KVM: kvm_io_device: extend in_range() to manage len and write attribute
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44
45 #include <asm/processor.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
49
50 MODULE_AUTHOR("Qumranet");
51 MODULE_LICENSE("GPL");
52
53 DEFINE_SPINLOCK(kvm_lock);
54 LIST_HEAD(vm_list);
55
56 static cpumask_t cpus_hardware_enabled;
57
58 struct kmem_cache *kvm_vcpu_cache;
59 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
60
61 static __read_mostly struct preempt_ops kvm_preempt_ops;
62
63 struct dentry *kvm_debugfs_dir;
64
65 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
66 unsigned long arg);
67
68 bool kvm_rebooting;
69
70 static inline int valid_vcpu(int n)
71 {
72 return likely(n >= 0 && n < KVM_MAX_VCPUS);
73 }
74
75 /*
76 * Switches to specified vcpu, until a matching vcpu_put()
77 */
78 void vcpu_load(struct kvm_vcpu *vcpu)
79 {
80 int cpu;
81
82 mutex_lock(&vcpu->mutex);
83 cpu = get_cpu();
84 preempt_notifier_register(&vcpu->preempt_notifier);
85 kvm_arch_vcpu_load(vcpu, cpu);
86 put_cpu();
87 }
88
89 void vcpu_put(struct kvm_vcpu *vcpu)
90 {
91 preempt_disable();
92 kvm_arch_vcpu_put(vcpu);
93 preempt_notifier_unregister(&vcpu->preempt_notifier);
94 preempt_enable();
95 mutex_unlock(&vcpu->mutex);
96 }
97
98 static void ack_flush(void *_completed)
99 {
100 }
101
102 void kvm_flush_remote_tlbs(struct kvm *kvm)
103 {
104 int i, cpu;
105 cpumask_t cpus;
106 struct kvm_vcpu *vcpu;
107
108 cpus_clear(cpus);
109 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
110 vcpu = kvm->vcpus[i];
111 if (!vcpu)
112 continue;
113 if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
114 continue;
115 cpu = vcpu->cpu;
116 if (cpu != -1 && cpu != raw_smp_processor_id())
117 cpu_set(cpu, cpus);
118 }
119 if (cpus_empty(cpus))
120 return;
121 ++kvm->stat.remote_tlb_flush;
122 smp_call_function_mask(cpus, ack_flush, NULL, 1);
123 }
124
125 void kvm_reload_remote_mmus(struct kvm *kvm)
126 {
127 int i, cpu;
128 cpumask_t cpus;
129 struct kvm_vcpu *vcpu;
130
131 cpus_clear(cpus);
132 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
133 vcpu = kvm->vcpus[i];
134 if (!vcpu)
135 continue;
136 if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
137 continue;
138 cpu = vcpu->cpu;
139 if (cpu != -1 && cpu != raw_smp_processor_id())
140 cpu_set(cpu, cpus);
141 }
142 if (cpus_empty(cpus))
143 return;
144 smp_call_function_mask(cpus, ack_flush, NULL, 1);
145 }
146
147
148 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
149 {
150 struct page *page;
151 int r;
152
153 mutex_init(&vcpu->mutex);
154 vcpu->cpu = -1;
155 vcpu->kvm = kvm;
156 vcpu->vcpu_id = id;
157 init_waitqueue_head(&vcpu->wq);
158
159 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
160 if (!page) {
161 r = -ENOMEM;
162 goto fail;
163 }
164 vcpu->run = page_address(page);
165
166 r = kvm_arch_vcpu_init(vcpu);
167 if (r < 0)
168 goto fail_free_run;
169 return 0;
170
171 fail_free_run:
172 free_page((unsigned long)vcpu->run);
173 fail:
174 return r;
175 }
176 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
177
178 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
179 {
180 kvm_arch_vcpu_uninit(vcpu);
181 free_page((unsigned long)vcpu->run);
182 }
183 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
184
185 static struct kvm *kvm_create_vm(void)
186 {
187 struct kvm *kvm = kvm_arch_create_vm();
188
189 if (IS_ERR(kvm))
190 goto out;
191
192 kvm->mm = current->mm;
193 atomic_inc(&kvm->mm->mm_count);
194 spin_lock_init(&kvm->mmu_lock);
195 kvm_io_bus_init(&kvm->pio_bus);
196 mutex_init(&kvm->lock);
197 kvm_io_bus_init(&kvm->mmio_bus);
198 init_rwsem(&kvm->slots_lock);
199 atomic_set(&kvm->users_count, 1);
200 spin_lock(&kvm_lock);
201 list_add(&kvm->vm_list, &vm_list);
202 spin_unlock(&kvm_lock);
203 out:
204 return kvm;
205 }
206
207 /*
208 * Free any memory in @free but not in @dont.
209 */
210 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
211 struct kvm_memory_slot *dont)
212 {
213 if (!dont || free->rmap != dont->rmap)
214 vfree(free->rmap);
215
216 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
217 vfree(free->dirty_bitmap);
218
219 if (!dont || free->lpage_info != dont->lpage_info)
220 vfree(free->lpage_info);
221
222 free->npages = 0;
223 free->dirty_bitmap = NULL;
224 free->rmap = NULL;
225 free->lpage_info = NULL;
226 }
227
228 void kvm_free_physmem(struct kvm *kvm)
229 {
230 int i;
231
232 for (i = 0; i < kvm->nmemslots; ++i)
233 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
234 }
235
236 static void kvm_destroy_vm(struct kvm *kvm)
237 {
238 struct mm_struct *mm = kvm->mm;
239
240 spin_lock(&kvm_lock);
241 list_del(&kvm->vm_list);
242 spin_unlock(&kvm_lock);
243 kvm_io_bus_destroy(&kvm->pio_bus);
244 kvm_io_bus_destroy(&kvm->mmio_bus);
245 kvm_arch_destroy_vm(kvm);
246 mmdrop(mm);
247 }
248
249 void kvm_get_kvm(struct kvm *kvm)
250 {
251 atomic_inc(&kvm->users_count);
252 }
253 EXPORT_SYMBOL_GPL(kvm_get_kvm);
254
255 void kvm_put_kvm(struct kvm *kvm)
256 {
257 if (atomic_dec_and_test(&kvm->users_count))
258 kvm_destroy_vm(kvm);
259 }
260 EXPORT_SYMBOL_GPL(kvm_put_kvm);
261
262
263 static int kvm_vm_release(struct inode *inode, struct file *filp)
264 {
265 struct kvm *kvm = filp->private_data;
266
267 kvm_put_kvm(kvm);
268 return 0;
269 }
270
271 /*
272 * Allocate some memory and give it an address in the guest physical address
273 * space.
274 *
275 * Discontiguous memory is allowed, mostly for framebuffers.
276 *
277 * Must be called holding mmap_sem for write.
278 */
279 int __kvm_set_memory_region(struct kvm *kvm,
280 struct kvm_userspace_memory_region *mem,
281 int user_alloc)
282 {
283 int r;
284 gfn_t base_gfn;
285 unsigned long npages;
286 unsigned long i;
287 struct kvm_memory_slot *memslot;
288 struct kvm_memory_slot old, new;
289
290 r = -EINVAL;
291 /* General sanity checks */
292 if (mem->memory_size & (PAGE_SIZE - 1))
293 goto out;
294 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
295 goto out;
296 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
297 goto out;
298 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
299 goto out;
300
301 memslot = &kvm->memslots[mem->slot];
302 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
303 npages = mem->memory_size >> PAGE_SHIFT;
304
305 if (!npages)
306 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
307
308 new = old = *memslot;
309
310 new.base_gfn = base_gfn;
311 new.npages = npages;
312 new.flags = mem->flags;
313
314 /* Disallow changing a memory slot's size. */
315 r = -EINVAL;
316 if (npages && old.npages && npages != old.npages)
317 goto out_free;
318
319 /* Check for overlaps */
320 r = -EEXIST;
321 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
322 struct kvm_memory_slot *s = &kvm->memslots[i];
323
324 if (s == memslot)
325 continue;
326 if (!((base_gfn + npages <= s->base_gfn) ||
327 (base_gfn >= s->base_gfn + s->npages)))
328 goto out_free;
329 }
330
331 /* Free page dirty bitmap if unneeded */
332 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
333 new.dirty_bitmap = NULL;
334
335 r = -ENOMEM;
336
337 /* Allocate if a slot is being created */
338 if (npages && !new.rmap) {
339 new.rmap = vmalloc(npages * sizeof(struct page *));
340
341 if (!new.rmap)
342 goto out_free;
343
344 memset(new.rmap, 0, npages * sizeof(*new.rmap));
345
346 new.user_alloc = user_alloc;
347 new.userspace_addr = mem->userspace_addr;
348 }
349 if (npages && !new.lpage_info) {
350 int largepages = npages / KVM_PAGES_PER_HPAGE;
351 if (npages % KVM_PAGES_PER_HPAGE)
352 largepages++;
353 if (base_gfn % KVM_PAGES_PER_HPAGE)
354 largepages++;
355
356 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
357
358 if (!new.lpage_info)
359 goto out_free;
360
361 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
362
363 if (base_gfn % KVM_PAGES_PER_HPAGE)
364 new.lpage_info[0].write_count = 1;
365 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
366 new.lpage_info[largepages-1].write_count = 1;
367 }
368
369 /* Allocate page dirty bitmap if needed */
370 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
371 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
372
373 new.dirty_bitmap = vmalloc(dirty_bytes);
374 if (!new.dirty_bitmap)
375 goto out_free;
376 memset(new.dirty_bitmap, 0, dirty_bytes);
377 }
378
379 if (mem->slot >= kvm->nmemslots)
380 kvm->nmemslots = mem->slot + 1;
381
382 *memslot = new;
383
384 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
385 if (r) {
386 *memslot = old;
387 goto out_free;
388 }
389
390 kvm_free_physmem_slot(&old, &new);
391 return 0;
392
393 out_free:
394 kvm_free_physmem_slot(&new, &old);
395 out:
396 return r;
397
398 }
399 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
400
401 int kvm_set_memory_region(struct kvm *kvm,
402 struct kvm_userspace_memory_region *mem,
403 int user_alloc)
404 {
405 int r;
406
407 down_write(&kvm->slots_lock);
408 r = __kvm_set_memory_region(kvm, mem, user_alloc);
409 up_write(&kvm->slots_lock);
410 return r;
411 }
412 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
413
414 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
415 struct
416 kvm_userspace_memory_region *mem,
417 int user_alloc)
418 {
419 if (mem->slot >= KVM_MEMORY_SLOTS)
420 return -EINVAL;
421 return kvm_set_memory_region(kvm, mem, user_alloc);
422 }
423
424 int kvm_get_dirty_log(struct kvm *kvm,
425 struct kvm_dirty_log *log, int *is_dirty)
426 {
427 struct kvm_memory_slot *memslot;
428 int r, i;
429 int n;
430 unsigned long any = 0;
431
432 r = -EINVAL;
433 if (log->slot >= KVM_MEMORY_SLOTS)
434 goto out;
435
436 memslot = &kvm->memslots[log->slot];
437 r = -ENOENT;
438 if (!memslot->dirty_bitmap)
439 goto out;
440
441 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
442
443 for (i = 0; !any && i < n/sizeof(long); ++i)
444 any = memslot->dirty_bitmap[i];
445
446 r = -EFAULT;
447 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
448 goto out;
449
450 if (any)
451 *is_dirty = 1;
452
453 r = 0;
454 out:
455 return r;
456 }
457
458 int is_error_page(struct page *page)
459 {
460 return page == bad_page;
461 }
462 EXPORT_SYMBOL_GPL(is_error_page);
463
464 int is_error_pfn(pfn_t pfn)
465 {
466 return pfn == bad_pfn;
467 }
468 EXPORT_SYMBOL_GPL(is_error_pfn);
469
470 static inline unsigned long bad_hva(void)
471 {
472 return PAGE_OFFSET;
473 }
474
475 int kvm_is_error_hva(unsigned long addr)
476 {
477 return addr == bad_hva();
478 }
479 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
480
481 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
482 {
483 int i;
484
485 for (i = 0; i < kvm->nmemslots; ++i) {
486 struct kvm_memory_slot *memslot = &kvm->memslots[i];
487
488 if (gfn >= memslot->base_gfn
489 && gfn < memslot->base_gfn + memslot->npages)
490 return memslot;
491 }
492 return NULL;
493 }
494
495 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
496 {
497 gfn = unalias_gfn(kvm, gfn);
498 return __gfn_to_memslot(kvm, gfn);
499 }
500
501 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
502 {
503 int i;
504
505 gfn = unalias_gfn(kvm, gfn);
506 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
507 struct kvm_memory_slot *memslot = &kvm->memslots[i];
508
509 if (gfn >= memslot->base_gfn
510 && gfn < memslot->base_gfn + memslot->npages)
511 return 1;
512 }
513 return 0;
514 }
515 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
516
517 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
518 {
519 struct kvm_memory_slot *slot;
520
521 gfn = unalias_gfn(kvm, gfn);
522 slot = __gfn_to_memslot(kvm, gfn);
523 if (!slot)
524 return bad_hva();
525 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
526 }
527 EXPORT_SYMBOL_GPL(gfn_to_hva);
528
529 /*
530 * Requires current->mm->mmap_sem to be held
531 */
532 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
533 {
534 struct page *page[1];
535 unsigned long addr;
536 int npages;
537 pfn_t pfn;
538
539 might_sleep();
540
541 addr = gfn_to_hva(kvm, gfn);
542 if (kvm_is_error_hva(addr)) {
543 get_page(bad_page);
544 return page_to_pfn(bad_page);
545 }
546
547 npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
548 NULL);
549
550 if (unlikely(npages != 1)) {
551 struct vm_area_struct *vma;
552
553 vma = find_vma(current->mm, addr);
554 if (vma == NULL || addr < vma->vm_start ||
555 !(vma->vm_flags & VM_PFNMAP)) {
556 get_page(bad_page);
557 return page_to_pfn(bad_page);
558 }
559
560 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
561 BUG_ON(pfn_valid(pfn));
562 } else
563 pfn = page_to_pfn(page[0]);
564
565 return pfn;
566 }
567
568 EXPORT_SYMBOL_GPL(gfn_to_pfn);
569
570 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
571 {
572 pfn_t pfn;
573
574 pfn = gfn_to_pfn(kvm, gfn);
575 if (pfn_valid(pfn))
576 return pfn_to_page(pfn);
577
578 WARN_ON(!pfn_valid(pfn));
579
580 get_page(bad_page);
581 return bad_page;
582 }
583
584 EXPORT_SYMBOL_GPL(gfn_to_page);
585
586 void kvm_release_page_clean(struct page *page)
587 {
588 kvm_release_pfn_clean(page_to_pfn(page));
589 }
590 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
591
592 void kvm_release_pfn_clean(pfn_t pfn)
593 {
594 if (pfn_valid(pfn))
595 put_page(pfn_to_page(pfn));
596 }
597 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
598
599 void kvm_release_page_dirty(struct page *page)
600 {
601 kvm_release_pfn_dirty(page_to_pfn(page));
602 }
603 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
604
605 void kvm_release_pfn_dirty(pfn_t pfn)
606 {
607 kvm_set_pfn_dirty(pfn);
608 kvm_release_pfn_clean(pfn);
609 }
610 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
611
612 void kvm_set_page_dirty(struct page *page)
613 {
614 kvm_set_pfn_dirty(page_to_pfn(page));
615 }
616 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
617
618 void kvm_set_pfn_dirty(pfn_t pfn)
619 {
620 if (pfn_valid(pfn)) {
621 struct page *page = pfn_to_page(pfn);
622 if (!PageReserved(page))
623 SetPageDirty(page);
624 }
625 }
626 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
627
628 void kvm_set_pfn_accessed(pfn_t pfn)
629 {
630 if (pfn_valid(pfn))
631 mark_page_accessed(pfn_to_page(pfn));
632 }
633 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
634
635 void kvm_get_pfn(pfn_t pfn)
636 {
637 if (pfn_valid(pfn))
638 get_page(pfn_to_page(pfn));
639 }
640 EXPORT_SYMBOL_GPL(kvm_get_pfn);
641
642 static int next_segment(unsigned long len, int offset)
643 {
644 if (len > PAGE_SIZE - offset)
645 return PAGE_SIZE - offset;
646 else
647 return len;
648 }
649
650 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
651 int len)
652 {
653 int r;
654 unsigned long addr;
655
656 addr = gfn_to_hva(kvm, gfn);
657 if (kvm_is_error_hva(addr))
658 return -EFAULT;
659 r = copy_from_user(data, (void __user *)addr + offset, len);
660 if (r)
661 return -EFAULT;
662 return 0;
663 }
664 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
665
666 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
667 {
668 gfn_t gfn = gpa >> PAGE_SHIFT;
669 int seg;
670 int offset = offset_in_page(gpa);
671 int ret;
672
673 while ((seg = next_segment(len, offset)) != 0) {
674 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
675 if (ret < 0)
676 return ret;
677 offset = 0;
678 len -= seg;
679 data += seg;
680 ++gfn;
681 }
682 return 0;
683 }
684 EXPORT_SYMBOL_GPL(kvm_read_guest);
685
686 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
687 unsigned long len)
688 {
689 int r;
690 unsigned long addr;
691 gfn_t gfn = gpa >> PAGE_SHIFT;
692 int offset = offset_in_page(gpa);
693
694 addr = gfn_to_hva(kvm, gfn);
695 if (kvm_is_error_hva(addr))
696 return -EFAULT;
697 pagefault_disable();
698 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
699 pagefault_enable();
700 if (r)
701 return -EFAULT;
702 return 0;
703 }
704 EXPORT_SYMBOL(kvm_read_guest_atomic);
705
706 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
707 int offset, int len)
708 {
709 int r;
710 unsigned long addr;
711
712 addr = gfn_to_hva(kvm, gfn);
713 if (kvm_is_error_hva(addr))
714 return -EFAULT;
715 r = copy_to_user((void __user *)addr + offset, data, len);
716 if (r)
717 return -EFAULT;
718 mark_page_dirty(kvm, gfn);
719 return 0;
720 }
721 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
722
723 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
724 unsigned long len)
725 {
726 gfn_t gfn = gpa >> PAGE_SHIFT;
727 int seg;
728 int offset = offset_in_page(gpa);
729 int ret;
730
731 while ((seg = next_segment(len, offset)) != 0) {
732 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
733 if (ret < 0)
734 return ret;
735 offset = 0;
736 len -= seg;
737 data += seg;
738 ++gfn;
739 }
740 return 0;
741 }
742
743 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
744 {
745 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
746 }
747 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
748
749 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
750 {
751 gfn_t gfn = gpa >> PAGE_SHIFT;
752 int seg;
753 int offset = offset_in_page(gpa);
754 int ret;
755
756 while ((seg = next_segment(len, offset)) != 0) {
757 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
758 if (ret < 0)
759 return ret;
760 offset = 0;
761 len -= seg;
762 ++gfn;
763 }
764 return 0;
765 }
766 EXPORT_SYMBOL_GPL(kvm_clear_guest);
767
768 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
769 {
770 struct kvm_memory_slot *memslot;
771
772 gfn = unalias_gfn(kvm, gfn);
773 memslot = __gfn_to_memslot(kvm, gfn);
774 if (memslot && memslot->dirty_bitmap) {
775 unsigned long rel_gfn = gfn - memslot->base_gfn;
776
777 /* avoid RMW */
778 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
779 set_bit(rel_gfn, memslot->dirty_bitmap);
780 }
781 }
782
783 /*
784 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
785 */
786 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
787 {
788 DEFINE_WAIT(wait);
789
790 for (;;) {
791 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
792
793 if (kvm_cpu_has_interrupt(vcpu))
794 break;
795 if (kvm_cpu_has_pending_timer(vcpu))
796 break;
797 if (kvm_arch_vcpu_runnable(vcpu))
798 break;
799 if (signal_pending(current))
800 break;
801
802 vcpu_put(vcpu);
803 schedule();
804 vcpu_load(vcpu);
805 }
806
807 finish_wait(&vcpu->wq, &wait);
808 }
809
810 void kvm_resched(struct kvm_vcpu *vcpu)
811 {
812 if (!need_resched())
813 return;
814 cond_resched();
815 }
816 EXPORT_SYMBOL_GPL(kvm_resched);
817
818 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
819 {
820 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
821 struct page *page;
822
823 if (vmf->pgoff == 0)
824 page = virt_to_page(vcpu->run);
825 #ifdef CONFIG_X86
826 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
827 page = virt_to_page(vcpu->arch.pio_data);
828 #endif
829 else
830 return VM_FAULT_SIGBUS;
831 get_page(page);
832 vmf->page = page;
833 return 0;
834 }
835
836 static struct vm_operations_struct kvm_vcpu_vm_ops = {
837 .fault = kvm_vcpu_fault,
838 };
839
840 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
841 {
842 vma->vm_ops = &kvm_vcpu_vm_ops;
843 return 0;
844 }
845
846 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
847 {
848 struct kvm_vcpu *vcpu = filp->private_data;
849
850 kvm_put_kvm(vcpu->kvm);
851 return 0;
852 }
853
854 static const struct file_operations kvm_vcpu_fops = {
855 .release = kvm_vcpu_release,
856 .unlocked_ioctl = kvm_vcpu_ioctl,
857 .compat_ioctl = kvm_vcpu_ioctl,
858 .mmap = kvm_vcpu_mmap,
859 };
860
861 /*
862 * Allocates an inode for the vcpu.
863 */
864 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
865 {
866 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu);
867 if (fd < 0)
868 kvm_put_kvm(vcpu->kvm);
869 return fd;
870 }
871
872 /*
873 * Creates some virtual cpus. Good luck creating more than one.
874 */
875 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
876 {
877 int r;
878 struct kvm_vcpu *vcpu;
879
880 if (!valid_vcpu(n))
881 return -EINVAL;
882
883 vcpu = kvm_arch_vcpu_create(kvm, n);
884 if (IS_ERR(vcpu))
885 return PTR_ERR(vcpu);
886
887 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
888
889 r = kvm_arch_vcpu_setup(vcpu);
890 if (r)
891 goto vcpu_destroy;
892
893 mutex_lock(&kvm->lock);
894 if (kvm->vcpus[n]) {
895 r = -EEXIST;
896 mutex_unlock(&kvm->lock);
897 goto vcpu_destroy;
898 }
899 kvm->vcpus[n] = vcpu;
900 mutex_unlock(&kvm->lock);
901
902 /* Now it's all set up, let userspace reach it */
903 kvm_get_kvm(kvm);
904 r = create_vcpu_fd(vcpu);
905 if (r < 0)
906 goto unlink;
907 return r;
908
909 unlink:
910 mutex_lock(&kvm->lock);
911 kvm->vcpus[n] = NULL;
912 mutex_unlock(&kvm->lock);
913 vcpu_destroy:
914 kvm_arch_vcpu_destroy(vcpu);
915 return r;
916 }
917
918 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
919 {
920 if (sigset) {
921 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
922 vcpu->sigset_active = 1;
923 vcpu->sigset = *sigset;
924 } else
925 vcpu->sigset_active = 0;
926 return 0;
927 }
928
929 static long kvm_vcpu_ioctl(struct file *filp,
930 unsigned int ioctl, unsigned long arg)
931 {
932 struct kvm_vcpu *vcpu = filp->private_data;
933 void __user *argp = (void __user *)arg;
934 int r;
935
936 if (vcpu->kvm->mm != current->mm)
937 return -EIO;
938 switch (ioctl) {
939 case KVM_RUN:
940 r = -EINVAL;
941 if (arg)
942 goto out;
943 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
944 break;
945 case KVM_GET_REGS: {
946 struct kvm_regs *kvm_regs;
947
948 r = -ENOMEM;
949 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
950 if (!kvm_regs)
951 goto out;
952 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
953 if (r)
954 goto out_free1;
955 r = -EFAULT;
956 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
957 goto out_free1;
958 r = 0;
959 out_free1:
960 kfree(kvm_regs);
961 break;
962 }
963 case KVM_SET_REGS: {
964 struct kvm_regs *kvm_regs;
965
966 r = -ENOMEM;
967 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
968 if (!kvm_regs)
969 goto out;
970 r = -EFAULT;
971 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
972 goto out_free2;
973 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
974 if (r)
975 goto out_free2;
976 r = 0;
977 out_free2:
978 kfree(kvm_regs);
979 break;
980 }
981 case KVM_GET_SREGS: {
982 struct kvm_sregs kvm_sregs;
983
984 memset(&kvm_sregs, 0, sizeof kvm_sregs);
985 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
986 if (r)
987 goto out;
988 r = -EFAULT;
989 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
990 goto out;
991 r = 0;
992 break;
993 }
994 case KVM_SET_SREGS: {
995 struct kvm_sregs kvm_sregs;
996
997 r = -EFAULT;
998 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
999 goto out;
1000 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
1001 if (r)
1002 goto out;
1003 r = 0;
1004 break;
1005 }
1006 case KVM_GET_MP_STATE: {
1007 struct kvm_mp_state mp_state;
1008
1009 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1010 if (r)
1011 goto out;
1012 r = -EFAULT;
1013 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1014 goto out;
1015 r = 0;
1016 break;
1017 }
1018 case KVM_SET_MP_STATE: {
1019 struct kvm_mp_state mp_state;
1020
1021 r = -EFAULT;
1022 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1023 goto out;
1024 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1025 if (r)
1026 goto out;
1027 r = 0;
1028 break;
1029 }
1030 case KVM_TRANSLATE: {
1031 struct kvm_translation tr;
1032
1033 r = -EFAULT;
1034 if (copy_from_user(&tr, argp, sizeof tr))
1035 goto out;
1036 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1037 if (r)
1038 goto out;
1039 r = -EFAULT;
1040 if (copy_to_user(argp, &tr, sizeof tr))
1041 goto out;
1042 r = 0;
1043 break;
1044 }
1045 case KVM_DEBUG_GUEST: {
1046 struct kvm_debug_guest dbg;
1047
1048 r = -EFAULT;
1049 if (copy_from_user(&dbg, argp, sizeof dbg))
1050 goto out;
1051 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
1052 if (r)
1053 goto out;
1054 r = 0;
1055 break;
1056 }
1057 case KVM_SET_SIGNAL_MASK: {
1058 struct kvm_signal_mask __user *sigmask_arg = argp;
1059 struct kvm_signal_mask kvm_sigmask;
1060 sigset_t sigset, *p;
1061
1062 p = NULL;
1063 if (argp) {
1064 r = -EFAULT;
1065 if (copy_from_user(&kvm_sigmask, argp,
1066 sizeof kvm_sigmask))
1067 goto out;
1068 r = -EINVAL;
1069 if (kvm_sigmask.len != sizeof sigset)
1070 goto out;
1071 r = -EFAULT;
1072 if (copy_from_user(&sigset, sigmask_arg->sigset,
1073 sizeof sigset))
1074 goto out;
1075 p = &sigset;
1076 }
1077 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1078 break;
1079 }
1080 case KVM_GET_FPU: {
1081 struct kvm_fpu fpu;
1082
1083 memset(&fpu, 0, sizeof fpu);
1084 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
1085 if (r)
1086 goto out;
1087 r = -EFAULT;
1088 if (copy_to_user(argp, &fpu, sizeof fpu))
1089 goto out;
1090 r = 0;
1091 break;
1092 }
1093 case KVM_SET_FPU: {
1094 struct kvm_fpu fpu;
1095
1096 r = -EFAULT;
1097 if (copy_from_user(&fpu, argp, sizeof fpu))
1098 goto out;
1099 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
1100 if (r)
1101 goto out;
1102 r = 0;
1103 break;
1104 }
1105 default:
1106 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1107 }
1108 out:
1109 return r;
1110 }
1111
1112 static long kvm_vm_ioctl(struct file *filp,
1113 unsigned int ioctl, unsigned long arg)
1114 {
1115 struct kvm *kvm = filp->private_data;
1116 void __user *argp = (void __user *)arg;
1117 int r;
1118
1119 if (kvm->mm != current->mm)
1120 return -EIO;
1121 switch (ioctl) {
1122 case KVM_CREATE_VCPU:
1123 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1124 if (r < 0)
1125 goto out;
1126 break;
1127 case KVM_SET_USER_MEMORY_REGION: {
1128 struct kvm_userspace_memory_region kvm_userspace_mem;
1129
1130 r = -EFAULT;
1131 if (copy_from_user(&kvm_userspace_mem, argp,
1132 sizeof kvm_userspace_mem))
1133 goto out;
1134
1135 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1136 if (r)
1137 goto out;
1138 break;
1139 }
1140 case KVM_GET_DIRTY_LOG: {
1141 struct kvm_dirty_log log;
1142
1143 r = -EFAULT;
1144 if (copy_from_user(&log, argp, sizeof log))
1145 goto out;
1146 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1147 if (r)
1148 goto out;
1149 break;
1150 }
1151 default:
1152 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1153 }
1154 out:
1155 return r;
1156 }
1157
1158 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1159 {
1160 struct kvm *kvm = vma->vm_file->private_data;
1161 struct page *page;
1162
1163 if (!kvm_is_visible_gfn(kvm, vmf->pgoff))
1164 return VM_FAULT_SIGBUS;
1165 page = gfn_to_page(kvm, vmf->pgoff);
1166 if (is_error_page(page)) {
1167 kvm_release_page_clean(page);
1168 return VM_FAULT_SIGBUS;
1169 }
1170 vmf->page = page;
1171 return 0;
1172 }
1173
1174 static struct vm_operations_struct kvm_vm_vm_ops = {
1175 .fault = kvm_vm_fault,
1176 };
1177
1178 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1179 {
1180 vma->vm_ops = &kvm_vm_vm_ops;
1181 return 0;
1182 }
1183
1184 static const struct file_operations kvm_vm_fops = {
1185 .release = kvm_vm_release,
1186 .unlocked_ioctl = kvm_vm_ioctl,
1187 .compat_ioctl = kvm_vm_ioctl,
1188 .mmap = kvm_vm_mmap,
1189 };
1190
1191 static int kvm_dev_ioctl_create_vm(void)
1192 {
1193 int fd;
1194 struct kvm *kvm;
1195
1196 kvm = kvm_create_vm();
1197 if (IS_ERR(kvm))
1198 return PTR_ERR(kvm);
1199 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm);
1200 if (fd < 0)
1201 kvm_put_kvm(kvm);
1202
1203 return fd;
1204 }
1205
1206 static long kvm_dev_ioctl(struct file *filp,
1207 unsigned int ioctl, unsigned long arg)
1208 {
1209 long r = -EINVAL;
1210
1211 switch (ioctl) {
1212 case KVM_GET_API_VERSION:
1213 r = -EINVAL;
1214 if (arg)
1215 goto out;
1216 r = KVM_API_VERSION;
1217 break;
1218 case KVM_CREATE_VM:
1219 r = -EINVAL;
1220 if (arg)
1221 goto out;
1222 r = kvm_dev_ioctl_create_vm();
1223 break;
1224 case KVM_CHECK_EXTENSION:
1225 r = kvm_dev_ioctl_check_extension(arg);
1226 break;
1227 case KVM_GET_VCPU_MMAP_SIZE:
1228 r = -EINVAL;
1229 if (arg)
1230 goto out;
1231 r = PAGE_SIZE; /* struct kvm_run */
1232 #ifdef CONFIG_X86
1233 r += PAGE_SIZE; /* pio data page */
1234 #endif
1235 break;
1236 case KVM_TRACE_ENABLE:
1237 case KVM_TRACE_PAUSE:
1238 case KVM_TRACE_DISABLE:
1239 r = kvm_trace_ioctl(ioctl, arg);
1240 break;
1241 default:
1242 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1243 }
1244 out:
1245 return r;
1246 }
1247
1248 static struct file_operations kvm_chardev_ops = {
1249 .unlocked_ioctl = kvm_dev_ioctl,
1250 .compat_ioctl = kvm_dev_ioctl,
1251 };
1252
1253 static struct miscdevice kvm_dev = {
1254 KVM_MINOR,
1255 "kvm",
1256 &kvm_chardev_ops,
1257 };
1258
1259 static void hardware_enable(void *junk)
1260 {
1261 int cpu = raw_smp_processor_id();
1262
1263 if (cpu_isset(cpu, cpus_hardware_enabled))
1264 return;
1265 cpu_set(cpu, cpus_hardware_enabled);
1266 kvm_arch_hardware_enable(NULL);
1267 }
1268
1269 static void hardware_disable(void *junk)
1270 {
1271 int cpu = raw_smp_processor_id();
1272
1273 if (!cpu_isset(cpu, cpus_hardware_enabled))
1274 return;
1275 cpu_clear(cpu, cpus_hardware_enabled);
1276 kvm_arch_hardware_disable(NULL);
1277 }
1278
1279 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1280 void *v)
1281 {
1282 int cpu = (long)v;
1283
1284 val &= ~CPU_TASKS_FROZEN;
1285 switch (val) {
1286 case CPU_DYING:
1287 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1288 cpu);
1289 hardware_disable(NULL);
1290 break;
1291 case CPU_UP_CANCELED:
1292 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1293 cpu);
1294 smp_call_function_single(cpu, hardware_disable, NULL, 1);
1295 break;
1296 case CPU_ONLINE:
1297 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1298 cpu);
1299 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1300 break;
1301 }
1302 return NOTIFY_OK;
1303 }
1304
1305
1306 asmlinkage void kvm_handle_fault_on_reboot(void)
1307 {
1308 if (kvm_rebooting)
1309 /* spin while reset goes on */
1310 while (true)
1311 ;
1312 /* Fault while not rebooting. We want the trace. */
1313 BUG();
1314 }
1315 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1316
1317 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1318 void *v)
1319 {
1320 if (val == SYS_RESTART) {
1321 /*
1322 * Some (well, at least mine) BIOSes hang on reboot if
1323 * in vmx root mode.
1324 */
1325 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1326 kvm_rebooting = true;
1327 on_each_cpu(hardware_disable, NULL, 1);
1328 }
1329 return NOTIFY_OK;
1330 }
1331
1332 static struct notifier_block kvm_reboot_notifier = {
1333 .notifier_call = kvm_reboot,
1334 .priority = 0,
1335 };
1336
1337 void kvm_io_bus_init(struct kvm_io_bus *bus)
1338 {
1339 memset(bus, 0, sizeof(*bus));
1340 }
1341
1342 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1343 {
1344 int i;
1345
1346 for (i = 0; i < bus->dev_count; i++) {
1347 struct kvm_io_device *pos = bus->devs[i];
1348
1349 kvm_iodevice_destructor(pos);
1350 }
1351 }
1352
1353 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
1354 gpa_t addr, int len, int is_write)
1355 {
1356 int i;
1357
1358 for (i = 0; i < bus->dev_count; i++) {
1359 struct kvm_io_device *pos = bus->devs[i];
1360
1361 if (pos->in_range(pos, addr, len, is_write))
1362 return pos;
1363 }
1364
1365 return NULL;
1366 }
1367
1368 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
1369 {
1370 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
1371
1372 bus->devs[bus->dev_count++] = dev;
1373 }
1374
1375 static struct notifier_block kvm_cpu_notifier = {
1376 .notifier_call = kvm_cpu_hotplug,
1377 .priority = 20, /* must be > scheduler priority */
1378 };
1379
1380 static int vm_stat_get(void *_offset, u64 *val)
1381 {
1382 unsigned offset = (long)_offset;
1383 struct kvm *kvm;
1384
1385 *val = 0;
1386 spin_lock(&kvm_lock);
1387 list_for_each_entry(kvm, &vm_list, vm_list)
1388 *val += *(u32 *)((void *)kvm + offset);
1389 spin_unlock(&kvm_lock);
1390 return 0;
1391 }
1392
1393 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
1394
1395 static int vcpu_stat_get(void *_offset, u64 *val)
1396 {
1397 unsigned offset = (long)_offset;
1398 struct kvm *kvm;
1399 struct kvm_vcpu *vcpu;
1400 int i;
1401
1402 *val = 0;
1403 spin_lock(&kvm_lock);
1404 list_for_each_entry(kvm, &vm_list, vm_list)
1405 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
1406 vcpu = kvm->vcpus[i];
1407 if (vcpu)
1408 *val += *(u32 *)((void *)vcpu + offset);
1409 }
1410 spin_unlock(&kvm_lock);
1411 return 0;
1412 }
1413
1414 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
1415
1416 static struct file_operations *stat_fops[] = {
1417 [KVM_STAT_VCPU] = &vcpu_stat_fops,
1418 [KVM_STAT_VM] = &vm_stat_fops,
1419 };
1420
1421 static void kvm_init_debug(void)
1422 {
1423 struct kvm_stats_debugfs_item *p;
1424
1425 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
1426 for (p = debugfs_entries; p->name; ++p)
1427 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
1428 (void *)(long)p->offset,
1429 stat_fops[p->kind]);
1430 }
1431
1432 static void kvm_exit_debug(void)
1433 {
1434 struct kvm_stats_debugfs_item *p;
1435
1436 for (p = debugfs_entries; p->name; ++p)
1437 debugfs_remove(p->dentry);
1438 debugfs_remove(kvm_debugfs_dir);
1439 }
1440
1441 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
1442 {
1443 hardware_disable(NULL);
1444 return 0;
1445 }
1446
1447 static int kvm_resume(struct sys_device *dev)
1448 {
1449 hardware_enable(NULL);
1450 return 0;
1451 }
1452
1453 static struct sysdev_class kvm_sysdev_class = {
1454 .name = "kvm",
1455 .suspend = kvm_suspend,
1456 .resume = kvm_resume,
1457 };
1458
1459 static struct sys_device kvm_sysdev = {
1460 .id = 0,
1461 .cls = &kvm_sysdev_class,
1462 };
1463
1464 struct page *bad_page;
1465 pfn_t bad_pfn;
1466
1467 static inline
1468 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
1469 {
1470 return container_of(pn, struct kvm_vcpu, preempt_notifier);
1471 }
1472
1473 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
1474 {
1475 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1476
1477 kvm_arch_vcpu_load(vcpu, cpu);
1478 }
1479
1480 static void kvm_sched_out(struct preempt_notifier *pn,
1481 struct task_struct *next)
1482 {
1483 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1484
1485 kvm_arch_vcpu_put(vcpu);
1486 }
1487
1488 int kvm_init(void *opaque, unsigned int vcpu_size,
1489 struct module *module)
1490 {
1491 int r;
1492 int cpu;
1493
1494 kvm_init_debug();
1495
1496 r = kvm_arch_init(opaque);
1497 if (r)
1498 goto out_fail;
1499
1500 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1501
1502 if (bad_page == NULL) {
1503 r = -ENOMEM;
1504 goto out;
1505 }
1506
1507 bad_pfn = page_to_pfn(bad_page);
1508
1509 r = kvm_arch_hardware_setup();
1510 if (r < 0)
1511 goto out_free_0;
1512
1513 for_each_online_cpu(cpu) {
1514 smp_call_function_single(cpu,
1515 kvm_arch_check_processor_compat,
1516 &r, 1);
1517 if (r < 0)
1518 goto out_free_1;
1519 }
1520
1521 on_each_cpu(hardware_enable, NULL, 1);
1522 r = register_cpu_notifier(&kvm_cpu_notifier);
1523 if (r)
1524 goto out_free_2;
1525 register_reboot_notifier(&kvm_reboot_notifier);
1526
1527 r = sysdev_class_register(&kvm_sysdev_class);
1528 if (r)
1529 goto out_free_3;
1530
1531 r = sysdev_register(&kvm_sysdev);
1532 if (r)
1533 goto out_free_4;
1534
1535 /* A kmem cache lets us meet the alignment requirements of fx_save. */
1536 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
1537 __alignof__(struct kvm_vcpu),
1538 0, NULL);
1539 if (!kvm_vcpu_cache) {
1540 r = -ENOMEM;
1541 goto out_free_5;
1542 }
1543
1544 kvm_chardev_ops.owner = module;
1545
1546 r = misc_register(&kvm_dev);
1547 if (r) {
1548 printk(KERN_ERR "kvm: misc device register failed\n");
1549 goto out_free;
1550 }
1551
1552 kvm_preempt_ops.sched_in = kvm_sched_in;
1553 kvm_preempt_ops.sched_out = kvm_sched_out;
1554
1555 return 0;
1556
1557 out_free:
1558 kmem_cache_destroy(kvm_vcpu_cache);
1559 out_free_5:
1560 sysdev_unregister(&kvm_sysdev);
1561 out_free_4:
1562 sysdev_class_unregister(&kvm_sysdev_class);
1563 out_free_3:
1564 unregister_reboot_notifier(&kvm_reboot_notifier);
1565 unregister_cpu_notifier(&kvm_cpu_notifier);
1566 out_free_2:
1567 on_each_cpu(hardware_disable, NULL, 1);
1568 out_free_1:
1569 kvm_arch_hardware_unsetup();
1570 out_free_0:
1571 __free_page(bad_page);
1572 out:
1573 kvm_arch_exit();
1574 kvm_exit_debug();
1575 out_fail:
1576 return r;
1577 }
1578 EXPORT_SYMBOL_GPL(kvm_init);
1579
1580 void kvm_exit(void)
1581 {
1582 kvm_trace_cleanup();
1583 misc_deregister(&kvm_dev);
1584 kmem_cache_destroy(kvm_vcpu_cache);
1585 sysdev_unregister(&kvm_sysdev);
1586 sysdev_class_unregister(&kvm_sysdev_class);
1587 unregister_reboot_notifier(&kvm_reboot_notifier);
1588 unregister_cpu_notifier(&kvm_cpu_notifier);
1589 on_each_cpu(hardware_disable, NULL, 1);
1590 kvm_arch_hardware_unsetup();
1591 kvm_arch_exit();
1592 kvm_exit_debug();
1593 __free_page(bad_page);
1594 }
1595 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.096129 seconds and 5 git commands to generate.