KVM: x86: Use macros for x86_emulate_ops to avoid future mistakes
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48
49 #include <asm/processor.h>
50 #include <asm/io.h>
51 #include <asm/uaccess.h>
52 #include <asm/pgtable.h>
53 #include <asm-generic/bitops/le.h>
54
55 #include "coalesced_mmio.h"
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/kvm.h>
59
60 MODULE_AUTHOR("Qumranet");
61 MODULE_LICENSE("GPL");
62
63 /*
64 * Ordering of locks:
65 *
66 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
67 */
68
69 DEFINE_SPINLOCK(kvm_lock);
70 LIST_HEAD(vm_list);
71
72 static cpumask_var_t cpus_hardware_enabled;
73 static int kvm_usage_count = 0;
74 static atomic_t hardware_enable_failed;
75
76 struct kmem_cache *kvm_vcpu_cache;
77 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
78
79 static __read_mostly struct preempt_ops kvm_preempt_ops;
80
81 struct dentry *kvm_debugfs_dir;
82
83 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
84 unsigned long arg);
85 static int hardware_enable_all(void);
86 static void hardware_disable_all(void);
87
88 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
89
90 static bool kvm_rebooting;
91
92 static bool largepages_enabled = true;
93
94 inline int kvm_is_mmio_pfn(pfn_t pfn)
95 {
96 if (pfn_valid(pfn)) {
97 struct page *page = compound_head(pfn_to_page(pfn));
98 return PageReserved(page);
99 }
100
101 return true;
102 }
103
104 /*
105 * Switches to specified vcpu, until a matching vcpu_put()
106 */
107 void vcpu_load(struct kvm_vcpu *vcpu)
108 {
109 int cpu;
110
111 mutex_lock(&vcpu->mutex);
112 cpu = get_cpu();
113 preempt_notifier_register(&vcpu->preempt_notifier);
114 kvm_arch_vcpu_load(vcpu, cpu);
115 put_cpu();
116 }
117
118 void vcpu_put(struct kvm_vcpu *vcpu)
119 {
120 preempt_disable();
121 kvm_arch_vcpu_put(vcpu);
122 preempt_notifier_unregister(&vcpu->preempt_notifier);
123 preempt_enable();
124 mutex_unlock(&vcpu->mutex);
125 }
126
127 static void ack_flush(void *_completed)
128 {
129 }
130
131 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
132 {
133 int i, cpu, me;
134 cpumask_var_t cpus;
135 bool called = true;
136 struct kvm_vcpu *vcpu;
137
138 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
139
140 spin_lock(&kvm->requests_lock);
141 me = smp_processor_id();
142 kvm_for_each_vcpu(i, vcpu, kvm) {
143 if (test_and_set_bit(req, &vcpu->requests))
144 continue;
145 cpu = vcpu->cpu;
146 if (cpus != NULL && cpu != -1 && cpu != me)
147 cpumask_set_cpu(cpu, cpus);
148 }
149 if (unlikely(cpus == NULL))
150 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
151 else if (!cpumask_empty(cpus))
152 smp_call_function_many(cpus, ack_flush, NULL, 1);
153 else
154 called = false;
155 spin_unlock(&kvm->requests_lock);
156 free_cpumask_var(cpus);
157 return called;
158 }
159
160 void kvm_flush_remote_tlbs(struct kvm *kvm)
161 {
162 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
163 ++kvm->stat.remote_tlb_flush;
164 }
165
166 void kvm_reload_remote_mmus(struct kvm *kvm)
167 {
168 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
169 }
170
171 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
172 {
173 struct page *page;
174 int r;
175
176 mutex_init(&vcpu->mutex);
177 vcpu->cpu = -1;
178 vcpu->kvm = kvm;
179 vcpu->vcpu_id = id;
180 init_waitqueue_head(&vcpu->wq);
181
182 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
183 if (!page) {
184 r = -ENOMEM;
185 goto fail;
186 }
187 vcpu->run = page_address(page);
188
189 r = kvm_arch_vcpu_init(vcpu);
190 if (r < 0)
191 goto fail_free_run;
192 return 0;
193
194 fail_free_run:
195 free_page((unsigned long)vcpu->run);
196 fail:
197 return r;
198 }
199 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
200
201 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
202 {
203 kvm_arch_vcpu_uninit(vcpu);
204 free_page((unsigned long)vcpu->run);
205 }
206 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
207
208 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
209 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
210 {
211 return container_of(mn, struct kvm, mmu_notifier);
212 }
213
214 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
215 struct mm_struct *mm,
216 unsigned long address)
217 {
218 struct kvm *kvm = mmu_notifier_to_kvm(mn);
219 int need_tlb_flush, idx;
220
221 /*
222 * When ->invalidate_page runs, the linux pte has been zapped
223 * already but the page is still allocated until
224 * ->invalidate_page returns. So if we increase the sequence
225 * here the kvm page fault will notice if the spte can't be
226 * established because the page is going to be freed. If
227 * instead the kvm page fault establishes the spte before
228 * ->invalidate_page runs, kvm_unmap_hva will release it
229 * before returning.
230 *
231 * The sequence increase only need to be seen at spin_unlock
232 * time, and not at spin_lock time.
233 *
234 * Increasing the sequence after the spin_unlock would be
235 * unsafe because the kvm page fault could then establish the
236 * pte after kvm_unmap_hva returned, without noticing the page
237 * is going to be freed.
238 */
239 idx = srcu_read_lock(&kvm->srcu);
240 spin_lock(&kvm->mmu_lock);
241 kvm->mmu_notifier_seq++;
242 need_tlb_flush = kvm_unmap_hva(kvm, address);
243 spin_unlock(&kvm->mmu_lock);
244 srcu_read_unlock(&kvm->srcu, idx);
245
246 /* we've to flush the tlb before the pages can be freed */
247 if (need_tlb_flush)
248 kvm_flush_remote_tlbs(kvm);
249
250 }
251
252 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
253 struct mm_struct *mm,
254 unsigned long address,
255 pte_t pte)
256 {
257 struct kvm *kvm = mmu_notifier_to_kvm(mn);
258 int idx;
259
260 idx = srcu_read_lock(&kvm->srcu);
261 spin_lock(&kvm->mmu_lock);
262 kvm->mmu_notifier_seq++;
263 kvm_set_spte_hva(kvm, address, pte);
264 spin_unlock(&kvm->mmu_lock);
265 srcu_read_unlock(&kvm->srcu, idx);
266 }
267
268 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
269 struct mm_struct *mm,
270 unsigned long start,
271 unsigned long end)
272 {
273 struct kvm *kvm = mmu_notifier_to_kvm(mn);
274 int need_tlb_flush = 0, idx;
275
276 idx = srcu_read_lock(&kvm->srcu);
277 spin_lock(&kvm->mmu_lock);
278 /*
279 * The count increase must become visible at unlock time as no
280 * spte can be established without taking the mmu_lock and
281 * count is also read inside the mmu_lock critical section.
282 */
283 kvm->mmu_notifier_count++;
284 for (; start < end; start += PAGE_SIZE)
285 need_tlb_flush |= kvm_unmap_hva(kvm, start);
286 spin_unlock(&kvm->mmu_lock);
287 srcu_read_unlock(&kvm->srcu, idx);
288
289 /* we've to flush the tlb before the pages can be freed */
290 if (need_tlb_flush)
291 kvm_flush_remote_tlbs(kvm);
292 }
293
294 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
295 struct mm_struct *mm,
296 unsigned long start,
297 unsigned long end)
298 {
299 struct kvm *kvm = mmu_notifier_to_kvm(mn);
300
301 spin_lock(&kvm->mmu_lock);
302 /*
303 * This sequence increase will notify the kvm page fault that
304 * the page that is going to be mapped in the spte could have
305 * been freed.
306 */
307 kvm->mmu_notifier_seq++;
308 /*
309 * The above sequence increase must be visible before the
310 * below count decrease but both values are read by the kvm
311 * page fault under mmu_lock spinlock so we don't need to add
312 * a smb_wmb() here in between the two.
313 */
314 kvm->mmu_notifier_count--;
315 spin_unlock(&kvm->mmu_lock);
316
317 BUG_ON(kvm->mmu_notifier_count < 0);
318 }
319
320 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
321 struct mm_struct *mm,
322 unsigned long address)
323 {
324 struct kvm *kvm = mmu_notifier_to_kvm(mn);
325 int young, idx;
326
327 idx = srcu_read_lock(&kvm->srcu);
328 spin_lock(&kvm->mmu_lock);
329 young = kvm_age_hva(kvm, address);
330 spin_unlock(&kvm->mmu_lock);
331 srcu_read_unlock(&kvm->srcu, idx);
332
333 if (young)
334 kvm_flush_remote_tlbs(kvm);
335
336 return young;
337 }
338
339 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
340 struct mm_struct *mm)
341 {
342 struct kvm *kvm = mmu_notifier_to_kvm(mn);
343 kvm_arch_flush_shadow(kvm);
344 }
345
346 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
347 .invalidate_page = kvm_mmu_notifier_invalidate_page,
348 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
349 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
350 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
351 .change_pte = kvm_mmu_notifier_change_pte,
352 .release = kvm_mmu_notifier_release,
353 };
354
355 static int kvm_init_mmu_notifier(struct kvm *kvm)
356 {
357 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
358 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
359 }
360
361 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
362
363 static int kvm_init_mmu_notifier(struct kvm *kvm)
364 {
365 return 0;
366 }
367
368 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
369
370 static struct kvm *kvm_create_vm(void)
371 {
372 int r = 0, i;
373 struct kvm *kvm = kvm_arch_create_vm();
374 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
375 struct page *page;
376 #endif
377
378 if (IS_ERR(kvm))
379 goto out;
380
381 r = hardware_enable_all();
382 if (r)
383 goto out_err_nodisable;
384
385 #ifdef CONFIG_HAVE_KVM_IRQCHIP
386 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
387 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
388 #endif
389
390 r = -ENOMEM;
391 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
392 if (!kvm->memslots)
393 goto out_err;
394 if (init_srcu_struct(&kvm->srcu))
395 goto out_err;
396 for (i = 0; i < KVM_NR_BUSES; i++) {
397 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
398 GFP_KERNEL);
399 if (!kvm->buses[i]) {
400 cleanup_srcu_struct(&kvm->srcu);
401 goto out_err;
402 }
403 }
404
405 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
406 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
407 if (!page) {
408 cleanup_srcu_struct(&kvm->srcu);
409 goto out_err;
410 }
411
412 kvm->coalesced_mmio_ring =
413 (struct kvm_coalesced_mmio_ring *)page_address(page);
414 #endif
415
416 r = kvm_init_mmu_notifier(kvm);
417 if (r) {
418 cleanup_srcu_struct(&kvm->srcu);
419 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
420 put_page(page);
421 #endif
422 goto out_err;
423 }
424
425 kvm->mm = current->mm;
426 atomic_inc(&kvm->mm->mm_count);
427 spin_lock_init(&kvm->mmu_lock);
428 spin_lock_init(&kvm->requests_lock);
429 kvm_eventfd_init(kvm);
430 mutex_init(&kvm->lock);
431 mutex_init(&kvm->irq_lock);
432 mutex_init(&kvm->slots_lock);
433 atomic_set(&kvm->users_count, 1);
434 spin_lock(&kvm_lock);
435 list_add(&kvm->vm_list, &vm_list);
436 spin_unlock(&kvm_lock);
437 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
438 kvm_coalesced_mmio_init(kvm);
439 #endif
440 out:
441 return kvm;
442
443 out_err:
444 hardware_disable_all();
445 out_err_nodisable:
446 for (i = 0; i < KVM_NR_BUSES; i++)
447 kfree(kvm->buses[i]);
448 kfree(kvm->memslots);
449 kfree(kvm);
450 return ERR_PTR(r);
451 }
452
453 /*
454 * Free any memory in @free but not in @dont.
455 */
456 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
457 struct kvm_memory_slot *dont)
458 {
459 int i;
460
461 if (!dont || free->rmap != dont->rmap)
462 vfree(free->rmap);
463
464 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
465 vfree(free->dirty_bitmap);
466
467
468 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
469 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
470 vfree(free->lpage_info[i]);
471 free->lpage_info[i] = NULL;
472 }
473 }
474
475 free->npages = 0;
476 free->dirty_bitmap = NULL;
477 free->rmap = NULL;
478 }
479
480 void kvm_free_physmem(struct kvm *kvm)
481 {
482 int i;
483 struct kvm_memslots *slots = kvm->memslots;
484
485 for (i = 0; i < slots->nmemslots; ++i)
486 kvm_free_physmem_slot(&slots->memslots[i], NULL);
487
488 kfree(kvm->memslots);
489 }
490
491 static void kvm_destroy_vm(struct kvm *kvm)
492 {
493 int i;
494 struct mm_struct *mm = kvm->mm;
495
496 kvm_arch_sync_events(kvm);
497 spin_lock(&kvm_lock);
498 list_del(&kvm->vm_list);
499 spin_unlock(&kvm_lock);
500 kvm_free_irq_routing(kvm);
501 for (i = 0; i < KVM_NR_BUSES; i++)
502 kvm_io_bus_destroy(kvm->buses[i]);
503 kvm_coalesced_mmio_free(kvm);
504 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
505 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
506 #else
507 kvm_arch_flush_shadow(kvm);
508 #endif
509 kvm_arch_destroy_vm(kvm);
510 hardware_disable_all();
511 mmdrop(mm);
512 }
513
514 void kvm_get_kvm(struct kvm *kvm)
515 {
516 atomic_inc(&kvm->users_count);
517 }
518 EXPORT_SYMBOL_GPL(kvm_get_kvm);
519
520 void kvm_put_kvm(struct kvm *kvm)
521 {
522 if (atomic_dec_and_test(&kvm->users_count))
523 kvm_destroy_vm(kvm);
524 }
525 EXPORT_SYMBOL_GPL(kvm_put_kvm);
526
527
528 static int kvm_vm_release(struct inode *inode, struct file *filp)
529 {
530 struct kvm *kvm = filp->private_data;
531
532 kvm_irqfd_release(kvm);
533
534 kvm_put_kvm(kvm);
535 return 0;
536 }
537
538 /*
539 * Allocate some memory and give it an address in the guest physical address
540 * space.
541 *
542 * Discontiguous memory is allowed, mostly for framebuffers.
543 *
544 * Must be called holding mmap_sem for write.
545 */
546 int __kvm_set_memory_region(struct kvm *kvm,
547 struct kvm_userspace_memory_region *mem,
548 int user_alloc)
549 {
550 int r, flush_shadow = 0;
551 gfn_t base_gfn;
552 unsigned long npages;
553 unsigned long i;
554 struct kvm_memory_slot *memslot;
555 struct kvm_memory_slot old, new;
556 struct kvm_memslots *slots, *old_memslots;
557
558 r = -EINVAL;
559 /* General sanity checks */
560 if (mem->memory_size & (PAGE_SIZE - 1))
561 goto out;
562 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
563 goto out;
564 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
565 goto out;
566 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
567 goto out;
568 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
569 goto out;
570
571 memslot = &kvm->memslots->memslots[mem->slot];
572 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
573 npages = mem->memory_size >> PAGE_SHIFT;
574
575 if (!npages)
576 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
577
578 new = old = *memslot;
579
580 new.base_gfn = base_gfn;
581 new.npages = npages;
582 new.flags = mem->flags;
583
584 /* Disallow changing a memory slot's size. */
585 r = -EINVAL;
586 if (npages && old.npages && npages != old.npages)
587 goto out_free;
588
589 /* Check for overlaps */
590 r = -EEXIST;
591 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
592 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
593
594 if (s == memslot || !s->npages)
595 continue;
596 if (!((base_gfn + npages <= s->base_gfn) ||
597 (base_gfn >= s->base_gfn + s->npages)))
598 goto out_free;
599 }
600
601 /* Free page dirty bitmap if unneeded */
602 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
603 new.dirty_bitmap = NULL;
604
605 r = -ENOMEM;
606
607 /* Allocate if a slot is being created */
608 #ifndef CONFIG_S390
609 if (npages && !new.rmap) {
610 new.rmap = vmalloc(npages * sizeof(struct page *));
611
612 if (!new.rmap)
613 goto out_free;
614
615 memset(new.rmap, 0, npages * sizeof(*new.rmap));
616
617 new.user_alloc = user_alloc;
618 new.userspace_addr = mem->userspace_addr;
619 }
620 if (!npages)
621 goto skip_lpage;
622
623 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
624 unsigned long ugfn;
625 unsigned long j;
626 int lpages;
627 int level = i + 2;
628
629 /* Avoid unused variable warning if no large pages */
630 (void)level;
631
632 if (new.lpage_info[i])
633 continue;
634
635 lpages = 1 + (base_gfn + npages - 1) /
636 KVM_PAGES_PER_HPAGE(level);
637 lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
638
639 new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
640
641 if (!new.lpage_info[i])
642 goto out_free;
643
644 memset(new.lpage_info[i], 0,
645 lpages * sizeof(*new.lpage_info[i]));
646
647 if (base_gfn % KVM_PAGES_PER_HPAGE(level))
648 new.lpage_info[i][0].write_count = 1;
649 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
650 new.lpage_info[i][lpages - 1].write_count = 1;
651 ugfn = new.userspace_addr >> PAGE_SHIFT;
652 /*
653 * If the gfn and userspace address are not aligned wrt each
654 * other, or if explicitly asked to, disable large page
655 * support for this slot
656 */
657 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
658 !largepages_enabled)
659 for (j = 0; j < lpages; ++j)
660 new.lpage_info[i][j].write_count = 1;
661 }
662
663 skip_lpage:
664
665 /* Allocate page dirty bitmap if needed */
666 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
667 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
668
669 new.dirty_bitmap = vmalloc(dirty_bytes);
670 if (!new.dirty_bitmap)
671 goto out_free;
672 memset(new.dirty_bitmap, 0, dirty_bytes);
673 /* destroy any largepage mappings for dirty tracking */
674 if (old.npages)
675 flush_shadow = 1;
676 }
677 #else /* not defined CONFIG_S390 */
678 new.user_alloc = user_alloc;
679 if (user_alloc)
680 new.userspace_addr = mem->userspace_addr;
681 #endif /* not defined CONFIG_S390 */
682
683 if (!npages) {
684 r = -ENOMEM;
685 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
686 if (!slots)
687 goto out_free;
688 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
689 if (mem->slot >= slots->nmemslots)
690 slots->nmemslots = mem->slot + 1;
691 slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
692
693 old_memslots = kvm->memslots;
694 rcu_assign_pointer(kvm->memslots, slots);
695 synchronize_srcu_expedited(&kvm->srcu);
696 /* From this point no new shadow pages pointing to a deleted
697 * memslot will be created.
698 *
699 * validation of sp->gfn happens in:
700 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
701 * - kvm_is_visible_gfn (mmu_check_roots)
702 */
703 kvm_arch_flush_shadow(kvm);
704 kfree(old_memslots);
705 }
706
707 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
708 if (r)
709 goto out_free;
710
711 #ifdef CONFIG_DMAR
712 /* map the pages in iommu page table */
713 if (npages) {
714 r = kvm_iommu_map_pages(kvm, &new);
715 if (r)
716 goto out_free;
717 }
718 #endif
719
720 r = -ENOMEM;
721 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
722 if (!slots)
723 goto out_free;
724 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
725 if (mem->slot >= slots->nmemslots)
726 slots->nmemslots = mem->slot + 1;
727
728 /* actual memory is freed via old in kvm_free_physmem_slot below */
729 if (!npages) {
730 new.rmap = NULL;
731 new.dirty_bitmap = NULL;
732 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
733 new.lpage_info[i] = NULL;
734 }
735
736 slots->memslots[mem->slot] = new;
737 old_memslots = kvm->memslots;
738 rcu_assign_pointer(kvm->memslots, slots);
739 synchronize_srcu_expedited(&kvm->srcu);
740
741 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
742
743 kvm_free_physmem_slot(&old, &new);
744 kfree(old_memslots);
745
746 if (flush_shadow)
747 kvm_arch_flush_shadow(kvm);
748
749 return 0;
750
751 out_free:
752 kvm_free_physmem_slot(&new, &old);
753 out:
754 return r;
755
756 }
757 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
758
759 int kvm_set_memory_region(struct kvm *kvm,
760 struct kvm_userspace_memory_region *mem,
761 int user_alloc)
762 {
763 int r;
764
765 mutex_lock(&kvm->slots_lock);
766 r = __kvm_set_memory_region(kvm, mem, user_alloc);
767 mutex_unlock(&kvm->slots_lock);
768 return r;
769 }
770 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
771
772 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
773 struct
774 kvm_userspace_memory_region *mem,
775 int user_alloc)
776 {
777 if (mem->slot >= KVM_MEMORY_SLOTS)
778 return -EINVAL;
779 return kvm_set_memory_region(kvm, mem, user_alloc);
780 }
781
782 int kvm_get_dirty_log(struct kvm *kvm,
783 struct kvm_dirty_log *log, int *is_dirty)
784 {
785 struct kvm_memory_slot *memslot;
786 int r, i;
787 int n;
788 unsigned long any = 0;
789
790 r = -EINVAL;
791 if (log->slot >= KVM_MEMORY_SLOTS)
792 goto out;
793
794 memslot = &kvm->memslots->memslots[log->slot];
795 r = -ENOENT;
796 if (!memslot->dirty_bitmap)
797 goto out;
798
799 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
800
801 for (i = 0; !any && i < n/sizeof(long); ++i)
802 any = memslot->dirty_bitmap[i];
803
804 r = -EFAULT;
805 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
806 goto out;
807
808 if (any)
809 *is_dirty = 1;
810
811 r = 0;
812 out:
813 return r;
814 }
815
816 void kvm_disable_largepages(void)
817 {
818 largepages_enabled = false;
819 }
820 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
821
822 int is_error_page(struct page *page)
823 {
824 return page == bad_page;
825 }
826 EXPORT_SYMBOL_GPL(is_error_page);
827
828 int is_error_pfn(pfn_t pfn)
829 {
830 return pfn == bad_pfn;
831 }
832 EXPORT_SYMBOL_GPL(is_error_pfn);
833
834 static inline unsigned long bad_hva(void)
835 {
836 return PAGE_OFFSET;
837 }
838
839 int kvm_is_error_hva(unsigned long addr)
840 {
841 return addr == bad_hva();
842 }
843 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
844
845 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
846 {
847 int i;
848 struct kvm_memslots *slots = rcu_dereference(kvm->memslots);
849
850 for (i = 0; i < slots->nmemslots; ++i) {
851 struct kvm_memory_slot *memslot = &slots->memslots[i];
852
853 if (gfn >= memslot->base_gfn
854 && gfn < memslot->base_gfn + memslot->npages)
855 return memslot;
856 }
857 return NULL;
858 }
859 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
860
861 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
862 {
863 gfn = unalias_gfn(kvm, gfn);
864 return gfn_to_memslot_unaliased(kvm, gfn);
865 }
866
867 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
868 {
869 int i;
870 struct kvm_memslots *slots = rcu_dereference(kvm->memslots);
871
872 gfn = unalias_gfn_instantiation(kvm, gfn);
873 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
874 struct kvm_memory_slot *memslot = &slots->memslots[i];
875
876 if (memslot->flags & KVM_MEMSLOT_INVALID)
877 continue;
878
879 if (gfn >= memslot->base_gfn
880 && gfn < memslot->base_gfn + memslot->npages)
881 return 1;
882 }
883 return 0;
884 }
885 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
886
887 int memslot_id(struct kvm *kvm, gfn_t gfn)
888 {
889 int i;
890 struct kvm_memslots *slots = rcu_dereference(kvm->memslots);
891 struct kvm_memory_slot *memslot = NULL;
892
893 gfn = unalias_gfn(kvm, gfn);
894 for (i = 0; i < slots->nmemslots; ++i) {
895 memslot = &slots->memslots[i];
896
897 if (gfn >= memslot->base_gfn
898 && gfn < memslot->base_gfn + memslot->npages)
899 break;
900 }
901
902 return memslot - slots->memslots;
903 }
904
905 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
906 {
907 struct kvm_memory_slot *slot;
908
909 gfn = unalias_gfn_instantiation(kvm, gfn);
910 slot = gfn_to_memslot_unaliased(kvm, gfn);
911 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
912 return bad_hva();
913 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
914 }
915 EXPORT_SYMBOL_GPL(gfn_to_hva);
916
917 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr)
918 {
919 struct page *page[1];
920 int npages;
921 pfn_t pfn;
922
923 might_sleep();
924
925 npages = get_user_pages_fast(addr, 1, 1, page);
926
927 if (unlikely(npages != 1)) {
928 struct vm_area_struct *vma;
929
930 down_read(&current->mm->mmap_sem);
931 vma = find_vma(current->mm, addr);
932
933 if (vma == NULL || addr < vma->vm_start ||
934 !(vma->vm_flags & VM_PFNMAP)) {
935 up_read(&current->mm->mmap_sem);
936 get_page(bad_page);
937 return page_to_pfn(bad_page);
938 }
939
940 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
941 up_read(&current->mm->mmap_sem);
942 BUG_ON(!kvm_is_mmio_pfn(pfn));
943 } else
944 pfn = page_to_pfn(page[0]);
945
946 return pfn;
947 }
948
949 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
950 {
951 unsigned long addr;
952
953 addr = gfn_to_hva(kvm, gfn);
954 if (kvm_is_error_hva(addr)) {
955 get_page(bad_page);
956 return page_to_pfn(bad_page);
957 }
958
959 return hva_to_pfn(kvm, addr);
960 }
961 EXPORT_SYMBOL_GPL(gfn_to_pfn);
962
963 static unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
964 {
965 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
966 }
967
968 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
969 struct kvm_memory_slot *slot, gfn_t gfn)
970 {
971 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
972 return hva_to_pfn(kvm, addr);
973 }
974
975 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
976 {
977 pfn_t pfn;
978
979 pfn = gfn_to_pfn(kvm, gfn);
980 if (!kvm_is_mmio_pfn(pfn))
981 return pfn_to_page(pfn);
982
983 WARN_ON(kvm_is_mmio_pfn(pfn));
984
985 get_page(bad_page);
986 return bad_page;
987 }
988
989 EXPORT_SYMBOL_GPL(gfn_to_page);
990
991 void kvm_release_page_clean(struct page *page)
992 {
993 kvm_release_pfn_clean(page_to_pfn(page));
994 }
995 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
996
997 void kvm_release_pfn_clean(pfn_t pfn)
998 {
999 if (!kvm_is_mmio_pfn(pfn))
1000 put_page(pfn_to_page(pfn));
1001 }
1002 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1003
1004 void kvm_release_page_dirty(struct page *page)
1005 {
1006 kvm_release_pfn_dirty(page_to_pfn(page));
1007 }
1008 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1009
1010 void kvm_release_pfn_dirty(pfn_t pfn)
1011 {
1012 kvm_set_pfn_dirty(pfn);
1013 kvm_release_pfn_clean(pfn);
1014 }
1015 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1016
1017 void kvm_set_page_dirty(struct page *page)
1018 {
1019 kvm_set_pfn_dirty(page_to_pfn(page));
1020 }
1021 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1022
1023 void kvm_set_pfn_dirty(pfn_t pfn)
1024 {
1025 if (!kvm_is_mmio_pfn(pfn)) {
1026 struct page *page = pfn_to_page(pfn);
1027 if (!PageReserved(page))
1028 SetPageDirty(page);
1029 }
1030 }
1031 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1032
1033 void kvm_set_pfn_accessed(pfn_t pfn)
1034 {
1035 if (!kvm_is_mmio_pfn(pfn))
1036 mark_page_accessed(pfn_to_page(pfn));
1037 }
1038 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1039
1040 void kvm_get_pfn(pfn_t pfn)
1041 {
1042 if (!kvm_is_mmio_pfn(pfn))
1043 get_page(pfn_to_page(pfn));
1044 }
1045 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1046
1047 static int next_segment(unsigned long len, int offset)
1048 {
1049 if (len > PAGE_SIZE - offset)
1050 return PAGE_SIZE - offset;
1051 else
1052 return len;
1053 }
1054
1055 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1056 int len)
1057 {
1058 int r;
1059 unsigned long addr;
1060
1061 addr = gfn_to_hva(kvm, gfn);
1062 if (kvm_is_error_hva(addr))
1063 return -EFAULT;
1064 r = copy_from_user(data, (void __user *)addr + offset, len);
1065 if (r)
1066 return -EFAULT;
1067 return 0;
1068 }
1069 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1070
1071 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1072 {
1073 gfn_t gfn = gpa >> PAGE_SHIFT;
1074 int seg;
1075 int offset = offset_in_page(gpa);
1076 int ret;
1077
1078 while ((seg = next_segment(len, offset)) != 0) {
1079 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1080 if (ret < 0)
1081 return ret;
1082 offset = 0;
1083 len -= seg;
1084 data += seg;
1085 ++gfn;
1086 }
1087 return 0;
1088 }
1089 EXPORT_SYMBOL_GPL(kvm_read_guest);
1090
1091 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1092 unsigned long len)
1093 {
1094 int r;
1095 unsigned long addr;
1096 gfn_t gfn = gpa >> PAGE_SHIFT;
1097 int offset = offset_in_page(gpa);
1098
1099 addr = gfn_to_hva(kvm, gfn);
1100 if (kvm_is_error_hva(addr))
1101 return -EFAULT;
1102 pagefault_disable();
1103 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1104 pagefault_enable();
1105 if (r)
1106 return -EFAULT;
1107 return 0;
1108 }
1109 EXPORT_SYMBOL(kvm_read_guest_atomic);
1110
1111 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1112 int offset, int len)
1113 {
1114 int r;
1115 unsigned long addr;
1116
1117 addr = gfn_to_hva(kvm, gfn);
1118 if (kvm_is_error_hva(addr))
1119 return -EFAULT;
1120 r = copy_to_user((void __user *)addr + offset, data, len);
1121 if (r)
1122 return -EFAULT;
1123 mark_page_dirty(kvm, gfn);
1124 return 0;
1125 }
1126 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1127
1128 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1129 unsigned long len)
1130 {
1131 gfn_t gfn = gpa >> PAGE_SHIFT;
1132 int seg;
1133 int offset = offset_in_page(gpa);
1134 int ret;
1135
1136 while ((seg = next_segment(len, offset)) != 0) {
1137 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1138 if (ret < 0)
1139 return ret;
1140 offset = 0;
1141 len -= seg;
1142 data += seg;
1143 ++gfn;
1144 }
1145 return 0;
1146 }
1147
1148 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1149 {
1150 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1151 }
1152 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1153
1154 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1155 {
1156 gfn_t gfn = gpa >> PAGE_SHIFT;
1157 int seg;
1158 int offset = offset_in_page(gpa);
1159 int ret;
1160
1161 while ((seg = next_segment(len, offset)) != 0) {
1162 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1163 if (ret < 0)
1164 return ret;
1165 offset = 0;
1166 len -= seg;
1167 ++gfn;
1168 }
1169 return 0;
1170 }
1171 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1172
1173 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1174 {
1175 struct kvm_memory_slot *memslot;
1176
1177 gfn = unalias_gfn(kvm, gfn);
1178 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1179 if (memslot && memslot->dirty_bitmap) {
1180 unsigned long rel_gfn = gfn - memslot->base_gfn;
1181
1182 /* avoid RMW */
1183 if (!generic_test_le_bit(rel_gfn, memslot->dirty_bitmap))
1184 generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
1185 }
1186 }
1187
1188 /*
1189 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1190 */
1191 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1192 {
1193 DEFINE_WAIT(wait);
1194
1195 for (;;) {
1196 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1197
1198 if (kvm_arch_vcpu_runnable(vcpu)) {
1199 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1200 break;
1201 }
1202 if (kvm_cpu_has_pending_timer(vcpu))
1203 break;
1204 if (signal_pending(current))
1205 break;
1206
1207 schedule();
1208 }
1209
1210 finish_wait(&vcpu->wq, &wait);
1211 }
1212
1213 void kvm_resched(struct kvm_vcpu *vcpu)
1214 {
1215 if (!need_resched())
1216 return;
1217 cond_resched();
1218 }
1219 EXPORT_SYMBOL_GPL(kvm_resched);
1220
1221 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
1222 {
1223 ktime_t expires;
1224 DEFINE_WAIT(wait);
1225
1226 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1227
1228 /* Sleep for 100 us, and hope lock-holder got scheduled */
1229 expires = ktime_add_ns(ktime_get(), 100000UL);
1230 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1231
1232 finish_wait(&vcpu->wq, &wait);
1233 }
1234 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1235
1236 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1237 {
1238 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1239 struct page *page;
1240
1241 if (vmf->pgoff == 0)
1242 page = virt_to_page(vcpu->run);
1243 #ifdef CONFIG_X86
1244 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1245 page = virt_to_page(vcpu->arch.pio_data);
1246 #endif
1247 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1248 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1249 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1250 #endif
1251 else
1252 return VM_FAULT_SIGBUS;
1253 get_page(page);
1254 vmf->page = page;
1255 return 0;
1256 }
1257
1258 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1259 .fault = kvm_vcpu_fault,
1260 };
1261
1262 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1263 {
1264 vma->vm_ops = &kvm_vcpu_vm_ops;
1265 return 0;
1266 }
1267
1268 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1269 {
1270 struct kvm_vcpu *vcpu = filp->private_data;
1271
1272 kvm_put_kvm(vcpu->kvm);
1273 return 0;
1274 }
1275
1276 static struct file_operations kvm_vcpu_fops = {
1277 .release = kvm_vcpu_release,
1278 .unlocked_ioctl = kvm_vcpu_ioctl,
1279 .compat_ioctl = kvm_vcpu_ioctl,
1280 .mmap = kvm_vcpu_mmap,
1281 };
1282
1283 /*
1284 * Allocates an inode for the vcpu.
1285 */
1286 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1287 {
1288 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1289 }
1290
1291 /*
1292 * Creates some virtual cpus. Good luck creating more than one.
1293 */
1294 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1295 {
1296 int r;
1297 struct kvm_vcpu *vcpu, *v;
1298
1299 vcpu = kvm_arch_vcpu_create(kvm, id);
1300 if (IS_ERR(vcpu))
1301 return PTR_ERR(vcpu);
1302
1303 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1304
1305 r = kvm_arch_vcpu_setup(vcpu);
1306 if (r)
1307 return r;
1308
1309 mutex_lock(&kvm->lock);
1310 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1311 r = -EINVAL;
1312 goto vcpu_destroy;
1313 }
1314
1315 kvm_for_each_vcpu(r, v, kvm)
1316 if (v->vcpu_id == id) {
1317 r = -EEXIST;
1318 goto vcpu_destroy;
1319 }
1320
1321 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1322
1323 /* Now it's all set up, let userspace reach it */
1324 kvm_get_kvm(kvm);
1325 r = create_vcpu_fd(vcpu);
1326 if (r < 0) {
1327 kvm_put_kvm(kvm);
1328 goto vcpu_destroy;
1329 }
1330
1331 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1332 smp_wmb();
1333 atomic_inc(&kvm->online_vcpus);
1334
1335 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1336 if (kvm->bsp_vcpu_id == id)
1337 kvm->bsp_vcpu = vcpu;
1338 #endif
1339 mutex_unlock(&kvm->lock);
1340 return r;
1341
1342 vcpu_destroy:
1343 mutex_unlock(&kvm->lock);
1344 kvm_arch_vcpu_destroy(vcpu);
1345 return r;
1346 }
1347
1348 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1349 {
1350 if (sigset) {
1351 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1352 vcpu->sigset_active = 1;
1353 vcpu->sigset = *sigset;
1354 } else
1355 vcpu->sigset_active = 0;
1356 return 0;
1357 }
1358
1359 static long kvm_vcpu_ioctl(struct file *filp,
1360 unsigned int ioctl, unsigned long arg)
1361 {
1362 struct kvm_vcpu *vcpu = filp->private_data;
1363 void __user *argp = (void __user *)arg;
1364 int r;
1365 struct kvm_fpu *fpu = NULL;
1366 struct kvm_sregs *kvm_sregs = NULL;
1367
1368 if (vcpu->kvm->mm != current->mm)
1369 return -EIO;
1370 switch (ioctl) {
1371 case KVM_RUN:
1372 r = -EINVAL;
1373 if (arg)
1374 goto out;
1375 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1376 break;
1377 case KVM_GET_REGS: {
1378 struct kvm_regs *kvm_regs;
1379
1380 r = -ENOMEM;
1381 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1382 if (!kvm_regs)
1383 goto out;
1384 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1385 if (r)
1386 goto out_free1;
1387 r = -EFAULT;
1388 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1389 goto out_free1;
1390 r = 0;
1391 out_free1:
1392 kfree(kvm_regs);
1393 break;
1394 }
1395 case KVM_SET_REGS: {
1396 struct kvm_regs *kvm_regs;
1397
1398 r = -ENOMEM;
1399 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1400 if (!kvm_regs)
1401 goto out;
1402 r = -EFAULT;
1403 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1404 goto out_free2;
1405 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1406 if (r)
1407 goto out_free2;
1408 r = 0;
1409 out_free2:
1410 kfree(kvm_regs);
1411 break;
1412 }
1413 case KVM_GET_SREGS: {
1414 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1415 r = -ENOMEM;
1416 if (!kvm_sregs)
1417 goto out;
1418 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1419 if (r)
1420 goto out;
1421 r = -EFAULT;
1422 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1423 goto out;
1424 r = 0;
1425 break;
1426 }
1427 case KVM_SET_SREGS: {
1428 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1429 r = -ENOMEM;
1430 if (!kvm_sregs)
1431 goto out;
1432 r = -EFAULT;
1433 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1434 goto out;
1435 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1436 if (r)
1437 goto out;
1438 r = 0;
1439 break;
1440 }
1441 case KVM_GET_MP_STATE: {
1442 struct kvm_mp_state mp_state;
1443
1444 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1445 if (r)
1446 goto out;
1447 r = -EFAULT;
1448 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1449 goto out;
1450 r = 0;
1451 break;
1452 }
1453 case KVM_SET_MP_STATE: {
1454 struct kvm_mp_state mp_state;
1455
1456 r = -EFAULT;
1457 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1458 goto out;
1459 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1460 if (r)
1461 goto out;
1462 r = 0;
1463 break;
1464 }
1465 case KVM_TRANSLATE: {
1466 struct kvm_translation tr;
1467
1468 r = -EFAULT;
1469 if (copy_from_user(&tr, argp, sizeof tr))
1470 goto out;
1471 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1472 if (r)
1473 goto out;
1474 r = -EFAULT;
1475 if (copy_to_user(argp, &tr, sizeof tr))
1476 goto out;
1477 r = 0;
1478 break;
1479 }
1480 case KVM_SET_GUEST_DEBUG: {
1481 struct kvm_guest_debug dbg;
1482
1483 r = -EFAULT;
1484 if (copy_from_user(&dbg, argp, sizeof dbg))
1485 goto out;
1486 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1487 if (r)
1488 goto out;
1489 r = 0;
1490 break;
1491 }
1492 case KVM_SET_SIGNAL_MASK: {
1493 struct kvm_signal_mask __user *sigmask_arg = argp;
1494 struct kvm_signal_mask kvm_sigmask;
1495 sigset_t sigset, *p;
1496
1497 p = NULL;
1498 if (argp) {
1499 r = -EFAULT;
1500 if (copy_from_user(&kvm_sigmask, argp,
1501 sizeof kvm_sigmask))
1502 goto out;
1503 r = -EINVAL;
1504 if (kvm_sigmask.len != sizeof sigset)
1505 goto out;
1506 r = -EFAULT;
1507 if (copy_from_user(&sigset, sigmask_arg->sigset,
1508 sizeof sigset))
1509 goto out;
1510 p = &sigset;
1511 }
1512 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1513 break;
1514 }
1515 case KVM_GET_FPU: {
1516 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1517 r = -ENOMEM;
1518 if (!fpu)
1519 goto out;
1520 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1521 if (r)
1522 goto out;
1523 r = -EFAULT;
1524 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1525 goto out;
1526 r = 0;
1527 break;
1528 }
1529 case KVM_SET_FPU: {
1530 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1531 r = -ENOMEM;
1532 if (!fpu)
1533 goto out;
1534 r = -EFAULT;
1535 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1536 goto out;
1537 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1538 if (r)
1539 goto out;
1540 r = 0;
1541 break;
1542 }
1543 default:
1544 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1545 }
1546 out:
1547 kfree(fpu);
1548 kfree(kvm_sregs);
1549 return r;
1550 }
1551
1552 static long kvm_vm_ioctl(struct file *filp,
1553 unsigned int ioctl, unsigned long arg)
1554 {
1555 struct kvm *kvm = filp->private_data;
1556 void __user *argp = (void __user *)arg;
1557 int r;
1558
1559 if (kvm->mm != current->mm)
1560 return -EIO;
1561 switch (ioctl) {
1562 case KVM_CREATE_VCPU:
1563 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1564 if (r < 0)
1565 goto out;
1566 break;
1567 case KVM_SET_USER_MEMORY_REGION: {
1568 struct kvm_userspace_memory_region kvm_userspace_mem;
1569
1570 r = -EFAULT;
1571 if (copy_from_user(&kvm_userspace_mem, argp,
1572 sizeof kvm_userspace_mem))
1573 goto out;
1574
1575 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1576 if (r)
1577 goto out;
1578 break;
1579 }
1580 case KVM_GET_DIRTY_LOG: {
1581 struct kvm_dirty_log log;
1582
1583 r = -EFAULT;
1584 if (copy_from_user(&log, argp, sizeof log))
1585 goto out;
1586 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1587 if (r)
1588 goto out;
1589 break;
1590 }
1591 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1592 case KVM_REGISTER_COALESCED_MMIO: {
1593 struct kvm_coalesced_mmio_zone zone;
1594 r = -EFAULT;
1595 if (copy_from_user(&zone, argp, sizeof zone))
1596 goto out;
1597 r = -ENXIO;
1598 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1599 if (r)
1600 goto out;
1601 r = 0;
1602 break;
1603 }
1604 case KVM_UNREGISTER_COALESCED_MMIO: {
1605 struct kvm_coalesced_mmio_zone zone;
1606 r = -EFAULT;
1607 if (copy_from_user(&zone, argp, sizeof zone))
1608 goto out;
1609 r = -ENXIO;
1610 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1611 if (r)
1612 goto out;
1613 r = 0;
1614 break;
1615 }
1616 #endif
1617 case KVM_IRQFD: {
1618 struct kvm_irqfd data;
1619
1620 r = -EFAULT;
1621 if (copy_from_user(&data, argp, sizeof data))
1622 goto out;
1623 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1624 break;
1625 }
1626 case KVM_IOEVENTFD: {
1627 struct kvm_ioeventfd data;
1628
1629 r = -EFAULT;
1630 if (copy_from_user(&data, argp, sizeof data))
1631 goto out;
1632 r = kvm_ioeventfd(kvm, &data);
1633 break;
1634 }
1635 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1636 case KVM_SET_BOOT_CPU_ID:
1637 r = 0;
1638 mutex_lock(&kvm->lock);
1639 if (atomic_read(&kvm->online_vcpus) != 0)
1640 r = -EBUSY;
1641 else
1642 kvm->bsp_vcpu_id = arg;
1643 mutex_unlock(&kvm->lock);
1644 break;
1645 #endif
1646 default:
1647 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1648 if (r == -ENOTTY)
1649 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1650 }
1651 out:
1652 return r;
1653 }
1654
1655 #ifdef CONFIG_COMPAT
1656 struct compat_kvm_dirty_log {
1657 __u32 slot;
1658 __u32 padding1;
1659 union {
1660 compat_uptr_t dirty_bitmap; /* one bit per page */
1661 __u64 padding2;
1662 };
1663 };
1664
1665 static long kvm_vm_compat_ioctl(struct file *filp,
1666 unsigned int ioctl, unsigned long arg)
1667 {
1668 struct kvm *kvm = filp->private_data;
1669 int r;
1670
1671 if (kvm->mm != current->mm)
1672 return -EIO;
1673 switch (ioctl) {
1674 case KVM_GET_DIRTY_LOG: {
1675 struct compat_kvm_dirty_log compat_log;
1676 struct kvm_dirty_log log;
1677
1678 r = -EFAULT;
1679 if (copy_from_user(&compat_log, (void __user *)arg,
1680 sizeof(compat_log)))
1681 goto out;
1682 log.slot = compat_log.slot;
1683 log.padding1 = compat_log.padding1;
1684 log.padding2 = compat_log.padding2;
1685 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
1686
1687 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1688 if (r)
1689 goto out;
1690 break;
1691 }
1692 default:
1693 r = kvm_vm_ioctl(filp, ioctl, arg);
1694 }
1695
1696 out:
1697 return r;
1698 }
1699 #endif
1700
1701 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1702 {
1703 struct page *page[1];
1704 unsigned long addr;
1705 int npages;
1706 gfn_t gfn = vmf->pgoff;
1707 struct kvm *kvm = vma->vm_file->private_data;
1708
1709 addr = gfn_to_hva(kvm, gfn);
1710 if (kvm_is_error_hva(addr))
1711 return VM_FAULT_SIGBUS;
1712
1713 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1714 NULL);
1715 if (unlikely(npages != 1))
1716 return VM_FAULT_SIGBUS;
1717
1718 vmf->page = page[0];
1719 return 0;
1720 }
1721
1722 static const struct vm_operations_struct kvm_vm_vm_ops = {
1723 .fault = kvm_vm_fault,
1724 };
1725
1726 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1727 {
1728 vma->vm_ops = &kvm_vm_vm_ops;
1729 return 0;
1730 }
1731
1732 static struct file_operations kvm_vm_fops = {
1733 .release = kvm_vm_release,
1734 .unlocked_ioctl = kvm_vm_ioctl,
1735 #ifdef CONFIG_COMPAT
1736 .compat_ioctl = kvm_vm_compat_ioctl,
1737 #endif
1738 .mmap = kvm_vm_mmap,
1739 };
1740
1741 static int kvm_dev_ioctl_create_vm(void)
1742 {
1743 int fd;
1744 struct kvm *kvm;
1745
1746 kvm = kvm_create_vm();
1747 if (IS_ERR(kvm))
1748 return PTR_ERR(kvm);
1749 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
1750 if (fd < 0)
1751 kvm_put_kvm(kvm);
1752
1753 return fd;
1754 }
1755
1756 static long kvm_dev_ioctl_check_extension_generic(long arg)
1757 {
1758 switch (arg) {
1759 case KVM_CAP_USER_MEMORY:
1760 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1761 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
1762 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1763 case KVM_CAP_SET_BOOT_CPU_ID:
1764 #endif
1765 case KVM_CAP_INTERNAL_ERROR_DATA:
1766 return 1;
1767 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1768 case KVM_CAP_IRQ_ROUTING:
1769 return KVM_MAX_IRQ_ROUTES;
1770 #endif
1771 default:
1772 break;
1773 }
1774 return kvm_dev_ioctl_check_extension(arg);
1775 }
1776
1777 static long kvm_dev_ioctl(struct file *filp,
1778 unsigned int ioctl, unsigned long arg)
1779 {
1780 long r = -EINVAL;
1781
1782 switch (ioctl) {
1783 case KVM_GET_API_VERSION:
1784 r = -EINVAL;
1785 if (arg)
1786 goto out;
1787 r = KVM_API_VERSION;
1788 break;
1789 case KVM_CREATE_VM:
1790 r = -EINVAL;
1791 if (arg)
1792 goto out;
1793 r = kvm_dev_ioctl_create_vm();
1794 break;
1795 case KVM_CHECK_EXTENSION:
1796 r = kvm_dev_ioctl_check_extension_generic(arg);
1797 break;
1798 case KVM_GET_VCPU_MMAP_SIZE:
1799 r = -EINVAL;
1800 if (arg)
1801 goto out;
1802 r = PAGE_SIZE; /* struct kvm_run */
1803 #ifdef CONFIG_X86
1804 r += PAGE_SIZE; /* pio data page */
1805 #endif
1806 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1807 r += PAGE_SIZE; /* coalesced mmio ring page */
1808 #endif
1809 break;
1810 case KVM_TRACE_ENABLE:
1811 case KVM_TRACE_PAUSE:
1812 case KVM_TRACE_DISABLE:
1813 r = -EOPNOTSUPP;
1814 break;
1815 default:
1816 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1817 }
1818 out:
1819 return r;
1820 }
1821
1822 static struct file_operations kvm_chardev_ops = {
1823 .unlocked_ioctl = kvm_dev_ioctl,
1824 .compat_ioctl = kvm_dev_ioctl,
1825 };
1826
1827 static struct miscdevice kvm_dev = {
1828 KVM_MINOR,
1829 "kvm",
1830 &kvm_chardev_ops,
1831 };
1832
1833 static void hardware_enable(void *junk)
1834 {
1835 int cpu = raw_smp_processor_id();
1836 int r;
1837
1838 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1839 return;
1840
1841 cpumask_set_cpu(cpu, cpus_hardware_enabled);
1842
1843 r = kvm_arch_hardware_enable(NULL);
1844
1845 if (r) {
1846 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1847 atomic_inc(&hardware_enable_failed);
1848 printk(KERN_INFO "kvm: enabling virtualization on "
1849 "CPU%d failed\n", cpu);
1850 }
1851 }
1852
1853 static void hardware_disable(void *junk)
1854 {
1855 int cpu = raw_smp_processor_id();
1856
1857 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1858 return;
1859 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1860 kvm_arch_hardware_disable(NULL);
1861 }
1862
1863 static void hardware_disable_all_nolock(void)
1864 {
1865 BUG_ON(!kvm_usage_count);
1866
1867 kvm_usage_count--;
1868 if (!kvm_usage_count)
1869 on_each_cpu(hardware_disable, NULL, 1);
1870 }
1871
1872 static void hardware_disable_all(void)
1873 {
1874 spin_lock(&kvm_lock);
1875 hardware_disable_all_nolock();
1876 spin_unlock(&kvm_lock);
1877 }
1878
1879 static int hardware_enable_all(void)
1880 {
1881 int r = 0;
1882
1883 spin_lock(&kvm_lock);
1884
1885 kvm_usage_count++;
1886 if (kvm_usage_count == 1) {
1887 atomic_set(&hardware_enable_failed, 0);
1888 on_each_cpu(hardware_enable, NULL, 1);
1889
1890 if (atomic_read(&hardware_enable_failed)) {
1891 hardware_disable_all_nolock();
1892 r = -EBUSY;
1893 }
1894 }
1895
1896 spin_unlock(&kvm_lock);
1897
1898 return r;
1899 }
1900
1901 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1902 void *v)
1903 {
1904 int cpu = (long)v;
1905
1906 if (!kvm_usage_count)
1907 return NOTIFY_OK;
1908
1909 val &= ~CPU_TASKS_FROZEN;
1910 switch (val) {
1911 case CPU_DYING:
1912 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1913 cpu);
1914 hardware_disable(NULL);
1915 break;
1916 case CPU_UP_CANCELED:
1917 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1918 cpu);
1919 smp_call_function_single(cpu, hardware_disable, NULL, 1);
1920 break;
1921 case CPU_ONLINE:
1922 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1923 cpu);
1924 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1925 break;
1926 }
1927 return NOTIFY_OK;
1928 }
1929
1930
1931 asmlinkage void kvm_handle_fault_on_reboot(void)
1932 {
1933 if (kvm_rebooting)
1934 /* spin while reset goes on */
1935 while (true)
1936 ;
1937 /* Fault while not rebooting. We want the trace. */
1938 BUG();
1939 }
1940 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1941
1942 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1943 void *v)
1944 {
1945 /*
1946 * Some (well, at least mine) BIOSes hang on reboot if
1947 * in vmx root mode.
1948 *
1949 * And Intel TXT required VMX off for all cpu when system shutdown.
1950 */
1951 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1952 kvm_rebooting = true;
1953 on_each_cpu(hardware_disable, NULL, 1);
1954 return NOTIFY_OK;
1955 }
1956
1957 static struct notifier_block kvm_reboot_notifier = {
1958 .notifier_call = kvm_reboot,
1959 .priority = 0,
1960 };
1961
1962 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1963 {
1964 int i;
1965
1966 for (i = 0; i < bus->dev_count; i++) {
1967 struct kvm_io_device *pos = bus->devs[i];
1968
1969 kvm_iodevice_destructor(pos);
1970 }
1971 kfree(bus);
1972 }
1973
1974 /* kvm_io_bus_write - called under kvm->slots_lock */
1975 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
1976 int len, const void *val)
1977 {
1978 int i;
1979 struct kvm_io_bus *bus = rcu_dereference(kvm->buses[bus_idx]);
1980 for (i = 0; i < bus->dev_count; i++)
1981 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
1982 return 0;
1983 return -EOPNOTSUPP;
1984 }
1985
1986 /* kvm_io_bus_read - called under kvm->slots_lock */
1987 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
1988 int len, void *val)
1989 {
1990 int i;
1991 struct kvm_io_bus *bus = rcu_dereference(kvm->buses[bus_idx]);
1992
1993 for (i = 0; i < bus->dev_count; i++)
1994 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
1995 return 0;
1996 return -EOPNOTSUPP;
1997 }
1998
1999 /* Caller must hold slots_lock. */
2000 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2001 struct kvm_io_device *dev)
2002 {
2003 struct kvm_io_bus *new_bus, *bus;
2004
2005 bus = kvm->buses[bus_idx];
2006 if (bus->dev_count > NR_IOBUS_DEVS-1)
2007 return -ENOSPC;
2008
2009 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2010 if (!new_bus)
2011 return -ENOMEM;
2012 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2013 new_bus->devs[new_bus->dev_count++] = dev;
2014 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2015 synchronize_srcu_expedited(&kvm->srcu);
2016 kfree(bus);
2017
2018 return 0;
2019 }
2020
2021 /* Caller must hold slots_lock. */
2022 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2023 struct kvm_io_device *dev)
2024 {
2025 int i, r;
2026 struct kvm_io_bus *new_bus, *bus;
2027
2028 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2029 if (!new_bus)
2030 return -ENOMEM;
2031
2032 bus = kvm->buses[bus_idx];
2033 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2034
2035 r = -ENOENT;
2036 for (i = 0; i < new_bus->dev_count; i++)
2037 if (new_bus->devs[i] == dev) {
2038 r = 0;
2039 new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2040 break;
2041 }
2042
2043 if (r) {
2044 kfree(new_bus);
2045 return r;
2046 }
2047
2048 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2049 synchronize_srcu_expedited(&kvm->srcu);
2050 kfree(bus);
2051 return r;
2052 }
2053
2054 static struct notifier_block kvm_cpu_notifier = {
2055 .notifier_call = kvm_cpu_hotplug,
2056 .priority = 20, /* must be > scheduler priority */
2057 };
2058
2059 static int vm_stat_get(void *_offset, u64 *val)
2060 {
2061 unsigned offset = (long)_offset;
2062 struct kvm *kvm;
2063
2064 *val = 0;
2065 spin_lock(&kvm_lock);
2066 list_for_each_entry(kvm, &vm_list, vm_list)
2067 *val += *(u32 *)((void *)kvm + offset);
2068 spin_unlock(&kvm_lock);
2069 return 0;
2070 }
2071
2072 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2073
2074 static int vcpu_stat_get(void *_offset, u64 *val)
2075 {
2076 unsigned offset = (long)_offset;
2077 struct kvm *kvm;
2078 struct kvm_vcpu *vcpu;
2079 int i;
2080
2081 *val = 0;
2082 spin_lock(&kvm_lock);
2083 list_for_each_entry(kvm, &vm_list, vm_list)
2084 kvm_for_each_vcpu(i, vcpu, kvm)
2085 *val += *(u32 *)((void *)vcpu + offset);
2086
2087 spin_unlock(&kvm_lock);
2088 return 0;
2089 }
2090
2091 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2092
2093 static const struct file_operations *stat_fops[] = {
2094 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2095 [KVM_STAT_VM] = &vm_stat_fops,
2096 };
2097
2098 static void kvm_init_debug(void)
2099 {
2100 struct kvm_stats_debugfs_item *p;
2101
2102 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2103 for (p = debugfs_entries; p->name; ++p)
2104 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2105 (void *)(long)p->offset,
2106 stat_fops[p->kind]);
2107 }
2108
2109 static void kvm_exit_debug(void)
2110 {
2111 struct kvm_stats_debugfs_item *p;
2112
2113 for (p = debugfs_entries; p->name; ++p)
2114 debugfs_remove(p->dentry);
2115 debugfs_remove(kvm_debugfs_dir);
2116 }
2117
2118 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2119 {
2120 if (kvm_usage_count)
2121 hardware_disable(NULL);
2122 return 0;
2123 }
2124
2125 static int kvm_resume(struct sys_device *dev)
2126 {
2127 if (kvm_usage_count)
2128 hardware_enable(NULL);
2129 return 0;
2130 }
2131
2132 static struct sysdev_class kvm_sysdev_class = {
2133 .name = "kvm",
2134 .suspend = kvm_suspend,
2135 .resume = kvm_resume,
2136 };
2137
2138 static struct sys_device kvm_sysdev = {
2139 .id = 0,
2140 .cls = &kvm_sysdev_class,
2141 };
2142
2143 struct page *bad_page;
2144 pfn_t bad_pfn;
2145
2146 static inline
2147 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2148 {
2149 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2150 }
2151
2152 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2153 {
2154 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2155
2156 kvm_arch_vcpu_load(vcpu, cpu);
2157 }
2158
2159 static void kvm_sched_out(struct preempt_notifier *pn,
2160 struct task_struct *next)
2161 {
2162 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2163
2164 kvm_arch_vcpu_put(vcpu);
2165 }
2166
2167 int kvm_init(void *opaque, unsigned int vcpu_size,
2168 struct module *module)
2169 {
2170 int r;
2171 int cpu;
2172
2173 r = kvm_arch_init(opaque);
2174 if (r)
2175 goto out_fail;
2176
2177 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2178
2179 if (bad_page == NULL) {
2180 r = -ENOMEM;
2181 goto out;
2182 }
2183
2184 bad_pfn = page_to_pfn(bad_page);
2185
2186 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2187 r = -ENOMEM;
2188 goto out_free_0;
2189 }
2190
2191 r = kvm_arch_hardware_setup();
2192 if (r < 0)
2193 goto out_free_0a;
2194
2195 for_each_online_cpu(cpu) {
2196 smp_call_function_single(cpu,
2197 kvm_arch_check_processor_compat,
2198 &r, 1);
2199 if (r < 0)
2200 goto out_free_1;
2201 }
2202
2203 r = register_cpu_notifier(&kvm_cpu_notifier);
2204 if (r)
2205 goto out_free_2;
2206 register_reboot_notifier(&kvm_reboot_notifier);
2207
2208 r = sysdev_class_register(&kvm_sysdev_class);
2209 if (r)
2210 goto out_free_3;
2211
2212 r = sysdev_register(&kvm_sysdev);
2213 if (r)
2214 goto out_free_4;
2215
2216 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2217 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2218 __alignof__(struct kvm_vcpu),
2219 0, NULL);
2220 if (!kvm_vcpu_cache) {
2221 r = -ENOMEM;
2222 goto out_free_5;
2223 }
2224
2225 kvm_chardev_ops.owner = module;
2226 kvm_vm_fops.owner = module;
2227 kvm_vcpu_fops.owner = module;
2228
2229 r = misc_register(&kvm_dev);
2230 if (r) {
2231 printk(KERN_ERR "kvm: misc device register failed\n");
2232 goto out_free;
2233 }
2234
2235 kvm_preempt_ops.sched_in = kvm_sched_in;
2236 kvm_preempt_ops.sched_out = kvm_sched_out;
2237
2238 kvm_init_debug();
2239
2240 return 0;
2241
2242 out_free:
2243 kmem_cache_destroy(kvm_vcpu_cache);
2244 out_free_5:
2245 sysdev_unregister(&kvm_sysdev);
2246 out_free_4:
2247 sysdev_class_unregister(&kvm_sysdev_class);
2248 out_free_3:
2249 unregister_reboot_notifier(&kvm_reboot_notifier);
2250 unregister_cpu_notifier(&kvm_cpu_notifier);
2251 out_free_2:
2252 out_free_1:
2253 kvm_arch_hardware_unsetup();
2254 out_free_0a:
2255 free_cpumask_var(cpus_hardware_enabled);
2256 out_free_0:
2257 __free_page(bad_page);
2258 out:
2259 kvm_arch_exit();
2260 out_fail:
2261 return r;
2262 }
2263 EXPORT_SYMBOL_GPL(kvm_init);
2264
2265 void kvm_exit(void)
2266 {
2267 tracepoint_synchronize_unregister();
2268 kvm_exit_debug();
2269 misc_deregister(&kvm_dev);
2270 kmem_cache_destroy(kvm_vcpu_cache);
2271 sysdev_unregister(&kvm_sysdev);
2272 sysdev_class_unregister(&kvm_sysdev_class);
2273 unregister_reboot_notifier(&kvm_reboot_notifier);
2274 unregister_cpu_notifier(&kvm_cpu_notifier);
2275 on_each_cpu(hardware_disable, NULL, 1);
2276 kvm_arch_hardware_unsetup();
2277 kvm_arch_exit();
2278 free_cpumask_var(cpus_hardware_enabled);
2279 __free_page(bad_page);
2280 }
2281 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.183304 seconds and 5 git commands to generate.