 r = kvm_irqfd_init();
2902 if (r)
2903 goto out_irqfd;
2904 r = kvm_arch_init(opaque);
2905 if (r)
2906 goto out_fail;
2907
2908 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2909 r = -ENOMEM;
2910 goto out_free_0;
2911 }
2912
2913 r = kvm_arch_hardware_setup();
2914 if (r < 0)
2915 goto out_free_0a;
2916
2917 for_each_online_cpu(cpu) {
2918 smp_call_function_single(cpu,
2919 kvm_arch_check_processor_compat,
2920 &r, 1);
2921 if (r < 0)
2922 goto out_free_1;
2923 }
2924
2925 r = register_cpu_notifier(&kvm_cpu_notifier);
2926 if (r)
2927 goto out_free_2;
2928 register_reboot_notifier(&kvm_reboot_notifier);
2929
2930 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2931 if (!vcpu_align)
2932 vcpu_align = __alignof__(struct kvm_vcpu);
2933 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2934 0, NULL);
2935 if (!kvm_vcpu_cache) {
2936 r = -ENOMEM;
2937 goto out_free_3;
2938 }
2939
2940 r = kvm_async_pf_init();
2941 if (r)
2942 goto out_free;
2943
2944 kvm_chardev_ops.owner = module;
2945 kvm_vm_fops.owner = module;
2946 kvm_vcpu_fops.owner = module;
2947
2948 r = misc_register(&kvm_dev);
2949 if (r) {
2950 printk(KERN_ERR "kvm: misc device register failed\n");
2951 goto out_unreg;
2952 }
2953
2954 register_syscore_ops(&kvm_syscore_ops);
2955
2956 kvm_preempt_ops.sched_in = kvm_sched_in;
2957 kvm_preempt_ops.sched_out = kvm_sched_out;
2958
2959 r = kvm_init_debug();
2960 if (r) {
2961 printk(KERN_ERR "kvm: create debugfs files failed\n");
2962 goto out_undebugfs;
2963 }
2964
2965 return 0;
2966
2967 out_undebugfs:
2968 unregister_syscore_ops(&kvm_syscore_ops);
2969 out_unreg:
2970 kvm_async_pf_deinit();
2971 out_free:
2972 kmem_cache_destroy(kvm_vcpu_cache);
2973 out_free_3:
2974 unregister_reboot_notifier(&kvm_reboot_notifier);
2975 unregister_cpu_notifier(&kvm_cpu_notifier);
2976 out_free_2:
2977 out_free_1:
2978 kvm_arch_hardware_unsetup();
2979 out_free_0a:
2980 free_cpumask_var(cpus_hardware_enabled);
2981 out_free_0:
2982 kvm_arch_exit();
2983 out_fail:
2984 kvm_irqfd_exit();
2985 out_irqfd:
2986 return r;
2987 }
2988 EXPORT_SYMBOL_GPL(kvm_init);
2989
2990 void kvm_exit(void)
2991 {
2992 kvm_exit_debug();
2993 misc_deregister(&kvm_dev);
2994 kmem_cache_destroy(kvm_vcpu_cache);
2995 kvm_async_pf_deinit();
2996 unregister_syscore_ops(&kvm_syscore_ops);
2997 unregister_reboot_notifier(&kvm_reboot_notifier);
2998 unregister_cpu_notifier(&kvm_cpu_notifier);
2999 on_each_cpu(hardware_disable_nolock, NULL, 1);
3000 kvm_arch_hardware_unsetup();
3001 kvm_arch_exit();
3002 kvm_irqfd_exit();
3003 free_cpumask_var(cpus_hardware_enabled);
3004 }
3005 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.091383 seconds and 5 git commands to generate.