/* YACC parser for C expressions, for GDB. Copyright (C) 1986, 1989, 1990, 1991 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Parse a C expression from text in a string, and return the result as a struct expression pointer. That structure contains arithmetic operations in reverse polish, with constants represented by operations that are followed by special data. See expression.h for the details of the format. What is important here is that it can be built up sequentially during the process of parsing; the lower levels of the tree always come first in the result. Note that malloc's and realloc's in this file are transformed to xmalloc and xrealloc respectively by the same sed command in the makefile that remaps any other malloc/realloc inserted by the parser generator. Doing this with #defines and trying to control the interaction with include files ( and for example) just became too messy, particularly when such includes can be inserted at random times by the parser generator. */ %{ #include "defs.h" #include "expression.h" #include "parser-defs.h" #include "value.h" #include "language.h" #include "c-lang.h" /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc), as well as gratuitiously global symbol names, so we can have multiple yacc generated parsers in gdb. Note that these are only the variables produced by yacc. If other parser generators (bison, byacc, etc) produce additional global names that conflict at link time, then those parser generators need to be fixed instead of adding those names to this list. */ #define yymaxdepth c_maxdepth #define yyparse c_parse #define yylex c_lex #define yyerror c_error #define yylval c_lval #define yychar c_char #define yydebug c_debug #define yypact c_pact #define yyr1 c_r1 #define yyr2 c_r2 #define yydef c_def #define yychk c_chk #define yypgo c_pgo #define yyact c_act #define yyexca c_exca #define yyerrflag c_errflag #define yynerrs c_nerrs #define yyps c_ps #define yypv c_pv #define yys c_s #define yy_yys c_yys #define yystate c_state #define yytmp c_tmp #define yyv c_v #define yy_yyv c_yyv #define yyval c_val #define yylloc c_lloc #define yyreds c_reds /* With YYDEBUG defined */ #define yytoks c_toks /* With YYDEBUG defined */ #ifndef YYDEBUG #define YYDEBUG 0 /* Default to no yydebug support */ #endif int yyparse PARAMS ((void)); static int yylex PARAMS ((void)); void yyerror PARAMS ((char *)); %} /* Although the yacc "value" of an expression is not used, since the result is stored in the structure being created, other node types do have values. */ %union { LONGEST lval; unsigned LONGEST ulval; struct { LONGEST val; struct type *type; } typed_val; double dval; struct symbol *sym; struct type *tval; struct stoken sval; struct ttype tsym; struct symtoken ssym; int voidval; struct block *bval; enum exp_opcode opcode; struct internalvar *ivar; struct type **tvec; int *ivec; } %{ /* YYSTYPE gets defined by %union */ static int parse_number PARAMS ((char *, int, int, YYSTYPE *)); %} %type exp exp1 type_exp start variable qualified_name %type type typebase %type nonempty_typelist /* %type block */ /* Fancy type parsing. */ %type func_mod direct_abs_decl abs_decl %type ptype %type array_mod %token INT %token FLOAT /* Both NAME and TYPENAME tokens represent symbols in the input, and both convey their data as strings. But a TYPENAME is a string that happens to be defined as a typedef or builtin type name (such as int or char) and a NAME is any other symbol. Contexts where this distinction is not important can use the nonterminal "name", which matches either NAME or TYPENAME. */ %token STRING %token NAME /* BLOCKNAME defined below to give it higher precedence. */ %token TYPENAME %type name %type name_not_typename %type typename /* A NAME_OR_INT is a symbol which is not known in the symbol table, but which would parse as a valid number in the current input radix. E.g. "c" when input_radix==16. Depending on the parse, it will be turned into a name or into a number. */ %token NAME_OR_INT %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON %token TEMPLATE %token ERROR /* Special type cases, put in to allow the parser to distinguish different legal basetypes. */ %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD %token LAST REGNAME %token VARIABLE %token ASSIGN_MODIFY /* C++ */ %token THIS %left ',' %left ABOVE_COMMA %right '=' ASSIGN_MODIFY %right '?' %left OROR %left ANDAND %left '|' %left '^' %left '&' %left EQUAL NOTEQUAL %left '<' '>' LEQ GEQ %left LSH RSH %left '@' %left '+' '-' %left '*' '/' '%' %right UNARY INCREMENT DECREMENT %right ARROW '.' '[' '(' %token BLOCKNAME %type block %left COLONCOLON %% start : exp1 | type_exp ; type_exp: type { write_exp_elt_opcode(OP_TYPE); write_exp_elt_type($1); write_exp_elt_opcode(OP_TYPE);} ; /* Expressions, including the comma operator. */ exp1 : exp | exp1 ',' exp { write_exp_elt_opcode (BINOP_COMMA); } ; /* Expressions, not including the comma operator. */ exp : '*' exp %prec UNARY { write_exp_elt_opcode (UNOP_IND); } exp : '&' exp %prec UNARY { write_exp_elt_opcode (UNOP_ADDR); } exp : '-' exp %prec UNARY { write_exp_elt_opcode (UNOP_NEG); } ; exp : '!' exp %prec UNARY { write_exp_elt_opcode (UNOP_LOGICAL_NOT); } ; exp : '~' exp %prec UNARY { write_exp_elt_opcode (UNOP_COMPLEMENT); } ; exp : INCREMENT exp %prec UNARY { write_exp_elt_opcode (UNOP_PREINCREMENT); } ; exp : DECREMENT exp %prec UNARY { write_exp_elt_opcode (UNOP_PREDECREMENT); } ; exp : exp INCREMENT %prec UNARY { write_exp_elt_opcode (UNOP_POSTINCREMENT); } ; exp : exp DECREMENT %prec UNARY { write_exp_elt_opcode (UNOP_POSTDECREMENT); } ; exp : SIZEOF exp %prec UNARY { write_exp_elt_opcode (UNOP_SIZEOF); } ; exp : exp ARROW name { write_exp_elt_opcode (STRUCTOP_PTR); write_exp_string ($3); write_exp_elt_opcode (STRUCTOP_PTR); } ; exp : exp ARROW qualified_name { /* exp->type::name becomes exp->*(&type::name) */ /* Note: this doesn't work if name is a static member! FIXME */ write_exp_elt_opcode (UNOP_ADDR); write_exp_elt_opcode (STRUCTOP_MPTR); } ; exp : exp ARROW '*' exp { write_exp_elt_opcode (STRUCTOP_MPTR); } ; exp : exp '.' name { write_exp_elt_opcode (STRUCTOP_STRUCT); write_exp_string ($3); write_exp_elt_opcode (STRUCTOP_STRUCT); } ; exp : exp '.' qualified_name { /* exp.type::name becomes exp.*(&type::name) */ /* Note: this doesn't work if name is a static member! FIXME */ write_exp_elt_opcode (UNOP_ADDR); write_exp_elt_opcode (STRUCTOP_MEMBER); } ; exp : exp '.' '*' exp { write_exp_elt_opcode (STRUCTOP_MEMBER); } ; exp : exp '[' exp1 ']' { write_exp_elt_opcode (BINOP_SUBSCRIPT); } ; exp : exp '(' /* This is to save the value of arglist_len being accumulated by an outer function call. */ { start_arglist (); } arglist ')' %prec ARROW { write_exp_elt_opcode (OP_FUNCALL); write_exp_elt_longcst ((LONGEST) end_arglist ()); write_exp_elt_opcode (OP_FUNCALL); } ; arglist : ; arglist : exp { arglist_len = 1; } ; arglist : arglist ',' exp %prec ABOVE_COMMA { arglist_len++; } ; exp : '{' type '}' exp %prec UNARY { write_exp_elt_opcode (UNOP_MEMVAL); write_exp_elt_type ($2); write_exp_elt_opcode (UNOP_MEMVAL); } ; exp : '(' type ')' exp %prec UNARY { write_exp_elt_opcode (UNOP_CAST); write_exp_elt_type ($2); write_exp_elt_opcode (UNOP_CAST); } ; exp : '(' exp1 ')' { } ; /* Binary operators in order of decreasing precedence. */ exp : exp '@' exp { write_exp_elt_opcode (BINOP_REPEAT); } ; exp : exp '*' exp { write_exp_elt_opcode (BINOP_MUL); } ; exp : exp '/' exp { write_exp_elt_opcode (BINOP_DIV); } ; exp : exp '%' exp { write_exp_elt_opcode (BINOP_REM); } ; exp : exp '+' exp { write_exp_elt_opcode (BINOP_ADD); } ; exp : exp '-' exp { write_exp_elt_opcode (BINOP_SUB); } ; exp : exp LSH exp { write_exp_elt_opcode (BINOP_LSH); } ; exp : exp RSH exp { write_exp_elt_opcode (BINOP_RSH); } ; exp : exp EQUAL exp { write_exp_elt_opcode (BINOP_EQUAL); } ; exp : exp NOTEQUAL exp { write_exp_elt_opcode (BINOP_NOTEQUAL); } ; exp : exp LEQ exp { write_exp_elt_opcode (BINOP_LEQ); } ; exp : exp GEQ exp { write_exp_elt_opcode (BINOP_GEQ); } ; exp : exp '<' exp { write_exp_elt_opcode (BINOP_LESS); } ; exp : exp '>' exp { write_exp_elt_opcode (BINOP_GTR); } ; exp : exp '&' exp { write_exp_elt_opcode (BINOP_BITWISE_AND); } ; exp : exp '^' exp { write_exp_elt_opcode (BINOP_BITWISE_XOR); } ; exp : exp '|' exp { write_exp_elt_opcode (BINOP_BITWISE_IOR); } ; exp : exp ANDAND exp { write_exp_elt_opcode (BINOP_LOGICAL_AND); } ; exp : exp OROR exp { write_exp_elt_opcode (BINOP_LOGICAL_OR); } ; exp : exp '?' exp ':' exp %prec '?' { write_exp_elt_opcode (TERNOP_COND); } ; exp : exp '=' exp { write_exp_elt_opcode (BINOP_ASSIGN); } ; exp : exp ASSIGN_MODIFY exp { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); write_exp_elt_opcode ($2); write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); } ; exp : INT { write_exp_elt_opcode (OP_LONG); write_exp_elt_type ($1.type); write_exp_elt_longcst ((LONGEST)($1.val)); write_exp_elt_opcode (OP_LONG); } ; exp : NAME_OR_INT { YYSTYPE val; parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val); write_exp_elt_opcode (OP_LONG); write_exp_elt_type (val.typed_val.type); write_exp_elt_longcst ((LONGEST)val.typed_val.val); write_exp_elt_opcode (OP_LONG); } ; exp : FLOAT { write_exp_elt_opcode (OP_DOUBLE); write_exp_elt_type (builtin_type_double); write_exp_elt_dblcst ($1); write_exp_elt_opcode (OP_DOUBLE); } ; exp : variable ; exp : LAST { write_exp_elt_opcode (OP_LAST); write_exp_elt_longcst ((LONGEST) $1); write_exp_elt_opcode (OP_LAST); } ; exp : REGNAME { write_exp_elt_opcode (OP_REGISTER); write_exp_elt_longcst ((LONGEST) $1); write_exp_elt_opcode (OP_REGISTER); } ; exp : VARIABLE { write_exp_elt_opcode (OP_INTERNALVAR); write_exp_elt_intern ($1); write_exp_elt_opcode (OP_INTERNALVAR); } ; exp : SIZEOF '(' type ')' %prec UNARY { write_exp_elt_opcode (OP_LONG); write_exp_elt_type (builtin_type_int); write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3)); write_exp_elt_opcode (OP_LONG); } ; exp : STRING { write_exp_elt_opcode (OP_STRING); write_exp_string ($1); write_exp_elt_opcode (OP_STRING); } ; /* C++. */ exp : THIS { write_exp_elt_opcode (OP_THIS); write_exp_elt_opcode (OP_THIS); } ; /* end of C++. */ block : BLOCKNAME { if ($1.sym != 0) $$ = SYMBOL_BLOCK_VALUE ($1.sym); else { struct symtab *tem = lookup_symtab (copy_name ($1.stoken)); if (tem) $$ = BLOCKVECTOR_BLOCK (BLOCKVECTOR (tem), STATIC_BLOCK); else error ("No file or function \"%s\".", copy_name ($1.stoken)); } } ; block : block COLONCOLON name { struct symbol *tem = lookup_symbol (copy_name ($3), $1, VAR_NAMESPACE, 0, NULL); if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK) error ("No function \"%s\" in specified context.", copy_name ($3)); $$ = SYMBOL_BLOCK_VALUE (tem); } ; variable: block COLONCOLON name { struct symbol *sym; sym = lookup_symbol (copy_name ($3), $1, VAR_NAMESPACE, 0, NULL); if (sym == 0) error ("No symbol \"%s\" in specified context.", copy_name ($3)); write_exp_elt_opcode (OP_VAR_VALUE); write_exp_elt_sym (sym); write_exp_elt_opcode (OP_VAR_VALUE); } ; qualified_name: typebase COLONCOLON name { struct type *type = $1; if (TYPE_CODE (type) != TYPE_CODE_STRUCT && TYPE_CODE (type) != TYPE_CODE_UNION) error ("`%s' is not defined as an aggregate type.", TYPE_NAME (type)); write_exp_elt_opcode (OP_SCOPE); write_exp_elt_type (type); write_exp_string ($3); write_exp_elt_opcode (OP_SCOPE); } | typebase COLONCOLON '~' name { struct type *type = $1; struct stoken tmp_token; if (TYPE_CODE (type) != TYPE_CODE_STRUCT && TYPE_CODE (type) != TYPE_CODE_UNION) error ("`%s' is not defined as an aggregate type.", TYPE_NAME (type)); if (!STREQ (type_name_no_tag (type), $4.ptr)) error ("invalid destructor `%s::~%s'", type_name_no_tag (type), $4.ptr); tmp_token.ptr = (char*) alloca ($4.length + 2); tmp_token.length = $4.length + 1; tmp_token.ptr[0] = '~'; memcpy (tmp_token.ptr+1, $4.ptr, $4.length); tmp_token.ptr[tmp_token.length] = 0; write_exp_elt_opcode (OP_SCOPE); write_exp_elt_type (type); write_exp_string (tmp_token); write_exp_elt_opcode (OP_SCOPE); } ; variable: qualified_name | COLONCOLON name { char *name = copy_name ($2); struct symbol *sym; struct minimal_symbol *msymbol; sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL); if (sym) { write_exp_elt_opcode (OP_VAR_VALUE); write_exp_elt_sym (sym); write_exp_elt_opcode (OP_VAR_VALUE); break; } msymbol = lookup_minimal_symbol (name, (struct objfile *) NULL); if (msymbol != NULL) { write_exp_elt_opcode (OP_LONG); write_exp_elt_type (builtin_type_int); write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol)); write_exp_elt_opcode (OP_LONG); write_exp_elt_opcode (UNOP_MEMVAL); if (msymbol -> type == mst_data || msymbol -> type == mst_bss) write_exp_elt_type (builtin_type_int); else if (msymbol -> type == mst_text) write_exp_elt_type (lookup_function_type (builtin_type_int)); else write_exp_elt_type (builtin_type_char); write_exp_elt_opcode (UNOP_MEMVAL); } else if (!have_full_symbols () && !have_partial_symbols ()) error ("No symbol table is loaded. Use the \"file\" command."); else error ("No symbol \"%s\" in current context.", name); } ; variable: name_not_typename { struct symbol *sym = $1.sym; if (sym) { switch (SYMBOL_CLASS (sym)) { case LOC_REGISTER: case LOC_ARG: case LOC_REF_ARG: case LOC_REGPARM: case LOC_LOCAL: case LOC_LOCAL_ARG: if (innermost_block == 0 || contained_in (block_found, innermost_block)) innermost_block = block_found; case LOC_UNDEF: case LOC_CONST: case LOC_STATIC: case LOC_TYPEDEF: case LOC_LABEL: case LOC_BLOCK: case LOC_CONST_BYTES: /* In this case the expression can be evaluated regardless of what frame we are in, so there is no need to check for the innermost_block. These cases are listed so that gcc -Wall will report types that may not have been considered. */ break; } write_exp_elt_opcode (OP_VAR_VALUE); write_exp_elt_sym (sym); write_exp_elt_opcode (OP_VAR_VALUE); } else if ($1.is_a_field_of_this) { /* C++: it hangs off of `this'. Must not inadvertently convert from a method call to data ref. */ if (innermost_block == 0 || contained_in (block_found, innermost_block)) innermost_block = block_found; write_exp_elt_opcode (OP_THIS); write_exp_elt_opcode (OP_THIS); write_exp_elt_opcode (STRUCTOP_PTR); write_exp_string ($1.stoken); write_exp_elt_opcode (STRUCTOP_PTR); } else { struct minimal_symbol *msymbol; register char *arg = copy_name ($1.stoken); msymbol = lookup_minimal_symbol (arg, (struct objfile *) NULL); if (msymbol != NULL) { write_exp_elt_opcode (OP_LONG); write_exp_elt_type (builtin_type_int); write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol)); write_exp_elt_opcode (OP_LONG); write_exp_elt_opcode (UNOP_MEMVAL); if (msymbol -> type == mst_data || msymbol -> type == mst_bss) write_exp_elt_type (builtin_type_int); else if (msymbol -> type == mst_text) write_exp_elt_type (lookup_function_type (builtin_type_int)); else write_exp_elt_type (builtin_type_char); write_exp_elt_opcode (UNOP_MEMVAL); } else if (!have_full_symbols () && !have_partial_symbols ()) error ("No symbol table is loaded. Use the \"file\" command."); else error ("No symbol \"%s\" in current context.", copy_name ($1.stoken)); } } ; ptype : typebase | typebase abs_decl { /* This is where the interesting stuff happens. */ int done = 0; int array_size; struct type *follow_type = $1; struct type *range_type; while (!done) switch (pop_type ()) { case tp_end: done = 1; break; case tp_pointer: follow_type = lookup_pointer_type (follow_type); break; case tp_reference: follow_type = lookup_reference_type (follow_type); break; case tp_array: array_size = pop_type_int (); if (array_size != -1) { range_type = create_range_type ((struct type *) NULL, builtin_type_int, 0, array_size - 1); follow_type = create_array_type ((struct type *) NULL, follow_type, range_type); } else follow_type = lookup_pointer_type (follow_type); break; case tp_function: follow_type = lookup_function_type (follow_type); break; } $$ = follow_type; } ; abs_decl: '*' { push_type (tp_pointer); $$ = 0; } | '*' abs_decl { push_type (tp_pointer); $$ = $2; } | '&' { push_type (tp_reference); $$ = 0; } | '&' abs_decl { push_type (tp_reference); $$ = $2; } | direct_abs_decl ; direct_abs_decl: '(' abs_decl ')' { $$ = $2; } | direct_abs_decl array_mod { push_type_int ($2); push_type (tp_array); } | array_mod { push_type_int ($1); push_type (tp_array); $$ = 0; } | direct_abs_decl func_mod { push_type (tp_function); } | func_mod { push_type (tp_function); } ; array_mod: '[' ']' { $$ = -1; } | '[' INT ']' { $$ = $2.val; } ; func_mod: '(' ')' { $$ = 0; } | '(' nonempty_typelist ')' { free ((PTR)$2); $$ = 0; } ; type : ptype | typebase COLONCOLON '*' { $$ = lookup_member_type (builtin_type_int, $1); } | type '(' typebase COLONCOLON '*' ')' { $$ = lookup_member_type ($1, $3); } | type '(' typebase COLONCOLON '*' ')' '(' ')' { $$ = lookup_member_type (lookup_function_type ($1), $3); } | type '(' typebase COLONCOLON '*' ')' '(' nonempty_typelist ')' { $$ = lookup_member_type (lookup_function_type ($1), $3); free ((PTR)$8); } ; typebase /* Implements (approximately): (type-qualifier)* type-specifier */ : TYPENAME { $$ = $1.type; } | INT_KEYWORD { $$ = builtin_type_int; } | LONG { $$ = builtin_type_long; } | SHORT { $$ = builtin_type_short; } | LONG INT_KEYWORD { $$ = builtin_type_long; } | UNSIGNED LONG INT_KEYWORD { $$ = builtin_type_unsigned_long; } | LONG LONG { $$ = builtin_type_long_long; } | LONG LONG INT_KEYWORD { $$ = builtin_type_long_long; } | UNSIGNED LONG LONG { $$ = builtin_type_unsigned_long_long; } | UNSIGNED LONG LONG INT_KEYWORD { $$ = builtin_type_unsigned_long_long; } | SHORT INT_KEYWORD { $$ = builtin_type_short; } | UNSIGNED SHORT INT_KEYWORD { $$ = builtin_type_unsigned_short; } | STRUCT name { $$ = lookup_struct (copy_name ($2), expression_context_block); } | CLASS name { $$ = lookup_struct (copy_name ($2), expression_context_block); } | UNION name { $$ = lookup_union (copy_name ($2), expression_context_block); } | ENUM name { $$ = lookup_enum (copy_name ($2), expression_context_block); } | UNSIGNED typename { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); } | UNSIGNED { $$ = builtin_type_unsigned_int; } | SIGNED_KEYWORD typename { $$ = lookup_signed_typename (TYPE_NAME($2.type)); } | SIGNED_KEYWORD { $$ = builtin_type_int; } | TEMPLATE name '<' type '>' { $$ = lookup_template_type(copy_name($2), $4, expression_context_block); } /* "const" and "volatile" are curently ignored. */ | CONST_KEYWORD typebase { $$ = $2; } | VOLATILE_KEYWORD typebase { $$ = $2; } ; typename: TYPENAME | INT_KEYWORD { $$.stoken.ptr = "int"; $$.stoken.length = 3; $$.type = builtin_type_int; } | LONG { $$.stoken.ptr = "long"; $$.stoken.length = 4; $$.type = builtin_type_long; } | SHORT { $$.stoken.ptr = "short"; $$.stoken.length = 5; $$.type = builtin_type_short; } ; nonempty_typelist : type { $$ = (struct type **) malloc (sizeof (struct type *) * 2); $$[0] = 1; /* Number of types in vector */ $$[1] = $1; } | nonempty_typelist ',' type { int len = sizeof (struct type *) * (++($1[0]) + 1); $$ = (struct type **) realloc ((char *) $1, len); $$[$$[0]] = $3; } ; name : NAME { $$ = $1.stoken; } | BLOCKNAME { $$ = $1.stoken; } | TYPENAME { $$ = $1.stoken; } | NAME_OR_INT { $$ = $1.stoken; } ; name_not_typename : NAME | BLOCKNAME /* These would be useful if name_not_typename was useful, but it is just a fake for "variable", so these cause reduce/reduce conflicts because the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable, =exp) or just an exp. If name_not_typename was ever used in an lvalue context where only a name could occur, this might be useful. | NAME_OR_INT */ ; %% /* Take care of parsing a number (anything that starts with a digit). Set yylval and return the token type; update lexptr. LEN is the number of characters in it. */ /*** Needs some error checking for the float case ***/ static int parse_number (p, len, parsed_float, putithere) register char *p; register int len; int parsed_float; YYSTYPE *putithere; { register LONGEST n = 0; register LONGEST prevn = 0; register int i; register int c; register int base = input_radix; int unsigned_p = 0; int long_p = 0; LONGEST high_bit; struct type *signed_type; struct type *unsigned_type; if (parsed_float) { /* It's a float since it contains a point or an exponent. */ putithere->dval = atof (p); return FLOAT; } /* Handle base-switching prefixes 0x, 0t, 0d, 0 */ if (p[0] == '0') switch (p[1]) { case 'x': case 'X': if (len >= 3) { p += 2; base = 16; len -= 2; } break; case 't': case 'T': case 'd': case 'D': if (len >= 3) { p += 2; base = 10; len -= 2; } break; default: base = 8; break; } while (len-- > 0) { c = *p++; if (c >= 'A' && c <= 'Z') c += 'a' - 'A'; if (c != 'l' && c != 'u') n *= base; if (c >= '0' && c <= '9') n += i = c - '0'; else { if (base > 10 && c >= 'a' && c <= 'f') n += i = c - 'a' + 10; else if (len == 0 && c == 'l') long_p = 1; else if (len == 0 && c == 'u') unsigned_p = 1; else return ERROR; /* Char not a digit */ } if (i >= base) return ERROR; /* Invalid digit in this base */ /* Portably test for overflow (only works for nonzero values, so make a second check for zero). */ if((prevn >= n) && n != 0) unsigned_p=1; /* Try something unsigned */ /* If range checking enabled, portably test for unsigned overflow. */ if(RANGE_CHECK && n!=0) { if((unsigned_p && (unsigned)prevn >= (unsigned)n)) range_error("Overflow on numeric constant."); } prevn=n; } /* If the number is too big to be an int, or it's got an l suffix then it's a long. Work out if this has to be a long by shifting right and and seeing if anything remains, and the target int size is different to the target long size. */ if ((TARGET_INT_BIT != TARGET_LONG_BIT && (n >> TARGET_INT_BIT)) || long_p) { high_bit = ((LONGEST)1) << (TARGET_LONG_BIT-1); unsigned_type = builtin_type_unsigned_long; signed_type = builtin_type_long; } else { high_bit = ((LONGEST)1) << (TARGET_INT_BIT-1); unsigned_type = builtin_type_unsigned_int; signed_type = builtin_type_int; } putithere->typed_val.val = n; /* If the high bit of the worked out type is set then this number has to be unsigned. */ if (unsigned_p || (n & high_bit)) { putithere->typed_val.type = unsigned_type; } else { putithere->typed_val.type = signed_type; } return INT; } struct token { char *operator; int token; enum exp_opcode opcode; }; static const struct token tokentab3[] = { {">>=", ASSIGN_MODIFY, BINOP_RSH}, {"<<=", ASSIGN_MODIFY, BINOP_LSH} }; static const struct token tokentab2[] = { {"+=", ASSIGN_MODIFY, BINOP_ADD}, {"-=", ASSIGN_MODIFY, BINOP_SUB}, {"*=", ASSIGN_MODIFY, BINOP_MUL}, {"/=", ASSIGN_MODIFY, BINOP_DIV}, {"%=", ASSIGN_MODIFY, BINOP_REM}, {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR}, {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND}, {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR}, {"++", INCREMENT, BINOP_END}, {"--", DECREMENT, BINOP_END}, {"->", ARROW, BINOP_END}, {"&&", ANDAND, BINOP_END}, {"||", OROR, BINOP_END}, {"::", COLONCOLON, BINOP_END}, {"<<", LSH, BINOP_END}, {">>", RSH, BINOP_END}, {"==", EQUAL, BINOP_END}, {"!=", NOTEQUAL, BINOP_END}, {"<=", LEQ, BINOP_END}, {">=", GEQ, BINOP_END} }; /* Read one token, getting characters through lexptr. */ int yylex () { int c; int namelen; unsigned int i; char *tokstart; char *tokptr; int tempbufindex; static char *tempbuf; static int tempbufsize; retry: tokstart = lexptr; /* See if it is a special token of length 3. */ for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++) if (STREQN (tokstart, tokentab3[i].operator, 3)) { lexptr += 3; yylval.opcode = tokentab3[i].opcode; return tokentab3[i].token; } /* See if it is a special token of length 2. */ for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++) if (STREQN (tokstart, tokentab2[i].operator, 2)) { lexptr += 2; yylval.opcode = tokentab2[i].opcode; return tokentab2[i].token; } switch (c = *tokstart) { case 0: return 0; case ' ': case '\t': case '\n': lexptr++; goto retry; case '\'': /* We either have a character constant ('0' or '\177' for example) or we have a quoted symbol reference ('foo(int,int)' in C++ for example). */ lexptr++; c = *lexptr++; if (c == '\\') c = parse_escape (&lexptr); yylval.typed_val.val = c; yylval.typed_val.type = builtin_type_char; c = *lexptr++; if (c != '\'') { namelen = skip_quoted (tokstart) - tokstart; if (namelen > 2) { lexptr = tokstart + namelen; namelen -= 2; tokstart++; goto tryname; } error ("Invalid character constant."); } return INT; case '(': paren_depth++; lexptr++; return c; case ')': if (paren_depth == 0) return 0; paren_depth--; lexptr++; return c; case ',': if (comma_terminates && paren_depth == 0) return 0; lexptr++; return c; case '.': /* Might be a floating point number. */ if (lexptr[1] < '0' || lexptr[1] > '9') goto symbol; /* Nope, must be a symbol. */ /* FALL THRU into number case. */ case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { /* It's a number. */ int got_dot = 0, got_e = 0, toktype; register char *p = tokstart; int hex = input_radix > 10; if (c == '0' && (p[1] == 'x' || p[1] == 'X')) { p += 2; hex = 1; } else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D')) { p += 2; hex = 0; } for (;; ++p) { if (!hex && !got_e && (*p == 'e' || *p == 'E')) got_dot = got_e = 1; else if (!hex && !got_dot && *p == '.') got_dot = 1; else if (got_e && (p[-1] == 'e' || p[-1] == 'E') && (*p == '-' || *p == '+')) /* This is the sign of the exponent, not the end of the number. */ continue; /* We will take any letters or digits. parse_number will complain if past the radix, or if L or U are not final. */ else if ((*p < '0' || *p > '9') && ((*p < 'a' || *p > 'z') && (*p < 'A' || *p > 'Z'))) break; } toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval); if (toktype == ERROR) { char *err_copy = (char *) alloca (p - tokstart + 1); memcpy (err_copy, tokstart, p - tokstart); err_copy[p - tokstart] = 0; error ("Invalid number \"%s\".", err_copy); } lexptr = p; return toktype; } case '+': case '-': case '*': case '/': case '%': case '|': case '&': case '^': case '~': case '!': case '@': case '<': case '>': case '[': case ']': case '?': case ':': case '=': case '{': case '}': symbol: lexptr++; return c; case '"': /* Build the gdb internal form of the input string in tempbuf, translating any standard C escape forms seen. Note that the buffer is null byte terminated *only* for the convenience of debugging gdb itself and printing the buffer contents when the buffer contains no embedded nulls. Gdb does not depend upon the buffer being null byte terminated, it uses the length string instead. This allows gdb to handle C strings (as well as strings in other languages) with embedded null bytes */ tokptr = ++tokstart; tempbufindex = 0; do { /* Grow the static temp buffer if necessary, including allocating the first one on demand. */ if (tempbufindex + 1 >= tempbufsize) { tempbuf = (char *) realloc (tempbuf, tempbufsize += 64); } switch (*tokptr) { case '\0': case '"': /* Do nothing, loop will terminate. */ break; case '\\': tokptr++; c = parse_escape (&tokptr); if (c == -1) { continue; } tempbuf[tempbufindex++] = c; break; default: tempbuf[tempbufindex++] = *tokptr++; break; } } while ((*tokptr != '"') && (*tokptr != '\0')); if (*tokptr++ != '"') { error ("Unterminated string in expression."); } tempbuf[tempbufindex] = '\0'; /* See note above */ yylval.sval.ptr = tempbuf; yylval.sval.length = tempbufindex; lexptr = tokptr; return (STRING); } if (!(c == '_' || c == '$' || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'))) /* We must have come across a bad character (e.g. ';'). */ error ("Invalid character '%c' in expression.", c); /* It's a name. See how long it is. */ namelen = 0; for (c = tokstart[namelen]; (c == '_' || c == '$' || (c >= '0' && c <= '9') || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')); c = tokstart[++namelen]) ; /* The token "if" terminates the expression and is NOT removed from the input stream. */ if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f') { return 0; } lexptr += namelen; /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1) and $$digits (equivalent to $<-digits> if you could type that). Make token type LAST, and put the number (the digits) in yylval. */ tryname: if (*tokstart == '$') { register int negate = 0; c = 1; /* Double dollar means negate the number and add -1 as well. Thus $$ alone means -1. */ if (namelen >= 2 && tokstart[1] == '$') { negate = 1; c = 2; } if (c == namelen) { /* Just dollars (one or two) */ yylval.lval = - negate; return LAST; } /* Is the rest of the token digits? */ for (; c < namelen; c++) if (!(tokstart[c] >= '0' && tokstart[c] <= '9')) break; if (c == namelen) { yylval.lval = atoi (tokstart + 1 + negate); if (negate) yylval.lval = - yylval.lval; return LAST; } } /* Handle tokens that refer to machine registers: $ followed by a register name. */ if (*tokstart == '$') { for (c = 0; c < NUM_REGS; c++) if (namelen - 1 == strlen (reg_names[c]) && STREQN (tokstart + 1, reg_names[c], namelen - 1)) { yylval.lval = c; return REGNAME; } for (c = 0; c < num_std_regs; c++) if (namelen - 1 == strlen (std_regs[c].name) && STREQN (tokstart + 1, std_regs[c].name, namelen - 1)) { yylval.lval = std_regs[c].regnum; return REGNAME; } } /* Catch specific keywords. Should be done with a data structure. */ switch (namelen) { case 8: if (STREQN (tokstart, "unsigned", 8)) return UNSIGNED; if (current_language->la_language == language_cplus && STREQN (tokstart, "template", 8)) return TEMPLATE; if (STREQN (tokstart, "volatile", 8)) return VOLATILE_KEYWORD; break; case 6: if (STREQN (tokstart, "struct", 6)) return STRUCT; if (STREQN (tokstart, "signed", 6)) return SIGNED_KEYWORD; if (STREQN (tokstart, "sizeof", 6)) return SIZEOF; break; case 5: if (current_language->la_language == language_cplus && STREQN (tokstart, "class", 5)) return CLASS; if (STREQN (tokstart, "union", 5)) return UNION; if (STREQN (tokstart, "short", 5)) return SHORT; if (STREQN (tokstart, "const", 5)) return CONST_KEYWORD; break; case 4: if (STREQN (tokstart, "enum", 4)) return ENUM; if (STREQN (tokstart, "long", 4)) return LONG; if (current_language->la_language == language_cplus && STREQN (tokstart, "this", 4)) { static const char this_name[] = { CPLUS_MARKER, 't', 'h', 'i', 's', '\0' }; if (lookup_symbol (this_name, expression_context_block, VAR_NAMESPACE, 0, NULL)) return THIS; } break; case 3: if (STREQN (tokstart, "int", 3)) return INT_KEYWORD; break; default: break; } yylval.sval.ptr = tokstart; yylval.sval.length = namelen; /* Any other names starting in $ are debugger internal variables. */ if (*tokstart == '$') { yylval.ivar = lookup_internalvar (copy_name (yylval.sval) + 1); return VARIABLE; } /* Use token-type BLOCKNAME for symbols that happen to be defined as functions or symtabs. If this is not so, then ... Use token-type TYPENAME for symbols that happen to be defined currently as names of types; NAME for other symbols. The caller is not constrained to care about the distinction. */ { char *tmp = copy_name (yylval.sval); struct symbol *sym; int is_a_field_of_this = 0; int hextype; sym = lookup_symbol (tmp, expression_context_block, VAR_NAMESPACE, current_language->la_language == language_cplus ? &is_a_field_of_this : NULL, NULL); if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) || lookup_partial_symtab (tmp)) { yylval.ssym.sym = sym; yylval.ssym.is_a_field_of_this = is_a_field_of_this; return BLOCKNAME; } if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF) { yylval.tsym.type = SYMBOL_TYPE (sym); return TYPENAME; } if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0) return TYPENAME; /* Input names that aren't symbols but ARE valid hex numbers, when the input radix permits them, can be names or numbers depending on the parse. Note we support radixes > 16 here. */ if (!sym && ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10))) { YYSTYPE newlval; /* Its value is ignored. */ hextype = parse_number (tokstart, namelen, 0, &newlval); if (hextype == INT) { yylval.ssym.sym = sym; yylval.ssym.is_a_field_of_this = is_a_field_of_this; return NAME_OR_INT; } } /* Any other kind of symbol */ yylval.ssym.sym = sym; yylval.ssym.is_a_field_of_this = is_a_field_of_this; return NAME; } } void yyerror (msg) char *msg; { error (msg ? msg : "Invalid syntax in expression."); }