KVM: Move ack notifier register and IRQ sourcd ID request
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44
45 #include <asm/processor.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
49
50 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
51 #include "coalesced_mmio.h"
52 #endif
53
54 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
55 #include <linux/pci.h>
56 #include <linux/interrupt.h>
57 #include "irq.h"
58 #endif
59
60 MODULE_AUTHOR("Qumranet");
61 MODULE_LICENSE("GPL");
62
63 DEFINE_SPINLOCK(kvm_lock);
64 LIST_HEAD(vm_list);
65
66 static cpumask_t cpus_hardware_enabled;
67
68 struct kmem_cache *kvm_vcpu_cache;
69 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
70
71 static __read_mostly struct preempt_ops kvm_preempt_ops;
72
73 struct dentry *kvm_debugfs_dir;
74
75 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
76 unsigned long arg);
77
78 bool kvm_rebooting;
79
80 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
81 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
82 int assigned_dev_id)
83 {
84 struct list_head *ptr;
85 struct kvm_assigned_dev_kernel *match;
86
87 list_for_each(ptr, head) {
88 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
89 if (match->assigned_dev_id == assigned_dev_id)
90 return match;
91 }
92 return NULL;
93 }
94
95 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
96 {
97 struct kvm_assigned_dev_kernel *assigned_dev;
98
99 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
100 interrupt_work);
101
102 /* This is taken to safely inject irq inside the guest. When
103 * the interrupt injection (or the ioapic code) uses a
104 * finer-grained lock, update this
105 */
106 mutex_lock(&assigned_dev->kvm->lock);
107 kvm_set_irq(assigned_dev->kvm,
108 assigned_dev->irq_source_id,
109 assigned_dev->guest_irq, 1);
110 mutex_unlock(&assigned_dev->kvm->lock);
111 kvm_put_kvm(assigned_dev->kvm);
112 }
113
114 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
115 {
116 struct kvm_assigned_dev_kernel *assigned_dev =
117 (struct kvm_assigned_dev_kernel *) dev_id;
118
119 kvm_get_kvm(assigned_dev->kvm);
120 schedule_work(&assigned_dev->interrupt_work);
121 disable_irq_nosync(irq);
122 return IRQ_HANDLED;
123 }
124
125 /* Ack the irq line for an assigned device */
126 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
127 {
128 struct kvm_assigned_dev_kernel *dev;
129
130 if (kian->gsi == -1)
131 return;
132
133 dev = container_of(kian, struct kvm_assigned_dev_kernel,
134 ack_notifier);
135 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
136 enable_irq(dev->host_irq);
137 }
138
139 static void kvm_free_assigned_device(struct kvm *kvm,
140 struct kvm_assigned_dev_kernel
141 *assigned_dev)
142 {
143 if (irqchip_in_kernel(kvm) && assigned_dev->irq_requested)
144 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
145
146 kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
147 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
148
149 if (cancel_work_sync(&assigned_dev->interrupt_work))
150 /* We had pending work. That means we will have to take
151 * care of kvm_put_kvm.
152 */
153 kvm_put_kvm(kvm);
154
155 pci_reset_function(assigned_dev->dev);
156
157 pci_release_regions(assigned_dev->dev);
158 pci_disable_device(assigned_dev->dev);
159 pci_dev_put(assigned_dev->dev);
160
161 list_del(&assigned_dev->list);
162 kfree(assigned_dev);
163 }
164
165 void kvm_free_all_assigned_devices(struct kvm *kvm)
166 {
167 struct list_head *ptr, *ptr2;
168 struct kvm_assigned_dev_kernel *assigned_dev;
169
170 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
171 assigned_dev = list_entry(ptr,
172 struct kvm_assigned_dev_kernel,
173 list);
174
175 kvm_free_assigned_device(kvm, assigned_dev);
176 }
177 }
178
179 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
180 struct kvm_assigned_irq
181 *assigned_irq)
182 {
183 int r = 0;
184 struct kvm_assigned_dev_kernel *match;
185
186 mutex_lock(&kvm->lock);
187
188 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
189 assigned_irq->assigned_dev_id);
190 if (!match) {
191 mutex_unlock(&kvm->lock);
192 return -EINVAL;
193 }
194
195 if (!match->irq_requested) {
196 INIT_WORK(&match->interrupt_work,
197 kvm_assigned_dev_interrupt_work_handler);
198 if (irqchip_in_kernel(kvm)) {
199 /* Register ack nofitier */
200 match->ack_notifier.gsi = -1;
201 match->ack_notifier.irq_acked =
202 kvm_assigned_dev_ack_irq;
203 kvm_register_irq_ack_notifier(kvm,
204 &match->ack_notifier);
205
206 /* Request IRQ source ID */
207 r = kvm_request_irq_source_id(kvm);
208 if (r < 0)
209 goto out_release;
210 else
211 match->irq_source_id = r;
212 }
213 } else {
214 match->guest_irq = assigned_irq->guest_irq;
215 match->ack_notifier.gsi = assigned_irq->guest_irq;
216 mutex_unlock(&kvm->lock);
217 return 0;
218 }
219
220 if (irqchip_in_kernel(kvm)) {
221 if (!capable(CAP_SYS_RAWIO)) {
222 r = -EPERM;
223 goto out_release;
224 }
225
226 if (assigned_irq->host_irq)
227 match->host_irq = assigned_irq->host_irq;
228 else
229 match->host_irq = match->dev->irq;
230 match->guest_irq = assigned_irq->guest_irq;
231 match->ack_notifier.gsi = assigned_irq->guest_irq;
232
233 /* Even though this is PCI, we don't want to use shared
234 * interrupts. Sharing host devices with guest-assigned devices
235 * on the same interrupt line is not a happy situation: there
236 * are going to be long delays in accepting, acking, etc.
237 */
238 if (request_irq(match->host_irq, kvm_assigned_dev_intr, 0,
239 "kvm_assigned_device", (void *)match)) {
240 r = -EIO;
241 goto out_release;
242 }
243 }
244
245 match->irq_requested = true;
246 mutex_unlock(&kvm->lock);
247 return r;
248 out_release:
249 mutex_unlock(&kvm->lock);
250 kvm_free_assigned_device(kvm, match);
251 return r;
252 }
253
254 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
255 struct kvm_assigned_pci_dev *assigned_dev)
256 {
257 int r = 0;
258 struct kvm_assigned_dev_kernel *match;
259 struct pci_dev *dev;
260
261 mutex_lock(&kvm->lock);
262
263 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
264 assigned_dev->assigned_dev_id);
265 if (match) {
266 /* device already assigned */
267 r = -EINVAL;
268 goto out;
269 }
270
271 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
272 if (match == NULL) {
273 printk(KERN_INFO "%s: Couldn't allocate memory\n",
274 __func__);
275 r = -ENOMEM;
276 goto out;
277 }
278 dev = pci_get_bus_and_slot(assigned_dev->busnr,
279 assigned_dev->devfn);
280 if (!dev) {
281 printk(KERN_INFO "%s: host device not found\n", __func__);
282 r = -EINVAL;
283 goto out_free;
284 }
285 if (pci_enable_device(dev)) {
286 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
287 r = -EBUSY;
288 goto out_put;
289 }
290 r = pci_request_regions(dev, "kvm_assigned_device");
291 if (r) {
292 printk(KERN_INFO "%s: Could not get access to device regions\n",
293 __func__);
294 goto out_disable;
295 }
296
297 pci_reset_function(dev);
298
299 match->assigned_dev_id = assigned_dev->assigned_dev_id;
300 match->host_busnr = assigned_dev->busnr;
301 match->host_devfn = assigned_dev->devfn;
302 match->dev = dev;
303
304 match->kvm = kvm;
305
306 list_add(&match->list, &kvm->arch.assigned_dev_head);
307
308 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
309 r = kvm_iommu_map_guest(kvm, match);
310 if (r)
311 goto out_list_del;
312 }
313
314 out:
315 mutex_unlock(&kvm->lock);
316 return r;
317 out_list_del:
318 list_del(&match->list);
319 pci_release_regions(dev);
320 out_disable:
321 pci_disable_device(dev);
322 out_put:
323 pci_dev_put(dev);
324 out_free:
325 kfree(match);
326 mutex_unlock(&kvm->lock);
327 return r;
328 }
329 #endif
330
331 static inline int valid_vcpu(int n)
332 {
333 return likely(n >= 0 && n < KVM_MAX_VCPUS);
334 }
335
336 inline int kvm_is_mmio_pfn(pfn_t pfn)
337 {
338 if (pfn_valid(pfn))
339 return PageReserved(pfn_to_page(pfn));
340
341 return true;
342 }
343
344 /*
345 * Switches to specified vcpu, until a matching vcpu_put()
346 */
347 void vcpu_load(struct kvm_vcpu *vcpu)
348 {
349 int cpu;
350
351 mutex_lock(&vcpu->mutex);
352 cpu = get_cpu();
353 preempt_notifier_register(&vcpu->preempt_notifier);
354 kvm_arch_vcpu_load(vcpu, cpu);
355 put_cpu();
356 }
357
358 void vcpu_put(struct kvm_vcpu *vcpu)
359 {
360 preempt_disable();
361 kvm_arch_vcpu_put(vcpu);
362 preempt_notifier_unregister(&vcpu->preempt_notifier);
363 preempt_enable();
364 mutex_unlock(&vcpu->mutex);
365 }
366
367 static void ack_flush(void *_completed)
368 {
369 }
370
371 void kvm_flush_remote_tlbs(struct kvm *kvm)
372 {
373 int i, cpu, me;
374 cpumask_t cpus;
375 struct kvm_vcpu *vcpu;
376
377 me = get_cpu();
378 cpus_clear(cpus);
379 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
380 vcpu = kvm->vcpus[i];
381 if (!vcpu)
382 continue;
383 if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
384 continue;
385 cpu = vcpu->cpu;
386 if (cpu != -1 && cpu != me)
387 cpu_set(cpu, cpus);
388 }
389 if (cpus_empty(cpus))
390 goto out;
391 ++kvm->stat.remote_tlb_flush;
392 smp_call_function_mask(cpus, ack_flush, NULL, 1);
393 out:
394 put_cpu();
395 }
396
397 void kvm_reload_remote_mmus(struct kvm *kvm)
398 {
399 int i, cpu, me;
400 cpumask_t cpus;
401 struct kvm_vcpu *vcpu;
402
403 me = get_cpu();
404 cpus_clear(cpus);
405 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
406 vcpu = kvm->vcpus[i];
407 if (!vcpu)
408 continue;
409 if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
410 continue;
411 cpu = vcpu->cpu;
412 if (cpu != -1 && cpu != me)
413 cpu_set(cpu, cpus);
414 }
415 if (cpus_empty(cpus))
416 goto out;
417 smp_call_function_mask(cpus, ack_flush, NULL, 1);
418 out:
419 put_cpu();
420 }
421
422
423 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
424 {
425 struct page *page;
426 int r;
427
428 mutex_init(&vcpu->mutex);
429 vcpu->cpu = -1;
430 vcpu->kvm = kvm;
431 vcpu->vcpu_id = id;
432 init_waitqueue_head(&vcpu->wq);
433
434 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
435 if (!page) {
436 r = -ENOMEM;
437 goto fail;
438 }
439 vcpu->run = page_address(page);
440
441 r = kvm_arch_vcpu_init(vcpu);
442 if (r < 0)
443 goto fail_free_run;
444 return 0;
445
446 fail_free_run:
447 free_page((unsigned long)vcpu->run);
448 fail:
449 return r;
450 }
451 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
452
453 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
454 {
455 kvm_arch_vcpu_uninit(vcpu);
456 free_page((unsigned long)vcpu->run);
457 }
458 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
459
460 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
461 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
462 {
463 return container_of(mn, struct kvm, mmu_notifier);
464 }
465
466 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
467 struct mm_struct *mm,
468 unsigned long address)
469 {
470 struct kvm *kvm = mmu_notifier_to_kvm(mn);
471 int need_tlb_flush;
472
473 /*
474 * When ->invalidate_page runs, the linux pte has been zapped
475 * already but the page is still allocated until
476 * ->invalidate_page returns. So if we increase the sequence
477 * here the kvm page fault will notice if the spte can't be
478 * established because the page is going to be freed. If
479 * instead the kvm page fault establishes the spte before
480 * ->invalidate_page runs, kvm_unmap_hva will release it
481 * before returning.
482 *
483 * The sequence increase only need to be seen at spin_unlock
484 * time, and not at spin_lock time.
485 *
486 * Increasing the sequence after the spin_unlock would be
487 * unsafe because the kvm page fault could then establish the
488 * pte after kvm_unmap_hva returned, without noticing the page
489 * is going to be freed.
490 */
491 spin_lock(&kvm->mmu_lock);
492 kvm->mmu_notifier_seq++;
493 need_tlb_flush = kvm_unmap_hva(kvm, address);
494 spin_unlock(&kvm->mmu_lock);
495
496 /* we've to flush the tlb before the pages can be freed */
497 if (need_tlb_flush)
498 kvm_flush_remote_tlbs(kvm);
499
500 }
501
502 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
503 struct mm_struct *mm,
504 unsigned long start,
505 unsigned long end)
506 {
507 struct kvm *kvm = mmu_notifier_to_kvm(mn);
508 int need_tlb_flush = 0;
509
510 spin_lock(&kvm->mmu_lock);
511 /*
512 * The count increase must become visible at unlock time as no
513 * spte can be established without taking the mmu_lock and
514 * count is also read inside the mmu_lock critical section.
515 */
516 kvm->mmu_notifier_count++;
517 for (; start < end; start += PAGE_SIZE)
518 need_tlb_flush |= kvm_unmap_hva(kvm, start);
519 spin_unlock(&kvm->mmu_lock);
520
521 /* we've to flush the tlb before the pages can be freed */
522 if (need_tlb_flush)
523 kvm_flush_remote_tlbs(kvm);
524 }
525
526 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
527 struct mm_struct *mm,
528 unsigned long start,
529 unsigned long end)
530 {
531 struct kvm *kvm = mmu_notifier_to_kvm(mn);
532
533 spin_lock(&kvm->mmu_lock);
534 /*
535 * This sequence increase will notify the kvm page fault that
536 * the page that is going to be mapped in the spte could have
537 * been freed.
538 */
539 kvm->mmu_notifier_seq++;
540 /*
541 * The above sequence increase must be visible before the
542 * below count decrease but both values are read by the kvm
543 * page fault under mmu_lock spinlock so we don't need to add
544 * a smb_wmb() here in between the two.
545 */
546 kvm->mmu_notifier_count--;
547 spin_unlock(&kvm->mmu_lock);
548
549 BUG_ON(kvm->mmu_notifier_count < 0);
550 }
551
552 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
553 struct mm_struct *mm,
554 unsigned long address)
555 {
556 struct kvm *kvm = mmu_notifier_to_kvm(mn);
557 int young;
558
559 spin_lock(&kvm->mmu_lock);
560 young = kvm_age_hva(kvm, address);
561 spin_unlock(&kvm->mmu_lock);
562
563 if (young)
564 kvm_flush_remote_tlbs(kvm);
565
566 return young;
567 }
568
569 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
570 .invalidate_page = kvm_mmu_notifier_invalidate_page,
571 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
572 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
573 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
574 };
575 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
576
577 static struct kvm *kvm_create_vm(void)
578 {
579 struct kvm *kvm = kvm_arch_create_vm();
580 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
581 struct page *page;
582 #endif
583
584 if (IS_ERR(kvm))
585 goto out;
586
587 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
588 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
589 if (!page) {
590 kfree(kvm);
591 return ERR_PTR(-ENOMEM);
592 }
593 kvm->coalesced_mmio_ring =
594 (struct kvm_coalesced_mmio_ring *)page_address(page);
595 #endif
596
597 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
598 {
599 int err;
600 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
601 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
602 if (err) {
603 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
604 put_page(page);
605 #endif
606 kfree(kvm);
607 return ERR_PTR(err);
608 }
609 }
610 #endif
611
612 kvm->mm = current->mm;
613 atomic_inc(&kvm->mm->mm_count);
614 spin_lock_init(&kvm->mmu_lock);
615 kvm_io_bus_init(&kvm->pio_bus);
616 mutex_init(&kvm->lock);
617 kvm_io_bus_init(&kvm->mmio_bus);
618 init_rwsem(&kvm->slots_lock);
619 atomic_set(&kvm->users_count, 1);
620 spin_lock(&kvm_lock);
621 list_add(&kvm->vm_list, &vm_list);
622 spin_unlock(&kvm_lock);
623 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
624 kvm_coalesced_mmio_init(kvm);
625 #endif
626 out:
627 return kvm;
628 }
629
630 /*
631 * Free any memory in @free but not in @dont.
632 */
633 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
634 struct kvm_memory_slot *dont)
635 {
636 if (!dont || free->rmap != dont->rmap)
637 vfree(free->rmap);
638
639 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
640 vfree(free->dirty_bitmap);
641
642 if (!dont || free->lpage_info != dont->lpage_info)
643 vfree(free->lpage_info);
644
645 free->npages = 0;
646 free->dirty_bitmap = NULL;
647 free->rmap = NULL;
648 free->lpage_info = NULL;
649 }
650
651 void kvm_free_physmem(struct kvm *kvm)
652 {
653 int i;
654
655 for (i = 0; i < kvm->nmemslots; ++i)
656 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
657 }
658
659 static void kvm_destroy_vm(struct kvm *kvm)
660 {
661 struct mm_struct *mm = kvm->mm;
662
663 spin_lock(&kvm_lock);
664 list_del(&kvm->vm_list);
665 spin_unlock(&kvm_lock);
666 kvm_io_bus_destroy(&kvm->pio_bus);
667 kvm_io_bus_destroy(&kvm->mmio_bus);
668 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
669 if (kvm->coalesced_mmio_ring != NULL)
670 free_page((unsigned long)kvm->coalesced_mmio_ring);
671 #endif
672 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
673 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
674 #endif
675 kvm_arch_destroy_vm(kvm);
676 mmdrop(mm);
677 }
678
679 void kvm_get_kvm(struct kvm *kvm)
680 {
681 atomic_inc(&kvm->users_count);
682 }
683 EXPORT_SYMBOL_GPL(kvm_get_kvm);
684
685 void kvm_put_kvm(struct kvm *kvm)
686 {
687 if (atomic_dec_and_test(&kvm->users_count))
688 kvm_destroy_vm(kvm);
689 }
690 EXPORT_SYMBOL_GPL(kvm_put_kvm);
691
692
693 static int kvm_vm_release(struct inode *inode, struct file *filp)
694 {
695 struct kvm *kvm = filp->private_data;
696
697 kvm_put_kvm(kvm);
698 return 0;
699 }
700
701 /*
702 * Allocate some memory and give it an address in the guest physical address
703 * space.
704 *
705 * Discontiguous memory is allowed, mostly for framebuffers.
706 *
707 * Must be called holding mmap_sem for write.
708 */
709 int __kvm_set_memory_region(struct kvm *kvm,
710 struct kvm_userspace_memory_region *mem,
711 int user_alloc)
712 {
713 int r;
714 gfn_t base_gfn;
715 unsigned long npages;
716 unsigned long i;
717 struct kvm_memory_slot *memslot;
718 struct kvm_memory_slot old, new;
719
720 r = -EINVAL;
721 /* General sanity checks */
722 if (mem->memory_size & (PAGE_SIZE - 1))
723 goto out;
724 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
725 goto out;
726 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
727 goto out;
728 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
729 goto out;
730 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
731 goto out;
732
733 memslot = &kvm->memslots[mem->slot];
734 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
735 npages = mem->memory_size >> PAGE_SHIFT;
736
737 if (!npages)
738 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
739
740 new = old = *memslot;
741
742 new.base_gfn = base_gfn;
743 new.npages = npages;
744 new.flags = mem->flags;
745
746 /* Disallow changing a memory slot's size. */
747 r = -EINVAL;
748 if (npages && old.npages && npages != old.npages)
749 goto out_free;
750
751 /* Check for overlaps */
752 r = -EEXIST;
753 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
754 struct kvm_memory_slot *s = &kvm->memslots[i];
755
756 if (s == memslot)
757 continue;
758 if (!((base_gfn + npages <= s->base_gfn) ||
759 (base_gfn >= s->base_gfn + s->npages)))
760 goto out_free;
761 }
762
763 /* Free page dirty bitmap if unneeded */
764 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
765 new.dirty_bitmap = NULL;
766
767 r = -ENOMEM;
768
769 /* Allocate if a slot is being created */
770 #ifndef CONFIG_S390
771 if (npages && !new.rmap) {
772 new.rmap = vmalloc(npages * sizeof(struct page *));
773
774 if (!new.rmap)
775 goto out_free;
776
777 memset(new.rmap, 0, npages * sizeof(*new.rmap));
778
779 new.user_alloc = user_alloc;
780 /*
781 * hva_to_rmmap() serialzies with the mmu_lock and to be
782 * safe it has to ignore memslots with !user_alloc &&
783 * !userspace_addr.
784 */
785 if (user_alloc)
786 new.userspace_addr = mem->userspace_addr;
787 else
788 new.userspace_addr = 0;
789 }
790 if (npages && !new.lpage_info) {
791 int largepages = npages / KVM_PAGES_PER_HPAGE;
792 if (npages % KVM_PAGES_PER_HPAGE)
793 largepages++;
794 if (base_gfn % KVM_PAGES_PER_HPAGE)
795 largepages++;
796
797 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
798
799 if (!new.lpage_info)
800 goto out_free;
801
802 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
803
804 if (base_gfn % KVM_PAGES_PER_HPAGE)
805 new.lpage_info[0].write_count = 1;
806 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
807 new.lpage_info[largepages-1].write_count = 1;
808 }
809
810 /* Allocate page dirty bitmap if needed */
811 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
812 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
813
814 new.dirty_bitmap = vmalloc(dirty_bytes);
815 if (!new.dirty_bitmap)
816 goto out_free;
817 memset(new.dirty_bitmap, 0, dirty_bytes);
818 }
819 #endif /* not defined CONFIG_S390 */
820
821 if (!npages)
822 kvm_arch_flush_shadow(kvm);
823
824 spin_lock(&kvm->mmu_lock);
825 if (mem->slot >= kvm->nmemslots)
826 kvm->nmemslots = mem->slot + 1;
827
828 *memslot = new;
829 spin_unlock(&kvm->mmu_lock);
830
831 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
832 if (r) {
833 spin_lock(&kvm->mmu_lock);
834 *memslot = old;
835 spin_unlock(&kvm->mmu_lock);
836 goto out_free;
837 }
838
839 kvm_free_physmem_slot(&old, &new);
840 #ifdef CONFIG_DMAR
841 /* map the pages in iommu page table */
842 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
843 if (r)
844 goto out;
845 #endif
846 return 0;
847
848 out_free:
849 kvm_free_physmem_slot(&new, &old);
850 out:
851 return r;
852
853 }
854 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
855
856 int kvm_set_memory_region(struct kvm *kvm,
857 struct kvm_userspace_memory_region *mem,
858 int user_alloc)
859 {
860 int r;
861
862 down_write(&kvm->slots_lock);
863 r = __kvm_set_memory_region(kvm, mem, user_alloc);
864 up_write(&kvm->slots_lock);
865 return r;
866 }
867 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
868
869 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
870 struct
871 kvm_userspace_memory_region *mem,
872 int user_alloc)
873 {
874 if (mem->slot >= KVM_MEMORY_SLOTS)
875 return -EINVAL;
876 return kvm_set_memory_region(kvm, mem, user_alloc);
877 }
878
879 int kvm_get_dirty_log(struct kvm *kvm,
880 struct kvm_dirty_log *log, int *is_dirty)
881 {
882 struct kvm_memory_slot *memslot;
883 int r, i;
884 int n;
885 unsigned long any = 0;
886
887 r = -EINVAL;
888 if (log->slot >= KVM_MEMORY_SLOTS)
889 goto out;
890
891 memslot = &kvm->memslots[log->slot];
892 r = -ENOENT;
893 if (!memslot->dirty_bitmap)
894 goto out;
895
896 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
897
898 for (i = 0; !any && i < n/sizeof(long); ++i)
899 any = memslot->dirty_bitmap[i];
900
901 r = -EFAULT;
902 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
903 goto out;
904
905 if (any)
906 *is_dirty = 1;
907
908 r = 0;
909 out:
910 return r;
911 }
912
913 int is_error_page(struct page *page)
914 {
915 return page == bad_page;
916 }
917 EXPORT_SYMBOL_GPL(is_error_page);
918
919 int is_error_pfn(pfn_t pfn)
920 {
921 return pfn == bad_pfn;
922 }
923 EXPORT_SYMBOL_GPL(is_error_pfn);
924
925 static inline unsigned long bad_hva(void)
926 {
927 return PAGE_OFFSET;
928 }
929
930 int kvm_is_error_hva(unsigned long addr)
931 {
932 return addr == bad_hva();
933 }
934 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
935
936 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
937 {
938 int i;
939
940 for (i = 0; i < kvm->nmemslots; ++i) {
941 struct kvm_memory_slot *memslot = &kvm->memslots[i];
942
943 if (gfn >= memslot->base_gfn
944 && gfn < memslot->base_gfn + memslot->npages)
945 return memslot;
946 }
947 return NULL;
948 }
949 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
950
951 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
952 {
953 gfn = unalias_gfn(kvm, gfn);
954 return gfn_to_memslot_unaliased(kvm, gfn);
955 }
956
957 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
958 {
959 int i;
960
961 gfn = unalias_gfn(kvm, gfn);
962 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
963 struct kvm_memory_slot *memslot = &kvm->memslots[i];
964
965 if (gfn >= memslot->base_gfn
966 && gfn < memslot->base_gfn + memslot->npages)
967 return 1;
968 }
969 return 0;
970 }
971 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
972
973 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
974 {
975 struct kvm_memory_slot *slot;
976
977 gfn = unalias_gfn(kvm, gfn);
978 slot = gfn_to_memslot_unaliased(kvm, gfn);
979 if (!slot)
980 return bad_hva();
981 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
982 }
983 EXPORT_SYMBOL_GPL(gfn_to_hva);
984
985 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
986 {
987 struct page *page[1];
988 unsigned long addr;
989 int npages;
990 pfn_t pfn;
991
992 might_sleep();
993
994 addr = gfn_to_hva(kvm, gfn);
995 if (kvm_is_error_hva(addr)) {
996 get_page(bad_page);
997 return page_to_pfn(bad_page);
998 }
999
1000 npages = get_user_pages_fast(addr, 1, 1, page);
1001
1002 if (unlikely(npages != 1)) {
1003 struct vm_area_struct *vma;
1004
1005 down_read(&current->mm->mmap_sem);
1006 vma = find_vma(current->mm, addr);
1007
1008 if (vma == NULL || addr < vma->vm_start ||
1009 !(vma->vm_flags & VM_PFNMAP)) {
1010 up_read(&current->mm->mmap_sem);
1011 get_page(bad_page);
1012 return page_to_pfn(bad_page);
1013 }
1014
1015 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1016 up_read(&current->mm->mmap_sem);
1017 BUG_ON(!kvm_is_mmio_pfn(pfn));
1018 } else
1019 pfn = page_to_pfn(page[0]);
1020
1021 return pfn;
1022 }
1023
1024 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1025
1026 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1027 {
1028 pfn_t pfn;
1029
1030 pfn = gfn_to_pfn(kvm, gfn);
1031 if (!kvm_is_mmio_pfn(pfn))
1032 return pfn_to_page(pfn);
1033
1034 WARN_ON(kvm_is_mmio_pfn(pfn));
1035
1036 get_page(bad_page);
1037 return bad_page;
1038 }
1039
1040 EXPORT_SYMBOL_GPL(gfn_to_page);
1041
1042 void kvm_release_page_clean(struct page *page)
1043 {
1044 kvm_release_pfn_clean(page_to_pfn(page));
1045 }
1046 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1047
1048 void kvm_release_pfn_clean(pfn_t pfn)
1049 {
1050 if (!kvm_is_mmio_pfn(pfn))
1051 put_page(pfn_to_page(pfn));
1052 }
1053 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1054
1055 void kvm_release_page_dirty(struct page *page)
1056 {
1057 kvm_release_pfn_dirty(page_to_pfn(page));
1058 }
1059 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1060
1061 void kvm_release_pfn_dirty(pfn_t pfn)
1062 {
1063 kvm_set_pfn_dirty(pfn);
1064 kvm_release_pfn_clean(pfn);
1065 }
1066 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1067
1068 void kvm_set_page_dirty(struct page *page)
1069 {
1070 kvm_set_pfn_dirty(page_to_pfn(page));
1071 }
1072 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1073
1074 void kvm_set_pfn_dirty(pfn_t pfn)
1075 {
1076 if (!kvm_is_mmio_pfn(pfn)) {
1077 struct page *page = pfn_to_page(pfn);
1078 if (!PageReserved(page))
1079 SetPageDirty(page);
1080 }
1081 }
1082 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1083
1084 void kvm_set_pfn_accessed(pfn_t pfn)
1085 {
1086 if (!kvm_is_mmio_pfn(pfn))
1087 mark_page_accessed(pfn_to_page(pfn));
1088 }
1089 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1090
1091 void kvm_get_pfn(pfn_t pfn)
1092 {
1093 if (!kvm_is_mmio_pfn(pfn))
1094 get_page(pfn_to_page(pfn));
1095 }
1096 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1097
1098 static int next_segment(unsigned long len, int offset)
1099 {
1100 if (len > PAGE_SIZE - offset)
1101 return PAGE_SIZE - offset;
1102 else
1103 return len;
1104 }
1105
1106 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1107 int len)
1108 {
1109 int r;
1110 unsigned long addr;
1111
1112 addr = gfn_to_hva(kvm, gfn);
1113 if (kvm_is_error_hva(addr))
1114 return -EFAULT;
1115 r = copy_from_user(data, (void __user *)addr + offset, len);
1116 if (r)
1117 return -EFAULT;
1118 return 0;
1119 }
1120 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1121
1122 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1123 {
1124 gfn_t gfn = gpa >> PAGE_SHIFT;
1125 int seg;
1126 int offset = offset_in_page(gpa);
1127 int ret;
1128
1129 while ((seg = next_segment(len, offset)) != 0) {
1130 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1131 if (ret < 0)
1132 return ret;
1133 offset = 0;
1134 len -= seg;
1135 data += seg;
1136 ++gfn;
1137 }
1138 return 0;
1139 }
1140 EXPORT_SYMBOL_GPL(kvm_read_guest);
1141
1142 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1143 unsigned long len)
1144 {
1145 int r;
1146 unsigned long addr;
1147 gfn_t gfn = gpa >> PAGE_SHIFT;
1148 int offset = offset_in_page(gpa);
1149
1150 addr = gfn_to_hva(kvm, gfn);
1151 if (kvm_is_error_hva(addr))
1152 return -EFAULT;
1153 pagefault_disable();
1154 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1155 pagefault_enable();
1156 if (r)
1157 return -EFAULT;
1158 return 0;
1159 }
1160 EXPORT_SYMBOL(kvm_read_guest_atomic);
1161
1162 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1163 int offset, int len)
1164 {
1165 int r;
1166 unsigned long addr;
1167
1168 addr = gfn_to_hva(kvm, gfn);
1169 if (kvm_is_error_hva(addr))
1170 return -EFAULT;
1171 r = copy_to_user((void __user *)addr + offset, data, len);
1172 if (r)
1173 return -EFAULT;
1174 mark_page_dirty(kvm, gfn);
1175 return 0;
1176 }
1177 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1178
1179 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1180 unsigned long len)
1181 {
1182 gfn_t gfn = gpa >> PAGE_SHIFT;
1183 int seg;
1184 int offset = offset_in_page(gpa);
1185 int ret;
1186
1187 while ((seg = next_segment(len, offset)) != 0) {
1188 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1189 if (ret < 0)
1190 return ret;
1191 offset = 0;
1192 len -= seg;
1193 data += seg;
1194 ++gfn;
1195 }
1196 return 0;
1197 }
1198
1199 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1200 {
1201 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1202 }
1203 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1204
1205 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1206 {
1207 gfn_t gfn = gpa >> PAGE_SHIFT;
1208 int seg;
1209 int offset = offset_in_page(gpa);
1210 int ret;
1211
1212 while ((seg = next_segment(len, offset)) != 0) {
1213 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1214 if (ret < 0)
1215 return ret;
1216 offset = 0;
1217 len -= seg;
1218 ++gfn;
1219 }
1220 return 0;
1221 }
1222 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1223
1224 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1225 {
1226 struct kvm_memory_slot *memslot;
1227
1228 gfn = unalias_gfn(kvm, gfn);
1229 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1230 if (memslot && memslot->dirty_bitmap) {
1231 unsigned long rel_gfn = gfn - memslot->base_gfn;
1232
1233 /* avoid RMW */
1234 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1235 set_bit(rel_gfn, memslot->dirty_bitmap);
1236 }
1237 }
1238
1239 /*
1240 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1241 */
1242 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1243 {
1244 DEFINE_WAIT(wait);
1245
1246 for (;;) {
1247 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1248
1249 if (kvm_cpu_has_interrupt(vcpu) ||
1250 kvm_cpu_has_pending_timer(vcpu) ||
1251 kvm_arch_vcpu_runnable(vcpu)) {
1252 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1253 break;
1254 }
1255 if (signal_pending(current))
1256 break;
1257
1258 vcpu_put(vcpu);
1259 schedule();
1260 vcpu_load(vcpu);
1261 }
1262
1263 finish_wait(&vcpu->wq, &wait);
1264 }
1265
1266 void kvm_resched(struct kvm_vcpu *vcpu)
1267 {
1268 if (!need_resched())
1269 return;
1270 cond_resched();
1271 }
1272 EXPORT_SYMBOL_GPL(kvm_resched);
1273
1274 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1275 {
1276 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1277 struct page *page;
1278
1279 if (vmf->pgoff == 0)
1280 page = virt_to_page(vcpu->run);
1281 #ifdef CONFIG_X86
1282 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1283 page = virt_to_page(vcpu->arch.pio_data);
1284 #endif
1285 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1286 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1287 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1288 #endif
1289 else
1290 return VM_FAULT_SIGBUS;
1291 get_page(page);
1292 vmf->page = page;
1293 return 0;
1294 }
1295
1296 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1297 .fault = kvm_vcpu_fault,
1298 };
1299
1300 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1301 {
1302 vma->vm_ops = &kvm_vcpu_vm_ops;
1303 return 0;
1304 }
1305
1306 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1307 {
1308 struct kvm_vcpu *vcpu = filp->private_data;
1309
1310 kvm_put_kvm(vcpu->kvm);
1311 return 0;
1312 }
1313
1314 static const struct file_operations kvm_vcpu_fops = {
1315 .release = kvm_vcpu_release,
1316 .unlocked_ioctl = kvm_vcpu_ioctl,
1317 .compat_ioctl = kvm_vcpu_ioctl,
1318 .mmap = kvm_vcpu_mmap,
1319 };
1320
1321 /*
1322 * Allocates an inode for the vcpu.
1323 */
1324 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1325 {
1326 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1327 if (fd < 0)
1328 kvm_put_kvm(vcpu->kvm);
1329 return fd;
1330 }
1331
1332 /*
1333 * Creates some virtual cpus. Good luck creating more than one.
1334 */
1335 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1336 {
1337 int r;
1338 struct kvm_vcpu *vcpu;
1339
1340 if (!valid_vcpu(n))
1341 return -EINVAL;
1342
1343 vcpu = kvm_arch_vcpu_create(kvm, n);
1344 if (IS_ERR(vcpu))
1345 return PTR_ERR(vcpu);
1346
1347 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1348
1349 r = kvm_arch_vcpu_setup(vcpu);
1350 if (r)
1351 return r;
1352
1353 mutex_lock(&kvm->lock);
1354 if (kvm->vcpus[n]) {
1355 r = -EEXIST;
1356 goto vcpu_destroy;
1357 }
1358 kvm->vcpus[n] = vcpu;
1359 mutex_unlock(&kvm->lock);
1360
1361 /* Now it's all set up, let userspace reach it */
1362 kvm_get_kvm(kvm);
1363 r = create_vcpu_fd(vcpu);
1364 if (r < 0)
1365 goto unlink;
1366 return r;
1367
1368 unlink:
1369 mutex_lock(&kvm->lock);
1370 kvm->vcpus[n] = NULL;
1371 vcpu_destroy:
1372 mutex_unlock(&kvm->lock);
1373 kvm_arch_vcpu_destroy(vcpu);
1374 return r;
1375 }
1376
1377 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1378 {
1379 if (sigset) {
1380 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1381 vcpu->sigset_active = 1;
1382 vcpu->sigset = *sigset;
1383 } else
1384 vcpu->sigset_active = 0;
1385 return 0;
1386 }
1387
1388 static long kvm_vcpu_ioctl(struct file *filp,
1389 unsigned int ioctl, unsigned long arg)
1390 {
1391 struct kvm_vcpu *vcpu = filp->private_data;
1392 void __user *argp = (void __user *)arg;
1393 int r;
1394 struct kvm_fpu *fpu = NULL;
1395 struct kvm_sregs *kvm_sregs = NULL;
1396
1397 if (vcpu->kvm->mm != current->mm)
1398 return -EIO;
1399 switch (ioctl) {
1400 case KVM_RUN:
1401 r = -EINVAL;
1402 if (arg)
1403 goto out;
1404 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1405 break;
1406 case KVM_GET_REGS: {
1407 struct kvm_regs *kvm_regs;
1408
1409 r = -ENOMEM;
1410 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1411 if (!kvm_regs)
1412 goto out;
1413 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1414 if (r)
1415 goto out_free1;
1416 r = -EFAULT;
1417 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1418 goto out_free1;
1419 r = 0;
1420 out_free1:
1421 kfree(kvm_regs);
1422 break;
1423 }
1424 case KVM_SET_REGS: {
1425 struct kvm_regs *kvm_regs;
1426
1427 r = -ENOMEM;
1428 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1429 if (!kvm_regs)
1430 goto out;
1431 r = -EFAULT;
1432 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1433 goto out_free2;
1434 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1435 if (r)
1436 goto out_free2;
1437 r = 0;
1438 out_free2:
1439 kfree(kvm_regs);
1440 break;
1441 }
1442 case KVM_GET_SREGS: {
1443 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1444 r = -ENOMEM;
1445 if (!kvm_sregs)
1446 goto out;
1447 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1448 if (r)
1449 goto out;
1450 r = -EFAULT;
1451 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1452 goto out;
1453 r = 0;
1454 break;
1455 }
1456 case KVM_SET_SREGS: {
1457 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1458 r = -ENOMEM;
1459 if (!kvm_sregs)
1460 goto out;
1461 r = -EFAULT;
1462 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1463 goto out;
1464 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1465 if (r)
1466 goto out;
1467 r = 0;
1468 break;
1469 }
1470 case KVM_GET_MP_STATE: {
1471 struct kvm_mp_state mp_state;
1472
1473 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1474 if (r)
1475 goto out;
1476 r = -EFAULT;
1477 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1478 goto out;
1479 r = 0;
1480 break;
1481 }
1482 case KVM_SET_MP_STATE: {
1483 struct kvm_mp_state mp_state;
1484
1485 r = -EFAULT;
1486 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1487 goto out;
1488 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1489 if (r)
1490 goto out;
1491 r = 0;
1492 break;
1493 }
1494 case KVM_TRANSLATE: {
1495 struct kvm_translation tr;
1496
1497 r = -EFAULT;
1498 if (copy_from_user(&tr, argp, sizeof tr))
1499 goto out;
1500 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1501 if (r)
1502 goto out;
1503 r = -EFAULT;
1504 if (copy_to_user(argp, &tr, sizeof tr))
1505 goto out;
1506 r = 0;
1507 break;
1508 }
1509 case KVM_DEBUG_GUEST: {
1510 struct kvm_debug_guest dbg;
1511
1512 r = -EFAULT;
1513 if (copy_from_user(&dbg, argp, sizeof dbg))
1514 goto out;
1515 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
1516 if (r)
1517 goto out;
1518 r = 0;
1519 break;
1520 }
1521 case KVM_SET_SIGNAL_MASK: {
1522 struct kvm_signal_mask __user *sigmask_arg = argp;
1523 struct kvm_signal_mask kvm_sigmask;
1524 sigset_t sigset, *p;
1525
1526 p = NULL;
1527 if (argp) {
1528 r = -EFAULT;
1529 if (copy_from_user(&kvm_sigmask, argp,
1530 sizeof kvm_sigmask))
1531 goto out;
1532 r = -EINVAL;
1533 if (kvm_sigmask.len != sizeof sigset)
1534 goto out;
1535 r = -EFAULT;
1536 if (copy_from_user(&sigset, sigmask_arg->sigset,
1537 sizeof sigset))
1538 goto out;
1539 p = &sigset;
1540 }
1541 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1542 break;
1543 }
1544 case KVM_GET_FPU: {
1545 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1546 r = -ENOMEM;
1547 if (!fpu)
1548 goto out;
1549 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1550 if (r)
1551 goto out;
1552 r = -EFAULT;
1553 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1554 goto out;
1555 r = 0;
1556 break;
1557 }
1558 case KVM_SET_FPU: {
1559 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1560 r = -ENOMEM;
1561 if (!fpu)
1562 goto out;
1563 r = -EFAULT;
1564 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1565 goto out;
1566 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1567 if (r)
1568 goto out;
1569 r = 0;
1570 break;
1571 }
1572 default:
1573 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1574 }
1575 out:
1576 kfree(fpu);
1577 kfree(kvm_sregs);
1578 return r;
1579 }
1580
1581 static long kvm_vm_ioctl(struct file *filp,
1582 unsigned int ioctl, unsigned long arg)
1583 {
1584 struct kvm *kvm = filp->private_data;
1585 void __user *argp = (void __user *)arg;
1586 int r;
1587
1588 if (kvm->mm != current->mm)
1589 return -EIO;
1590 switch (ioctl) {
1591 case KVM_CREATE_VCPU:
1592 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1593 if (r < 0)
1594 goto out;
1595 break;
1596 case KVM_SET_USER_MEMORY_REGION: {
1597 struct kvm_userspace_memory_region kvm_userspace_mem;
1598
1599 r = -EFAULT;
1600 if (copy_from_user(&kvm_userspace_mem, argp,
1601 sizeof kvm_userspace_mem))
1602 goto out;
1603
1604 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1605 if (r)
1606 goto out;
1607 break;
1608 }
1609 case KVM_GET_DIRTY_LOG: {
1610 struct kvm_dirty_log log;
1611
1612 r = -EFAULT;
1613 if (copy_from_user(&log, argp, sizeof log))
1614 goto out;
1615 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1616 if (r)
1617 goto out;
1618 break;
1619 }
1620 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1621 case KVM_REGISTER_COALESCED_MMIO: {
1622 struct kvm_coalesced_mmio_zone zone;
1623 r = -EFAULT;
1624 if (copy_from_user(&zone, argp, sizeof zone))
1625 goto out;
1626 r = -ENXIO;
1627 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1628 if (r)
1629 goto out;
1630 r = 0;
1631 break;
1632 }
1633 case KVM_UNREGISTER_COALESCED_MMIO: {
1634 struct kvm_coalesced_mmio_zone zone;
1635 r = -EFAULT;
1636 if (copy_from_user(&zone, argp, sizeof zone))
1637 goto out;
1638 r = -ENXIO;
1639 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1640 if (r)
1641 goto out;
1642 r = 0;
1643 break;
1644 }
1645 #endif
1646 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1647 case KVM_ASSIGN_PCI_DEVICE: {
1648 struct kvm_assigned_pci_dev assigned_dev;
1649
1650 r = -EFAULT;
1651 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1652 goto out;
1653 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
1654 if (r)
1655 goto out;
1656 break;
1657 }
1658 case KVM_ASSIGN_IRQ: {
1659 struct kvm_assigned_irq assigned_irq;
1660
1661 r = -EFAULT;
1662 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
1663 goto out;
1664 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
1665 if (r)
1666 goto out;
1667 break;
1668 }
1669 #endif
1670 default:
1671 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1672 }
1673 out:
1674 return r;
1675 }
1676
1677 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1678 {
1679 struct page *page[1];
1680 unsigned long addr;
1681 int npages;
1682 gfn_t gfn = vmf->pgoff;
1683 struct kvm *kvm = vma->vm_file->private_data;
1684
1685 addr = gfn_to_hva(kvm, gfn);
1686 if (kvm_is_error_hva(addr))
1687 return VM_FAULT_SIGBUS;
1688
1689 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1690 NULL);
1691 if (unlikely(npages != 1))
1692 return VM_FAULT_SIGBUS;
1693
1694 vmf->page = page[0];
1695 return 0;
1696 }
1697
1698 static struct vm_operations_struct kvm_vm_vm_ops = {
1699 .fault = kvm_vm_fault,
1700 };
1701
1702 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1703 {
1704 vma->vm_ops = &kvm_vm_vm_ops;
1705 return 0;
1706 }
1707
1708 static const struct file_operations kvm_vm_fops = {
1709 .release = kvm_vm_release,
1710 .unlocked_ioctl = kvm_vm_ioctl,
1711 .compat_ioctl = kvm_vm_ioctl,
1712 .mmap = kvm_vm_mmap,
1713 };
1714
1715 static int kvm_dev_ioctl_create_vm(void)
1716 {
1717 int fd;
1718 struct kvm *kvm;
1719
1720 kvm = kvm_create_vm();
1721 if (IS_ERR(kvm))
1722 return PTR_ERR(kvm);
1723 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
1724 if (fd < 0)
1725 kvm_put_kvm(kvm);
1726
1727 return fd;
1728 }
1729
1730 static long kvm_dev_ioctl(struct file *filp,
1731 unsigned int ioctl, unsigned long arg)
1732 {
1733 long r = -EINVAL;
1734
1735 switch (ioctl) {
1736 case KVM_GET_API_VERSION:
1737 r = -EINVAL;
1738 if (arg)
1739 goto out;
1740 r = KVM_API_VERSION;
1741 break;
1742 case KVM_CREATE_VM:
1743 r = -EINVAL;
1744 if (arg)
1745 goto out;
1746 r = kvm_dev_ioctl_create_vm();
1747 break;
1748 case KVM_CHECK_EXTENSION:
1749 r = kvm_dev_ioctl_check_extension(arg);
1750 break;
1751 case KVM_GET_VCPU_MMAP_SIZE:
1752 r = -EINVAL;
1753 if (arg)
1754 goto out;
1755 r = PAGE_SIZE; /* struct kvm_run */
1756 #ifdef CONFIG_X86
1757 r += PAGE_SIZE; /* pio data page */
1758 #endif
1759 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1760 r += PAGE_SIZE; /* coalesced mmio ring page */
1761 #endif
1762 break;
1763 case KVM_TRACE_ENABLE:
1764 case KVM_TRACE_PAUSE:
1765 case KVM_TRACE_DISABLE:
1766 r = kvm_trace_ioctl(ioctl, arg);
1767 break;
1768 default:
1769 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1770 }
1771 out:
1772 return r;
1773 }
1774
1775 static struct file_operations kvm_chardev_ops = {
1776 .unlocked_ioctl = kvm_dev_ioctl,
1777 .compat_ioctl = kvm_dev_ioctl,
1778 };
1779
1780 static struct miscdevice kvm_dev = {
1781 KVM_MINOR,
1782 "kvm",
1783 &kvm_chardev_ops,
1784 };
1785
1786 static void hardware_enable(void *junk)
1787 {
1788 int cpu = raw_smp_processor_id();
1789
1790 if (cpu_isset(cpu, cpus_hardware_enabled))
1791 return;
1792 cpu_set(cpu, cpus_hardware_enabled);
1793 kvm_arch_hardware_enable(NULL);
1794 }
1795
1796 static void hardware_disable(void *junk)
1797 {
1798 int cpu = raw_smp_processor_id();
1799
1800 if (!cpu_isset(cpu, cpus_hardware_enabled))
1801 return;
1802 cpu_clear(cpu, cpus_hardware_enabled);
1803 kvm_arch_hardware_disable(NULL);
1804 }
1805
1806 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1807 void *v)
1808 {
1809 int cpu = (long)v;
1810
1811 val &= ~CPU_TASKS_FROZEN;
1812 switch (val) {
1813 case CPU_DYING:
1814 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1815 cpu);
1816 hardware_disable(NULL);
1817 break;
1818 case CPU_UP_CANCELED:
1819 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1820 cpu);
1821 smp_call_function_single(cpu, hardware_disable, NULL, 1);
1822 break;
1823 case CPU_ONLINE:
1824 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1825 cpu);
1826 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1827 break;
1828 }
1829 return NOTIFY_OK;
1830 }
1831
1832
1833 asmlinkage void kvm_handle_fault_on_reboot(void)
1834 {
1835 if (kvm_rebooting)
1836 /* spin while reset goes on */
1837 while (true)
1838 ;
1839 /* Fault while not rebooting. We want the trace. */
1840 BUG();
1841 }
1842 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1843
1844 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1845 void *v)
1846 {
1847 if (val == SYS_RESTART) {
1848 /*
1849 * Some (well, at least mine) BIOSes hang on reboot if
1850 * in vmx root mode.
1851 */
1852 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1853 kvm_rebooting = true;
1854 on_each_cpu(hardware_disable, NULL, 1);
1855 }
1856 return NOTIFY_OK;
1857 }
1858
1859 static struct notifier_block kvm_reboot_notifier = {
1860 .notifier_call = kvm_reboot,
1861 .priority = 0,
1862 };
1863
1864 void kvm_io_bus_init(struct kvm_io_bus *bus)
1865 {
1866 memset(bus, 0, sizeof(*bus));
1867 }
1868
1869 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1870 {
1871 int i;
1872
1873 for (i = 0; i < bus->dev_count; i++) {
1874 struct kvm_io_device *pos = bus->devs[i];
1875
1876 kvm_iodevice_destructor(pos);
1877 }
1878 }
1879
1880 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
1881 gpa_t addr, int len, int is_write)
1882 {
1883 int i;
1884
1885 for (i = 0; i < bus->dev_count; i++) {
1886 struct kvm_io_device *pos = bus->devs[i];
1887
1888 if (pos->in_range(pos, addr, len, is_write))
1889 return pos;
1890 }
1891
1892 return NULL;
1893 }
1894
1895 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
1896 {
1897 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
1898
1899 bus->devs[bus->dev_count++] = dev;
1900 }
1901
1902 static struct notifier_block kvm_cpu_notifier = {
1903 .notifier_call = kvm_cpu_hotplug,
1904 .priority = 20, /* must be > scheduler priority */
1905 };
1906
1907 static int vm_stat_get(void *_offset, u64 *val)
1908 {
1909 unsigned offset = (long)_offset;
1910 struct kvm *kvm;
1911
1912 *val = 0;
1913 spin_lock(&kvm_lock);
1914 list_for_each_entry(kvm, &vm_list, vm_list)
1915 *val += *(u32 *)((void *)kvm + offset);
1916 spin_unlock(&kvm_lock);
1917 return 0;
1918 }
1919
1920 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
1921
1922 static int vcpu_stat_get(void *_offset, u64 *val)
1923 {
1924 unsigned offset = (long)_offset;
1925 struct kvm *kvm;
1926 struct kvm_vcpu *vcpu;
1927 int i;
1928
1929 *val = 0;
1930 spin_lock(&kvm_lock);
1931 list_for_each_entry(kvm, &vm_list, vm_list)
1932 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
1933 vcpu = kvm->vcpus[i];
1934 if (vcpu)
1935 *val += *(u32 *)((void *)vcpu + offset);
1936 }
1937 spin_unlock(&kvm_lock);
1938 return 0;
1939 }
1940
1941 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
1942
1943 static struct file_operations *stat_fops[] = {
1944 [KVM_STAT_VCPU] = &vcpu_stat_fops,
1945 [KVM_STAT_VM] = &vm_stat_fops,
1946 };
1947
1948 static void kvm_init_debug(void)
1949 {
1950 struct kvm_stats_debugfs_item *p;
1951
1952 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
1953 for (p = debugfs_entries; p->name; ++p)
1954 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
1955 (void *)(long)p->offset,
1956 stat_fops[p->kind]);
1957 }
1958
1959 static void kvm_exit_debug(void)
1960 {
1961 struct kvm_stats_debugfs_item *p;
1962
1963 for (p = debugfs_entries; p->name; ++p)
1964 debugfs_remove(p->dentry);
1965 debugfs_remove(kvm_debugfs_dir);
1966 }
1967
1968 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
1969 {
1970 hardware_disable(NULL);
1971 return 0;
1972 }
1973
1974 static int kvm_resume(struct sys_device *dev)
1975 {
1976 hardware_enable(NULL);
1977 return 0;
1978 }
1979
1980 static struct sysdev_class kvm_sysdev_class = {
1981 .name = "kvm",
1982 .suspend = kvm_suspend,
1983 .resume = kvm_resume,
1984 };
1985
1986 static struct sys_device kvm_sysdev = {
1987 .id = 0,
1988 .cls = &kvm_sysdev_class,
1989 };
1990
1991 struct page *bad_page;
1992 pfn_t bad_pfn;
1993
1994 static inline
1995 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
1996 {
1997 return container_of(pn, struct kvm_vcpu, preempt_notifier);
1998 }
1999
2000 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2001 {
2002 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2003
2004 kvm_arch_vcpu_load(vcpu, cpu);
2005 }
2006
2007 static void kvm_sched_out(struct preempt_notifier *pn,
2008 struct task_struct *next)
2009 {
2010 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2011
2012 kvm_arch_vcpu_put(vcpu);
2013 }
2014
2015 int kvm_init(void *opaque, unsigned int vcpu_size,
2016 struct module *module)
2017 {
2018 int r;
2019 int cpu;
2020
2021 kvm_init_debug();
2022
2023 r = kvm_arch_init(opaque);
2024 if (r)
2025 goto out_fail;
2026
2027 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2028
2029 if (bad_page == NULL) {
2030 r = -ENOMEM;
2031 goto out;
2032 }
2033
2034 bad_pfn = page_to_pfn(bad_page);
2035
2036 r = kvm_arch_hardware_setup();
2037 if (r < 0)
2038 goto out_free_0;
2039
2040 for_each_online_cpu(cpu) {
2041 smp_call_function_single(cpu,
2042 kvm_arch_check_processor_compat,
2043 &r, 1);
2044 if (r < 0)
2045 goto out_free_1;
2046 }
2047
2048 on_each_cpu(hardware_enable, NULL, 1);
2049 r = register_cpu_notifier(&kvm_cpu_notifier);
2050 if (r)
2051 goto out_free_2;
2052 register_reboot_notifier(&kvm_reboot_notifier);
2053
2054 r = sysdev_class_register(&kvm_sysdev_class);
2055 if (r)
2056 goto out_free_3;
2057
2058 r = sysdev_register(&kvm_sysdev);
2059 if (r)
2060 goto out_free_4;
2061
2062 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2063 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2064 __alignof__(struct kvm_vcpu),
2065 0, NULL);
2066 if (!kvm_vcpu_cache) {
2067 r = -ENOMEM;
2068 goto out_free_5;
2069 }
2070
2071 kvm_chardev_ops.owner = module;
2072
2073 r = misc_register(&kvm_dev);
2074 if (r) {
2075 printk(KERN_ERR "kvm: misc device register failed\n");
2076 goto out_free;
2077 }
2078
2079 kvm_preempt_ops.sched_in = kvm_sched_in;
2080 kvm_preempt_ops.sched_out = kvm_sched_out;
2081
2082 return 0;
2083
2084 out_free:
2085 kmem_cache_destroy(kvm_vcpu_cache);
2086 out_free_5:
2087 sysdev_unregister(&kvm_sysdev);
2088 out_free_4:
2089 sysdev_class_unregister(&kvm_sysdev_class);
2090 out_free_3:
2091 unregister_reboot_notifier(&kvm_reboot_notifier);
2092 unregister_cpu_notifier(&kvm_cpu_notifier);
2093 out_free_2:
2094 on_each_cpu(hardware_disable, NULL, 1);
2095 out_free_1:
2096 kvm_arch_hardware_unsetup();
2097 out_free_0:
2098 __free_page(bad_page);
2099 out:
2100 kvm_arch_exit();
2101 kvm_exit_debug();
2102 out_fail:
2103 return r;
2104 }
2105 EXPORT_SYMBOL_GPL(kvm_init);
2106
2107 void kvm_exit(void)
2108 {
2109 kvm_trace_cleanup();
2110 misc_deregister(&kvm_dev);
2111 kmem_cache_destroy(kvm_vcpu_cache);
2112 sysdev_unregister(&kvm_sysdev);
2113 sysdev_class_unregister(&kvm_sysdev_class);
2114 unregister_reboot_notifier(&kvm_reboot_notifier);
2115 unregister_cpu_notifier(&kvm_cpu_notifier);
2116 on_each_cpu(hardware_disable, NULL, 1);
2117 kvm_arch_hardware_unsetup();
2118 kvm_arch_exit();
2119 kvm_exit_debug();
2120 __free_page(bad_page);
2121 }
2122 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.075488 seconds and 5 git commands to generate.