Merge branch 'for-linus-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 /* Architectures should define their poll value according to the halt latency */
70 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
71 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
72
73 /* Default doubles per-vcpu halt_poll_ns. */
74 static unsigned int halt_poll_ns_grow = 2;
75 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
76
77 /* Default resets per-vcpu halt_poll_ns . */
78 static unsigned int halt_poll_ns_shrink;
79 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
80
81 /*
82 * Ordering of locks:
83 *
84 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
85 */
86
87 DEFINE_SPINLOCK(kvm_lock);
88 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
89 LIST_HEAD(vm_list);
90
91 static cpumask_var_t cpus_hardware_enabled;
92 static int kvm_usage_count;
93 static atomic_t hardware_enable_failed;
94
95 struct kmem_cache *kvm_vcpu_cache;
96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
97
98 static __read_mostly struct preempt_ops kvm_preempt_ops;
99
100 struct dentry *kvm_debugfs_dir;
101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
102
103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104 unsigned long arg);
105 #ifdef CONFIG_KVM_COMPAT
106 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
107 unsigned long arg);
108 #endif
109 static int hardware_enable_all(void);
110 static void hardware_disable_all(void);
111
112 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
113
114 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
115 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
116
117 __visible bool kvm_rebooting;
118 EXPORT_SYMBOL_GPL(kvm_rebooting);
119
120 static bool largepages_enabled = true;
121
122 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
123 {
124 if (pfn_valid(pfn))
125 return PageReserved(pfn_to_page(pfn));
126
127 return true;
128 }
129
130 /*
131 * Switches to specified vcpu, until a matching vcpu_put()
132 */
133 int vcpu_load(struct kvm_vcpu *vcpu)
134 {
135 int cpu;
136
137 if (mutex_lock_killable(&vcpu->mutex))
138 return -EINTR;
139 cpu = get_cpu();
140 preempt_notifier_register(&vcpu->preempt_notifier);
141 kvm_arch_vcpu_load(vcpu, cpu);
142 put_cpu();
143 return 0;
144 }
145
146 void vcpu_put(struct kvm_vcpu *vcpu)
147 {
148 preempt_disable();
149 kvm_arch_vcpu_put(vcpu);
150 preempt_notifier_unregister(&vcpu->preempt_notifier);
151 preempt_enable();
152 mutex_unlock(&vcpu->mutex);
153 }
154
155 static void ack_flush(void *_completed)
156 {
157 }
158
159 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
160 {
161 int i, cpu, me;
162 cpumask_var_t cpus;
163 bool called = true;
164 struct kvm_vcpu *vcpu;
165
166 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
167
168 me = get_cpu();
169 kvm_for_each_vcpu(i, vcpu, kvm) {
170 kvm_make_request(req, vcpu);
171 cpu = vcpu->cpu;
172
173 /* Set ->requests bit before we read ->mode */
174 smp_mb();
175
176 if (cpus != NULL && cpu != -1 && cpu != me &&
177 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
178 cpumask_set_cpu(cpu, cpus);
179 }
180 if (unlikely(cpus == NULL))
181 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
182 else if (!cpumask_empty(cpus))
183 smp_call_function_many(cpus, ack_flush, NULL, 1);
184 else
185 called = false;
186 put_cpu();
187 free_cpumask_var(cpus);
188 return called;
189 }
190
191 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
192 void kvm_flush_remote_tlbs(struct kvm *kvm)
193 {
194 long dirty_count = kvm->tlbs_dirty;
195
196 smp_mb();
197 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
198 ++kvm->stat.remote_tlb_flush;
199 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
200 }
201 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
202 #endif
203
204 void kvm_reload_remote_mmus(struct kvm *kvm)
205 {
206 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
207 }
208
209 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
210 {
211 struct page *page;
212 int r;
213
214 mutex_init(&vcpu->mutex);
215 vcpu->cpu = -1;
216 vcpu->kvm = kvm;
217 vcpu->vcpu_id = id;
218 vcpu->pid = NULL;
219 init_swait_queue_head(&vcpu->wq);
220 kvm_async_pf_vcpu_init(vcpu);
221
222 vcpu->pre_pcpu = -1;
223 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
224
225 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
226 if (!page) {
227 r = -ENOMEM;
228 goto fail;
229 }
230 vcpu->run = page_address(page);
231
232 kvm_vcpu_set_in_spin_loop(vcpu, false);
233 kvm_vcpu_set_dy_eligible(vcpu, false);
234 vcpu->preempted = false;
235
236 r = kvm_arch_vcpu_init(vcpu);
237 if (r < 0)
238 goto fail_free_run;
239 return 0;
240
241 fail_free_run:
242 free_page((unsigned long)vcpu->run);
243 fail:
244 return r;
245 }
246 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
247
248 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
249 {
250 put_pid(vcpu->pid);
251 kvm_arch_vcpu_uninit(vcpu);
252 free_page((unsigned long)vcpu->run);
253 }
254 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
255
256 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
257 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
258 {
259 return container_of(mn, struct kvm, mmu_notifier);
260 }
261
262 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
263 struct mm_struct *mm,
264 unsigned long address)
265 {
266 struct kvm *kvm = mmu_notifier_to_kvm(mn);
267 int need_tlb_flush, idx;
268
269 /*
270 * When ->invalidate_page runs, the linux pte has been zapped
271 * already but the page is still allocated until
272 * ->invalidate_page returns. So if we increase the sequence
273 * here the kvm page fault will notice if the spte can't be
274 * established because the page is going to be freed. If
275 * instead the kvm page fault establishes the spte before
276 * ->invalidate_page runs, kvm_unmap_hva will release it
277 * before returning.
278 *
279 * The sequence increase only need to be seen at spin_unlock
280 * time, and not at spin_lock time.
281 *
282 * Increasing the sequence after the spin_unlock would be
283 * unsafe because the kvm page fault could then establish the
284 * pte after kvm_unmap_hva returned, without noticing the page
285 * is going to be freed.
286 */
287 idx = srcu_read_lock(&kvm->srcu);
288 spin_lock(&kvm->mmu_lock);
289
290 kvm->mmu_notifier_seq++;
291 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
292 /* we've to flush the tlb before the pages can be freed */
293 if (need_tlb_flush)
294 kvm_flush_remote_tlbs(kvm);
295
296 spin_unlock(&kvm->mmu_lock);
297
298 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
299
300 srcu_read_unlock(&kvm->srcu, idx);
301 }
302
303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
304 struct mm_struct *mm,
305 unsigned long address,
306 pte_t pte)
307 {
308 struct kvm *kvm = mmu_notifier_to_kvm(mn);
309 int idx;
310
311 idx = srcu_read_lock(&kvm->srcu);
312 spin_lock(&kvm->mmu_lock);
313 kvm->mmu_notifier_seq++;
314 kvm_set_spte_hva(kvm, address, pte);
315 spin_unlock(&kvm->mmu_lock);
316 srcu_read_unlock(&kvm->srcu, idx);
317 }
318
319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
320 struct mm_struct *mm,
321 unsigned long start,
322 unsigned long end)
323 {
324 struct kvm *kvm = mmu_notifier_to_kvm(mn);
325 int need_tlb_flush = 0, idx;
326
327 idx = srcu_read_lock(&kvm->srcu);
328 spin_lock(&kvm->mmu_lock);
329 /*
330 * The count increase must become visible at unlock time as no
331 * spte can be established without taking the mmu_lock and
332 * count is also read inside the mmu_lock critical section.
333 */
334 kvm->mmu_notifier_count++;
335 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
336 need_tlb_flush |= kvm->tlbs_dirty;
337 /* we've to flush the tlb before the pages can be freed */
338 if (need_tlb_flush)
339 kvm_flush_remote_tlbs(kvm);
340
341 spin_unlock(&kvm->mmu_lock);
342 srcu_read_unlock(&kvm->srcu, idx);
343 }
344
345 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
346 struct mm_struct *mm,
347 unsigned long start,
348 unsigned long end)
349 {
350 struct kvm *kvm = mmu_notifier_to_kvm(mn);
351
352 spin_lock(&kvm->mmu_lock);
353 /*
354 * This sequence increase will notify the kvm page fault that
355 * the page that is going to be mapped in the spte could have
356 * been freed.
357 */
358 kvm->mmu_notifier_seq++;
359 smp_wmb();
360 /*
361 * The above sequence increase must be visible before the
362 * below count decrease, which is ensured by the smp_wmb above
363 * in conjunction with the smp_rmb in mmu_notifier_retry().
364 */
365 kvm->mmu_notifier_count--;
366 spin_unlock(&kvm->mmu_lock);
367
368 BUG_ON(kvm->mmu_notifier_count < 0);
369 }
370
371 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
372 struct mm_struct *mm,
373 unsigned long start,
374 unsigned long end)
375 {
376 struct kvm *kvm = mmu_notifier_to_kvm(mn);
377 int young, idx;
378
379 idx = srcu_read_lock(&kvm->srcu);
380 spin_lock(&kvm->mmu_lock);
381
382 young = kvm_age_hva(kvm, start, end);
383 if (young)
384 kvm_flush_remote_tlbs(kvm);
385
386 spin_unlock(&kvm->mmu_lock);
387 srcu_read_unlock(&kvm->srcu, idx);
388
389 return young;
390 }
391
392 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
393 struct mm_struct *mm,
394 unsigned long start,
395 unsigned long end)
396 {
397 struct kvm *kvm = mmu_notifier_to_kvm(mn);
398 int young, idx;
399
400 idx = srcu_read_lock(&kvm->srcu);
401 spin_lock(&kvm->mmu_lock);
402 /*
403 * Even though we do not flush TLB, this will still adversely
404 * affect performance on pre-Haswell Intel EPT, where there is
405 * no EPT Access Bit to clear so that we have to tear down EPT
406 * tables instead. If we find this unacceptable, we can always
407 * add a parameter to kvm_age_hva so that it effectively doesn't
408 * do anything on clear_young.
409 *
410 * Also note that currently we never issue secondary TLB flushes
411 * from clear_young, leaving this job up to the regular system
412 * cadence. If we find this inaccurate, we might come up with a
413 * more sophisticated heuristic later.
414 */
415 young = kvm_age_hva(kvm, start, end);
416 spin_unlock(&kvm->mmu_lock);
417 srcu_read_unlock(&kvm->srcu, idx);
418
419 return young;
420 }
421
422 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
423 struct mm_struct *mm,
424 unsigned long address)
425 {
426 struct kvm *kvm = mmu_notifier_to_kvm(mn);
427 int young, idx;
428
429 idx = srcu_read_lock(&kvm->srcu);
430 spin_lock(&kvm->mmu_lock);
431 young = kvm_test_age_hva(kvm, address);
432 spin_unlock(&kvm->mmu_lock);
433 srcu_read_unlock(&kvm->srcu, idx);
434
435 return young;
436 }
437
438 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
439 struct mm_struct *mm)
440 {
441 struct kvm *kvm = mmu_notifier_to_kvm(mn);
442 int idx;
443
444 idx = srcu_read_lock(&kvm->srcu);
445 kvm_arch_flush_shadow_all(kvm);
446 srcu_read_unlock(&kvm->srcu, idx);
447 }
448
449 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
450 .invalidate_page = kvm_mmu_notifier_invalidate_page,
451 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
452 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
453 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
454 .clear_young = kvm_mmu_notifier_clear_young,
455 .test_young = kvm_mmu_notifier_test_young,
456 .change_pte = kvm_mmu_notifier_change_pte,
457 .release = kvm_mmu_notifier_release,
458 };
459
460 static int kvm_init_mmu_notifier(struct kvm *kvm)
461 {
462 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
463 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
464 }
465
466 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
467
468 static int kvm_init_mmu_notifier(struct kvm *kvm)
469 {
470 return 0;
471 }
472
473 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
474
475 static struct kvm_memslots *kvm_alloc_memslots(void)
476 {
477 int i;
478 struct kvm_memslots *slots;
479
480 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
481 if (!slots)
482 return NULL;
483
484 /*
485 * Init kvm generation close to the maximum to easily test the
486 * code of handling generation number wrap-around.
487 */
488 slots->generation = -150;
489 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
490 slots->id_to_index[i] = slots->memslots[i].id = i;
491
492 return slots;
493 }
494
495 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
496 {
497 if (!memslot->dirty_bitmap)
498 return;
499
500 kvfree(memslot->dirty_bitmap);
501 memslot->dirty_bitmap = NULL;
502 }
503
504 /*
505 * Free any memory in @free but not in @dont.
506 */
507 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
508 struct kvm_memory_slot *dont)
509 {
510 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
511 kvm_destroy_dirty_bitmap(free);
512
513 kvm_arch_free_memslot(kvm, free, dont);
514
515 free->npages = 0;
516 }
517
518 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
519 {
520 struct kvm_memory_slot *memslot;
521
522 if (!slots)
523 return;
524
525 kvm_for_each_memslot(memslot, slots)
526 kvm_free_memslot(kvm, memslot, NULL);
527
528 kvfree(slots);
529 }
530
531 static struct kvm *kvm_create_vm(unsigned long type)
532 {
533 int r, i;
534 struct kvm *kvm = kvm_arch_alloc_vm();
535
536 if (!kvm)
537 return ERR_PTR(-ENOMEM);
538
539 r = kvm_arch_init_vm(kvm, type);
540 if (r)
541 goto out_err_no_disable;
542
543 r = hardware_enable_all();
544 if (r)
545 goto out_err_no_disable;
546
547 #ifdef CONFIG_HAVE_KVM_IRQFD
548 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
549 #endif
550
551 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
552
553 r = -ENOMEM;
554 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
555 kvm->memslots[i] = kvm_alloc_memslots();
556 if (!kvm->memslots[i])
557 goto out_err_no_srcu;
558 }
559
560 if (init_srcu_struct(&kvm->srcu))
561 goto out_err_no_srcu;
562 if (init_srcu_struct(&kvm->irq_srcu))
563 goto out_err_no_irq_srcu;
564 for (i = 0; i < KVM_NR_BUSES; i++) {
565 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
566 GFP_KERNEL);
567 if (!kvm->buses[i])
568 goto out_err;
569 }
570
571 spin_lock_init(&kvm->mmu_lock);
572 kvm->mm = current->mm;
573 atomic_inc(&kvm->mm->mm_count);
574 kvm_eventfd_init(kvm);
575 mutex_init(&kvm->lock);
576 mutex_init(&kvm->irq_lock);
577 mutex_init(&kvm->slots_lock);
578 atomic_set(&kvm->users_count, 1);
579 INIT_LIST_HEAD(&kvm->devices);
580
581 r = kvm_init_mmu_notifier(kvm);
582 if (r)
583 goto out_err;
584
585 spin_lock(&kvm_lock);
586 list_add(&kvm->vm_list, &vm_list);
587 spin_unlock(&kvm_lock);
588
589 preempt_notifier_inc();
590
591 return kvm;
592
593 out_err:
594 cleanup_srcu_struct(&kvm->irq_srcu);
595 out_err_no_irq_srcu:
596 cleanup_srcu_struct(&kvm->srcu);
597 out_err_no_srcu:
598 hardware_disable_all();
599 out_err_no_disable:
600 for (i = 0; i < KVM_NR_BUSES; i++)
601 kfree(kvm->buses[i]);
602 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
603 kvm_free_memslots(kvm, kvm->memslots[i]);
604 kvm_arch_free_vm(kvm);
605 return ERR_PTR(r);
606 }
607
608 /*
609 * Avoid using vmalloc for a small buffer.
610 * Should not be used when the size is statically known.
611 */
612 void *kvm_kvzalloc(unsigned long size)
613 {
614 if (size > PAGE_SIZE)
615 return vzalloc(size);
616 else
617 return kzalloc(size, GFP_KERNEL);
618 }
619
620 static void kvm_destroy_devices(struct kvm *kvm)
621 {
622 struct kvm_device *dev, *tmp;
623
624 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
625 list_del(&dev->vm_node);
626 dev->ops->destroy(dev);
627 }
628 }
629
630 static void kvm_destroy_vm(struct kvm *kvm)
631 {
632 int i;
633 struct mm_struct *mm = kvm->mm;
634
635 kvm_arch_sync_events(kvm);
636 spin_lock(&kvm_lock);
637 list_del(&kvm->vm_list);
638 spin_unlock(&kvm_lock);
639 kvm_free_irq_routing(kvm);
640 for (i = 0; i < KVM_NR_BUSES; i++)
641 kvm_io_bus_destroy(kvm->buses[i]);
642 kvm_coalesced_mmio_free(kvm);
643 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
644 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
645 #else
646 kvm_arch_flush_shadow_all(kvm);
647 #endif
648 kvm_arch_destroy_vm(kvm);
649 kvm_destroy_devices(kvm);
650 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
651 kvm_free_memslots(kvm, kvm->memslots[i]);
652 cleanup_srcu_struct(&kvm->irq_srcu);
653 cleanup_srcu_struct(&kvm->srcu);
654 kvm_arch_free_vm(kvm);
655 preempt_notifier_dec();
656 hardware_disable_all();
657 mmdrop(mm);
658 }
659
660 void kvm_get_kvm(struct kvm *kvm)
661 {
662 atomic_inc(&kvm->users_count);
663 }
664 EXPORT_SYMBOL_GPL(kvm_get_kvm);
665
666 void kvm_put_kvm(struct kvm *kvm)
667 {
668 if (atomic_dec_and_test(&kvm->users_count))
669 kvm_destroy_vm(kvm);
670 }
671 EXPORT_SYMBOL_GPL(kvm_put_kvm);
672
673
674 static int kvm_vm_release(struct inode *inode, struct file *filp)
675 {
676 struct kvm *kvm = filp->private_data;
677
678 kvm_irqfd_release(kvm);
679
680 kvm_put_kvm(kvm);
681 return 0;
682 }
683
684 /*
685 * Allocation size is twice as large as the actual dirty bitmap size.
686 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
687 */
688 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
689 {
690 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
691
692 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
693 if (!memslot->dirty_bitmap)
694 return -ENOMEM;
695
696 return 0;
697 }
698
699 /*
700 * Insert memslot and re-sort memslots based on their GFN,
701 * so binary search could be used to lookup GFN.
702 * Sorting algorithm takes advantage of having initially
703 * sorted array and known changed memslot position.
704 */
705 static void update_memslots(struct kvm_memslots *slots,
706 struct kvm_memory_slot *new)
707 {
708 int id = new->id;
709 int i = slots->id_to_index[id];
710 struct kvm_memory_slot *mslots = slots->memslots;
711
712 WARN_ON(mslots[i].id != id);
713 if (!new->npages) {
714 WARN_ON(!mslots[i].npages);
715 if (mslots[i].npages)
716 slots->used_slots--;
717 } else {
718 if (!mslots[i].npages)
719 slots->used_slots++;
720 }
721
722 while (i < KVM_MEM_SLOTS_NUM - 1 &&
723 new->base_gfn <= mslots[i + 1].base_gfn) {
724 if (!mslots[i + 1].npages)
725 break;
726 mslots[i] = mslots[i + 1];
727 slots->id_to_index[mslots[i].id] = i;
728 i++;
729 }
730
731 /*
732 * The ">=" is needed when creating a slot with base_gfn == 0,
733 * so that it moves before all those with base_gfn == npages == 0.
734 *
735 * On the other hand, if new->npages is zero, the above loop has
736 * already left i pointing to the beginning of the empty part of
737 * mslots, and the ">=" would move the hole backwards in this
738 * case---which is wrong. So skip the loop when deleting a slot.
739 */
740 if (new->npages) {
741 while (i > 0 &&
742 new->base_gfn >= mslots[i - 1].base_gfn) {
743 mslots[i] = mslots[i - 1];
744 slots->id_to_index[mslots[i].id] = i;
745 i--;
746 }
747 } else
748 WARN_ON_ONCE(i != slots->used_slots);
749
750 mslots[i] = *new;
751 slots->id_to_index[mslots[i].id] = i;
752 }
753
754 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
755 {
756 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
757
758 #ifdef __KVM_HAVE_READONLY_MEM
759 valid_flags |= KVM_MEM_READONLY;
760 #endif
761
762 if (mem->flags & ~valid_flags)
763 return -EINVAL;
764
765 return 0;
766 }
767
768 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
769 int as_id, struct kvm_memslots *slots)
770 {
771 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
772
773 /*
774 * Set the low bit in the generation, which disables SPTE caching
775 * until the end of synchronize_srcu_expedited.
776 */
777 WARN_ON(old_memslots->generation & 1);
778 slots->generation = old_memslots->generation + 1;
779
780 rcu_assign_pointer(kvm->memslots[as_id], slots);
781 synchronize_srcu_expedited(&kvm->srcu);
782
783 /*
784 * Increment the new memslot generation a second time. This prevents
785 * vm exits that race with memslot updates from caching a memslot
786 * generation that will (potentially) be valid forever.
787 */
788 slots->generation++;
789
790 kvm_arch_memslots_updated(kvm, slots);
791
792 return old_memslots;
793 }
794
795 /*
796 * Allocate some memory and give it an address in the guest physical address
797 * space.
798 *
799 * Discontiguous memory is allowed, mostly for framebuffers.
800 *
801 * Must be called holding kvm->slots_lock for write.
802 */
803 int __kvm_set_memory_region(struct kvm *kvm,
804 const struct kvm_userspace_memory_region *mem)
805 {
806 int r;
807 gfn_t base_gfn;
808 unsigned long npages;
809 struct kvm_memory_slot *slot;
810 struct kvm_memory_slot old, new;
811 struct kvm_memslots *slots = NULL, *old_memslots;
812 int as_id, id;
813 enum kvm_mr_change change;
814
815 r = check_memory_region_flags(mem);
816 if (r)
817 goto out;
818
819 r = -EINVAL;
820 as_id = mem->slot >> 16;
821 id = (u16)mem->slot;
822
823 /* General sanity checks */
824 if (mem->memory_size & (PAGE_SIZE - 1))
825 goto out;
826 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
827 goto out;
828 /* We can read the guest memory with __xxx_user() later on. */
829 if ((id < KVM_USER_MEM_SLOTS) &&
830 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
831 !access_ok(VERIFY_WRITE,
832 (void __user *)(unsigned long)mem->userspace_addr,
833 mem->memory_size)))
834 goto out;
835 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
836 goto out;
837 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
838 goto out;
839
840 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
841 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
842 npages = mem->memory_size >> PAGE_SHIFT;
843
844 if (npages > KVM_MEM_MAX_NR_PAGES)
845 goto out;
846
847 new = old = *slot;
848
849 new.id = id;
850 new.base_gfn = base_gfn;
851 new.npages = npages;
852 new.flags = mem->flags;
853
854 if (npages) {
855 if (!old.npages)
856 change = KVM_MR_CREATE;
857 else { /* Modify an existing slot. */
858 if ((mem->userspace_addr != old.userspace_addr) ||
859 (npages != old.npages) ||
860 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
861 goto out;
862
863 if (base_gfn != old.base_gfn)
864 change = KVM_MR_MOVE;
865 else if (new.flags != old.flags)
866 change = KVM_MR_FLAGS_ONLY;
867 else { /* Nothing to change. */
868 r = 0;
869 goto out;
870 }
871 }
872 } else {
873 if (!old.npages)
874 goto out;
875
876 change = KVM_MR_DELETE;
877 new.base_gfn = 0;
878 new.flags = 0;
879 }
880
881 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
882 /* Check for overlaps */
883 r = -EEXIST;
884 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
885 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
886 (slot->id == id))
887 continue;
888 if (!((base_gfn + npages <= slot->base_gfn) ||
889 (base_gfn >= slot->base_gfn + slot->npages)))
890 goto out;
891 }
892 }
893
894 /* Free page dirty bitmap if unneeded */
895 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
896 new.dirty_bitmap = NULL;
897
898 r = -ENOMEM;
899 if (change == KVM_MR_CREATE) {
900 new.userspace_addr = mem->userspace_addr;
901
902 if (kvm_arch_create_memslot(kvm, &new, npages))
903 goto out_free;
904 }
905
906 /* Allocate page dirty bitmap if needed */
907 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
908 if (kvm_create_dirty_bitmap(&new) < 0)
909 goto out_free;
910 }
911
912 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
913 if (!slots)
914 goto out_free;
915 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
916
917 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
918 slot = id_to_memslot(slots, id);
919 slot->flags |= KVM_MEMSLOT_INVALID;
920
921 old_memslots = install_new_memslots(kvm, as_id, slots);
922
923 /* slot was deleted or moved, clear iommu mapping */
924 kvm_iommu_unmap_pages(kvm, &old);
925 /* From this point no new shadow pages pointing to a deleted,
926 * or moved, memslot will be created.
927 *
928 * validation of sp->gfn happens in:
929 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
930 * - kvm_is_visible_gfn (mmu_check_roots)
931 */
932 kvm_arch_flush_shadow_memslot(kvm, slot);
933
934 /*
935 * We can re-use the old_memslots from above, the only difference
936 * from the currently installed memslots is the invalid flag. This
937 * will get overwritten by update_memslots anyway.
938 */
939 slots = old_memslots;
940 }
941
942 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
943 if (r)
944 goto out_slots;
945
946 /* actual memory is freed via old in kvm_free_memslot below */
947 if (change == KVM_MR_DELETE) {
948 new.dirty_bitmap = NULL;
949 memset(&new.arch, 0, sizeof(new.arch));
950 }
951
952 update_memslots(slots, &new);
953 old_memslots = install_new_memslots(kvm, as_id, slots);
954
955 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
956
957 kvm_free_memslot(kvm, &old, &new);
958 kvfree(old_memslots);
959
960 /*
961 * IOMMU mapping: New slots need to be mapped. Old slots need to be
962 * un-mapped and re-mapped if their base changes. Since base change
963 * unmapping is handled above with slot deletion, mapping alone is
964 * needed here. Anything else the iommu might care about for existing
965 * slots (size changes, userspace addr changes and read-only flag
966 * changes) is disallowed above, so any other attribute changes getting
967 * here can be skipped.
968 */
969 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
970 r = kvm_iommu_map_pages(kvm, &new);
971 return r;
972 }
973
974 return 0;
975
976 out_slots:
977 kvfree(slots);
978 out_free:
979 kvm_free_memslot(kvm, &new, &old);
980 out:
981 return r;
982 }
983 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
984
985 int kvm_set_memory_region(struct kvm *kvm,
986 const struct kvm_userspace_memory_region *mem)
987 {
988 int r;
989
990 mutex_lock(&kvm->slots_lock);
991 r = __kvm_set_memory_region(kvm, mem);
992 mutex_unlock(&kvm->slots_lock);
993 return r;
994 }
995 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
996
997 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
998 struct kvm_userspace_memory_region *mem)
999 {
1000 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1001 return -EINVAL;
1002
1003 return kvm_set_memory_region(kvm, mem);
1004 }
1005
1006 int kvm_get_dirty_log(struct kvm *kvm,
1007 struct kvm_dirty_log *log, int *is_dirty)
1008 {
1009 struct kvm_memslots *slots;
1010 struct kvm_memory_slot *memslot;
1011 int r, i, as_id, id;
1012 unsigned long n;
1013 unsigned long any = 0;
1014
1015 r = -EINVAL;
1016 as_id = log->slot >> 16;
1017 id = (u16)log->slot;
1018 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1019 goto out;
1020
1021 slots = __kvm_memslots(kvm, as_id);
1022 memslot = id_to_memslot(slots, id);
1023 r = -ENOENT;
1024 if (!memslot->dirty_bitmap)
1025 goto out;
1026
1027 n = kvm_dirty_bitmap_bytes(memslot);
1028
1029 for (i = 0; !any && i < n/sizeof(long); ++i)
1030 any = memslot->dirty_bitmap[i];
1031
1032 r = -EFAULT;
1033 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1034 goto out;
1035
1036 if (any)
1037 *is_dirty = 1;
1038
1039 r = 0;
1040 out:
1041 return r;
1042 }
1043 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1044
1045 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1046 /**
1047 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1048 * are dirty write protect them for next write.
1049 * @kvm: pointer to kvm instance
1050 * @log: slot id and address to which we copy the log
1051 * @is_dirty: flag set if any page is dirty
1052 *
1053 * We need to keep it in mind that VCPU threads can write to the bitmap
1054 * concurrently. So, to avoid losing track of dirty pages we keep the
1055 * following order:
1056 *
1057 * 1. Take a snapshot of the bit and clear it if needed.
1058 * 2. Write protect the corresponding page.
1059 * 3. Copy the snapshot to the userspace.
1060 * 4. Upon return caller flushes TLB's if needed.
1061 *
1062 * Between 2 and 4, the guest may write to the page using the remaining TLB
1063 * entry. This is not a problem because the page is reported dirty using
1064 * the snapshot taken before and step 4 ensures that writes done after
1065 * exiting to userspace will be logged for the next call.
1066 *
1067 */
1068 int kvm_get_dirty_log_protect(struct kvm *kvm,
1069 struct kvm_dirty_log *log, bool *is_dirty)
1070 {
1071 struct kvm_memslots *slots;
1072 struct kvm_memory_slot *memslot;
1073 int r, i, as_id, id;
1074 unsigned long n;
1075 unsigned long *dirty_bitmap;
1076 unsigned long *dirty_bitmap_buffer;
1077
1078 r = -EINVAL;
1079 as_id = log->slot >> 16;
1080 id = (u16)log->slot;
1081 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1082 goto out;
1083
1084 slots = __kvm_memslots(kvm, as_id);
1085 memslot = id_to_memslot(slots, id);
1086
1087 dirty_bitmap = memslot->dirty_bitmap;
1088 r = -ENOENT;
1089 if (!dirty_bitmap)
1090 goto out;
1091
1092 n = kvm_dirty_bitmap_bytes(memslot);
1093
1094 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1095 memset(dirty_bitmap_buffer, 0, n);
1096
1097 spin_lock(&kvm->mmu_lock);
1098 *is_dirty = false;
1099 for (i = 0; i < n / sizeof(long); i++) {
1100 unsigned long mask;
1101 gfn_t offset;
1102
1103 if (!dirty_bitmap[i])
1104 continue;
1105
1106 *is_dirty = true;
1107
1108 mask = xchg(&dirty_bitmap[i], 0);
1109 dirty_bitmap_buffer[i] = mask;
1110
1111 if (mask) {
1112 offset = i * BITS_PER_LONG;
1113 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1114 offset, mask);
1115 }
1116 }
1117
1118 spin_unlock(&kvm->mmu_lock);
1119
1120 r = -EFAULT;
1121 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1122 goto out;
1123
1124 r = 0;
1125 out:
1126 return r;
1127 }
1128 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1129 #endif
1130
1131 bool kvm_largepages_enabled(void)
1132 {
1133 return largepages_enabled;
1134 }
1135
1136 void kvm_disable_largepages(void)
1137 {
1138 largepages_enabled = false;
1139 }
1140 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1141
1142 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1143 {
1144 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1145 }
1146 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1147
1148 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1149 {
1150 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1151 }
1152
1153 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1154 {
1155 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1156
1157 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1158 memslot->flags & KVM_MEMSLOT_INVALID)
1159 return false;
1160
1161 return true;
1162 }
1163 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1164
1165 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1166 {
1167 struct vm_area_struct *vma;
1168 unsigned long addr, size;
1169
1170 size = PAGE_SIZE;
1171
1172 addr = gfn_to_hva(kvm, gfn);
1173 if (kvm_is_error_hva(addr))
1174 return PAGE_SIZE;
1175
1176 down_read(&current->mm->mmap_sem);
1177 vma = find_vma(current->mm, addr);
1178 if (!vma)
1179 goto out;
1180
1181 size = vma_kernel_pagesize(vma);
1182
1183 out:
1184 up_read(&current->mm->mmap_sem);
1185
1186 return size;
1187 }
1188
1189 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1190 {
1191 return slot->flags & KVM_MEM_READONLY;
1192 }
1193
1194 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1195 gfn_t *nr_pages, bool write)
1196 {
1197 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1198 return KVM_HVA_ERR_BAD;
1199
1200 if (memslot_is_readonly(slot) && write)
1201 return KVM_HVA_ERR_RO_BAD;
1202
1203 if (nr_pages)
1204 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1205
1206 return __gfn_to_hva_memslot(slot, gfn);
1207 }
1208
1209 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1210 gfn_t *nr_pages)
1211 {
1212 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1213 }
1214
1215 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1216 gfn_t gfn)
1217 {
1218 return gfn_to_hva_many(slot, gfn, NULL);
1219 }
1220 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1221
1222 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1223 {
1224 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1225 }
1226 EXPORT_SYMBOL_GPL(gfn_to_hva);
1227
1228 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1229 {
1230 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1231 }
1232 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1233
1234 /*
1235 * If writable is set to false, the hva returned by this function is only
1236 * allowed to be read.
1237 */
1238 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1239 gfn_t gfn, bool *writable)
1240 {
1241 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1242
1243 if (!kvm_is_error_hva(hva) && writable)
1244 *writable = !memslot_is_readonly(slot);
1245
1246 return hva;
1247 }
1248
1249 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1250 {
1251 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1252
1253 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1254 }
1255
1256 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1257 {
1258 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1259
1260 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1261 }
1262
1263 static int get_user_page_nowait(unsigned long start, int write,
1264 struct page **page)
1265 {
1266 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1267
1268 if (write)
1269 flags |= FOLL_WRITE;
1270
1271 return __get_user_pages(current, current->mm, start, 1, flags, page,
1272 NULL, NULL);
1273 }
1274
1275 static inline int check_user_page_hwpoison(unsigned long addr)
1276 {
1277 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1278
1279 rc = __get_user_pages(current, current->mm, addr, 1,
1280 flags, NULL, NULL, NULL);
1281 return rc == -EHWPOISON;
1282 }
1283
1284 /*
1285 * The atomic path to get the writable pfn which will be stored in @pfn,
1286 * true indicates success, otherwise false is returned.
1287 */
1288 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1289 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1290 {
1291 struct page *page[1];
1292 int npages;
1293
1294 if (!(async || atomic))
1295 return false;
1296
1297 /*
1298 * Fast pin a writable pfn only if it is a write fault request
1299 * or the caller allows to map a writable pfn for a read fault
1300 * request.
1301 */
1302 if (!(write_fault || writable))
1303 return false;
1304
1305 npages = __get_user_pages_fast(addr, 1, 1, page);
1306 if (npages == 1) {
1307 *pfn = page_to_pfn(page[0]);
1308
1309 if (writable)
1310 *writable = true;
1311 return true;
1312 }
1313
1314 return false;
1315 }
1316
1317 /*
1318 * The slow path to get the pfn of the specified host virtual address,
1319 * 1 indicates success, -errno is returned if error is detected.
1320 */
1321 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1322 bool *writable, kvm_pfn_t *pfn)
1323 {
1324 struct page *page[1];
1325 int npages = 0;
1326
1327 might_sleep();
1328
1329 if (writable)
1330 *writable = write_fault;
1331
1332 if (async) {
1333 down_read(&current->mm->mmap_sem);
1334 npages = get_user_page_nowait(addr, write_fault, page);
1335 up_read(&current->mm->mmap_sem);
1336 } else
1337 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1338 write_fault, 0, page,
1339 FOLL_TOUCH|FOLL_HWPOISON);
1340 if (npages != 1)
1341 return npages;
1342
1343 /* map read fault as writable if possible */
1344 if (unlikely(!write_fault) && writable) {
1345 struct page *wpage[1];
1346
1347 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1348 if (npages == 1) {
1349 *writable = true;
1350 put_page(page[0]);
1351 page[0] = wpage[0];
1352 }
1353
1354 npages = 1;
1355 }
1356 *pfn = page_to_pfn(page[0]);
1357 return npages;
1358 }
1359
1360 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1361 {
1362 if (unlikely(!(vma->vm_flags & VM_READ)))
1363 return false;
1364
1365 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1366 return false;
1367
1368 return true;
1369 }
1370
1371 /*
1372 * Pin guest page in memory and return its pfn.
1373 * @addr: host virtual address which maps memory to the guest
1374 * @atomic: whether this function can sleep
1375 * @async: whether this function need to wait IO complete if the
1376 * host page is not in the memory
1377 * @write_fault: whether we should get a writable host page
1378 * @writable: whether it allows to map a writable host page for !@write_fault
1379 *
1380 * The function will map a writable host page for these two cases:
1381 * 1): @write_fault = true
1382 * 2): @write_fault = false && @writable, @writable will tell the caller
1383 * whether the mapping is writable.
1384 */
1385 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1386 bool write_fault, bool *writable)
1387 {
1388 struct vm_area_struct *vma;
1389 kvm_pfn_t pfn = 0;
1390 int npages;
1391
1392 /* we can do it either atomically or asynchronously, not both */
1393 BUG_ON(atomic && async);
1394
1395 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1396 return pfn;
1397
1398 if (atomic)
1399 return KVM_PFN_ERR_FAULT;
1400
1401 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1402 if (npages == 1)
1403 return pfn;
1404
1405 down_read(&current->mm->mmap_sem);
1406 if (npages == -EHWPOISON ||
1407 (!async && check_user_page_hwpoison(addr))) {
1408 pfn = KVM_PFN_ERR_HWPOISON;
1409 goto exit;
1410 }
1411
1412 vma = find_vma_intersection(current->mm, addr, addr + 1);
1413
1414 if (vma == NULL)
1415 pfn = KVM_PFN_ERR_FAULT;
1416 else if ((vma->vm_flags & VM_PFNMAP)) {
1417 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1418 vma->vm_pgoff;
1419 BUG_ON(!kvm_is_reserved_pfn(pfn));
1420 } else {
1421 if (async && vma_is_valid(vma, write_fault))
1422 *async = true;
1423 pfn = KVM_PFN_ERR_FAULT;
1424 }
1425 exit:
1426 up_read(&current->mm->mmap_sem);
1427 return pfn;
1428 }
1429
1430 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1431 bool atomic, bool *async, bool write_fault,
1432 bool *writable)
1433 {
1434 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1435
1436 if (addr == KVM_HVA_ERR_RO_BAD) {
1437 if (writable)
1438 *writable = false;
1439 return KVM_PFN_ERR_RO_FAULT;
1440 }
1441
1442 if (kvm_is_error_hva(addr)) {
1443 if (writable)
1444 *writable = false;
1445 return KVM_PFN_NOSLOT;
1446 }
1447
1448 /* Do not map writable pfn in the readonly memslot. */
1449 if (writable && memslot_is_readonly(slot)) {
1450 *writable = false;
1451 writable = NULL;
1452 }
1453
1454 return hva_to_pfn(addr, atomic, async, write_fault,
1455 writable);
1456 }
1457 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1458
1459 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1460 bool *writable)
1461 {
1462 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1463 write_fault, writable);
1464 }
1465 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1466
1467 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1468 {
1469 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1470 }
1471 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1472
1473 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1474 {
1475 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1476 }
1477 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1478
1479 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1480 {
1481 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1482 }
1483 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1484
1485 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1486 {
1487 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1488 }
1489 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1490
1491 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1492 {
1493 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1494 }
1495 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1496
1497 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1498 {
1499 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1500 }
1501 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1502
1503 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1504 struct page **pages, int nr_pages)
1505 {
1506 unsigned long addr;
1507 gfn_t entry;
1508
1509 addr = gfn_to_hva_many(slot, gfn, &entry);
1510 if (kvm_is_error_hva(addr))
1511 return -1;
1512
1513 if (entry < nr_pages)
1514 return 0;
1515
1516 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1517 }
1518 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1519
1520 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1521 {
1522 if (is_error_noslot_pfn(pfn))
1523 return KVM_ERR_PTR_BAD_PAGE;
1524
1525 if (kvm_is_reserved_pfn(pfn)) {
1526 WARN_ON(1);
1527 return KVM_ERR_PTR_BAD_PAGE;
1528 }
1529
1530 return pfn_to_page(pfn);
1531 }
1532
1533 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1534 {
1535 kvm_pfn_t pfn;
1536
1537 pfn = gfn_to_pfn(kvm, gfn);
1538
1539 return kvm_pfn_to_page(pfn);
1540 }
1541 EXPORT_SYMBOL_GPL(gfn_to_page);
1542
1543 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1544 {
1545 kvm_pfn_t pfn;
1546
1547 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1548
1549 return kvm_pfn_to_page(pfn);
1550 }
1551 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1552
1553 void kvm_release_page_clean(struct page *page)
1554 {
1555 WARN_ON(is_error_page(page));
1556
1557 kvm_release_pfn_clean(page_to_pfn(page));
1558 }
1559 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1560
1561 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1562 {
1563 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1564 put_page(pfn_to_page(pfn));
1565 }
1566 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1567
1568 void kvm_release_page_dirty(struct page *page)
1569 {
1570 WARN_ON(is_error_page(page));
1571
1572 kvm_release_pfn_dirty(page_to_pfn(page));
1573 }
1574 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1575
1576 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1577 {
1578 kvm_set_pfn_dirty(pfn);
1579 kvm_release_pfn_clean(pfn);
1580 }
1581
1582 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1583 {
1584 if (!kvm_is_reserved_pfn(pfn)) {
1585 struct page *page = pfn_to_page(pfn);
1586
1587 if (!PageReserved(page))
1588 SetPageDirty(page);
1589 }
1590 }
1591 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1592
1593 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1594 {
1595 if (!kvm_is_reserved_pfn(pfn))
1596 mark_page_accessed(pfn_to_page(pfn));
1597 }
1598 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1599
1600 void kvm_get_pfn(kvm_pfn_t pfn)
1601 {
1602 if (!kvm_is_reserved_pfn(pfn))
1603 get_page(pfn_to_page(pfn));
1604 }
1605 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1606
1607 static int next_segment(unsigned long len, int offset)
1608 {
1609 if (len > PAGE_SIZE - offset)
1610 return PAGE_SIZE - offset;
1611 else
1612 return len;
1613 }
1614
1615 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1616 void *data, int offset, int len)
1617 {
1618 int r;
1619 unsigned long addr;
1620
1621 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1622 if (kvm_is_error_hva(addr))
1623 return -EFAULT;
1624 r = __copy_from_user(data, (void __user *)addr + offset, len);
1625 if (r)
1626 return -EFAULT;
1627 return 0;
1628 }
1629
1630 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1631 int len)
1632 {
1633 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1634
1635 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1636 }
1637 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1638
1639 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1640 int offset, int len)
1641 {
1642 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1643
1644 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1645 }
1646 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1647
1648 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1649 {
1650 gfn_t gfn = gpa >> PAGE_SHIFT;
1651 int seg;
1652 int offset = offset_in_page(gpa);
1653 int ret;
1654
1655 while ((seg = next_segment(len, offset)) != 0) {
1656 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1657 if (ret < 0)
1658 return ret;
1659 offset = 0;
1660 len -= seg;
1661 data += seg;
1662 ++gfn;
1663 }
1664 return 0;
1665 }
1666 EXPORT_SYMBOL_GPL(kvm_read_guest);
1667
1668 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1669 {
1670 gfn_t gfn = gpa >> PAGE_SHIFT;
1671 int seg;
1672 int offset = offset_in_page(gpa);
1673 int ret;
1674
1675 while ((seg = next_segment(len, offset)) != 0) {
1676 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1677 if (ret < 0)
1678 return ret;
1679 offset = 0;
1680 len -= seg;
1681 data += seg;
1682 ++gfn;
1683 }
1684 return 0;
1685 }
1686 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1687
1688 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1689 void *data, int offset, unsigned long len)
1690 {
1691 int r;
1692 unsigned long addr;
1693
1694 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1695 if (kvm_is_error_hva(addr))
1696 return -EFAULT;
1697 pagefault_disable();
1698 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1699 pagefault_enable();
1700 if (r)
1701 return -EFAULT;
1702 return 0;
1703 }
1704
1705 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1706 unsigned long len)
1707 {
1708 gfn_t gfn = gpa >> PAGE_SHIFT;
1709 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1710 int offset = offset_in_page(gpa);
1711
1712 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1713 }
1714 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1715
1716 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1717 void *data, unsigned long len)
1718 {
1719 gfn_t gfn = gpa >> PAGE_SHIFT;
1720 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1721 int offset = offset_in_page(gpa);
1722
1723 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1724 }
1725 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1726
1727 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1728 const void *data, int offset, int len)
1729 {
1730 int r;
1731 unsigned long addr;
1732
1733 addr = gfn_to_hva_memslot(memslot, gfn);
1734 if (kvm_is_error_hva(addr))
1735 return -EFAULT;
1736 r = __copy_to_user((void __user *)addr + offset, data, len);
1737 if (r)
1738 return -EFAULT;
1739 mark_page_dirty_in_slot(memslot, gfn);
1740 return 0;
1741 }
1742
1743 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1744 const void *data, int offset, int len)
1745 {
1746 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1747
1748 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1749 }
1750 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1751
1752 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1753 const void *data, int offset, int len)
1754 {
1755 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1756
1757 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1758 }
1759 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1760
1761 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1762 unsigned long len)
1763 {
1764 gfn_t gfn = gpa >> PAGE_SHIFT;
1765 int seg;
1766 int offset = offset_in_page(gpa);
1767 int ret;
1768
1769 while ((seg = next_segment(len, offset)) != 0) {
1770 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1771 if (ret < 0)
1772 return ret;
1773 offset = 0;
1774 len -= seg;
1775 data += seg;
1776 ++gfn;
1777 }
1778 return 0;
1779 }
1780 EXPORT_SYMBOL_GPL(kvm_write_guest);
1781
1782 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1783 unsigned long len)
1784 {
1785 gfn_t gfn = gpa >> PAGE_SHIFT;
1786 int seg;
1787 int offset = offset_in_page(gpa);
1788 int ret;
1789
1790 while ((seg = next_segment(len, offset)) != 0) {
1791 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1792 if (ret < 0)
1793 return ret;
1794 offset = 0;
1795 len -= seg;
1796 data += seg;
1797 ++gfn;
1798 }
1799 return 0;
1800 }
1801 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1802
1803 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1804 gpa_t gpa, unsigned long len)
1805 {
1806 struct kvm_memslots *slots = kvm_memslots(kvm);
1807 int offset = offset_in_page(gpa);
1808 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1809 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1810 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1811 gfn_t nr_pages_avail;
1812
1813 ghc->gpa = gpa;
1814 ghc->generation = slots->generation;
1815 ghc->len = len;
1816 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1817 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1818 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1819 ghc->hva += offset;
1820 } else {
1821 /*
1822 * If the requested region crosses two memslots, we still
1823 * verify that the entire region is valid here.
1824 */
1825 while (start_gfn <= end_gfn) {
1826 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1827 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1828 &nr_pages_avail);
1829 if (kvm_is_error_hva(ghc->hva))
1830 return -EFAULT;
1831 start_gfn += nr_pages_avail;
1832 }
1833 /* Use the slow path for cross page reads and writes. */
1834 ghc->memslot = NULL;
1835 }
1836 return 0;
1837 }
1838 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1839
1840 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1841 void *data, unsigned long len)
1842 {
1843 struct kvm_memslots *slots = kvm_memslots(kvm);
1844 int r;
1845
1846 BUG_ON(len > ghc->len);
1847
1848 if (slots->generation != ghc->generation)
1849 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1850
1851 if (unlikely(!ghc->memslot))
1852 return kvm_write_guest(kvm, ghc->gpa, data, len);
1853
1854 if (kvm_is_error_hva(ghc->hva))
1855 return -EFAULT;
1856
1857 r = __copy_to_user((void __user *)ghc->hva, data, len);
1858 if (r)
1859 return -EFAULT;
1860 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1861
1862 return 0;
1863 }
1864 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1865
1866 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1867 void *data, unsigned long len)
1868 {
1869 struct kvm_memslots *slots = kvm_memslots(kvm);
1870 int r;
1871
1872 BUG_ON(len > ghc->len);
1873
1874 if (slots->generation != ghc->generation)
1875 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1876
1877 if (unlikely(!ghc->memslot))
1878 return kvm_read_guest(kvm, ghc->gpa, data, len);
1879
1880 if (kvm_is_error_hva(ghc->hva))
1881 return -EFAULT;
1882
1883 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1884 if (r)
1885 return -EFAULT;
1886
1887 return 0;
1888 }
1889 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1890
1891 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1892 {
1893 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1894
1895 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1896 }
1897 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1898
1899 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1900 {
1901 gfn_t gfn = gpa >> PAGE_SHIFT;
1902 int seg;
1903 int offset = offset_in_page(gpa);
1904 int ret;
1905
1906 while ((seg = next_segment(len, offset)) != 0) {
1907 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1908 if (ret < 0)
1909 return ret;
1910 offset = 0;
1911 len -= seg;
1912 ++gfn;
1913 }
1914 return 0;
1915 }
1916 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1917
1918 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1919 gfn_t gfn)
1920 {
1921 if (memslot && memslot->dirty_bitmap) {
1922 unsigned long rel_gfn = gfn - memslot->base_gfn;
1923
1924 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1925 }
1926 }
1927
1928 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1929 {
1930 struct kvm_memory_slot *memslot;
1931
1932 memslot = gfn_to_memslot(kvm, gfn);
1933 mark_page_dirty_in_slot(memslot, gfn);
1934 }
1935 EXPORT_SYMBOL_GPL(mark_page_dirty);
1936
1937 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1938 {
1939 struct kvm_memory_slot *memslot;
1940
1941 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1942 mark_page_dirty_in_slot(memslot, gfn);
1943 }
1944 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1945
1946 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1947 {
1948 unsigned int old, val, grow;
1949
1950 old = val = vcpu->halt_poll_ns;
1951 grow = READ_ONCE(halt_poll_ns_grow);
1952 /* 10us base */
1953 if (val == 0 && grow)
1954 val = 10000;
1955 else
1956 val *= grow;
1957
1958 if (val > halt_poll_ns)
1959 val = halt_poll_ns;
1960
1961 vcpu->halt_poll_ns = val;
1962 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
1963 }
1964
1965 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1966 {
1967 unsigned int old, val, shrink;
1968
1969 old = val = vcpu->halt_poll_ns;
1970 shrink = READ_ONCE(halt_poll_ns_shrink);
1971 if (shrink == 0)
1972 val = 0;
1973 else
1974 val /= shrink;
1975
1976 vcpu->halt_poll_ns = val;
1977 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
1978 }
1979
1980 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1981 {
1982 if (kvm_arch_vcpu_runnable(vcpu)) {
1983 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1984 return -EINTR;
1985 }
1986 if (kvm_cpu_has_pending_timer(vcpu))
1987 return -EINTR;
1988 if (signal_pending(current))
1989 return -EINTR;
1990
1991 return 0;
1992 }
1993
1994 /*
1995 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1996 */
1997 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1998 {
1999 ktime_t start, cur;
2000 DECLARE_SWAITQUEUE(wait);
2001 bool waited = false;
2002 u64 block_ns;
2003
2004 start = cur = ktime_get();
2005 if (vcpu->halt_poll_ns) {
2006 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2007
2008 ++vcpu->stat.halt_attempted_poll;
2009 do {
2010 /*
2011 * This sets KVM_REQ_UNHALT if an interrupt
2012 * arrives.
2013 */
2014 if (kvm_vcpu_check_block(vcpu) < 0) {
2015 ++vcpu->stat.halt_successful_poll;
2016 goto out;
2017 }
2018 cur = ktime_get();
2019 } while (single_task_running() && ktime_before(cur, stop));
2020 }
2021
2022 kvm_arch_vcpu_blocking(vcpu);
2023
2024 for (;;) {
2025 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2026
2027 if (kvm_vcpu_check_block(vcpu) < 0)
2028 break;
2029
2030 waited = true;
2031 schedule();
2032 }
2033
2034 finish_swait(&vcpu->wq, &wait);
2035 cur = ktime_get();
2036
2037 kvm_arch_vcpu_unblocking(vcpu);
2038 out:
2039 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2040
2041 if (halt_poll_ns) {
2042 if (block_ns <= vcpu->halt_poll_ns)
2043 ;
2044 /* we had a long block, shrink polling */
2045 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2046 shrink_halt_poll_ns(vcpu);
2047 /* we had a short halt and our poll time is too small */
2048 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2049 block_ns < halt_poll_ns)
2050 grow_halt_poll_ns(vcpu);
2051 } else
2052 vcpu->halt_poll_ns = 0;
2053
2054 trace_kvm_vcpu_wakeup(block_ns, waited);
2055 }
2056 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2057
2058 #ifndef CONFIG_S390
2059 /*
2060 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2061 */
2062 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2063 {
2064 int me;
2065 int cpu = vcpu->cpu;
2066 struct swait_queue_head *wqp;
2067
2068 wqp = kvm_arch_vcpu_wq(vcpu);
2069 if (swait_active(wqp)) {
2070 swake_up(wqp);
2071 ++vcpu->stat.halt_wakeup;
2072 }
2073
2074 me = get_cpu();
2075 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2076 if (kvm_arch_vcpu_should_kick(vcpu))
2077 smp_send_reschedule(cpu);
2078 put_cpu();
2079 }
2080 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2081 #endif /* !CONFIG_S390 */
2082
2083 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2084 {
2085 struct pid *pid;
2086 struct task_struct *task = NULL;
2087 int ret = 0;
2088
2089 rcu_read_lock();
2090 pid = rcu_dereference(target->pid);
2091 if (pid)
2092 task = get_pid_task(pid, PIDTYPE_PID);
2093 rcu_read_unlock();
2094 if (!task)
2095 return ret;
2096 ret = yield_to(task, 1);
2097 put_task_struct(task);
2098
2099 return ret;
2100 }
2101 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2102
2103 /*
2104 * Helper that checks whether a VCPU is eligible for directed yield.
2105 * Most eligible candidate to yield is decided by following heuristics:
2106 *
2107 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2108 * (preempted lock holder), indicated by @in_spin_loop.
2109 * Set at the beiginning and cleared at the end of interception/PLE handler.
2110 *
2111 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2112 * chance last time (mostly it has become eligible now since we have probably
2113 * yielded to lockholder in last iteration. This is done by toggling
2114 * @dy_eligible each time a VCPU checked for eligibility.)
2115 *
2116 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2117 * to preempted lock-holder could result in wrong VCPU selection and CPU
2118 * burning. Giving priority for a potential lock-holder increases lock
2119 * progress.
2120 *
2121 * Since algorithm is based on heuristics, accessing another VCPU data without
2122 * locking does not harm. It may result in trying to yield to same VCPU, fail
2123 * and continue with next VCPU and so on.
2124 */
2125 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2126 {
2127 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2128 bool eligible;
2129
2130 eligible = !vcpu->spin_loop.in_spin_loop ||
2131 vcpu->spin_loop.dy_eligible;
2132
2133 if (vcpu->spin_loop.in_spin_loop)
2134 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2135
2136 return eligible;
2137 #else
2138 return true;
2139 #endif
2140 }
2141
2142 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2143 {
2144 struct kvm *kvm = me->kvm;
2145 struct kvm_vcpu *vcpu;
2146 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2147 int yielded = 0;
2148 int try = 3;
2149 int pass;
2150 int i;
2151
2152 kvm_vcpu_set_in_spin_loop(me, true);
2153 /*
2154 * We boost the priority of a VCPU that is runnable but not
2155 * currently running, because it got preempted by something
2156 * else and called schedule in __vcpu_run. Hopefully that
2157 * VCPU is holding the lock that we need and will release it.
2158 * We approximate round-robin by starting at the last boosted VCPU.
2159 */
2160 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2161 kvm_for_each_vcpu(i, vcpu, kvm) {
2162 if (!pass && i <= last_boosted_vcpu) {
2163 i = last_boosted_vcpu;
2164 continue;
2165 } else if (pass && i > last_boosted_vcpu)
2166 break;
2167 if (!ACCESS_ONCE(vcpu->preempted))
2168 continue;
2169 if (vcpu == me)
2170 continue;
2171 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2172 continue;
2173 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2174 continue;
2175
2176 yielded = kvm_vcpu_yield_to(vcpu);
2177 if (yielded > 0) {
2178 kvm->last_boosted_vcpu = i;
2179 break;
2180 } else if (yielded < 0) {
2181 try--;
2182 if (!try)
2183 break;
2184 }
2185 }
2186 }
2187 kvm_vcpu_set_in_spin_loop(me, false);
2188
2189 /* Ensure vcpu is not eligible during next spinloop */
2190 kvm_vcpu_set_dy_eligible(me, false);
2191 }
2192 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2193
2194 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2195 {
2196 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2197 struct page *page;
2198
2199 if (vmf->pgoff == 0)
2200 page = virt_to_page(vcpu->run);
2201 #ifdef CONFIG_X86
2202 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2203 page = virt_to_page(vcpu->arch.pio_data);
2204 #endif
2205 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2206 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2207 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2208 #endif
2209 else
2210 return kvm_arch_vcpu_fault(vcpu, vmf);
2211 get_page(page);
2212 vmf->page = page;
2213 return 0;
2214 }
2215
2216 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2217 .fault = kvm_vcpu_fault,
2218 };
2219
2220 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2221 {
2222 vma->vm_ops = &kvm_vcpu_vm_ops;
2223 return 0;
2224 }
2225
2226 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2227 {
2228 struct kvm_vcpu *vcpu = filp->private_data;
2229
2230 kvm_put_kvm(vcpu->kvm);
2231 return 0;
2232 }
2233
2234 static struct file_operations kvm_vcpu_fops = {
2235 .release = kvm_vcpu_release,
2236 .unlocked_ioctl = kvm_vcpu_ioctl,
2237 #ifdef CONFIG_KVM_COMPAT
2238 .compat_ioctl = kvm_vcpu_compat_ioctl,
2239 #endif
2240 .mmap = kvm_vcpu_mmap,
2241 .llseek = noop_llseek,
2242 };
2243
2244 /*
2245 * Allocates an inode for the vcpu.
2246 */
2247 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2248 {
2249 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2250 }
2251
2252 /*
2253 * Creates some virtual cpus. Good luck creating more than one.
2254 */
2255 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2256 {
2257 int r;
2258 struct kvm_vcpu *vcpu;
2259
2260 if (id >= KVM_MAX_VCPUS)
2261 return -EINVAL;
2262
2263 vcpu = kvm_arch_vcpu_create(kvm, id);
2264 if (IS_ERR(vcpu))
2265 return PTR_ERR(vcpu);
2266
2267 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2268
2269 r = kvm_arch_vcpu_setup(vcpu);
2270 if (r)
2271 goto vcpu_destroy;
2272
2273 mutex_lock(&kvm->lock);
2274 if (!kvm_vcpu_compatible(vcpu)) {
2275 r = -EINVAL;
2276 goto unlock_vcpu_destroy;
2277 }
2278 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2279 r = -EINVAL;
2280 goto unlock_vcpu_destroy;
2281 }
2282 if (kvm_get_vcpu_by_id(kvm, id)) {
2283 r = -EEXIST;
2284 goto unlock_vcpu_destroy;
2285 }
2286
2287 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2288
2289 /* Now it's all set up, let userspace reach it */
2290 kvm_get_kvm(kvm);
2291 r = create_vcpu_fd(vcpu);
2292 if (r < 0) {
2293 kvm_put_kvm(kvm);
2294 goto unlock_vcpu_destroy;
2295 }
2296
2297 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2298
2299 /*
2300 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2301 * before kvm->online_vcpu's incremented value.
2302 */
2303 smp_wmb();
2304 atomic_inc(&kvm->online_vcpus);
2305
2306 mutex_unlock(&kvm->lock);
2307 kvm_arch_vcpu_postcreate(vcpu);
2308 return r;
2309
2310 unlock_vcpu_destroy:
2311 mutex_unlock(&kvm->lock);
2312 vcpu_destroy:
2313 kvm_arch_vcpu_destroy(vcpu);
2314 return r;
2315 }
2316
2317 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2318 {
2319 if (sigset) {
2320 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2321 vcpu->sigset_active = 1;
2322 vcpu->sigset = *sigset;
2323 } else
2324 vcpu->sigset_active = 0;
2325 return 0;
2326 }
2327
2328 static long kvm_vcpu_ioctl(struct file *filp,
2329 unsigned int ioctl, unsigned long arg)
2330 {
2331 struct kvm_vcpu *vcpu = filp->private_data;
2332 void __user *argp = (void __user *)arg;
2333 int r;
2334 struct kvm_fpu *fpu = NULL;
2335 struct kvm_sregs *kvm_sregs = NULL;
2336
2337 if (vcpu->kvm->mm != current->mm)
2338 return -EIO;
2339
2340 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2341 return -EINVAL;
2342
2343 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2344 /*
2345 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2346 * so vcpu_load() would break it.
2347 */
2348 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2349 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2350 #endif
2351
2352
2353 r = vcpu_load(vcpu);
2354 if (r)
2355 return r;
2356 switch (ioctl) {
2357 case KVM_RUN:
2358 r = -EINVAL;
2359 if (arg)
2360 goto out;
2361 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2362 /* The thread running this VCPU changed. */
2363 struct pid *oldpid = vcpu->pid;
2364 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2365
2366 rcu_assign_pointer(vcpu->pid, newpid);
2367 if (oldpid)
2368 synchronize_rcu();
2369 put_pid(oldpid);
2370 }
2371 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2372 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2373 break;
2374 case KVM_GET_REGS: {
2375 struct kvm_regs *kvm_regs;
2376
2377 r = -ENOMEM;
2378 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2379 if (!kvm_regs)
2380 goto out;
2381 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2382 if (r)
2383 goto out_free1;
2384 r = -EFAULT;
2385 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2386 goto out_free1;
2387 r = 0;
2388 out_free1:
2389 kfree(kvm_regs);
2390 break;
2391 }
2392 case KVM_SET_REGS: {
2393 struct kvm_regs *kvm_regs;
2394
2395 r = -ENOMEM;
2396 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2397 if (IS_ERR(kvm_regs)) {
2398 r = PTR_ERR(kvm_regs);
2399 goto out;
2400 }
2401 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2402 kfree(kvm_regs);
2403 break;
2404 }
2405 case KVM_GET_SREGS: {
2406 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2407 r = -ENOMEM;
2408 if (!kvm_sregs)
2409 goto out;
2410 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2411 if (r)
2412 goto out;
2413 r = -EFAULT;
2414 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2415 goto out;
2416 r = 0;
2417 break;
2418 }
2419 case KVM_SET_SREGS: {
2420 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2421 if (IS_ERR(kvm_sregs)) {
2422 r = PTR_ERR(kvm_sregs);
2423 kvm_sregs = NULL;
2424 goto out;
2425 }
2426 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2427 break;
2428 }
2429 case KVM_GET_MP_STATE: {
2430 struct kvm_mp_state mp_state;
2431
2432 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2433 if (r)
2434 goto out;
2435 r = -EFAULT;
2436 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2437 goto out;
2438 r = 0;
2439 break;
2440 }
2441 case KVM_SET_MP_STATE: {
2442 struct kvm_mp_state mp_state;
2443
2444 r = -EFAULT;
2445 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2446 goto out;
2447 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2448 break;
2449 }
2450 case KVM_TRANSLATE: {
2451 struct kvm_translation tr;
2452
2453 r = -EFAULT;
2454 if (copy_from_user(&tr, argp, sizeof(tr)))
2455 goto out;
2456 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2457 if (r)
2458 goto out;
2459 r = -EFAULT;
2460 if (copy_to_user(argp, &tr, sizeof(tr)))
2461 goto out;
2462 r = 0;
2463 break;
2464 }
2465 case KVM_SET_GUEST_DEBUG: {
2466 struct kvm_guest_debug dbg;
2467
2468 r = -EFAULT;
2469 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2470 goto out;
2471 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2472 break;
2473 }
2474 case KVM_SET_SIGNAL_MASK: {
2475 struct kvm_signal_mask __user *sigmask_arg = argp;
2476 struct kvm_signal_mask kvm_sigmask;
2477 sigset_t sigset, *p;
2478
2479 p = NULL;
2480 if (argp) {
2481 r = -EFAULT;
2482 if (copy_from_user(&kvm_sigmask, argp,
2483 sizeof(kvm_sigmask)))
2484 goto out;
2485 r = -EINVAL;
2486 if (kvm_sigmask.len != sizeof(sigset))
2487 goto out;
2488 r = -EFAULT;
2489 if (copy_from_user(&sigset, sigmask_arg->sigset,
2490 sizeof(sigset)))
2491 goto out;
2492 p = &sigset;
2493 }
2494 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2495 break;
2496 }
2497 case KVM_GET_FPU: {
2498 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2499 r = -ENOMEM;
2500 if (!fpu)
2501 goto out;
2502 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2503 if (r)
2504 goto out;
2505 r = -EFAULT;
2506 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2507 goto out;
2508 r = 0;
2509 break;
2510 }
2511 case KVM_SET_FPU: {
2512 fpu = memdup_user(argp, sizeof(*fpu));
2513 if (IS_ERR(fpu)) {
2514 r = PTR_ERR(fpu);
2515 fpu = NULL;
2516 goto out;
2517 }
2518 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2519 break;
2520 }
2521 default:
2522 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2523 }
2524 out:
2525 vcpu_put(vcpu);
2526 kfree(fpu);
2527 kfree(kvm_sregs);
2528 return r;
2529 }
2530
2531 #ifdef CONFIG_KVM_COMPAT
2532 static long kvm_vcpu_compat_ioctl(struct file *filp,
2533 unsigned int ioctl, unsigned long arg)
2534 {
2535 struct kvm_vcpu *vcpu = filp->private_data;
2536 void __user *argp = compat_ptr(arg);
2537 int r;
2538
2539 if (vcpu->kvm->mm != current->mm)
2540 return -EIO;
2541
2542 switch (ioctl) {
2543 case KVM_SET_SIGNAL_MASK: {
2544 struct kvm_signal_mask __user *sigmask_arg = argp;
2545 struct kvm_signal_mask kvm_sigmask;
2546 compat_sigset_t csigset;
2547 sigset_t sigset;
2548
2549 if (argp) {
2550 r = -EFAULT;
2551 if (copy_from_user(&kvm_sigmask, argp,
2552 sizeof(kvm_sigmask)))
2553 goto out;
2554 r = -EINVAL;
2555 if (kvm_sigmask.len != sizeof(csigset))
2556 goto out;
2557 r = -EFAULT;
2558 if (copy_from_user(&csigset, sigmask_arg->sigset,
2559 sizeof(csigset)))
2560 goto out;
2561 sigset_from_compat(&sigset, &csigset);
2562 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2563 } else
2564 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2565 break;
2566 }
2567 default:
2568 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2569 }
2570
2571 out:
2572 return r;
2573 }
2574 #endif
2575
2576 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2577 int (*accessor)(struct kvm_device *dev,
2578 struct kvm_device_attr *attr),
2579 unsigned long arg)
2580 {
2581 struct kvm_device_attr attr;
2582
2583 if (!accessor)
2584 return -EPERM;
2585
2586 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2587 return -EFAULT;
2588
2589 return accessor(dev, &attr);
2590 }
2591
2592 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2593 unsigned long arg)
2594 {
2595 struct kvm_device *dev = filp->private_data;
2596
2597 switch (ioctl) {
2598 case KVM_SET_DEVICE_ATTR:
2599 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2600 case KVM_GET_DEVICE_ATTR:
2601 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2602 case KVM_HAS_DEVICE_ATTR:
2603 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2604 default:
2605 if (dev->ops->ioctl)
2606 return dev->ops->ioctl(dev, ioctl, arg);
2607
2608 return -ENOTTY;
2609 }
2610 }
2611
2612 static int kvm_device_release(struct inode *inode, struct file *filp)
2613 {
2614 struct kvm_device *dev = filp->private_data;
2615 struct kvm *kvm = dev->kvm;
2616
2617 kvm_put_kvm(kvm);
2618 return 0;
2619 }
2620
2621 static const struct file_operations kvm_device_fops = {
2622 .unlocked_ioctl = kvm_device_ioctl,
2623 #ifdef CONFIG_KVM_COMPAT
2624 .compat_ioctl = kvm_device_ioctl,
2625 #endif
2626 .release = kvm_device_release,
2627 };
2628
2629 struct kvm_device *kvm_device_from_filp(struct file *filp)
2630 {
2631 if (filp->f_op != &kvm_device_fops)
2632 return NULL;
2633
2634 return filp->private_data;
2635 }
2636
2637 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2638 #ifdef CONFIG_KVM_MPIC
2639 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2640 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2641 #endif
2642
2643 #ifdef CONFIG_KVM_XICS
2644 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2645 #endif
2646 };
2647
2648 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2649 {
2650 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2651 return -ENOSPC;
2652
2653 if (kvm_device_ops_table[type] != NULL)
2654 return -EEXIST;
2655
2656 kvm_device_ops_table[type] = ops;
2657 return 0;
2658 }
2659
2660 void kvm_unregister_device_ops(u32 type)
2661 {
2662 if (kvm_device_ops_table[type] != NULL)
2663 kvm_device_ops_table[type] = NULL;
2664 }
2665
2666 static int kvm_ioctl_create_device(struct kvm *kvm,
2667 struct kvm_create_device *cd)
2668 {
2669 struct kvm_device_ops *ops = NULL;
2670 struct kvm_device *dev;
2671 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2672 int ret;
2673
2674 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2675 return -ENODEV;
2676
2677 ops = kvm_device_ops_table[cd->type];
2678 if (ops == NULL)
2679 return -ENODEV;
2680
2681 if (test)
2682 return 0;
2683
2684 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2685 if (!dev)
2686 return -ENOMEM;
2687
2688 dev->ops = ops;
2689 dev->kvm = kvm;
2690
2691 ret = ops->create(dev, cd->type);
2692 if (ret < 0) {
2693 kfree(dev);
2694 return ret;
2695 }
2696
2697 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2698 if (ret < 0) {
2699 ops->destroy(dev);
2700 return ret;
2701 }
2702
2703 list_add(&dev->vm_node, &kvm->devices);
2704 kvm_get_kvm(kvm);
2705 cd->fd = ret;
2706 return 0;
2707 }
2708
2709 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2710 {
2711 switch (arg) {
2712 case KVM_CAP_USER_MEMORY:
2713 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2714 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2715 case KVM_CAP_INTERNAL_ERROR_DATA:
2716 #ifdef CONFIG_HAVE_KVM_MSI
2717 case KVM_CAP_SIGNAL_MSI:
2718 #endif
2719 #ifdef CONFIG_HAVE_KVM_IRQFD
2720 case KVM_CAP_IRQFD:
2721 case KVM_CAP_IRQFD_RESAMPLE:
2722 #endif
2723 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2724 case KVM_CAP_CHECK_EXTENSION_VM:
2725 return 1;
2726 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2727 case KVM_CAP_IRQ_ROUTING:
2728 return KVM_MAX_IRQ_ROUTES;
2729 #endif
2730 #if KVM_ADDRESS_SPACE_NUM > 1
2731 case KVM_CAP_MULTI_ADDRESS_SPACE:
2732 return KVM_ADDRESS_SPACE_NUM;
2733 #endif
2734 default:
2735 break;
2736 }
2737 return kvm_vm_ioctl_check_extension(kvm, arg);
2738 }
2739
2740 static long kvm_vm_ioctl(struct file *filp,
2741 unsigned int ioctl, unsigned long arg)
2742 {
2743 struct kvm *kvm = filp->private_data;
2744 void __user *argp = (void __user *)arg;
2745 int r;
2746
2747 if (kvm->mm != current->mm)
2748 return -EIO;
2749 switch (ioctl) {
2750 case KVM_CREATE_VCPU:
2751 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2752 break;
2753 case KVM_SET_USER_MEMORY_REGION: {
2754 struct kvm_userspace_memory_region kvm_userspace_mem;
2755
2756 r = -EFAULT;
2757 if (copy_from_user(&kvm_userspace_mem, argp,
2758 sizeof(kvm_userspace_mem)))
2759 goto out;
2760
2761 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2762 break;
2763 }
2764 case KVM_GET_DIRTY_LOG: {
2765 struct kvm_dirty_log log;
2766
2767 r = -EFAULT;
2768 if (copy_from_user(&log, argp, sizeof(log)))
2769 goto out;
2770 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2771 break;
2772 }
2773 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2774 case KVM_REGISTER_COALESCED_MMIO: {
2775 struct kvm_coalesced_mmio_zone zone;
2776
2777 r = -EFAULT;
2778 if (copy_from_user(&zone, argp, sizeof(zone)))
2779 goto out;
2780 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2781 break;
2782 }
2783 case KVM_UNREGISTER_COALESCED_MMIO: {
2784 struct kvm_coalesced_mmio_zone zone;
2785
2786 r = -EFAULT;
2787 if (copy_from_user(&zone, argp, sizeof(zone)))
2788 goto out;
2789 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2790 break;
2791 }
2792 #endif
2793 case KVM_IRQFD: {
2794 struct kvm_irqfd data;
2795
2796 r = -EFAULT;
2797 if (copy_from_user(&data, argp, sizeof(data)))
2798 goto out;
2799 r = kvm_irqfd(kvm, &data);
2800 break;
2801 }
2802 case KVM_IOEVENTFD: {
2803 struct kvm_ioeventfd data;
2804
2805 r = -EFAULT;
2806 if (copy_from_user(&data, argp, sizeof(data)))
2807 goto out;
2808 r = kvm_ioeventfd(kvm, &data);
2809 break;
2810 }
2811 #ifdef CONFIG_HAVE_KVM_MSI
2812 case KVM_SIGNAL_MSI: {
2813 struct kvm_msi msi;
2814
2815 r = -EFAULT;
2816 if (copy_from_user(&msi, argp, sizeof(msi)))
2817 goto out;
2818 r = kvm_send_userspace_msi(kvm, &msi);
2819 break;
2820 }
2821 #endif
2822 #ifdef __KVM_HAVE_IRQ_LINE
2823 case KVM_IRQ_LINE_STATUS:
2824 case KVM_IRQ_LINE: {
2825 struct kvm_irq_level irq_event;
2826
2827 r = -EFAULT;
2828 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2829 goto out;
2830
2831 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2832 ioctl == KVM_IRQ_LINE_STATUS);
2833 if (r)
2834 goto out;
2835
2836 r = -EFAULT;
2837 if (ioctl == KVM_IRQ_LINE_STATUS) {
2838 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2839 goto out;
2840 }
2841
2842 r = 0;
2843 break;
2844 }
2845 #endif
2846 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2847 case KVM_SET_GSI_ROUTING: {
2848 struct kvm_irq_routing routing;
2849 struct kvm_irq_routing __user *urouting;
2850 struct kvm_irq_routing_entry *entries;
2851
2852 r = -EFAULT;
2853 if (copy_from_user(&routing, argp, sizeof(routing)))
2854 goto out;
2855 r = -EINVAL;
2856 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2857 goto out;
2858 if (routing.flags)
2859 goto out;
2860 r = -ENOMEM;
2861 entries = vmalloc(routing.nr * sizeof(*entries));
2862 if (!entries)
2863 goto out;
2864 r = -EFAULT;
2865 urouting = argp;
2866 if (copy_from_user(entries, urouting->entries,
2867 routing.nr * sizeof(*entries)))
2868 goto out_free_irq_routing;
2869 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2870 routing.flags);
2871 out_free_irq_routing:
2872 vfree(entries);
2873 break;
2874 }
2875 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2876 case KVM_CREATE_DEVICE: {
2877 struct kvm_create_device cd;
2878
2879 r = -EFAULT;
2880 if (copy_from_user(&cd, argp, sizeof(cd)))
2881 goto out;
2882
2883 r = kvm_ioctl_create_device(kvm, &cd);
2884 if (r)
2885 goto out;
2886
2887 r = -EFAULT;
2888 if (copy_to_user(argp, &cd, sizeof(cd)))
2889 goto out;
2890
2891 r = 0;
2892 break;
2893 }
2894 case KVM_CHECK_EXTENSION:
2895 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2896 break;
2897 default:
2898 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2899 }
2900 out:
2901 return r;
2902 }
2903
2904 #ifdef CONFIG_KVM_COMPAT
2905 struct compat_kvm_dirty_log {
2906 __u32 slot;
2907 __u32 padding1;
2908 union {
2909 compat_uptr_t dirty_bitmap; /* one bit per page */
2910 __u64 padding2;
2911 };
2912 };
2913
2914 static long kvm_vm_compat_ioctl(struct file *filp,
2915 unsigned int ioctl, unsigned long arg)
2916 {
2917 struct kvm *kvm = filp->private_data;
2918 int r;
2919
2920 if (kvm->mm != current->mm)
2921 return -EIO;
2922 switch (ioctl) {
2923 case KVM_GET_DIRTY_LOG: {
2924 struct compat_kvm_dirty_log compat_log;
2925 struct kvm_dirty_log log;
2926
2927 r = -EFAULT;
2928 if (copy_from_user(&compat_log, (void __user *)arg,
2929 sizeof(compat_log)))
2930 goto out;
2931 log.slot = compat_log.slot;
2932 log.padding1 = compat_log.padding1;
2933 log.padding2 = compat_log.padding2;
2934 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2935
2936 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2937 break;
2938 }
2939 default:
2940 r = kvm_vm_ioctl(filp, ioctl, arg);
2941 }
2942
2943 out:
2944 return r;
2945 }
2946 #endif
2947
2948 static struct file_operations kvm_vm_fops = {
2949 .release = kvm_vm_release,
2950 .unlocked_ioctl = kvm_vm_ioctl,
2951 #ifdef CONFIG_KVM_COMPAT
2952 .compat_ioctl = kvm_vm_compat_ioctl,
2953 #endif
2954 .llseek = noop_llseek,
2955 };
2956
2957 static int kvm_dev_ioctl_create_vm(unsigned long type)
2958 {
2959 int r;
2960 struct kvm *kvm;
2961
2962 kvm = kvm_create_vm(type);
2963 if (IS_ERR(kvm))
2964 return PTR_ERR(kvm);
2965 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2966 r = kvm_coalesced_mmio_init(kvm);
2967 if (r < 0) {
2968 kvm_put_kvm(kvm);
2969 return r;
2970 }
2971 #endif
2972 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2973 if (r < 0)
2974 kvm_put_kvm(kvm);
2975
2976 return r;
2977 }
2978
2979 static long kvm_dev_ioctl(struct file *filp,
2980 unsigned int ioctl, unsigned long arg)
2981 {
2982 long r = -EINVAL;
2983
2984 switch (ioctl) {
2985 case KVM_GET_API_VERSION:
2986 if (arg)
2987 goto out;
2988 r = KVM_API_VERSION;
2989 break;
2990 case KVM_CREATE_VM:
2991 r = kvm_dev_ioctl_create_vm(arg);
2992 break;
2993 case KVM_CHECK_EXTENSION:
2994 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2995 break;
2996 case KVM_GET_VCPU_MMAP_SIZE:
2997 if (arg)
2998 goto out;
2999 r = PAGE_SIZE; /* struct kvm_run */
3000 #ifdef CONFIG_X86
3001 r += PAGE_SIZE; /* pio data page */
3002 #endif
3003 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3004 r += PAGE_SIZE; /* coalesced mmio ring page */
3005 #endif
3006 break;
3007 case KVM_TRACE_ENABLE:
3008 case KVM_TRACE_PAUSE:
3009 case KVM_TRACE_DISABLE:
3010 r = -EOPNOTSUPP;
3011 break;
3012 default:
3013 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3014 }
3015 out:
3016 return r;
3017 }
3018
3019 static struct file_operations kvm_chardev_ops = {
3020 .unlocked_ioctl = kvm_dev_ioctl,
3021 .compat_ioctl = kvm_dev_ioctl,
3022 .llseek = noop_llseek,
3023 };
3024
3025 static struct miscdevice kvm_dev = {
3026 KVM_MINOR,
3027 "kvm",
3028 &kvm_chardev_ops,
3029 };
3030
3031 static void hardware_enable_nolock(void *junk)
3032 {
3033 int cpu = raw_smp_processor_id();
3034 int r;
3035
3036 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3037 return;
3038
3039 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3040
3041 r = kvm_arch_hardware_enable();
3042
3043 if (r) {
3044 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3045 atomic_inc(&hardware_enable_failed);
3046 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3047 }
3048 }
3049
3050 static void hardware_enable(void)
3051 {
3052 raw_spin_lock(&kvm_count_lock);
3053 if (kvm_usage_count)
3054 hardware_enable_nolock(NULL);
3055 raw_spin_unlock(&kvm_count_lock);
3056 }
3057
3058 static void hardware_disable_nolock(void *junk)
3059 {
3060 int cpu = raw_smp_processor_id();
3061
3062 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3063 return;
3064 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3065 kvm_arch_hardware_disable();
3066 }
3067
3068 static void hardware_disable(void)
3069 {
3070 raw_spin_lock(&kvm_count_lock);
3071 if (kvm_usage_count)
3072 hardware_disable_nolock(NULL);
3073 raw_spin_unlock(&kvm_count_lock);
3074 }
3075
3076 static void hardware_disable_all_nolock(void)
3077 {
3078 BUG_ON(!kvm_usage_count);
3079
3080 kvm_usage_count--;
3081 if (!kvm_usage_count)
3082 on_each_cpu(hardware_disable_nolock, NULL, 1);
3083 }
3084
3085 static void hardware_disable_all(void)
3086 {
3087 raw_spin_lock(&kvm_count_lock);
3088 hardware_disable_all_nolock();
3089 raw_spin_unlock(&kvm_count_lock);
3090 }
3091
3092 static int hardware_enable_all(void)
3093 {
3094 int r = 0;
3095
3096 raw_spin_lock(&kvm_count_lock);
3097
3098 kvm_usage_count++;
3099 if (kvm_usage_count == 1) {
3100 atomic_set(&hardware_enable_failed, 0);
3101 on_each_cpu(hardware_enable_nolock, NULL, 1);
3102
3103 if (atomic_read(&hardware_enable_failed)) {
3104 hardware_disable_all_nolock();
3105 r = -EBUSY;
3106 }
3107 }
3108
3109 raw_spin_unlock(&kvm_count_lock);
3110
3111 return r;
3112 }
3113
3114 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3115 void *v)
3116 {
3117 val &= ~CPU_TASKS_FROZEN;
3118 switch (val) {
3119 case CPU_DYING:
3120 hardware_disable();
3121 break;
3122 case CPU_STARTING:
3123 hardware_enable();
3124 break;
3125 }
3126 return NOTIFY_OK;
3127 }
3128
3129 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3130 void *v)
3131 {
3132 /*
3133 * Some (well, at least mine) BIOSes hang on reboot if
3134 * in vmx root mode.
3135 *
3136 * And Intel TXT required VMX off for all cpu when system shutdown.
3137 */
3138 pr_info("kvm: exiting hardware virtualization\n");
3139 kvm_rebooting = true;
3140 on_each_cpu(hardware_disable_nolock, NULL, 1);
3141 return NOTIFY_OK;
3142 }
3143
3144 static struct notifier_block kvm_reboot_notifier = {
3145 .notifier_call = kvm_reboot,
3146 .priority = 0,
3147 };
3148
3149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3150 {
3151 int i;
3152
3153 for (i = 0; i < bus->dev_count; i++) {
3154 struct kvm_io_device *pos = bus->range[i].dev;
3155
3156 kvm_iodevice_destructor(pos);
3157 }
3158 kfree(bus);
3159 }
3160
3161 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3162 const struct kvm_io_range *r2)
3163 {
3164 gpa_t addr1 = r1->addr;
3165 gpa_t addr2 = r2->addr;
3166
3167 if (addr1 < addr2)
3168 return -1;
3169
3170 /* If r2->len == 0, match the exact address. If r2->len != 0,
3171 * accept any overlapping write. Any order is acceptable for
3172 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3173 * we process all of them.
3174 */
3175 if (r2->len) {
3176 addr1 += r1->len;
3177 addr2 += r2->len;
3178 }
3179
3180 if (addr1 > addr2)
3181 return 1;
3182
3183 return 0;
3184 }
3185
3186 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3187 {
3188 return kvm_io_bus_cmp(p1, p2);
3189 }
3190
3191 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3192 gpa_t addr, int len)
3193 {
3194 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3195 .addr = addr,
3196 .len = len,
3197 .dev = dev,
3198 };
3199
3200 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3201 kvm_io_bus_sort_cmp, NULL);
3202
3203 return 0;
3204 }
3205
3206 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3207 gpa_t addr, int len)
3208 {
3209 struct kvm_io_range *range, key;
3210 int off;
3211
3212 key = (struct kvm_io_range) {
3213 .addr = addr,
3214 .len = len,
3215 };
3216
3217 range = bsearch(&key, bus->range, bus->dev_count,
3218 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3219 if (range == NULL)
3220 return -ENOENT;
3221
3222 off = range - bus->range;
3223
3224 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3225 off--;
3226
3227 return off;
3228 }
3229
3230 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3231 struct kvm_io_range *range, const void *val)
3232 {
3233 int idx;
3234
3235 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3236 if (idx < 0)
3237 return -EOPNOTSUPP;
3238
3239 while (idx < bus->dev_count &&
3240 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3241 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3242 range->len, val))
3243 return idx;
3244 idx++;
3245 }
3246
3247 return -EOPNOTSUPP;
3248 }
3249
3250 /* kvm_io_bus_write - called under kvm->slots_lock */
3251 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3252 int len, const void *val)
3253 {
3254 struct kvm_io_bus *bus;
3255 struct kvm_io_range range;
3256 int r;
3257
3258 range = (struct kvm_io_range) {
3259 .addr = addr,
3260 .len = len,
3261 };
3262
3263 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3264 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3265 return r < 0 ? r : 0;
3266 }
3267
3268 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3269 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3270 gpa_t addr, int len, const void *val, long cookie)
3271 {
3272 struct kvm_io_bus *bus;
3273 struct kvm_io_range range;
3274
3275 range = (struct kvm_io_range) {
3276 .addr = addr,
3277 .len = len,
3278 };
3279
3280 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3281
3282 /* First try the device referenced by cookie. */
3283 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3284 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3285 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3286 val))
3287 return cookie;
3288
3289 /*
3290 * cookie contained garbage; fall back to search and return the
3291 * correct cookie value.
3292 */
3293 return __kvm_io_bus_write(vcpu, bus, &range, val);
3294 }
3295
3296 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3297 struct kvm_io_range *range, void *val)
3298 {
3299 int idx;
3300
3301 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3302 if (idx < 0)
3303 return -EOPNOTSUPP;
3304
3305 while (idx < bus->dev_count &&
3306 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3307 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3308 range->len, val))
3309 return idx;
3310 idx++;
3311 }
3312
3313 return -EOPNOTSUPP;
3314 }
3315 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3316
3317 /* kvm_io_bus_read - called under kvm->slots_lock */
3318 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3319 int len, void *val)
3320 {
3321 struct kvm_io_bus *bus;
3322 struct kvm_io_range range;
3323 int r;
3324
3325 range = (struct kvm_io_range) {
3326 .addr = addr,
3327 .len = len,
3328 };
3329
3330 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3331 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3332 return r < 0 ? r : 0;
3333 }
3334
3335
3336 /* Caller must hold slots_lock. */
3337 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3338 int len, struct kvm_io_device *dev)
3339 {
3340 struct kvm_io_bus *new_bus, *bus;
3341
3342 bus = kvm->buses[bus_idx];
3343 /* exclude ioeventfd which is limited by maximum fd */
3344 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3345 return -ENOSPC;
3346
3347 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3348 sizeof(struct kvm_io_range)), GFP_KERNEL);
3349 if (!new_bus)
3350 return -ENOMEM;
3351 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3352 sizeof(struct kvm_io_range)));
3353 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3354 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3355 synchronize_srcu_expedited(&kvm->srcu);
3356 kfree(bus);
3357
3358 return 0;
3359 }
3360
3361 /* Caller must hold slots_lock. */
3362 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3363 struct kvm_io_device *dev)
3364 {
3365 int i, r;
3366 struct kvm_io_bus *new_bus, *bus;
3367
3368 bus = kvm->buses[bus_idx];
3369 r = -ENOENT;
3370 for (i = 0; i < bus->dev_count; i++)
3371 if (bus->range[i].dev == dev) {
3372 r = 0;
3373 break;
3374 }
3375
3376 if (r)
3377 return r;
3378
3379 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3380 sizeof(struct kvm_io_range)), GFP_KERNEL);
3381 if (!new_bus)
3382 return -ENOMEM;
3383
3384 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3385 new_bus->dev_count--;
3386 memcpy(new_bus->range + i, bus->range + i + 1,
3387 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3388
3389 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3390 synchronize_srcu_expedited(&kvm->srcu);
3391 kfree(bus);
3392 return r;
3393 }
3394
3395 static struct notifier_block kvm_cpu_notifier = {
3396 .notifier_call = kvm_cpu_hotplug,
3397 };
3398
3399 static int vm_stat_get(void *_offset, u64 *val)
3400 {
3401 unsigned offset = (long)_offset;
3402 struct kvm *kvm;
3403
3404 *val = 0;
3405 spin_lock(&kvm_lock);
3406 list_for_each_entry(kvm, &vm_list, vm_list)
3407 *val += *(u32 *)((void *)kvm + offset);
3408 spin_unlock(&kvm_lock);
3409 return 0;
3410 }
3411
3412 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3413
3414 static int vcpu_stat_get(void *_offset, u64 *val)
3415 {
3416 unsigned offset = (long)_offset;
3417 struct kvm *kvm;
3418 struct kvm_vcpu *vcpu;
3419 int i;
3420
3421 *val = 0;
3422 spin_lock(&kvm_lock);
3423 list_for_each_entry(kvm, &vm_list, vm_list)
3424 kvm_for_each_vcpu(i, vcpu, kvm)
3425 *val += *(u32 *)((void *)vcpu + offset);
3426
3427 spin_unlock(&kvm_lock);
3428 return 0;
3429 }
3430
3431 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3432
3433 static const struct file_operations *stat_fops[] = {
3434 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3435 [KVM_STAT_VM] = &vm_stat_fops,
3436 };
3437
3438 static int kvm_init_debug(void)
3439 {
3440 int r = -EEXIST;
3441 struct kvm_stats_debugfs_item *p;
3442
3443 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3444 if (kvm_debugfs_dir == NULL)
3445 goto out;
3446
3447 for (p = debugfs_entries; p->name; ++p) {
3448 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3449 (void *)(long)p->offset,
3450 stat_fops[p->kind]))
3451 goto out_dir;
3452 }
3453
3454 return 0;
3455
3456 out_dir:
3457 debugfs_remove_recursive(kvm_debugfs_dir);
3458 out:
3459 return r;
3460 }
3461
3462 static int kvm_suspend(void)
3463 {
3464 if (kvm_usage_count)
3465 hardware_disable_nolock(NULL);
3466 return 0;
3467 }
3468
3469 static void kvm_resume(void)
3470 {
3471 if (kvm_usage_count) {
3472 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3473 hardware_enable_nolock(NULL);
3474 }
3475 }
3476
3477 static struct syscore_ops kvm_syscore_ops = {
3478 .suspend = kvm_suspend,
3479 .resume = kvm_resume,
3480 };
3481
3482 static inline
3483 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3484 {
3485 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3486 }
3487
3488 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3489 {
3490 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3491
3492 if (vcpu->preempted)
3493 vcpu->preempted = false;
3494
3495 kvm_arch_sched_in(vcpu, cpu);
3496
3497 kvm_arch_vcpu_load(vcpu, cpu);
3498 }
3499
3500 static void kvm_sched_out(struct preempt_notifier *pn,
3501 struct task_struct *next)
3502 {
3503 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3504
3505 if (current->state == TASK_RUNNING)
3506 vcpu->preempted = true;
3507 kvm_arch_vcpu_put(vcpu);
3508 }
3509
3510 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3511 struct module *module)
3512 {
3513 int r;
3514 int cpu;
3515
3516 r = kvm_arch_init(opaque);
3517 if (r)
3518 goto out_fail;
3519
3520 /*
3521 * kvm_arch_init makes sure there's at most one caller
3522 * for architectures that support multiple implementations,
3523 * like intel and amd on x86.
3524 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3525 * conflicts in case kvm is already setup for another implementation.
3526 */
3527 r = kvm_irqfd_init();
3528 if (r)
3529 goto out_irqfd;
3530
3531 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3532 r = -ENOMEM;
3533 goto out_free_0;
3534 }
3535
3536 r = kvm_arch_hardware_setup();
3537 if (r < 0)
3538 goto out_free_0a;
3539
3540 for_each_online_cpu(cpu) {
3541 smp_call_function_single(cpu,
3542 kvm_arch_check_processor_compat,
3543 &r, 1);
3544 if (r < 0)
3545 goto out_free_1;
3546 }
3547
3548 r = register_cpu_notifier(&kvm_cpu_notifier);
3549 if (r)
3550 goto out_free_2;
3551 register_reboot_notifier(&kvm_reboot_notifier);
3552
3553 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3554 if (!vcpu_align)
3555 vcpu_align = __alignof__(struct kvm_vcpu);
3556 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3557 0, NULL);
3558 if (!kvm_vcpu_cache) {
3559 r = -ENOMEM;
3560 goto out_free_3;
3561 }
3562
3563 r = kvm_async_pf_init();
3564 if (r)
3565 goto out_free;
3566
3567 kvm_chardev_ops.owner = module;
3568 kvm_vm_fops.owner = module;
3569 kvm_vcpu_fops.owner = module;
3570
3571 r = misc_register(&kvm_dev);
3572 if (r) {
3573 pr_err("kvm: misc device register failed\n");
3574 goto out_unreg;
3575 }
3576
3577 register_syscore_ops(&kvm_syscore_ops);
3578
3579 kvm_preempt_ops.sched_in = kvm_sched_in;
3580 kvm_preempt_ops.sched_out = kvm_sched_out;
3581
3582 r = kvm_init_debug();
3583 if (r) {
3584 pr_err("kvm: create debugfs files failed\n");
3585 goto out_undebugfs;
3586 }
3587
3588 r = kvm_vfio_ops_init();
3589 WARN_ON(r);
3590
3591 return 0;
3592
3593 out_undebugfs:
3594 unregister_syscore_ops(&kvm_syscore_ops);
3595 misc_deregister(&kvm_dev);
3596 out_unreg:
3597 kvm_async_pf_deinit();
3598 out_free:
3599 kmem_cache_destroy(kvm_vcpu_cache);
3600 out_free_3:
3601 unregister_reboot_notifier(&kvm_reboot_notifier);
3602 unregister_cpu_notifier(&kvm_cpu_notifier);
3603 out_free_2:
3604 out_free_1:
3605 kvm_arch_hardware_unsetup();
3606 out_free_0a:
3607 free_cpumask_var(cpus_hardware_enabled);
3608 out_free_0:
3609 kvm_irqfd_exit();
3610 out_irqfd:
3611 kvm_arch_exit();
3612 out_fail:
3613 return r;
3614 }
3615 EXPORT_SYMBOL_GPL(kvm_init);
3616
3617 void kvm_exit(void)
3618 {
3619 debugfs_remove_recursive(kvm_debugfs_dir);
3620 misc_deregister(&kvm_dev);
3621 kmem_cache_destroy(kvm_vcpu_cache);
3622 kvm_async_pf_deinit();
3623 unregister_syscore_ops(&kvm_syscore_ops);
3624 unregister_reboot_notifier(&kvm_reboot_notifier);
3625 unregister_cpu_notifier(&kvm_cpu_notifier);
3626 on_each_cpu(hardware_disable_nolock, NULL, 1);
3627 kvm_arch_hardware_unsetup();
3628 kvm_arch_exit();
3629 kvm_irqfd_exit();
3630 free_cpumask_var(cpus_hardware_enabled);
3631 kvm_vfio_ops_exit();
3632 }
3633 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.152752 seconds and 6 git commands to generate.