# Simulator main loop for m32rx. -*- C -*- # # Copyright 1996, 1997, 1998, 2004, 2007 Free Software Foundation, Inc. # # This file is part of the GNU Simulators. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. # Syntax: # /bin/sh mainloop.in command # # Command is one of: # # init # support # extract-{simple,scache,pbb} # {full,fast}-exec-{simple,scache,pbb} # # A target need only provide a "full" version of one of simple,scache,pbb. # If the target wants it can also provide a fast version of same, or if # the slow (full featured) version is `simple', then the fast version can be # one of scache/pbb. # A target can't provide more than this. # ??? After a few more ports are done, revisit. # Will eventually need to machine generate a lot of this. case "x$1" in xsupport) cat <argbuf; id1 = id1->par_idesc; abuf->fields.write.abuf = &sc1->argbuf; @cpu@_fill_argbuf (current_cpu, abuf, id1, pc, 0); /* no need to set trace_p,profile_p */ #if 0 /* not currently needed for id2 since results written directly */ abuf = &sc[1].argbuf; id2 = id2->par_idesc; abuf->fields.write.abuf = &sc2->argbuf; @cpu@_fill_argbuf (current_cpu, abuf, id2, pc + 2, 0); /* no need to set trace_p,profile_p */ #endif } static INLINE const IDESC * emit_16 (SIM_CPU *current_cpu, PCADDR pc, CGEN_INSN_INT insn, SCACHE *sc, int fast_p, int parallel_p) { ARGBUF *abuf = &sc->argbuf; const IDESC *id = @cpu@_decode (current_cpu, pc, insn, insn, abuf); if (parallel_p) id = id->par_idesc; @cpu@_fill_argbuf (current_cpu, abuf, id, pc, fast_p); return id; } static INLINE const IDESC * emit_full16 (SIM_CPU *current_cpu, PCADDR pc, CGEN_INSN_INT insn, SCACHE *sc, int trace_p, int profile_p) { const IDESC *id; @cpu@_emit_before (current_cpu, sc, pc, 1); id = emit_16 (current_cpu, pc, insn, sc + 1, 0, 0); @cpu@_emit_after (current_cpu, sc + 2, pc); sc[1].argbuf.trace_p = trace_p; sc[1].argbuf.profile_p = profile_p; return id; } static INLINE const IDESC * emit_parallel (SIM_CPU *current_cpu, PCADDR pc, CGEN_INSN_INT insn, SCACHE *sc, int fast_p) { const IDESC *id,*id2; /* Emit both insns, then emit a finisher-upper. We speed things up by handling the second insn serially [not parallelly]. Then the writeback only has to deal with the first insn. */ /* ??? Revisit to handle exceptions right. */ /* FIXME: No need to handle this parallely if second is nop. */ id = emit_16 (current_cpu, pc, insn >> 16, sc, fast_p, 1); /* Note that this can never be a cti. No cti's go in the S pipeline. */ id2 = emit_16 (current_cpu, pc + 2, insn & 0x7fff, sc + 1, fast_p, 0); /* Set sc/snc insns notion of where to skip to. */ if (IDESC_SKIP_P (id)) SEM_SKIP_COMPILE (current_cpu, sc, 1); /* Emit code to finish executing the semantics (write back the results). */ emit_par_finish (current_cpu, pc, sc + 2, sc, id, sc + 1, id2); return id; } static INLINE const IDESC * emit_full_parallel (SIM_CPU *current_cpu, PCADDR pc, CGEN_INSN_INT insn, SCACHE *sc, int trace_p, int profile_p) { const IDESC *id,*id2; /* Emit both insns, then emit a finisher-upper. We speed things up by handling the second insn serially [not parallelly]. Then the writeback only has to deal with the first insn. */ /* ??? Revisit to handle exceptions right. */ @cpu@_emit_before (current_cpu, sc, pc, 1); /* FIXME: No need to handle this parallelly if second is nop. */ id = emit_16 (current_cpu, pc, insn >> 16, sc + 1, 0, 1); sc[1].argbuf.trace_p = trace_p; sc[1].argbuf.profile_p = profile_p; @cpu@_emit_before (current_cpu, sc + 2, pc, 0); /* Note that this can never be a cti. No cti's go in the S pipeline. */ id2 = emit_16 (current_cpu, pc + 2, insn & 0x7fff, sc + 3, 0, 0); sc[3].argbuf.trace_p = trace_p; sc[3].argbuf.profile_p = profile_p; /* Set sc/snc insns notion of where to skip to. */ if (IDESC_SKIP_P (id)) SEM_SKIP_COMPILE (current_cpu, sc, 4); /* Emit code to finish executing the semantics (write back the results). */ emit_par_finish (current_cpu, pc, sc + 4, sc + 1, id, sc + 3, id2); @cpu@_emit_after (current_cpu, sc + 5, pc); return id; } static INLINE const IDESC * emit_32 (SIM_CPU *current_cpu, PCADDR pc, CGEN_INSN_INT insn, SCACHE *sc, int fast_p) { ARGBUF *abuf = &sc->argbuf; const IDESC *id = @cpu@_decode (current_cpu, pc, (USI) insn >> 16, insn, abuf); @cpu@_fill_argbuf (current_cpu, abuf, id, pc, fast_p); return id; } static INLINE const IDESC * emit_full32 (SIM_CPU *current_cpu, PCADDR pc, CGEN_INSN_INT insn, SCACHE *sc, int trace_p, int profile_p) { const IDESC *id; @cpu@_emit_before (current_cpu, sc, pc, 1); id = emit_32 (current_cpu, pc, insn, sc + 1, 0); @cpu@_emit_after (current_cpu, sc + 2, pc); sc[1].argbuf.trace_p = trace_p; sc[1].argbuf.profile_p = profile_p; return id; } EOF ;; xinit) # Nothing needed. ;; xextract-pbb) # Inputs: current_cpu, pc, sc, max_insns, FAST_P # Outputs: sc, pc # sc must be left pointing past the last created entry. # pc must be left pointing past the last created entry. # If the pbb is terminated by a cti insn, SET_CTI_VPC(sc) must be called # to record the vpc of the cti insn. # SET_INSN_COUNT(n) must be called to record number of real insns. cat < 0) { USI insn = GETIMEMUSI (current_cpu, pc); if ((SI) insn < 0) { /* 32 bit insn */ idesc = emit_32 (current_cpu, pc, insn, sc, 1); ++sc; --max_insns; ++icount; pc += 4; if (IDESC_CTI_P (idesc)) { SET_CTI_VPC (sc - 1); break; } } else { if ((insn & 0x8000) != 0) /* parallel? */ { int up_count; if (((insn >> 16) & 0xfff0) == 0x10f0) { /* FIXME: No need to handle this sequentially if system calls will be able to execute after second insn in parallel. ( trap #num || insn ) */ /* insn */ idesc = emit_16 (current_cpu, pc + 2, insn & 0x7fff, sc, 1, 0); /* trap */ emit_16 (current_cpu, pc, insn >> 16, sc + 1, 1, 0); up_count = 2; } else { /* Yep. Here's the "interesting" [sic] part. */ idesc = emit_parallel (current_cpu, pc, insn, sc, 1); up_count = 3; } sc += up_count; max_insns -= up_count; icount += 2; pc += 4; if (IDESC_CTI_P (idesc)) { SET_CTI_VPC (sc - up_count); break; } } else /* 2 serial 16 bit insns */ { idesc = emit_16 (current_cpu, pc, insn >> 16, sc, 1, 0); ++sc; --max_insns; ++icount; pc += 2; if (IDESC_CTI_P (idesc)) { SET_CTI_VPC (sc - 1); break; } /* While we're guaranteed that there's room to extract the insn, when single stepping we can't; the pbb must stop after the first insn. */ if (max_insns == 0) break; idesc = emit_16 (current_cpu, pc, insn & 0x7fff, sc, 1, 0); ++sc; --max_insns; ++icount; pc += 2; if (IDESC_CTI_P (idesc)) { SET_CTI_VPC (sc - 1); break; } } } } } else /* ! FAST_P */ { while (max_insns > 0) { USI insn = GETIMEMUSI (current_cpu, pc); int trace_p = PC_IN_TRACE_RANGE_P (current_cpu, pc); int profile_p = PC_IN_PROFILE_RANGE_P (current_cpu, pc); SCACHE *cti_sc; /* ??? tmp hack */ if ((SI) insn < 0) { /* 32 bit insn Only emit before/after handlers if necessary. */ if (trace_p || profile_p) { idesc = emit_full32 (current_cpu, pc, insn, sc, trace_p, profile_p); cti_sc = sc + 1; sc += 3; max_insns -= 3; } else { idesc = emit_32 (current_cpu, pc, insn, sc, 0); cti_sc = sc; ++sc; --max_insns; } ++icount; pc += 4; if (IDESC_CTI_P (idesc)) { SET_CTI_VPC (cti_sc); break; } } else { if ((insn & 0x8000) != 0) /* parallel? */ { /* Yep. Here's the "interesting" [sic] part. Only emit before/after handlers if necessary. */ if (trace_p || profile_p) { if (((insn >> 16) & 0xfff0) == 0x10f0) { /* FIXME: No need to handle this sequentially if system calls will be able to execute after second insn in parallel. ( trap #num || insn ) */ /* insn */ idesc = emit_full16 (current_cpu, pc + 2, insn & 0x7fff, sc, 0, 0); /* trap */ emit_full16 (current_cpu, pc, insn >> 16, sc + 3, 0, 0); } else { idesc = emit_full_parallel (current_cpu, pc, insn, sc, trace_p, profile_p); } cti_sc = sc + 1; sc += 6; max_insns -= 6; } else { int up_count; if (((insn >> 16) & 0xfff0) == 0x10f0) { /* FIXME: No need to handle this sequentially if system calls will be able to execute after second insn in parallel. ( trap #num || insn ) */ /* insn */ idesc = emit_16 (current_cpu, pc + 2, insn & 0x7fff, sc, 0, 0); /* trap */ emit_16 (current_cpu, pc, insn >> 16, sc + 1, 0, 0); up_count = 2; } else { idesc = emit_parallel (current_cpu, pc, insn, sc, 0); up_count = 3; } cti_sc = sc; sc += up_count; max_insns -= up_count; } icount += 2; pc += 4; if (IDESC_CTI_P (idesc)) { SET_CTI_VPC (cti_sc); break; } } else /* 2 serial 16 bit insns */ { /* Only emit before/after handlers if necessary. */ if (trace_p || profile_p) { idesc = emit_full16 (current_cpu, pc, insn >> 16, sc, trace_p, profile_p); cti_sc = sc + 1; sc += 3; max_insns -= 3; } else { idesc = emit_16 (current_cpu, pc, insn >> 16, sc, 0, 0); cti_sc = sc; ++sc; --max_insns; } ++icount; pc += 2; if (IDESC_CTI_P (idesc)) { SET_CTI_VPC (cti_sc); break; } /* While we're guaranteed that there's room to extract the insn, when single stepping we can't; the pbb must stop after the first insn. */ if (max_insns <= 0) break; /* Use the same trace/profile address for the 2nd insn. Saves us having to compute it and they come in pairs anyway (e.g. can never branch to the 2nd insn). */ if (trace_p || profile_p) { idesc = emit_full16 (current_cpu, pc, insn & 0x7fff, sc, trace_p, profile_p); cti_sc = sc + 1; sc += 3; max_insns -= 3; } else { idesc = emit_16 (current_cpu, pc, insn & 0x7fff, sc, 0, 0); cti_sc = sc; ++sc; --max_insns; } ++icount; pc += 2; if (IDESC_CTI_P (idesc)) { SET_CTI_VPC (cti_sc); break; } } } } } Finish: SET_INSN_COUNT (icount); } EOF ;; xfull-exec-pbb) # Inputs: current_cpu, vpc, FAST_P # Outputs: vpc # vpc is the virtual program counter. cat <&2 exit 1 ;; esac