Merge branch 'for-linus' of git://git.selinuxproject.org/~jmorris/linux-security
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 static struct page *hwpoison_page;
104 static pfn_t hwpoison_pfn;
105
106 struct page *fault_page;
107 pfn_t fault_pfn;
108
109 inline int kvm_is_mmio_pfn(pfn_t pfn)
110 {
111 if (pfn_valid(pfn)) {
112 int reserved;
113 struct page *tail = pfn_to_page(pfn);
114 struct page *head = compound_trans_head(tail);
115 reserved = PageReserved(head);
116 if (head != tail) {
117 /*
118 * "head" is not a dangling pointer
119 * (compound_trans_head takes care of that)
120 * but the hugepage may have been splitted
121 * from under us (and we may not hold a
122 * reference count on the head page so it can
123 * be reused before we run PageReferenced), so
124 * we've to check PageTail before returning
125 * what we just read.
126 */
127 smp_rmb();
128 if (PageTail(tail))
129 return reserved;
130 }
131 return PageReserved(tail);
132 }
133
134 return true;
135 }
136
137 /*
138 * Switches to specified vcpu, until a matching vcpu_put()
139 */
140 void vcpu_load(struct kvm_vcpu *vcpu)
141 {
142 int cpu;
143
144 mutex_lock(&vcpu->mutex);
145 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
146 /* The thread running this VCPU changed. */
147 struct pid *oldpid = vcpu->pid;
148 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
149 rcu_assign_pointer(vcpu->pid, newpid);
150 synchronize_rcu();
151 put_pid(oldpid);
152 }
153 cpu = get_cpu();
154 preempt_notifier_register(&vcpu->preempt_notifier);
155 kvm_arch_vcpu_load(vcpu, cpu);
156 put_cpu();
157 }
158
159 void vcpu_put(struct kvm_vcpu *vcpu)
160 {
161 preempt_disable();
162 kvm_arch_vcpu_put(vcpu);
163 preempt_notifier_unregister(&vcpu->preempt_notifier);
164 preempt_enable();
165 mutex_unlock(&vcpu->mutex);
166 }
167
168 static void ack_flush(void *_completed)
169 {
170 }
171
172 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
173 {
174 int i, cpu, me;
175 cpumask_var_t cpus;
176 bool called = true;
177 struct kvm_vcpu *vcpu;
178
179 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
180
181 me = get_cpu();
182 kvm_for_each_vcpu(i, vcpu, kvm) {
183 kvm_make_request(req, vcpu);
184 cpu = vcpu->cpu;
185
186 /* Set ->requests bit before we read ->mode */
187 smp_mb();
188
189 if (cpus != NULL && cpu != -1 && cpu != me &&
190 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
191 cpumask_set_cpu(cpu, cpus);
192 }
193 if (unlikely(cpus == NULL))
194 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
195 else if (!cpumask_empty(cpus))
196 smp_call_function_many(cpus, ack_flush, NULL, 1);
197 else
198 called = false;
199 put_cpu();
200 free_cpumask_var(cpus);
201 return called;
202 }
203
204 void kvm_flush_remote_tlbs(struct kvm *kvm)
205 {
206 int dirty_count = kvm->tlbs_dirty;
207
208 smp_mb();
209 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
210 ++kvm->stat.remote_tlb_flush;
211 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
212 }
213
214 void kvm_reload_remote_mmus(struct kvm *kvm)
215 {
216 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
217 }
218
219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
220 {
221 struct page *page;
222 int r;
223
224 mutex_init(&vcpu->mutex);
225 vcpu->cpu = -1;
226 vcpu->kvm = kvm;
227 vcpu->vcpu_id = id;
228 vcpu->pid = NULL;
229 init_waitqueue_head(&vcpu->wq);
230 kvm_async_pf_vcpu_init(vcpu);
231
232 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
233 if (!page) {
234 r = -ENOMEM;
235 goto fail;
236 }
237 vcpu->run = page_address(page);
238
239 r = kvm_arch_vcpu_init(vcpu);
240 if (r < 0)
241 goto fail_free_run;
242 return 0;
243
244 fail_free_run:
245 free_page((unsigned long)vcpu->run);
246 fail:
247 return r;
248 }
249 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
250
251 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
252 {
253 put_pid(vcpu->pid);
254 kvm_arch_vcpu_uninit(vcpu);
255 free_page((unsigned long)vcpu->run);
256 }
257 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
258
259 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
260 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
261 {
262 return container_of(mn, struct kvm, mmu_notifier);
263 }
264
265 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
266 struct mm_struct *mm,
267 unsigned long address)
268 {
269 struct kvm *kvm = mmu_notifier_to_kvm(mn);
270 int need_tlb_flush, idx;
271
272 /*
273 * When ->invalidate_page runs, the linux pte has been zapped
274 * already but the page is still allocated until
275 * ->invalidate_page returns. So if we increase the sequence
276 * here the kvm page fault will notice if the spte can't be
277 * established because the page is going to be freed. If
278 * instead the kvm page fault establishes the spte before
279 * ->invalidate_page runs, kvm_unmap_hva will release it
280 * before returning.
281 *
282 * The sequence increase only need to be seen at spin_unlock
283 * time, and not at spin_lock time.
284 *
285 * Increasing the sequence after the spin_unlock would be
286 * unsafe because the kvm page fault could then establish the
287 * pte after kvm_unmap_hva returned, without noticing the page
288 * is going to be freed.
289 */
290 idx = srcu_read_lock(&kvm->srcu);
291 spin_lock(&kvm->mmu_lock);
292 kvm->mmu_notifier_seq++;
293 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
294 spin_unlock(&kvm->mmu_lock);
295 srcu_read_unlock(&kvm->srcu, idx);
296
297 /* we've to flush the tlb before the pages can be freed */
298 if (need_tlb_flush)
299 kvm_flush_remote_tlbs(kvm);
300
301 }
302
303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
304 struct mm_struct *mm,
305 unsigned long address,
306 pte_t pte)
307 {
308 struct kvm *kvm = mmu_notifier_to_kvm(mn);
309 int idx;
310
311 idx = srcu_read_lock(&kvm->srcu);
312 spin_lock(&kvm->mmu_lock);
313 kvm->mmu_notifier_seq++;
314 kvm_set_spte_hva(kvm, address, pte);
315 spin_unlock(&kvm->mmu_lock);
316 srcu_read_unlock(&kvm->srcu, idx);
317 }
318
319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
320 struct mm_struct *mm,
321 unsigned long start,
322 unsigned long end)
323 {
324 struct kvm *kvm = mmu_notifier_to_kvm(mn);
325 int need_tlb_flush = 0, idx;
326
327 idx = srcu_read_lock(&kvm->srcu);
328 spin_lock(&kvm->mmu_lock);
329 /*
330 * The count increase must become visible at unlock time as no
331 * spte can be established without taking the mmu_lock and
332 * count is also read inside the mmu_lock critical section.
333 */
334 kvm->mmu_notifier_count++;
335 for (; start < end; start += PAGE_SIZE)
336 need_tlb_flush |= kvm_unmap_hva(kvm, start);
337 need_tlb_flush |= kvm->tlbs_dirty;
338 spin_unlock(&kvm->mmu_lock);
339 srcu_read_unlock(&kvm->srcu, idx);
340
341 /* we've to flush the tlb before the pages can be freed */
342 if (need_tlb_flush)
343 kvm_flush_remote_tlbs(kvm);
344 }
345
346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
347 struct mm_struct *mm,
348 unsigned long start,
349 unsigned long end)
350 {
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
352
353 spin_lock(&kvm->mmu_lock);
354 /*
355 * This sequence increase will notify the kvm page fault that
356 * the page that is going to be mapped in the spte could have
357 * been freed.
358 */
359 kvm->mmu_notifier_seq++;
360 /*
361 * The above sequence increase must be visible before the
362 * below count decrease but both values are read by the kvm
363 * page fault under mmu_lock spinlock so we don't need to add
364 * a smb_wmb() here in between the two.
365 */
366 kvm->mmu_notifier_count--;
367 spin_unlock(&kvm->mmu_lock);
368
369 BUG_ON(kvm->mmu_notifier_count < 0);
370 }
371
372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
373 struct mm_struct *mm,
374 unsigned long address)
375 {
376 struct kvm *kvm = mmu_notifier_to_kvm(mn);
377 int young, idx;
378
379 idx = srcu_read_lock(&kvm->srcu);
380 spin_lock(&kvm->mmu_lock);
381 young = kvm_age_hva(kvm, address);
382 spin_unlock(&kvm->mmu_lock);
383 srcu_read_unlock(&kvm->srcu, idx);
384
385 if (young)
386 kvm_flush_remote_tlbs(kvm);
387
388 return young;
389 }
390
391 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
392 struct mm_struct *mm,
393 unsigned long address)
394 {
395 struct kvm *kvm = mmu_notifier_to_kvm(mn);
396 int young, idx;
397
398 idx = srcu_read_lock(&kvm->srcu);
399 spin_lock(&kvm->mmu_lock);
400 young = kvm_test_age_hva(kvm, address);
401 spin_unlock(&kvm->mmu_lock);
402 srcu_read_unlock(&kvm->srcu, idx);
403
404 return young;
405 }
406
407 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
408 struct mm_struct *mm)
409 {
410 struct kvm *kvm = mmu_notifier_to_kvm(mn);
411 int idx;
412
413 idx = srcu_read_lock(&kvm->srcu);
414 kvm_arch_flush_shadow(kvm);
415 srcu_read_unlock(&kvm->srcu, idx);
416 }
417
418 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
419 .invalidate_page = kvm_mmu_notifier_invalidate_page,
420 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
421 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
422 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
423 .test_young = kvm_mmu_notifier_test_young,
424 .change_pte = kvm_mmu_notifier_change_pte,
425 .release = kvm_mmu_notifier_release,
426 };
427
428 static int kvm_init_mmu_notifier(struct kvm *kvm)
429 {
430 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
431 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
432 }
433
434 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
435
436 static int kvm_init_mmu_notifier(struct kvm *kvm)
437 {
438 return 0;
439 }
440
441 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
442
443 static struct kvm *kvm_create_vm(void)
444 {
445 int r, i;
446 struct kvm *kvm = kvm_arch_alloc_vm();
447
448 if (!kvm)
449 return ERR_PTR(-ENOMEM);
450
451 r = kvm_arch_init_vm(kvm);
452 if (r)
453 goto out_err_nodisable;
454
455 r = hardware_enable_all();
456 if (r)
457 goto out_err_nodisable;
458
459 #ifdef CONFIG_HAVE_KVM_IRQCHIP
460 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
461 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
462 #endif
463
464 r = -ENOMEM;
465 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
466 if (!kvm->memslots)
467 goto out_err_nosrcu;
468 if (init_srcu_struct(&kvm->srcu))
469 goto out_err_nosrcu;
470 for (i = 0; i < KVM_NR_BUSES; i++) {
471 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
472 GFP_KERNEL);
473 if (!kvm->buses[i])
474 goto out_err;
475 }
476
477 spin_lock_init(&kvm->mmu_lock);
478 kvm->mm = current->mm;
479 atomic_inc(&kvm->mm->mm_count);
480 kvm_eventfd_init(kvm);
481 mutex_init(&kvm->lock);
482 mutex_init(&kvm->irq_lock);
483 mutex_init(&kvm->slots_lock);
484 atomic_set(&kvm->users_count, 1);
485
486 r = kvm_init_mmu_notifier(kvm);
487 if (r)
488 goto out_err;
489
490 raw_spin_lock(&kvm_lock);
491 list_add(&kvm->vm_list, &vm_list);
492 raw_spin_unlock(&kvm_lock);
493
494 return kvm;
495
496 out_err:
497 cleanup_srcu_struct(&kvm->srcu);
498 out_err_nosrcu:
499 hardware_disable_all();
500 out_err_nodisable:
501 for (i = 0; i < KVM_NR_BUSES; i++)
502 kfree(kvm->buses[i]);
503 kfree(kvm->memslots);
504 kvm_arch_free_vm(kvm);
505 return ERR_PTR(r);
506 }
507
508 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
509 {
510 if (!memslot->dirty_bitmap)
511 return;
512
513 if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
514 vfree(memslot->dirty_bitmap_head);
515 else
516 kfree(memslot->dirty_bitmap_head);
517
518 memslot->dirty_bitmap = NULL;
519 memslot->dirty_bitmap_head = NULL;
520 }
521
522 /*
523 * Free any memory in @free but not in @dont.
524 */
525 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
526 struct kvm_memory_slot *dont)
527 {
528 int i;
529
530 if (!dont || free->rmap != dont->rmap)
531 vfree(free->rmap);
532
533 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
534 kvm_destroy_dirty_bitmap(free);
535
536
537 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
538 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
539 vfree(free->lpage_info[i]);
540 free->lpage_info[i] = NULL;
541 }
542 }
543
544 free->npages = 0;
545 free->rmap = NULL;
546 }
547
548 void kvm_free_physmem(struct kvm *kvm)
549 {
550 int i;
551 struct kvm_memslots *slots = kvm->memslots;
552
553 for (i = 0; i < slots->nmemslots; ++i)
554 kvm_free_physmem_slot(&slots->memslots[i], NULL);
555
556 kfree(kvm->memslots);
557 }
558
559 static void kvm_destroy_vm(struct kvm *kvm)
560 {
561 int i;
562 struct mm_struct *mm = kvm->mm;
563
564 kvm_arch_sync_events(kvm);
565 raw_spin_lock(&kvm_lock);
566 list_del(&kvm->vm_list);
567 raw_spin_unlock(&kvm_lock);
568 kvm_free_irq_routing(kvm);
569 for (i = 0; i < KVM_NR_BUSES; i++)
570 kvm_io_bus_destroy(kvm->buses[i]);
571 kvm_coalesced_mmio_free(kvm);
572 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
573 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
574 #else
575 kvm_arch_flush_shadow(kvm);
576 #endif
577 kvm_arch_destroy_vm(kvm);
578 kvm_free_physmem(kvm);
579 cleanup_srcu_struct(&kvm->srcu);
580 kvm_arch_free_vm(kvm);
581 hardware_disable_all();
582 mmdrop(mm);
583 }
584
585 void kvm_get_kvm(struct kvm *kvm)
586 {
587 atomic_inc(&kvm->users_count);
588 }
589 EXPORT_SYMBOL_GPL(kvm_get_kvm);
590
591 void kvm_put_kvm(struct kvm *kvm)
592 {
593 if (atomic_dec_and_test(&kvm->users_count))
594 kvm_destroy_vm(kvm);
595 }
596 EXPORT_SYMBOL_GPL(kvm_put_kvm);
597
598
599 static int kvm_vm_release(struct inode *inode, struct file *filp)
600 {
601 struct kvm *kvm = filp->private_data;
602
603 kvm_irqfd_release(kvm);
604
605 kvm_put_kvm(kvm);
606 return 0;
607 }
608
609 #ifndef CONFIG_S390
610 /*
611 * Allocation size is twice as large as the actual dirty bitmap size.
612 * This makes it possible to do double buffering: see x86's
613 * kvm_vm_ioctl_get_dirty_log().
614 */
615 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
616 {
617 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
618
619 if (dirty_bytes > PAGE_SIZE)
620 memslot->dirty_bitmap = vzalloc(dirty_bytes);
621 else
622 memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
623
624 if (!memslot->dirty_bitmap)
625 return -ENOMEM;
626
627 memslot->dirty_bitmap_head = memslot->dirty_bitmap;
628 return 0;
629 }
630 #endif /* !CONFIG_S390 */
631
632 /*
633 * Allocate some memory and give it an address in the guest physical address
634 * space.
635 *
636 * Discontiguous memory is allowed, mostly for framebuffers.
637 *
638 * Must be called holding mmap_sem for write.
639 */
640 int __kvm_set_memory_region(struct kvm *kvm,
641 struct kvm_userspace_memory_region *mem,
642 int user_alloc)
643 {
644 int r;
645 gfn_t base_gfn;
646 unsigned long npages;
647 unsigned long i;
648 struct kvm_memory_slot *memslot;
649 struct kvm_memory_slot old, new;
650 struct kvm_memslots *slots, *old_memslots;
651
652 r = -EINVAL;
653 /* General sanity checks */
654 if (mem->memory_size & (PAGE_SIZE - 1))
655 goto out;
656 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
657 goto out;
658 /* We can read the guest memory with __xxx_user() later on. */
659 if (user_alloc &&
660 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
661 !access_ok(VERIFY_WRITE,
662 (void __user *)(unsigned long)mem->userspace_addr,
663 mem->memory_size)))
664 goto out;
665 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
666 goto out;
667 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
668 goto out;
669
670 memslot = &kvm->memslots->memslots[mem->slot];
671 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
672 npages = mem->memory_size >> PAGE_SHIFT;
673
674 r = -EINVAL;
675 if (npages > KVM_MEM_MAX_NR_PAGES)
676 goto out;
677
678 if (!npages)
679 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
680
681 new = old = *memslot;
682
683 new.id = mem->slot;
684 new.base_gfn = base_gfn;
685 new.npages = npages;
686 new.flags = mem->flags;
687
688 /* Disallow changing a memory slot's size. */
689 r = -EINVAL;
690 if (npages && old.npages && npages != old.npages)
691 goto out_free;
692
693 /* Check for overlaps */
694 r = -EEXIST;
695 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
696 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
697
698 if (s == memslot || !s->npages)
699 continue;
700 if (!((base_gfn + npages <= s->base_gfn) ||
701 (base_gfn >= s->base_gfn + s->npages)))
702 goto out_free;
703 }
704
705 /* Free page dirty bitmap if unneeded */
706 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
707 new.dirty_bitmap = NULL;
708
709 r = -ENOMEM;
710
711 /* Allocate if a slot is being created */
712 #ifndef CONFIG_S390
713 if (npages && !new.rmap) {
714 new.rmap = vzalloc(npages * sizeof(*new.rmap));
715
716 if (!new.rmap)
717 goto out_free;
718
719 new.user_alloc = user_alloc;
720 new.userspace_addr = mem->userspace_addr;
721 }
722 if (!npages)
723 goto skip_lpage;
724
725 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
726 unsigned long ugfn;
727 unsigned long j;
728 int lpages;
729 int level = i + 2;
730
731 /* Avoid unused variable warning if no large pages */
732 (void)level;
733
734 if (new.lpage_info[i])
735 continue;
736
737 lpages = 1 + ((base_gfn + npages - 1)
738 >> KVM_HPAGE_GFN_SHIFT(level));
739 lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
740
741 new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
742
743 if (!new.lpage_info[i])
744 goto out_free;
745
746 if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
747 new.lpage_info[i][0].write_count = 1;
748 if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
749 new.lpage_info[i][lpages - 1].write_count = 1;
750 ugfn = new.userspace_addr >> PAGE_SHIFT;
751 /*
752 * If the gfn and userspace address are not aligned wrt each
753 * other, or if explicitly asked to, disable large page
754 * support for this slot
755 */
756 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
757 !largepages_enabled)
758 for (j = 0; j < lpages; ++j)
759 new.lpage_info[i][j].write_count = 1;
760 }
761
762 skip_lpage:
763
764 /* Allocate page dirty bitmap if needed */
765 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
766 if (kvm_create_dirty_bitmap(&new) < 0)
767 goto out_free;
768 /* destroy any largepage mappings for dirty tracking */
769 }
770 #else /* not defined CONFIG_S390 */
771 new.user_alloc = user_alloc;
772 if (user_alloc)
773 new.userspace_addr = mem->userspace_addr;
774 #endif /* not defined CONFIG_S390 */
775
776 if (!npages) {
777 r = -ENOMEM;
778 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
779 if (!slots)
780 goto out_free;
781 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
782 if (mem->slot >= slots->nmemslots)
783 slots->nmemslots = mem->slot + 1;
784 slots->generation++;
785 slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
786
787 old_memslots = kvm->memslots;
788 rcu_assign_pointer(kvm->memslots, slots);
789 synchronize_srcu_expedited(&kvm->srcu);
790 /* From this point no new shadow pages pointing to a deleted
791 * memslot will be created.
792 *
793 * validation of sp->gfn happens in:
794 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
795 * - kvm_is_visible_gfn (mmu_check_roots)
796 */
797 kvm_arch_flush_shadow(kvm);
798 kfree(old_memslots);
799 }
800
801 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
802 if (r)
803 goto out_free;
804
805 /* map the pages in iommu page table */
806 if (npages) {
807 r = kvm_iommu_map_pages(kvm, &new);
808 if (r)
809 goto out_free;
810 }
811
812 r = -ENOMEM;
813 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
814 if (!slots)
815 goto out_free;
816 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
817 if (mem->slot >= slots->nmemslots)
818 slots->nmemslots = mem->slot + 1;
819 slots->generation++;
820
821 /* actual memory is freed via old in kvm_free_physmem_slot below */
822 if (!npages) {
823 new.rmap = NULL;
824 new.dirty_bitmap = NULL;
825 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
826 new.lpage_info[i] = NULL;
827 }
828
829 slots->memslots[mem->slot] = new;
830 old_memslots = kvm->memslots;
831 rcu_assign_pointer(kvm->memslots, slots);
832 synchronize_srcu_expedited(&kvm->srcu);
833
834 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
835
836 /*
837 * If the new memory slot is created, we need to clear all
838 * mmio sptes.
839 */
840 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
841 kvm_arch_flush_shadow(kvm);
842
843 kvm_free_physmem_slot(&old, &new);
844 kfree(old_memslots);
845
846 return 0;
847
848 out_free:
849 kvm_free_physmem_slot(&new, &old);
850 out:
851 return r;
852
853 }
854 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
855
856 int kvm_set_memory_region(struct kvm *kvm,
857 struct kvm_userspace_memory_region *mem,
858 int user_alloc)
859 {
860 int r;
861
862 mutex_lock(&kvm->slots_lock);
863 r = __kvm_set_memory_region(kvm, mem, user_alloc);
864 mutex_unlock(&kvm->slots_lock);
865 return r;
866 }
867 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
868
869 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
870 struct
871 kvm_userspace_memory_region *mem,
872 int user_alloc)
873 {
874 if (mem->slot >= KVM_MEMORY_SLOTS)
875 return -EINVAL;
876 return kvm_set_memory_region(kvm, mem, user_alloc);
877 }
878
879 int kvm_get_dirty_log(struct kvm *kvm,
880 struct kvm_dirty_log *log, int *is_dirty)
881 {
882 struct kvm_memory_slot *memslot;
883 int r, i;
884 unsigned long n;
885 unsigned long any = 0;
886
887 r = -EINVAL;
888 if (log->slot >= KVM_MEMORY_SLOTS)
889 goto out;
890
891 memslot = &kvm->memslots->memslots[log->slot];
892 r = -ENOENT;
893 if (!memslot->dirty_bitmap)
894 goto out;
895
896 n = kvm_dirty_bitmap_bytes(memslot);
897
898 for (i = 0; !any && i < n/sizeof(long); ++i)
899 any = memslot->dirty_bitmap[i];
900
901 r = -EFAULT;
902 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
903 goto out;
904
905 if (any)
906 *is_dirty = 1;
907
908 r = 0;
909 out:
910 return r;
911 }
912
913 void kvm_disable_largepages(void)
914 {
915 largepages_enabled = false;
916 }
917 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
918
919 int is_error_page(struct page *page)
920 {
921 return page == bad_page || page == hwpoison_page || page == fault_page;
922 }
923 EXPORT_SYMBOL_GPL(is_error_page);
924
925 int is_error_pfn(pfn_t pfn)
926 {
927 return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
928 }
929 EXPORT_SYMBOL_GPL(is_error_pfn);
930
931 int is_hwpoison_pfn(pfn_t pfn)
932 {
933 return pfn == hwpoison_pfn;
934 }
935 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
936
937 int is_fault_pfn(pfn_t pfn)
938 {
939 return pfn == fault_pfn;
940 }
941 EXPORT_SYMBOL_GPL(is_fault_pfn);
942
943 int is_noslot_pfn(pfn_t pfn)
944 {
945 return pfn == bad_pfn;
946 }
947 EXPORT_SYMBOL_GPL(is_noslot_pfn);
948
949 int is_invalid_pfn(pfn_t pfn)
950 {
951 return pfn == hwpoison_pfn || pfn == fault_pfn;
952 }
953 EXPORT_SYMBOL_GPL(is_invalid_pfn);
954
955 static inline unsigned long bad_hva(void)
956 {
957 return PAGE_OFFSET;
958 }
959
960 int kvm_is_error_hva(unsigned long addr)
961 {
962 return addr == bad_hva();
963 }
964 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
965
966 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
967 gfn_t gfn)
968 {
969 int i;
970
971 for (i = 0; i < slots->nmemslots; ++i) {
972 struct kvm_memory_slot *memslot = &slots->memslots[i];
973
974 if (gfn >= memslot->base_gfn
975 && gfn < memslot->base_gfn + memslot->npages)
976 return memslot;
977 }
978 return NULL;
979 }
980
981 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
982 {
983 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
984 }
985 EXPORT_SYMBOL_GPL(gfn_to_memslot);
986
987 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
988 {
989 int i;
990 struct kvm_memslots *slots = kvm_memslots(kvm);
991
992 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
993 struct kvm_memory_slot *memslot = &slots->memslots[i];
994
995 if (memslot->flags & KVM_MEMSLOT_INVALID)
996 continue;
997
998 if (gfn >= memslot->base_gfn
999 && gfn < memslot->base_gfn + memslot->npages)
1000 return 1;
1001 }
1002 return 0;
1003 }
1004 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1005
1006 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1007 {
1008 struct vm_area_struct *vma;
1009 unsigned long addr, size;
1010
1011 size = PAGE_SIZE;
1012
1013 addr = gfn_to_hva(kvm, gfn);
1014 if (kvm_is_error_hva(addr))
1015 return PAGE_SIZE;
1016
1017 down_read(&current->mm->mmap_sem);
1018 vma = find_vma(current->mm, addr);
1019 if (!vma)
1020 goto out;
1021
1022 size = vma_kernel_pagesize(vma);
1023
1024 out:
1025 up_read(&current->mm->mmap_sem);
1026
1027 return size;
1028 }
1029
1030 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1031 gfn_t *nr_pages)
1032 {
1033 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1034 return bad_hva();
1035
1036 if (nr_pages)
1037 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1038
1039 return gfn_to_hva_memslot(slot, gfn);
1040 }
1041
1042 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1043 {
1044 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1045 }
1046 EXPORT_SYMBOL_GPL(gfn_to_hva);
1047
1048 static pfn_t get_fault_pfn(void)
1049 {
1050 get_page(fault_page);
1051 return fault_pfn;
1052 }
1053
1054 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1055 unsigned long start, int write, struct page **page)
1056 {
1057 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1058
1059 if (write)
1060 flags |= FOLL_WRITE;
1061
1062 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1063 }
1064
1065 static inline int check_user_page_hwpoison(unsigned long addr)
1066 {
1067 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1068
1069 rc = __get_user_pages(current, current->mm, addr, 1,
1070 flags, NULL, NULL, NULL);
1071 return rc == -EHWPOISON;
1072 }
1073
1074 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1075 bool *async, bool write_fault, bool *writable)
1076 {
1077 struct page *page[1];
1078 int npages = 0;
1079 pfn_t pfn;
1080
1081 /* we can do it either atomically or asynchronously, not both */
1082 BUG_ON(atomic && async);
1083
1084 BUG_ON(!write_fault && !writable);
1085
1086 if (writable)
1087 *writable = true;
1088
1089 if (atomic || async)
1090 npages = __get_user_pages_fast(addr, 1, 1, page);
1091
1092 if (unlikely(npages != 1) && !atomic) {
1093 might_sleep();
1094
1095 if (writable)
1096 *writable = write_fault;
1097
1098 if (async) {
1099 down_read(&current->mm->mmap_sem);
1100 npages = get_user_page_nowait(current, current->mm,
1101 addr, write_fault, page);
1102 up_read(&current->mm->mmap_sem);
1103 } else
1104 npages = get_user_pages_fast(addr, 1, write_fault,
1105 page);
1106
1107 /* map read fault as writable if possible */
1108 if (unlikely(!write_fault) && npages == 1) {
1109 struct page *wpage[1];
1110
1111 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1112 if (npages == 1) {
1113 *writable = true;
1114 put_page(page[0]);
1115 page[0] = wpage[0];
1116 }
1117 npages = 1;
1118 }
1119 }
1120
1121 if (unlikely(npages != 1)) {
1122 struct vm_area_struct *vma;
1123
1124 if (atomic)
1125 return get_fault_pfn();
1126
1127 down_read(&current->mm->mmap_sem);
1128 if (npages == -EHWPOISON ||
1129 (!async && check_user_page_hwpoison(addr))) {
1130 up_read(&current->mm->mmap_sem);
1131 get_page(hwpoison_page);
1132 return page_to_pfn(hwpoison_page);
1133 }
1134
1135 vma = find_vma_intersection(current->mm, addr, addr+1);
1136
1137 if (vma == NULL)
1138 pfn = get_fault_pfn();
1139 else if ((vma->vm_flags & VM_PFNMAP)) {
1140 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1141 vma->vm_pgoff;
1142 BUG_ON(!kvm_is_mmio_pfn(pfn));
1143 } else {
1144 if (async && (vma->vm_flags & VM_WRITE))
1145 *async = true;
1146 pfn = get_fault_pfn();
1147 }
1148 up_read(&current->mm->mmap_sem);
1149 } else
1150 pfn = page_to_pfn(page[0]);
1151
1152 return pfn;
1153 }
1154
1155 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1156 {
1157 return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1158 }
1159 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1160
1161 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1162 bool write_fault, bool *writable)
1163 {
1164 unsigned long addr;
1165
1166 if (async)
1167 *async = false;
1168
1169 addr = gfn_to_hva(kvm, gfn);
1170 if (kvm_is_error_hva(addr)) {
1171 get_page(bad_page);
1172 return page_to_pfn(bad_page);
1173 }
1174
1175 return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1176 }
1177
1178 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1179 {
1180 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1181 }
1182 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1183
1184 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1185 bool write_fault, bool *writable)
1186 {
1187 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1188 }
1189 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1190
1191 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1192 {
1193 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1194 }
1195 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1196
1197 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1198 bool *writable)
1199 {
1200 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1201 }
1202 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1203
1204 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1205 struct kvm_memory_slot *slot, gfn_t gfn)
1206 {
1207 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1208 return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1209 }
1210
1211 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1212 int nr_pages)
1213 {
1214 unsigned long addr;
1215 gfn_t entry;
1216
1217 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1218 if (kvm_is_error_hva(addr))
1219 return -1;
1220
1221 if (entry < nr_pages)
1222 return 0;
1223
1224 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1225 }
1226 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1227
1228 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1229 {
1230 pfn_t pfn;
1231
1232 pfn = gfn_to_pfn(kvm, gfn);
1233 if (!kvm_is_mmio_pfn(pfn))
1234 return pfn_to_page(pfn);
1235
1236 WARN_ON(kvm_is_mmio_pfn(pfn));
1237
1238 get_page(bad_page);
1239 return bad_page;
1240 }
1241
1242 EXPORT_SYMBOL_GPL(gfn_to_page);
1243
1244 void kvm_release_page_clean(struct page *page)
1245 {
1246 kvm_release_pfn_clean(page_to_pfn(page));
1247 }
1248 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1249
1250 void kvm_release_pfn_clean(pfn_t pfn)
1251 {
1252 if (!kvm_is_mmio_pfn(pfn))
1253 put_page(pfn_to_page(pfn));
1254 }
1255 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1256
1257 void kvm_release_page_dirty(struct page *page)
1258 {
1259 kvm_release_pfn_dirty(page_to_pfn(page));
1260 }
1261 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1262
1263 void kvm_release_pfn_dirty(pfn_t pfn)
1264 {
1265 kvm_set_pfn_dirty(pfn);
1266 kvm_release_pfn_clean(pfn);
1267 }
1268 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1269
1270 void kvm_set_page_dirty(struct page *page)
1271 {
1272 kvm_set_pfn_dirty(page_to_pfn(page));
1273 }
1274 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1275
1276 void kvm_set_pfn_dirty(pfn_t pfn)
1277 {
1278 if (!kvm_is_mmio_pfn(pfn)) {
1279 struct page *page = pfn_to_page(pfn);
1280 if (!PageReserved(page))
1281 SetPageDirty(page);
1282 }
1283 }
1284 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1285
1286 void kvm_set_pfn_accessed(pfn_t pfn)
1287 {
1288 if (!kvm_is_mmio_pfn(pfn))
1289 mark_page_accessed(pfn_to_page(pfn));
1290 }
1291 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1292
1293 void kvm_get_pfn(pfn_t pfn)
1294 {
1295 if (!kvm_is_mmio_pfn(pfn))
1296 get_page(pfn_to_page(pfn));
1297 }
1298 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1299
1300 static int next_segment(unsigned long len, int offset)
1301 {
1302 if (len > PAGE_SIZE - offset)
1303 return PAGE_SIZE - offset;
1304 else
1305 return len;
1306 }
1307
1308 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1309 int len)
1310 {
1311 int r;
1312 unsigned long addr;
1313
1314 addr = gfn_to_hva(kvm, gfn);
1315 if (kvm_is_error_hva(addr))
1316 return -EFAULT;
1317 r = __copy_from_user(data, (void __user *)addr + offset, len);
1318 if (r)
1319 return -EFAULT;
1320 return 0;
1321 }
1322 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1323
1324 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1325 {
1326 gfn_t gfn = gpa >> PAGE_SHIFT;
1327 int seg;
1328 int offset = offset_in_page(gpa);
1329 int ret;
1330
1331 while ((seg = next_segment(len, offset)) != 0) {
1332 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1333 if (ret < 0)
1334 return ret;
1335 offset = 0;
1336 len -= seg;
1337 data += seg;
1338 ++gfn;
1339 }
1340 return 0;
1341 }
1342 EXPORT_SYMBOL_GPL(kvm_read_guest);
1343
1344 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1345 unsigned long len)
1346 {
1347 int r;
1348 unsigned long addr;
1349 gfn_t gfn = gpa >> PAGE_SHIFT;
1350 int offset = offset_in_page(gpa);
1351
1352 addr = gfn_to_hva(kvm, gfn);
1353 if (kvm_is_error_hva(addr))
1354 return -EFAULT;
1355 pagefault_disable();
1356 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1357 pagefault_enable();
1358 if (r)
1359 return -EFAULT;
1360 return 0;
1361 }
1362 EXPORT_SYMBOL(kvm_read_guest_atomic);
1363
1364 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1365 int offset, int len)
1366 {
1367 int r;
1368 unsigned long addr;
1369
1370 addr = gfn_to_hva(kvm, gfn);
1371 if (kvm_is_error_hva(addr))
1372 return -EFAULT;
1373 r = __copy_to_user((void __user *)addr + offset, data, len);
1374 if (r)
1375 return -EFAULT;
1376 mark_page_dirty(kvm, gfn);
1377 return 0;
1378 }
1379 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1380
1381 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1382 unsigned long len)
1383 {
1384 gfn_t gfn = gpa >> PAGE_SHIFT;
1385 int seg;
1386 int offset = offset_in_page(gpa);
1387 int ret;
1388
1389 while ((seg = next_segment(len, offset)) != 0) {
1390 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1391 if (ret < 0)
1392 return ret;
1393 offset = 0;
1394 len -= seg;
1395 data += seg;
1396 ++gfn;
1397 }
1398 return 0;
1399 }
1400
1401 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1402 gpa_t gpa)
1403 {
1404 struct kvm_memslots *slots = kvm_memslots(kvm);
1405 int offset = offset_in_page(gpa);
1406 gfn_t gfn = gpa >> PAGE_SHIFT;
1407
1408 ghc->gpa = gpa;
1409 ghc->generation = slots->generation;
1410 ghc->memslot = __gfn_to_memslot(slots, gfn);
1411 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1412 if (!kvm_is_error_hva(ghc->hva))
1413 ghc->hva += offset;
1414 else
1415 return -EFAULT;
1416
1417 return 0;
1418 }
1419 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1420
1421 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1422 void *data, unsigned long len)
1423 {
1424 struct kvm_memslots *slots = kvm_memslots(kvm);
1425 int r;
1426
1427 if (slots->generation != ghc->generation)
1428 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1429
1430 if (kvm_is_error_hva(ghc->hva))
1431 return -EFAULT;
1432
1433 r = __copy_to_user((void __user *)ghc->hva, data, len);
1434 if (r)
1435 return -EFAULT;
1436 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1437
1438 return 0;
1439 }
1440 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1441
1442 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1443 void *data, unsigned long len)
1444 {
1445 struct kvm_memslots *slots = kvm_memslots(kvm);
1446 int r;
1447
1448 if (slots->generation != ghc->generation)
1449 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1450
1451 if (kvm_is_error_hva(ghc->hva))
1452 return -EFAULT;
1453
1454 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1455 if (r)
1456 return -EFAULT;
1457
1458 return 0;
1459 }
1460 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1461
1462 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1463 {
1464 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1465 offset, len);
1466 }
1467 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1468
1469 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1470 {
1471 gfn_t gfn = gpa >> PAGE_SHIFT;
1472 int seg;
1473 int offset = offset_in_page(gpa);
1474 int ret;
1475
1476 while ((seg = next_segment(len, offset)) != 0) {
1477 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1478 if (ret < 0)
1479 return ret;
1480 offset = 0;
1481 len -= seg;
1482 ++gfn;
1483 }
1484 return 0;
1485 }
1486 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1487
1488 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1489 gfn_t gfn)
1490 {
1491 if (memslot && memslot->dirty_bitmap) {
1492 unsigned long rel_gfn = gfn - memslot->base_gfn;
1493
1494 __set_bit_le(rel_gfn, memslot->dirty_bitmap);
1495 }
1496 }
1497
1498 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1499 {
1500 struct kvm_memory_slot *memslot;
1501
1502 memslot = gfn_to_memslot(kvm, gfn);
1503 mark_page_dirty_in_slot(kvm, memslot, gfn);
1504 }
1505
1506 /*
1507 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1508 */
1509 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1510 {
1511 DEFINE_WAIT(wait);
1512
1513 for (;;) {
1514 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1515
1516 if (kvm_arch_vcpu_runnable(vcpu)) {
1517 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1518 break;
1519 }
1520 if (kvm_cpu_has_pending_timer(vcpu))
1521 break;
1522 if (signal_pending(current))
1523 break;
1524
1525 schedule();
1526 }
1527
1528 finish_wait(&vcpu->wq, &wait);
1529 }
1530
1531 void kvm_resched(struct kvm_vcpu *vcpu)
1532 {
1533 if (!need_resched())
1534 return;
1535 cond_resched();
1536 }
1537 EXPORT_SYMBOL_GPL(kvm_resched);
1538
1539 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1540 {
1541 struct kvm *kvm = me->kvm;
1542 struct kvm_vcpu *vcpu;
1543 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1544 int yielded = 0;
1545 int pass;
1546 int i;
1547
1548 /*
1549 * We boost the priority of a VCPU that is runnable but not
1550 * currently running, because it got preempted by something
1551 * else and called schedule in __vcpu_run. Hopefully that
1552 * VCPU is holding the lock that we need and will release it.
1553 * We approximate round-robin by starting at the last boosted VCPU.
1554 */
1555 for (pass = 0; pass < 2 && !yielded; pass++) {
1556 kvm_for_each_vcpu(i, vcpu, kvm) {
1557 struct task_struct *task = NULL;
1558 struct pid *pid;
1559 if (!pass && i < last_boosted_vcpu) {
1560 i = last_boosted_vcpu;
1561 continue;
1562 } else if (pass && i > last_boosted_vcpu)
1563 break;
1564 if (vcpu == me)
1565 continue;
1566 if (waitqueue_active(&vcpu->wq))
1567 continue;
1568 rcu_read_lock();
1569 pid = rcu_dereference(vcpu->pid);
1570 if (pid)
1571 task = get_pid_task(vcpu->pid, PIDTYPE_PID);
1572 rcu_read_unlock();
1573 if (!task)
1574 continue;
1575 if (task->flags & PF_VCPU) {
1576 put_task_struct(task);
1577 continue;
1578 }
1579 if (yield_to(task, 1)) {
1580 put_task_struct(task);
1581 kvm->last_boosted_vcpu = i;
1582 yielded = 1;
1583 break;
1584 }
1585 put_task_struct(task);
1586 }
1587 }
1588 }
1589 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1590
1591 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1592 {
1593 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1594 struct page *page;
1595
1596 if (vmf->pgoff == 0)
1597 page = virt_to_page(vcpu->run);
1598 #ifdef CONFIG_X86
1599 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1600 page = virt_to_page(vcpu->arch.pio_data);
1601 #endif
1602 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1603 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1604 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1605 #endif
1606 else
1607 return VM_FAULT_SIGBUS;
1608 get_page(page);
1609 vmf->page = page;
1610 return 0;
1611 }
1612
1613 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1614 .fault = kvm_vcpu_fault,
1615 };
1616
1617 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1618 {
1619 vma->vm_ops = &kvm_vcpu_vm_ops;
1620 return 0;
1621 }
1622
1623 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1624 {
1625 struct kvm_vcpu *vcpu = filp->private_data;
1626
1627 kvm_put_kvm(vcpu->kvm);
1628 return 0;
1629 }
1630
1631 static struct file_operations kvm_vcpu_fops = {
1632 .release = kvm_vcpu_release,
1633 .unlocked_ioctl = kvm_vcpu_ioctl,
1634 #ifdef CONFIG_COMPAT
1635 .compat_ioctl = kvm_vcpu_compat_ioctl,
1636 #endif
1637 .mmap = kvm_vcpu_mmap,
1638 .llseek = noop_llseek,
1639 };
1640
1641 /*
1642 * Allocates an inode for the vcpu.
1643 */
1644 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1645 {
1646 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1647 }
1648
1649 /*
1650 * Creates some virtual cpus. Good luck creating more than one.
1651 */
1652 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1653 {
1654 int r;
1655 struct kvm_vcpu *vcpu, *v;
1656
1657 vcpu = kvm_arch_vcpu_create(kvm, id);
1658 if (IS_ERR(vcpu))
1659 return PTR_ERR(vcpu);
1660
1661 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1662
1663 r = kvm_arch_vcpu_setup(vcpu);
1664 if (r)
1665 goto vcpu_destroy;
1666
1667 mutex_lock(&kvm->lock);
1668 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1669 r = -EINVAL;
1670 goto unlock_vcpu_destroy;
1671 }
1672
1673 kvm_for_each_vcpu(r, v, kvm)
1674 if (v->vcpu_id == id) {
1675 r = -EEXIST;
1676 goto unlock_vcpu_destroy;
1677 }
1678
1679 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1680
1681 /* Now it's all set up, let userspace reach it */
1682 kvm_get_kvm(kvm);
1683 r = create_vcpu_fd(vcpu);
1684 if (r < 0) {
1685 kvm_put_kvm(kvm);
1686 goto unlock_vcpu_destroy;
1687 }
1688
1689 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1690 smp_wmb();
1691 atomic_inc(&kvm->online_vcpus);
1692
1693 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1694 if (kvm->bsp_vcpu_id == id)
1695 kvm->bsp_vcpu = vcpu;
1696 #endif
1697 mutex_unlock(&kvm->lock);
1698 return r;
1699
1700 unlock_vcpu_destroy:
1701 mutex_unlock(&kvm->lock);
1702 vcpu_destroy:
1703 kvm_arch_vcpu_destroy(vcpu);
1704 return r;
1705 }
1706
1707 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1708 {
1709 if (sigset) {
1710 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1711 vcpu->sigset_active = 1;
1712 vcpu->sigset = *sigset;
1713 } else
1714 vcpu->sigset_active = 0;
1715 return 0;
1716 }
1717
1718 static long kvm_vcpu_ioctl(struct file *filp,
1719 unsigned int ioctl, unsigned long arg)
1720 {
1721 struct kvm_vcpu *vcpu = filp->private_data;
1722 void __user *argp = (void __user *)arg;
1723 int r;
1724 struct kvm_fpu *fpu = NULL;
1725 struct kvm_sregs *kvm_sregs = NULL;
1726
1727 if (vcpu->kvm->mm != current->mm)
1728 return -EIO;
1729
1730 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1731 /*
1732 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1733 * so vcpu_load() would break it.
1734 */
1735 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1736 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1737 #endif
1738
1739
1740 vcpu_load(vcpu);
1741 switch (ioctl) {
1742 case KVM_RUN:
1743 r = -EINVAL;
1744 if (arg)
1745 goto out;
1746 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1747 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1748 break;
1749 case KVM_GET_REGS: {
1750 struct kvm_regs *kvm_regs;
1751
1752 r = -ENOMEM;
1753 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1754 if (!kvm_regs)
1755 goto out;
1756 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1757 if (r)
1758 goto out_free1;
1759 r = -EFAULT;
1760 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1761 goto out_free1;
1762 r = 0;
1763 out_free1:
1764 kfree(kvm_regs);
1765 break;
1766 }
1767 case KVM_SET_REGS: {
1768 struct kvm_regs *kvm_regs;
1769
1770 r = -ENOMEM;
1771 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1772 if (!kvm_regs)
1773 goto out;
1774 r = -EFAULT;
1775 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1776 goto out_free2;
1777 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1778 if (r)
1779 goto out_free2;
1780 r = 0;
1781 out_free2:
1782 kfree(kvm_regs);
1783 break;
1784 }
1785 case KVM_GET_SREGS: {
1786 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1787 r = -ENOMEM;
1788 if (!kvm_sregs)
1789 goto out;
1790 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1791 if (r)
1792 goto out;
1793 r = -EFAULT;
1794 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1795 goto out;
1796 r = 0;
1797 break;
1798 }
1799 case KVM_SET_SREGS: {
1800 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1801 r = -ENOMEM;
1802 if (!kvm_sregs)
1803 goto out;
1804 r = -EFAULT;
1805 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1806 goto out;
1807 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1808 if (r)
1809 goto out;
1810 r = 0;
1811 break;
1812 }
1813 case KVM_GET_MP_STATE: {
1814 struct kvm_mp_state mp_state;
1815
1816 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1817 if (r)
1818 goto out;
1819 r = -EFAULT;
1820 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1821 goto out;
1822 r = 0;
1823 break;
1824 }
1825 case KVM_SET_MP_STATE: {
1826 struct kvm_mp_state mp_state;
1827
1828 r = -EFAULT;
1829 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1830 goto out;
1831 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1832 if (r)
1833 goto out;
1834 r = 0;
1835 break;
1836 }
1837 case KVM_TRANSLATE: {
1838 struct kvm_translation tr;
1839
1840 r = -EFAULT;
1841 if (copy_from_user(&tr, argp, sizeof tr))
1842 goto out;
1843 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1844 if (r)
1845 goto out;
1846 r = -EFAULT;
1847 if (copy_to_user(argp, &tr, sizeof tr))
1848 goto out;
1849 r = 0;
1850 break;
1851 }
1852 case KVM_SET_GUEST_DEBUG: {
1853 struct kvm_guest_debug dbg;
1854
1855 r = -EFAULT;
1856 if (copy_from_user(&dbg, argp, sizeof dbg))
1857 goto out;
1858 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1859 if (r)
1860 goto out;
1861 r = 0;
1862 break;
1863 }
1864 case KVM_SET_SIGNAL_MASK: {
1865 struct kvm_signal_mask __user *sigmask_arg = argp;
1866 struct kvm_signal_mask kvm_sigmask;
1867 sigset_t sigset, *p;
1868
1869 p = NULL;
1870 if (argp) {
1871 r = -EFAULT;
1872 if (copy_from_user(&kvm_sigmask, argp,
1873 sizeof kvm_sigmask))
1874 goto out;
1875 r = -EINVAL;
1876 if (kvm_sigmask.len != sizeof sigset)
1877 goto out;
1878 r = -EFAULT;
1879 if (copy_from_user(&sigset, sigmask_arg->sigset,
1880 sizeof sigset))
1881 goto out;
1882 p = &sigset;
1883 }
1884 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1885 break;
1886 }
1887 case KVM_GET_FPU: {
1888 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1889 r = -ENOMEM;
1890 if (!fpu)
1891 goto out;
1892 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1893 if (r)
1894 goto out;
1895 r = -EFAULT;
1896 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1897 goto out;
1898 r = 0;
1899 break;
1900 }
1901 case KVM_SET_FPU: {
1902 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1903 r = -ENOMEM;
1904 if (!fpu)
1905 goto out;
1906 r = -EFAULT;
1907 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1908 goto out;
1909 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1910 if (r)
1911 goto out;
1912 r = 0;
1913 break;
1914 }
1915 default:
1916 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1917 }
1918 out:
1919 vcpu_put(vcpu);
1920 kfree(fpu);
1921 kfree(kvm_sregs);
1922 return r;
1923 }
1924
1925 #ifdef CONFIG_COMPAT
1926 static long kvm_vcpu_compat_ioctl(struct file *filp,
1927 unsigned int ioctl, unsigned long arg)
1928 {
1929 struct kvm_vcpu *vcpu = filp->private_data;
1930 void __user *argp = compat_ptr(arg);
1931 int r;
1932
1933 if (vcpu->kvm->mm != current->mm)
1934 return -EIO;
1935
1936 switch (ioctl) {
1937 case KVM_SET_SIGNAL_MASK: {
1938 struct kvm_signal_mask __user *sigmask_arg = argp;
1939 struct kvm_signal_mask kvm_sigmask;
1940 compat_sigset_t csigset;
1941 sigset_t sigset;
1942
1943 if (argp) {
1944 r = -EFAULT;
1945 if (copy_from_user(&kvm_sigmask, argp,
1946 sizeof kvm_sigmask))
1947 goto out;
1948 r = -EINVAL;
1949 if (kvm_sigmask.len != sizeof csigset)
1950 goto out;
1951 r = -EFAULT;
1952 if (copy_from_user(&csigset, sigmask_arg->sigset,
1953 sizeof csigset))
1954 goto out;
1955 }
1956 sigset_from_compat(&sigset, &csigset);
1957 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1958 break;
1959 }
1960 default:
1961 r = kvm_vcpu_ioctl(filp, ioctl, arg);
1962 }
1963
1964 out:
1965 return r;
1966 }
1967 #endif
1968
1969 static long kvm_vm_ioctl(struct file *filp,
1970 unsigned int ioctl, unsigned long arg)
1971 {
1972 struct kvm *kvm = filp->private_data;
1973 void __user *argp = (void __user *)arg;
1974 int r;
1975
1976 if (kvm->mm != current->mm)
1977 return -EIO;
1978 switch (ioctl) {
1979 case KVM_CREATE_VCPU:
1980 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1981 if (r < 0)
1982 goto out;
1983 break;
1984 case KVM_SET_USER_MEMORY_REGION: {
1985 struct kvm_userspace_memory_region kvm_userspace_mem;
1986
1987 r = -EFAULT;
1988 if (copy_from_user(&kvm_userspace_mem, argp,
1989 sizeof kvm_userspace_mem))
1990 goto out;
1991
1992 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1993 if (r)
1994 goto out;
1995 break;
1996 }
1997 case KVM_GET_DIRTY_LOG: {
1998 struct kvm_dirty_log log;
1999
2000 r = -EFAULT;
2001 if (copy_from_user(&log, argp, sizeof log))
2002 goto out;
2003 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2004 if (r)
2005 goto out;
2006 break;
2007 }
2008 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2009 case KVM_REGISTER_COALESCED_MMIO: {
2010 struct kvm_coalesced_mmio_zone zone;
2011 r = -EFAULT;
2012 if (copy_from_user(&zone, argp, sizeof zone))
2013 goto out;
2014 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2015 if (r)
2016 goto out;
2017 r = 0;
2018 break;
2019 }
2020 case KVM_UNREGISTER_COALESCED_MMIO: {
2021 struct kvm_coalesced_mmio_zone zone;
2022 r = -EFAULT;
2023 if (copy_from_user(&zone, argp, sizeof zone))
2024 goto out;
2025 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2026 if (r)
2027 goto out;
2028 r = 0;
2029 break;
2030 }
2031 #endif
2032 case KVM_IRQFD: {
2033 struct kvm_irqfd data;
2034
2035 r = -EFAULT;
2036 if (copy_from_user(&data, argp, sizeof data))
2037 goto out;
2038 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2039 break;
2040 }
2041 case KVM_IOEVENTFD: {
2042 struct kvm_ioeventfd data;
2043
2044 r = -EFAULT;
2045 if (copy_from_user(&data, argp, sizeof data))
2046 goto out;
2047 r = kvm_ioeventfd(kvm, &data);
2048 break;
2049 }
2050 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2051 case KVM_SET_BOOT_CPU_ID:
2052 r = 0;
2053 mutex_lock(&kvm->lock);
2054 if (atomic_read(&kvm->online_vcpus) != 0)
2055 r = -EBUSY;
2056 else
2057 kvm->bsp_vcpu_id = arg;
2058 mutex_unlock(&kvm->lock);
2059 break;
2060 #endif
2061 default:
2062 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2063 if (r == -ENOTTY)
2064 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2065 }
2066 out:
2067 return r;
2068 }
2069
2070 #ifdef CONFIG_COMPAT
2071 struct compat_kvm_dirty_log {
2072 __u32 slot;
2073 __u32 padding1;
2074 union {
2075 compat_uptr_t dirty_bitmap; /* one bit per page */
2076 __u64 padding2;
2077 };
2078 };
2079
2080 static long kvm_vm_compat_ioctl(struct file *filp,
2081 unsigned int ioctl, unsigned long arg)
2082 {
2083 struct kvm *kvm = filp->private_data;
2084 int r;
2085
2086 if (kvm->mm != current->mm)
2087 return -EIO;
2088 switch (ioctl) {
2089 case KVM_GET_DIRTY_LOG: {
2090 struct compat_kvm_dirty_log compat_log;
2091 struct kvm_dirty_log log;
2092
2093 r = -EFAULT;
2094 if (copy_from_user(&compat_log, (void __user *)arg,
2095 sizeof(compat_log)))
2096 goto out;
2097 log.slot = compat_log.slot;
2098 log.padding1 = compat_log.padding1;
2099 log.padding2 = compat_log.padding2;
2100 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2101
2102 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2103 if (r)
2104 goto out;
2105 break;
2106 }
2107 default:
2108 r = kvm_vm_ioctl(filp, ioctl, arg);
2109 }
2110
2111 out:
2112 return r;
2113 }
2114 #endif
2115
2116 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2117 {
2118 struct page *page[1];
2119 unsigned long addr;
2120 int npages;
2121 gfn_t gfn = vmf->pgoff;
2122 struct kvm *kvm = vma->vm_file->private_data;
2123
2124 addr = gfn_to_hva(kvm, gfn);
2125 if (kvm_is_error_hva(addr))
2126 return VM_FAULT_SIGBUS;
2127
2128 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2129 NULL);
2130 if (unlikely(npages != 1))
2131 return VM_FAULT_SIGBUS;
2132
2133 vmf->page = page[0];
2134 return 0;
2135 }
2136
2137 static const struct vm_operations_struct kvm_vm_vm_ops = {
2138 .fault = kvm_vm_fault,
2139 };
2140
2141 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2142 {
2143 vma->vm_ops = &kvm_vm_vm_ops;
2144 return 0;
2145 }
2146
2147 static struct file_operations kvm_vm_fops = {
2148 .release = kvm_vm_release,
2149 .unlocked_ioctl = kvm_vm_ioctl,
2150 #ifdef CONFIG_COMPAT
2151 .compat_ioctl = kvm_vm_compat_ioctl,
2152 #endif
2153 .mmap = kvm_vm_mmap,
2154 .llseek = noop_llseek,
2155 };
2156
2157 static int kvm_dev_ioctl_create_vm(void)
2158 {
2159 int r;
2160 struct kvm *kvm;
2161
2162 kvm = kvm_create_vm();
2163 if (IS_ERR(kvm))
2164 return PTR_ERR(kvm);
2165 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2166 r = kvm_coalesced_mmio_init(kvm);
2167 if (r < 0) {
2168 kvm_put_kvm(kvm);
2169 return r;
2170 }
2171 #endif
2172 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2173 if (r < 0)
2174 kvm_put_kvm(kvm);
2175
2176 return r;
2177 }
2178
2179 static long kvm_dev_ioctl_check_extension_generic(long arg)
2180 {
2181 switch (arg) {
2182 case KVM_CAP_USER_MEMORY:
2183 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2184 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2185 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2186 case KVM_CAP_SET_BOOT_CPU_ID:
2187 #endif
2188 case KVM_CAP_INTERNAL_ERROR_DATA:
2189 return 1;
2190 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2191 case KVM_CAP_IRQ_ROUTING:
2192 return KVM_MAX_IRQ_ROUTES;
2193 #endif
2194 default:
2195 break;
2196 }
2197 return kvm_dev_ioctl_check_extension(arg);
2198 }
2199
2200 static long kvm_dev_ioctl(struct file *filp,
2201 unsigned int ioctl, unsigned long arg)
2202 {
2203 long r = -EINVAL;
2204
2205 switch (ioctl) {
2206 case KVM_GET_API_VERSION:
2207 r = -EINVAL;
2208 if (arg)
2209 goto out;
2210 r = KVM_API_VERSION;
2211 break;
2212 case KVM_CREATE_VM:
2213 r = -EINVAL;
2214 if (arg)
2215 goto out;
2216 r = kvm_dev_ioctl_create_vm();
2217 break;
2218 case KVM_CHECK_EXTENSION:
2219 r = kvm_dev_ioctl_check_extension_generic(arg);
2220 break;
2221 case KVM_GET_VCPU_MMAP_SIZE:
2222 r = -EINVAL;
2223 if (arg)
2224 goto out;
2225 r = PAGE_SIZE; /* struct kvm_run */
2226 #ifdef CONFIG_X86
2227 r += PAGE_SIZE; /* pio data page */
2228 #endif
2229 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2230 r += PAGE_SIZE; /* coalesced mmio ring page */
2231 #endif
2232 break;
2233 case KVM_TRACE_ENABLE:
2234 case KVM_TRACE_PAUSE:
2235 case KVM_TRACE_DISABLE:
2236 r = -EOPNOTSUPP;
2237 break;
2238 default:
2239 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2240 }
2241 out:
2242 return r;
2243 }
2244
2245 static struct file_operations kvm_chardev_ops = {
2246 .unlocked_ioctl = kvm_dev_ioctl,
2247 .compat_ioctl = kvm_dev_ioctl,
2248 .llseek = noop_llseek,
2249 };
2250
2251 static struct miscdevice kvm_dev = {
2252 KVM_MINOR,
2253 "kvm",
2254 &kvm_chardev_ops,
2255 };
2256
2257 static void hardware_enable_nolock(void *junk)
2258 {
2259 int cpu = raw_smp_processor_id();
2260 int r;
2261
2262 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2263 return;
2264
2265 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2266
2267 r = kvm_arch_hardware_enable(NULL);
2268
2269 if (r) {
2270 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2271 atomic_inc(&hardware_enable_failed);
2272 printk(KERN_INFO "kvm: enabling virtualization on "
2273 "CPU%d failed\n", cpu);
2274 }
2275 }
2276
2277 static void hardware_enable(void *junk)
2278 {
2279 raw_spin_lock(&kvm_lock);
2280 hardware_enable_nolock(junk);
2281 raw_spin_unlock(&kvm_lock);
2282 }
2283
2284 static void hardware_disable_nolock(void *junk)
2285 {
2286 int cpu = raw_smp_processor_id();
2287
2288 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2289 return;
2290 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2291 kvm_arch_hardware_disable(NULL);
2292 }
2293
2294 static void hardware_disable(void *junk)
2295 {
2296 raw_spin_lock(&kvm_lock);
2297 hardware_disable_nolock(junk);
2298 raw_spin_unlock(&kvm_lock);
2299 }
2300
2301 static void hardware_disable_all_nolock(void)
2302 {
2303 BUG_ON(!kvm_usage_count);
2304
2305 kvm_usage_count--;
2306 if (!kvm_usage_count)
2307 on_each_cpu(hardware_disable_nolock, NULL, 1);
2308 }
2309
2310 static void hardware_disable_all(void)
2311 {
2312 raw_spin_lock(&kvm_lock);
2313 hardware_disable_all_nolock();
2314 raw_spin_unlock(&kvm_lock);
2315 }
2316
2317 static int hardware_enable_all(void)
2318 {
2319 int r = 0;
2320
2321 raw_spin_lock(&kvm_lock);
2322
2323 kvm_usage_count++;
2324 if (kvm_usage_count == 1) {
2325 atomic_set(&hardware_enable_failed, 0);
2326 on_each_cpu(hardware_enable_nolock, NULL, 1);
2327
2328 if (atomic_read(&hardware_enable_failed)) {
2329 hardware_disable_all_nolock();
2330 r = -EBUSY;
2331 }
2332 }
2333
2334 raw_spin_unlock(&kvm_lock);
2335
2336 return r;
2337 }
2338
2339 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2340 void *v)
2341 {
2342 int cpu = (long)v;
2343
2344 if (!kvm_usage_count)
2345 return NOTIFY_OK;
2346
2347 val &= ~CPU_TASKS_FROZEN;
2348 switch (val) {
2349 case CPU_DYING:
2350 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2351 cpu);
2352 hardware_disable(NULL);
2353 break;
2354 case CPU_STARTING:
2355 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2356 cpu);
2357 hardware_enable(NULL);
2358 break;
2359 }
2360 return NOTIFY_OK;
2361 }
2362
2363
2364 asmlinkage void kvm_spurious_fault(void)
2365 {
2366 /* Fault while not rebooting. We want the trace. */
2367 BUG();
2368 }
2369 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2370
2371 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2372 void *v)
2373 {
2374 /*
2375 * Some (well, at least mine) BIOSes hang on reboot if
2376 * in vmx root mode.
2377 *
2378 * And Intel TXT required VMX off for all cpu when system shutdown.
2379 */
2380 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2381 kvm_rebooting = true;
2382 on_each_cpu(hardware_disable_nolock, NULL, 1);
2383 return NOTIFY_OK;
2384 }
2385
2386 static struct notifier_block kvm_reboot_notifier = {
2387 .notifier_call = kvm_reboot,
2388 .priority = 0,
2389 };
2390
2391 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2392 {
2393 int i;
2394
2395 for (i = 0; i < bus->dev_count; i++) {
2396 struct kvm_io_device *pos = bus->range[i].dev;
2397
2398 kvm_iodevice_destructor(pos);
2399 }
2400 kfree(bus);
2401 }
2402
2403 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2404 {
2405 const struct kvm_io_range *r1 = p1;
2406 const struct kvm_io_range *r2 = p2;
2407
2408 if (r1->addr < r2->addr)
2409 return -1;
2410 if (r1->addr + r1->len > r2->addr + r2->len)
2411 return 1;
2412 return 0;
2413 }
2414
2415 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2416 gpa_t addr, int len)
2417 {
2418 if (bus->dev_count == NR_IOBUS_DEVS)
2419 return -ENOSPC;
2420
2421 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2422 .addr = addr,
2423 .len = len,
2424 .dev = dev,
2425 };
2426
2427 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2428 kvm_io_bus_sort_cmp, NULL);
2429
2430 return 0;
2431 }
2432
2433 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2434 gpa_t addr, int len)
2435 {
2436 struct kvm_io_range *range, key;
2437 int off;
2438
2439 key = (struct kvm_io_range) {
2440 .addr = addr,
2441 .len = len,
2442 };
2443
2444 range = bsearch(&key, bus->range, bus->dev_count,
2445 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2446 if (range == NULL)
2447 return -ENOENT;
2448
2449 off = range - bus->range;
2450
2451 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2452 off--;
2453
2454 return off;
2455 }
2456
2457 /* kvm_io_bus_write - called under kvm->slots_lock */
2458 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2459 int len, const void *val)
2460 {
2461 int idx;
2462 struct kvm_io_bus *bus;
2463 struct kvm_io_range range;
2464
2465 range = (struct kvm_io_range) {
2466 .addr = addr,
2467 .len = len,
2468 };
2469
2470 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2471 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2472 if (idx < 0)
2473 return -EOPNOTSUPP;
2474
2475 while (idx < bus->dev_count &&
2476 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2477 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2478 return 0;
2479 idx++;
2480 }
2481
2482 return -EOPNOTSUPP;
2483 }
2484
2485 /* kvm_io_bus_read - called under kvm->slots_lock */
2486 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2487 int len, void *val)
2488 {
2489 int idx;
2490 struct kvm_io_bus *bus;
2491 struct kvm_io_range range;
2492
2493 range = (struct kvm_io_range) {
2494 .addr = addr,
2495 .len = len,
2496 };
2497
2498 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2499 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2500 if (idx < 0)
2501 return -EOPNOTSUPP;
2502
2503 while (idx < bus->dev_count &&
2504 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2505 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2506 return 0;
2507 idx++;
2508 }
2509
2510 return -EOPNOTSUPP;
2511 }
2512
2513 /* Caller must hold slots_lock. */
2514 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2515 int len, struct kvm_io_device *dev)
2516 {
2517 struct kvm_io_bus *new_bus, *bus;
2518
2519 bus = kvm->buses[bus_idx];
2520 if (bus->dev_count > NR_IOBUS_DEVS-1)
2521 return -ENOSPC;
2522
2523 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2524 if (!new_bus)
2525 return -ENOMEM;
2526 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2527 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2528 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2529 synchronize_srcu_expedited(&kvm->srcu);
2530 kfree(bus);
2531
2532 return 0;
2533 }
2534
2535 /* Caller must hold slots_lock. */
2536 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2537 struct kvm_io_device *dev)
2538 {
2539 int i, r;
2540 struct kvm_io_bus *new_bus, *bus;
2541
2542 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2543 if (!new_bus)
2544 return -ENOMEM;
2545
2546 bus = kvm->buses[bus_idx];
2547 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2548
2549 r = -ENOENT;
2550 for (i = 0; i < new_bus->dev_count; i++)
2551 if (new_bus->range[i].dev == dev) {
2552 r = 0;
2553 new_bus->dev_count--;
2554 new_bus->range[i] = new_bus->range[new_bus->dev_count];
2555 sort(new_bus->range, new_bus->dev_count,
2556 sizeof(struct kvm_io_range),
2557 kvm_io_bus_sort_cmp, NULL);
2558 break;
2559 }
2560
2561 if (r) {
2562 kfree(new_bus);
2563 return r;
2564 }
2565
2566 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2567 synchronize_srcu_expedited(&kvm->srcu);
2568 kfree(bus);
2569 return r;
2570 }
2571
2572 static struct notifier_block kvm_cpu_notifier = {
2573 .notifier_call = kvm_cpu_hotplug,
2574 };
2575
2576 static int vm_stat_get(void *_offset, u64 *val)
2577 {
2578 unsigned offset = (long)_offset;
2579 struct kvm *kvm;
2580
2581 *val = 0;
2582 raw_spin_lock(&kvm_lock);
2583 list_for_each_entry(kvm, &vm_list, vm_list)
2584 *val += *(u32 *)((void *)kvm + offset);
2585 raw_spin_unlock(&kvm_lock);
2586 return 0;
2587 }
2588
2589 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2590
2591 static int vcpu_stat_get(void *_offset, u64 *val)
2592 {
2593 unsigned offset = (long)_offset;
2594 struct kvm *kvm;
2595 struct kvm_vcpu *vcpu;
2596 int i;
2597
2598 *val = 0;
2599 raw_spin_lock(&kvm_lock);
2600 list_for_each_entry(kvm, &vm_list, vm_list)
2601 kvm_for_each_vcpu(i, vcpu, kvm)
2602 *val += *(u32 *)((void *)vcpu + offset);
2603
2604 raw_spin_unlock(&kvm_lock);
2605 return 0;
2606 }
2607
2608 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2609
2610 static const struct file_operations *stat_fops[] = {
2611 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2612 [KVM_STAT_VM] = &vm_stat_fops,
2613 };
2614
2615 static void kvm_init_debug(void)
2616 {
2617 struct kvm_stats_debugfs_item *p;
2618
2619 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2620 for (p = debugfs_entries; p->name; ++p)
2621 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2622 (void *)(long)p->offset,
2623 stat_fops[p->kind]);
2624 }
2625
2626 static void kvm_exit_debug(void)
2627 {
2628 struct kvm_stats_debugfs_item *p;
2629
2630 for (p = debugfs_entries; p->name; ++p)
2631 debugfs_remove(p->dentry);
2632 debugfs_remove(kvm_debugfs_dir);
2633 }
2634
2635 static int kvm_suspend(void)
2636 {
2637 if (kvm_usage_count)
2638 hardware_disable_nolock(NULL);
2639 return 0;
2640 }
2641
2642 static void kvm_resume(void)
2643 {
2644 if (kvm_usage_count) {
2645 WARN_ON(raw_spin_is_locked(&kvm_lock));
2646 hardware_enable_nolock(NULL);
2647 }
2648 }
2649
2650 static struct syscore_ops kvm_syscore_ops = {
2651 .suspend = kvm_suspend,
2652 .resume = kvm_resume,
2653 };
2654
2655 struct page *bad_page;
2656 pfn_t bad_pfn;
2657
2658 static inline
2659 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2660 {
2661 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2662 }
2663
2664 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2665 {
2666 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2667
2668 kvm_arch_vcpu_load(vcpu, cpu);
2669 }
2670
2671 static void kvm_sched_out(struct preempt_notifier *pn,
2672 struct task_struct *next)
2673 {
2674 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2675
2676 kvm_arch_vcpu_put(vcpu);
2677 }
2678
2679 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2680 struct module *module)
2681 {
2682 int r;
2683 int cpu;
2684
2685 r = kvm_arch_init(opaque);
2686 if (r)
2687 goto out_fail;
2688
2689 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2690
2691 if (bad_page == NULL) {
2692 r = -ENOMEM;
2693 goto out;
2694 }
2695
2696 bad_pfn = page_to_pfn(bad_page);
2697
2698 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2699
2700 if (hwpoison_page == NULL) {
2701 r = -ENOMEM;
2702 goto out_free_0;
2703 }
2704
2705 hwpoison_pfn = page_to_pfn(hwpoison_page);
2706
2707 fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2708
2709 if (fault_page == NULL) {
2710 r = -ENOMEM;
2711 goto out_free_0;
2712 }
2713
2714 fault_pfn = page_to_pfn(fault_page);
2715
2716 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2717 r = -ENOMEM;
2718 goto out_free_0;
2719 }
2720
2721 r = kvm_arch_hardware_setup();
2722 if (r < 0)
2723 goto out_free_0a;
2724
2725 for_each_online_cpu(cpu) {
2726 smp_call_function_single(cpu,
2727 kvm_arch_check_processor_compat,
2728 &r, 1);
2729 if (r < 0)
2730 goto out_free_1;
2731 }
2732
2733 r = register_cpu_notifier(&kvm_cpu_notifier);
2734 if (r)
2735 goto out_free_2;
2736 register_reboot_notifier(&kvm_reboot_notifier);
2737
2738 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2739 if (!vcpu_align)
2740 vcpu_align = __alignof__(struct kvm_vcpu);
2741 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2742 0, NULL);
2743 if (!kvm_vcpu_cache) {
2744 r = -ENOMEM;
2745 goto out_free_3;
2746 }
2747
2748 r = kvm_async_pf_init();
2749 if (r)
2750 goto out_free;
2751
2752 kvm_chardev_ops.owner = module;
2753 kvm_vm_fops.owner = module;
2754 kvm_vcpu_fops.owner = module;
2755
2756 r = misc_register(&kvm_dev);
2757 if (r) {
2758 printk(KERN_ERR "kvm: misc device register failed\n");
2759 goto out_unreg;
2760 }
2761
2762 register_syscore_ops(&kvm_syscore_ops);
2763
2764 kvm_preempt_ops.sched_in = kvm_sched_in;
2765 kvm_preempt_ops.sched_out = kvm_sched_out;
2766
2767 kvm_init_debug();
2768
2769 return 0;
2770
2771 out_unreg:
2772 kvm_async_pf_deinit();
2773 out_free:
2774 kmem_cache_destroy(kvm_vcpu_cache);
2775 out_free_3:
2776 unregister_reboot_notifier(&kvm_reboot_notifier);
2777 unregister_cpu_notifier(&kvm_cpu_notifier);
2778 out_free_2:
2779 out_free_1:
2780 kvm_arch_hardware_unsetup();
2781 out_free_0a:
2782 free_cpumask_var(cpus_hardware_enabled);
2783 out_free_0:
2784 if (fault_page)
2785 __free_page(fault_page);
2786 if (hwpoison_page)
2787 __free_page(hwpoison_page);
2788 __free_page(bad_page);
2789 out:
2790 kvm_arch_exit();
2791 out_fail:
2792 return r;
2793 }
2794 EXPORT_SYMBOL_GPL(kvm_init);
2795
2796 void kvm_exit(void)
2797 {
2798 kvm_exit_debug();
2799 misc_deregister(&kvm_dev);
2800 kmem_cache_destroy(kvm_vcpu_cache);
2801 kvm_async_pf_deinit();
2802 unregister_syscore_ops(&kvm_syscore_ops);
2803 unregister_reboot_notifier(&kvm_reboot_notifier);
2804 unregister_cpu_notifier(&kvm_cpu_notifier);
2805 on_each_cpu(hardware_disable_nolock, NULL, 1);
2806 kvm_arch_hardware_unsetup();
2807 kvm_arch_exit();
2808 free_cpumask_var(cpus_hardware_enabled);
2809 __free_page(hwpoison_page);
2810 __free_page(bad_page);
2811 }
2812 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.085312 seconds and 6 git commands to generate.