Merge tag 'iio-fixes-for-4.2a' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 static unsigned int halt_poll_ns;
70 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
71
72 /*
73 * Ordering of locks:
74 *
75 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
76 */
77
78 DEFINE_SPINLOCK(kvm_lock);
79 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
80 LIST_HEAD(vm_list);
81
82 static cpumask_var_t cpus_hardware_enabled;
83 static int kvm_usage_count;
84 static atomic_t hardware_enable_failed;
85
86 struct kmem_cache *kvm_vcpu_cache;
87 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
88
89 static __read_mostly struct preempt_ops kvm_preempt_ops;
90
91 struct dentry *kvm_debugfs_dir;
92 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
93
94 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
95 unsigned long arg);
96 #ifdef CONFIG_KVM_COMPAT
97 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
98 unsigned long arg);
99 #endif
100 static int hardware_enable_all(void);
101 static void hardware_disable_all(void);
102
103 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
104
105 static void kvm_release_pfn_dirty(pfn_t pfn);
106 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
107
108 __visible bool kvm_rebooting;
109 EXPORT_SYMBOL_GPL(kvm_rebooting);
110
111 static bool largepages_enabled = true;
112
113 bool kvm_is_reserved_pfn(pfn_t pfn)
114 {
115 if (pfn_valid(pfn))
116 return PageReserved(pfn_to_page(pfn));
117
118 return true;
119 }
120
121 /*
122 * Switches to specified vcpu, until a matching vcpu_put()
123 */
124 int vcpu_load(struct kvm_vcpu *vcpu)
125 {
126 int cpu;
127
128 if (mutex_lock_killable(&vcpu->mutex))
129 return -EINTR;
130 cpu = get_cpu();
131 preempt_notifier_register(&vcpu->preempt_notifier);
132 kvm_arch_vcpu_load(vcpu, cpu);
133 put_cpu();
134 return 0;
135 }
136
137 void vcpu_put(struct kvm_vcpu *vcpu)
138 {
139 preempt_disable();
140 kvm_arch_vcpu_put(vcpu);
141 preempt_notifier_unregister(&vcpu->preempt_notifier);
142 preempt_enable();
143 mutex_unlock(&vcpu->mutex);
144 }
145
146 static void ack_flush(void *_completed)
147 {
148 }
149
150 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
151 {
152 int i, cpu, me;
153 cpumask_var_t cpus;
154 bool called = true;
155 struct kvm_vcpu *vcpu;
156
157 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
158
159 me = get_cpu();
160 kvm_for_each_vcpu(i, vcpu, kvm) {
161 kvm_make_request(req, vcpu);
162 cpu = vcpu->cpu;
163
164 /* Set ->requests bit before we read ->mode */
165 smp_mb();
166
167 if (cpus != NULL && cpu != -1 && cpu != me &&
168 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
169 cpumask_set_cpu(cpu, cpus);
170 }
171 if (unlikely(cpus == NULL))
172 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
173 else if (!cpumask_empty(cpus))
174 smp_call_function_many(cpus, ack_flush, NULL, 1);
175 else
176 called = false;
177 put_cpu();
178 free_cpumask_var(cpus);
179 return called;
180 }
181
182 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
183 void kvm_flush_remote_tlbs(struct kvm *kvm)
184 {
185 long dirty_count = kvm->tlbs_dirty;
186
187 smp_mb();
188 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
189 ++kvm->stat.remote_tlb_flush;
190 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
191 }
192 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
193 #endif
194
195 void kvm_reload_remote_mmus(struct kvm *kvm)
196 {
197 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
198 }
199
200 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
201 {
202 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
203 }
204
205 void kvm_make_scan_ioapic_request(struct kvm *kvm)
206 {
207 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
208 }
209
210 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
211 {
212 struct page *page;
213 int r;
214
215 mutex_init(&vcpu->mutex);
216 vcpu->cpu = -1;
217 vcpu->kvm = kvm;
218 vcpu->vcpu_id = id;
219 vcpu->pid = NULL;
220 init_waitqueue_head(&vcpu->wq);
221 kvm_async_pf_vcpu_init(vcpu);
222
223 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
224 if (!page) {
225 r = -ENOMEM;
226 goto fail;
227 }
228 vcpu->run = page_address(page);
229
230 kvm_vcpu_set_in_spin_loop(vcpu, false);
231 kvm_vcpu_set_dy_eligible(vcpu, false);
232 vcpu->preempted = false;
233
234 r = kvm_arch_vcpu_init(vcpu);
235 if (r < 0)
236 goto fail_free_run;
237 return 0;
238
239 fail_free_run:
240 free_page((unsigned long)vcpu->run);
241 fail:
242 return r;
243 }
244 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
245
246 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
247 {
248 put_pid(vcpu->pid);
249 kvm_arch_vcpu_uninit(vcpu);
250 free_page((unsigned long)vcpu->run);
251 }
252 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
253
254 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
255 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
256 {
257 return container_of(mn, struct kvm, mmu_notifier);
258 }
259
260 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
261 struct mm_struct *mm,
262 unsigned long address)
263 {
264 struct kvm *kvm = mmu_notifier_to_kvm(mn);
265 int need_tlb_flush, idx;
266
267 /*
268 * When ->invalidate_page runs, the linux pte has been zapped
269 * already but the page is still allocated until
270 * ->invalidate_page returns. So if we increase the sequence
271 * here the kvm page fault will notice if the spte can't be
272 * established because the page is going to be freed. If
273 * instead the kvm page fault establishes the spte before
274 * ->invalidate_page runs, kvm_unmap_hva will release it
275 * before returning.
276 *
277 * The sequence increase only need to be seen at spin_unlock
278 * time, and not at spin_lock time.
279 *
280 * Increasing the sequence after the spin_unlock would be
281 * unsafe because the kvm page fault could then establish the
282 * pte after kvm_unmap_hva returned, without noticing the page
283 * is going to be freed.
284 */
285 idx = srcu_read_lock(&kvm->srcu);
286 spin_lock(&kvm->mmu_lock);
287
288 kvm->mmu_notifier_seq++;
289 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
290 /* we've to flush the tlb before the pages can be freed */
291 if (need_tlb_flush)
292 kvm_flush_remote_tlbs(kvm);
293
294 spin_unlock(&kvm->mmu_lock);
295
296 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
297
298 srcu_read_unlock(&kvm->srcu, idx);
299 }
300
301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
302 struct mm_struct *mm,
303 unsigned long address,
304 pte_t pte)
305 {
306 struct kvm *kvm = mmu_notifier_to_kvm(mn);
307 int idx;
308
309 idx = srcu_read_lock(&kvm->srcu);
310 spin_lock(&kvm->mmu_lock);
311 kvm->mmu_notifier_seq++;
312 kvm_set_spte_hva(kvm, address, pte);
313 spin_unlock(&kvm->mmu_lock);
314 srcu_read_unlock(&kvm->srcu, idx);
315 }
316
317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
318 struct mm_struct *mm,
319 unsigned long start,
320 unsigned long end)
321 {
322 struct kvm *kvm = mmu_notifier_to_kvm(mn);
323 int need_tlb_flush = 0, idx;
324
325 idx = srcu_read_lock(&kvm->srcu);
326 spin_lock(&kvm->mmu_lock);
327 /*
328 * The count increase must become visible at unlock time as no
329 * spte can be established without taking the mmu_lock and
330 * count is also read inside the mmu_lock critical section.
331 */
332 kvm->mmu_notifier_count++;
333 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
334 need_tlb_flush |= kvm->tlbs_dirty;
335 /* we've to flush the tlb before the pages can be freed */
336 if (need_tlb_flush)
337 kvm_flush_remote_tlbs(kvm);
338
339 spin_unlock(&kvm->mmu_lock);
340 srcu_read_unlock(&kvm->srcu, idx);
341 }
342
343 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
344 struct mm_struct *mm,
345 unsigned long start,
346 unsigned long end)
347 {
348 struct kvm *kvm = mmu_notifier_to_kvm(mn);
349
350 spin_lock(&kvm->mmu_lock);
351 /*
352 * This sequence increase will notify the kvm page fault that
353 * the page that is going to be mapped in the spte could have
354 * been freed.
355 */
356 kvm->mmu_notifier_seq++;
357 smp_wmb();
358 /*
359 * The above sequence increase must be visible before the
360 * below count decrease, which is ensured by the smp_wmb above
361 * in conjunction with the smp_rmb in mmu_notifier_retry().
362 */
363 kvm->mmu_notifier_count--;
364 spin_unlock(&kvm->mmu_lock);
365
366 BUG_ON(kvm->mmu_notifier_count < 0);
367 }
368
369 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
370 struct mm_struct *mm,
371 unsigned long start,
372 unsigned long end)
373 {
374 struct kvm *kvm = mmu_notifier_to_kvm(mn);
375 int young, idx;
376
377 idx = srcu_read_lock(&kvm->srcu);
378 spin_lock(&kvm->mmu_lock);
379
380 young = kvm_age_hva(kvm, start, end);
381 if (young)
382 kvm_flush_remote_tlbs(kvm);
383
384 spin_unlock(&kvm->mmu_lock);
385 srcu_read_unlock(&kvm->srcu, idx);
386
387 return young;
388 }
389
390 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
391 struct mm_struct *mm,
392 unsigned long address)
393 {
394 struct kvm *kvm = mmu_notifier_to_kvm(mn);
395 int young, idx;
396
397 idx = srcu_read_lock(&kvm->srcu);
398 spin_lock(&kvm->mmu_lock);
399 young = kvm_test_age_hva(kvm, address);
400 spin_unlock(&kvm->mmu_lock);
401 srcu_read_unlock(&kvm->srcu, idx);
402
403 return young;
404 }
405
406 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
407 struct mm_struct *mm)
408 {
409 struct kvm *kvm = mmu_notifier_to_kvm(mn);
410 int idx;
411
412 idx = srcu_read_lock(&kvm->srcu);
413 kvm_arch_flush_shadow_all(kvm);
414 srcu_read_unlock(&kvm->srcu, idx);
415 }
416
417 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
418 .invalidate_page = kvm_mmu_notifier_invalidate_page,
419 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
420 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
421 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
422 .test_young = kvm_mmu_notifier_test_young,
423 .change_pte = kvm_mmu_notifier_change_pte,
424 .release = kvm_mmu_notifier_release,
425 };
426
427 static int kvm_init_mmu_notifier(struct kvm *kvm)
428 {
429 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
430 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
431 }
432
433 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
434
435 static int kvm_init_mmu_notifier(struct kvm *kvm)
436 {
437 return 0;
438 }
439
440 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
441
442 static struct kvm_memslots *kvm_alloc_memslots(void)
443 {
444 int i;
445 struct kvm_memslots *slots;
446
447 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
448 if (!slots)
449 return NULL;
450
451 /*
452 * Init kvm generation close to the maximum to easily test the
453 * code of handling generation number wrap-around.
454 */
455 slots->generation = -150;
456 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
457 slots->id_to_index[i] = slots->memslots[i].id = i;
458
459 return slots;
460 }
461
462 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
463 {
464 if (!memslot->dirty_bitmap)
465 return;
466
467 kvfree(memslot->dirty_bitmap);
468 memslot->dirty_bitmap = NULL;
469 }
470
471 /*
472 * Free any memory in @free but not in @dont.
473 */
474 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
475 struct kvm_memory_slot *dont)
476 {
477 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
478 kvm_destroy_dirty_bitmap(free);
479
480 kvm_arch_free_memslot(kvm, free, dont);
481
482 free->npages = 0;
483 }
484
485 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
486 {
487 struct kvm_memory_slot *memslot;
488
489 if (!slots)
490 return;
491
492 kvm_for_each_memslot(memslot, slots)
493 kvm_free_memslot(kvm, memslot, NULL);
494
495 kvfree(slots);
496 }
497
498 static struct kvm *kvm_create_vm(unsigned long type)
499 {
500 int r, i;
501 struct kvm *kvm = kvm_arch_alloc_vm();
502
503 if (!kvm)
504 return ERR_PTR(-ENOMEM);
505
506 r = kvm_arch_init_vm(kvm, type);
507 if (r)
508 goto out_err_no_disable;
509
510 r = hardware_enable_all();
511 if (r)
512 goto out_err_no_disable;
513
514 #ifdef CONFIG_HAVE_KVM_IRQFD
515 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
516 #endif
517
518 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
519
520 r = -ENOMEM;
521 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
522 kvm->memslots[i] = kvm_alloc_memslots();
523 if (!kvm->memslots[i])
524 goto out_err_no_srcu;
525 }
526
527 if (init_srcu_struct(&kvm->srcu))
528 goto out_err_no_srcu;
529 if (init_srcu_struct(&kvm->irq_srcu))
530 goto out_err_no_irq_srcu;
531 for (i = 0; i < KVM_NR_BUSES; i++) {
532 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
533 GFP_KERNEL);
534 if (!kvm->buses[i])
535 goto out_err;
536 }
537
538 spin_lock_init(&kvm->mmu_lock);
539 kvm->mm = current->mm;
540 atomic_inc(&kvm->mm->mm_count);
541 kvm_eventfd_init(kvm);
542 mutex_init(&kvm->lock);
543 mutex_init(&kvm->irq_lock);
544 mutex_init(&kvm->slots_lock);
545 atomic_set(&kvm->users_count, 1);
546 INIT_LIST_HEAD(&kvm->devices);
547
548 r = kvm_init_mmu_notifier(kvm);
549 if (r)
550 goto out_err;
551
552 spin_lock(&kvm_lock);
553 list_add(&kvm->vm_list, &vm_list);
554 spin_unlock(&kvm_lock);
555
556 preempt_notifier_inc();
557
558 return kvm;
559
560 out_err:
561 cleanup_srcu_struct(&kvm->irq_srcu);
562 out_err_no_irq_srcu:
563 cleanup_srcu_struct(&kvm->srcu);
564 out_err_no_srcu:
565 hardware_disable_all();
566 out_err_no_disable:
567 for (i = 0; i < KVM_NR_BUSES; i++)
568 kfree(kvm->buses[i]);
569 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
570 kvm_free_memslots(kvm, kvm->memslots[i]);
571 kvm_arch_free_vm(kvm);
572 return ERR_PTR(r);
573 }
574
575 /*
576 * Avoid using vmalloc for a small buffer.
577 * Should not be used when the size is statically known.
578 */
579 void *kvm_kvzalloc(unsigned long size)
580 {
581 if (size > PAGE_SIZE)
582 return vzalloc(size);
583 else
584 return kzalloc(size, GFP_KERNEL);
585 }
586
587 static void kvm_destroy_devices(struct kvm *kvm)
588 {
589 struct list_head *node, *tmp;
590
591 list_for_each_safe(node, tmp, &kvm->devices) {
592 struct kvm_device *dev =
593 list_entry(node, struct kvm_device, vm_node);
594
595 list_del(node);
596 dev->ops->destroy(dev);
597 }
598 }
599
600 static void kvm_destroy_vm(struct kvm *kvm)
601 {
602 int i;
603 struct mm_struct *mm = kvm->mm;
604
605 kvm_arch_sync_events(kvm);
606 spin_lock(&kvm_lock);
607 list_del(&kvm->vm_list);
608 spin_unlock(&kvm_lock);
609 kvm_free_irq_routing(kvm);
610 for (i = 0; i < KVM_NR_BUSES; i++)
611 kvm_io_bus_destroy(kvm->buses[i]);
612 kvm_coalesced_mmio_free(kvm);
613 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
614 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
615 #else
616 kvm_arch_flush_shadow_all(kvm);
617 #endif
618 kvm_arch_destroy_vm(kvm);
619 kvm_destroy_devices(kvm);
620 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
621 kvm_free_memslots(kvm, kvm->memslots[i]);
622 cleanup_srcu_struct(&kvm->irq_srcu);
623 cleanup_srcu_struct(&kvm->srcu);
624 kvm_arch_free_vm(kvm);
625 preempt_notifier_dec();
626 hardware_disable_all();
627 mmdrop(mm);
628 }
629
630 void kvm_get_kvm(struct kvm *kvm)
631 {
632 atomic_inc(&kvm->users_count);
633 }
634 EXPORT_SYMBOL_GPL(kvm_get_kvm);
635
636 void kvm_put_kvm(struct kvm *kvm)
637 {
638 if (atomic_dec_and_test(&kvm->users_count))
639 kvm_destroy_vm(kvm);
640 }
641 EXPORT_SYMBOL_GPL(kvm_put_kvm);
642
643
644 static int kvm_vm_release(struct inode *inode, struct file *filp)
645 {
646 struct kvm *kvm = filp->private_data;
647
648 kvm_irqfd_release(kvm);
649
650 kvm_put_kvm(kvm);
651 return 0;
652 }
653
654 /*
655 * Allocation size is twice as large as the actual dirty bitmap size.
656 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
657 */
658 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
659 {
660 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
661
662 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
663 if (!memslot->dirty_bitmap)
664 return -ENOMEM;
665
666 return 0;
667 }
668
669 /*
670 * Insert memslot and re-sort memslots based on their GFN,
671 * so binary search could be used to lookup GFN.
672 * Sorting algorithm takes advantage of having initially
673 * sorted array and known changed memslot position.
674 */
675 static void update_memslots(struct kvm_memslots *slots,
676 struct kvm_memory_slot *new)
677 {
678 int id = new->id;
679 int i = slots->id_to_index[id];
680 struct kvm_memory_slot *mslots = slots->memslots;
681
682 WARN_ON(mslots[i].id != id);
683 if (!new->npages) {
684 WARN_ON(!mslots[i].npages);
685 if (mslots[i].npages)
686 slots->used_slots--;
687 } else {
688 if (!mslots[i].npages)
689 slots->used_slots++;
690 }
691
692 while (i < KVM_MEM_SLOTS_NUM - 1 &&
693 new->base_gfn <= mslots[i + 1].base_gfn) {
694 if (!mslots[i + 1].npages)
695 break;
696 mslots[i] = mslots[i + 1];
697 slots->id_to_index[mslots[i].id] = i;
698 i++;
699 }
700
701 /*
702 * The ">=" is needed when creating a slot with base_gfn == 0,
703 * so that it moves before all those with base_gfn == npages == 0.
704 *
705 * On the other hand, if new->npages is zero, the above loop has
706 * already left i pointing to the beginning of the empty part of
707 * mslots, and the ">=" would move the hole backwards in this
708 * case---which is wrong. So skip the loop when deleting a slot.
709 */
710 if (new->npages) {
711 while (i > 0 &&
712 new->base_gfn >= mslots[i - 1].base_gfn) {
713 mslots[i] = mslots[i - 1];
714 slots->id_to_index[mslots[i].id] = i;
715 i--;
716 }
717 } else
718 WARN_ON_ONCE(i != slots->used_slots);
719
720 mslots[i] = *new;
721 slots->id_to_index[mslots[i].id] = i;
722 }
723
724 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
725 {
726 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
727
728 #ifdef __KVM_HAVE_READONLY_MEM
729 valid_flags |= KVM_MEM_READONLY;
730 #endif
731
732 if (mem->flags & ~valid_flags)
733 return -EINVAL;
734
735 return 0;
736 }
737
738 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
739 int as_id, struct kvm_memslots *slots)
740 {
741 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
742
743 /*
744 * Set the low bit in the generation, which disables SPTE caching
745 * until the end of synchronize_srcu_expedited.
746 */
747 WARN_ON(old_memslots->generation & 1);
748 slots->generation = old_memslots->generation + 1;
749
750 rcu_assign_pointer(kvm->memslots[as_id], slots);
751 synchronize_srcu_expedited(&kvm->srcu);
752
753 /*
754 * Increment the new memslot generation a second time. This prevents
755 * vm exits that race with memslot updates from caching a memslot
756 * generation that will (potentially) be valid forever.
757 */
758 slots->generation++;
759
760 kvm_arch_memslots_updated(kvm, slots);
761
762 return old_memslots;
763 }
764
765 /*
766 * Allocate some memory and give it an address in the guest physical address
767 * space.
768 *
769 * Discontiguous memory is allowed, mostly for framebuffers.
770 *
771 * Must be called holding kvm->slots_lock for write.
772 */
773 int __kvm_set_memory_region(struct kvm *kvm,
774 const struct kvm_userspace_memory_region *mem)
775 {
776 int r;
777 gfn_t base_gfn;
778 unsigned long npages;
779 struct kvm_memory_slot *slot;
780 struct kvm_memory_slot old, new;
781 struct kvm_memslots *slots = NULL, *old_memslots;
782 int as_id, id;
783 enum kvm_mr_change change;
784
785 r = check_memory_region_flags(mem);
786 if (r)
787 goto out;
788
789 r = -EINVAL;
790 as_id = mem->slot >> 16;
791 id = (u16)mem->slot;
792
793 /* General sanity checks */
794 if (mem->memory_size & (PAGE_SIZE - 1))
795 goto out;
796 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
797 goto out;
798 /* We can read the guest memory with __xxx_user() later on. */
799 if ((id < KVM_USER_MEM_SLOTS) &&
800 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
801 !access_ok(VERIFY_WRITE,
802 (void __user *)(unsigned long)mem->userspace_addr,
803 mem->memory_size)))
804 goto out;
805 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
806 goto out;
807 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
808 goto out;
809
810 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
811 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
812 npages = mem->memory_size >> PAGE_SHIFT;
813
814 if (npages > KVM_MEM_MAX_NR_PAGES)
815 goto out;
816
817 new = old = *slot;
818
819 new.id = id;
820 new.base_gfn = base_gfn;
821 new.npages = npages;
822 new.flags = mem->flags;
823
824 if (npages) {
825 if (!old.npages)
826 change = KVM_MR_CREATE;
827 else { /* Modify an existing slot. */
828 if ((mem->userspace_addr != old.userspace_addr) ||
829 (npages != old.npages) ||
830 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
831 goto out;
832
833 if (base_gfn != old.base_gfn)
834 change = KVM_MR_MOVE;
835 else if (new.flags != old.flags)
836 change = KVM_MR_FLAGS_ONLY;
837 else { /* Nothing to change. */
838 r = 0;
839 goto out;
840 }
841 }
842 } else {
843 if (!old.npages)
844 goto out;
845
846 change = KVM_MR_DELETE;
847 new.base_gfn = 0;
848 new.flags = 0;
849 }
850
851 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
852 /* Check for overlaps */
853 r = -EEXIST;
854 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
855 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
856 (slot->id == id))
857 continue;
858 if (!((base_gfn + npages <= slot->base_gfn) ||
859 (base_gfn >= slot->base_gfn + slot->npages)))
860 goto out;
861 }
862 }
863
864 /* Free page dirty bitmap if unneeded */
865 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
866 new.dirty_bitmap = NULL;
867
868 r = -ENOMEM;
869 if (change == KVM_MR_CREATE) {
870 new.userspace_addr = mem->userspace_addr;
871
872 if (kvm_arch_create_memslot(kvm, &new, npages))
873 goto out_free;
874 }
875
876 /* Allocate page dirty bitmap if needed */
877 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
878 if (kvm_create_dirty_bitmap(&new) < 0)
879 goto out_free;
880 }
881
882 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
883 if (!slots)
884 goto out_free;
885 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
886
887 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
888 slot = id_to_memslot(slots, id);
889 slot->flags |= KVM_MEMSLOT_INVALID;
890
891 old_memslots = install_new_memslots(kvm, as_id, slots);
892
893 /* slot was deleted or moved, clear iommu mapping */
894 kvm_iommu_unmap_pages(kvm, &old);
895 /* From this point no new shadow pages pointing to a deleted,
896 * or moved, memslot will be created.
897 *
898 * validation of sp->gfn happens in:
899 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
900 * - kvm_is_visible_gfn (mmu_check_roots)
901 */
902 kvm_arch_flush_shadow_memslot(kvm, slot);
903
904 /*
905 * We can re-use the old_memslots from above, the only difference
906 * from the currently installed memslots is the invalid flag. This
907 * will get overwritten by update_memslots anyway.
908 */
909 slots = old_memslots;
910 }
911
912 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
913 if (r)
914 goto out_slots;
915
916 /* actual memory is freed via old in kvm_free_memslot below */
917 if (change == KVM_MR_DELETE) {
918 new.dirty_bitmap = NULL;
919 memset(&new.arch, 0, sizeof(new.arch));
920 }
921
922 update_memslots(slots, &new);
923 old_memslots = install_new_memslots(kvm, as_id, slots);
924
925 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
926
927 kvm_free_memslot(kvm, &old, &new);
928 kvfree(old_memslots);
929
930 /*
931 * IOMMU mapping: New slots need to be mapped. Old slots need to be
932 * un-mapped and re-mapped if their base changes. Since base change
933 * unmapping is handled above with slot deletion, mapping alone is
934 * needed here. Anything else the iommu might care about for existing
935 * slots (size changes, userspace addr changes and read-only flag
936 * changes) is disallowed above, so any other attribute changes getting
937 * here can be skipped.
938 */
939 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
940 r = kvm_iommu_map_pages(kvm, &new);
941 return r;
942 }
943
944 return 0;
945
946 out_slots:
947 kvfree(slots);
948 out_free:
949 kvm_free_memslot(kvm, &new, &old);
950 out:
951 return r;
952 }
953 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
954
955 int kvm_set_memory_region(struct kvm *kvm,
956 const struct kvm_userspace_memory_region *mem)
957 {
958 int r;
959
960 mutex_lock(&kvm->slots_lock);
961 r = __kvm_set_memory_region(kvm, mem);
962 mutex_unlock(&kvm->slots_lock);
963 return r;
964 }
965 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
966
967 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
968 struct kvm_userspace_memory_region *mem)
969 {
970 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
971 return -EINVAL;
972
973 return kvm_set_memory_region(kvm, mem);
974 }
975
976 int kvm_get_dirty_log(struct kvm *kvm,
977 struct kvm_dirty_log *log, int *is_dirty)
978 {
979 struct kvm_memslots *slots;
980 struct kvm_memory_slot *memslot;
981 int r, i, as_id, id;
982 unsigned long n;
983 unsigned long any = 0;
984
985 r = -EINVAL;
986 as_id = log->slot >> 16;
987 id = (u16)log->slot;
988 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
989 goto out;
990
991 slots = __kvm_memslots(kvm, as_id);
992 memslot = id_to_memslot(slots, id);
993 r = -ENOENT;
994 if (!memslot->dirty_bitmap)
995 goto out;
996
997 n = kvm_dirty_bitmap_bytes(memslot);
998
999 for (i = 0; !any && i < n/sizeof(long); ++i)
1000 any = memslot->dirty_bitmap[i];
1001
1002 r = -EFAULT;
1003 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1004 goto out;
1005
1006 if (any)
1007 *is_dirty = 1;
1008
1009 r = 0;
1010 out:
1011 return r;
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1014
1015 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1016 /**
1017 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1018 * are dirty write protect them for next write.
1019 * @kvm: pointer to kvm instance
1020 * @log: slot id and address to which we copy the log
1021 * @is_dirty: flag set if any page is dirty
1022 *
1023 * We need to keep it in mind that VCPU threads can write to the bitmap
1024 * concurrently. So, to avoid losing track of dirty pages we keep the
1025 * following order:
1026 *
1027 * 1. Take a snapshot of the bit and clear it if needed.
1028 * 2. Write protect the corresponding page.
1029 * 3. Copy the snapshot to the userspace.
1030 * 4. Upon return caller flushes TLB's if needed.
1031 *
1032 * Between 2 and 4, the guest may write to the page using the remaining TLB
1033 * entry. This is not a problem because the page is reported dirty using
1034 * the snapshot taken before and step 4 ensures that writes done after
1035 * exiting to userspace will be logged for the next call.
1036 *
1037 */
1038 int kvm_get_dirty_log_protect(struct kvm *kvm,
1039 struct kvm_dirty_log *log, bool *is_dirty)
1040 {
1041 struct kvm_memslots *slots;
1042 struct kvm_memory_slot *memslot;
1043 int r, i, as_id, id;
1044 unsigned long n;
1045 unsigned long *dirty_bitmap;
1046 unsigned long *dirty_bitmap_buffer;
1047
1048 r = -EINVAL;
1049 as_id = log->slot >> 16;
1050 id = (u16)log->slot;
1051 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1052 goto out;
1053
1054 slots = __kvm_memslots(kvm, as_id);
1055 memslot = id_to_memslot(slots, id);
1056
1057 dirty_bitmap = memslot->dirty_bitmap;
1058 r = -ENOENT;
1059 if (!dirty_bitmap)
1060 goto out;
1061
1062 n = kvm_dirty_bitmap_bytes(memslot);
1063
1064 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1065 memset(dirty_bitmap_buffer, 0, n);
1066
1067 spin_lock(&kvm->mmu_lock);
1068 *is_dirty = false;
1069 for (i = 0; i < n / sizeof(long); i++) {
1070 unsigned long mask;
1071 gfn_t offset;
1072
1073 if (!dirty_bitmap[i])
1074 continue;
1075
1076 *is_dirty = true;
1077
1078 mask = xchg(&dirty_bitmap[i], 0);
1079 dirty_bitmap_buffer[i] = mask;
1080
1081 if (mask) {
1082 offset = i * BITS_PER_LONG;
1083 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1084 offset, mask);
1085 }
1086 }
1087
1088 spin_unlock(&kvm->mmu_lock);
1089
1090 r = -EFAULT;
1091 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1092 goto out;
1093
1094 r = 0;
1095 out:
1096 return r;
1097 }
1098 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1099 #endif
1100
1101 bool kvm_largepages_enabled(void)
1102 {
1103 return largepages_enabled;
1104 }
1105
1106 void kvm_disable_largepages(void)
1107 {
1108 largepages_enabled = false;
1109 }
1110 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1111
1112 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1113 {
1114 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1115 }
1116 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1117
1118 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1119 {
1120 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1121 }
1122
1123 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1124 {
1125 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1126
1127 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1128 memslot->flags & KVM_MEMSLOT_INVALID)
1129 return 0;
1130
1131 return 1;
1132 }
1133 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1134
1135 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1136 {
1137 struct vm_area_struct *vma;
1138 unsigned long addr, size;
1139
1140 size = PAGE_SIZE;
1141
1142 addr = gfn_to_hva(kvm, gfn);
1143 if (kvm_is_error_hva(addr))
1144 return PAGE_SIZE;
1145
1146 down_read(&current->mm->mmap_sem);
1147 vma = find_vma(current->mm, addr);
1148 if (!vma)
1149 goto out;
1150
1151 size = vma_kernel_pagesize(vma);
1152
1153 out:
1154 up_read(&current->mm->mmap_sem);
1155
1156 return size;
1157 }
1158
1159 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1160 {
1161 return slot->flags & KVM_MEM_READONLY;
1162 }
1163
1164 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1165 gfn_t *nr_pages, bool write)
1166 {
1167 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1168 return KVM_HVA_ERR_BAD;
1169
1170 if (memslot_is_readonly(slot) && write)
1171 return KVM_HVA_ERR_RO_BAD;
1172
1173 if (nr_pages)
1174 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1175
1176 return __gfn_to_hva_memslot(slot, gfn);
1177 }
1178
1179 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1180 gfn_t *nr_pages)
1181 {
1182 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1183 }
1184
1185 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1186 gfn_t gfn)
1187 {
1188 return gfn_to_hva_many(slot, gfn, NULL);
1189 }
1190 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1191
1192 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1193 {
1194 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1195 }
1196 EXPORT_SYMBOL_GPL(gfn_to_hva);
1197
1198 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1199 {
1200 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1201 }
1202 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1203
1204 /*
1205 * If writable is set to false, the hva returned by this function is only
1206 * allowed to be read.
1207 */
1208 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1209 gfn_t gfn, bool *writable)
1210 {
1211 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1212
1213 if (!kvm_is_error_hva(hva) && writable)
1214 *writable = !memslot_is_readonly(slot);
1215
1216 return hva;
1217 }
1218
1219 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1220 {
1221 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1222
1223 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1224 }
1225
1226 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1227 {
1228 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1229
1230 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1231 }
1232
1233 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1234 unsigned long start, int write, struct page **page)
1235 {
1236 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1237
1238 if (write)
1239 flags |= FOLL_WRITE;
1240
1241 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1242 }
1243
1244 static inline int check_user_page_hwpoison(unsigned long addr)
1245 {
1246 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1247
1248 rc = __get_user_pages(current, current->mm, addr, 1,
1249 flags, NULL, NULL, NULL);
1250 return rc == -EHWPOISON;
1251 }
1252
1253 /*
1254 * The atomic path to get the writable pfn which will be stored in @pfn,
1255 * true indicates success, otherwise false is returned.
1256 */
1257 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1258 bool write_fault, bool *writable, pfn_t *pfn)
1259 {
1260 struct page *page[1];
1261 int npages;
1262
1263 if (!(async || atomic))
1264 return false;
1265
1266 /*
1267 * Fast pin a writable pfn only if it is a write fault request
1268 * or the caller allows to map a writable pfn for a read fault
1269 * request.
1270 */
1271 if (!(write_fault || writable))
1272 return false;
1273
1274 npages = __get_user_pages_fast(addr, 1, 1, page);
1275 if (npages == 1) {
1276 *pfn = page_to_pfn(page[0]);
1277
1278 if (writable)
1279 *writable = true;
1280 return true;
1281 }
1282
1283 return false;
1284 }
1285
1286 /*
1287 * The slow path to get the pfn of the specified host virtual address,
1288 * 1 indicates success, -errno is returned if error is detected.
1289 */
1290 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1291 bool *writable, pfn_t *pfn)
1292 {
1293 struct page *page[1];
1294 int npages = 0;
1295
1296 might_sleep();
1297
1298 if (writable)
1299 *writable = write_fault;
1300
1301 if (async) {
1302 down_read(&current->mm->mmap_sem);
1303 npages = get_user_page_nowait(current, current->mm,
1304 addr, write_fault, page);
1305 up_read(&current->mm->mmap_sem);
1306 } else
1307 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1308 write_fault, 0, page,
1309 FOLL_TOUCH|FOLL_HWPOISON);
1310 if (npages != 1)
1311 return npages;
1312
1313 /* map read fault as writable if possible */
1314 if (unlikely(!write_fault) && writable) {
1315 struct page *wpage[1];
1316
1317 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1318 if (npages == 1) {
1319 *writable = true;
1320 put_page(page[0]);
1321 page[0] = wpage[0];
1322 }
1323
1324 npages = 1;
1325 }
1326 *pfn = page_to_pfn(page[0]);
1327 return npages;
1328 }
1329
1330 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1331 {
1332 if (unlikely(!(vma->vm_flags & VM_READ)))
1333 return false;
1334
1335 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1336 return false;
1337
1338 return true;
1339 }
1340
1341 /*
1342 * Pin guest page in memory and return its pfn.
1343 * @addr: host virtual address which maps memory to the guest
1344 * @atomic: whether this function can sleep
1345 * @async: whether this function need to wait IO complete if the
1346 * host page is not in the memory
1347 * @write_fault: whether we should get a writable host page
1348 * @writable: whether it allows to map a writable host page for !@write_fault
1349 *
1350 * The function will map a writable host page for these two cases:
1351 * 1): @write_fault = true
1352 * 2): @write_fault = false && @writable, @writable will tell the caller
1353 * whether the mapping is writable.
1354 */
1355 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1356 bool write_fault, bool *writable)
1357 {
1358 struct vm_area_struct *vma;
1359 pfn_t pfn = 0;
1360 int npages;
1361
1362 /* we can do it either atomically or asynchronously, not both */
1363 BUG_ON(atomic && async);
1364
1365 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1366 return pfn;
1367
1368 if (atomic)
1369 return KVM_PFN_ERR_FAULT;
1370
1371 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1372 if (npages == 1)
1373 return pfn;
1374
1375 down_read(&current->mm->mmap_sem);
1376 if (npages == -EHWPOISON ||
1377 (!async && check_user_page_hwpoison(addr))) {
1378 pfn = KVM_PFN_ERR_HWPOISON;
1379 goto exit;
1380 }
1381
1382 vma = find_vma_intersection(current->mm, addr, addr + 1);
1383
1384 if (vma == NULL)
1385 pfn = KVM_PFN_ERR_FAULT;
1386 else if ((vma->vm_flags & VM_PFNMAP)) {
1387 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1388 vma->vm_pgoff;
1389 BUG_ON(!kvm_is_reserved_pfn(pfn));
1390 } else {
1391 if (async && vma_is_valid(vma, write_fault))
1392 *async = true;
1393 pfn = KVM_PFN_ERR_FAULT;
1394 }
1395 exit:
1396 up_read(&current->mm->mmap_sem);
1397 return pfn;
1398 }
1399
1400 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1401 bool *async, bool write_fault, bool *writable)
1402 {
1403 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1404
1405 if (addr == KVM_HVA_ERR_RO_BAD)
1406 return KVM_PFN_ERR_RO_FAULT;
1407
1408 if (kvm_is_error_hva(addr))
1409 return KVM_PFN_NOSLOT;
1410
1411 /* Do not map writable pfn in the readonly memslot. */
1412 if (writable && memslot_is_readonly(slot)) {
1413 *writable = false;
1414 writable = NULL;
1415 }
1416
1417 return hva_to_pfn(addr, atomic, async, write_fault,
1418 writable);
1419 }
1420 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1421
1422 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1423 bool *writable)
1424 {
1425 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1426 write_fault, writable);
1427 }
1428 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1429
1430 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1431 {
1432 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1433 }
1434 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1435
1436 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1437 {
1438 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1439 }
1440 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1441
1442 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1443 {
1444 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1445 }
1446 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1447
1448 pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1449 {
1450 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1451 }
1452 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1453
1454 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1455 {
1456 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1457 }
1458 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1459
1460 pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1461 {
1462 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1463 }
1464 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1465
1466 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1467 struct page **pages, int nr_pages)
1468 {
1469 unsigned long addr;
1470 gfn_t entry;
1471
1472 addr = gfn_to_hva_many(slot, gfn, &entry);
1473 if (kvm_is_error_hva(addr))
1474 return -1;
1475
1476 if (entry < nr_pages)
1477 return 0;
1478
1479 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1480 }
1481 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1482
1483 static struct page *kvm_pfn_to_page(pfn_t pfn)
1484 {
1485 if (is_error_noslot_pfn(pfn))
1486 return KVM_ERR_PTR_BAD_PAGE;
1487
1488 if (kvm_is_reserved_pfn(pfn)) {
1489 WARN_ON(1);
1490 return KVM_ERR_PTR_BAD_PAGE;
1491 }
1492
1493 return pfn_to_page(pfn);
1494 }
1495
1496 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1497 {
1498 pfn_t pfn;
1499
1500 pfn = gfn_to_pfn(kvm, gfn);
1501
1502 return kvm_pfn_to_page(pfn);
1503 }
1504 EXPORT_SYMBOL_GPL(gfn_to_page);
1505
1506 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1507 {
1508 pfn_t pfn;
1509
1510 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1511
1512 return kvm_pfn_to_page(pfn);
1513 }
1514 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1515
1516 void kvm_release_page_clean(struct page *page)
1517 {
1518 WARN_ON(is_error_page(page));
1519
1520 kvm_release_pfn_clean(page_to_pfn(page));
1521 }
1522 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1523
1524 void kvm_release_pfn_clean(pfn_t pfn)
1525 {
1526 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1527 put_page(pfn_to_page(pfn));
1528 }
1529 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1530
1531 void kvm_release_page_dirty(struct page *page)
1532 {
1533 WARN_ON(is_error_page(page));
1534
1535 kvm_release_pfn_dirty(page_to_pfn(page));
1536 }
1537 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1538
1539 static void kvm_release_pfn_dirty(pfn_t pfn)
1540 {
1541 kvm_set_pfn_dirty(pfn);
1542 kvm_release_pfn_clean(pfn);
1543 }
1544
1545 void kvm_set_pfn_dirty(pfn_t pfn)
1546 {
1547 if (!kvm_is_reserved_pfn(pfn)) {
1548 struct page *page = pfn_to_page(pfn);
1549
1550 if (!PageReserved(page))
1551 SetPageDirty(page);
1552 }
1553 }
1554 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1555
1556 void kvm_set_pfn_accessed(pfn_t pfn)
1557 {
1558 if (!kvm_is_reserved_pfn(pfn))
1559 mark_page_accessed(pfn_to_page(pfn));
1560 }
1561 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1562
1563 void kvm_get_pfn(pfn_t pfn)
1564 {
1565 if (!kvm_is_reserved_pfn(pfn))
1566 get_page(pfn_to_page(pfn));
1567 }
1568 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1569
1570 static int next_segment(unsigned long len, int offset)
1571 {
1572 if (len > PAGE_SIZE - offset)
1573 return PAGE_SIZE - offset;
1574 else
1575 return len;
1576 }
1577
1578 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1579 void *data, int offset, int len)
1580 {
1581 int r;
1582 unsigned long addr;
1583
1584 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1585 if (kvm_is_error_hva(addr))
1586 return -EFAULT;
1587 r = __copy_from_user(data, (void __user *)addr + offset, len);
1588 if (r)
1589 return -EFAULT;
1590 return 0;
1591 }
1592
1593 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1594 int len)
1595 {
1596 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1597
1598 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1599 }
1600 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1601
1602 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1603 int offset, int len)
1604 {
1605 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1606
1607 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1608 }
1609 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1610
1611 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1612 {
1613 gfn_t gfn = gpa >> PAGE_SHIFT;
1614 int seg;
1615 int offset = offset_in_page(gpa);
1616 int ret;
1617
1618 while ((seg = next_segment(len, offset)) != 0) {
1619 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1620 if (ret < 0)
1621 return ret;
1622 offset = 0;
1623 len -= seg;
1624 data += seg;
1625 ++gfn;
1626 }
1627 return 0;
1628 }
1629 EXPORT_SYMBOL_GPL(kvm_read_guest);
1630
1631 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1632 {
1633 gfn_t gfn = gpa >> PAGE_SHIFT;
1634 int seg;
1635 int offset = offset_in_page(gpa);
1636 int ret;
1637
1638 while ((seg = next_segment(len, offset)) != 0) {
1639 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1640 if (ret < 0)
1641 return ret;
1642 offset = 0;
1643 len -= seg;
1644 data += seg;
1645 ++gfn;
1646 }
1647 return 0;
1648 }
1649 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1650
1651 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1652 void *data, int offset, unsigned long len)
1653 {
1654 int r;
1655 unsigned long addr;
1656
1657 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1658 if (kvm_is_error_hva(addr))
1659 return -EFAULT;
1660 pagefault_disable();
1661 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1662 pagefault_enable();
1663 if (r)
1664 return -EFAULT;
1665 return 0;
1666 }
1667
1668 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1669 unsigned long len)
1670 {
1671 gfn_t gfn = gpa >> PAGE_SHIFT;
1672 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1673 int offset = offset_in_page(gpa);
1674
1675 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1676 }
1677 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1678
1679 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1680 void *data, unsigned long len)
1681 {
1682 gfn_t gfn = gpa >> PAGE_SHIFT;
1683 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1684 int offset = offset_in_page(gpa);
1685
1686 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1687 }
1688 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1689
1690 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1691 const void *data, int offset, int len)
1692 {
1693 int r;
1694 unsigned long addr;
1695
1696 addr = gfn_to_hva_memslot(memslot, gfn);
1697 if (kvm_is_error_hva(addr))
1698 return -EFAULT;
1699 r = __copy_to_user((void __user *)addr + offset, data, len);
1700 if (r)
1701 return -EFAULT;
1702 mark_page_dirty_in_slot(memslot, gfn);
1703 return 0;
1704 }
1705
1706 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1707 const void *data, int offset, int len)
1708 {
1709 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1710
1711 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1714
1715 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1716 const void *data, int offset, int len)
1717 {
1718 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1719
1720 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1721 }
1722 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1723
1724 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1725 unsigned long len)
1726 {
1727 gfn_t gfn = gpa >> PAGE_SHIFT;
1728 int seg;
1729 int offset = offset_in_page(gpa);
1730 int ret;
1731
1732 while ((seg = next_segment(len, offset)) != 0) {
1733 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1734 if (ret < 0)
1735 return ret;
1736 offset = 0;
1737 len -= seg;
1738 data += seg;
1739 ++gfn;
1740 }
1741 return 0;
1742 }
1743 EXPORT_SYMBOL_GPL(kvm_write_guest);
1744
1745 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1746 unsigned long len)
1747 {
1748 gfn_t gfn = gpa >> PAGE_SHIFT;
1749 int seg;
1750 int offset = offset_in_page(gpa);
1751 int ret;
1752
1753 while ((seg = next_segment(len, offset)) != 0) {
1754 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1755 if (ret < 0)
1756 return ret;
1757 offset = 0;
1758 len -= seg;
1759 data += seg;
1760 ++gfn;
1761 }
1762 return 0;
1763 }
1764 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1765
1766 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1767 gpa_t gpa, unsigned long len)
1768 {
1769 struct kvm_memslots *slots = kvm_memslots(kvm);
1770 int offset = offset_in_page(gpa);
1771 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1772 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1773 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1774 gfn_t nr_pages_avail;
1775
1776 ghc->gpa = gpa;
1777 ghc->generation = slots->generation;
1778 ghc->len = len;
1779 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1780 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1781 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1782 ghc->hva += offset;
1783 } else {
1784 /*
1785 * If the requested region crosses two memslots, we still
1786 * verify that the entire region is valid here.
1787 */
1788 while (start_gfn <= end_gfn) {
1789 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1790 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1791 &nr_pages_avail);
1792 if (kvm_is_error_hva(ghc->hva))
1793 return -EFAULT;
1794 start_gfn += nr_pages_avail;
1795 }
1796 /* Use the slow path for cross page reads and writes. */
1797 ghc->memslot = NULL;
1798 }
1799 return 0;
1800 }
1801 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1802
1803 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1804 void *data, unsigned long len)
1805 {
1806 struct kvm_memslots *slots = kvm_memslots(kvm);
1807 int r;
1808
1809 BUG_ON(len > ghc->len);
1810
1811 if (slots->generation != ghc->generation)
1812 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1813
1814 if (unlikely(!ghc->memslot))
1815 return kvm_write_guest(kvm, ghc->gpa, data, len);
1816
1817 if (kvm_is_error_hva(ghc->hva))
1818 return -EFAULT;
1819
1820 r = __copy_to_user((void __user *)ghc->hva, data, len);
1821 if (r)
1822 return -EFAULT;
1823 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1824
1825 return 0;
1826 }
1827 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1828
1829 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1830 void *data, unsigned long len)
1831 {
1832 struct kvm_memslots *slots = kvm_memslots(kvm);
1833 int r;
1834
1835 BUG_ON(len > ghc->len);
1836
1837 if (slots->generation != ghc->generation)
1838 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1839
1840 if (unlikely(!ghc->memslot))
1841 return kvm_read_guest(kvm, ghc->gpa, data, len);
1842
1843 if (kvm_is_error_hva(ghc->hva))
1844 return -EFAULT;
1845
1846 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1847 if (r)
1848 return -EFAULT;
1849
1850 return 0;
1851 }
1852 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1853
1854 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1855 {
1856 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1857
1858 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1859 }
1860 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1861
1862 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1863 {
1864 gfn_t gfn = gpa >> PAGE_SHIFT;
1865 int seg;
1866 int offset = offset_in_page(gpa);
1867 int ret;
1868
1869 while ((seg = next_segment(len, offset)) != 0) {
1870 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1871 if (ret < 0)
1872 return ret;
1873 offset = 0;
1874 len -= seg;
1875 ++gfn;
1876 }
1877 return 0;
1878 }
1879 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1880
1881 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1882 gfn_t gfn)
1883 {
1884 if (memslot && memslot->dirty_bitmap) {
1885 unsigned long rel_gfn = gfn - memslot->base_gfn;
1886
1887 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1888 }
1889 }
1890
1891 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1892 {
1893 struct kvm_memory_slot *memslot;
1894
1895 memslot = gfn_to_memslot(kvm, gfn);
1896 mark_page_dirty_in_slot(memslot, gfn);
1897 }
1898 EXPORT_SYMBOL_GPL(mark_page_dirty);
1899
1900 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1901 {
1902 struct kvm_memory_slot *memslot;
1903
1904 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1905 mark_page_dirty_in_slot(memslot, gfn);
1906 }
1907 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1908
1909 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1910 {
1911 if (kvm_arch_vcpu_runnable(vcpu)) {
1912 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1913 return -EINTR;
1914 }
1915 if (kvm_cpu_has_pending_timer(vcpu))
1916 return -EINTR;
1917 if (signal_pending(current))
1918 return -EINTR;
1919
1920 return 0;
1921 }
1922
1923 /*
1924 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1925 */
1926 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1927 {
1928 ktime_t start, cur;
1929 DEFINE_WAIT(wait);
1930 bool waited = false;
1931
1932 start = cur = ktime_get();
1933 if (halt_poll_ns) {
1934 ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns);
1935
1936 do {
1937 /*
1938 * This sets KVM_REQ_UNHALT if an interrupt
1939 * arrives.
1940 */
1941 if (kvm_vcpu_check_block(vcpu) < 0) {
1942 ++vcpu->stat.halt_successful_poll;
1943 goto out;
1944 }
1945 cur = ktime_get();
1946 } while (single_task_running() && ktime_before(cur, stop));
1947 }
1948
1949 for (;;) {
1950 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1951
1952 if (kvm_vcpu_check_block(vcpu) < 0)
1953 break;
1954
1955 waited = true;
1956 schedule();
1957 }
1958
1959 finish_wait(&vcpu->wq, &wait);
1960 cur = ktime_get();
1961
1962 out:
1963 trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited);
1964 }
1965 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1966
1967 #ifndef CONFIG_S390
1968 /*
1969 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1970 */
1971 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1972 {
1973 int me;
1974 int cpu = vcpu->cpu;
1975 wait_queue_head_t *wqp;
1976
1977 wqp = kvm_arch_vcpu_wq(vcpu);
1978 if (waitqueue_active(wqp)) {
1979 wake_up_interruptible(wqp);
1980 ++vcpu->stat.halt_wakeup;
1981 }
1982
1983 me = get_cpu();
1984 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1985 if (kvm_arch_vcpu_should_kick(vcpu))
1986 smp_send_reschedule(cpu);
1987 put_cpu();
1988 }
1989 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1990 #endif /* !CONFIG_S390 */
1991
1992 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1993 {
1994 struct pid *pid;
1995 struct task_struct *task = NULL;
1996 int ret = 0;
1997
1998 rcu_read_lock();
1999 pid = rcu_dereference(target->pid);
2000 if (pid)
2001 task = get_pid_task(pid, PIDTYPE_PID);
2002 rcu_read_unlock();
2003 if (!task)
2004 return ret;
2005 ret = yield_to(task, 1);
2006 put_task_struct(task);
2007
2008 return ret;
2009 }
2010 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2011
2012 /*
2013 * Helper that checks whether a VCPU is eligible for directed yield.
2014 * Most eligible candidate to yield is decided by following heuristics:
2015 *
2016 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2017 * (preempted lock holder), indicated by @in_spin_loop.
2018 * Set at the beiginning and cleared at the end of interception/PLE handler.
2019 *
2020 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2021 * chance last time (mostly it has become eligible now since we have probably
2022 * yielded to lockholder in last iteration. This is done by toggling
2023 * @dy_eligible each time a VCPU checked for eligibility.)
2024 *
2025 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2026 * to preempted lock-holder could result in wrong VCPU selection and CPU
2027 * burning. Giving priority for a potential lock-holder increases lock
2028 * progress.
2029 *
2030 * Since algorithm is based on heuristics, accessing another VCPU data without
2031 * locking does not harm. It may result in trying to yield to same VCPU, fail
2032 * and continue with next VCPU and so on.
2033 */
2034 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2035 {
2036 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2037 bool eligible;
2038
2039 eligible = !vcpu->spin_loop.in_spin_loop ||
2040 vcpu->spin_loop.dy_eligible;
2041
2042 if (vcpu->spin_loop.in_spin_loop)
2043 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2044
2045 return eligible;
2046 #else
2047 return true;
2048 #endif
2049 }
2050
2051 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2052 {
2053 struct kvm *kvm = me->kvm;
2054 struct kvm_vcpu *vcpu;
2055 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2056 int yielded = 0;
2057 int try = 3;
2058 int pass;
2059 int i;
2060
2061 kvm_vcpu_set_in_spin_loop(me, true);
2062 /*
2063 * We boost the priority of a VCPU that is runnable but not
2064 * currently running, because it got preempted by something
2065 * else and called schedule in __vcpu_run. Hopefully that
2066 * VCPU is holding the lock that we need and will release it.
2067 * We approximate round-robin by starting at the last boosted VCPU.
2068 */
2069 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2070 kvm_for_each_vcpu(i, vcpu, kvm) {
2071 if (!pass && i <= last_boosted_vcpu) {
2072 i = last_boosted_vcpu;
2073 continue;
2074 } else if (pass && i > last_boosted_vcpu)
2075 break;
2076 if (!ACCESS_ONCE(vcpu->preempted))
2077 continue;
2078 if (vcpu == me)
2079 continue;
2080 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2081 continue;
2082 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2083 continue;
2084
2085 yielded = kvm_vcpu_yield_to(vcpu);
2086 if (yielded > 0) {
2087 kvm->last_boosted_vcpu = i;
2088 break;
2089 } else if (yielded < 0) {
2090 try--;
2091 if (!try)
2092 break;
2093 }
2094 }
2095 }
2096 kvm_vcpu_set_in_spin_loop(me, false);
2097
2098 /* Ensure vcpu is not eligible during next spinloop */
2099 kvm_vcpu_set_dy_eligible(me, false);
2100 }
2101 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2102
2103 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2104 {
2105 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2106 struct page *page;
2107
2108 if (vmf->pgoff == 0)
2109 page = virt_to_page(vcpu->run);
2110 #ifdef CONFIG_X86
2111 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2112 page = virt_to_page(vcpu->arch.pio_data);
2113 #endif
2114 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2115 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2116 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2117 #endif
2118 else
2119 return kvm_arch_vcpu_fault(vcpu, vmf);
2120 get_page(page);
2121 vmf->page = page;
2122 return 0;
2123 }
2124
2125 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2126 .fault = kvm_vcpu_fault,
2127 };
2128
2129 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2130 {
2131 vma->vm_ops = &kvm_vcpu_vm_ops;
2132 return 0;
2133 }
2134
2135 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2136 {
2137 struct kvm_vcpu *vcpu = filp->private_data;
2138
2139 kvm_put_kvm(vcpu->kvm);
2140 return 0;
2141 }
2142
2143 static struct file_operations kvm_vcpu_fops = {
2144 .release = kvm_vcpu_release,
2145 .unlocked_ioctl = kvm_vcpu_ioctl,
2146 #ifdef CONFIG_KVM_COMPAT
2147 .compat_ioctl = kvm_vcpu_compat_ioctl,
2148 #endif
2149 .mmap = kvm_vcpu_mmap,
2150 .llseek = noop_llseek,
2151 };
2152
2153 /*
2154 * Allocates an inode for the vcpu.
2155 */
2156 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2157 {
2158 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2159 }
2160
2161 /*
2162 * Creates some virtual cpus. Good luck creating more than one.
2163 */
2164 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2165 {
2166 int r;
2167 struct kvm_vcpu *vcpu, *v;
2168
2169 if (id >= KVM_MAX_VCPUS)
2170 return -EINVAL;
2171
2172 vcpu = kvm_arch_vcpu_create(kvm, id);
2173 if (IS_ERR(vcpu))
2174 return PTR_ERR(vcpu);
2175
2176 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2177
2178 r = kvm_arch_vcpu_setup(vcpu);
2179 if (r)
2180 goto vcpu_destroy;
2181
2182 mutex_lock(&kvm->lock);
2183 if (!kvm_vcpu_compatible(vcpu)) {
2184 r = -EINVAL;
2185 goto unlock_vcpu_destroy;
2186 }
2187 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2188 r = -EINVAL;
2189 goto unlock_vcpu_destroy;
2190 }
2191
2192 kvm_for_each_vcpu(r, v, kvm)
2193 if (v->vcpu_id == id) {
2194 r = -EEXIST;
2195 goto unlock_vcpu_destroy;
2196 }
2197
2198 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2199
2200 /* Now it's all set up, let userspace reach it */
2201 kvm_get_kvm(kvm);
2202 r = create_vcpu_fd(vcpu);
2203 if (r < 0) {
2204 kvm_put_kvm(kvm);
2205 goto unlock_vcpu_destroy;
2206 }
2207
2208 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2209 smp_wmb();
2210 atomic_inc(&kvm->online_vcpus);
2211
2212 mutex_unlock(&kvm->lock);
2213 kvm_arch_vcpu_postcreate(vcpu);
2214 return r;
2215
2216 unlock_vcpu_destroy:
2217 mutex_unlock(&kvm->lock);
2218 vcpu_destroy:
2219 kvm_arch_vcpu_destroy(vcpu);
2220 return r;
2221 }
2222
2223 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2224 {
2225 if (sigset) {
2226 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2227 vcpu->sigset_active = 1;
2228 vcpu->sigset = *sigset;
2229 } else
2230 vcpu->sigset_active = 0;
2231 return 0;
2232 }
2233
2234 static long kvm_vcpu_ioctl(struct file *filp,
2235 unsigned int ioctl, unsigned long arg)
2236 {
2237 struct kvm_vcpu *vcpu = filp->private_data;
2238 void __user *argp = (void __user *)arg;
2239 int r;
2240 struct kvm_fpu *fpu = NULL;
2241 struct kvm_sregs *kvm_sregs = NULL;
2242
2243 if (vcpu->kvm->mm != current->mm)
2244 return -EIO;
2245
2246 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2247 return -EINVAL;
2248
2249 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2250 /*
2251 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2252 * so vcpu_load() would break it.
2253 */
2254 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2255 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2256 #endif
2257
2258
2259 r = vcpu_load(vcpu);
2260 if (r)
2261 return r;
2262 switch (ioctl) {
2263 case KVM_RUN:
2264 r = -EINVAL;
2265 if (arg)
2266 goto out;
2267 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2268 /* The thread running this VCPU changed. */
2269 struct pid *oldpid = vcpu->pid;
2270 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2271
2272 rcu_assign_pointer(vcpu->pid, newpid);
2273 if (oldpid)
2274 synchronize_rcu();
2275 put_pid(oldpid);
2276 }
2277 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2278 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2279 break;
2280 case KVM_GET_REGS: {
2281 struct kvm_regs *kvm_regs;
2282
2283 r = -ENOMEM;
2284 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2285 if (!kvm_regs)
2286 goto out;
2287 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2288 if (r)
2289 goto out_free1;
2290 r = -EFAULT;
2291 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2292 goto out_free1;
2293 r = 0;
2294 out_free1:
2295 kfree(kvm_regs);
2296 break;
2297 }
2298 case KVM_SET_REGS: {
2299 struct kvm_regs *kvm_regs;
2300
2301 r = -ENOMEM;
2302 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2303 if (IS_ERR(kvm_regs)) {
2304 r = PTR_ERR(kvm_regs);
2305 goto out;
2306 }
2307 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2308 kfree(kvm_regs);
2309 break;
2310 }
2311 case KVM_GET_SREGS: {
2312 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2313 r = -ENOMEM;
2314 if (!kvm_sregs)
2315 goto out;
2316 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2317 if (r)
2318 goto out;
2319 r = -EFAULT;
2320 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2321 goto out;
2322 r = 0;
2323 break;
2324 }
2325 case KVM_SET_SREGS: {
2326 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2327 if (IS_ERR(kvm_sregs)) {
2328 r = PTR_ERR(kvm_sregs);
2329 kvm_sregs = NULL;
2330 goto out;
2331 }
2332 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2333 break;
2334 }
2335 case KVM_GET_MP_STATE: {
2336 struct kvm_mp_state mp_state;
2337
2338 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2339 if (r)
2340 goto out;
2341 r = -EFAULT;
2342 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2343 goto out;
2344 r = 0;
2345 break;
2346 }
2347 case KVM_SET_MP_STATE: {
2348 struct kvm_mp_state mp_state;
2349
2350 r = -EFAULT;
2351 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2352 goto out;
2353 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2354 break;
2355 }
2356 case KVM_TRANSLATE: {
2357 struct kvm_translation tr;
2358
2359 r = -EFAULT;
2360 if (copy_from_user(&tr, argp, sizeof(tr)))
2361 goto out;
2362 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2363 if (r)
2364 goto out;
2365 r = -EFAULT;
2366 if (copy_to_user(argp, &tr, sizeof(tr)))
2367 goto out;
2368 r = 0;
2369 break;
2370 }
2371 case KVM_SET_GUEST_DEBUG: {
2372 struct kvm_guest_debug dbg;
2373
2374 r = -EFAULT;
2375 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2376 goto out;
2377 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2378 break;
2379 }
2380 case KVM_SET_SIGNAL_MASK: {
2381 struct kvm_signal_mask __user *sigmask_arg = argp;
2382 struct kvm_signal_mask kvm_sigmask;
2383 sigset_t sigset, *p;
2384
2385 p = NULL;
2386 if (argp) {
2387 r = -EFAULT;
2388 if (copy_from_user(&kvm_sigmask, argp,
2389 sizeof(kvm_sigmask)))
2390 goto out;
2391 r = -EINVAL;
2392 if (kvm_sigmask.len != sizeof(sigset))
2393 goto out;
2394 r = -EFAULT;
2395 if (copy_from_user(&sigset, sigmask_arg->sigset,
2396 sizeof(sigset)))
2397 goto out;
2398 p = &sigset;
2399 }
2400 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2401 break;
2402 }
2403 case KVM_GET_FPU: {
2404 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2405 r = -ENOMEM;
2406 if (!fpu)
2407 goto out;
2408 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2409 if (r)
2410 goto out;
2411 r = -EFAULT;
2412 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2413 goto out;
2414 r = 0;
2415 break;
2416 }
2417 case KVM_SET_FPU: {
2418 fpu = memdup_user(argp, sizeof(*fpu));
2419 if (IS_ERR(fpu)) {
2420 r = PTR_ERR(fpu);
2421 fpu = NULL;
2422 goto out;
2423 }
2424 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2425 break;
2426 }
2427 default:
2428 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2429 }
2430 out:
2431 vcpu_put(vcpu);
2432 kfree(fpu);
2433 kfree(kvm_sregs);
2434 return r;
2435 }
2436
2437 #ifdef CONFIG_KVM_COMPAT
2438 static long kvm_vcpu_compat_ioctl(struct file *filp,
2439 unsigned int ioctl, unsigned long arg)
2440 {
2441 struct kvm_vcpu *vcpu = filp->private_data;
2442 void __user *argp = compat_ptr(arg);
2443 int r;
2444
2445 if (vcpu->kvm->mm != current->mm)
2446 return -EIO;
2447
2448 switch (ioctl) {
2449 case KVM_SET_SIGNAL_MASK: {
2450 struct kvm_signal_mask __user *sigmask_arg = argp;
2451 struct kvm_signal_mask kvm_sigmask;
2452 compat_sigset_t csigset;
2453 sigset_t sigset;
2454
2455 if (argp) {
2456 r = -EFAULT;
2457 if (copy_from_user(&kvm_sigmask, argp,
2458 sizeof(kvm_sigmask)))
2459 goto out;
2460 r = -EINVAL;
2461 if (kvm_sigmask.len != sizeof(csigset))
2462 goto out;
2463 r = -EFAULT;
2464 if (copy_from_user(&csigset, sigmask_arg->sigset,
2465 sizeof(csigset)))
2466 goto out;
2467 sigset_from_compat(&sigset, &csigset);
2468 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2469 } else
2470 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2471 break;
2472 }
2473 default:
2474 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2475 }
2476
2477 out:
2478 return r;
2479 }
2480 #endif
2481
2482 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2483 int (*accessor)(struct kvm_device *dev,
2484 struct kvm_device_attr *attr),
2485 unsigned long arg)
2486 {
2487 struct kvm_device_attr attr;
2488
2489 if (!accessor)
2490 return -EPERM;
2491
2492 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2493 return -EFAULT;
2494
2495 return accessor(dev, &attr);
2496 }
2497
2498 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2499 unsigned long arg)
2500 {
2501 struct kvm_device *dev = filp->private_data;
2502
2503 switch (ioctl) {
2504 case KVM_SET_DEVICE_ATTR:
2505 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2506 case KVM_GET_DEVICE_ATTR:
2507 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2508 case KVM_HAS_DEVICE_ATTR:
2509 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2510 default:
2511 if (dev->ops->ioctl)
2512 return dev->ops->ioctl(dev, ioctl, arg);
2513
2514 return -ENOTTY;
2515 }
2516 }
2517
2518 static int kvm_device_release(struct inode *inode, struct file *filp)
2519 {
2520 struct kvm_device *dev = filp->private_data;
2521 struct kvm *kvm = dev->kvm;
2522
2523 kvm_put_kvm(kvm);
2524 return 0;
2525 }
2526
2527 static const struct file_operations kvm_device_fops = {
2528 .unlocked_ioctl = kvm_device_ioctl,
2529 #ifdef CONFIG_KVM_COMPAT
2530 .compat_ioctl = kvm_device_ioctl,
2531 #endif
2532 .release = kvm_device_release,
2533 };
2534
2535 struct kvm_device *kvm_device_from_filp(struct file *filp)
2536 {
2537 if (filp->f_op != &kvm_device_fops)
2538 return NULL;
2539
2540 return filp->private_data;
2541 }
2542
2543 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2544 #ifdef CONFIG_KVM_MPIC
2545 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2546 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2547 #endif
2548
2549 #ifdef CONFIG_KVM_XICS
2550 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2551 #endif
2552 };
2553
2554 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2555 {
2556 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2557 return -ENOSPC;
2558
2559 if (kvm_device_ops_table[type] != NULL)
2560 return -EEXIST;
2561
2562 kvm_device_ops_table[type] = ops;
2563 return 0;
2564 }
2565
2566 void kvm_unregister_device_ops(u32 type)
2567 {
2568 if (kvm_device_ops_table[type] != NULL)
2569 kvm_device_ops_table[type] = NULL;
2570 }
2571
2572 static int kvm_ioctl_create_device(struct kvm *kvm,
2573 struct kvm_create_device *cd)
2574 {
2575 struct kvm_device_ops *ops = NULL;
2576 struct kvm_device *dev;
2577 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2578 int ret;
2579
2580 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2581 return -ENODEV;
2582
2583 ops = kvm_device_ops_table[cd->type];
2584 if (ops == NULL)
2585 return -ENODEV;
2586
2587 if (test)
2588 return 0;
2589
2590 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2591 if (!dev)
2592 return -ENOMEM;
2593
2594 dev->ops = ops;
2595 dev->kvm = kvm;
2596
2597 ret = ops->create(dev, cd->type);
2598 if (ret < 0) {
2599 kfree(dev);
2600 return ret;
2601 }
2602
2603 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2604 if (ret < 0) {
2605 ops->destroy(dev);
2606 return ret;
2607 }
2608
2609 list_add(&dev->vm_node, &kvm->devices);
2610 kvm_get_kvm(kvm);
2611 cd->fd = ret;
2612 return 0;
2613 }
2614
2615 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2616 {
2617 switch (arg) {
2618 case KVM_CAP_USER_MEMORY:
2619 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2620 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2621 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2622 case KVM_CAP_SET_BOOT_CPU_ID:
2623 #endif
2624 case KVM_CAP_INTERNAL_ERROR_DATA:
2625 #ifdef CONFIG_HAVE_KVM_MSI
2626 case KVM_CAP_SIGNAL_MSI:
2627 #endif
2628 #ifdef CONFIG_HAVE_KVM_IRQFD
2629 case KVM_CAP_IRQFD:
2630 case KVM_CAP_IRQFD_RESAMPLE:
2631 #endif
2632 case KVM_CAP_CHECK_EXTENSION_VM:
2633 return 1;
2634 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2635 case KVM_CAP_IRQ_ROUTING:
2636 return KVM_MAX_IRQ_ROUTES;
2637 #endif
2638 #if KVM_ADDRESS_SPACE_NUM > 1
2639 case KVM_CAP_MULTI_ADDRESS_SPACE:
2640 return KVM_ADDRESS_SPACE_NUM;
2641 #endif
2642 default:
2643 break;
2644 }
2645 return kvm_vm_ioctl_check_extension(kvm, arg);
2646 }
2647
2648 static long kvm_vm_ioctl(struct file *filp,
2649 unsigned int ioctl, unsigned long arg)
2650 {
2651 struct kvm *kvm = filp->private_data;
2652 void __user *argp = (void __user *)arg;
2653 int r;
2654
2655 if (kvm->mm != current->mm)
2656 return -EIO;
2657 switch (ioctl) {
2658 case KVM_CREATE_VCPU:
2659 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2660 break;
2661 case KVM_SET_USER_MEMORY_REGION: {
2662 struct kvm_userspace_memory_region kvm_userspace_mem;
2663
2664 r = -EFAULT;
2665 if (copy_from_user(&kvm_userspace_mem, argp,
2666 sizeof(kvm_userspace_mem)))
2667 goto out;
2668
2669 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2670 break;
2671 }
2672 case KVM_GET_DIRTY_LOG: {
2673 struct kvm_dirty_log log;
2674
2675 r = -EFAULT;
2676 if (copy_from_user(&log, argp, sizeof(log)))
2677 goto out;
2678 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2679 break;
2680 }
2681 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2682 case KVM_REGISTER_COALESCED_MMIO: {
2683 struct kvm_coalesced_mmio_zone zone;
2684
2685 r = -EFAULT;
2686 if (copy_from_user(&zone, argp, sizeof(zone)))
2687 goto out;
2688 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2689 break;
2690 }
2691 case KVM_UNREGISTER_COALESCED_MMIO: {
2692 struct kvm_coalesced_mmio_zone zone;
2693
2694 r = -EFAULT;
2695 if (copy_from_user(&zone, argp, sizeof(zone)))
2696 goto out;
2697 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2698 break;
2699 }
2700 #endif
2701 case KVM_IRQFD: {
2702 struct kvm_irqfd data;
2703
2704 r = -EFAULT;
2705 if (copy_from_user(&data, argp, sizeof(data)))
2706 goto out;
2707 r = kvm_irqfd(kvm, &data);
2708 break;
2709 }
2710 case KVM_IOEVENTFD: {
2711 struct kvm_ioeventfd data;
2712
2713 r = -EFAULT;
2714 if (copy_from_user(&data, argp, sizeof(data)))
2715 goto out;
2716 r = kvm_ioeventfd(kvm, &data);
2717 break;
2718 }
2719 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2720 case KVM_SET_BOOT_CPU_ID:
2721 r = 0;
2722 mutex_lock(&kvm->lock);
2723 if (atomic_read(&kvm->online_vcpus) != 0)
2724 r = -EBUSY;
2725 else
2726 kvm->bsp_vcpu_id = arg;
2727 mutex_unlock(&kvm->lock);
2728 break;
2729 #endif
2730 #ifdef CONFIG_HAVE_KVM_MSI
2731 case KVM_SIGNAL_MSI: {
2732 struct kvm_msi msi;
2733
2734 r = -EFAULT;
2735 if (copy_from_user(&msi, argp, sizeof(msi)))
2736 goto out;
2737 r = kvm_send_userspace_msi(kvm, &msi);
2738 break;
2739 }
2740 #endif
2741 #ifdef __KVM_HAVE_IRQ_LINE
2742 case KVM_IRQ_LINE_STATUS:
2743 case KVM_IRQ_LINE: {
2744 struct kvm_irq_level irq_event;
2745
2746 r = -EFAULT;
2747 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2748 goto out;
2749
2750 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2751 ioctl == KVM_IRQ_LINE_STATUS);
2752 if (r)
2753 goto out;
2754
2755 r = -EFAULT;
2756 if (ioctl == KVM_IRQ_LINE_STATUS) {
2757 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2758 goto out;
2759 }
2760
2761 r = 0;
2762 break;
2763 }
2764 #endif
2765 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2766 case KVM_SET_GSI_ROUTING: {
2767 struct kvm_irq_routing routing;
2768 struct kvm_irq_routing __user *urouting;
2769 struct kvm_irq_routing_entry *entries;
2770
2771 r = -EFAULT;
2772 if (copy_from_user(&routing, argp, sizeof(routing)))
2773 goto out;
2774 r = -EINVAL;
2775 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2776 goto out;
2777 if (routing.flags)
2778 goto out;
2779 r = -ENOMEM;
2780 entries = vmalloc(routing.nr * sizeof(*entries));
2781 if (!entries)
2782 goto out;
2783 r = -EFAULT;
2784 urouting = argp;
2785 if (copy_from_user(entries, urouting->entries,
2786 routing.nr * sizeof(*entries)))
2787 goto out_free_irq_routing;
2788 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2789 routing.flags);
2790 out_free_irq_routing:
2791 vfree(entries);
2792 break;
2793 }
2794 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2795 case KVM_CREATE_DEVICE: {
2796 struct kvm_create_device cd;
2797
2798 r = -EFAULT;
2799 if (copy_from_user(&cd, argp, sizeof(cd)))
2800 goto out;
2801
2802 r = kvm_ioctl_create_device(kvm, &cd);
2803 if (r)
2804 goto out;
2805
2806 r = -EFAULT;
2807 if (copy_to_user(argp, &cd, sizeof(cd)))
2808 goto out;
2809
2810 r = 0;
2811 break;
2812 }
2813 case KVM_CHECK_EXTENSION:
2814 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2815 break;
2816 default:
2817 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2818 }
2819 out:
2820 return r;
2821 }
2822
2823 #ifdef CONFIG_KVM_COMPAT
2824 struct compat_kvm_dirty_log {
2825 __u32 slot;
2826 __u32 padding1;
2827 union {
2828 compat_uptr_t dirty_bitmap; /* one bit per page */
2829 __u64 padding2;
2830 };
2831 };
2832
2833 static long kvm_vm_compat_ioctl(struct file *filp,
2834 unsigned int ioctl, unsigned long arg)
2835 {
2836 struct kvm *kvm = filp->private_data;
2837 int r;
2838
2839 if (kvm->mm != current->mm)
2840 return -EIO;
2841 switch (ioctl) {
2842 case KVM_GET_DIRTY_LOG: {
2843 struct compat_kvm_dirty_log compat_log;
2844 struct kvm_dirty_log log;
2845
2846 r = -EFAULT;
2847 if (copy_from_user(&compat_log, (void __user *)arg,
2848 sizeof(compat_log)))
2849 goto out;
2850 log.slot = compat_log.slot;
2851 log.padding1 = compat_log.padding1;
2852 log.padding2 = compat_log.padding2;
2853 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2854
2855 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2856 break;
2857 }
2858 default:
2859 r = kvm_vm_ioctl(filp, ioctl, arg);
2860 }
2861
2862 out:
2863 return r;
2864 }
2865 #endif
2866
2867 static struct file_operations kvm_vm_fops = {
2868 .release = kvm_vm_release,
2869 .unlocked_ioctl = kvm_vm_ioctl,
2870 #ifdef CONFIG_KVM_COMPAT
2871 .compat_ioctl = kvm_vm_compat_ioctl,
2872 #endif
2873 .llseek = noop_llseek,
2874 };
2875
2876 static int kvm_dev_ioctl_create_vm(unsigned long type)
2877 {
2878 int r;
2879 struct kvm *kvm;
2880
2881 kvm = kvm_create_vm(type);
2882 if (IS_ERR(kvm))
2883 return PTR_ERR(kvm);
2884 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2885 r = kvm_coalesced_mmio_init(kvm);
2886 if (r < 0) {
2887 kvm_put_kvm(kvm);
2888 return r;
2889 }
2890 #endif
2891 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2892 if (r < 0)
2893 kvm_put_kvm(kvm);
2894
2895 return r;
2896 }
2897
2898 static long kvm_dev_ioctl(struct file *filp,
2899 unsigned int ioctl, unsigned long arg)
2900 {
2901 long r = -EINVAL;
2902
2903 switch (ioctl) {
2904 case KVM_GET_API_VERSION:
2905 if (arg)
2906 goto out;
2907 r = KVM_API_VERSION;
2908 break;
2909 case KVM_CREATE_VM:
2910 r = kvm_dev_ioctl_create_vm(arg);
2911 break;
2912 case KVM_CHECK_EXTENSION:
2913 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2914 break;
2915 case KVM_GET_VCPU_MMAP_SIZE:
2916 if (arg)
2917 goto out;
2918 r = PAGE_SIZE; /* struct kvm_run */
2919 #ifdef CONFIG_X86
2920 r += PAGE_SIZE; /* pio data page */
2921 #endif
2922 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2923 r += PAGE_SIZE; /* coalesced mmio ring page */
2924 #endif
2925 break;
2926 case KVM_TRACE_ENABLE:
2927 case KVM_TRACE_PAUSE:
2928 case KVM_TRACE_DISABLE:
2929 r = -EOPNOTSUPP;
2930 break;
2931 default:
2932 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2933 }
2934 out:
2935 return r;
2936 }
2937
2938 static struct file_operations kvm_chardev_ops = {
2939 .unlocked_ioctl = kvm_dev_ioctl,
2940 .compat_ioctl = kvm_dev_ioctl,
2941 .llseek = noop_llseek,
2942 };
2943
2944 static struct miscdevice kvm_dev = {
2945 KVM_MINOR,
2946 "kvm",
2947 &kvm_chardev_ops,
2948 };
2949
2950 static void hardware_enable_nolock(void *junk)
2951 {
2952 int cpu = raw_smp_processor_id();
2953 int r;
2954
2955 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2956 return;
2957
2958 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2959
2960 r = kvm_arch_hardware_enable();
2961
2962 if (r) {
2963 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2964 atomic_inc(&hardware_enable_failed);
2965 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
2966 }
2967 }
2968
2969 static void hardware_enable(void)
2970 {
2971 raw_spin_lock(&kvm_count_lock);
2972 if (kvm_usage_count)
2973 hardware_enable_nolock(NULL);
2974 raw_spin_unlock(&kvm_count_lock);
2975 }
2976
2977 static void hardware_disable_nolock(void *junk)
2978 {
2979 int cpu = raw_smp_processor_id();
2980
2981 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2982 return;
2983 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2984 kvm_arch_hardware_disable();
2985 }
2986
2987 static void hardware_disable(void)
2988 {
2989 raw_spin_lock(&kvm_count_lock);
2990 if (kvm_usage_count)
2991 hardware_disable_nolock(NULL);
2992 raw_spin_unlock(&kvm_count_lock);
2993 }
2994
2995 static void hardware_disable_all_nolock(void)
2996 {
2997 BUG_ON(!kvm_usage_count);
2998
2999 kvm_usage_count--;
3000 if (!kvm_usage_count)
3001 on_each_cpu(hardware_disable_nolock, NULL, 1);
3002 }
3003
3004 static void hardware_disable_all(void)
3005 {
3006 raw_spin_lock(&kvm_count_lock);
3007 hardware_disable_all_nolock();
3008 raw_spin_unlock(&kvm_count_lock);
3009 }
3010
3011 static int hardware_enable_all(void)
3012 {
3013 int r = 0;
3014
3015 raw_spin_lock(&kvm_count_lock);
3016
3017 kvm_usage_count++;
3018 if (kvm_usage_count == 1) {
3019 atomic_set(&hardware_enable_failed, 0);
3020 on_each_cpu(hardware_enable_nolock, NULL, 1);
3021
3022 if (atomic_read(&hardware_enable_failed)) {
3023 hardware_disable_all_nolock();
3024 r = -EBUSY;
3025 }
3026 }
3027
3028 raw_spin_unlock(&kvm_count_lock);
3029
3030 return r;
3031 }
3032
3033 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3034 void *v)
3035 {
3036 val &= ~CPU_TASKS_FROZEN;
3037 switch (val) {
3038 case CPU_DYING:
3039 hardware_disable();
3040 break;
3041 case CPU_STARTING:
3042 hardware_enable();
3043 break;
3044 }
3045 return NOTIFY_OK;
3046 }
3047
3048 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3049 void *v)
3050 {
3051 /*
3052 * Some (well, at least mine) BIOSes hang on reboot if
3053 * in vmx root mode.
3054 *
3055 * And Intel TXT required VMX off for all cpu when system shutdown.
3056 */
3057 pr_info("kvm: exiting hardware virtualization\n");
3058 kvm_rebooting = true;
3059 on_each_cpu(hardware_disable_nolock, NULL, 1);
3060 return NOTIFY_OK;
3061 }
3062
3063 static struct notifier_block kvm_reboot_notifier = {
3064 .notifier_call = kvm_reboot,
3065 .priority = 0,
3066 };
3067
3068 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3069 {
3070 int i;
3071
3072 for (i = 0; i < bus->dev_count; i++) {
3073 struct kvm_io_device *pos = bus->range[i].dev;
3074
3075 kvm_iodevice_destructor(pos);
3076 }
3077 kfree(bus);
3078 }
3079
3080 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3081 const struct kvm_io_range *r2)
3082 {
3083 if (r1->addr < r2->addr)
3084 return -1;
3085 if (r1->addr + r1->len > r2->addr + r2->len)
3086 return 1;
3087 return 0;
3088 }
3089
3090 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3091 {
3092 return kvm_io_bus_cmp(p1, p2);
3093 }
3094
3095 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3096 gpa_t addr, int len)
3097 {
3098 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3099 .addr = addr,
3100 .len = len,
3101 .dev = dev,
3102 };
3103
3104 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3105 kvm_io_bus_sort_cmp, NULL);
3106
3107 return 0;
3108 }
3109
3110 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3111 gpa_t addr, int len)
3112 {
3113 struct kvm_io_range *range, key;
3114 int off;
3115
3116 key = (struct kvm_io_range) {
3117 .addr = addr,
3118 .len = len,
3119 };
3120
3121 range = bsearch(&key, bus->range, bus->dev_count,
3122 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3123 if (range == NULL)
3124 return -ENOENT;
3125
3126 off = range - bus->range;
3127
3128 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3129 off--;
3130
3131 return off;
3132 }
3133
3134 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3135 struct kvm_io_range *range, const void *val)
3136 {
3137 int idx;
3138
3139 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3140 if (idx < 0)
3141 return -EOPNOTSUPP;
3142
3143 while (idx < bus->dev_count &&
3144 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3145 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3146 range->len, val))
3147 return idx;
3148 idx++;
3149 }
3150
3151 return -EOPNOTSUPP;
3152 }
3153
3154 /* kvm_io_bus_write - called under kvm->slots_lock */
3155 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3156 int len, const void *val)
3157 {
3158 struct kvm_io_bus *bus;
3159 struct kvm_io_range range;
3160 int r;
3161
3162 range = (struct kvm_io_range) {
3163 .addr = addr,
3164 .len = len,
3165 };
3166
3167 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3168 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3169 return r < 0 ? r : 0;
3170 }
3171
3172 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3173 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3174 gpa_t addr, int len, const void *val, long cookie)
3175 {
3176 struct kvm_io_bus *bus;
3177 struct kvm_io_range range;
3178
3179 range = (struct kvm_io_range) {
3180 .addr = addr,
3181 .len = len,
3182 };
3183
3184 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3185
3186 /* First try the device referenced by cookie. */
3187 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3188 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3189 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3190 val))
3191 return cookie;
3192
3193 /*
3194 * cookie contained garbage; fall back to search and return the
3195 * correct cookie value.
3196 */
3197 return __kvm_io_bus_write(vcpu, bus, &range, val);
3198 }
3199
3200 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3201 struct kvm_io_range *range, void *val)
3202 {
3203 int idx;
3204
3205 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3206 if (idx < 0)
3207 return -EOPNOTSUPP;
3208
3209 while (idx < bus->dev_count &&
3210 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3211 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3212 range->len, val))
3213 return idx;
3214 idx++;
3215 }
3216
3217 return -EOPNOTSUPP;
3218 }
3219 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3220
3221 /* kvm_io_bus_read - called under kvm->slots_lock */
3222 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3223 int len, void *val)
3224 {
3225 struct kvm_io_bus *bus;
3226 struct kvm_io_range range;
3227 int r;
3228
3229 range = (struct kvm_io_range) {
3230 .addr = addr,
3231 .len = len,
3232 };
3233
3234 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3235 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3236 return r < 0 ? r : 0;
3237 }
3238
3239
3240 /* Caller must hold slots_lock. */
3241 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3242 int len, struct kvm_io_device *dev)
3243 {
3244 struct kvm_io_bus *new_bus, *bus;
3245
3246 bus = kvm->buses[bus_idx];
3247 /* exclude ioeventfd which is limited by maximum fd */
3248 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3249 return -ENOSPC;
3250
3251 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3252 sizeof(struct kvm_io_range)), GFP_KERNEL);
3253 if (!new_bus)
3254 return -ENOMEM;
3255 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3256 sizeof(struct kvm_io_range)));
3257 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3258 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3259 synchronize_srcu_expedited(&kvm->srcu);
3260 kfree(bus);
3261
3262 return 0;
3263 }
3264
3265 /* Caller must hold slots_lock. */
3266 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3267 struct kvm_io_device *dev)
3268 {
3269 int i, r;
3270 struct kvm_io_bus *new_bus, *bus;
3271
3272 bus = kvm->buses[bus_idx];
3273 r = -ENOENT;
3274 for (i = 0; i < bus->dev_count; i++)
3275 if (bus->range[i].dev == dev) {
3276 r = 0;
3277 break;
3278 }
3279
3280 if (r)
3281 return r;
3282
3283 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3284 sizeof(struct kvm_io_range)), GFP_KERNEL);
3285 if (!new_bus)
3286 return -ENOMEM;
3287
3288 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3289 new_bus->dev_count--;
3290 memcpy(new_bus->range + i, bus->range + i + 1,
3291 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3292
3293 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3294 synchronize_srcu_expedited(&kvm->srcu);
3295 kfree(bus);
3296 return r;
3297 }
3298
3299 static struct notifier_block kvm_cpu_notifier = {
3300 .notifier_call = kvm_cpu_hotplug,
3301 };
3302
3303 static int vm_stat_get(void *_offset, u64 *val)
3304 {
3305 unsigned offset = (long)_offset;
3306 struct kvm *kvm;
3307
3308 *val = 0;
3309 spin_lock(&kvm_lock);
3310 list_for_each_entry(kvm, &vm_list, vm_list)
3311 *val += *(u32 *)((void *)kvm + offset);
3312 spin_unlock(&kvm_lock);
3313 return 0;
3314 }
3315
3316 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3317
3318 static int vcpu_stat_get(void *_offset, u64 *val)
3319 {
3320 unsigned offset = (long)_offset;
3321 struct kvm *kvm;
3322 struct kvm_vcpu *vcpu;
3323 int i;
3324
3325 *val = 0;
3326 spin_lock(&kvm_lock);
3327 list_for_each_entry(kvm, &vm_list, vm_list)
3328 kvm_for_each_vcpu(i, vcpu, kvm)
3329 *val += *(u32 *)((void *)vcpu + offset);
3330
3331 spin_unlock(&kvm_lock);
3332 return 0;
3333 }
3334
3335 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3336
3337 static const struct file_operations *stat_fops[] = {
3338 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3339 [KVM_STAT_VM] = &vm_stat_fops,
3340 };
3341
3342 static int kvm_init_debug(void)
3343 {
3344 int r = -EEXIST;
3345 struct kvm_stats_debugfs_item *p;
3346
3347 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3348 if (kvm_debugfs_dir == NULL)
3349 goto out;
3350
3351 for (p = debugfs_entries; p->name; ++p) {
3352 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3353 (void *)(long)p->offset,
3354 stat_fops[p->kind]);
3355 if (p->dentry == NULL)
3356 goto out_dir;
3357 }
3358
3359 return 0;
3360
3361 out_dir:
3362 debugfs_remove_recursive(kvm_debugfs_dir);
3363 out:
3364 return r;
3365 }
3366
3367 static void kvm_exit_debug(void)
3368 {
3369 struct kvm_stats_debugfs_item *p;
3370
3371 for (p = debugfs_entries; p->name; ++p)
3372 debugfs_remove(p->dentry);
3373 debugfs_remove(kvm_debugfs_dir);
3374 }
3375
3376 static int kvm_suspend(void)
3377 {
3378 if (kvm_usage_count)
3379 hardware_disable_nolock(NULL);
3380 return 0;
3381 }
3382
3383 static void kvm_resume(void)
3384 {
3385 if (kvm_usage_count) {
3386 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3387 hardware_enable_nolock(NULL);
3388 }
3389 }
3390
3391 static struct syscore_ops kvm_syscore_ops = {
3392 .suspend = kvm_suspend,
3393 .resume = kvm_resume,
3394 };
3395
3396 static inline
3397 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3398 {
3399 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3400 }
3401
3402 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3403 {
3404 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3405
3406 if (vcpu->preempted)
3407 vcpu->preempted = false;
3408
3409 kvm_arch_sched_in(vcpu, cpu);
3410
3411 kvm_arch_vcpu_load(vcpu, cpu);
3412 }
3413
3414 static void kvm_sched_out(struct preempt_notifier *pn,
3415 struct task_struct *next)
3416 {
3417 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3418
3419 if (current->state == TASK_RUNNING)
3420 vcpu->preempted = true;
3421 kvm_arch_vcpu_put(vcpu);
3422 }
3423
3424 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3425 struct module *module)
3426 {
3427 int r;
3428 int cpu;
3429
3430 r = kvm_arch_init(opaque);
3431 if (r)
3432 goto out_fail;
3433
3434 /*
3435 * kvm_arch_init makes sure there's at most one caller
3436 * for architectures that support multiple implementations,
3437 * like intel and amd on x86.
3438 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3439 * conflicts in case kvm is already setup for another implementation.
3440 */
3441 r = kvm_irqfd_init();
3442 if (r)
3443 goto out_irqfd;
3444
3445 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3446 r = -ENOMEM;
3447 goto out_free_0;
3448 }
3449
3450 r = kvm_arch_hardware_setup();
3451 if (r < 0)
3452 goto out_free_0a;
3453
3454 for_each_online_cpu(cpu) {
3455 smp_call_function_single(cpu,
3456 kvm_arch_check_processor_compat,
3457 &r, 1);
3458 if (r < 0)
3459 goto out_free_1;
3460 }
3461
3462 r = register_cpu_notifier(&kvm_cpu_notifier);
3463 if (r)
3464 goto out_free_2;
3465 register_reboot_notifier(&kvm_reboot_notifier);
3466
3467 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3468 if (!vcpu_align)
3469 vcpu_align = __alignof__(struct kvm_vcpu);
3470 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3471 0, NULL);
3472 if (!kvm_vcpu_cache) {
3473 r = -ENOMEM;
3474 goto out_free_3;
3475 }
3476
3477 r = kvm_async_pf_init();
3478 if (r)
3479 goto out_free;
3480
3481 kvm_chardev_ops.owner = module;
3482 kvm_vm_fops.owner = module;
3483 kvm_vcpu_fops.owner = module;
3484
3485 r = misc_register(&kvm_dev);
3486 if (r) {
3487 pr_err("kvm: misc device register failed\n");
3488 goto out_unreg;
3489 }
3490
3491 register_syscore_ops(&kvm_syscore_ops);
3492
3493 kvm_preempt_ops.sched_in = kvm_sched_in;
3494 kvm_preempt_ops.sched_out = kvm_sched_out;
3495
3496 r = kvm_init_debug();
3497 if (r) {
3498 pr_err("kvm: create debugfs files failed\n");
3499 goto out_undebugfs;
3500 }
3501
3502 r = kvm_vfio_ops_init();
3503 WARN_ON(r);
3504
3505 return 0;
3506
3507 out_undebugfs:
3508 unregister_syscore_ops(&kvm_syscore_ops);
3509 misc_deregister(&kvm_dev);
3510 out_unreg:
3511 kvm_async_pf_deinit();
3512 out_free:
3513 kmem_cache_destroy(kvm_vcpu_cache);
3514 out_free_3:
3515 unregister_reboot_notifier(&kvm_reboot_notifier);
3516 unregister_cpu_notifier(&kvm_cpu_notifier);
3517 out_free_2:
3518 out_free_1:
3519 kvm_arch_hardware_unsetup();
3520 out_free_0a:
3521 free_cpumask_var(cpus_hardware_enabled);
3522 out_free_0:
3523 kvm_irqfd_exit();
3524 out_irqfd:
3525 kvm_arch_exit();
3526 out_fail:
3527 return r;
3528 }
3529 EXPORT_SYMBOL_GPL(kvm_init);
3530
3531 void kvm_exit(void)
3532 {
3533 kvm_exit_debug();
3534 misc_deregister(&kvm_dev);
3535 kmem_cache_destroy(kvm_vcpu_cache);
3536 kvm_async_pf_deinit();
3537 unregister_syscore_ops(&kvm_syscore_ops);
3538 unregister_reboot_notifier(&kvm_reboot_notifier);
3539 unregister_cpu_notifier(&kvm_cpu_notifier);
3540 on_each_cpu(hardware_disable_nolock, NULL, 1);
3541 kvm_arch_hardware_unsetup();
3542 kvm_arch_exit();
3543 kvm_irqfd_exit();
3544 free_cpumask_var(cpus_hardware_enabled);
3545 kvm_vfio_ops_exit();
3546 }
3547 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.155861 seconds and 6 git commands to generate.