KVM: introduce update_memslots function
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 static struct page *hwpoison_page;
104 static pfn_t hwpoison_pfn;
105
106 struct page *fault_page;
107 pfn_t fault_pfn;
108
109 inline int kvm_is_mmio_pfn(pfn_t pfn)
110 {
111 if (pfn_valid(pfn)) {
112 int reserved;
113 struct page *tail = pfn_to_page(pfn);
114 struct page *head = compound_trans_head(tail);
115 reserved = PageReserved(head);
116 if (head != tail) {
117 /*
118 * "head" is not a dangling pointer
119 * (compound_trans_head takes care of that)
120 * but the hugepage may have been splitted
121 * from under us (and we may not hold a
122 * reference count on the head page so it can
123 * be reused before we run PageReferenced), so
124 * we've to check PageTail before returning
125 * what we just read.
126 */
127 smp_rmb();
128 if (PageTail(tail))
129 return reserved;
130 }
131 return PageReserved(tail);
132 }
133
134 return true;
135 }
136
137 /*
138 * Switches to specified vcpu, until a matching vcpu_put()
139 */
140 void vcpu_load(struct kvm_vcpu *vcpu)
141 {
142 int cpu;
143
144 mutex_lock(&vcpu->mutex);
145 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
146 /* The thread running this VCPU changed. */
147 struct pid *oldpid = vcpu->pid;
148 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
149 rcu_assign_pointer(vcpu->pid, newpid);
150 synchronize_rcu();
151 put_pid(oldpid);
152 }
153 cpu = get_cpu();
154 preempt_notifier_register(&vcpu->preempt_notifier);
155 kvm_arch_vcpu_load(vcpu, cpu);
156 put_cpu();
157 }
158
159 void vcpu_put(struct kvm_vcpu *vcpu)
160 {
161 preempt_disable();
162 kvm_arch_vcpu_put(vcpu);
163 preempt_notifier_unregister(&vcpu->preempt_notifier);
164 preempt_enable();
165 mutex_unlock(&vcpu->mutex);
166 }
167
168 static void ack_flush(void *_completed)
169 {
170 }
171
172 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
173 {
174 int i, cpu, me;
175 cpumask_var_t cpus;
176 bool called = true;
177 struct kvm_vcpu *vcpu;
178
179 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
180
181 me = get_cpu();
182 kvm_for_each_vcpu(i, vcpu, kvm) {
183 kvm_make_request(req, vcpu);
184 cpu = vcpu->cpu;
185
186 /* Set ->requests bit before we read ->mode */
187 smp_mb();
188
189 if (cpus != NULL && cpu != -1 && cpu != me &&
190 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
191 cpumask_set_cpu(cpu, cpus);
192 }
193 if (unlikely(cpus == NULL))
194 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
195 else if (!cpumask_empty(cpus))
196 smp_call_function_many(cpus, ack_flush, NULL, 1);
197 else
198 called = false;
199 put_cpu();
200 free_cpumask_var(cpus);
201 return called;
202 }
203
204 void kvm_flush_remote_tlbs(struct kvm *kvm)
205 {
206 int dirty_count = kvm->tlbs_dirty;
207
208 smp_mb();
209 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
210 ++kvm->stat.remote_tlb_flush;
211 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
212 }
213
214 void kvm_reload_remote_mmus(struct kvm *kvm)
215 {
216 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
217 }
218
219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
220 {
221 struct page *page;
222 int r;
223
224 mutex_init(&vcpu->mutex);
225 vcpu->cpu = -1;
226 vcpu->kvm = kvm;
227 vcpu->vcpu_id = id;
228 vcpu->pid = NULL;
229 init_waitqueue_head(&vcpu->wq);
230 kvm_async_pf_vcpu_init(vcpu);
231
232 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
233 if (!page) {
234 r = -ENOMEM;
235 goto fail;
236 }
237 vcpu->run = page_address(page);
238
239 r = kvm_arch_vcpu_init(vcpu);
240 if (r < 0)
241 goto fail_free_run;
242 return 0;
243
244 fail_free_run:
245 free_page((unsigned long)vcpu->run);
246 fail:
247 return r;
248 }
249 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
250
251 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
252 {
253 put_pid(vcpu->pid);
254 kvm_arch_vcpu_uninit(vcpu);
255 free_page((unsigned long)vcpu->run);
256 }
257 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
258
259 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
260 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
261 {
262 return container_of(mn, struct kvm, mmu_notifier);
263 }
264
265 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
266 struct mm_struct *mm,
267 unsigned long address)
268 {
269 struct kvm *kvm = mmu_notifier_to_kvm(mn);
270 int need_tlb_flush, idx;
271
272 /*
273 * When ->invalidate_page runs, the linux pte has been zapped
274 * already but the page is still allocated until
275 * ->invalidate_page returns. So if we increase the sequence
276 * here the kvm page fault will notice if the spte can't be
277 * established because the page is going to be freed. If
278 * instead the kvm page fault establishes the spte before
279 * ->invalidate_page runs, kvm_unmap_hva will release it
280 * before returning.
281 *
282 * The sequence increase only need to be seen at spin_unlock
283 * time, and not at spin_lock time.
284 *
285 * Increasing the sequence after the spin_unlock would be
286 * unsafe because the kvm page fault could then establish the
287 * pte after kvm_unmap_hva returned, without noticing the page
288 * is going to be freed.
289 */
290 idx = srcu_read_lock(&kvm->srcu);
291 spin_lock(&kvm->mmu_lock);
292 kvm->mmu_notifier_seq++;
293 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
294 spin_unlock(&kvm->mmu_lock);
295 srcu_read_unlock(&kvm->srcu, idx);
296
297 /* we've to flush the tlb before the pages can be freed */
298 if (need_tlb_flush)
299 kvm_flush_remote_tlbs(kvm);
300
301 }
302
303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
304 struct mm_struct *mm,
305 unsigned long address,
306 pte_t pte)
307 {
308 struct kvm *kvm = mmu_notifier_to_kvm(mn);
309 int idx;
310
311 idx = srcu_read_lock(&kvm->srcu);
312 spin_lock(&kvm->mmu_lock);
313 kvm->mmu_notifier_seq++;
314 kvm_set_spte_hva(kvm, address, pte);
315 spin_unlock(&kvm->mmu_lock);
316 srcu_read_unlock(&kvm->srcu, idx);
317 }
318
319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
320 struct mm_struct *mm,
321 unsigned long start,
322 unsigned long end)
323 {
324 struct kvm *kvm = mmu_notifier_to_kvm(mn);
325 int need_tlb_flush = 0, idx;
326
327 idx = srcu_read_lock(&kvm->srcu);
328 spin_lock(&kvm->mmu_lock);
329 /*
330 * The count increase must become visible at unlock time as no
331 * spte can be established without taking the mmu_lock and
332 * count is also read inside the mmu_lock critical section.
333 */
334 kvm->mmu_notifier_count++;
335 for (; start < end; start += PAGE_SIZE)
336 need_tlb_flush |= kvm_unmap_hva(kvm, start);
337 need_tlb_flush |= kvm->tlbs_dirty;
338 spin_unlock(&kvm->mmu_lock);
339 srcu_read_unlock(&kvm->srcu, idx);
340
341 /* we've to flush the tlb before the pages can be freed */
342 if (need_tlb_flush)
343 kvm_flush_remote_tlbs(kvm);
344 }
345
346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
347 struct mm_struct *mm,
348 unsigned long start,
349 unsigned long end)
350 {
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
352
353 spin_lock(&kvm->mmu_lock);
354 /*
355 * This sequence increase will notify the kvm page fault that
356 * the page that is going to be mapped in the spte could have
357 * been freed.
358 */
359 kvm->mmu_notifier_seq++;
360 /*
361 * The above sequence increase must be visible before the
362 * below count decrease but both values are read by the kvm
363 * page fault under mmu_lock spinlock so we don't need to add
364 * a smb_wmb() here in between the two.
365 */
366 kvm->mmu_notifier_count--;
367 spin_unlock(&kvm->mmu_lock);
368
369 BUG_ON(kvm->mmu_notifier_count < 0);
370 }
371
372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
373 struct mm_struct *mm,
374 unsigned long address)
375 {
376 struct kvm *kvm = mmu_notifier_to_kvm(mn);
377 int young, idx;
378
379 idx = srcu_read_lock(&kvm->srcu);
380 spin_lock(&kvm->mmu_lock);
381 young = kvm_age_hva(kvm, address);
382 spin_unlock(&kvm->mmu_lock);
383 srcu_read_unlock(&kvm->srcu, idx);
384
385 if (young)
386 kvm_flush_remote_tlbs(kvm);
387
388 return young;
389 }
390
391 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
392 struct mm_struct *mm,
393 unsigned long address)
394 {
395 struct kvm *kvm = mmu_notifier_to_kvm(mn);
396 int young, idx;
397
398 idx = srcu_read_lock(&kvm->srcu);
399 spin_lock(&kvm->mmu_lock);
400 young = kvm_test_age_hva(kvm, address);
401 spin_unlock(&kvm->mmu_lock);
402 srcu_read_unlock(&kvm->srcu, idx);
403
404 return young;
405 }
406
407 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
408 struct mm_struct *mm)
409 {
410 struct kvm *kvm = mmu_notifier_to_kvm(mn);
411 int idx;
412
413 idx = srcu_read_lock(&kvm->srcu);
414 kvm_arch_flush_shadow(kvm);
415 srcu_read_unlock(&kvm->srcu, idx);
416 }
417
418 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
419 .invalidate_page = kvm_mmu_notifier_invalidate_page,
420 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
421 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
422 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
423 .test_young = kvm_mmu_notifier_test_young,
424 .change_pte = kvm_mmu_notifier_change_pte,
425 .release = kvm_mmu_notifier_release,
426 };
427
428 static int kvm_init_mmu_notifier(struct kvm *kvm)
429 {
430 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
431 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
432 }
433
434 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
435
436 static int kvm_init_mmu_notifier(struct kvm *kvm)
437 {
438 return 0;
439 }
440
441 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
442
443 static struct kvm *kvm_create_vm(void)
444 {
445 int r, i;
446 struct kvm *kvm = kvm_arch_alloc_vm();
447
448 if (!kvm)
449 return ERR_PTR(-ENOMEM);
450
451 r = kvm_arch_init_vm(kvm);
452 if (r)
453 goto out_err_nodisable;
454
455 r = hardware_enable_all();
456 if (r)
457 goto out_err_nodisable;
458
459 #ifdef CONFIG_HAVE_KVM_IRQCHIP
460 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
461 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
462 #endif
463
464 r = -ENOMEM;
465 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
466 if (!kvm->memslots)
467 goto out_err_nosrcu;
468 if (init_srcu_struct(&kvm->srcu))
469 goto out_err_nosrcu;
470 for (i = 0; i < KVM_NR_BUSES; i++) {
471 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
472 GFP_KERNEL);
473 if (!kvm->buses[i])
474 goto out_err;
475 }
476
477 spin_lock_init(&kvm->mmu_lock);
478 kvm->mm = current->mm;
479 atomic_inc(&kvm->mm->mm_count);
480 kvm_eventfd_init(kvm);
481 mutex_init(&kvm->lock);
482 mutex_init(&kvm->irq_lock);
483 mutex_init(&kvm->slots_lock);
484 atomic_set(&kvm->users_count, 1);
485
486 r = kvm_init_mmu_notifier(kvm);
487 if (r)
488 goto out_err;
489
490 raw_spin_lock(&kvm_lock);
491 list_add(&kvm->vm_list, &vm_list);
492 raw_spin_unlock(&kvm_lock);
493
494 return kvm;
495
496 out_err:
497 cleanup_srcu_struct(&kvm->srcu);
498 out_err_nosrcu:
499 hardware_disable_all();
500 out_err_nodisable:
501 for (i = 0; i < KVM_NR_BUSES; i++)
502 kfree(kvm->buses[i]);
503 kfree(kvm->memslots);
504 kvm_arch_free_vm(kvm);
505 return ERR_PTR(r);
506 }
507
508 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
509 {
510 if (!memslot->dirty_bitmap)
511 return;
512
513 if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
514 vfree(memslot->dirty_bitmap_head);
515 else
516 kfree(memslot->dirty_bitmap_head);
517
518 memslot->dirty_bitmap = NULL;
519 memslot->dirty_bitmap_head = NULL;
520 }
521
522 /*
523 * Free any memory in @free but not in @dont.
524 */
525 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
526 struct kvm_memory_slot *dont)
527 {
528 int i;
529
530 if (!dont || free->rmap != dont->rmap)
531 vfree(free->rmap);
532
533 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
534 kvm_destroy_dirty_bitmap(free);
535
536
537 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
538 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
539 vfree(free->lpage_info[i]);
540 free->lpage_info[i] = NULL;
541 }
542 }
543
544 free->npages = 0;
545 free->rmap = NULL;
546 }
547
548 void kvm_free_physmem(struct kvm *kvm)
549 {
550 int i;
551 struct kvm_memslots *slots = kvm->memslots;
552
553 for (i = 0; i < slots->nmemslots; ++i)
554 kvm_free_physmem_slot(&slots->memslots[i], NULL);
555
556 kfree(kvm->memslots);
557 }
558
559 static void kvm_destroy_vm(struct kvm *kvm)
560 {
561 int i;
562 struct mm_struct *mm = kvm->mm;
563
564 kvm_arch_sync_events(kvm);
565 raw_spin_lock(&kvm_lock);
566 list_del(&kvm->vm_list);
567 raw_spin_unlock(&kvm_lock);
568 kvm_free_irq_routing(kvm);
569 for (i = 0; i < KVM_NR_BUSES; i++)
570 kvm_io_bus_destroy(kvm->buses[i]);
571 kvm_coalesced_mmio_free(kvm);
572 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
573 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
574 #else
575 kvm_arch_flush_shadow(kvm);
576 #endif
577 kvm_arch_destroy_vm(kvm);
578 kvm_free_physmem(kvm);
579 cleanup_srcu_struct(&kvm->srcu);
580 kvm_arch_free_vm(kvm);
581 hardware_disable_all();
582 mmdrop(mm);
583 }
584
585 void kvm_get_kvm(struct kvm *kvm)
586 {
587 atomic_inc(&kvm->users_count);
588 }
589 EXPORT_SYMBOL_GPL(kvm_get_kvm);
590
591 void kvm_put_kvm(struct kvm *kvm)
592 {
593 if (atomic_dec_and_test(&kvm->users_count))
594 kvm_destroy_vm(kvm);
595 }
596 EXPORT_SYMBOL_GPL(kvm_put_kvm);
597
598
599 static int kvm_vm_release(struct inode *inode, struct file *filp)
600 {
601 struct kvm *kvm = filp->private_data;
602
603 kvm_irqfd_release(kvm);
604
605 kvm_put_kvm(kvm);
606 return 0;
607 }
608
609 #ifndef CONFIG_S390
610 /*
611 * Allocation size is twice as large as the actual dirty bitmap size.
612 * This makes it possible to do double buffering: see x86's
613 * kvm_vm_ioctl_get_dirty_log().
614 */
615 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
616 {
617 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
618
619 if (dirty_bytes > PAGE_SIZE)
620 memslot->dirty_bitmap = vzalloc(dirty_bytes);
621 else
622 memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
623
624 if (!memslot->dirty_bitmap)
625 return -ENOMEM;
626
627 memslot->dirty_bitmap_head = memslot->dirty_bitmap;
628 memslot->nr_dirty_pages = 0;
629 return 0;
630 }
631 #endif /* !CONFIG_S390 */
632
633 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
634 {
635 if (new) {
636 int id = new->id;
637
638 slots->memslots[id] = *new;
639 if (id >= slots->nmemslots)
640 slots->nmemslots = id + 1;
641 }
642
643 slots->generation++;
644 }
645
646 /*
647 * Allocate some memory and give it an address in the guest physical address
648 * space.
649 *
650 * Discontiguous memory is allowed, mostly for framebuffers.
651 *
652 * Must be called holding mmap_sem for write.
653 */
654 int __kvm_set_memory_region(struct kvm *kvm,
655 struct kvm_userspace_memory_region *mem,
656 int user_alloc)
657 {
658 int r;
659 gfn_t base_gfn;
660 unsigned long npages;
661 unsigned long i;
662 struct kvm_memory_slot *memslot;
663 struct kvm_memory_slot old, new;
664 struct kvm_memslots *slots, *old_memslots;
665
666 r = -EINVAL;
667 /* General sanity checks */
668 if (mem->memory_size & (PAGE_SIZE - 1))
669 goto out;
670 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
671 goto out;
672 /* We can read the guest memory with __xxx_user() later on. */
673 if (user_alloc &&
674 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
675 !access_ok(VERIFY_WRITE,
676 (void __user *)(unsigned long)mem->userspace_addr,
677 mem->memory_size)))
678 goto out;
679 if (mem->slot >= KVM_MEM_SLOTS_NUM)
680 goto out;
681 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
682 goto out;
683
684 memslot = &kvm->memslots->memslots[mem->slot];
685 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
686 npages = mem->memory_size >> PAGE_SHIFT;
687
688 r = -EINVAL;
689 if (npages > KVM_MEM_MAX_NR_PAGES)
690 goto out;
691
692 if (!npages)
693 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
694
695 new = old = *memslot;
696
697 new.id = mem->slot;
698 new.base_gfn = base_gfn;
699 new.npages = npages;
700 new.flags = mem->flags;
701
702 /* Disallow changing a memory slot's size. */
703 r = -EINVAL;
704 if (npages && old.npages && npages != old.npages)
705 goto out_free;
706
707 /* Check for overlaps */
708 r = -EEXIST;
709 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
710 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
711
712 if (s == memslot || !s->npages)
713 continue;
714 if (!((base_gfn + npages <= s->base_gfn) ||
715 (base_gfn >= s->base_gfn + s->npages)))
716 goto out_free;
717 }
718
719 /* Free page dirty bitmap if unneeded */
720 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
721 new.dirty_bitmap = NULL;
722
723 r = -ENOMEM;
724
725 /* Allocate if a slot is being created */
726 #ifndef CONFIG_S390
727 if (npages && !new.rmap) {
728 new.rmap = vzalloc(npages * sizeof(*new.rmap));
729
730 if (!new.rmap)
731 goto out_free;
732
733 new.user_alloc = user_alloc;
734 new.userspace_addr = mem->userspace_addr;
735 }
736 if (!npages)
737 goto skip_lpage;
738
739 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
740 unsigned long ugfn;
741 unsigned long j;
742 int lpages;
743 int level = i + 2;
744
745 /* Avoid unused variable warning if no large pages */
746 (void)level;
747
748 if (new.lpage_info[i])
749 continue;
750
751 lpages = 1 + ((base_gfn + npages - 1)
752 >> KVM_HPAGE_GFN_SHIFT(level));
753 lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
754
755 new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
756
757 if (!new.lpage_info[i])
758 goto out_free;
759
760 if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
761 new.lpage_info[i][0].write_count = 1;
762 if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
763 new.lpage_info[i][lpages - 1].write_count = 1;
764 ugfn = new.userspace_addr >> PAGE_SHIFT;
765 /*
766 * If the gfn and userspace address are not aligned wrt each
767 * other, or if explicitly asked to, disable large page
768 * support for this slot
769 */
770 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
771 !largepages_enabled)
772 for (j = 0; j < lpages; ++j)
773 new.lpage_info[i][j].write_count = 1;
774 }
775
776 skip_lpage:
777
778 /* Allocate page dirty bitmap if needed */
779 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
780 if (kvm_create_dirty_bitmap(&new) < 0)
781 goto out_free;
782 /* destroy any largepage mappings for dirty tracking */
783 }
784 #else /* not defined CONFIG_S390 */
785 new.user_alloc = user_alloc;
786 if (user_alloc)
787 new.userspace_addr = mem->userspace_addr;
788 #endif /* not defined CONFIG_S390 */
789
790 if (!npages) {
791 r = -ENOMEM;
792 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
793 GFP_KERNEL);
794 if (!slots)
795 goto out_free;
796 slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
797 update_memslots(slots, NULL);
798
799 old_memslots = kvm->memslots;
800 rcu_assign_pointer(kvm->memslots, slots);
801 synchronize_srcu_expedited(&kvm->srcu);
802 /* From this point no new shadow pages pointing to a deleted
803 * memslot will be created.
804 *
805 * validation of sp->gfn happens in:
806 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
807 * - kvm_is_visible_gfn (mmu_check_roots)
808 */
809 kvm_arch_flush_shadow(kvm);
810 kfree(old_memslots);
811 }
812
813 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
814 if (r)
815 goto out_free;
816
817 /* map the pages in iommu page table */
818 if (npages) {
819 r = kvm_iommu_map_pages(kvm, &new);
820 if (r)
821 goto out_free;
822 }
823
824 r = -ENOMEM;
825 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
826 GFP_KERNEL);
827 if (!slots)
828 goto out_free;
829
830 /* actual memory is freed via old in kvm_free_physmem_slot below */
831 if (!npages) {
832 new.rmap = NULL;
833 new.dirty_bitmap = NULL;
834 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
835 new.lpage_info[i] = NULL;
836 }
837
838 update_memslots(slots, &new);
839 old_memslots = kvm->memslots;
840 rcu_assign_pointer(kvm->memslots, slots);
841 synchronize_srcu_expedited(&kvm->srcu);
842
843 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
844
845 /*
846 * If the new memory slot is created, we need to clear all
847 * mmio sptes.
848 */
849 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
850 kvm_arch_flush_shadow(kvm);
851
852 kvm_free_physmem_slot(&old, &new);
853 kfree(old_memslots);
854
855 return 0;
856
857 out_free:
858 kvm_free_physmem_slot(&new, &old);
859 out:
860 return r;
861
862 }
863 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
864
865 int kvm_set_memory_region(struct kvm *kvm,
866 struct kvm_userspace_memory_region *mem,
867 int user_alloc)
868 {
869 int r;
870
871 mutex_lock(&kvm->slots_lock);
872 r = __kvm_set_memory_region(kvm, mem, user_alloc);
873 mutex_unlock(&kvm->slots_lock);
874 return r;
875 }
876 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
877
878 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
879 struct
880 kvm_userspace_memory_region *mem,
881 int user_alloc)
882 {
883 if (mem->slot >= KVM_MEMORY_SLOTS)
884 return -EINVAL;
885 return kvm_set_memory_region(kvm, mem, user_alloc);
886 }
887
888 int kvm_get_dirty_log(struct kvm *kvm,
889 struct kvm_dirty_log *log, int *is_dirty)
890 {
891 struct kvm_memory_slot *memslot;
892 int r, i;
893 unsigned long n;
894 unsigned long any = 0;
895
896 r = -EINVAL;
897 if (log->slot >= KVM_MEMORY_SLOTS)
898 goto out;
899
900 memslot = &kvm->memslots->memslots[log->slot];
901 r = -ENOENT;
902 if (!memslot->dirty_bitmap)
903 goto out;
904
905 n = kvm_dirty_bitmap_bytes(memslot);
906
907 for (i = 0; !any && i < n/sizeof(long); ++i)
908 any = memslot->dirty_bitmap[i];
909
910 r = -EFAULT;
911 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
912 goto out;
913
914 if (any)
915 *is_dirty = 1;
916
917 r = 0;
918 out:
919 return r;
920 }
921
922 void kvm_disable_largepages(void)
923 {
924 largepages_enabled = false;
925 }
926 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
927
928 int is_error_page(struct page *page)
929 {
930 return page == bad_page || page == hwpoison_page || page == fault_page;
931 }
932 EXPORT_SYMBOL_GPL(is_error_page);
933
934 int is_error_pfn(pfn_t pfn)
935 {
936 return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
937 }
938 EXPORT_SYMBOL_GPL(is_error_pfn);
939
940 int is_hwpoison_pfn(pfn_t pfn)
941 {
942 return pfn == hwpoison_pfn;
943 }
944 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
945
946 int is_fault_pfn(pfn_t pfn)
947 {
948 return pfn == fault_pfn;
949 }
950 EXPORT_SYMBOL_GPL(is_fault_pfn);
951
952 int is_noslot_pfn(pfn_t pfn)
953 {
954 return pfn == bad_pfn;
955 }
956 EXPORT_SYMBOL_GPL(is_noslot_pfn);
957
958 int is_invalid_pfn(pfn_t pfn)
959 {
960 return pfn == hwpoison_pfn || pfn == fault_pfn;
961 }
962 EXPORT_SYMBOL_GPL(is_invalid_pfn);
963
964 static inline unsigned long bad_hva(void)
965 {
966 return PAGE_OFFSET;
967 }
968
969 int kvm_is_error_hva(unsigned long addr)
970 {
971 return addr == bad_hva();
972 }
973 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
974
975 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
976 gfn_t gfn)
977 {
978 int i;
979
980 for (i = 0; i < slots->nmemslots; ++i) {
981 struct kvm_memory_slot *memslot = &slots->memslots[i];
982
983 if (gfn >= memslot->base_gfn
984 && gfn < memslot->base_gfn + memslot->npages)
985 return memslot;
986 }
987 return NULL;
988 }
989
990 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
991 {
992 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
993 }
994 EXPORT_SYMBOL_GPL(gfn_to_memslot);
995
996 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
997 {
998 int i;
999 struct kvm_memslots *slots = kvm_memslots(kvm);
1000
1001 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1002 struct kvm_memory_slot *memslot = &slots->memslots[i];
1003
1004 if (memslot->flags & KVM_MEMSLOT_INVALID)
1005 continue;
1006
1007 if (gfn >= memslot->base_gfn
1008 && gfn < memslot->base_gfn + memslot->npages)
1009 return 1;
1010 }
1011 return 0;
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1014
1015 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1016 {
1017 struct vm_area_struct *vma;
1018 unsigned long addr, size;
1019
1020 size = PAGE_SIZE;
1021
1022 addr = gfn_to_hva(kvm, gfn);
1023 if (kvm_is_error_hva(addr))
1024 return PAGE_SIZE;
1025
1026 down_read(&current->mm->mmap_sem);
1027 vma = find_vma(current->mm, addr);
1028 if (!vma)
1029 goto out;
1030
1031 size = vma_kernel_pagesize(vma);
1032
1033 out:
1034 up_read(&current->mm->mmap_sem);
1035
1036 return size;
1037 }
1038
1039 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1040 gfn_t *nr_pages)
1041 {
1042 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1043 return bad_hva();
1044
1045 if (nr_pages)
1046 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1047
1048 return gfn_to_hva_memslot(slot, gfn);
1049 }
1050
1051 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1052 {
1053 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1054 }
1055 EXPORT_SYMBOL_GPL(gfn_to_hva);
1056
1057 static pfn_t get_fault_pfn(void)
1058 {
1059 get_page(fault_page);
1060 return fault_pfn;
1061 }
1062
1063 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1064 unsigned long start, int write, struct page **page)
1065 {
1066 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1067
1068 if (write)
1069 flags |= FOLL_WRITE;
1070
1071 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1072 }
1073
1074 static inline int check_user_page_hwpoison(unsigned long addr)
1075 {
1076 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1077
1078 rc = __get_user_pages(current, current->mm, addr, 1,
1079 flags, NULL, NULL, NULL);
1080 return rc == -EHWPOISON;
1081 }
1082
1083 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1084 bool *async, bool write_fault, bool *writable)
1085 {
1086 struct page *page[1];
1087 int npages = 0;
1088 pfn_t pfn;
1089
1090 /* we can do it either atomically or asynchronously, not both */
1091 BUG_ON(atomic && async);
1092
1093 BUG_ON(!write_fault && !writable);
1094
1095 if (writable)
1096 *writable = true;
1097
1098 if (atomic || async)
1099 npages = __get_user_pages_fast(addr, 1, 1, page);
1100
1101 if (unlikely(npages != 1) && !atomic) {
1102 might_sleep();
1103
1104 if (writable)
1105 *writable = write_fault;
1106
1107 if (async) {
1108 down_read(&current->mm->mmap_sem);
1109 npages = get_user_page_nowait(current, current->mm,
1110 addr, write_fault, page);
1111 up_read(&current->mm->mmap_sem);
1112 } else
1113 npages = get_user_pages_fast(addr, 1, write_fault,
1114 page);
1115
1116 /* map read fault as writable if possible */
1117 if (unlikely(!write_fault) && npages == 1) {
1118 struct page *wpage[1];
1119
1120 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1121 if (npages == 1) {
1122 *writable = true;
1123 put_page(page[0]);
1124 page[0] = wpage[0];
1125 }
1126 npages = 1;
1127 }
1128 }
1129
1130 if (unlikely(npages != 1)) {
1131 struct vm_area_struct *vma;
1132
1133 if (atomic)
1134 return get_fault_pfn();
1135
1136 down_read(&current->mm->mmap_sem);
1137 if (npages == -EHWPOISON ||
1138 (!async && check_user_page_hwpoison(addr))) {
1139 up_read(&current->mm->mmap_sem);
1140 get_page(hwpoison_page);
1141 return page_to_pfn(hwpoison_page);
1142 }
1143
1144 vma = find_vma_intersection(current->mm, addr, addr+1);
1145
1146 if (vma == NULL)
1147 pfn = get_fault_pfn();
1148 else if ((vma->vm_flags & VM_PFNMAP)) {
1149 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1150 vma->vm_pgoff;
1151 BUG_ON(!kvm_is_mmio_pfn(pfn));
1152 } else {
1153 if (async && (vma->vm_flags & VM_WRITE))
1154 *async = true;
1155 pfn = get_fault_pfn();
1156 }
1157 up_read(&current->mm->mmap_sem);
1158 } else
1159 pfn = page_to_pfn(page[0]);
1160
1161 return pfn;
1162 }
1163
1164 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1165 {
1166 return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1167 }
1168 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1169
1170 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1171 bool write_fault, bool *writable)
1172 {
1173 unsigned long addr;
1174
1175 if (async)
1176 *async = false;
1177
1178 addr = gfn_to_hva(kvm, gfn);
1179 if (kvm_is_error_hva(addr)) {
1180 get_page(bad_page);
1181 return page_to_pfn(bad_page);
1182 }
1183
1184 return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1185 }
1186
1187 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1188 {
1189 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1190 }
1191 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1192
1193 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1194 bool write_fault, bool *writable)
1195 {
1196 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1197 }
1198 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1199
1200 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1201 {
1202 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1203 }
1204 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1205
1206 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1207 bool *writable)
1208 {
1209 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1210 }
1211 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1212
1213 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1214 struct kvm_memory_slot *slot, gfn_t gfn)
1215 {
1216 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1217 return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1218 }
1219
1220 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1221 int nr_pages)
1222 {
1223 unsigned long addr;
1224 gfn_t entry;
1225
1226 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1227 if (kvm_is_error_hva(addr))
1228 return -1;
1229
1230 if (entry < nr_pages)
1231 return 0;
1232
1233 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1234 }
1235 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1236
1237 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1238 {
1239 pfn_t pfn;
1240
1241 pfn = gfn_to_pfn(kvm, gfn);
1242 if (!kvm_is_mmio_pfn(pfn))
1243 return pfn_to_page(pfn);
1244
1245 WARN_ON(kvm_is_mmio_pfn(pfn));
1246
1247 get_page(bad_page);
1248 return bad_page;
1249 }
1250
1251 EXPORT_SYMBOL_GPL(gfn_to_page);
1252
1253 void kvm_release_page_clean(struct page *page)
1254 {
1255 kvm_release_pfn_clean(page_to_pfn(page));
1256 }
1257 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1258
1259 void kvm_release_pfn_clean(pfn_t pfn)
1260 {
1261 if (!kvm_is_mmio_pfn(pfn))
1262 put_page(pfn_to_page(pfn));
1263 }
1264 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1265
1266 void kvm_release_page_dirty(struct page *page)
1267 {
1268 kvm_release_pfn_dirty(page_to_pfn(page));
1269 }
1270 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1271
1272 void kvm_release_pfn_dirty(pfn_t pfn)
1273 {
1274 kvm_set_pfn_dirty(pfn);
1275 kvm_release_pfn_clean(pfn);
1276 }
1277 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1278
1279 void kvm_set_page_dirty(struct page *page)
1280 {
1281 kvm_set_pfn_dirty(page_to_pfn(page));
1282 }
1283 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1284
1285 void kvm_set_pfn_dirty(pfn_t pfn)
1286 {
1287 if (!kvm_is_mmio_pfn(pfn)) {
1288 struct page *page = pfn_to_page(pfn);
1289 if (!PageReserved(page))
1290 SetPageDirty(page);
1291 }
1292 }
1293 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1294
1295 void kvm_set_pfn_accessed(pfn_t pfn)
1296 {
1297 if (!kvm_is_mmio_pfn(pfn))
1298 mark_page_accessed(pfn_to_page(pfn));
1299 }
1300 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1301
1302 void kvm_get_pfn(pfn_t pfn)
1303 {
1304 if (!kvm_is_mmio_pfn(pfn))
1305 get_page(pfn_to_page(pfn));
1306 }
1307 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1308
1309 static int next_segment(unsigned long len, int offset)
1310 {
1311 if (len > PAGE_SIZE - offset)
1312 return PAGE_SIZE - offset;
1313 else
1314 return len;
1315 }
1316
1317 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1318 int len)
1319 {
1320 int r;
1321 unsigned long addr;
1322
1323 addr = gfn_to_hva(kvm, gfn);
1324 if (kvm_is_error_hva(addr))
1325 return -EFAULT;
1326 r = __copy_from_user(data, (void __user *)addr + offset, len);
1327 if (r)
1328 return -EFAULT;
1329 return 0;
1330 }
1331 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1332
1333 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1334 {
1335 gfn_t gfn = gpa >> PAGE_SHIFT;
1336 int seg;
1337 int offset = offset_in_page(gpa);
1338 int ret;
1339
1340 while ((seg = next_segment(len, offset)) != 0) {
1341 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1342 if (ret < 0)
1343 return ret;
1344 offset = 0;
1345 len -= seg;
1346 data += seg;
1347 ++gfn;
1348 }
1349 return 0;
1350 }
1351 EXPORT_SYMBOL_GPL(kvm_read_guest);
1352
1353 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1354 unsigned long len)
1355 {
1356 int r;
1357 unsigned long addr;
1358 gfn_t gfn = gpa >> PAGE_SHIFT;
1359 int offset = offset_in_page(gpa);
1360
1361 addr = gfn_to_hva(kvm, gfn);
1362 if (kvm_is_error_hva(addr))
1363 return -EFAULT;
1364 pagefault_disable();
1365 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1366 pagefault_enable();
1367 if (r)
1368 return -EFAULT;
1369 return 0;
1370 }
1371 EXPORT_SYMBOL(kvm_read_guest_atomic);
1372
1373 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1374 int offset, int len)
1375 {
1376 int r;
1377 unsigned long addr;
1378
1379 addr = gfn_to_hva(kvm, gfn);
1380 if (kvm_is_error_hva(addr))
1381 return -EFAULT;
1382 r = __copy_to_user((void __user *)addr + offset, data, len);
1383 if (r)
1384 return -EFAULT;
1385 mark_page_dirty(kvm, gfn);
1386 return 0;
1387 }
1388 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1389
1390 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1391 unsigned long len)
1392 {
1393 gfn_t gfn = gpa >> PAGE_SHIFT;
1394 int seg;
1395 int offset = offset_in_page(gpa);
1396 int ret;
1397
1398 while ((seg = next_segment(len, offset)) != 0) {
1399 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1400 if (ret < 0)
1401 return ret;
1402 offset = 0;
1403 len -= seg;
1404 data += seg;
1405 ++gfn;
1406 }
1407 return 0;
1408 }
1409
1410 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1411 gpa_t gpa)
1412 {
1413 struct kvm_memslots *slots = kvm_memslots(kvm);
1414 int offset = offset_in_page(gpa);
1415 gfn_t gfn = gpa >> PAGE_SHIFT;
1416
1417 ghc->gpa = gpa;
1418 ghc->generation = slots->generation;
1419 ghc->memslot = __gfn_to_memslot(slots, gfn);
1420 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1421 if (!kvm_is_error_hva(ghc->hva))
1422 ghc->hva += offset;
1423 else
1424 return -EFAULT;
1425
1426 return 0;
1427 }
1428 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1429
1430 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1431 void *data, unsigned long len)
1432 {
1433 struct kvm_memslots *slots = kvm_memslots(kvm);
1434 int r;
1435
1436 if (slots->generation != ghc->generation)
1437 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1438
1439 if (kvm_is_error_hva(ghc->hva))
1440 return -EFAULT;
1441
1442 r = __copy_to_user((void __user *)ghc->hva, data, len);
1443 if (r)
1444 return -EFAULT;
1445 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1446
1447 return 0;
1448 }
1449 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1450
1451 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1452 void *data, unsigned long len)
1453 {
1454 struct kvm_memslots *slots = kvm_memslots(kvm);
1455 int r;
1456
1457 if (slots->generation != ghc->generation)
1458 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1459
1460 if (kvm_is_error_hva(ghc->hva))
1461 return -EFAULT;
1462
1463 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1464 if (r)
1465 return -EFAULT;
1466
1467 return 0;
1468 }
1469 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1470
1471 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1472 {
1473 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1474 offset, len);
1475 }
1476 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1477
1478 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1479 {
1480 gfn_t gfn = gpa >> PAGE_SHIFT;
1481 int seg;
1482 int offset = offset_in_page(gpa);
1483 int ret;
1484
1485 while ((seg = next_segment(len, offset)) != 0) {
1486 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1487 if (ret < 0)
1488 return ret;
1489 offset = 0;
1490 len -= seg;
1491 ++gfn;
1492 }
1493 return 0;
1494 }
1495 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1496
1497 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1498 gfn_t gfn)
1499 {
1500 if (memslot && memslot->dirty_bitmap) {
1501 unsigned long rel_gfn = gfn - memslot->base_gfn;
1502
1503 if (!__test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap))
1504 memslot->nr_dirty_pages++;
1505 }
1506 }
1507
1508 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1509 {
1510 struct kvm_memory_slot *memslot;
1511
1512 memslot = gfn_to_memslot(kvm, gfn);
1513 mark_page_dirty_in_slot(kvm, memslot, gfn);
1514 }
1515
1516 /*
1517 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1518 */
1519 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1520 {
1521 DEFINE_WAIT(wait);
1522
1523 for (;;) {
1524 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1525
1526 if (kvm_arch_vcpu_runnable(vcpu)) {
1527 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1528 break;
1529 }
1530 if (kvm_cpu_has_pending_timer(vcpu))
1531 break;
1532 if (signal_pending(current))
1533 break;
1534
1535 schedule();
1536 }
1537
1538 finish_wait(&vcpu->wq, &wait);
1539 }
1540
1541 void kvm_resched(struct kvm_vcpu *vcpu)
1542 {
1543 if (!need_resched())
1544 return;
1545 cond_resched();
1546 }
1547 EXPORT_SYMBOL_GPL(kvm_resched);
1548
1549 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1550 {
1551 struct kvm *kvm = me->kvm;
1552 struct kvm_vcpu *vcpu;
1553 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1554 int yielded = 0;
1555 int pass;
1556 int i;
1557
1558 /*
1559 * We boost the priority of a VCPU that is runnable but not
1560 * currently running, because it got preempted by something
1561 * else and called schedule in __vcpu_run. Hopefully that
1562 * VCPU is holding the lock that we need and will release it.
1563 * We approximate round-robin by starting at the last boosted VCPU.
1564 */
1565 for (pass = 0; pass < 2 && !yielded; pass++) {
1566 kvm_for_each_vcpu(i, vcpu, kvm) {
1567 struct task_struct *task = NULL;
1568 struct pid *pid;
1569 if (!pass && i < last_boosted_vcpu) {
1570 i = last_boosted_vcpu;
1571 continue;
1572 } else if (pass && i > last_boosted_vcpu)
1573 break;
1574 if (vcpu == me)
1575 continue;
1576 if (waitqueue_active(&vcpu->wq))
1577 continue;
1578 rcu_read_lock();
1579 pid = rcu_dereference(vcpu->pid);
1580 if (pid)
1581 task = get_pid_task(vcpu->pid, PIDTYPE_PID);
1582 rcu_read_unlock();
1583 if (!task)
1584 continue;
1585 if (task->flags & PF_VCPU) {
1586 put_task_struct(task);
1587 continue;
1588 }
1589 if (yield_to(task, 1)) {
1590 put_task_struct(task);
1591 kvm->last_boosted_vcpu = i;
1592 yielded = 1;
1593 break;
1594 }
1595 put_task_struct(task);
1596 }
1597 }
1598 }
1599 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1600
1601 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1602 {
1603 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1604 struct page *page;
1605
1606 if (vmf->pgoff == 0)
1607 page = virt_to_page(vcpu->run);
1608 #ifdef CONFIG_X86
1609 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1610 page = virt_to_page(vcpu->arch.pio_data);
1611 #endif
1612 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1613 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1614 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1615 #endif
1616 else
1617 return VM_FAULT_SIGBUS;
1618 get_page(page);
1619 vmf->page = page;
1620 return 0;
1621 }
1622
1623 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1624 .fault = kvm_vcpu_fault,
1625 };
1626
1627 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1628 {
1629 vma->vm_ops = &kvm_vcpu_vm_ops;
1630 return 0;
1631 }
1632
1633 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1634 {
1635 struct kvm_vcpu *vcpu = filp->private_data;
1636
1637 kvm_put_kvm(vcpu->kvm);
1638 return 0;
1639 }
1640
1641 static struct file_operations kvm_vcpu_fops = {
1642 .release = kvm_vcpu_release,
1643 .unlocked_ioctl = kvm_vcpu_ioctl,
1644 #ifdef CONFIG_COMPAT
1645 .compat_ioctl = kvm_vcpu_compat_ioctl,
1646 #endif
1647 .mmap = kvm_vcpu_mmap,
1648 .llseek = noop_llseek,
1649 };
1650
1651 /*
1652 * Allocates an inode for the vcpu.
1653 */
1654 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1655 {
1656 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1657 }
1658
1659 /*
1660 * Creates some virtual cpus. Good luck creating more than one.
1661 */
1662 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1663 {
1664 int r;
1665 struct kvm_vcpu *vcpu, *v;
1666
1667 vcpu = kvm_arch_vcpu_create(kvm, id);
1668 if (IS_ERR(vcpu))
1669 return PTR_ERR(vcpu);
1670
1671 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1672
1673 r = kvm_arch_vcpu_setup(vcpu);
1674 if (r)
1675 goto vcpu_destroy;
1676
1677 mutex_lock(&kvm->lock);
1678 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1679 r = -EINVAL;
1680 goto unlock_vcpu_destroy;
1681 }
1682
1683 kvm_for_each_vcpu(r, v, kvm)
1684 if (v->vcpu_id == id) {
1685 r = -EEXIST;
1686 goto unlock_vcpu_destroy;
1687 }
1688
1689 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1690
1691 /* Now it's all set up, let userspace reach it */
1692 kvm_get_kvm(kvm);
1693 r = create_vcpu_fd(vcpu);
1694 if (r < 0) {
1695 kvm_put_kvm(kvm);
1696 goto unlock_vcpu_destroy;
1697 }
1698
1699 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1700 smp_wmb();
1701 atomic_inc(&kvm->online_vcpus);
1702
1703 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1704 if (kvm->bsp_vcpu_id == id)
1705 kvm->bsp_vcpu = vcpu;
1706 #endif
1707 mutex_unlock(&kvm->lock);
1708 return r;
1709
1710 unlock_vcpu_destroy:
1711 mutex_unlock(&kvm->lock);
1712 vcpu_destroy:
1713 kvm_arch_vcpu_destroy(vcpu);
1714 return r;
1715 }
1716
1717 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1718 {
1719 if (sigset) {
1720 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1721 vcpu->sigset_active = 1;
1722 vcpu->sigset = *sigset;
1723 } else
1724 vcpu->sigset_active = 0;
1725 return 0;
1726 }
1727
1728 static long kvm_vcpu_ioctl(struct file *filp,
1729 unsigned int ioctl, unsigned long arg)
1730 {
1731 struct kvm_vcpu *vcpu = filp->private_data;
1732 void __user *argp = (void __user *)arg;
1733 int r;
1734 struct kvm_fpu *fpu = NULL;
1735 struct kvm_sregs *kvm_sregs = NULL;
1736
1737 if (vcpu->kvm->mm != current->mm)
1738 return -EIO;
1739
1740 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1741 /*
1742 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1743 * so vcpu_load() would break it.
1744 */
1745 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1746 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1747 #endif
1748
1749
1750 vcpu_load(vcpu);
1751 switch (ioctl) {
1752 case KVM_RUN:
1753 r = -EINVAL;
1754 if (arg)
1755 goto out;
1756 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1757 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1758 break;
1759 case KVM_GET_REGS: {
1760 struct kvm_regs *kvm_regs;
1761
1762 r = -ENOMEM;
1763 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1764 if (!kvm_regs)
1765 goto out;
1766 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1767 if (r)
1768 goto out_free1;
1769 r = -EFAULT;
1770 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1771 goto out_free1;
1772 r = 0;
1773 out_free1:
1774 kfree(kvm_regs);
1775 break;
1776 }
1777 case KVM_SET_REGS: {
1778 struct kvm_regs *kvm_regs;
1779
1780 r = -ENOMEM;
1781 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1782 if (!kvm_regs)
1783 goto out;
1784 r = -EFAULT;
1785 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1786 goto out_free2;
1787 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1788 if (r)
1789 goto out_free2;
1790 r = 0;
1791 out_free2:
1792 kfree(kvm_regs);
1793 break;
1794 }
1795 case KVM_GET_SREGS: {
1796 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1797 r = -ENOMEM;
1798 if (!kvm_sregs)
1799 goto out;
1800 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1801 if (r)
1802 goto out;
1803 r = -EFAULT;
1804 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1805 goto out;
1806 r = 0;
1807 break;
1808 }
1809 case KVM_SET_SREGS: {
1810 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1811 r = -ENOMEM;
1812 if (!kvm_sregs)
1813 goto out;
1814 r = -EFAULT;
1815 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1816 goto out;
1817 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1818 if (r)
1819 goto out;
1820 r = 0;
1821 break;
1822 }
1823 case KVM_GET_MP_STATE: {
1824 struct kvm_mp_state mp_state;
1825
1826 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1827 if (r)
1828 goto out;
1829 r = -EFAULT;
1830 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1831 goto out;
1832 r = 0;
1833 break;
1834 }
1835 case KVM_SET_MP_STATE: {
1836 struct kvm_mp_state mp_state;
1837
1838 r = -EFAULT;
1839 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1840 goto out;
1841 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1842 if (r)
1843 goto out;
1844 r = 0;
1845 break;
1846 }
1847 case KVM_TRANSLATE: {
1848 struct kvm_translation tr;
1849
1850 r = -EFAULT;
1851 if (copy_from_user(&tr, argp, sizeof tr))
1852 goto out;
1853 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1854 if (r)
1855 goto out;
1856 r = -EFAULT;
1857 if (copy_to_user(argp, &tr, sizeof tr))
1858 goto out;
1859 r = 0;
1860 break;
1861 }
1862 case KVM_SET_GUEST_DEBUG: {
1863 struct kvm_guest_debug dbg;
1864
1865 r = -EFAULT;
1866 if (copy_from_user(&dbg, argp, sizeof dbg))
1867 goto out;
1868 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1869 if (r)
1870 goto out;
1871 r = 0;
1872 break;
1873 }
1874 case KVM_SET_SIGNAL_MASK: {
1875 struct kvm_signal_mask __user *sigmask_arg = argp;
1876 struct kvm_signal_mask kvm_sigmask;
1877 sigset_t sigset, *p;
1878
1879 p = NULL;
1880 if (argp) {
1881 r = -EFAULT;
1882 if (copy_from_user(&kvm_sigmask, argp,
1883 sizeof kvm_sigmask))
1884 goto out;
1885 r = -EINVAL;
1886 if (kvm_sigmask.len != sizeof sigset)
1887 goto out;
1888 r = -EFAULT;
1889 if (copy_from_user(&sigset, sigmask_arg->sigset,
1890 sizeof sigset))
1891 goto out;
1892 p = &sigset;
1893 }
1894 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1895 break;
1896 }
1897 case KVM_GET_FPU: {
1898 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1899 r = -ENOMEM;
1900 if (!fpu)
1901 goto out;
1902 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1903 if (r)
1904 goto out;
1905 r = -EFAULT;
1906 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1907 goto out;
1908 r = 0;
1909 break;
1910 }
1911 case KVM_SET_FPU: {
1912 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1913 r = -ENOMEM;
1914 if (!fpu)
1915 goto out;
1916 r = -EFAULT;
1917 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1918 goto out;
1919 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1920 if (r)
1921 goto out;
1922 r = 0;
1923 break;
1924 }
1925 default:
1926 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1927 }
1928 out:
1929 vcpu_put(vcpu);
1930 kfree(fpu);
1931 kfree(kvm_sregs);
1932 return r;
1933 }
1934
1935 #ifdef CONFIG_COMPAT
1936 static long kvm_vcpu_compat_ioctl(struct file *filp,
1937 unsigned int ioctl, unsigned long arg)
1938 {
1939 struct kvm_vcpu *vcpu = filp->private_data;
1940 void __user *argp = compat_ptr(arg);
1941 int r;
1942
1943 if (vcpu->kvm->mm != current->mm)
1944 return -EIO;
1945
1946 switch (ioctl) {
1947 case KVM_SET_SIGNAL_MASK: {
1948 struct kvm_signal_mask __user *sigmask_arg = argp;
1949 struct kvm_signal_mask kvm_sigmask;
1950 compat_sigset_t csigset;
1951 sigset_t sigset;
1952
1953 if (argp) {
1954 r = -EFAULT;
1955 if (copy_from_user(&kvm_sigmask, argp,
1956 sizeof kvm_sigmask))
1957 goto out;
1958 r = -EINVAL;
1959 if (kvm_sigmask.len != sizeof csigset)
1960 goto out;
1961 r = -EFAULT;
1962 if (copy_from_user(&csigset, sigmask_arg->sigset,
1963 sizeof csigset))
1964 goto out;
1965 }
1966 sigset_from_compat(&sigset, &csigset);
1967 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1968 break;
1969 }
1970 default:
1971 r = kvm_vcpu_ioctl(filp, ioctl, arg);
1972 }
1973
1974 out:
1975 return r;
1976 }
1977 #endif
1978
1979 static long kvm_vm_ioctl(struct file *filp,
1980 unsigned int ioctl, unsigned long arg)
1981 {
1982 struct kvm *kvm = filp->private_data;
1983 void __user *argp = (void __user *)arg;
1984 int r;
1985
1986 if (kvm->mm != current->mm)
1987 return -EIO;
1988 switch (ioctl) {
1989 case KVM_CREATE_VCPU:
1990 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1991 if (r < 0)
1992 goto out;
1993 break;
1994 case KVM_SET_USER_MEMORY_REGION: {
1995 struct kvm_userspace_memory_region kvm_userspace_mem;
1996
1997 r = -EFAULT;
1998 if (copy_from_user(&kvm_userspace_mem, argp,
1999 sizeof kvm_userspace_mem))
2000 goto out;
2001
2002 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2003 if (r)
2004 goto out;
2005 break;
2006 }
2007 case KVM_GET_DIRTY_LOG: {
2008 struct kvm_dirty_log log;
2009
2010 r = -EFAULT;
2011 if (copy_from_user(&log, argp, sizeof log))
2012 goto out;
2013 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2014 if (r)
2015 goto out;
2016 break;
2017 }
2018 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2019 case KVM_REGISTER_COALESCED_MMIO: {
2020 struct kvm_coalesced_mmio_zone zone;
2021 r = -EFAULT;
2022 if (copy_from_user(&zone, argp, sizeof zone))
2023 goto out;
2024 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2025 if (r)
2026 goto out;
2027 r = 0;
2028 break;
2029 }
2030 case KVM_UNREGISTER_COALESCED_MMIO: {
2031 struct kvm_coalesced_mmio_zone zone;
2032 r = -EFAULT;
2033 if (copy_from_user(&zone, argp, sizeof zone))
2034 goto out;
2035 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2036 if (r)
2037 goto out;
2038 r = 0;
2039 break;
2040 }
2041 #endif
2042 case KVM_IRQFD: {
2043 struct kvm_irqfd data;
2044
2045 r = -EFAULT;
2046 if (copy_from_user(&data, argp, sizeof data))
2047 goto out;
2048 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2049 break;
2050 }
2051 case KVM_IOEVENTFD: {
2052 struct kvm_ioeventfd data;
2053
2054 r = -EFAULT;
2055 if (copy_from_user(&data, argp, sizeof data))
2056 goto out;
2057 r = kvm_ioeventfd(kvm, &data);
2058 break;
2059 }
2060 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2061 case KVM_SET_BOOT_CPU_ID:
2062 r = 0;
2063 mutex_lock(&kvm->lock);
2064 if (atomic_read(&kvm->online_vcpus) != 0)
2065 r = -EBUSY;
2066 else
2067 kvm->bsp_vcpu_id = arg;
2068 mutex_unlock(&kvm->lock);
2069 break;
2070 #endif
2071 default:
2072 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2073 if (r == -ENOTTY)
2074 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2075 }
2076 out:
2077 return r;
2078 }
2079
2080 #ifdef CONFIG_COMPAT
2081 struct compat_kvm_dirty_log {
2082 __u32 slot;
2083 __u32 padding1;
2084 union {
2085 compat_uptr_t dirty_bitmap; /* one bit per page */
2086 __u64 padding2;
2087 };
2088 };
2089
2090 static long kvm_vm_compat_ioctl(struct file *filp,
2091 unsigned int ioctl, unsigned long arg)
2092 {
2093 struct kvm *kvm = filp->private_data;
2094 int r;
2095
2096 if (kvm->mm != current->mm)
2097 return -EIO;
2098 switch (ioctl) {
2099 case KVM_GET_DIRTY_LOG: {
2100 struct compat_kvm_dirty_log compat_log;
2101 struct kvm_dirty_log log;
2102
2103 r = -EFAULT;
2104 if (copy_from_user(&compat_log, (void __user *)arg,
2105 sizeof(compat_log)))
2106 goto out;
2107 log.slot = compat_log.slot;
2108 log.padding1 = compat_log.padding1;
2109 log.padding2 = compat_log.padding2;
2110 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2111
2112 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2113 if (r)
2114 goto out;
2115 break;
2116 }
2117 default:
2118 r = kvm_vm_ioctl(filp, ioctl, arg);
2119 }
2120
2121 out:
2122 return r;
2123 }
2124 #endif
2125
2126 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2127 {
2128 struct page *page[1];
2129 unsigned long addr;
2130 int npages;
2131 gfn_t gfn = vmf->pgoff;
2132 struct kvm *kvm = vma->vm_file->private_data;
2133
2134 addr = gfn_to_hva(kvm, gfn);
2135 if (kvm_is_error_hva(addr))
2136 return VM_FAULT_SIGBUS;
2137
2138 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2139 NULL);
2140 if (unlikely(npages != 1))
2141 return VM_FAULT_SIGBUS;
2142
2143 vmf->page = page[0];
2144 return 0;
2145 }
2146
2147 static const struct vm_operations_struct kvm_vm_vm_ops = {
2148 .fault = kvm_vm_fault,
2149 };
2150
2151 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2152 {
2153 vma->vm_ops = &kvm_vm_vm_ops;
2154 return 0;
2155 }
2156
2157 static struct file_operations kvm_vm_fops = {
2158 .release = kvm_vm_release,
2159 .unlocked_ioctl = kvm_vm_ioctl,
2160 #ifdef CONFIG_COMPAT
2161 .compat_ioctl = kvm_vm_compat_ioctl,
2162 #endif
2163 .mmap = kvm_vm_mmap,
2164 .llseek = noop_llseek,
2165 };
2166
2167 static int kvm_dev_ioctl_create_vm(void)
2168 {
2169 int r;
2170 struct kvm *kvm;
2171
2172 kvm = kvm_create_vm();
2173 if (IS_ERR(kvm))
2174 return PTR_ERR(kvm);
2175 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2176 r = kvm_coalesced_mmio_init(kvm);
2177 if (r < 0) {
2178 kvm_put_kvm(kvm);
2179 return r;
2180 }
2181 #endif
2182 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2183 if (r < 0)
2184 kvm_put_kvm(kvm);
2185
2186 return r;
2187 }
2188
2189 static long kvm_dev_ioctl_check_extension_generic(long arg)
2190 {
2191 switch (arg) {
2192 case KVM_CAP_USER_MEMORY:
2193 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2194 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2195 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2196 case KVM_CAP_SET_BOOT_CPU_ID:
2197 #endif
2198 case KVM_CAP_INTERNAL_ERROR_DATA:
2199 return 1;
2200 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2201 case KVM_CAP_IRQ_ROUTING:
2202 return KVM_MAX_IRQ_ROUTES;
2203 #endif
2204 default:
2205 break;
2206 }
2207 return kvm_dev_ioctl_check_extension(arg);
2208 }
2209
2210 static long kvm_dev_ioctl(struct file *filp,
2211 unsigned int ioctl, unsigned long arg)
2212 {
2213 long r = -EINVAL;
2214
2215 switch (ioctl) {
2216 case KVM_GET_API_VERSION:
2217 r = -EINVAL;
2218 if (arg)
2219 goto out;
2220 r = KVM_API_VERSION;
2221 break;
2222 case KVM_CREATE_VM:
2223 r = -EINVAL;
2224 if (arg)
2225 goto out;
2226 r = kvm_dev_ioctl_create_vm();
2227 break;
2228 case KVM_CHECK_EXTENSION:
2229 r = kvm_dev_ioctl_check_extension_generic(arg);
2230 break;
2231 case KVM_GET_VCPU_MMAP_SIZE:
2232 r = -EINVAL;
2233 if (arg)
2234 goto out;
2235 r = PAGE_SIZE; /* struct kvm_run */
2236 #ifdef CONFIG_X86
2237 r += PAGE_SIZE; /* pio data page */
2238 #endif
2239 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2240 r += PAGE_SIZE; /* coalesced mmio ring page */
2241 #endif
2242 break;
2243 case KVM_TRACE_ENABLE:
2244 case KVM_TRACE_PAUSE:
2245 case KVM_TRACE_DISABLE:
2246 r = -EOPNOTSUPP;
2247 break;
2248 default:
2249 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2250 }
2251 out:
2252 return r;
2253 }
2254
2255 static struct file_operations kvm_chardev_ops = {
2256 .unlocked_ioctl = kvm_dev_ioctl,
2257 .compat_ioctl = kvm_dev_ioctl,
2258 .llseek = noop_llseek,
2259 };
2260
2261 static struct miscdevice kvm_dev = {
2262 KVM_MINOR,
2263 "kvm",
2264 &kvm_chardev_ops,
2265 };
2266
2267 static void hardware_enable_nolock(void *junk)
2268 {
2269 int cpu = raw_smp_processor_id();
2270 int r;
2271
2272 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2273 return;
2274
2275 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2276
2277 r = kvm_arch_hardware_enable(NULL);
2278
2279 if (r) {
2280 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2281 atomic_inc(&hardware_enable_failed);
2282 printk(KERN_INFO "kvm: enabling virtualization on "
2283 "CPU%d failed\n", cpu);
2284 }
2285 }
2286
2287 static void hardware_enable(void *junk)
2288 {
2289 raw_spin_lock(&kvm_lock);
2290 hardware_enable_nolock(junk);
2291 raw_spin_unlock(&kvm_lock);
2292 }
2293
2294 static void hardware_disable_nolock(void *junk)
2295 {
2296 int cpu = raw_smp_processor_id();
2297
2298 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2299 return;
2300 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2301 kvm_arch_hardware_disable(NULL);
2302 }
2303
2304 static void hardware_disable(void *junk)
2305 {
2306 raw_spin_lock(&kvm_lock);
2307 hardware_disable_nolock(junk);
2308 raw_spin_unlock(&kvm_lock);
2309 }
2310
2311 static void hardware_disable_all_nolock(void)
2312 {
2313 BUG_ON(!kvm_usage_count);
2314
2315 kvm_usage_count--;
2316 if (!kvm_usage_count)
2317 on_each_cpu(hardware_disable_nolock, NULL, 1);
2318 }
2319
2320 static void hardware_disable_all(void)
2321 {
2322 raw_spin_lock(&kvm_lock);
2323 hardware_disable_all_nolock();
2324 raw_spin_unlock(&kvm_lock);
2325 }
2326
2327 static int hardware_enable_all(void)
2328 {
2329 int r = 0;
2330
2331 raw_spin_lock(&kvm_lock);
2332
2333 kvm_usage_count++;
2334 if (kvm_usage_count == 1) {
2335 atomic_set(&hardware_enable_failed, 0);
2336 on_each_cpu(hardware_enable_nolock, NULL, 1);
2337
2338 if (atomic_read(&hardware_enable_failed)) {
2339 hardware_disable_all_nolock();
2340 r = -EBUSY;
2341 }
2342 }
2343
2344 raw_spin_unlock(&kvm_lock);
2345
2346 return r;
2347 }
2348
2349 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2350 void *v)
2351 {
2352 int cpu = (long)v;
2353
2354 if (!kvm_usage_count)
2355 return NOTIFY_OK;
2356
2357 val &= ~CPU_TASKS_FROZEN;
2358 switch (val) {
2359 case CPU_DYING:
2360 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2361 cpu);
2362 hardware_disable(NULL);
2363 break;
2364 case CPU_STARTING:
2365 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2366 cpu);
2367 hardware_enable(NULL);
2368 break;
2369 }
2370 return NOTIFY_OK;
2371 }
2372
2373
2374 asmlinkage void kvm_spurious_fault(void)
2375 {
2376 /* Fault while not rebooting. We want the trace. */
2377 BUG();
2378 }
2379 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2380
2381 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2382 void *v)
2383 {
2384 /*
2385 * Some (well, at least mine) BIOSes hang on reboot if
2386 * in vmx root mode.
2387 *
2388 * And Intel TXT required VMX off for all cpu when system shutdown.
2389 */
2390 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2391 kvm_rebooting = true;
2392 on_each_cpu(hardware_disable_nolock, NULL, 1);
2393 return NOTIFY_OK;
2394 }
2395
2396 static struct notifier_block kvm_reboot_notifier = {
2397 .notifier_call = kvm_reboot,
2398 .priority = 0,
2399 };
2400
2401 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2402 {
2403 int i;
2404
2405 for (i = 0; i < bus->dev_count; i++) {
2406 struct kvm_io_device *pos = bus->range[i].dev;
2407
2408 kvm_iodevice_destructor(pos);
2409 }
2410 kfree(bus);
2411 }
2412
2413 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2414 {
2415 const struct kvm_io_range *r1 = p1;
2416 const struct kvm_io_range *r2 = p2;
2417
2418 if (r1->addr < r2->addr)
2419 return -1;
2420 if (r1->addr + r1->len > r2->addr + r2->len)
2421 return 1;
2422 return 0;
2423 }
2424
2425 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2426 gpa_t addr, int len)
2427 {
2428 if (bus->dev_count == NR_IOBUS_DEVS)
2429 return -ENOSPC;
2430
2431 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2432 .addr = addr,
2433 .len = len,
2434 .dev = dev,
2435 };
2436
2437 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2438 kvm_io_bus_sort_cmp, NULL);
2439
2440 return 0;
2441 }
2442
2443 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2444 gpa_t addr, int len)
2445 {
2446 struct kvm_io_range *range, key;
2447 int off;
2448
2449 key = (struct kvm_io_range) {
2450 .addr = addr,
2451 .len = len,
2452 };
2453
2454 range = bsearch(&key, bus->range, bus->dev_count,
2455 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2456 if (range == NULL)
2457 return -ENOENT;
2458
2459 off = range - bus->range;
2460
2461 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2462 off--;
2463
2464 return off;
2465 }
2466
2467 /* kvm_io_bus_write - called under kvm->slots_lock */
2468 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2469 int len, const void *val)
2470 {
2471 int idx;
2472 struct kvm_io_bus *bus;
2473 struct kvm_io_range range;
2474
2475 range = (struct kvm_io_range) {
2476 .addr = addr,
2477 .len = len,
2478 };
2479
2480 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2481 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2482 if (idx < 0)
2483 return -EOPNOTSUPP;
2484
2485 while (idx < bus->dev_count &&
2486 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2487 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2488 return 0;
2489 idx++;
2490 }
2491
2492 return -EOPNOTSUPP;
2493 }
2494
2495 /* kvm_io_bus_read - called under kvm->slots_lock */
2496 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2497 int len, void *val)
2498 {
2499 int idx;
2500 struct kvm_io_bus *bus;
2501 struct kvm_io_range range;
2502
2503 range = (struct kvm_io_range) {
2504 .addr = addr,
2505 .len = len,
2506 };
2507
2508 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2509 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2510 if (idx < 0)
2511 return -EOPNOTSUPP;
2512
2513 while (idx < bus->dev_count &&
2514 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2515 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2516 return 0;
2517 idx++;
2518 }
2519
2520 return -EOPNOTSUPP;
2521 }
2522
2523 /* Caller must hold slots_lock. */
2524 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2525 int len, struct kvm_io_device *dev)
2526 {
2527 struct kvm_io_bus *new_bus, *bus;
2528
2529 bus = kvm->buses[bus_idx];
2530 if (bus->dev_count > NR_IOBUS_DEVS-1)
2531 return -ENOSPC;
2532
2533 new_bus = kmemdup(bus, sizeof(struct kvm_io_bus), GFP_KERNEL);
2534 if (!new_bus)
2535 return -ENOMEM;
2536 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2537 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2538 synchronize_srcu_expedited(&kvm->srcu);
2539 kfree(bus);
2540
2541 return 0;
2542 }
2543
2544 /* Caller must hold slots_lock. */
2545 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2546 struct kvm_io_device *dev)
2547 {
2548 int i, r;
2549 struct kvm_io_bus *new_bus, *bus;
2550
2551 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2552 if (!new_bus)
2553 return -ENOMEM;
2554
2555 bus = kvm->buses[bus_idx];
2556 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2557
2558 r = -ENOENT;
2559 for (i = 0; i < new_bus->dev_count; i++)
2560 if (new_bus->range[i].dev == dev) {
2561 r = 0;
2562 new_bus->dev_count--;
2563 new_bus->range[i] = new_bus->range[new_bus->dev_count];
2564 sort(new_bus->range, new_bus->dev_count,
2565 sizeof(struct kvm_io_range),
2566 kvm_io_bus_sort_cmp, NULL);
2567 break;
2568 }
2569
2570 if (r) {
2571 kfree(new_bus);
2572 return r;
2573 }
2574
2575 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2576 synchronize_srcu_expedited(&kvm->srcu);
2577 kfree(bus);
2578 return r;
2579 }
2580
2581 static struct notifier_block kvm_cpu_notifier = {
2582 .notifier_call = kvm_cpu_hotplug,
2583 };
2584
2585 static int vm_stat_get(void *_offset, u64 *val)
2586 {
2587 unsigned offset = (long)_offset;
2588 struct kvm *kvm;
2589
2590 *val = 0;
2591 raw_spin_lock(&kvm_lock);
2592 list_for_each_entry(kvm, &vm_list, vm_list)
2593 *val += *(u32 *)((void *)kvm + offset);
2594 raw_spin_unlock(&kvm_lock);
2595 return 0;
2596 }
2597
2598 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2599
2600 static int vcpu_stat_get(void *_offset, u64 *val)
2601 {
2602 unsigned offset = (long)_offset;
2603 struct kvm *kvm;
2604 struct kvm_vcpu *vcpu;
2605 int i;
2606
2607 *val = 0;
2608 raw_spin_lock(&kvm_lock);
2609 list_for_each_entry(kvm, &vm_list, vm_list)
2610 kvm_for_each_vcpu(i, vcpu, kvm)
2611 *val += *(u32 *)((void *)vcpu + offset);
2612
2613 raw_spin_unlock(&kvm_lock);
2614 return 0;
2615 }
2616
2617 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2618
2619 static const struct file_operations *stat_fops[] = {
2620 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2621 [KVM_STAT_VM] = &vm_stat_fops,
2622 };
2623
2624 static void kvm_init_debug(void)
2625 {
2626 struct kvm_stats_debugfs_item *p;
2627
2628 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2629 for (p = debugfs_entries; p->name; ++p)
2630 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2631 (void *)(long)p->offset,
2632 stat_fops[p->kind]);
2633 }
2634
2635 static void kvm_exit_debug(void)
2636 {
2637 struct kvm_stats_debugfs_item *p;
2638
2639 for (p = debugfs_entries; p->name; ++p)
2640 debugfs_remove(p->dentry);
2641 debugfs_remove(kvm_debugfs_dir);
2642 }
2643
2644 static int kvm_suspend(void)
2645 {
2646 if (kvm_usage_count)
2647 hardware_disable_nolock(NULL);
2648 return 0;
2649 }
2650
2651 static void kvm_resume(void)
2652 {
2653 if (kvm_usage_count) {
2654 WARN_ON(raw_spin_is_locked(&kvm_lock));
2655 hardware_enable_nolock(NULL);
2656 }
2657 }
2658
2659 static struct syscore_ops kvm_syscore_ops = {
2660 .suspend = kvm_suspend,
2661 .resume = kvm_resume,
2662 };
2663
2664 struct page *bad_page;
2665 pfn_t bad_pfn;
2666
2667 static inline
2668 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2669 {
2670 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2671 }
2672
2673 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2674 {
2675 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2676
2677 kvm_arch_vcpu_load(vcpu, cpu);
2678 }
2679
2680 static void kvm_sched_out(struct preempt_notifier *pn,
2681 struct task_struct *next)
2682 {
2683 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2684
2685 kvm_arch_vcpu_put(vcpu);
2686 }
2687
2688 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2689 struct module *module)
2690 {
2691 int r;
2692 int cpu;
2693
2694 r = kvm_arch_init(opaque);
2695 if (r)
2696 goto out_fail;
2697
2698 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2699
2700 if (bad_page == NULL) {
2701 r = -ENOMEM;
2702 goto out;
2703 }
2704
2705 bad_pfn = page_to_pfn(bad_page);
2706
2707 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2708
2709 if (hwpoison_page == NULL) {
2710 r = -ENOMEM;
2711 goto out_free_0;
2712 }
2713
2714 hwpoison_pfn = page_to_pfn(hwpoison_page);
2715
2716 fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2717
2718 if (fault_page == NULL) {
2719 r = -ENOMEM;
2720 goto out_free_0;
2721 }
2722
2723 fault_pfn = page_to_pfn(fault_page);
2724
2725 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2726 r = -ENOMEM;
2727 goto out_free_0;
2728 }
2729
2730 r = kvm_arch_hardware_setup();
2731 if (r < 0)
2732 goto out_free_0a;
2733
2734 for_each_online_cpu(cpu) {
2735 smp_call_function_single(cpu,
2736 kvm_arch_check_processor_compat,
2737 &r, 1);
2738 if (r < 0)
2739 goto out_free_1;
2740 }
2741
2742 r = register_cpu_notifier(&kvm_cpu_notifier);
2743 if (r)
2744 goto out_free_2;
2745 register_reboot_notifier(&kvm_reboot_notifier);
2746
2747 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2748 if (!vcpu_align)
2749 vcpu_align = __alignof__(struct kvm_vcpu);
2750 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2751 0, NULL);
2752 if (!kvm_vcpu_cache) {
2753 r = -ENOMEM;
2754 goto out_free_3;
2755 }
2756
2757 r = kvm_async_pf_init();
2758 if (r)
2759 goto out_free;
2760
2761 kvm_chardev_ops.owner = module;
2762 kvm_vm_fops.owner = module;
2763 kvm_vcpu_fops.owner = module;
2764
2765 r = misc_register(&kvm_dev);
2766 if (r) {
2767 printk(KERN_ERR "kvm: misc device register failed\n");
2768 goto out_unreg;
2769 }
2770
2771 register_syscore_ops(&kvm_syscore_ops);
2772
2773 kvm_preempt_ops.sched_in = kvm_sched_in;
2774 kvm_preempt_ops.sched_out = kvm_sched_out;
2775
2776 kvm_init_debug();
2777
2778 return 0;
2779
2780 out_unreg:
2781 kvm_async_pf_deinit();
2782 out_free:
2783 kmem_cache_destroy(kvm_vcpu_cache);
2784 out_free_3:
2785 unregister_reboot_notifier(&kvm_reboot_notifier);
2786 unregister_cpu_notifier(&kvm_cpu_notifier);
2787 out_free_2:
2788 out_free_1:
2789 kvm_arch_hardware_unsetup();
2790 out_free_0a:
2791 free_cpumask_var(cpus_hardware_enabled);
2792 out_free_0:
2793 if (fault_page)
2794 __free_page(fault_page);
2795 if (hwpoison_page)
2796 __free_page(hwpoison_page);
2797 __free_page(bad_page);
2798 out:
2799 kvm_arch_exit();
2800 out_fail:
2801 return r;
2802 }
2803 EXPORT_SYMBOL_GPL(kvm_init);
2804
2805 void kvm_exit(void)
2806 {
2807 kvm_exit_debug();
2808 misc_deregister(&kvm_dev);
2809 kmem_cache_destroy(kvm_vcpu_cache);
2810 kvm_async_pf_deinit();
2811 unregister_syscore_ops(&kvm_syscore_ops);
2812 unregister_reboot_notifier(&kvm_reboot_notifier);
2813 unregister_cpu_notifier(&kvm_cpu_notifier);
2814 on_each_cpu(hardware_disable_nolock, NULL, 1);
2815 kvm_arch_hardware_unsetup();
2816 kvm_arch_exit();
2817 free_cpumask_var(cpus_hardware_enabled);
2818 __free_page(hwpoison_page);
2819 __free_page(bad_page);
2820 }
2821 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.152657 seconds and 6 git commands to generate.