gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
index 31a1281330773772c0d0c662b65ada327509c514..2a0dfed0cd9e650e46c6e2b19bcfce26caca8a00 100644 (file)
@@ -1,7 +1,6 @@
 /* Target-dependent code for AMD64.
 
-   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
-   Free Software Foundation, Inc.
+   Copyright (C) 2001-2020 Free Software Foundation, Inc.
 
    Contributed by Jiri Smid, SuSE Labs.
 
@@ -9,7 +8,7 @@
 
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
-   the Free Software Foundation; either version 2 of the License, or
+   the Free Software Foundation; either version 3 of the License, or
    (at your option) any later version.
 
    This program is distributed in the hope that it will be useful,
    GNU General Public License for more details.
 
    You should have received a copy of the GNU General Public License
-   along with this program; if not, write to the Free Software
-   Foundation, Inc., 51 Franklin Street, Fifth Floor,
-   Boston, MA 02110-1301, USA.  */
+   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 #include "defs.h"
+#include "opcode/i386.h"
+#include "dis-asm.h"
 #include "arch-utils.h"
 #include "block.h"
 #include "dummy-frame.h"
 #include "frame-base.h"
 #include "frame-unwind.h"
 #include "inferior.h"
+#include "infrun.h"
 #include "gdbcmd.h"
 #include "gdbcore.h"
 #include "objfiles.h"
 #include "regcache.h"
 #include "regset.h"
 #include "symfile.h"
-
-#include "gdb_assert.h"
-
+#include "disasm.h"
 #include "amd64-tdep.h"
 #include "i387-tdep.h"
+#include "gdbsupport/x86-xstate.h"
+#include <algorithm>
+#include "target-descriptions.h"
+#include "arch/amd64.h"
+#include "producer.h"
+#include "ax.h"
+#include "ax-gdb.h"
+#include "gdbsupport/byte-vector.h"
+#include "osabi.h"
+#include "x86-tdep.h"
 
 /* Note that the AMD64 architecture was previously known as x86-64.
    The latter is (forever) engraved into the canonical system name as
 
 /* Register information.  */
 
-struct amd64_register_info
-{
-  char *name;
-  struct type **type;
-};
-
-static struct amd64_register_info const amd64_register_info[] =
+static const char *amd64_register_names[] = 
 {
-  { "rax", &builtin_type_int64 },
-  { "rbx", &builtin_type_int64 },
-  { "rcx", &builtin_type_int64 },
-  { "rdx", &builtin_type_int64 },
-  { "rsi", &builtin_type_int64 },
-  { "rdi", &builtin_type_int64 },
-  { "rbp", &builtin_type_void_data_ptr },
-  { "rsp", &builtin_type_void_data_ptr },
+  "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
 
   /* %r8 is indeed register number 8.  */
-  { "r8", &builtin_type_int64 },
-  { "r9", &builtin_type_int64 },
-  { "r10", &builtin_type_int64 },
-  { "r11", &builtin_type_int64 },
-  { "r12", &builtin_type_int64 },
-  { "r13", &builtin_type_int64 },
-  { "r14", &builtin_type_int64 },
-  { "r15", &builtin_type_int64 },
-  { "rip", &builtin_type_void_func_ptr },
-  { "eflags", &i386_eflags_type },
-  { "cs", &builtin_type_int32 },
-  { "ss", &builtin_type_int32 },
-  { "ds", &builtin_type_int32 },
-  { "es", &builtin_type_int32 },
-  { "fs", &builtin_type_int32 },
-  { "gs", &builtin_type_int32 },
+  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
+  "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
 
   /* %st0 is register number 24.  */
-  { "st0", &builtin_type_i387_ext },
-  { "st1", &builtin_type_i387_ext },
-  { "st2", &builtin_type_i387_ext },
-  { "st3", &builtin_type_i387_ext },
-  { "st4", &builtin_type_i387_ext },
-  { "st5", &builtin_type_i387_ext },
-  { "st6", &builtin_type_i387_ext },
-  { "st7", &builtin_type_i387_ext },
-  { "fctrl", &builtin_type_int32 },
-  { "fstat", &builtin_type_int32 },
-  { "ftag", &builtin_type_int32 },
-  { "fiseg", &builtin_type_int32 },
-  { "fioff", &builtin_type_int32 },
-  { "foseg", &builtin_type_int32 },
-  { "fooff", &builtin_type_int32 },
-  { "fop", &builtin_type_int32 },
+  "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
+  "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
 
   /* %xmm0 is register number 40.  */
-  { "xmm0", &i386_sse_type },
-  { "xmm1", &i386_sse_type },
-  { "xmm2", &i386_sse_type },
-  { "xmm3", &i386_sse_type },
-  { "xmm4", &i386_sse_type },
-  { "xmm5", &i386_sse_type },
-  { "xmm6", &i386_sse_type },
-  { "xmm7", &i386_sse_type },
-  { "xmm8", &i386_sse_type },
-  { "xmm9", &i386_sse_type },
-  { "xmm10", &i386_sse_type },
-  { "xmm11", &i386_sse_type },
-  { "xmm12", &i386_sse_type },
-  { "xmm13", &i386_sse_type },
-  { "xmm14", &i386_sse_type },
-  { "xmm15", &i386_sse_type },
-  { "mxcsr", &i386_mxcsr_type }
+  "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
+  "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
+  "mxcsr",
 };
 
-/* Total number of registers.  */
-#define AMD64_NUM_REGS ARRAY_SIZE (amd64_register_info)
+static const char *amd64_ymm_names[] = 
+{
+  "ymm0", "ymm1", "ymm2", "ymm3",
+  "ymm4", "ymm5", "ymm6", "ymm7",
+  "ymm8", "ymm9", "ymm10", "ymm11",
+  "ymm12", "ymm13", "ymm14", "ymm15"
+};
 
-/* Return the name of register REGNUM.  */
+static const char *amd64_ymm_avx512_names[] =
+{
+  "ymm16", "ymm17", "ymm18", "ymm19",
+  "ymm20", "ymm21", "ymm22", "ymm23",
+  "ymm24", "ymm25", "ymm26", "ymm27",
+  "ymm28", "ymm29", "ymm30", "ymm31"
+};
 
-static const char *
-amd64_register_name (int regnum)
+static const char *amd64_ymmh_names[] = 
+{
+  "ymm0h", "ymm1h", "ymm2h", "ymm3h",
+  "ymm4h", "ymm5h", "ymm6h", "ymm7h",
+  "ymm8h", "ymm9h", "ymm10h", "ymm11h",
+  "ymm12h", "ymm13h", "ymm14h", "ymm15h"
+};
+
+static const char *amd64_ymmh_avx512_names[] =
 {
-  if (regnum >= 0 && regnum < AMD64_NUM_REGS)
-    return amd64_register_info[regnum].name;
+  "ymm16h", "ymm17h", "ymm18h", "ymm19h",
+  "ymm20h", "ymm21h", "ymm22h", "ymm23h",
+  "ymm24h", "ymm25h", "ymm26h", "ymm27h",
+  "ymm28h", "ymm29h", "ymm30h", "ymm31h"
+};
 
-  return NULL;
-}
+static const char *amd64_mpx_names[] =
+{
+  "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
+};
 
-/* Return the GDB type object for the "standard" data type of data in
-   register REGNUM. */
+static const char *amd64_k_names[] =
+{
+  "k0", "k1", "k2", "k3",
+  "k4", "k5", "k6", "k7"
+};
 
-static struct type *
-amd64_register_type (struct gdbarch *gdbarch, int regnum)
+static const char *amd64_zmmh_names[] =
 {
-  gdb_assert (regnum >= 0 && regnum < AMD64_NUM_REGS);
+  "zmm0h", "zmm1h", "zmm2h", "zmm3h",
+  "zmm4h", "zmm5h", "zmm6h", "zmm7h",
+  "zmm8h", "zmm9h", "zmm10h", "zmm11h",
+  "zmm12h", "zmm13h", "zmm14h", "zmm15h",
+  "zmm16h", "zmm17h", "zmm18h", "zmm19h",
+  "zmm20h", "zmm21h", "zmm22h", "zmm23h",
+  "zmm24h", "zmm25h", "zmm26h", "zmm27h",
+  "zmm28h", "zmm29h", "zmm30h", "zmm31h"
+};
 
-  return *amd64_register_info[regnum].type;
-}
+static const char *amd64_zmm_names[] =
+{
+  "zmm0", "zmm1", "zmm2", "zmm3",
+  "zmm4", "zmm5", "zmm6", "zmm7",
+  "zmm8", "zmm9", "zmm10", "zmm11",
+  "zmm12", "zmm13", "zmm14", "zmm15",
+  "zmm16", "zmm17", "zmm18", "zmm19",
+  "zmm20", "zmm21", "zmm22", "zmm23",
+  "zmm24", "zmm25", "zmm26", "zmm27",
+  "zmm28", "zmm29", "zmm30", "zmm31"
+};
+
+static const char *amd64_xmm_avx512_names[] = {
+    "xmm16",  "xmm17",  "xmm18",  "xmm19",
+    "xmm20",  "xmm21",  "xmm22",  "xmm23",
+    "xmm24",  "xmm25",  "xmm26",  "xmm27",
+    "xmm28",  "xmm29",  "xmm30",  "xmm31"
+};
+
+static const char *amd64_pkeys_names[] = {
+    "pkru"
+};
 
 /* DWARF Register Number Mapping as defined in the System V psABI,
    section 3.6.  */
@@ -166,7 +172,14 @@ static int amd64_dwarf_regmap[] =
   AMD64_RSP_REGNUM,
 
   /* Extended Integer Registers 8 - 15.  */
-  8, 9, 10, 11, 12, 13, 14, 15,
+  AMD64_R8_REGNUM,             /* %r8 */
+  AMD64_R9_REGNUM,             /* %r9 */
+  AMD64_R10_REGNUM,            /* %r10 */
+  AMD64_R11_REGNUM,            /* %r11 */
+  AMD64_R12_REGNUM,            /* %r12 */
+  AMD64_R13_REGNUM,            /* %r13 */
+  AMD64_R14_REGNUM,            /* %r14 */
+  AMD64_R15_REGNUM,            /* %r15 */
 
   /* Return Address RA.  Mapped to RIP.  */
   AMD64_RIP_REGNUM,
@@ -188,7 +201,13 @@ static int amd64_dwarf_regmap[] =
   AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
   AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
   AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
-  
+
+  /* MMX Registers 0 - 7.
+     We have to handle those registers specifically, as their register
+     number within GDB depends on the target (or they may even not be
+     available at all).  */
+  -1, -1, -1, -1, -1, -1, -1, -1,
+
   /* Control and Status Flags Register.  */
   AMD64_EFLAGS_REGNUM,
 
@@ -225,27 +244,249 @@ static const int amd64_dwarf_regmap_len =
    number used by GDB.  */
 
 static int
-amd64_dwarf_reg_to_regnum (int reg)
+amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
 {
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  int ymm0_regnum = tdep->ymm0_regnum;
   int regnum = -1;
 
   if (reg >= 0 && reg < amd64_dwarf_regmap_len)
     regnum = amd64_dwarf_regmap[reg];
 
-  if (regnum == -1)
-    warning (_("Unmapped DWARF Register #%d encountered."), reg);
+  if (ymm0_regnum >= 0
+          && i386_xmm_regnum_p (gdbarch, regnum))
+    regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
 
   return regnum;
 }
 
-/* Return nonzero if a value of type TYPE stored in register REGNUM
-   needs any special handling.  */
+/* Map architectural register numbers to gdb register numbers.  */
+
+static const int amd64_arch_regmap[16] =
+{
+  AMD64_RAX_REGNUM,    /* %rax */
+  AMD64_RCX_REGNUM,    /* %rcx */
+  AMD64_RDX_REGNUM,    /* %rdx */
+  AMD64_RBX_REGNUM,    /* %rbx */
+  AMD64_RSP_REGNUM,    /* %rsp */
+  AMD64_RBP_REGNUM,    /* %rbp */
+  AMD64_RSI_REGNUM,    /* %rsi */
+  AMD64_RDI_REGNUM,    /* %rdi */
+  AMD64_R8_REGNUM,     /* %r8 */
+  AMD64_R9_REGNUM,     /* %r9 */
+  AMD64_R10_REGNUM,    /* %r10 */
+  AMD64_R11_REGNUM,    /* %r11 */
+  AMD64_R12_REGNUM,    /* %r12 */
+  AMD64_R13_REGNUM,    /* %r13 */
+  AMD64_R14_REGNUM,    /* %r14 */
+  AMD64_R15_REGNUM     /* %r15 */
+};
+
+static const int amd64_arch_regmap_len =
+  (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
+
+/* Convert architectural register number REG to the appropriate register
+   number used by GDB.  */
+
+static int
+amd64_arch_reg_to_regnum (int reg)
+{
+  gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
+
+  return amd64_arch_regmap[reg];
+}
+
+/* Register names for byte pseudo-registers.  */
+
+static const char *amd64_byte_names[] =
+{
+  "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
+  "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
+  "ah", "bh", "ch", "dh"
+};
+
+/* Number of lower byte registers.  */
+#define AMD64_NUM_LOWER_BYTE_REGS 16
+
+/* Register names for word pseudo-registers.  */
+
+static const char *amd64_word_names[] =
+{
+  "ax", "bx", "cx", "dx", "si", "di", "bp", "", 
+  "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
+};
+
+/* Register names for dword pseudo-registers.  */
+
+static const char *amd64_dword_names[] =
+{
+  "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp", 
+  "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
+  "eip"
+};
+
+/* Return the name of register REGNUM.  */
+
+static const char *
+amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  if (i386_byte_regnum_p (gdbarch, regnum))
+    return amd64_byte_names[regnum - tdep->al_regnum];
+  else if (i386_zmm_regnum_p (gdbarch, regnum))
+    return amd64_zmm_names[regnum - tdep->zmm0_regnum];
+  else if (i386_ymm_regnum_p (gdbarch, regnum))
+    return amd64_ymm_names[regnum - tdep->ymm0_regnum];
+  else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
+    return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
+  else if (i386_word_regnum_p (gdbarch, regnum))
+    return amd64_word_names[regnum - tdep->ax_regnum];
+  else if (i386_dword_regnum_p (gdbarch, regnum))
+    return amd64_dword_names[regnum - tdep->eax_regnum];
+  else
+    return i386_pseudo_register_name (gdbarch, regnum);
+}
+
+static struct value *
+amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
+                                 readable_regcache *regcache,
+                                 int regnum)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  value *result_value = allocate_value (register_type (gdbarch, regnum));
+  VALUE_LVAL (result_value) = lval_register;
+  VALUE_REGNUM (result_value) = regnum;
+  gdb_byte *buf = value_contents_raw (result_value);
+
+  if (i386_byte_regnum_p (gdbarch, regnum))
+    {
+      int gpnum = regnum - tdep->al_regnum;
+
+      /* Extract (always little endian).  */
+      if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
+       {
+         gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
+         gdb_byte raw_buf[register_size (gdbarch, gpnum)];
+
+         /* Special handling for AH, BH, CH, DH.  */
+         register_status status = regcache->raw_read (gpnum, raw_buf);
+         if (status == REG_VALID)
+           memcpy (buf, raw_buf + 1, 1);
+         else
+           mark_value_bytes_unavailable (result_value, 0,
+                                         TYPE_LENGTH (value_type (result_value)));
+       }
+      else
+       {
+         gdb_byte raw_buf[register_size (gdbarch, gpnum)];
+         register_status status = regcache->raw_read (gpnum, raw_buf);
+         if (status == REG_VALID)
+           memcpy (buf, raw_buf, 1);
+         else
+           mark_value_bytes_unavailable (result_value, 0,
+                                         TYPE_LENGTH (value_type (result_value)));
+       }
+    }
+  else if (i386_dword_regnum_p (gdbarch, regnum))
+    {
+      int gpnum = regnum - tdep->eax_regnum;
+      gdb_byte raw_buf[register_size (gdbarch, gpnum)];
+      /* Extract (always little endian).  */
+      register_status status = regcache->raw_read (gpnum, raw_buf);
+      if (status == REG_VALID)
+       memcpy (buf, raw_buf, 4);
+      else
+       mark_value_bytes_unavailable (result_value, 0,
+                                     TYPE_LENGTH (value_type (result_value)));
+    }
+  else
+    i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
+                                         result_value);
+
+  return result_value;
+}
+
+static void
+amd64_pseudo_register_write (struct gdbarch *gdbarch,
+                            struct regcache *regcache,
+                            int regnum, const gdb_byte *buf)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  if (i386_byte_regnum_p (gdbarch, regnum))
+    {
+      int gpnum = regnum - tdep->al_regnum;
+
+      if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
+       {
+         gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
+         gdb_byte raw_buf[register_size (gdbarch, gpnum)];
+
+         /* Read ... AH, BH, CH, DH.  */
+         regcache->raw_read (gpnum, raw_buf);
+         /* ... Modify ... (always little endian).  */
+         memcpy (raw_buf + 1, buf, 1);
+         /* ... Write.  */
+         regcache->raw_write (gpnum, raw_buf);
+       }
+      else
+       {
+         gdb_byte raw_buf[register_size (gdbarch, gpnum)];
+
+         /* Read ...  */
+         regcache->raw_read (gpnum, raw_buf);
+         /* ... Modify ... (always little endian).  */
+         memcpy (raw_buf, buf, 1);
+         /* ... Write.  */
+         regcache->raw_write (gpnum, raw_buf);
+       }
+    }
+  else if (i386_dword_regnum_p (gdbarch, regnum))
+    {
+      int gpnum = regnum - tdep->eax_regnum;
+      gdb_byte raw_buf[register_size (gdbarch, gpnum)];
+
+      /* Read ...  */
+      regcache->raw_read (gpnum, raw_buf);
+      /* ... Modify ... (always little endian).  */
+      memcpy (raw_buf, buf, 4);
+      /* ... Write.  */
+      regcache->raw_write (gpnum, raw_buf);
+    }
+  else
+    i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
+}
+
+/* Implement the 'ax_pseudo_register_collect' gdbarch method.  */
 
 static int
-amd64_convert_register_p (int regnum, struct type *type)
+amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch,
+                                 struct agent_expr *ax, int regnum)
 {
-  return i386_fp_regnum_p (regnum);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  if (i386_byte_regnum_p (gdbarch, regnum))
+    {
+      int gpnum = regnum - tdep->al_regnum;
+
+      if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
+       ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS);
+      else
+       ax_reg_mask (ax, gpnum);
+      return 0;
+    }
+  else if (i386_dword_regnum_p (gdbarch, regnum))
+    {
+      int gpnum = regnum - tdep->eax_regnum;
+
+      ax_reg_mask (ax, gpnum);
+      return 0;
+    }
+  else
+    return i386_ax_pseudo_register_collect (gdbarch, ax, regnum);
 }
+
 \f
 
 /* Register classes as defined in the psABI.  */
@@ -298,146 +539,243 @@ amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
   return AMD64_SSE;
 }
 
-static void amd64_classify (struct type *type, enum amd64_reg_class class[2]);
+static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
 
-/* Return non-zero if TYPE is a non-POD structure or union type.  */
+/* Return true if TYPE is a structure or union with unaligned fields.  */
 
-static int
-amd64_non_pod_p (struct type *type)
+static bool
+amd64_has_unaligned_fields (struct type *type)
 {
-  /* ??? A class with a base class certainly isn't POD, but does this
-     catch all non-POD structure types?  */
-  if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
-    return 1;
+  if (type->code () == TYPE_CODE_STRUCT
+      || type->code () == TYPE_CODE_UNION)
+    {
+      for (int i = 0; i < type->num_fields (); i++)
+       {
+         struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
+         int bitpos = TYPE_FIELD_BITPOS (type, i);
+         int align = type_align(subtype);
+
+         /* Ignore static fields, empty fields (for example nested
+            empty structures), and bitfields (these are handled by
+            the caller).  */
+         if (field_is_static (&type->field (i))
+             || (TYPE_FIELD_BITSIZE (type, i) == 0
+                 && TYPE_LENGTH (subtype) == 0)
+             || TYPE_FIELD_PACKED (type, i))
+           continue;
 
-  return 0;
+         if (bitpos % 8 != 0)
+           return true;
+
+         int bytepos = bitpos / 8;
+         if (bytepos % align != 0)
+           return true;
+
+         if (amd64_has_unaligned_fields (subtype))
+           return true;
+       }
+    }
+
+  return false;
+}
+
+/* Classify field I of TYPE starting at BITOFFSET according to the rules for
+   structures and union types, and store the result in THECLASS.  */
+
+static void
+amd64_classify_aggregate_field (struct type *type, int i,
+                               enum amd64_reg_class theclass[2],
+                               unsigned int bitoffset)
+{
+  struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
+  int bitpos = bitoffset + TYPE_FIELD_BITPOS (type, i);
+  int pos = bitpos / 64;
+  enum amd64_reg_class subclass[2];
+  int bitsize = TYPE_FIELD_BITSIZE (type, i);
+  int endpos;
+
+  if (bitsize == 0)
+    bitsize = TYPE_LENGTH (subtype) * 8;
+  endpos = (bitpos + bitsize - 1) / 64;
+
+  /* Ignore static fields, or empty fields, for example nested
+     empty structures.*/
+  if (field_is_static (&type->field (i)) || bitsize == 0)
+    return;
+
+  if (subtype->code () == TYPE_CODE_STRUCT
+      || subtype->code () == TYPE_CODE_UNION)
+    {
+      /* Each field of an object is classified recursively.  */
+      int j;
+      for (j = 0; j < subtype->num_fields (); j++)
+       amd64_classify_aggregate_field (subtype, j, theclass, bitpos);
+      return;
+    }
+
+  gdb_assert (pos == 0 || pos == 1);
+
+  amd64_classify (subtype, subclass);
+  theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
+  if (bitsize <= 64 && pos == 0 && endpos == 1)
+    /* This is a bit of an odd case:  We have a field that would
+       normally fit in one of the two eightbytes, except that
+       it is placed in a way that this field straddles them.
+       This has been seen with a structure containing an array.
+
+       The ABI is a bit unclear in this case, but we assume that
+       this field's class (stored in subclass[0]) must also be merged
+       into class[1].  In other words, our field has a piece stored
+       in the second eight-byte, and thus its class applies to
+       the second eight-byte as well.
+
+       In the case where the field length exceeds 8 bytes,
+       it should not be necessary to merge the field class
+       into class[1].  As LEN > 8, subclass[1] is necessarily
+       different from AMD64_NO_CLASS.  If subclass[1] is equal
+       to subclass[0], then the normal class[1]/subclass[1]
+       merging will take care of everything.  For subclass[1]
+       to be different from subclass[0], I can only see the case
+       where we have a SSE/SSEUP or X87/X87UP pair, which both
+       use up all 16 bytes of the aggregate, and are already
+       handled just fine (because each portion sits on its own
+       8-byte).  */
+    theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
+  if (pos == 0)
+    theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
 }
 
 /* Classify TYPE according to the rules for aggregate (structures and
    arrays) and union types, and store the result in CLASS.  */
 
 static void
-amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
+amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
 {
-  int len = TYPE_LENGTH (type);
-
-  /* 1. If the size of an object is larger than two eightbytes, or in
-        C++, is a non-POD structure or union type, or contains
+  /* 1. If the size of an object is larger than two eightbytes, or it has
         unaligned fields, it has class memory.  */
-  if (len > 16 || amd64_non_pod_p (type))
+  if (TYPE_LENGTH (type) > 16 || amd64_has_unaligned_fields (type))
     {
-      class[0] = class[1] = AMD64_MEMORY;
+      theclass[0] = theclass[1] = AMD64_MEMORY;
       return;
     }
 
   /* 2. Both eightbytes get initialized to class NO_CLASS.  */
-  class[0] = class[1] = AMD64_NO_CLASS;
+  theclass[0] = theclass[1] = AMD64_NO_CLASS;
 
   /* 3. Each field of an object is classified recursively so that
         always two fields are considered. The resulting class is
         calculated according to the classes of the fields in the
         eightbyte: */
 
-  if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
+  if (type->code () == TYPE_CODE_ARRAY)
     {
       struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
 
       /* All fields in an array have the same type.  */
-      amd64_classify (subtype, class);
-      if (len > 8 && class[1] == AMD64_NO_CLASS)
-       class[1] = class[0];
+      amd64_classify (subtype, theclass);
+      if (TYPE_LENGTH (type) > 8 && theclass[1] == AMD64_NO_CLASS)
+       theclass[1] = theclass[0];
     }
   else
     {
       int i;
 
       /* Structure or union.  */
-      gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
-                 || TYPE_CODE (type) == TYPE_CODE_UNION);
-
-      for (i = 0; i < TYPE_NFIELDS (type); i++)
-       {
-         struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
-         int pos = TYPE_FIELD_BITPOS (type, i) / 64;
-         enum amd64_reg_class subclass[2];
-
-         /* Ignore static fields.  */
-         if (TYPE_FIELD_STATIC (type, i))
-           continue;
-
-         gdb_assert (pos == 0 || pos == 1);
+      gdb_assert (type->code () == TYPE_CODE_STRUCT
+                 || type->code () == TYPE_CODE_UNION);
 
-         amd64_classify (subtype, subclass);
-         class[pos] = amd64_merge_classes (class[pos], subclass[0]);
-         if (pos == 0)
-           class[1] = amd64_merge_classes (class[1], subclass[1]);
-       }
+      for (i = 0; i < type->num_fields (); i++)
+       amd64_classify_aggregate_field (type, i, theclass, 0);
     }
 
   /* 4. Then a post merger cleanup is done:  */
 
   /* Rule (a): If one of the classes is MEMORY, the whole argument is
      passed in memory.  */
-  if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
-    class[0] = class[1] = AMD64_MEMORY;
+  if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
+    theclass[0] = theclass[1] = AMD64_MEMORY;
 
-  /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
+  /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
      SSE.  */
-  if (class[0] == AMD64_SSEUP)
-    class[0] = AMD64_SSE;
-  if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
-    class[1] = AMD64_SSE;
+  if (theclass[0] == AMD64_SSEUP)
+    theclass[0] = AMD64_SSE;
+  if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
+    theclass[1] = AMD64_SSE;
 }
 
 /* Classify TYPE, and store the result in CLASS.  */
 
 static void
-amd64_classify (struct type *type, enum amd64_reg_class class[2])
+amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
 {
-  enum type_code code = TYPE_CODE (type);
+  enum type_code code = type->code ();
   int len = TYPE_LENGTH (type);
 
-  class[0] = class[1] = AMD64_NO_CLASS;
+  theclass[0] = theclass[1] = AMD64_NO_CLASS;
 
   /* Arguments of types (signed and unsigned) _Bool, char, short, int,
      long, long long, and pointers are in the INTEGER class.  Similarly,
      range types, used by languages such as Ada, are also in the INTEGER
      class.  */
   if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
-       || code == TYPE_CODE_RANGE
-       || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
+       || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
+       || code == TYPE_CODE_CHAR
+       || code == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type))
       && (len == 1 || len == 2 || len == 4 || len == 8))
-    class[0] = AMD64_INTEGER;
+    theclass[0] = AMD64_INTEGER;
 
-  /* Arguments of types float, double and __m64 are in class SSE.  */
-  else if (code == TYPE_CODE_FLT && (len == 4 || len == 8))
+  /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
+     are in class SSE.  */
+  else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
+          && (len == 4 || len == 8))
     /* FIXME: __m64 .  */
-    class[0] = AMD64_SSE;
+    theclass[0] = AMD64_SSE;
 
-  /* Arguments of types __float128 and __m128 are split into two
-     halves.  The least significant ones belong to class SSE, the most
+  /* Arguments of types __float128, _Decimal128 and __m128 are split into
+     two halves.  The least significant ones belong to class SSE, the most
      significant one to class SSEUP.  */
-  /* FIXME: __float128, __m128.  */
+  else if (code == TYPE_CODE_DECFLOAT && len == 16)
+    /* FIXME: __float128, __m128.  */
+    theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
 
   /* The 64-bit mantissa of arguments of type long double belongs to
      class X87, the 16-bit exponent plus 6 bytes of padding belongs to
      class X87UP.  */
   else if (code == TYPE_CODE_FLT && len == 16)
     /* Class X87 and X87UP.  */
-    class[0] = AMD64_X87, class[1] = AMD64_X87UP;
+    theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
+
+  /* Arguments of complex T where T is one of the types float or
+     double get treated as if they are implemented as:
+
+     struct complexT {
+       T real;
+       T imag;
+     };
+
+  */
+  else if (code == TYPE_CODE_COMPLEX && len == 8)
+    theclass[0] = AMD64_SSE;
+  else if (code == TYPE_CODE_COMPLEX && len == 16)
+    theclass[0] = theclass[1] = AMD64_SSE;
+
+  /* A variable of type complex long double is classified as type
+     COMPLEX_X87.  */
+  else if (code == TYPE_CODE_COMPLEX && len == 32)
+    theclass[0] = AMD64_COMPLEX_X87;
 
   /* Aggregates.  */
   else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
           || code == TYPE_CODE_UNION)
-    amd64_classify_aggregate (type, class);
+    amd64_classify_aggregate (type, theclass);
 }
 
 static enum return_value_convention
-amd64_return_value (struct gdbarch *gdbarch, struct type *type,
-                   struct regcache *regcache,
+amd64_return_value (struct gdbarch *gdbarch, struct value *function,
+                   struct type *type, struct regcache *regcache,
                    gdb_byte *readbuf, const gdb_byte *writebuf)
 {
-  enum amd64_reg_class class[2];
+  enum amd64_reg_class theclass[2];
   int len = TYPE_LENGTH (type);
   static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
   static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
@@ -448,16 +786,16 @@ amd64_return_value (struct gdbarch *gdbarch, struct type *type,
   gdb_assert (!(readbuf && writebuf));
 
   /* 1. Classify the return type with the classification algorithm.  */
-  amd64_classify (type, class);
+  amd64_classify (type, theclass);
 
   /* 2. If the type has class MEMORY, then the caller provides space
      for the return value and passes the address of this storage in
-     %rdi as if it were the first argument to the function. In effect,
+     %rdi as if it were the first argument to the function.  In effect,
      this address becomes a hidden first argument.
 
      On return %rax will contain the address that has been passed in
      by the caller in %rdi.  */
-  if (class[0] == AMD64_MEMORY)
+  if (theclass[0] == AMD64_MEMORY)
     {
       /* As indicated by the comment above, the ABI guarantees that we
          can always find the return value just after the function has
@@ -474,7 +812,31 @@ amd64_return_value (struct gdbarch *gdbarch, struct type *type,
       return RETURN_VALUE_ABI_RETURNS_ADDRESS;
     }
 
-  gdb_assert (class[1] != AMD64_MEMORY);
+  /* 8. If the class is COMPLEX_X87, the real part of the value is
+        returned in %st0 and the imaginary part in %st1.  */
+  if (theclass[0] == AMD64_COMPLEX_X87)
+    {
+      if (readbuf)
+       {
+         regcache->raw_read (AMD64_ST0_REGNUM, readbuf);
+         regcache->raw_read (AMD64_ST1_REGNUM, readbuf + 16);
+       }
+
+      if (writebuf)
+       {
+         i387_return_value (gdbarch, regcache);
+         regcache->raw_write (AMD64_ST0_REGNUM, writebuf);
+         regcache->raw_write (AMD64_ST1_REGNUM, writebuf + 16);
+
+         /* Fix up the tag word such that both %st(0) and %st(1) are
+            marked as valid.  */
+         regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
+       }
+
+      return RETURN_VALUE_REGISTER_CONVENTION;
+    }
+
+  gdb_assert (theclass[1] != AMD64_MEMORY);
   gdb_assert (len <= 16);
 
   for (i = 0; len > 0; i++, len -= 8)
@@ -482,7 +844,7 @@ amd64_return_value (struct gdbarch *gdbarch, struct type *type,
       int regnum = -1;
       int offset = 0;
 
-      switch (class[i])
+      switch (theclass[i])
        {
        case AMD64_INTEGER:
          /* 3. If the class is INTEGER, the next available register
@@ -515,7 +877,7 @@ amd64_return_value (struct gdbarch *gdbarch, struct type *type,
        case AMD64_X87UP:
          /* 7. If the class is X87UP, the value is returned together
              with the previous X87 value in %st0.  */
-         gdb_assert (i > 0 && class[0] == AMD64_X87);
+         gdb_assert (i > 0 && theclass[0] == AMD64_X87);
          regnum = AMD64_ST0_REGNUM;
          offset = 8;
          len = 2;
@@ -531,11 +893,11 @@ amd64_return_value (struct gdbarch *gdbarch, struct type *type,
       gdb_assert (regnum != -1);
 
       if (readbuf)
-       regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
-                               readbuf + i * 8);
+       regcache->raw_read_part (regnum, offset, std::min (len, 8),
+                                readbuf + i * 8);
       if (writebuf)
-       regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
-                                writebuf + i * 8);
+       regcache->raw_write_part (regnum, offset, std::min (len, 8),
+                                 writebuf + i * 8);
     }
 
   return RETURN_VALUE_REGISTER_CONVENTION;
@@ -543,8 +905,8 @@ amd64_return_value (struct gdbarch *gdbarch, struct type *type,
 \f
 
 static CORE_ADDR
-amd64_push_arguments (struct regcache *regcache, int nargs,
-                     struct value **args, CORE_ADDR sp, int struct_return)
+amd64_push_arguments (struct regcache *regcache, int nargs, struct value **args,
+                     CORE_ADDR sp, function_call_return_method return_method)
 {
   static int integer_regnum[] =
   {
@@ -552,8 +914,8 @@ amd64_push_arguments (struct regcache *regcache, int nargs,
     AMD64_RSI_REGNUM,          /* %rsi */
     AMD64_RDX_REGNUM,          /* %rdx */
     AMD64_RCX_REGNUM,          /* %rcx */
-    8,                         /* %r8 */
-    9                          /* %r9 */
+    AMD64_R8_REGNUM,           /* %r8 */
+    AMD64_R9_REGNUM            /* %r9 */
   };
   static int sse_regnum[] =
   {
@@ -563,7 +925,7 @@ amd64_push_arguments (struct regcache *regcache, int nargs,
     AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
     AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
   };
-  struct value **stack_args = alloca (nargs * sizeof (struct value *));
+  struct value **stack_args = XALLOCAVEC (struct value *, nargs);
   int num_stack_args = 0;
   int num_elements = 0;
   int element = 0;
@@ -572,28 +934,28 @@ amd64_push_arguments (struct regcache *regcache, int nargs,
   int i;
 
   /* Reserve a register for the "hidden" argument.  */
-  if (struct_return)
+if (return_method == return_method_struct)
     integer_reg++;
 
   for (i = 0; i < nargs; i++)
     {
       struct type *type = value_type (args[i]);
       int len = TYPE_LENGTH (type);
-      enum amd64_reg_class class[2];
+      enum amd64_reg_class theclass[2];
       int needed_integer_regs = 0;
       int needed_sse_regs = 0;
       int j;
 
       /* Classify argument.  */
-      amd64_classify (type, class);
+      amd64_classify (type, theclass);
 
       /* Calculate the number of integer and SSE registers needed for
          this argument.  */
       for (j = 0; j < 2; j++)
        {
-         if (class[j] == AMD64_INTEGER)
+         if (theclass[j] == AMD64_INTEGER)
            needed_integer_regs++;
-         else if (class[j] == AMD64_SSE)
+         else if (theclass[j] == AMD64_SSE)
            needed_sse_regs++;
        }
 
@@ -620,7 +982,7 @@ amd64_push_arguments (struct regcache *regcache, int nargs,
              int regnum = -1;
              int offset = 0;
 
-             switch (class[j])
+             switch (theclass[j])
                {
                case AMD64_INTEGER:
                  regnum = integer_regnum[integer_reg++];
@@ -636,14 +998,17 @@ amd64_push_arguments (struct regcache *regcache, int nargs,
                  offset = 8;
                  break;
 
+               case AMD64_NO_CLASS:
+                 continue;
+
                default:
                  gdb_assert (!"Unexpected register class.");
                }
 
              gdb_assert (regnum != -1);
              memset (buf, 0, sizeof buf);
-             memcpy (buf, valbuf + j * 8, min (len, 8));
-             regcache_raw_write_part (regcache, regnum, offset, 8, buf);
+             memcpy (buf, valbuf + j * 8, std::min (len, 8));
+             regcache->raw_write_part (regnum, offset, 8, buf);
            }
        }
     }
@@ -678,164 +1043,1547 @@ static CORE_ADDR
 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
                       struct regcache *regcache, CORE_ADDR bp_addr,
                       int nargs, struct value **args,  CORE_ADDR sp,
-                      int struct_return, CORE_ADDR struct_addr)
+                      function_call_return_method return_method,
+                      CORE_ADDR struct_addr)
 {
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
   gdb_byte buf[8];
 
+  /* BND registers can be in arbitrary values at the moment of the
+     inferior call.  This can cause boundary violations that are not
+     due to a real bug or even desired by the user.  The best to be done
+     is set the BND registers to allow access to the whole memory, INIT
+     state, before pushing the inferior call.   */
+  i387_reset_bnd_regs (gdbarch, regcache);
+
   /* Pass arguments.  */
-  sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
+  sp = amd64_push_arguments (regcache, nargs, args, sp, return_method);
 
   /* Pass "hidden" argument".  */
-  if (struct_return)
+  if (return_method == return_method_struct)
     {
-      store_unsigned_integer (buf, 8, struct_addr);
-      regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
+      store_unsigned_integer (buf, 8, byte_order, struct_addr);
+      regcache->cooked_write (AMD64_RDI_REGNUM, buf);
     }
 
   /* Store return address.  */
   sp -= 8;
-  store_unsigned_integer (buf, 8, bp_addr);
+  store_unsigned_integer (buf, 8, byte_order, bp_addr);
   write_memory (sp, buf, 8);
 
   /* Finally, update the stack pointer...  */
-  store_unsigned_integer (buf, 8, sp);
-  regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
+  store_unsigned_integer (buf, 8, byte_order, sp);
+  regcache->cooked_write (AMD64_RSP_REGNUM, buf);
 
   /* ...and fake a frame pointer.  */
-  regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
+  regcache->cooked_write (AMD64_RBP_REGNUM, buf);
 
   return sp + 16;
 }
 \f
+/* Displaced instruction handling.  */
 
-/* The maximum number of saved registers.  This should include %rip.  */
-#define AMD64_NUM_SAVED_REGS   AMD64_NUM_GREGS
+/* A partially decoded instruction.
+   This contains enough details for displaced stepping purposes.  */
 
-struct amd64_frame_cache
+struct amd64_insn
 {
-  /* Base address.  */
-  CORE_ADDR base;
-  CORE_ADDR sp_offset;
-  CORE_ADDR pc;
-
-  /* Saved registers.  */
-  CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
-  CORE_ADDR saved_sp;
-
-  /* Do we have a frame?  */
-  int frameless_p;
+  /* The number of opcode bytes.  */
+  int opcode_len;
+  /* The offset of the REX/VEX instruction encoding prefix or -1 if
+     not present.  */
+  int enc_prefix_offset;
+  /* The offset to the first opcode byte.  */
+  int opcode_offset;
+  /* The offset to the modrm byte or -1 if not present.  */
+  int modrm_offset;
+
+  /* The raw instruction.  */
+  gdb_byte *raw_insn;
 };
 
-/* Allocate and initialize a frame cache.  */
-
-static struct amd64_frame_cache *
-amd64_alloc_frame_cache (void)
+struct amd64_displaced_step_copy_insn_closure : public displaced_step_copy_insn_closure
 {
-  struct amd64_frame_cache *cache;
-  int i;
+  amd64_displaced_step_copy_insn_closure (int insn_buf_len)
+  : insn_buf (insn_buf_len, 0)
+  {}
 
-  cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
+  /* For rip-relative insns, saved copy of the reg we use instead of %rip.  */
+  int tmp_used = 0;
+  int tmp_regno;
+  ULONGEST tmp_save;
 
-  /* Base address.  */
-  cache->base = 0;
-  cache->sp_offset = -8;
-  cache->pc = 0;
+  /* Details of the instruction.  */
+  struct amd64_insn insn_details;
 
-  /* Saved registers.  We initialize these to -1 since zero is a valid
-     offset (that's where %rbp is supposed to be stored).  */
-  for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
-    cache->saved_regs[i] = -1;
-  cache->saved_sp = 0;
+  /* The possibly modified insn.  */
+  gdb::byte_vector insn_buf;
+};
 
-  /* Frameless until proven otherwise.  */
-  cache->frameless_p = 1;
+typedef std::unique_ptr<amd64_displaced_step_copy_insn_closure>
+  amd64_displaced_step_copy_insn_closure_up;
+
+/* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
+   ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
+   at which point delete these in favor of libopcodes' versions).  */
+
+static const unsigned char onebyte_has_modrm[256] = {
+  /*      0 1 2 3 4 5 6 7 8 9 a b c d e f        */
+  /*      -------------------------------        */
+  /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
+  /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
+  /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
+  /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
+  /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
+  /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
+  /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
+  /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
+  /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
+  /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
+  /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
+  /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
+  /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
+  /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
+  /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
+  /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1  /* f0 */
+  /*      -------------------------------        */
+  /*      0 1 2 3 4 5 6 7 8 9 a b c d e f        */
+};
 
-  return cache;
+static const unsigned char twobyte_has_modrm[256] = {
+  /*      0 1 2 3 4 5 6 7 8 9 a b c d e f        */
+  /*      -------------------------------        */
+  /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
+  /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
+  /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
+  /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
+  /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
+  /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
+  /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
+  /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
+  /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
+  /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
+  /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
+  /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
+  /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
+  /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
+  /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
+  /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0  /* ff */
+  /*      -------------------------------        */
+  /*      0 1 2 3 4 5 6 7 8 9 a b c d e f        */
+};
+
+static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
+
+static int
+rex_prefix_p (gdb_byte pfx)
+{
+  return REX_PREFIX_P (pfx);
 }
 
-/* Do a limited analysis of the prologue at PC and update CACHE
-   accordingly.  Bail out early if CURRENT_PC is reached.  Return the
-   address where the analysis stopped.
+/* True if PFX is the start of the 2-byte VEX prefix.  */
 
-   We will handle only functions beginning with:
+static bool
+vex2_prefix_p (gdb_byte pfx)
+{
+  return pfx == 0xc5;
+}
 
-      pushq %rbp        0x55
-      movq %rsp, %rbp   0x48 0x89 0xe5
+/* True if PFX is the start of the 3-byte VEX prefix.  */
 
-   Any function that doesn't start with this sequence will be assumed
-   to have no prologue and thus no valid frame pointer in %rbp.  */
+static bool
+vex3_prefix_p (gdb_byte pfx)
+{
+  return pfx == 0xc4;
+}
 
-static CORE_ADDR
-amd64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
-                       struct amd64_frame_cache *cache)
+/* Skip the legacy instruction prefixes in INSN.
+   We assume INSN is properly sentineled so we don't have to worry
+   about falling off the end of the buffer.  */
+
+static gdb_byte *
+amd64_skip_prefixes (gdb_byte *insn)
 {
-  static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */
-  gdb_byte buf[3];
-  gdb_byte op;
+  while (1)
+    {
+      switch (*insn)
+       {
+       case DATA_PREFIX_OPCODE:
+       case ADDR_PREFIX_OPCODE:
+       case CS_PREFIX_OPCODE:
+       case DS_PREFIX_OPCODE:
+       case ES_PREFIX_OPCODE:
+       case FS_PREFIX_OPCODE:
+       case GS_PREFIX_OPCODE:
+       case SS_PREFIX_OPCODE:
+       case LOCK_PREFIX_OPCODE:
+       case REPE_PREFIX_OPCODE:
+       case REPNE_PREFIX_OPCODE:
+         ++insn;
+         continue;
+       default:
+         break;
+       }
+      break;
+    }
 
-  if (current_pc <= pc)
-    return current_pc;
+  return insn;
+}
 
-  op = read_memory_unsigned_integer (pc, 1);
+/* Return an integer register (other than RSP) that is unused as an input
+   operand in INSN.
+   In order to not require adding a rex prefix if the insn doesn't already
+   have one, the result is restricted to RAX ... RDI, sans RSP.
+   The register numbering of the result follows architecture ordering,
+   e.g. RDI = 7.  */
 
-  if (op == 0x55)              /* pushq %rbp */
+static int
+amd64_get_unused_input_int_reg (const struct amd64_insn *details)
+{
+  /* 1 bit for each reg */
+  int used_regs_mask = 0;
+
+  /* There can be at most 3 int regs used as inputs in an insn, and we have
+     7 to choose from (RAX ... RDI, sans RSP).
+     This allows us to take a conservative approach and keep things simple.
+     E.g. By avoiding RAX, we don't have to specifically watch for opcodes
+     that implicitly specify RAX.  */
+
+  /* Avoid RAX.  */
+  used_regs_mask |= 1 << EAX_REG_NUM;
+  /* Similarily avoid RDX, implicit operand in divides.  */
+  used_regs_mask |= 1 << EDX_REG_NUM;
+  /* Avoid RSP.  */
+  used_regs_mask |= 1 << ESP_REG_NUM;
+
+  /* If the opcode is one byte long and there's no ModRM byte,
+     assume the opcode specifies a register.  */
+  if (details->opcode_len == 1 && details->modrm_offset == -1)
+    used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
+
+  /* Mark used regs in the modrm/sib bytes.  */
+  if (details->modrm_offset != -1)
     {
-      /* Take into account that we've executed the `pushq %rbp' that
-         starts this instruction sequence.  */
-      cache->saved_regs[AMD64_RBP_REGNUM] = 0;
-      cache->sp_offset += 8;
-
-      /* If that's all, return now.  */
-      if (current_pc <= pc + 1)
-        return current_pc;
+      int modrm = details->raw_insn[details->modrm_offset];
+      int mod = MODRM_MOD_FIELD (modrm);
+      int reg = MODRM_REG_FIELD (modrm);
+      int rm = MODRM_RM_FIELD (modrm);
+      int have_sib = mod != 3 && rm == 4;
 
-      /* Check for `movq %rsp, %rbp'.  */
-      read_memory (pc + 1, buf, 3);
-      if (memcmp (buf, proto, 3) != 0)
-       return pc + 1;
+      /* Assume the reg field of the modrm byte specifies a register.  */
+      used_regs_mask |= 1 << reg;
 
-      /* OK, we actually have a frame.  */
-      cache->frameless_p = 0;
-      return pc + 4;
+      if (have_sib)
+       {
+         int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
+         int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
+         used_regs_mask |= 1 << base;
+         used_regs_mask |= 1 << idx;
+       }
+      else
+       {
+         used_regs_mask |= 1 << rm;
+       }
     }
 
-  return pc;
+  gdb_assert (used_regs_mask < 256);
+  gdb_assert (used_regs_mask != 255);
+
+  /* Finally, find a free reg.  */
+  {
+    int i;
+
+    for (i = 0; i < 8; ++i)
+      {
+       if (! (used_regs_mask & (1 << i)))
+         return i;
+      }
+
+    /* We shouldn't get here.  */
+    internal_error (__FILE__, __LINE__, _("unable to find free reg"));
+  }
 }
 
-/* Return PC of first real instruction.  */
+/* Extract the details of INSN that we need.  */
 
-static CORE_ADDR
-amd64_skip_prologue (CORE_ADDR start_pc)
+static void
+amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
 {
-  struct amd64_frame_cache cache;
-  CORE_ADDR pc;
+  gdb_byte *start = insn;
+  int need_modrm;
 
-  pc = amd64_analyze_prologue (start_pc, 0xffffffffffffffffLL, &cache);
-  if (cache.frameless_p)
-    return start_pc;
+  details->raw_insn = insn;
 
-  return pc;
+  details->opcode_len = -1;
+  details->enc_prefix_offset = -1;
+  details->opcode_offset = -1;
+  details->modrm_offset = -1;
+
+  /* Skip legacy instruction prefixes.  */
+  insn = amd64_skip_prefixes (insn);
+
+  /* Skip REX/VEX instruction encoding prefixes.  */
+  if (rex_prefix_p (*insn))
+    {
+      details->enc_prefix_offset = insn - start;
+      ++insn;
+    }
+  else if (vex2_prefix_p (*insn))
+    {
+      /* Don't record the offset in this case because this prefix has
+        no REX.B equivalent.  */
+      insn += 2;
+    }
+  else if (vex3_prefix_p (*insn))
+    {
+      details->enc_prefix_offset = insn - start;
+      insn += 3;
+    }
+
+  details->opcode_offset = insn - start;
+
+  if (*insn == TWO_BYTE_OPCODE_ESCAPE)
+    {
+      /* Two or three-byte opcode.  */
+      ++insn;
+      need_modrm = twobyte_has_modrm[*insn];
+
+      /* Check for three-byte opcode.  */
+      switch (*insn)
+       {
+       case 0x24:
+       case 0x25:
+       case 0x38:
+       case 0x3a:
+       case 0x7a:
+       case 0x7b:
+         ++insn;
+         details->opcode_len = 3;
+         break;
+       default:
+         details->opcode_len = 2;
+         break;
+       }
+    }
+  else
+    {
+      /* One-byte opcode.  */
+      need_modrm = onebyte_has_modrm[*insn];
+      details->opcode_len = 1;
+    }
+
+  if (need_modrm)
+    {
+      ++insn;
+      details->modrm_offset = insn - start;
+    }
+}
+
+/* Update %rip-relative addressing in INSN.
+
+   %rip-relative addressing only uses a 32-bit displacement.
+   32 bits is not enough to be guaranteed to cover the distance between where
+   the real instruction is and where its copy is.
+   Convert the insn to use base+disp addressing.
+   We set base = pc + insn_length so we can leave disp unchanged.  */
+
+static void
+fixup_riprel (struct gdbarch *gdbarch, amd64_displaced_step_copy_insn_closure *dsc,
+             CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
+{
+  const struct amd64_insn *insn_details = &dsc->insn_details;
+  int modrm_offset = insn_details->modrm_offset;
+  gdb_byte *insn = insn_details->raw_insn + modrm_offset;
+  CORE_ADDR rip_base;
+  int insn_length;
+  int arch_tmp_regno, tmp_regno;
+  ULONGEST orig_value;
+
+  /* %rip+disp32 addressing mode, displacement follows ModRM byte.  */
+  ++insn;
+
+  /* Compute the rip-relative address. */
+  insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf.data (),
+                                         dsc->insn_buf.size (), from);
+  rip_base = from + insn_length;
+
+  /* We need a register to hold the address.
+     Pick one not used in the insn.
+     NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7.  */
+  arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
+  tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
+
+  /* Position of the not-B bit in the 3-byte VEX prefix (in byte 1).  */
+  static constexpr gdb_byte VEX3_NOT_B = 0x20;
+
+  /* REX.B should be unset (VEX.!B set) as we were using rip-relative
+     addressing, but ensure it's unset (set for VEX) anyway, tmp_regno
+     is not r8-r15.  */
+  if (insn_details->enc_prefix_offset != -1)
+    {
+      gdb_byte *pfx = &dsc->insn_buf[insn_details->enc_prefix_offset];
+      if (rex_prefix_p (pfx[0]))
+       pfx[0] &= ~REX_B;
+      else if (vex3_prefix_p (pfx[0]))
+       pfx[1] |= VEX3_NOT_B;
+      else
+       gdb_assert_not_reached ("unhandled prefix");
+    }
+
+  regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
+  dsc->tmp_regno = tmp_regno;
+  dsc->tmp_save = orig_value;
+  dsc->tmp_used = 1;
+
+  /* Convert the ModRM field to be base+disp.  */
+  dsc->insn_buf[modrm_offset] &= ~0xc7;
+  dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
+
+  regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
+                       "displaced: using temp reg %d, old value %s, new value %s\n",
+                       dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
+                       paddress (gdbarch, rip_base));
+}
+
+static void
+fixup_displaced_copy (struct gdbarch *gdbarch,
+                     amd64_displaced_step_copy_insn_closure *dsc,
+                     CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
+{
+  const struct amd64_insn *details = &dsc->insn_details;
+
+  if (details->modrm_offset != -1)
+    {
+      gdb_byte modrm = details->raw_insn[details->modrm_offset];
+
+      if ((modrm & 0xc7) == 0x05)
+       {
+         /* The insn uses rip-relative addressing.
+            Deal with it.  */
+         fixup_riprel (gdbarch, dsc, from, to, regs);
+       }
+    }
+}
+
+displaced_step_copy_insn_closure_up
+amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
+                               CORE_ADDR from, CORE_ADDR to,
+                               struct regcache *regs)
+{
+  int len = gdbarch_max_insn_length (gdbarch);
+  /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
+     continually watch for running off the end of the buffer.  */
+  int fixup_sentinel_space = len;
+  std::unique_ptr<amd64_displaced_step_copy_insn_closure> dsc
+    (new amd64_displaced_step_copy_insn_closure (len + fixup_sentinel_space));
+  gdb_byte *buf = &dsc->insn_buf[0];
+  struct amd64_insn *details = &dsc->insn_details;
+
+  read_memory (from, buf, len);
+
+  /* Set up the sentinel space so we don't have to worry about running
+     off the end of the buffer.  An excessive number of leading prefixes
+     could otherwise cause this.  */
+  memset (buf + len, 0, fixup_sentinel_space);
+
+  amd64_get_insn_details (buf, details);
+
+  /* GDB may get control back after the insn after the syscall.
+     Presumably this is a kernel bug.
+     If this is a syscall, make sure there's a nop afterwards.  */
+  {
+    int syscall_length;
+
+    if (amd64_syscall_p (details, &syscall_length))
+      buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
+  }
+
+  /* Modify the insn to cope with the address where it will be executed from.
+     In particular, handle any rip-relative addressing.         */
+  fixup_displaced_copy (gdbarch, dsc.get (), from, to, regs);
+
+  write_memory (to, buf, len);
+
+  if (debug_displaced)
+    {
+      fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
+                         paddress (gdbarch, from), paddress (gdbarch, to));
+      displaced_step_dump_bytes (gdb_stdlog, buf, len);
+    }
+
+  /* This is a work around for a problem with g++ 4.8.  */
+  return displaced_step_copy_insn_closure_up (dsc.release ());
+}
+
+static int
+amd64_absolute_jmp_p (const struct amd64_insn *details)
+{
+  const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
+
+  if (insn[0] == 0xff)
+    {
+      /* jump near, absolute indirect (/4) */
+      if ((insn[1] & 0x38) == 0x20)
+       return 1;
+
+      /* jump far, absolute indirect (/5) */
+      if ((insn[1] & 0x38) == 0x28)
+       return 1;
+    }
+
+  return 0;
+}
+
+/* Return non-zero if the instruction DETAILS is a jump, zero otherwise.  */
+
+static int
+amd64_jmp_p (const struct amd64_insn *details)
+{
+  const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
+
+  /* jump short, relative.  */
+  if (insn[0] == 0xeb)
+    return 1;
+
+  /* jump near, relative.  */
+  if (insn[0] == 0xe9)
+    return 1;
+
+  return amd64_absolute_jmp_p (details);
+}
+
+static int
+amd64_absolute_call_p (const struct amd64_insn *details)
+{
+  const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
+
+  if (insn[0] == 0xff)
+    {
+      /* Call near, absolute indirect (/2) */
+      if ((insn[1] & 0x38) == 0x10)
+       return 1;
+
+      /* Call far, absolute indirect (/3) */
+      if ((insn[1] & 0x38) == 0x18)
+       return 1;
+    }
+
+  return 0;
+}
+
+static int
+amd64_ret_p (const struct amd64_insn *details)
+{
+  /* NOTE: gcc can emit "repz ; ret".  */
+  const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
+
+  switch (insn[0])
+    {
+    case 0xc2: /* ret near, pop N bytes */
+    case 0xc3: /* ret near */
+    case 0xca: /* ret far, pop N bytes */
+    case 0xcb: /* ret far */
+    case 0xcf: /* iret */
+      return 1;
+
+    default:
+      return 0;
+    }
+}
+
+static int
+amd64_call_p (const struct amd64_insn *details)
+{
+  const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
+
+  if (amd64_absolute_call_p (details))
+    return 1;
+
+  /* call near, relative */
+  if (insn[0] == 0xe8)
+    return 1;
+
+  return 0;
+}
+
+/* Return non-zero if INSN is a system call, and set *LENGTHP to its
+   length in bytes.  Otherwise, return zero.  */
+
+static int
+amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
+{
+  const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
+
+  if (insn[0] == 0x0f && insn[1] == 0x05)
+    {
+      *lengthp = 2;
+      return 1;
+    }
+
+  return 0;
+}
+
+/* Classify the instruction at ADDR using PRED.
+   Throw an error if the memory can't be read.  */
+
+static int
+amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
+                       int (*pred) (const struct amd64_insn *))
+{
+  struct amd64_insn details;
+  gdb_byte *buf;
+  int len, classification;
+
+  len = gdbarch_max_insn_length (gdbarch);
+  buf = (gdb_byte *) alloca (len);
+
+  read_code (addr, buf, len);
+  amd64_get_insn_details (buf, &details);
+
+  classification = pred (&details);
+
+  return classification;
+}
+
+/* The gdbarch insn_is_call method.  */
+
+static int
+amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
+{
+  return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
+}
+
+/* The gdbarch insn_is_ret method.  */
+
+static int
+amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
+{
+  return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
+}
+
+/* The gdbarch insn_is_jump method.  */
+
+static int
+amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
+{
+  return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
+}
+
+/* Fix up the state of registers and memory after having single-stepped
+   a displaced instruction.  */
+
+void
+amd64_displaced_step_fixup (struct gdbarch *gdbarch,
+                           struct displaced_step_copy_insn_closure *dsc_,
+                           CORE_ADDR from, CORE_ADDR to,
+                           struct regcache *regs)
+{
+  amd64_displaced_step_copy_insn_closure *dsc = (amd64_displaced_step_copy_insn_closure *) dsc_;
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  /* The offset we applied to the instruction's address.  */
+  ULONGEST insn_offset = to - from;
+  gdb_byte *insn = dsc->insn_buf.data ();
+  const struct amd64_insn *insn_details = &dsc->insn_details;
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog,
+                       "displaced: fixup (%s, %s), "
+                       "insn = 0x%02x 0x%02x ...\n",
+                       paddress (gdbarch, from), paddress (gdbarch, to),
+                       insn[0], insn[1]);
+
+  /* If we used a tmp reg, restore it. */
+
+  if (dsc->tmp_used)
+    {
+      if (debug_displaced)
+       fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
+                           dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
+      regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
+    }
+
+  /* The list of issues to contend with here is taken from
+     resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
+     Yay for Free Software!  */
+
+  /* Relocate the %rip back to the program's instruction stream,
+     if necessary.  */
+
+  /* Except in the case of absolute or indirect jump or call
+     instructions, or a return instruction, the new rip is relative to
+     the displaced instruction; make it relative to the original insn.
+     Well, signal handler returns don't need relocation either, but we use the
+     value of %rip to recognize those; see below.  */
+  if (! amd64_absolute_jmp_p (insn_details)
+      && ! amd64_absolute_call_p (insn_details)
+      && ! amd64_ret_p (insn_details))
+    {
+      ULONGEST orig_rip;
+      int insn_len;
+
+      regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
+
+      /* A signal trampoline system call changes the %rip, resuming
+        execution of the main program after the signal handler has
+        returned.  That makes them like 'return' instructions; we
+        shouldn't relocate %rip.
+
+        But most system calls don't, and we do need to relocate %rip.
+
+        Our heuristic for distinguishing these cases: if stepping
+        over the system call instruction left control directly after
+        the instruction, the we relocate --- control almost certainly
+        doesn't belong in the displaced copy.  Otherwise, we assume
+        the instruction has put control where it belongs, and leave
+        it unrelocated.  Goodness help us if there are PC-relative
+        system calls.  */
+      if (amd64_syscall_p (insn_details, &insn_len)
+         && orig_rip != to + insn_len
+         /* GDB can get control back after the insn after the syscall.
+            Presumably this is a kernel bug.
+            Fixup ensures its a nop, we add one to the length for it.  */
+         && orig_rip != to + insn_len + 1)
+       {
+         if (debug_displaced)
+           fprintf_unfiltered (gdb_stdlog,
+                               "displaced: syscall changed %%rip; "
+                               "not relocating\n");
+       }
+      else
+       {
+         ULONGEST rip = orig_rip - insn_offset;
+
+         /* If we just stepped over a breakpoint insn, we don't backup
+            the pc on purpose; this is to match behaviour without
+            stepping.  */
+
+         regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
+
+         if (debug_displaced)
+           fprintf_unfiltered (gdb_stdlog,
+                               "displaced: "
+                               "relocated %%rip from %s to %s\n",
+                               paddress (gdbarch, orig_rip),
+                               paddress (gdbarch, rip));
+       }
+    }
+
+  /* If the instruction was PUSHFL, then the TF bit will be set in the
+     pushed value, and should be cleared.  We'll leave this for later,
+     since GDB already messes up the TF flag when stepping over a
+     pushfl.  */
+
+  /* If the instruction was a call, the return address now atop the
+     stack is the address following the copied instruction.  We need
+     to make it the address following the original instruction.         */
+  if (amd64_call_p (insn_details))
+    {
+      ULONGEST rsp;
+      ULONGEST retaddr;
+      const ULONGEST retaddr_len = 8;
+
+      regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
+      retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
+      retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
+      write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
+
+      if (debug_displaced)
+       fprintf_unfiltered (gdb_stdlog,
+                           "displaced: relocated return addr at %s "
+                           "to %s\n",
+                           paddress (gdbarch, rsp),
+                           paddress (gdbarch, retaddr));
+    }
+}
+
+/* If the instruction INSN uses RIP-relative addressing, return the
+   offset into the raw INSN where the displacement to be adjusted is
+   found.  Returns 0 if the instruction doesn't use RIP-relative
+   addressing.  */
+
+static int
+rip_relative_offset (struct amd64_insn *insn)
+{
+  if (insn->modrm_offset != -1)
+    {
+      gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
+
+      if ((modrm & 0xc7) == 0x05)
+       {
+         /* The displacement is found right after the ModRM byte.  */
+         return insn->modrm_offset + 1;
+       }
+    }
+
+  return 0;
+}
+
+static void
+append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
+{
+  target_write_memory (*to, buf, len);
+  *to += len;
+}
+
+static void
+amd64_relocate_instruction (struct gdbarch *gdbarch,
+                           CORE_ADDR *to, CORE_ADDR oldloc)
+{
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  int len = gdbarch_max_insn_length (gdbarch);
+  /* Extra space for sentinels.  */
+  int fixup_sentinel_space = len;
+  gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space);
+  struct amd64_insn insn_details;
+  int offset = 0;
+  LONGEST rel32, newrel;
+  gdb_byte *insn;
+  int insn_length;
+
+  read_memory (oldloc, buf, len);
+
+  /* Set up the sentinel space so we don't have to worry about running
+     off the end of the buffer.  An excessive number of leading prefixes
+     could otherwise cause this.  */
+  memset (buf + len, 0, fixup_sentinel_space);
+
+  insn = buf;
+  amd64_get_insn_details (insn, &insn_details);
+
+  insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
+
+  /* Skip legacy instruction prefixes.  */
+  insn = amd64_skip_prefixes (insn);
+
+  /* Adjust calls with 32-bit relative addresses as push/jump, with
+     the address pushed being the location where the original call in
+     the user program would return to.  */
+  if (insn[0] == 0xe8)
+    {
+      gdb_byte push_buf[32];
+      CORE_ADDR ret_addr;
+      int i = 0;
+
+      /* Where "ret" in the original code will return to.  */
+      ret_addr = oldloc + insn_length;
+
+      /* If pushing an address higher than or equal to 0x80000000,
+        avoid 'pushq', as that sign extends its 32-bit operand, which
+        would be incorrect.  */
+      if (ret_addr <= 0x7fffffff)
+       {
+         push_buf[0] = 0x68; /* pushq $...  */
+         store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
+         i = 5;
+       }
+      else
+       {
+         push_buf[i++] = 0x48; /* sub    $0x8,%rsp */
+         push_buf[i++] = 0x83;
+         push_buf[i++] = 0xec;
+         push_buf[i++] = 0x08;
+
+         push_buf[i++] = 0xc7; /* movl    $imm,(%rsp) */
+         push_buf[i++] = 0x04;
+         push_buf[i++] = 0x24;
+         store_unsigned_integer (&push_buf[i], 4, byte_order,
+                                 ret_addr & 0xffffffff);
+         i += 4;
+
+         push_buf[i++] = 0xc7; /* movl    $imm,4(%rsp) */
+         push_buf[i++] = 0x44;
+         push_buf[i++] = 0x24;
+         push_buf[i++] = 0x04;
+         store_unsigned_integer (&push_buf[i], 4, byte_order,
+                                 ret_addr >> 32);
+         i += 4;
+       }
+      gdb_assert (i <= sizeof (push_buf));
+      /* Push the push.  */
+      append_insns (to, i, push_buf);
+
+      /* Convert the relative call to a relative jump.  */
+      insn[0] = 0xe9;
+
+      /* Adjust the destination offset.  */
+      rel32 = extract_signed_integer (insn + 1, 4, byte_order);
+      newrel = (oldloc - *to) + rel32;
+      store_signed_integer (insn + 1, 4, byte_order, newrel);
+
+      if (debug_displaced)
+       fprintf_unfiltered (gdb_stdlog,
+                           "Adjusted insn rel32=%s at %s to"
+                           " rel32=%s at %s\n",
+                           hex_string (rel32), paddress (gdbarch, oldloc),
+                           hex_string (newrel), paddress (gdbarch, *to));
+
+      /* Write the adjusted jump into its displaced location.  */
+      append_insns (to, 5, insn);
+      return;
+    }
+
+  offset = rip_relative_offset (&insn_details);
+  if (!offset)
+    {
+      /* Adjust jumps with 32-bit relative addresses.  Calls are
+        already handled above.  */
+      if (insn[0] == 0xe9)
+       offset = 1;
+      /* Adjust conditional jumps.  */
+      else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
+       offset = 2;
+    }
+
+  if (offset)
+    {
+      rel32 = extract_signed_integer (insn + offset, 4, byte_order);
+      newrel = (oldloc - *to) + rel32;
+      store_signed_integer (insn + offset, 4, byte_order, newrel);
+      if (debug_displaced)
+       fprintf_unfiltered (gdb_stdlog,
+                           "Adjusted insn rel32=%s at %s to"
+                           " rel32=%s at %s\n",
+                           hex_string (rel32), paddress (gdbarch, oldloc),
+                           hex_string (newrel), paddress (gdbarch, *to));
+    }
+
+  /* Write the adjusted instruction into its displaced location.  */
+  append_insns (to, insn_length, buf);
+}
+
+\f
+/* The maximum number of saved registers.  This should include %rip.  */
+#define AMD64_NUM_SAVED_REGS   AMD64_NUM_GREGS
+
+struct amd64_frame_cache
+{
+  /* Base address.  */
+  CORE_ADDR base;
+  int base_p;
+  CORE_ADDR sp_offset;
+  CORE_ADDR pc;
+
+  /* Saved registers.  */
+  CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
+  CORE_ADDR saved_sp;
+  int saved_sp_reg;
+
+  /* Do we have a frame?  */
+  int frameless_p;
+};
+
+/* Initialize a frame cache.  */
+
+static void
+amd64_init_frame_cache (struct amd64_frame_cache *cache)
+{
+  int i;
+
+  /* Base address.  */
+  cache->base = 0;
+  cache->base_p = 0;
+  cache->sp_offset = -8;
+  cache->pc = 0;
+
+  /* Saved registers.  We initialize these to -1 since zero is a valid
+     offset (that's where %rbp is supposed to be stored).
+     The values start out as being offsets, and are later converted to
+     addresses (at which point -1 is interpreted as an address, still meaning
+     "invalid").  */
+  for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
+    cache->saved_regs[i] = -1;
+  cache->saved_sp = 0;
+  cache->saved_sp_reg = -1;
+
+  /* Frameless until proven otherwise.  */
+  cache->frameless_p = 1;
+}
+
+/* Allocate and initialize a frame cache.  */
+
+static struct amd64_frame_cache *
+amd64_alloc_frame_cache (void)
+{
+  struct amd64_frame_cache *cache;
+
+  cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
+  amd64_init_frame_cache (cache);
+  return cache;
+}
+
+/* GCC 4.4 and later, can put code in the prologue to realign the
+   stack pointer.  Check whether PC points to such code, and update
+   CACHE accordingly.  Return the first instruction after the code
+   sequence or CURRENT_PC, whichever is smaller.  If we don't
+   recognize the code, return PC.  */
+
+static CORE_ADDR
+amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
+                          struct amd64_frame_cache *cache)
+{
+  /* There are 2 code sequences to re-align stack before the frame
+     gets set up:
+
+       1. Use a caller-saved saved register:
+
+               leaq  8(%rsp), %reg
+               andq  $-XXX, %rsp
+               pushq -8(%reg)
+
+       2. Use a callee-saved saved register:
+
+               pushq %reg
+               leaq  16(%rsp), %reg
+               andq  $-XXX, %rsp
+               pushq -8(%reg)
+
+     "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
+     
+       0x48 0x83 0xe4 0xf0                     andq $-16, %rsp
+       0x48 0x81 0xe4 0x00 0xff 0xff 0xff      andq $-256, %rsp
+   */
+
+  gdb_byte buf[18];
+  int reg, r;
+  int offset, offset_and;
+
+  if (target_read_code (pc, buf, sizeof buf))
+    return pc;
+
+  /* Check caller-saved saved register.  The first instruction has
+     to be "leaq 8(%rsp), %reg".  */
+  if ((buf[0] & 0xfb) == 0x48
+      && buf[1] == 0x8d
+      && buf[3] == 0x24
+      && buf[4] == 0x8)
+    {
+      /* MOD must be binary 10 and R/M must be binary 100.  */
+      if ((buf[2] & 0xc7) != 0x44)
+       return pc;
+
+      /* REG has register number.  */
+      reg = (buf[2] >> 3) & 7;
+
+      /* Check the REX.R bit.  */
+      if (buf[0] == 0x4c)
+       reg += 8;
+
+      offset = 5;
+    }
+  else
+    {
+      /* Check callee-saved saved register.  The first instruction
+        has to be "pushq %reg".  */
+      reg = 0;
+      if ((buf[0] & 0xf8) == 0x50)
+       offset = 0;
+      else if ((buf[0] & 0xf6) == 0x40
+              && (buf[1] & 0xf8) == 0x50)
+       {
+         /* Check the REX.B bit.  */
+         if ((buf[0] & 1) != 0)
+           reg = 8;
+
+         offset = 1;
+       }
+      else
+       return pc;
+
+      /* Get register.  */
+      reg += buf[offset] & 0x7;
+
+      offset++;
+
+      /* The next instruction has to be "leaq 16(%rsp), %reg".  */
+      if ((buf[offset] & 0xfb) != 0x48
+         || buf[offset + 1] != 0x8d
+         || buf[offset + 3] != 0x24
+         || buf[offset + 4] != 0x10)
+       return pc;
+
+      /* MOD must be binary 10 and R/M must be binary 100.  */
+      if ((buf[offset + 2] & 0xc7) != 0x44)
+       return pc;
+      
+      /* REG has register number.  */
+      r = (buf[offset + 2] >> 3) & 7;
+
+      /* Check the REX.R bit.  */
+      if (buf[offset] == 0x4c)
+       r += 8;
+
+      /* Registers in pushq and leaq have to be the same.  */
+      if (reg != r)
+       return pc;
+
+      offset += 5;
+    }
+
+  /* Rigister can't be %rsp nor %rbp.  */
+  if (reg == 4 || reg == 5)
+    return pc;
+
+  /* The next instruction has to be "andq $-XXX, %rsp".  */
+  if (buf[offset] != 0x48
+      || buf[offset + 2] != 0xe4
+      || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
+    return pc;
+
+  offset_and = offset;
+  offset += buf[offset + 1] == 0x81 ? 7 : 4;
+
+  /* The next instruction has to be "pushq -8(%reg)".  */
+  r = 0;
+  if (buf[offset] == 0xff)
+    offset++;
+  else if ((buf[offset] & 0xf6) == 0x40
+          && buf[offset + 1] == 0xff)
+    {
+      /* Check the REX.B bit.  */
+      if ((buf[offset] & 0x1) != 0)
+       r = 8;
+      offset += 2;
+    }
+  else
+    return pc;
+
+  /* 8bit -8 is 0xf8.  REG must be binary 110 and MOD must be binary
+     01.  */
+  if (buf[offset + 1] != 0xf8
+      || (buf[offset] & 0xf8) != 0x70)
+    return pc;
+
+  /* R/M has register.  */
+  r += buf[offset] & 7;
+
+  /* Registers in leaq and pushq have to be the same.  */
+  if (reg != r)
+    return pc;
+
+  if (current_pc > pc + offset_and)
+    cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
+
+  return std::min (pc + offset + 2, current_pc);
+}
+
+/* Similar to amd64_analyze_stack_align for x32.  */
+
+static CORE_ADDR
+amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
+                              struct amd64_frame_cache *cache) 
+{
+  /* There are 2 code sequences to re-align stack before the frame
+     gets set up:
+
+       1. Use a caller-saved saved register:
+
+               leaq  8(%rsp), %reg
+               andq  $-XXX, %rsp
+               pushq -8(%reg)
+
+          or
+
+               [addr32] leal  8(%rsp), %reg
+               andl  $-XXX, %esp
+               [addr32] pushq -8(%reg)
+
+       2. Use a callee-saved saved register:
+
+               pushq %reg
+               leaq  16(%rsp), %reg
+               andq  $-XXX, %rsp
+               pushq -8(%reg)
+
+          or
+
+               pushq %reg
+               [addr32] leal  16(%rsp), %reg
+               andl  $-XXX, %esp
+               [addr32] pushq -8(%reg)
+
+     "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
+     
+       0x48 0x83 0xe4 0xf0                     andq $-16, %rsp
+       0x48 0x81 0xe4 0x00 0xff 0xff 0xff      andq $-256, %rsp
+
+     "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
+     
+       0x83 0xe4 0xf0                  andl $-16, %esp
+       0x81 0xe4 0x00 0xff 0xff 0xff   andl $-256, %esp
+   */
+
+  gdb_byte buf[19];
+  int reg, r;
+  int offset, offset_and;
+
+  if (target_read_memory (pc, buf, sizeof buf))
+    return pc;
+
+  /* Skip optional addr32 prefix.  */
+  offset = buf[0] == 0x67 ? 1 : 0;
+
+  /* Check caller-saved saved register.  The first instruction has
+     to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg".  */
+  if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
+      && buf[offset + 1] == 0x8d
+      && buf[offset + 3] == 0x24
+      && buf[offset + 4] == 0x8)
+    {
+      /* MOD must be binary 10 and R/M must be binary 100.  */
+      if ((buf[offset + 2] & 0xc7) != 0x44)
+       return pc;
+
+      /* REG has register number.  */
+      reg = (buf[offset + 2] >> 3) & 7;
+
+      /* Check the REX.R bit.  */
+      if ((buf[offset] & 0x4) != 0)
+       reg += 8;
+
+      offset += 5;
+    }
+  else
+    {
+      /* Check callee-saved saved register.  The first instruction
+        has to be "pushq %reg".  */
+      reg = 0;
+      if ((buf[offset] & 0xf6) == 0x40
+         && (buf[offset + 1] & 0xf8) == 0x50)
+       {
+         /* Check the REX.B bit.  */
+         if ((buf[offset] & 1) != 0)
+           reg = 8;
+
+         offset += 1;
+       }
+      else if ((buf[offset] & 0xf8) != 0x50)
+       return pc;
+
+      /* Get register.  */
+      reg += buf[offset] & 0x7;
+
+      offset++;
+
+      /* Skip optional addr32 prefix.  */
+      if (buf[offset] == 0x67)
+       offset++;
+
+      /* The next instruction has to be "leaq 16(%rsp), %reg" or
+        "leal 16(%rsp), %reg".  */
+      if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
+         || buf[offset + 1] != 0x8d
+         || buf[offset + 3] != 0x24
+         || buf[offset + 4] != 0x10)
+       return pc;
+
+      /* MOD must be binary 10 and R/M must be binary 100.  */
+      if ((buf[offset + 2] & 0xc7) != 0x44)
+       return pc;
+      
+      /* REG has register number.  */
+      r = (buf[offset + 2] >> 3) & 7;
+
+      /* Check the REX.R bit.  */
+      if ((buf[offset] & 0x4) != 0)
+       r += 8;
+
+      /* Registers in pushq and leaq have to be the same.  */
+      if (reg != r)
+       return pc;
+
+      offset += 5;
+    }
+
+  /* Rigister can't be %rsp nor %rbp.  */
+  if (reg == 4 || reg == 5)
+    return pc;
+
+  /* The next instruction may be "andq $-XXX, %rsp" or
+     "andl $-XXX, %esp".  */
+  if (buf[offset] != 0x48)
+    offset--;
+
+  if (buf[offset + 2] != 0xe4
+      || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
+    return pc;
+
+  offset_and = offset;
+  offset += buf[offset + 1] == 0x81 ? 7 : 4;
+
+  /* Skip optional addr32 prefix.  */
+  if (buf[offset] == 0x67)
+    offset++;
+
+  /* The next instruction has to be "pushq -8(%reg)".  */
+  r = 0;
+  if (buf[offset] == 0xff)
+    offset++;
+  else if ((buf[offset] & 0xf6) == 0x40
+          && buf[offset + 1] == 0xff)
+    {
+      /* Check the REX.B bit.  */
+      if ((buf[offset] & 0x1) != 0)
+       r = 8;
+      offset += 2;
+    }
+  else
+    return pc;
+
+  /* 8bit -8 is 0xf8.  REG must be binary 110 and MOD must be binary
+     01.  */
+  if (buf[offset + 1] != 0xf8
+      || (buf[offset] & 0xf8) != 0x70)
+    return pc;
+
+  /* R/M has register.  */
+  r += buf[offset] & 7;
+
+  /* Registers in leaq and pushq have to be the same.  */
+  if (reg != r)
+    return pc;
+
+  if (current_pc > pc + offset_and)
+    cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
+
+  return std::min (pc + offset + 2, current_pc);
+}
+
+/* Do a limited analysis of the prologue at PC and update CACHE
+   accordingly.  Bail out early if CURRENT_PC is reached.  Return the
+   address where the analysis stopped.
+
+   We will handle only functions beginning with:
+
+      pushq %rbp        0x55
+      movq %rsp, %rbp   0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
+
+   or (for the X32 ABI):
+
+      pushq %rbp        0x55
+      movl %esp, %ebp   0x89 0xe5 (or 0x8b 0xec)
+
+   The `endbr64` instruction can be found before these sequences, and will be
+   skipped if found.
+
+   Any function that doesn't start with one of these sequences will be
+   assumed to have no prologue and thus no valid frame pointer in
+   %rbp.  */
+
+static CORE_ADDR
+amd64_analyze_prologue (struct gdbarch *gdbarch,
+                       CORE_ADDR pc, CORE_ADDR current_pc,
+                       struct amd64_frame_cache *cache)
+{
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  /* The `endbr64` instruction.  */
+  static const gdb_byte endbr64[4] = { 0xf3, 0x0f, 0x1e, 0xfa };
+  /* There are two variations of movq %rsp, %rbp.  */
+  static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
+  static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
+  /* Ditto for movl %esp, %ebp.  */
+  static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
+  static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
+
+  gdb_byte buf[3];
+  gdb_byte op;
+
+  if (current_pc <= pc)
+    return current_pc;
+
+  if (gdbarch_ptr_bit (gdbarch) == 32)
+    pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
+  else
+    pc = amd64_analyze_stack_align (pc, current_pc, cache);
+
+  op = read_code_unsigned_integer (pc, 1, byte_order);
+
+  /* Check for the `endbr64` instruction, skip it if found.  */
+  if (op == endbr64[0])
+    {
+      read_code (pc + 1, buf, 3);
+
+      if (memcmp (buf, &endbr64[1], 3) == 0)
+       pc += 4;
+
+      op = read_code_unsigned_integer (pc, 1, byte_order);
+    }
+
+  if (current_pc <= pc)
+    return current_pc;
+
+  if (op == 0x55)              /* pushq %rbp */
+    {
+      /* Take into account that we've executed the `pushq %rbp' that
+         starts this instruction sequence.  */
+      cache->saved_regs[AMD64_RBP_REGNUM] = 0;
+      cache->sp_offset += 8;
+
+      /* If that's all, return now.  */
+      if (current_pc <= pc + 1)
+        return current_pc;
+
+      read_code (pc + 1, buf, 3);
+
+      /* Check for `movq %rsp, %rbp'.  */
+      if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
+         || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
+       {
+         /* OK, we actually have a frame.  */
+         cache->frameless_p = 0;
+         return pc + 4;
+       }
+
+      /* For X32, also check for `movq %esp, %ebp'.  */
+      if (gdbarch_ptr_bit (gdbarch) == 32)
+       {
+         if (memcmp (buf, mov_esp_ebp_1, 2) == 0
+             || memcmp (buf, mov_esp_ebp_2, 2) == 0)
+           {
+             /* OK, we actually have a frame.  */
+             cache->frameless_p = 0;
+             return pc + 3;
+           }
+       }
+
+      return pc + 1;
+    }
+
+  return pc;
+}
+
+/* Work around false termination of prologue - GCC PR debug/48827.
+
+   START_PC is the first instruction of a function, PC is its minimal already
+   determined advanced address.  Function returns PC if it has nothing to do.
+
+   84 c0                test   %al,%al
+   74 23                je     after
+   <-- here is 0 lines advance - the false prologue end marker.
+   0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
+   0f 29 4d 80          movaps %xmm1,-0x80(%rbp)
+   0f 29 55 90          movaps %xmm2,-0x70(%rbp)
+   0f 29 5d a0          movaps %xmm3,-0x60(%rbp)
+   0f 29 65 b0          movaps %xmm4,-0x50(%rbp)
+   0f 29 6d c0          movaps %xmm5,-0x40(%rbp)
+   0f 29 75 d0          movaps %xmm6,-0x30(%rbp)
+   0f 29 7d e0          movaps %xmm7,-0x20(%rbp)
+   after:  */
+
+static CORE_ADDR
+amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
+{
+  struct symtab_and_line start_pc_sal, next_sal;
+  gdb_byte buf[4 + 8 * 7];
+  int offset, xmmreg;
+
+  if (pc == start_pc)
+    return pc;
+
+  start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
+  if (start_pc_sal.symtab == NULL
+      || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER
+          (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6
+      || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
+    return pc;
+
+  next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
+  if (next_sal.line != start_pc_sal.line)
+    return pc;
+
+  /* START_PC can be from overlayed memory, ignored here.  */
+  if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
+    return pc;
+
+  /* test %al,%al */
+  if (buf[0] != 0x84 || buf[1] != 0xc0)
+    return pc;
+  /* je AFTER */
+  if (buf[2] != 0x74)
+    return pc;
+
+  offset = 4;
+  for (xmmreg = 0; xmmreg < 8; xmmreg++)
+    {
+      /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
+      if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
+          || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
+       return pc;
+
+      /* 0b01?????? */
+      if ((buf[offset + 2] & 0xc0) == 0x40)
+       {
+         /* 8-bit displacement.  */
+         offset += 4;
+       }
+      /* 0b10?????? */
+      else if ((buf[offset + 2] & 0xc0) == 0x80)
+       {
+         /* 32-bit displacement.  */
+         offset += 7;
+       }
+      else
+       return pc;
+    }
+
+  /* je AFTER */
+  if (offset - 4 != buf[3])
+    return pc;
+
+  return next_sal.end;
+}
+
+/* Return PC of first real instruction.  */
+
+static CORE_ADDR
+amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
+{
+  struct amd64_frame_cache cache;
+  CORE_ADDR pc;
+  CORE_ADDR func_addr;
+
+  if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
+    {
+      CORE_ADDR post_prologue_pc
+       = skip_prologue_using_sal (gdbarch, func_addr);
+      struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
+
+      /* Clang always emits a line note before the prologue and another
+        one after.  We trust clang to emit usable line notes.  */
+      if (post_prologue_pc
+         && (cust != NULL
+             && COMPUNIT_PRODUCER (cust) != NULL
+             && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
+        return std::max (start_pc, post_prologue_pc);
+    }
+
+  amd64_init_frame_cache (&cache);
+  pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
+                              &cache);
+  if (cache.frameless_p)
+    return start_pc;
+
+  return amd64_skip_xmm_prologue (pc, start_pc);
 }
 \f
 
 /* Normal frames.  */
 
-static struct amd64_frame_cache *
-amd64_frame_cache (struct frame_info *next_frame, void **this_cache)
+static void
+amd64_frame_cache_1 (struct frame_info *this_frame,
+                    struct amd64_frame_cache *cache)
 {
-  struct amd64_frame_cache *cache;
+  struct gdbarch *gdbarch = get_frame_arch (this_frame);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
   gdb_byte buf[8];
   int i;
 
-  if (*this_cache)
-    return *this_cache;
-
-  cache = amd64_alloc_frame_cache ();
-  *this_cache = cache;
-
-  cache->pc = frame_func_unwind (next_frame);
+  cache->pc = get_frame_func (this_frame);
   if (cache->pc != 0)
-    amd64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
+    amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
+                           cache);
 
   if (cache->frameless_p)
     {
@@ -846,13 +2594,30 @@ amd64_frame_cache (struct frame_info *next_frame, void **this_cache)
         at the stack pointer.  For truly "frameless" functions this
         might work too.  */
 
-      frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf);
-      cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset;
+      if (cache->saved_sp_reg != -1)
+       {
+         /* Stack pointer has been saved.  */
+         get_frame_register (this_frame, cache->saved_sp_reg, buf);
+         cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
+
+         /* We're halfway aligning the stack.  */
+         cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
+         cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
+
+         /* This will be added back below.  */
+         cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
+       }
+      else
+       {
+         get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
+         cache->base = extract_unsigned_integer (buf, 8, byte_order)
+                       + cache->sp_offset;
+       }
     }
   else
     {
-      frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf);
-      cache->base = extract_unsigned_integer (buf, 8);
+      get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
+      cache->base = extract_unsigned_integer (buf, 8, byte_order);
     }
 
   /* Now that we have the base address for the stack frame we can
@@ -861,8 +2626,10 @@ amd64_frame_cache (struct frame_info *next_frame, void **this_cache)
 
   /* For normal frames, %rip is stored at 8(%rbp).  If we don't have a
      frame we find it at the same offset from the reconstructed base
-     address.  */
-  cache->saved_regs[AMD64_RIP_REGNUM] = 8;
+     address.  If we're halfway aligning the stack, %rip is handled
+     differently (see above).  */
+  if (!cache->frameless_p || cache->saved_sp_reg == -1)
+    cache->saved_regs[AMD64_RIP_REGNUM] = 8;
 
   /* Adjust all the saved registers such that they contain addresses
      instead of offsets.  */
@@ -870,82 +2637,112 @@ amd64_frame_cache (struct frame_info *next_frame, void **this_cache)
     if (cache->saved_regs[i] != -1)
       cache->saved_regs[i] += cache->base;
 
+  cache->base_p = 1;
+}
+
+static struct amd64_frame_cache *
+amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
+{
+  struct amd64_frame_cache *cache;
+
+  if (*this_cache)
+    return (struct amd64_frame_cache *) *this_cache;
+
+  cache = amd64_alloc_frame_cache ();
+  *this_cache = cache;
+
+  try
+    {
+      amd64_frame_cache_1 (this_frame, cache);
+    }
+  catch (const gdb_exception_error &ex)
+    {
+      if (ex.error != NOT_AVAILABLE_ERROR)
+       throw;
+    }
+
   return cache;
 }
 
-static void
-amd64_frame_this_id (struct frame_info *next_frame, void **this_cache,
-                    struct frame_id *this_id)
+static enum unwind_stop_reason
+amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
+                               void **this_cache)
 {
   struct amd64_frame_cache *cache =
-    amd64_frame_cache (next_frame, this_cache);
+    amd64_frame_cache (this_frame, this_cache);
+
+  if (!cache->base_p)
+    return UNWIND_UNAVAILABLE;
 
   /* This marks the outermost frame.  */
   if (cache->base == 0)
-    return;
+    return UNWIND_OUTERMOST;
 
-  (*this_id) = frame_id_build (cache->base + 16, cache->pc);
+  return UNWIND_NO_REASON;
 }
 
 static void
-amd64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
-                          int regnum, int *optimizedp,
-                          enum lval_type *lvalp, CORE_ADDR *addrp,
-                          int *realnump, gdb_byte *valuep)
+amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
+                    struct frame_id *this_id)
 {
   struct amd64_frame_cache *cache =
-    amd64_frame_cache (next_frame, this_cache);
-
-  gdb_assert (regnum >= 0);
+    amd64_frame_cache (this_frame, this_cache);
 
-  if (regnum == SP_REGNUM && cache->saved_sp)
+  if (!cache->base_p)
+    (*this_id) = frame_id_build_unavailable_stack (cache->pc);
+  else if (cache->base == 0)
     {
-      *optimizedp = 0;
-      *lvalp = not_lval;
-      *addrp = 0;
-      *realnump = -1;
-      if (valuep)
-       {
-         /* Store the value.  */
-         store_unsigned_integer (valuep, 8, cache->saved_sp);
-       }
+      /* This marks the outermost frame.  */
       return;
     }
+  else
+    (*this_id) = frame_id_build (cache->base + 16, cache->pc);
+}
+
+static struct value *
+amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
+                          int regnum)
+{
+  struct gdbarch *gdbarch = get_frame_arch (this_frame);
+  struct amd64_frame_cache *cache =
+    amd64_frame_cache (this_frame, this_cache);
+
+  gdb_assert (regnum >= 0);
+
+  if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
+    return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
 
   if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
-    {
-      *optimizedp = 0;
-      *lvalp = lval_memory;
-      *addrp = cache->saved_regs[regnum];
-      *realnump = -1;
-      if (valuep)
-       {
-         /* Read the value in from memory.  */
-         read_memory (*addrp, valuep,
-                      register_size (current_gdbarch, regnum));
-       }
-      return;
-    }
+    return frame_unwind_got_memory (this_frame, regnum,
+                                   cache->saved_regs[regnum]);
 
-  *optimizedp = 0;
-  *lvalp = lval_register;
-  *addrp = 0;
-  *realnump = regnum;
-  if (valuep)
-    frame_unwind_register (next_frame, (*realnump), valuep);
+  return frame_unwind_got_register (this_frame, regnum, regnum);
 }
 
 static const struct frame_unwind amd64_frame_unwind =
 {
   NORMAL_FRAME,
+  amd64_frame_unwind_stop_reason,
   amd64_frame_this_id,
-  amd64_frame_prev_register
+  amd64_frame_prev_register,
+  NULL,
+  default_frame_sniffer
 };
+\f
+/* Generate a bytecode expression to get the value of the saved PC.  */
 
-static const struct frame_unwind *
-amd64_frame_sniffer (struct frame_info *next_frame)
+static void
+amd64_gen_return_address (struct gdbarch *gdbarch,
+                         struct agent_expr *ax, struct axs_value *value,
+                         CORE_ADDR scope)
 {
-  return &amd64_frame_unwind;
+  /* The following sequence assumes the traditional use of the base
+     register.  */
+  ax_reg (ax, AMD64_RBP_REGNUM);
+  ax_const_l (ax, 8);
+  ax_simple (ax, aop_add);
+  value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
+  value->kind = axs_lvalue_memory;
 }
 \f
 
@@ -956,98 +2753,132 @@ amd64_frame_sniffer (struct frame_info *next_frame)
    on both platforms.  */
 
 static struct amd64_frame_cache *
-amd64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
+amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
 {
+  struct gdbarch *gdbarch = get_frame_arch (this_frame);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
   struct amd64_frame_cache *cache;
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
   CORE_ADDR addr;
   gdb_byte buf[8];
   int i;
 
   if (*this_cache)
-    return *this_cache;
+    return (struct amd64_frame_cache *) *this_cache;
 
   cache = amd64_alloc_frame_cache ();
 
-  frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf);
-  cache->base = extract_unsigned_integer (buf, 8) - 8;
+  try
+    {
+      get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
+      cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
+
+      addr = tdep->sigcontext_addr (this_frame);
+      gdb_assert (tdep->sc_reg_offset);
+      gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
+      for (i = 0; i < tdep->sc_num_regs; i++)
+       if (tdep->sc_reg_offset[i] != -1)
+         cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
 
-  addr = tdep->sigcontext_addr (next_frame);
-  gdb_assert (tdep->sc_reg_offset);
-  gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
-  for (i = 0; i < tdep->sc_num_regs; i++)
-    if (tdep->sc_reg_offset[i] != -1)
-      cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
+      cache->base_p = 1;
+    }
+  catch (const gdb_exception_error &ex)
+    {
+      if (ex.error != NOT_AVAILABLE_ERROR)
+       throw;
+    }
 
   *this_cache = cache;
   return cache;
 }
 
-static void
-amd64_sigtramp_frame_this_id (struct frame_info *next_frame,
-                             void **this_cache, struct frame_id *this_id)
+static enum unwind_stop_reason
+amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
+                                        void **this_cache)
 {
   struct amd64_frame_cache *cache =
-    amd64_sigtramp_frame_cache (next_frame, this_cache);
+    amd64_sigtramp_frame_cache (this_frame, this_cache);
 
-  (*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame));
+  if (!cache->base_p)
+    return UNWIND_UNAVAILABLE;
+
+  return UNWIND_NO_REASON;
 }
 
 static void
-amd64_sigtramp_frame_prev_register (struct frame_info *next_frame,
-                                   void **this_cache,
-                                   int regnum, int *optimizedp,
-                                   enum lval_type *lvalp, CORE_ADDR *addrp,
-                                   int *realnump, gdb_byte *valuep)
+amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
+                             void **this_cache, struct frame_id *this_id)
 {
-  /* Make sure we've initialized the cache.  */
-  amd64_sigtramp_frame_cache (next_frame, this_cache);
+  struct amd64_frame_cache *cache =
+    amd64_sigtramp_frame_cache (this_frame, this_cache);
 
-  amd64_frame_prev_register (next_frame, this_cache, regnum,
-                            optimizedp, lvalp, addrp, realnump, valuep);
+  if (!cache->base_p)
+    (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
+  else if (cache->base == 0)
+    {
+      /* This marks the outermost frame.  */
+      return;
+    }
+  else
+    (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
 }
 
-static const struct frame_unwind amd64_sigtramp_frame_unwind =
+static struct value *
+amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
+                                   void **this_cache, int regnum)
 {
-  SIGTRAMP_FRAME,
-  amd64_sigtramp_frame_this_id,
-  amd64_sigtramp_frame_prev_register
-};
+  /* Make sure we've initialized the cache.  */
+  amd64_sigtramp_frame_cache (this_frame, this_cache);
+
+  return amd64_frame_prev_register (this_frame, this_cache, regnum);
+}
 
-static const struct frame_unwind *
-amd64_sigtramp_frame_sniffer (struct frame_info *next_frame)
+static int
+amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
+                             struct frame_info *this_frame,
+                             void **this_cache)
 {
-  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
+  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
 
   /* We shouldn't even bother if we don't have a sigcontext_addr
      handler.  */
   if (tdep->sigcontext_addr == NULL)
-    return NULL;
+    return 0;
 
   if (tdep->sigtramp_p != NULL)
     {
-      if (tdep->sigtramp_p (next_frame))
-       return &amd64_sigtramp_frame_unwind;
+      if (tdep->sigtramp_p (this_frame))
+       return 1;
     }
 
   if (tdep->sigtramp_start != 0)
     {
-      CORE_ADDR pc = frame_pc_unwind (next_frame);
+      CORE_ADDR pc = get_frame_pc (this_frame);
 
       gdb_assert (tdep->sigtramp_end != 0);
       if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
-       return &amd64_sigtramp_frame_unwind;
+       return 1;
     }
 
-  return NULL;
+  return 0;
 }
+
+static const struct frame_unwind amd64_sigtramp_frame_unwind =
+{
+  SIGTRAMP_FRAME,
+  amd64_sigtramp_frame_unwind_stop_reason,
+  amd64_sigtramp_frame_this_id,
+  amd64_sigtramp_frame_prev_register,
+  NULL,
+  amd64_sigtramp_frame_sniffer
+};
 \f
 
 static CORE_ADDR
-amd64_frame_base_address (struct frame_info *next_frame, void **this_cache)
+amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
 {
   struct amd64_frame_cache *cache =
-    amd64_frame_cache (next_frame, this_cache);
+    amd64_frame_cache (this_frame, this_cache);
 
   return cache->base;
 }
@@ -1060,16 +2891,131 @@ static const struct frame_base amd64_frame_base =
   amd64_frame_base_address
 };
 
-static struct frame_id
-amd64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
+/* Normal frames, but in a function epilogue.  */
+
+/* Implement the stack_frame_destroyed_p gdbarch method.
+
+   The epilogue is defined here as the 'ret' instruction, which will
+   follow any instruction such as 'leave' or 'pop %ebp' that destroys
+   the function's stack frame.  */
+
+static int
+amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
+{
+  gdb_byte insn;
+  struct compunit_symtab *cust;
+
+  cust = find_pc_compunit_symtab (pc);
+  if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
+    return 0;
+
+  if (target_read_memory (pc, &insn, 1))
+    return 0;   /* Can't read memory at pc.  */
+
+  if (insn != 0xc3)     /* 'ret' instruction.  */
+    return 0;
+
+  return 1;
+}
+
+static int
+amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
+                             struct frame_info *this_frame,
+                             void **this_prologue_cache)
+{
+  if (frame_relative_level (this_frame) == 0)
+    return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame),
+                                         get_frame_pc (this_frame));
+  else
+    return 0;
+}
+
+static struct amd64_frame_cache *
+amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
 {
+  struct gdbarch *gdbarch = get_frame_arch (this_frame);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  struct amd64_frame_cache *cache;
   gdb_byte buf[8];
+
+  if (*this_cache)
+    return (struct amd64_frame_cache *) *this_cache;
+
+  cache = amd64_alloc_frame_cache ();
+  *this_cache = cache;
+
+  try
+    {
+      /* Cache base will be %esp plus cache->sp_offset (-8).  */
+      get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
+      cache->base = extract_unsigned_integer (buf, 8,
+                                             byte_order) + cache->sp_offset;
+
+      /* Cache pc will be the frame func.  */
+      cache->pc = get_frame_pc (this_frame);
+
+      /* The saved %esp will be at cache->base plus 16.  */
+      cache->saved_sp = cache->base + 16;
+
+      /* The saved %eip will be at cache->base plus 8.  */
+      cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
+
+      cache->base_p = 1;
+    }
+  catch (const gdb_exception_error &ex)
+    {
+      if (ex.error != NOT_AVAILABLE_ERROR)
+       throw;
+    }
+
+  return cache;
+}
+
+static enum unwind_stop_reason
+amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
+                                        void **this_cache)
+{
+  struct amd64_frame_cache *cache
+    = amd64_epilogue_frame_cache (this_frame, this_cache);
+
+  if (!cache->base_p)
+    return UNWIND_UNAVAILABLE;
+
+  return UNWIND_NO_REASON;
+}
+
+static void
+amd64_epilogue_frame_this_id (struct frame_info *this_frame,
+                             void **this_cache,
+                             struct frame_id *this_id)
+{
+  struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
+                                                              this_cache);
+
+  if (!cache->base_p)
+    (*this_id) = frame_id_build_unavailable_stack (cache->pc);
+  else
+    (*this_id) = frame_id_build (cache->base + 8, cache->pc);
+}
+
+static const struct frame_unwind amd64_epilogue_frame_unwind =
+{
+  NORMAL_FRAME,
+  amd64_epilogue_frame_unwind_stop_reason,
+  amd64_epilogue_frame_this_id,
+  amd64_frame_prev_register,
+  NULL, 
+  amd64_epilogue_frame_sniffer
+};
+
+static struct frame_id
+amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
+{
   CORE_ADDR fp;
 
-  frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf);
-  fp = extract_unsigned_integer (buf, 8);
+  fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
 
-  return frame_id_build (fp + 16, frame_pc_unwind (next_frame));
+  return frame_id_build (fp + 16, get_frame_pc (this_frame));
 }
 
 /* 16 byte align the SP per frame requirements.  */
@@ -1089,9 +3035,10 @@ static void
 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
                       int regnum, const void *fpregs, size_t len)
 {
-  const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
+  struct gdbarch *gdbarch = regcache->arch ();
+  const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-  gdb_assert (len == tdep->sizeof_fpregset);
+  gdb_assert (len >= tdep->sizeof_fpregset);
   amd64_supply_fxsave (regcache, regnum, fpregs);
 }
 
@@ -1105,42 +3052,152 @@ amd64_collect_fpregset (const struct regset *regset,
                        const struct regcache *regcache,
                        int regnum, void *fpregs, size_t len)
 {
-  const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
+  struct gdbarch *gdbarch = regcache->arch ();
+  const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-  gdb_assert (len == tdep->sizeof_fpregset);
+  gdb_assert (len >= tdep->sizeof_fpregset);
   amd64_collect_fxsave (regcache, regnum, fpregs);
 }
 
-/* Return the appropriate register set for the core section identified
-   by SECT_NAME and SECT_SIZE.  */
+const struct regset amd64_fpregset =
+  {
+    NULL, amd64_supply_fpregset, amd64_collect_fpregset
+  };
+\f
+
+/* Figure out where the longjmp will land.  Slurp the jmp_buf out of
+   %rdi.  We expect its value to be a pointer to the jmp_buf structure
+   from which we extract the address that we will land at.  This
+   address is copied into PC.  This routine returns non-zero on
+   success.  */
 
-static const struct regset *
-amd64_regset_from_core_section (struct gdbarch *gdbarch,
-                               const char *sect_name, size_t sect_size)
+static int
+amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
 {
-  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  gdb_byte buf[8];
+  CORE_ADDR jb_addr;
+  struct gdbarch *gdbarch = get_frame_arch (frame);
+  int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
+  int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
 
-  if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
-    {
-      if (tdep->fpregset == NULL)
-       tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
-                                      amd64_collect_fpregset);
+  /* If JB_PC_OFFSET is -1, we have no way to find out where the
+     longjmp will land.         */
+  if (jb_pc_offset == -1)
+    return 0;
 
-      return tdep->fpregset;
-    }
+  get_frame_register (frame, AMD64_RDI_REGNUM, buf);
+  jb_addr= extract_typed_address
+           (buf, builtin_type (gdbarch)->builtin_data_ptr);
+  if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
+    return 0;
 
-  return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
+  *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
+
+  return 1;
+}
+
+static const int amd64_record_regmap[] =
+{
+  AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
+  AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
+  AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
+  AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
+  AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
+  AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
+};
+
+/* Implement the "in_indirect_branch_thunk" gdbarch function.  */
+
+static bool
+amd64_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
+{
+  return x86_in_indirect_branch_thunk (pc, amd64_register_names,
+                                      AMD64_RAX_REGNUM,
+                                      AMD64_RIP_REGNUM);
 }
-\f
 
 void
-amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
+amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
+               const target_desc *default_tdesc)
 {
   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  const struct target_desc *tdesc = info.target_desc;
+  static const char *const stap_integer_prefixes[] = { "$", NULL };
+  static const char *const stap_register_prefixes[] = { "%", NULL };
+  static const char *const stap_register_indirection_prefixes[] = { "(",
+                                                                   NULL };
+  static const char *const stap_register_indirection_suffixes[] = { ")",
+                                                                   NULL };
 
   /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
      floating-point registers.  */
   tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
+  tdep->fpregset = &amd64_fpregset;
+
+  if (! tdesc_has_registers (tdesc))
+    tdesc = default_tdesc;
+  tdep->tdesc = tdesc;
+
+  tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
+  tdep->register_names = amd64_register_names;
+
+  if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
+    {
+      tdep->zmmh_register_names = amd64_zmmh_names;
+      tdep->k_register_names = amd64_k_names;
+      tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
+      tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
+
+      tdep->num_zmm_regs = 32;
+      tdep->num_xmm_avx512_regs = 16;
+      tdep->num_ymm_avx512_regs = 16;
+
+      tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
+      tdep->k0_regnum = AMD64_K0_REGNUM;
+      tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
+      tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
+    }
+
+  if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
+    {
+      tdep->ymmh_register_names = amd64_ymmh_names;
+      tdep->num_ymm_regs = 16;
+      tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
+    }
+
+  if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
+    {
+      tdep->mpx_register_names = amd64_mpx_names;
+      tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
+      tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
+    }
+
+  if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL)
+    {
+      tdep->fsbase_regnum = AMD64_FSBASE_REGNUM;
+    }
+
+  if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys") != NULL)
+    {
+      tdep->pkeys_register_names = amd64_pkeys_names;
+      tdep->pkru_regnum = AMD64_PKRU_REGNUM;
+      tdep->num_pkeys_regs = 1;
+    }
+
+  tdep->num_byte_regs = 20;
+  tdep->num_word_regs = 16;
+  tdep->num_dword_regs = 16;
+  /* Avoid wiring in the MMX registers for now.  */
+  tdep->num_mmx_regs = 0;
+
+  set_gdbarch_pseudo_register_read_value (gdbarch,
+                                         amd64_pseudo_register_read_value);
+  set_gdbarch_pseudo_register_write (gdbarch,
+                                    amd64_pseudo_register_write);
+  set_gdbarch_ax_pseudo_register_collect (gdbarch,
+                                         amd64_ax_pseudo_register_collect);
+
+  set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
 
   /* AMD64 has an FPU and 16 SSE registers.  */
   tdep->st0_regnum = AMD64_ST0_REGNUM;
@@ -1157,8 +3214,6 @@ amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
   set_gdbarch_long_double_bit (gdbarch, 128);
 
   set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
-  set_gdbarch_register_name (gdbarch, amd64_register_name);
-  set_gdbarch_register_type (gdbarch, amd64_register_type);
 
   /* Register numbers of various important registers.  */
   set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
@@ -1173,7 +3228,6 @@ amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
      DWARF-1), but we provide the same mapping just in case.  This
      mapping is also used for stabs, which GCC does support.  */
   set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
-  set_gdbarch_dwarf_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
 
   /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
@@ -1184,7 +3238,7 @@ amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
   set_gdbarch_frame_align (gdbarch, amd64_frame_align);
   set_gdbarch_frame_red_zone_size (gdbarch, 128);
 
-  set_gdbarch_convert_register_p (gdbarch, amd64_convert_register_p);
+  set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
   set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
   set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
 
@@ -1192,24 +3246,127 @@ amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
 
   set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
 
-  /* Avoid wiring in the MMX registers for now.  */
-  set_gdbarch_num_pseudo_regs (gdbarch, 0);
-  tdep->mm0_regnum = -1;
+  tdep->record_regmap = amd64_record_regmap;
+
+  set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
 
-  set_gdbarch_unwind_dummy_id (gdbarch, amd64_unwind_dummy_id);
+  /* Hook the function epilogue frame unwinder.  This unwinder is
+     appended to the list first, so that it supercedes the other
+     unwinders in function epilogues.  */
+  frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
 
-  frame_unwind_append_sniffer (gdbarch, amd64_sigtramp_frame_sniffer);
-  frame_unwind_append_sniffer (gdbarch, amd64_frame_sniffer);
+  /* Hook the prologue-based frame unwinders.  */
+  frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
+  frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
   frame_base_set_default (gdbarch, &amd64_frame_base);
 
-  /* If we have a register mapping, enable the generic core file support.  */
-  if (tdep->gregset_reg_offset)
-    set_gdbarch_regset_from_core_section (gdbarch,
-                                         amd64_regset_from_core_section);
+  set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
+
+  set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
+
+  set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
+
+  /* SystemTap variables and functions.  */
+  set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
+  set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
+  set_gdbarch_stap_register_indirection_prefixes (gdbarch,
+                                         stap_register_indirection_prefixes);
+  set_gdbarch_stap_register_indirection_suffixes (gdbarch,
+                                         stap_register_indirection_suffixes);
+  set_gdbarch_stap_is_single_operand (gdbarch,
+                                     i386_stap_is_single_operand);
+  set_gdbarch_stap_parse_special_token (gdbarch,
+                                       i386_stap_parse_special_token);
+  set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
+  set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
+  set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
+
+  set_gdbarch_in_indirect_branch_thunk (gdbarch,
+                                       amd64_in_indirect_branch_thunk);
 }
-\f
 
-#define I387_ST0_REGNUM AMD64_ST0_REGNUM
+/* Initialize ARCH for x86-64, no osabi.  */
+
+static void
+amd64_none_init_abi (gdbarch_info info, gdbarch *arch)
+{
+  amd64_init_abi (info, arch, amd64_target_description (X86_XSTATE_SSE_MASK,
+                                                       true));
+}
+
+static struct type *
+amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  switch (regnum - tdep->eax_regnum)
+    {
+    case AMD64_RBP_REGNUM:     /* %ebp */
+    case AMD64_RSP_REGNUM:     /* %esp */
+      return builtin_type (gdbarch)->builtin_data_ptr;
+    case AMD64_RIP_REGNUM:     /* %eip */
+      return builtin_type (gdbarch)->builtin_func_ptr;
+    }
+
+  return i386_pseudo_register_type (gdbarch, regnum);
+}
+
+void
+amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
+                   const target_desc *default_tdesc)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  amd64_init_abi (info, gdbarch, default_tdesc);
+
+  tdep->num_dword_regs = 17;
+  set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
+
+  set_gdbarch_long_bit (gdbarch, 32);
+  set_gdbarch_ptr_bit (gdbarch, 32);
+}
+
+/* Initialize ARCH for x64-32, no osabi.  */
+
+static void
+amd64_x32_none_init_abi (gdbarch_info info, gdbarch *arch)
+{
+  amd64_x32_init_abi (info, arch,
+                     amd64_target_description (X86_XSTATE_SSE_MASK, true));
+}
+
+/* Return the target description for a specified XSAVE feature mask.  */
+
+const struct target_desc *
+amd64_target_description (uint64_t xcr0, bool segments)
+{
+  static target_desc *amd64_tdescs \
+    [2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
+  target_desc **tdesc;
+
+  tdesc = &amd64_tdescs[(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
+    [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
+    [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
+    [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
+    [segments ? 1 : 0];
+
+  if (*tdesc == NULL)
+    *tdesc = amd64_create_target_description (xcr0, false, false,
+                                             segments);
+
+  return *tdesc;
+}
+
+void _initialize_amd64_tdep ();
+void
+_initialize_amd64_tdep ()
+{
+  gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_NONE,
+                         amd64_none_init_abi);
+  gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x64_32, GDB_OSABI_NONE,
+                         amd64_x32_none_init_abi);
+}
+\f
 
 /* The 64-bit FXSAVE format differs from the 32-bit format in the
    sense that the instruction pointer and data pointer are simply
@@ -1225,18 +3382,54 @@ amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
 
 void
 amd64_supply_fxsave (struct regcache *regcache, int regnum,
-                     const void *fxsave)
+                    const void *fxsave)
 {
+  struct gdbarch *gdbarch = regcache->arch ();
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
   i387_supply_fxsave (regcache, regnum, fxsave);
 
-  if (fxsave && gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
+  if (fxsave
+      && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
+    {
+      const gdb_byte *regs = (const gdb_byte *) fxsave;
+
+      if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
+       regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
+      if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
+       regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
+    }
+}
+
+/* Similar to amd64_supply_fxsave, but use XSAVE extended state.  */
+
+void
+amd64_supply_xsave (struct regcache *regcache, int regnum,
+                   const void *xsave)
+{
+  struct gdbarch *gdbarch = regcache->arch ();
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  i387_supply_xsave (regcache, regnum, xsave);
+
+  if (xsave
+      && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
     {
-      const gdb_byte *regs = fxsave;
+      const gdb_byte *regs = (const gdb_byte *) xsave;
+      ULONGEST clear_bv;
 
-      if (regnum == -1 || regnum == I387_FISEG_REGNUM)
-       regcache_raw_supply (regcache, I387_FISEG_REGNUM, regs + 12);
-      if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
-       regcache_raw_supply (regcache, I387_FOSEG_REGNUM, regs + 20);
+      clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave);
+
+      /* If the FISEG and FOSEG registers have not been initialised yet
+        (their CLEAR_BV bit is set) then their default values of zero will
+        have already been setup by I387_SUPPLY_XSAVE.  */
+      if (!(clear_bv & X86_XSTATE_X87))
+       {
+         if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
+           regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
+         if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
+           regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
+       }
     }
 }
 
@@ -1249,15 +3442,40 @@ void
 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
                      void *fxsave)
 {
-  gdb_byte *regs = fxsave;
+  struct gdbarch *gdbarch = regcache->arch ();
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  gdb_byte *regs = (gdb_byte *) fxsave;
 
   i387_collect_fxsave (regcache, regnum, fxsave);
 
-  if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
+  if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
+    {
+      if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
+       regcache->raw_collect (I387_FISEG_REGNUM (tdep), regs + 12);
+      if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
+       regcache->raw_collect (I387_FOSEG_REGNUM (tdep), regs + 20);
+    }
+}
+
+/* Similar to amd64_collect_fxsave, but use XSAVE extended state.  */
+
+void
+amd64_collect_xsave (const struct regcache *regcache, int regnum,
+                    void *xsave, int gcore)
+{
+  struct gdbarch *gdbarch = regcache->arch ();
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  gdb_byte *regs = (gdb_byte *) xsave;
+
+  i387_collect_xsave (regcache, regnum, xsave, gcore);
+
+  if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
     {
-      if (regnum == -1 || regnum == I387_FISEG_REGNUM)
-       regcache_raw_collect (regcache, I387_FISEG_REGNUM, regs + 12);
-      if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
-       regcache_raw_collect (regcache, I387_FOSEG_REGNUM, regs + 20);
+      if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
+       regcache->raw_collect (I387_FISEG_REGNUM (tdep),
+                             regs + 12);
+      if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
+       regcache->raw_collect (I387_FOSEG_REGNUM (tdep),
+                             regs + 20);
     }
 }
This page took 0.061783 seconds and 4 git commands to generate.