Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
index 34070452e1731be227b4af81011933a3643fcb5a..05d60bb447a05d8842a1081ed6965bb10c8002e6 100644 (file)
@@ -1,6 +1,6 @@
 /* Common target dependent code for GDB on ARM systems.
 
-   Copyright (C) 1988-2014 Free Software Foundation, Inc.
+   Copyright (C) 1988-2016 Free Software Foundation, Inc.
 
    This file is part of GDB.
 
@@ -45,6 +45,8 @@
 #include "user-regs.h"
 #include "observer.h"
 
+#include "arch/arm.h"
+#include "arch/arm-get-next-pcs.h"
 #include "arm-tdep.h"
 #include "gdb/sim-arm.h"
 
@@ -235,7 +237,13 @@ static void arm_neon_quad_write (struct gdbarch *gdbarch,
                                 struct regcache *regcache,
                                 int regnum, const gdb_byte *buf);
 
-static int thumb_insn_size (unsigned short inst1);
+/* get_next_pcs operations.  */
+static struct arm_get_next_pcs_ops arm_get_next_pcs_ops = {
+  arm_get_next_pcs_read_memory_unsigned_integer,
+  arm_get_next_pcs_syscall_next_pc,
+  arm_get_next_pcs_addr_bits_remove,
+  arm_get_next_pcs_is_thumb
+};
 
 struct arm_prologue_cache
 {
@@ -267,12 +275,6 @@ static CORE_ADDR arm_analyze_prologue (struct gdbarch *gdbarch,
 
 #define DISPLACED_STEPPING_ARCH_VERSION                5
 
-/* Addresses for calling Thumb functions have the bit 0 set.
-   Here are some macros to test, set, or clear bit 0 of addresses.  */
-#define IS_THUMB_ADDR(addr)    ((addr) & 1)
-#define MAKE_THUMB_ADDR(addr)  ((addr) | 1)
-#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
-
 /* Set to true if the 32-bit mode is in use.  */
 
 int arm_apcs_32 = 1;
@@ -288,6 +290,19 @@ arm_psr_thumb_bit (struct gdbarch *gdbarch)
     return CPSR_T;
 }
 
+/* Determine if the processor is currently executing in Thumb mode.  */
+
+int
+arm_is_thumb (struct regcache *regcache)
+{
+  ULONGEST cpsr;
+  ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regcache));
+
+  cpsr = regcache_raw_get_unsigned (regcache, ARM_PS_REGNUM);
+
+  return (cpsr & t_bit) != 0;
+}
+
 /* Determine if FRAME is executing in Thumb mode.  */
 
 int
@@ -333,7 +348,8 @@ arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start)
                                            0 };
       unsigned int idx;
 
-      data = objfile_data (sec->objfile, arm_objfile_data_key);
+      data = (struct arm_per_objfile *) objfile_data (sec->objfile,
+                                                     arm_objfile_data_key);
       if (data != NULL)
        {
          map = data->section_maps[sec->the_bfd_section->index];
@@ -484,15 +500,15 @@ skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb)
       /* On soft-float targets, __truncdfsf2 is called to convert promoted
         arguments to their argument types in non-prototyped
         functions.  */
-      if (strncmp (name, "__truncdfsf2", strlen ("__truncdfsf2")) == 0)
+      if (startswith (name, "__truncdfsf2"))
        return 1;
-      if (strncmp (name, "__aeabi_d2f", strlen ("__aeabi_d2f")) == 0)
+      if (startswith (name, "__aeabi_d2f"))
        return 1;
 
       /* Internal functions related to thread-local storage.  */
-      if (strncmp (name, "__tls_get_addr", strlen ("__tls_get_addr")) == 0)
+      if (startswith (name, "__tls_get_addr"))
        return 1;
-      if (strncmp (name, "__aeabi_read_tp", strlen ("__aeabi_read_tp")) == 0)
+      if (startswith (name, "__aeabi_read_tp"))
        return 1;
     }
   else
@@ -513,15 +529,6 @@ skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb)
   return 0;
 }
 
-/* Support routines for instruction parsing.  */
-#define submask(x) ((1L << ((x) + 1)) - 1)
-#define bit(obj,st) (((obj) >> (st)) & 1)
-#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
-#define sbits(obj,st,fn) \
-  ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
-#define BranchDest(addr,instr) \
-  ((CORE_ADDR) (((unsigned long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
-
 /* Extract the immediate from instruction movw/movt of encoding T.  INSN1 is
    the first 16-bit of instruction, and INSN2 is the second 16-bit of
    instruction.  */
@@ -561,128 +568,6 @@ thumb_expand_immediate (unsigned int imm)
   return (0x80 | (imm & 0x7f)) << (32 - count);
 }
 
-/* Return 1 if the 16-bit Thumb instruction INST might change
-   control flow, 0 otherwise.  */
-
-static int
-thumb_instruction_changes_pc (unsigned short inst)
-{
-  if ((inst & 0xff00) == 0xbd00)       /* pop {rlist, pc} */
-    return 1;
-
-  if ((inst & 0xf000) == 0xd000)       /* conditional branch */
-    return 1;
-
-  if ((inst & 0xf800) == 0xe000)       /* unconditional branch */
-    return 1;
-
-  if ((inst & 0xff00) == 0x4700)       /* bx REG, blx REG */
-    return 1;
-
-  if ((inst & 0xff87) == 0x4687)       /* mov pc, REG */
-    return 1;
-
-  if ((inst & 0xf500) == 0xb100)       /* CBNZ or CBZ.  */
-    return 1;
-
-  return 0;
-}
-
-/* Return 1 if the 32-bit Thumb instruction in INST1 and INST2
-   might change control flow, 0 otherwise.  */
-
-static int
-thumb2_instruction_changes_pc (unsigned short inst1, unsigned short inst2)
-{
-  if ((inst1 & 0xf800) == 0xf000 && (inst2 & 0x8000) == 0x8000)
-    {
-      /* Branches and miscellaneous control instructions.  */
-
-      if ((inst2 & 0x1000) != 0 || (inst2 & 0xd001) == 0xc000)
-       {
-         /* B, BL, BLX.  */
-         return 1;
-       }
-      else if (inst1 == 0xf3de && (inst2 & 0xff00) == 0x3f00)
-       {
-         /* SUBS PC, LR, #imm8.  */
-         return 1;
-       }
-      else if ((inst2 & 0xd000) == 0x8000 && (inst1 & 0x0380) != 0x0380)
-       {
-         /* Conditional branch.  */
-         return 1;
-       }
-
-      return 0;
-    }
-
-  if ((inst1 & 0xfe50) == 0xe810)
-    {
-      /* Load multiple or RFE.  */
-
-      if (bit (inst1, 7) && !bit (inst1, 8))
-       {
-         /* LDMIA or POP */
-         if (bit (inst2, 15))
-           return 1;
-       }
-      else if (!bit (inst1, 7) && bit (inst1, 8))
-       {
-         /* LDMDB */
-         if (bit (inst2, 15))
-           return 1;
-       }
-      else if (bit (inst1, 7) && bit (inst1, 8))
-       {
-         /* RFEIA */
-         return 1;
-       }
-      else if (!bit (inst1, 7) && !bit (inst1, 8))
-       {
-         /* RFEDB */
-         return 1;
-       }
-
-      return 0;
-    }
-
-  if ((inst1 & 0xffef) == 0xea4f && (inst2 & 0xfff0) == 0x0f00)
-    {
-      /* MOV PC or MOVS PC.  */
-      return 1;
-    }
-
-  if ((inst1 & 0xff70) == 0xf850 && (inst2 & 0xf000) == 0xf000)
-    {
-      /* LDR PC.  */
-      if (bits (inst1, 0, 3) == 15)
-       return 1;
-      if (bit (inst1, 7))
-       return 1;
-      if (bit (inst2, 11))
-       return 1;
-      if ((inst2 & 0x0fc0) == 0x0000)
-       return 1;       
-
-      return 0;
-    }
-
-  if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf000)
-    {
-      /* TBB.  */
-      return 1;
-    }
-
-  if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf010)
-    {
-      /* TBH.  */
-      return 1;
-    }
-
-  return 0;
-}
-
 /* Return 1 if the 16-bit Thumb instruction INSN restores SP in
    epilogue, 0 otherwise.  */
 
@@ -1314,9 +1199,7 @@ arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch)
   /* ADDR must correspond to a symbol whose name is __stack_chk_guard.
      Otherwise, this sequence cannot be for stack protector.  */
   if (stack_chk_guard.minsym == NULL
-      || strncmp (MSYMBOL_LINKAGE_NAME (stack_chk_guard.minsym),
-                 "__stack_chk_guard",
-                 strlen ("__stack_chk_guard")) != 0)
+      || !startswith (MSYMBOL_LINKAGE_NAME (stack_chk_guard.minsym), "__stack_chk_guard"))
    return pc;
 
   if (is_thumb)
@@ -1388,7 +1271,6 @@ arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
 {
   enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
   unsigned long inst;
-  CORE_ADDR skip_pc;
   CORE_ADDR func_addr, limit_pc;
 
   /* See if we can determine the end of the prologue via the symbol table.
@@ -1414,10 +1296,8 @@ arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
       if (post_prologue_pc
          && (cust == NULL
              || COMPUNIT_PRODUCER (cust) == NULL
-             || strncmp (COMPUNIT_PRODUCER (cust), "GNU ",
-                         sizeof ("GNU ") - 1) == 0
-             || strncmp (COMPUNIT_PRODUCER (cust), "clang ",
-                         sizeof ("clang ") - 1) == 0))
+             || startswith (COMPUNIT_PRODUCER (cust), "GNU ")
+             || startswith (COMPUNIT_PRODUCER (cust), "clang ")))
        return post_prologue_pc;
 
       if (post_prologue_pc != 0)
@@ -1462,65 +1342,8 @@ arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
   /* Check if this is Thumb code.  */
   if (arm_pc_is_thumb (gdbarch, pc))
     return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL);
-
-  for (skip_pc = pc; skip_pc < limit_pc; skip_pc += 4)
-    {
-      inst = read_memory_unsigned_integer (skip_pc, 4, byte_order_for_code);
-
-      /* "mov ip, sp" is no longer a required part of the prologue.  */
-      if (inst == 0xe1a0c00d)                  /* mov ip, sp */
-       continue;
-
-      if ((inst & 0xfffff000) == 0xe28dc000)    /* add ip, sp #n */
-       continue;
-
-      if ((inst & 0xfffff000) == 0xe24dc000)    /* sub ip, sp #n */
-       continue;
-
-      /* Some prologues begin with "str lr, [sp, #-4]!".  */
-      if (inst == 0xe52de004)                  /* str lr, [sp, #-4]! */
-       continue;
-
-      if ((inst & 0xfffffff0) == 0xe92d0000)   /* stmfd sp!,{a1,a2,a3,a4} */
-       continue;
-
-      if ((inst & 0xfffff800) == 0xe92dd800)   /* stmfd sp!,{fp,ip,lr,pc} */
-       continue;
-
-      /* Any insns after this point may float into the code, if it makes
-        for better instruction scheduling, so we skip them only if we
-        find them, but still consider the function to be frame-ful.  */
-
-      /* We may have either one sfmfd instruction here, or several stfe
-        insns, depending on the version of floating point code we
-        support.  */
-      if ((inst & 0xffbf0fff) == 0xec2d0200)   /* sfmfd fn, <cnt>, [sp]! */
-       continue;
-
-      if ((inst & 0xffff8fff) == 0xed6d0103)   /* stfe fn, [sp, #-12]! */
-       continue;
-
-      if ((inst & 0xfffff000) == 0xe24cb000)   /* sub fp, ip, #nn */
-       continue;
-
-      if ((inst & 0xfffff000) == 0xe24dd000)   /* sub sp, sp, #nn */
-       continue;
-
-      if ((inst & 0xffffc000) == 0xe54b0000    /* strb r(0123),[r11,#-nn] */
-         || (inst & 0xffffc0f0) == 0xe14b00b0  /* strh r(0123),[r11,#-nn] */
-         || (inst & 0xffffc000) == 0xe50b0000) /* str  r(0123),[r11,#-nn] */
-       continue;
-
-      if ((inst & 0xffffc000) == 0xe5cd0000    /* strb r(0123),[sp,#nn] */
-         || (inst & 0xffffc0f0) == 0xe1cd00b0  /* strh r(0123),[sp,#nn] */
-         || (inst & 0xffffc000) == 0xe58d0000) /* str  r(0123),[sp,#nn] */
-       continue;
-
-      /* Un-recognized instruction; stop scanning.  */
-      break;
-    }
-
-  return skip_pc;              /* End of prologue.  */
+  else
+    return arm_analyze_prologue (gdbarch, pc, limit_pc, NULL);
 }
 
 /* *INDENT-OFF* */
@@ -1572,98 +1395,6 @@ thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
   thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
 }
 
-/* Return 1 if THIS_INSTR might change control flow, 0 otherwise.  */
-
-static int
-arm_instruction_changes_pc (uint32_t this_instr)
-{
-  if (bits (this_instr, 28, 31) == INST_NV)
-    /* Unconditional instructions.  */
-    switch (bits (this_instr, 24, 27))
-      {
-      case 0xa:
-      case 0xb:
-       /* Branch with Link and change to Thumb.  */
-       return 1;
-      case 0xc:
-      case 0xd:
-      case 0xe:
-       /* Coprocessor register transfer.  */
-        if (bits (this_instr, 12, 15) == 15)
-         error (_("Invalid update to pc in instruction"));
-       return 0;
-      default:
-       return 0;
-      }
-  else
-    switch (bits (this_instr, 25, 27))
-      {
-      case 0x0:
-       if (bits (this_instr, 23, 24) == 2 && bit (this_instr, 20) == 0)
-         {
-           /* Multiplies and extra load/stores.  */
-           if (bit (this_instr, 4) == 1 && bit (this_instr, 7) == 1)
-             /* Neither multiplies nor extension load/stores are allowed
-                to modify PC.  */
-             return 0;
-
-           /* Otherwise, miscellaneous instructions.  */
-
-           /* BX <reg>, BXJ <reg>, BLX <reg> */
-           if (bits (this_instr, 4, 27) == 0x12fff1
-               || bits (this_instr, 4, 27) == 0x12fff2
-               || bits (this_instr, 4, 27) == 0x12fff3)
-             return 1;
-
-           /* Other miscellaneous instructions are unpredictable if they
-              modify PC.  */
-           return 0;
-         }
-       /* Data processing instruction.  Fall through.  */
-
-      case 0x1:
-       if (bits (this_instr, 12, 15) == 15)
-         return 1;
-       else
-         return 0;
-
-      case 0x2:
-      case 0x3:
-       /* Media instructions and architecturally undefined instructions.  */
-       if (bits (this_instr, 25, 27) == 3 && bit (this_instr, 4) == 1)
-         return 0;
-
-       /* Stores.  */
-       if (bit (this_instr, 20) == 0)
-         return 0;
-
-       /* Loads.  */
-       if (bits (this_instr, 12, 15) == ARM_PC_REGNUM)
-         return 1;
-       else
-         return 0;
-
-      case 0x4:
-       /* Load/store multiple.  */
-       if (bit (this_instr, 20) == 1 && bit (this_instr, 15) == 1)
-         return 1;
-       else
-         return 0;
-
-      case 0x5:
-       /* Branch and branch with link.  */
-       return 1;
-
-      case 0x6:
-      case 0x7:
-       /* Coprocessor transfers or SWIs can not affect PC.  */
-       return 0;
-
-      default:
-       internal_error (__FILE__, __LINE__, _("bad value in switch"));
-      }
-}
-
 /* Return 1 if the ARM instruction INSN restores SP in epilogue, 0
    otherwise.  */
 
@@ -1905,10 +1636,17 @@ arm_analyze_prologue (struct gdbarch *gdbarch,
        continue;
       else
        {
-         /* The optimizer might shove anything into the prologue,
-            so we just skip what we don't recognize.  */
+         /* The optimizer might shove anything into the prologue, if
+            we build up cache (cache != NULL) from scanning prologue,
+            we just skip what we don't recognize and scan further to
+            make cache as complete as possible.  However, if we skip
+            prologue, we'll stop immediately on unrecognized
+            instruction.  */
          unrecognized_pc = current_pc;
-         continue;
+         if (cache != NULL)
+           continue;
+         else
+           break;
        }
     }
 
@@ -2072,6 +1810,31 @@ arm_make_prologue_cache (struct frame_info *this_frame)
   return cache;
 }
 
+/* Implementation of the stop_reason hook for arm_prologue frames.  */
+
+static enum unwind_stop_reason
+arm_prologue_unwind_stop_reason (struct frame_info *this_frame,
+                                void **this_cache)
+{
+  struct arm_prologue_cache *cache;
+  CORE_ADDR pc;
+
+  if (*this_cache == NULL)
+    *this_cache = arm_make_prologue_cache (this_frame);
+  cache = (struct arm_prologue_cache *) *this_cache;
+
+  /* This is meant to halt the backtrace at "_start".  */
+  pc = get_frame_pc (this_frame);
+  if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
+    return UNWIND_OUTERMOST;
+
+  /* If we've hit a wall, stop.  */
+  if (cache->prev_sp == 0)
+    return UNWIND_OUTERMOST;
+
+  return UNWIND_NO_REASON;
+}
+
 /* Our frame ID for a normal frame is the current function's starting PC
    and the caller's SP when we were called.  */
 
@@ -2086,20 +1849,12 @@ arm_prologue_this_id (struct frame_info *this_frame,
 
   if (*this_cache == NULL)
     *this_cache = arm_make_prologue_cache (this_frame);
-  cache = *this_cache;
-
-  /* This is meant to halt the backtrace at "_start".  */
-  pc = get_frame_pc (this_frame);
-  if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
-    return;
-
-  /* If we've hit a wall, stop.  */
-  if (cache->prev_sp == 0)
-    return;
+  cache = (struct arm_prologue_cache *) *this_cache;
 
   /* Use function start address as part of the frame ID.  If we cannot
      identify the start address (due to missing symbol information),
      fall back to just using the current PC.  */
+  pc = get_frame_pc (this_frame);
   func = get_frame_func (this_frame);
   if (!func)
     func = pc;
@@ -2118,7 +1873,7 @@ arm_prologue_prev_register (struct frame_info *this_frame,
 
   if (*this_cache == NULL)
     *this_cache = arm_make_prologue_cache (this_frame);
-  cache = *this_cache;
+  cache = (struct arm_prologue_cache *) *this_cache;
 
   /* If we are asked to unwind the PC, then we need to return the LR
      instead.  The prologue may save PC, but it will point into this
@@ -2168,7 +1923,7 @@ arm_prologue_prev_register (struct frame_info *this_frame,
 
 struct frame_unwind arm_prologue_unwind = {
   NORMAL_FRAME,
-  default_frame_unwind_stop_reason,
+  arm_prologue_unwind_stop_reason,
   arm_prologue_this_id,
   arm_prologue_prev_register,
   NULL,
@@ -2198,7 +1953,7 @@ struct arm_exidx_data
 static void
 arm_exidx_data_free (struct objfile *objfile, void *arg)
 {
-  struct arm_exidx_data *data = arg;
+  struct arm_exidx_data *data = (struct arm_exidx_data *) arg;
   unsigned int i;
 
   for (i = 0; i < objfile->obfd->section_count; i++)
@@ -2263,12 +2018,12 @@ arm_exidx_new_objfile (struct objfile *objfile)
   cleanups = make_cleanup (null_cleanup, NULL);
 
   /* Read contents of exception table and index.  */
-  exidx = bfd_get_section_by_name (objfile->obfd, ".ARM.exidx");
+  exidx = bfd_get_section_by_name (objfile->obfd, ELF_STRING_ARM_unwind);
   if (exidx)
     {
       exidx_vma = bfd_section_vma (objfile->obfd, exidx);
       exidx_size = bfd_get_section_size (exidx);
-      exidx_data = xmalloc (exidx_size);
+      exidx_data = (gdb_byte *) xmalloc (exidx_size);
       make_cleanup (xfree, exidx_data);
 
       if (!bfd_get_section_contents (objfile->obfd, exidx,
@@ -2284,7 +2039,7 @@ arm_exidx_new_objfile (struct objfile *objfile)
     {
       extab_vma = bfd_section_vma (objfile->obfd, extab);
       extab_size = bfd_get_section_size (extab);
-      extab_data = xmalloc (extab_size);
+      extab_data = (gdb_byte *) xmalloc (extab_size);
       make_cleanup (xfree, extab_data);
 
       if (!bfd_get_section_contents (objfile->obfd, extab,
@@ -2421,8 +2176,9 @@ arm_exidx_new_objfile (struct objfile *objfile)
         extab section starting at ADDR.  */
       if (n_bytes || n_words)
        {
-         gdb_byte *p = entry = obstack_alloc (&objfile->objfile_obstack,
-                                              n_bytes + n_words * 4 + 1);
+         gdb_byte *p = entry
+           = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
+                                         n_bytes + n_words * 4 + 1);
 
          while (n_bytes--)
            *p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff);
@@ -2472,7 +2228,8 @@ arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start)
       struct arm_exidx_entry map_key = { memaddr - obj_section_addr (sec), 0 };
       unsigned int idx;
 
-      data = objfile_data (sec->objfile, arm_exidx_data_key);
+      data = ((struct arm_exidx_data *)
+             objfile_data (sec->objfile, arm_exidx_data_key));
       if (data != NULL)
        {
          map = data->section_maps[sec->the_bfd_section->index];
@@ -2997,7 +2754,7 @@ arm_stub_this_id (struct frame_info *this_frame,
 
   if (*this_cache == NULL)
     *this_cache = arm_make_stub_cache (this_frame);
-  cache = *this_cache;
+  cache = (struct arm_prologue_cache *) *this_cache;
 
   *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
 }
@@ -3091,7 +2848,7 @@ arm_m_exception_this_id (struct frame_info *this_frame,
 
   if (*this_cache == NULL)
     *this_cache = arm_m_exception_cache (this_frame);
-  cache = *this_cache;
+  cache = (struct arm_prologue_cache *) *this_cache;
 
   /* Our frame ID for a stub frame is the current SP and LR.  */
   *this_id = frame_id_build (cache->prev_sp,
@@ -3111,7 +2868,7 @@ arm_m_exception_prev_register (struct frame_info *this_frame,
 
   if (*this_cache == NULL)
     *this_cache = arm_m_exception_cache (this_frame);
-  cache = *this_cache;
+  cache = (struct arm_prologue_cache *) *this_cache;
 
   /* The value was already reconstructed into PREV_SP.  */
   if (prev_regnum == ARM_SP_REGNUM)
@@ -3164,7 +2921,7 @@ arm_normal_frame_base (struct frame_info *this_frame, void **this_cache)
 
   if (*this_cache == NULL)
     *this_cache = arm_make_prologue_cache (this_frame);
-  cache = *this_cache;
+  cache = (struct arm_prologue_cache *) *this_cache;
 
   return cache->prev_sp - cache->framesize;
 }
@@ -3261,11 +3018,10 @@ arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
     }
 }
 
-/* Return true if we are in the function's epilogue, i.e. after the
-   instruction that destroyed the function's stack frame.  */
+/* Implement the stack_frame_destroyed_p gdbarch method.  */
 
 static int
-thumb_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
+thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
 {
   enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
   unsigned int insn, insn2;
@@ -3372,11 +3128,10 @@ thumb_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
   return found_stack_adjust;
 }
 
-/* Return true if we are in the function's epilogue, i.e. after the
-   instruction that destroyed the function's stack frame.  */
+/* Implement the stack_frame_destroyed_p gdbarch method.  */
 
 static int
-arm_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
+arm_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
 {
   enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
   unsigned int insn;
@@ -3384,7 +3139,7 @@ arm_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
   CORE_ADDR func_start, func_end;
 
   if (arm_pc_is_thumb (gdbarch, pc))
-    return thumb_in_function_epilogue_p (gdbarch, pc);
+    return thumb_stack_frame_destroyed_p (gdbarch, pc);
 
   if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
     return 0;
@@ -3435,15 +3190,15 @@ struct stack_item
 {
   int len;
   struct stack_item *prev;
-  void *data;
+  gdb_byte *data;
 };
 
 static struct stack_item *
-push_stack_item (struct stack_item *prev, const void *contents, int len)
+push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len)
 {
   struct stack_item *si;
-  si = xmalloc (sizeof (struct stack_item));
-  si->data = xmalloc (len);
+  si = XNEW (struct stack_item);
+  si->data = (gdb_byte *) xmalloc (len);
   si->len = len;
   si->prev = prev;
   memcpy (si->data, contents, len);
@@ -3490,8 +3245,18 @@ arm_type_align (struct type *t)
       return TYPE_LENGTH (t);
 
     case TYPE_CODE_ARRAY:
+      if (TYPE_VECTOR (t))
+       {
+         /* Use the natural alignment for vector types (the same for
+            scalar type), but the maximum alignment is 64-bit.  */
+         if (TYPE_LENGTH (t) > 8)
+           return 8;
+         else
+           return TYPE_LENGTH (t);
+       }
+      else
+       return arm_type_align (TYPE_TARGET_TYPE (t));
     case TYPE_CODE_COMPLEX:
-      /* TODO: What about vector types?  */
       return arm_type_align (TYPE_TARGET_TYPE (t));
 
     case TYPE_CODE_STRUCT:
@@ -3638,21 +3403,44 @@ arm_vfp_cprc_sub_candidate (struct type *t,
 
     case TYPE_CODE_ARRAY:
       {
-       int count;
-       unsigned unitlen;
-       count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t), base_type);
-       if (count == -1)
-         return -1;
-       if (TYPE_LENGTH (t) == 0)
+       if (TYPE_VECTOR (t))
          {
-           gdb_assert (count == 0);
-           return 0;
+           /* A 64-bit or 128-bit containerized vector type are VFP
+              CPRCs.  */
+           switch (TYPE_LENGTH (t))
+             {
+             case 8:
+               if (*base_type == VFP_CPRC_UNKNOWN)
+                 *base_type = VFP_CPRC_VEC64;
+               return 1;
+             case 16:
+               if (*base_type == VFP_CPRC_UNKNOWN)
+                 *base_type = VFP_CPRC_VEC128;
+               return 1;
+             default:
+               return -1;
+             }
+         }
+       else
+         {
+           int count;
+           unsigned unitlen;
+
+           count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t),
+                                               base_type);
+           if (count == -1)
+             return -1;
+           if (TYPE_LENGTH (t) == 0)
+             {
+               gdb_assert (count == 0);
+               return 0;
+             }
+           else if (count == 0)
+             return -1;
+           unitlen = arm_vfp_cprc_unit_length (*base_type);
+           gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0);
+           return TYPE_LENGTH (t) / unitlen;
          }
-       else if (count == 0)
-         return -1;
-       unitlen = arm_vfp_cprc_unit_length (*base_type);
-       gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0);
-       return TYPE_LENGTH (t) / unitlen;
       }
       break;
 
@@ -3923,7 +3711,7 @@ arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
          CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order);
          if (arm_pc_is_thumb (gdbarch, regval))
            {
-             bfd_byte *copy = alloca (len);
+             bfd_byte *copy = (bfd_byte *) alloca (len);
              store_unsigned_integer (copy, len, byte_order,
                                      MAKE_THUMB_ADDR (regval));
              val = copy;
@@ -3936,13 +3724,13 @@ arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
       while (len > 0)
        {
          int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
+         CORE_ADDR regval
+           = extract_unsigned_integer (val, partial_len, byte_order);
 
          if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM)
            {
              /* The argument is being passed in a general purpose
                 register.  */
-             CORE_ADDR regval
-               = extract_unsigned_integer (val, partial_len, byte_order);
              if (byte_order == BFD_ENDIAN_BIG)
                regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
              if (arm_debug)
@@ -3956,11 +3744,16 @@ arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
            }
          else
            {
+             gdb_byte buf[INT_REGISTER_SIZE];
+
+             memset (buf, 0, sizeof (buf));
+             store_unsigned_integer (buf, partial_len, byte_order, regval);
+
              /* Push the arguments onto the stack.  */
              if (arm_debug)
                fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
                                    argnum, nstack);
-             si = push_stack_item (si, val, INT_REGISTER_SIZE);
+             si = push_stack_item (si, buf, INT_REGISTER_SIZE);
              nstack += INT_REGISTER_SIZE;
            }
              
@@ -4154,1197 +3947,166 @@ arm_register_type (struct gdbarch *gdbarch, int regnum)
   if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
     {
       if (!gdbarch_tdep (gdbarch)->have_fpa_registers)
-       return builtin_type (gdbarch)->builtin_void;
-
-      return arm_ext_type (gdbarch);
-    }
-  else if (regnum == ARM_SP_REGNUM)
-    return builtin_type (gdbarch)->builtin_data_ptr;
-  else if (regnum == ARM_PC_REGNUM)
-    return builtin_type (gdbarch)->builtin_func_ptr;
-  else if (regnum >= ARRAY_SIZE (arm_register_names))
-    /* These registers are only supported on targets which supply
-       an XML description.  */
-    return builtin_type (gdbarch)->builtin_int0;
-  else
-    return builtin_type (gdbarch)->builtin_uint32;
-}
-
-/* Map a DWARF register REGNUM onto the appropriate GDB register
-   number.  */
-
-static int
-arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
-{
-  /* Core integer regs.  */
-  if (reg >= 0 && reg <= 15)
-    return reg;
-
-  /* Legacy FPA encoding.  These were once used in a way which
-     overlapped with VFP register numbering, so their use is
-     discouraged, but GDB doesn't support the ARM toolchain
-     which used them for VFP.  */
-  if (reg >= 16 && reg <= 23)
-    return ARM_F0_REGNUM + reg - 16;
-
-  /* New assignments for the FPA registers.  */
-  if (reg >= 96 && reg <= 103)
-    return ARM_F0_REGNUM + reg - 96;
-
-  /* WMMX register assignments.  */
-  if (reg >= 104 && reg <= 111)
-    return ARM_WCGR0_REGNUM + reg - 104;
-
-  if (reg >= 112 && reg <= 127)
-    return ARM_WR0_REGNUM + reg - 112;
-
-  if (reg >= 192 && reg <= 199)
-    return ARM_WC0_REGNUM + reg - 192;
-
-  /* VFP v2 registers.  A double precision value is actually
-     in d1 rather than s2, but the ABI only defines numbering
-     for the single precision registers.  This will "just work"
-     in GDB for little endian targets (we'll read eight bytes,
-     starting in s0 and then progressing to s1), but will be
-     reversed on big endian targets with VFP.  This won't
-     be a problem for the new Neon quad registers; you're supposed
-     to use DW_OP_piece for those.  */
-  if (reg >= 64 && reg <= 95)
-    {
-      char name_buf[4];
-
-      xsnprintf (name_buf, sizeof (name_buf), "s%d", reg - 64);
-      return user_reg_map_name_to_regnum (gdbarch, name_buf,
-                                         strlen (name_buf));
-    }
-
-  /* VFP v3 / Neon registers.  This range is also used for VFP v2
-     registers, except that it now describes d0 instead of s0.  */
-  if (reg >= 256 && reg <= 287)
-    {
-      char name_buf[4];
-
-      xsnprintf (name_buf, sizeof (name_buf), "d%d", reg - 256);
-      return user_reg_map_name_to_regnum (gdbarch, name_buf,
-                                         strlen (name_buf));
-    }
-
-  return -1;
-}
-
-/* Map GDB internal REGNUM onto the Arm simulator register numbers.  */
-static int
-arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
-{
-  int reg = regnum;
-  gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
-
-  if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
-    return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
-
-  if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
-    return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
-
-  if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
-    return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
-
-  if (reg < NUM_GREGS)
-    return SIM_ARM_R0_REGNUM + reg;
-  reg -= NUM_GREGS;
-
-  if (reg < NUM_FREGS)
-    return SIM_ARM_FP0_REGNUM + reg;
-  reg -= NUM_FREGS;
-
-  if (reg < NUM_SREGS)
-    return SIM_ARM_FPS_REGNUM + reg;
-  reg -= NUM_SREGS;
-
-  internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
-}
-
-/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
-   convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
-   It is thought that this is is the floating-point register format on
-   little-endian systems.  */
-
-static void
-convert_from_extended (const struct floatformat *fmt, const void *ptr,
-                      void *dbl, int endianess)
-{
-  DOUBLEST d;
-
-  if (endianess == BFD_ENDIAN_BIG)
-    floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
-  else
-    floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
-                            ptr, &d);
-  floatformat_from_doublest (fmt, &d, dbl);
-}
-
-static void
-convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr,
-                    int endianess)
-{
-  DOUBLEST d;
-
-  floatformat_to_doublest (fmt, ptr, &d);
-  if (endianess == BFD_ENDIAN_BIG)
-    floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
-  else
-    floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
-                              &d, dbl);
-}
-
-static int
-condition_true (unsigned long cond, unsigned long status_reg)
-{
-  if (cond == INST_AL || cond == INST_NV)
-    return 1;
-
-  switch (cond)
-    {
-    case INST_EQ:
-      return ((status_reg & FLAG_Z) != 0);
-    case INST_NE:
-      return ((status_reg & FLAG_Z) == 0);
-    case INST_CS:
-      return ((status_reg & FLAG_C) != 0);
-    case INST_CC:
-      return ((status_reg & FLAG_C) == 0);
-    case INST_MI:
-      return ((status_reg & FLAG_N) != 0);
-    case INST_PL:
-      return ((status_reg & FLAG_N) == 0);
-    case INST_VS:
-      return ((status_reg & FLAG_V) != 0);
-    case INST_VC:
-      return ((status_reg & FLAG_V) == 0);
-    case INST_HI:
-      return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
-    case INST_LS:
-      return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
-    case INST_GE:
-      return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
-    case INST_LT:
-      return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
-    case INST_GT:
-      return (((status_reg & FLAG_Z) == 0)
-             && (((status_reg & FLAG_N) == 0)
-                 == ((status_reg & FLAG_V) == 0)));
-    case INST_LE:
-      return (((status_reg & FLAG_Z) != 0)
-             || (((status_reg & FLAG_N) == 0)
-                 != ((status_reg & FLAG_V) == 0)));
-    }
-  return 1;
-}
-
-static unsigned long
-shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry,
-                unsigned long pc_val, unsigned long status_reg)
-{
-  unsigned long res, shift;
-  int rm = bits (inst, 0, 3);
-  unsigned long shifttype = bits (inst, 5, 6);
-
-  if (bit (inst, 4))
-    {
-      int rs = bits (inst, 8, 11);
-      shift = (rs == 15 ? pc_val + 8
-                       : get_frame_register_unsigned (frame, rs)) & 0xFF;
-    }
-  else
-    shift = bits (inst, 7, 11);
-
-  res = (rm == ARM_PC_REGNUM
-        ? (pc_val + (bit (inst, 4) ? 12 : 8))
-        : get_frame_register_unsigned (frame, rm));
-
-  switch (shifttype)
-    {
-    case 0:                    /* LSL */
-      res = shift >= 32 ? 0 : res << shift;
-      break;
-
-    case 1:                    /* LSR */
-      res = shift >= 32 ? 0 : res >> shift;
-      break;
-
-    case 2:                    /* ASR */
-      if (shift >= 32)
-       shift = 31;
-      res = ((res & 0x80000000L)
-            ? ~((~res) >> shift) : res >> shift);
-      break;
-
-    case 3:                    /* ROR/RRX */
-      shift &= 31;
-      if (shift == 0)
-       res = (res >> 1) | (carry ? 0x80000000L : 0);
-      else
-       res = (res >> shift) | (res << (32 - shift));
-      break;
-    }
-
-  return res & 0xffffffff;
-}
-
-/* Return number of 1-bits in VAL.  */
-
-static int
-bitcount (unsigned long val)
-{
-  int nbits;
-  for (nbits = 0; val != 0; nbits++)
-    val &= val - 1;            /* Delete rightmost 1-bit in val.  */
-  return nbits;
-}
-
-/* Return the size in bytes of the complete Thumb instruction whose
-   first halfword is INST1.  */
-
-static int
-thumb_insn_size (unsigned short inst1)
-{
-  if ((inst1 & 0xe000) == 0xe000 && (inst1 & 0x1800) != 0)
-    return 4;
-  else
-    return 2;
-}
-
-static int
-thumb_advance_itstate (unsigned int itstate)
-{
-  /* Preserve IT[7:5], the first three bits of the condition.  Shift
-     the upcoming condition flags left by one bit.  */
-  itstate = (itstate & 0xe0) | ((itstate << 1) & 0x1f);
-
-  /* If we have finished the IT block, clear the state.  */
-  if ((itstate & 0x0f) == 0)
-    itstate = 0;
-
-  return itstate;
-}
-
-/* Find the next PC after the current instruction executes.  In some
-   cases we can not statically determine the answer (see the IT state
-   handling in this function); in that case, a breakpoint may be
-   inserted in addition to the returned PC, which will be used to set
-   another breakpoint by our caller.  */
-
-static CORE_ADDR
-thumb_get_next_pc_raw (struct frame_info *frame, CORE_ADDR pc)
-{
-  struct gdbarch *gdbarch = get_frame_arch (frame);
-  struct address_space *aspace = get_frame_address_space (frame);
-  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
-  enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
-  unsigned long pc_val = ((unsigned long) pc) + 4;     /* PC after prefetch */
-  unsigned short inst1;
-  CORE_ADDR nextpc = pc + 2;           /* Default is next instruction.  */
-  unsigned long offset;
-  ULONGEST status, itstate;
-
-  nextpc = MAKE_THUMB_ADDR (nextpc);
-  pc_val = MAKE_THUMB_ADDR (pc_val);
-
-  inst1 = read_memory_unsigned_integer (pc, 2, byte_order_for_code);
-
-  /* Thumb-2 conditional execution support.  There are eight bits in
-     the CPSR which describe conditional execution state.  Once
-     reconstructed (they're in a funny order), the low five bits
-     describe the low bit of the condition for each instruction and
-     how many instructions remain.  The high three bits describe the
-     base condition.  One of the low four bits will be set if an IT
-     block is active.  These bits read as zero on earlier
-     processors.  */
-  status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
-  itstate = ((status >> 8) & 0xfc) | ((status >> 25) & 0x3);
-
-  /* If-Then handling.  On GNU/Linux, where this routine is used, we
-     use an undefined instruction as a breakpoint.  Unlike BKPT, IT
-     can disable execution of the undefined instruction.  So we might
-     miss the breakpoint if we set it on a skipped conditional
-     instruction.  Because conditional instructions can change the
-     flags, affecting the execution of further instructions, we may
-     need to set two breakpoints.  */
-
-  if (gdbarch_tdep (gdbarch)->thumb2_breakpoint != NULL)
-    {
-      if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
-       {
-         /* An IT instruction.  Because this instruction does not
-            modify the flags, we can accurately predict the next
-            executed instruction.  */
-         itstate = inst1 & 0x00ff;
-         pc += thumb_insn_size (inst1);
-
-         while (itstate != 0 && ! condition_true (itstate >> 4, status))
-           {
-             inst1 = read_memory_unsigned_integer (pc, 2,
-                                                   byte_order_for_code);
-             pc += thumb_insn_size (inst1);
-             itstate = thumb_advance_itstate (itstate);
-           }
-
-         return MAKE_THUMB_ADDR (pc);
-       }
-      else if (itstate != 0)
-       {
-         /* We are in a conditional block.  Check the condition.  */
-         if (! condition_true (itstate >> 4, status))
-           {
-             /* Advance to the next executed instruction.  */
-             pc += thumb_insn_size (inst1);
-             itstate = thumb_advance_itstate (itstate);
-
-             while (itstate != 0 && ! condition_true (itstate >> 4, status))
-               {
-                 inst1 = read_memory_unsigned_integer (pc, 2, 
-                                                       byte_order_for_code);
-                 pc += thumb_insn_size (inst1);
-                 itstate = thumb_advance_itstate (itstate);
-               }
-
-             return MAKE_THUMB_ADDR (pc);
-           }
-         else if ((itstate & 0x0f) == 0x08)
-           {
-             /* This is the last instruction of the conditional
-                block, and it is executed.  We can handle it normally
-                because the following instruction is not conditional,
-                and we must handle it normally because it is
-                permitted to branch.  Fall through.  */
-           }
-         else
-           {
-             int cond_negated;
-
-             /* There are conditional instructions after this one.
-                If this instruction modifies the flags, then we can
-                not predict what the next executed instruction will
-                be.  Fortunately, this instruction is architecturally
-                forbidden to branch; we know it will fall through.
-                Start by skipping past it.  */
-             pc += thumb_insn_size (inst1);
-             itstate = thumb_advance_itstate (itstate);
-
-             /* Set a breakpoint on the following instruction.  */
-             gdb_assert ((itstate & 0x0f) != 0);
-             arm_insert_single_step_breakpoint (gdbarch, aspace,
-                                                MAKE_THUMB_ADDR (pc));
-             cond_negated = (itstate >> 4) & 1;
-
-             /* Skip all following instructions with the same
-                condition.  If there is a later instruction in the IT
-                block with the opposite condition, set the other
-                breakpoint there.  If not, then set a breakpoint on
-                the instruction after the IT block.  */
-             do
-               {
-                 inst1 = read_memory_unsigned_integer (pc, 2,
-                                                       byte_order_for_code);
-                 pc += thumb_insn_size (inst1);
-                 itstate = thumb_advance_itstate (itstate);
-               }
-             while (itstate != 0 && ((itstate >> 4) & 1) == cond_negated);
-
-             return MAKE_THUMB_ADDR (pc);
-           }
-       }
-    }
-  else if (itstate & 0x0f)
-    {
-      /* We are in a conditional block.  Check the condition.  */
-      int cond = itstate >> 4;
-
-      if (! condition_true (cond, status))
-       /* Advance to the next instruction.  All the 32-bit
-          instructions share a common prefix.  */
-       return MAKE_THUMB_ADDR (pc + thumb_insn_size (inst1));
-
-      /* Otherwise, handle the instruction normally.  */
-    }
-
-  if ((inst1 & 0xff00) == 0xbd00)      /* pop {rlist, pc} */
-    {
-      CORE_ADDR sp;
-
-      /* Fetch the saved PC from the stack.  It's stored above
-         all of the other registers.  */
-      offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE;
-      sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM);
-      nextpc = read_memory_unsigned_integer (sp + offset, 4, byte_order);
-    }
-  else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
-    {
-      unsigned long cond = bits (inst1, 8, 11);
-      if (cond == 0x0f)  /* 0x0f = SWI */
-       {
-         struct gdbarch_tdep *tdep;
-         tdep = gdbarch_tdep (gdbarch);
-
-         if (tdep->syscall_next_pc != NULL)
-           nextpc = tdep->syscall_next_pc (frame);
-
-       }
-      else if (cond != 0x0f && condition_true (cond, status))
-       nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
-    }
-  else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
-    {
-      nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
-    }
-  else if (thumb_insn_size (inst1) == 4) /* 32-bit instruction */
-    {
-      unsigned short inst2;
-      inst2 = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code);
-
-      /* Default to the next instruction.  */
-      nextpc = pc + 4;
-      nextpc = MAKE_THUMB_ADDR (nextpc);
-
-      if ((inst1 & 0xf800) == 0xf000 && (inst2 & 0x8000) == 0x8000)
-       {
-         /* Branches and miscellaneous control instructions.  */
-
-         if ((inst2 & 0x1000) != 0 || (inst2 & 0xd001) == 0xc000)
-           {
-             /* B, BL, BLX.  */
-             int j1, j2, imm1, imm2;
-
-             imm1 = sbits (inst1, 0, 10);
-             imm2 = bits (inst2, 0, 10);
-             j1 = bit (inst2, 13);
-             j2 = bit (inst2, 11);
-
-             offset = ((imm1 << 12) + (imm2 << 1));
-             offset ^= ((!j2) << 22) | ((!j1) << 23);
-
-             nextpc = pc_val + offset;
-             /* For BLX make sure to clear the low bits.  */
-             if (bit (inst2, 12) == 0)
-               nextpc = nextpc & 0xfffffffc;
-           }
-         else if (inst1 == 0xf3de && (inst2 & 0xff00) == 0x3f00)
-           {
-             /* SUBS PC, LR, #imm8.  */
-             nextpc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
-             nextpc -= inst2 & 0x00ff;
-           }
-         else if ((inst2 & 0xd000) == 0x8000 && (inst1 & 0x0380) != 0x0380)
-           {
-             /* Conditional branch.  */
-             if (condition_true (bits (inst1, 6, 9), status))
-               {
-                 int sign, j1, j2, imm1, imm2;
-
-                 sign = sbits (inst1, 10, 10);
-                 imm1 = bits (inst1, 0, 5);
-                 imm2 = bits (inst2, 0, 10);
-                 j1 = bit (inst2, 13);
-                 j2 = bit (inst2, 11);
-
-                 offset = (sign << 20) + (j2 << 19) + (j1 << 18);
-                 offset += (imm1 << 12) + (imm2 << 1);
-
-                 nextpc = pc_val + offset;
-               }
-           }
-       }
-      else if ((inst1 & 0xfe50) == 0xe810)
-       {
-         /* Load multiple or RFE.  */
-         int rn, offset, load_pc = 1;
-
-         rn = bits (inst1, 0, 3);
-         if (bit (inst1, 7) && !bit (inst1, 8))
-           {
-             /* LDMIA or POP */
-             if (!bit (inst2, 15))
-               load_pc = 0;
-             offset = bitcount (inst2) * 4 - 4;
-           }
-         else if (!bit (inst1, 7) && bit (inst1, 8))
-           {
-             /* LDMDB */
-             if (!bit (inst2, 15))
-               load_pc = 0;
-             offset = -4;
-           }
-         else if (bit (inst1, 7) && bit (inst1, 8))
-           {
-             /* RFEIA */
-             offset = 0;
-           }
-         else if (!bit (inst1, 7) && !bit (inst1, 8))
-           {
-             /* RFEDB */
-             offset = -8;
-           }
-         else
-           load_pc = 0;
-
-         if (load_pc)
-           {
-             CORE_ADDR addr = get_frame_register_unsigned (frame, rn);
-             nextpc = get_frame_memory_unsigned (frame, addr + offset, 4);
-           }
-       }
-      else if ((inst1 & 0xffef) == 0xea4f && (inst2 & 0xfff0) == 0x0f00)
-       {
-         /* MOV PC or MOVS PC.  */
-         nextpc = get_frame_register_unsigned (frame, bits (inst2, 0, 3));
-         nextpc = MAKE_THUMB_ADDR (nextpc);
-       }
-      else if ((inst1 & 0xff70) == 0xf850 && (inst2 & 0xf000) == 0xf000)
-       {
-         /* LDR PC.  */
-         CORE_ADDR base;
-         int rn, load_pc = 1;
-
-         rn = bits (inst1, 0, 3);
-         base = get_frame_register_unsigned (frame, rn);
-         if (rn == ARM_PC_REGNUM)
-           {
-             base = (base + 4) & ~(CORE_ADDR) 0x3;
-             if (bit (inst1, 7))
-               base += bits (inst2, 0, 11);
-             else
-               base -= bits (inst2, 0, 11);
-           }
-         else if (bit (inst1, 7))
-           base += bits (inst2, 0, 11);
-         else if (bit (inst2, 11))
-           {
-             if (bit (inst2, 10))
-               {
-                 if (bit (inst2, 9))
-                   base += bits (inst2, 0, 7);
-                 else
-                   base -= bits (inst2, 0, 7);
-               }
-           }
-         else if ((inst2 & 0x0fc0) == 0x0000)
-           {
-             int shift = bits (inst2, 4, 5), rm = bits (inst2, 0, 3);
-             base += get_frame_register_unsigned (frame, rm) << shift;
-           }
-         else
-           /* Reserved.  */
-           load_pc = 0;
-
-         if (load_pc)
-           nextpc = get_frame_memory_unsigned (frame, base, 4);
-       }
-      else if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf000)
-       {
-         /* TBB.  */
-         CORE_ADDR tbl_reg, table, offset, length;
-
-         tbl_reg = bits (inst1, 0, 3);
-         if (tbl_reg == 0x0f)
-           table = pc + 4;  /* Regcache copy of PC isn't right yet.  */
-         else
-           table = get_frame_register_unsigned (frame, tbl_reg);
-
-         offset = get_frame_register_unsigned (frame, bits (inst2, 0, 3));
-         length = 2 * get_frame_memory_unsigned (frame, table + offset, 1);
-         nextpc = pc_val + length;
-       }
-      else if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf010)
-       {
-         /* TBH.  */
-         CORE_ADDR tbl_reg, table, offset, length;
-
-         tbl_reg = bits (inst1, 0, 3);
-         if (tbl_reg == 0x0f)
-           table = pc + 4;  /* Regcache copy of PC isn't right yet.  */
-         else
-           table = get_frame_register_unsigned (frame, tbl_reg);
-
-         offset = 2 * get_frame_register_unsigned (frame, bits (inst2, 0, 3));
-         length = 2 * get_frame_memory_unsigned (frame, table + offset, 2);
-         nextpc = pc_val + length;
-       }
-    }
-  else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
-    {
-      if (bits (inst1, 3, 6) == 0x0f)
-       nextpc = UNMAKE_THUMB_ADDR (pc_val);
-      else
-       nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
-    }
-  else if ((inst1 & 0xff87) == 0x4687) /* mov pc, REG */
-    {
-      if (bits (inst1, 3, 6) == 0x0f)
-       nextpc = pc_val;
-      else
-       nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
-
-      nextpc = MAKE_THUMB_ADDR (nextpc);
-    }
-  else if ((inst1 & 0xf500) == 0xb100)
-    {
-      /* CBNZ or CBZ.  */
-      int imm = (bit (inst1, 9) << 6) + (bits (inst1, 3, 7) << 1);
-      ULONGEST reg = get_frame_register_unsigned (frame, bits (inst1, 0, 2));
-
-      if (bit (inst1, 11) && reg != 0)
-       nextpc = pc_val + imm;
-      else if (!bit (inst1, 11) && reg == 0)
-       nextpc = pc_val + imm;
-    }
-  return nextpc;
-}
-
-/* Get the raw next address.  PC is the current program counter, in 
-   FRAME, which is assumed to be executing in ARM mode.
-
-   The value returned has the execution state of the next instruction 
-   encoded in it.  Use IS_THUMB_ADDR () to see whether the instruction is
-   in Thumb-State, and gdbarch_addr_bits_remove () to get the plain memory
-   address.  */
-
-static CORE_ADDR
-arm_get_next_pc_raw (struct frame_info *frame, CORE_ADDR pc)
-{
-  struct gdbarch *gdbarch = get_frame_arch (frame);
-  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
-  enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
-  unsigned long pc_val;
-  unsigned long this_instr;
-  unsigned long status;
-  CORE_ADDR nextpc;
-
-  pc_val = (unsigned long) pc;
-  this_instr = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
-
-  status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
-  nextpc = (CORE_ADDR) (pc_val + 4);   /* Default case */
-
-  if (bits (this_instr, 28, 31) == INST_NV)
-    switch (bits (this_instr, 24, 27))
-      {
-      case 0xa:
-      case 0xb:
-       {
-         /* Branch with Link and change to Thumb.  */
-         nextpc = BranchDest (pc, this_instr);
-         nextpc |= bit (this_instr, 24) << 1;
-         nextpc = MAKE_THUMB_ADDR (nextpc);
-         break;
-       }
-      case 0xc:
-      case 0xd:
-      case 0xe:
-       /* Coprocessor register transfer.  */
-        if (bits (this_instr, 12, 15) == 15)
-         error (_("Invalid update to pc in instruction"));
-       break;
-      }
-  else if (condition_true (bits (this_instr, 28, 31), status))
-    {
-      switch (bits (this_instr, 24, 27))
-       {
-       case 0x0:
-       case 0x1:                       /* data processing */
-       case 0x2:
-       case 0x3:
-         {
-           unsigned long operand1, operand2, result = 0;
-           unsigned long rn;
-           int c;
-
-           if (bits (this_instr, 12, 15) != 15)
-             break;
-
-           if (bits (this_instr, 22, 25) == 0
-               && bits (this_instr, 4, 7) == 9)        /* multiply */
-             error (_("Invalid update to pc in instruction"));
-
-           /* BX <reg>, BLX <reg> */
-           if (bits (this_instr, 4, 27) == 0x12fff1
-               || bits (this_instr, 4, 27) == 0x12fff3)
-             {
-               rn = bits (this_instr, 0, 3);
-               nextpc = ((rn == ARM_PC_REGNUM)
-                         ? (pc_val + 8)
-                         : get_frame_register_unsigned (frame, rn));
-
-               return nextpc;
-             }
-
-           /* Multiply into PC.  */
-           c = (status & FLAG_C) ? 1 : 0;
-           rn = bits (this_instr, 16, 19);
-           operand1 = ((rn == ARM_PC_REGNUM)
-                       ? (pc_val + 8)
-                       : get_frame_register_unsigned (frame, rn));
-
-           if (bit (this_instr, 25))
-             {
-               unsigned long immval = bits (this_instr, 0, 7);
-               unsigned long rotate = 2 * bits (this_instr, 8, 11);
-               operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
-                 & 0xffffffff;
-             }
-           else                /* operand 2 is a shifted register.  */
-             operand2 = shifted_reg_val (frame, this_instr, c,
-                                         pc_val, status);
-
-           switch (bits (this_instr, 21, 24))
-             {
-             case 0x0: /*and */
-               result = operand1 & operand2;
-               break;
-
-             case 0x1: /*eor */
-               result = operand1 ^ operand2;
-               break;
-
-             case 0x2: /*sub */
-               result = operand1 - operand2;
-               break;
-
-             case 0x3: /*rsb */
-               result = operand2 - operand1;
-               break;
-
-             case 0x4: /*add */
-               result = operand1 + operand2;
-               break;
-
-             case 0x5: /*adc */
-               result = operand1 + operand2 + c;
-               break;
-
-             case 0x6: /*sbc */
-               result = operand1 - operand2 + c;
-               break;
-
-             case 0x7: /*rsc */
-               result = operand2 - operand1 + c;
-               break;
-
-             case 0x8:
-             case 0x9:
-             case 0xa:
-             case 0xb: /* tst, teq, cmp, cmn */
-               result = (unsigned long) nextpc;
-               break;
-
-             case 0xc: /*orr */
-               result = operand1 | operand2;
-               break;
-
-             case 0xd: /*mov */
-               /* Always step into a function.  */
-               result = operand2;
-               break;
-
-             case 0xe: /*bic */
-               result = operand1 & ~operand2;
-               break;
-
-             case 0xf: /*mvn */
-               result = ~operand2;
-               break;
-             }
-
-            /* In 26-bit APCS the bottom two bits of the result are 
-              ignored, and we always end up in ARM state.  */
-           if (!arm_apcs_32)
-             nextpc = arm_addr_bits_remove (gdbarch, result);
-           else
-             nextpc = result;
-
-           break;
-         }
-
-       case 0x4:
-       case 0x5:               /* data transfer */
-       case 0x6:
-       case 0x7:
-         if (bit (this_instr, 20))
-           {
-             /* load */
-             if (bits (this_instr, 12, 15) == 15)
-               {
-                 /* rd == pc */
-                 unsigned long rn;
-                 unsigned long base;
-
-                 if (bit (this_instr, 22))
-                   error (_("Invalid update to pc in instruction"));
-
-                 /* byte write to PC */
-                 rn = bits (this_instr, 16, 19);
-                 base = ((rn == ARM_PC_REGNUM)
-                         ? (pc_val + 8)
-                         : get_frame_register_unsigned (frame, rn));
-
-                 if (bit (this_instr, 24))
-                   {
-                     /* pre-indexed */
-                     int c = (status & FLAG_C) ? 1 : 0;
-                     unsigned long offset =
-                     (bit (this_instr, 25)
-                      ? shifted_reg_val (frame, this_instr, c, pc_val, status)
-                      : bits (this_instr, 0, 11));
-
-                     if (bit (this_instr, 23))
-                       base += offset;
-                     else
-                       base -= offset;
-                   }
-                 nextpc =
-                   (CORE_ADDR) read_memory_unsigned_integer ((CORE_ADDR) base,
-                                                             4, byte_order);
-               }
-           }
-         break;
-
-       case 0x8:
-       case 0x9:               /* block transfer */
-         if (bit (this_instr, 20))
-           {
-             /* LDM */
-             if (bit (this_instr, 15))
-               {
-                 /* loading pc */
-                 int offset = 0;
-                 unsigned long rn_val
-                   = get_frame_register_unsigned (frame,
-                                                  bits (this_instr, 16, 19));
-
-                 if (bit (this_instr, 23))
-                   {
-                     /* up */
-                     unsigned long reglist = bits (this_instr, 0, 14);
-                     offset = bitcount (reglist) * 4;
-                     if (bit (this_instr, 24))         /* pre */
-                       offset += 4;
-                   }
-                 else if (bit (this_instr, 24))
-                   offset = -4;
-
-                 nextpc =
-                   (CORE_ADDR) read_memory_unsigned_integer ((CORE_ADDR)
-                                                             (rn_val + offset),
-                                                             4, byte_order);
-               }
-           }
-         break;
-
-       case 0xb:               /* branch & link */
-       case 0xa:               /* branch */
-         {
-           nextpc = BranchDest (pc, this_instr);
-           break;
-         }
-
-       case 0xc:
-       case 0xd:
-       case 0xe:               /* coproc ops */
-         break;
-       case 0xf:               /* SWI */
-         {
-           struct gdbarch_tdep *tdep;
-           tdep = gdbarch_tdep (gdbarch);
-
-           if (tdep->syscall_next_pc != NULL)
-             nextpc = tdep->syscall_next_pc (frame);
-
-         }
-         break;
-
-       default:
-         fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
-         return (pc);
-       }
-    }
-
-  return nextpc;
-}
-
-/* Determine next PC after current instruction executes.  Will call either
-   arm_get_next_pc_raw or thumb_get_next_pc_raw.  Error out if infinite
-   loop is detected.  */
-
-CORE_ADDR
-arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
-{
-  CORE_ADDR nextpc;
-
-  if (arm_frame_is_thumb (frame))
-    nextpc = thumb_get_next_pc_raw (frame, pc);
-  else
-    nextpc = arm_get_next_pc_raw (frame, pc);
-
-  return nextpc;
-}
-
-/* Like insert_single_step_breakpoint, but make sure we use a breakpoint
-   of the appropriate mode (as encoded in the PC value), even if this
-   differs from what would be expected according to the symbol tables.  */
-
-void
-arm_insert_single_step_breakpoint (struct gdbarch *gdbarch,
-                                  struct address_space *aspace,
-                                  CORE_ADDR pc)
-{
-  struct cleanup *old_chain
-    = make_cleanup_restore_integer (&arm_override_mode);
-
-  arm_override_mode = IS_THUMB_ADDR (pc);
-  pc = gdbarch_addr_bits_remove (gdbarch, pc);
-
-  insert_single_step_breakpoint (gdbarch, aspace, pc);
+       return builtin_type (gdbarch)->builtin_void;
 
-  do_cleanups (old_chain);
+      return arm_ext_type (gdbarch);
+    }
+  else if (regnum == ARM_SP_REGNUM)
+    return builtin_type (gdbarch)->builtin_data_ptr;
+  else if (regnum == ARM_PC_REGNUM)
+    return builtin_type (gdbarch)->builtin_func_ptr;
+  else if (regnum >= ARRAY_SIZE (arm_register_names))
+    /* These registers are only supported on targets which supply
+       an XML description.  */
+    return builtin_type (gdbarch)->builtin_int0;
+  else
+    return builtin_type (gdbarch)->builtin_uint32;
 }
 
-/* Checks for an atomic sequence of instructions beginning with a LDREX{,B,H,D}
-   instruction and ending with a STREX{,B,H,D} instruction.  If such a sequence
-   is found, attempt to step through it.  A breakpoint is placed at the end of
-   the sequence.  */
+/* Map a DWARF register REGNUM onto the appropriate GDB register
+   number.  */
 
 static int
-thumb_deal_with_atomic_sequence_raw (struct frame_info *frame)
+arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
 {
-  struct gdbarch *gdbarch = get_frame_arch (frame);
-  struct address_space *aspace = get_frame_address_space (frame);
-  enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
-  CORE_ADDR pc = get_frame_pc (frame);
-  CORE_ADDR breaks[2] = {-1, -1};
-  CORE_ADDR loc = pc;
-  unsigned short insn1, insn2;
-  int insn_count;
-  int index;
-  int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed).  */
-  const int atomic_sequence_length = 16; /* Instruction sequence length.  */
-  ULONGEST status, itstate;
-
-  /* We currently do not support atomic sequences within an IT block.  */
-  status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
-  itstate = ((status >> 8) & 0xfc) | ((status >> 25) & 0x3);
-  if (itstate & 0x0f)
-    return 0;
-
-  /* Assume all atomic sequences start with a ldrex{,b,h,d} instruction.  */
-  insn1 = read_memory_unsigned_integer (loc, 2, byte_order_for_code);
-  loc += 2;
-  if (thumb_insn_size (insn1) != 4)
-    return 0;
-
-  insn2 = read_memory_unsigned_integer (loc, 2, byte_order_for_code);
-  loc += 2;
-  if (!((insn1 & 0xfff0) == 0xe850
-        || ((insn1 & 0xfff0) == 0xe8d0 && (insn2 & 0x00c0) == 0x0040)))
-    return 0;
-
-  /* Assume that no atomic sequence is longer than "atomic_sequence_length"
-     instructions.  */
-  for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
-    {
-      insn1 = read_memory_unsigned_integer (loc, 2, byte_order_for_code);
-      loc += 2;
-
-      if (thumb_insn_size (insn1) != 4)
-       {
-         /* Assume that there is at most one conditional branch in the
-            atomic sequence.  If a conditional branch is found, put a
-            breakpoint in its destination address.  */
-         if ((insn1 & 0xf000) == 0xd000 && bits (insn1, 8, 11) != 0x0f)
-           {
-             if (last_breakpoint > 0)
-               return 0; /* More than one conditional branch found,
-                            fallback to the standard code.  */
-
-             breaks[1] = loc + 2 + (sbits (insn1, 0, 7) << 1);
-             last_breakpoint++;
-           }
+  /* Core integer regs.  */
+  if (reg >= 0 && reg <= 15)
+    return reg;
 
-         /* We do not support atomic sequences that use any *other*
-            instructions but conditional branches to change the PC.
-            Fall back to standard code to avoid losing control of
-            execution.  */
-         else if (thumb_instruction_changes_pc (insn1))
-           return 0;
-       }
-      else
-       {
-         insn2 = read_memory_unsigned_integer (loc, 2, byte_order_for_code);
-         loc += 2;
-
-         /* Assume that there is at most one conditional branch in the
-            atomic sequence.  If a conditional branch is found, put a
-            breakpoint in its destination address.  */
-         if ((insn1 & 0xf800) == 0xf000
-             && (insn2 & 0xd000) == 0x8000
-             && (insn1 & 0x0380) != 0x0380)
-           {
-             int sign, j1, j2, imm1, imm2;
-             unsigned int offset;
+  /* Legacy FPA encoding.  These were once used in a way which
+     overlapped with VFP register numbering, so their use is
+     discouraged, but GDB doesn't support the ARM toolchain
+     which used them for VFP.  */
+  if (reg >= 16 && reg <= 23)
+    return ARM_F0_REGNUM + reg - 16;
 
-             sign = sbits (insn1, 10, 10);
-             imm1 = bits (insn1, 0, 5);
-             imm2 = bits (insn2, 0, 10);
-             j1 = bit (insn2, 13);
-             j2 = bit (insn2, 11);
+  /* New assignments for the FPA registers.  */
+  if (reg >= 96 && reg <= 103)
+    return ARM_F0_REGNUM + reg - 96;
 
-             offset = (sign << 20) + (j2 << 19) + (j1 << 18);
-             offset += (imm1 << 12) + (imm2 << 1);
+  /* WMMX register assignments.  */
+  if (reg >= 104 && reg <= 111)
+    return ARM_WCGR0_REGNUM + reg - 104;
 
-             if (last_breakpoint > 0)
-               return 0; /* More than one conditional branch found,
-                            fallback to the standard code.  */
+  if (reg >= 112 && reg <= 127)
+    return ARM_WR0_REGNUM + reg - 112;
 
-             breaks[1] = loc + offset;
-             last_breakpoint++;
-           }
+  if (reg >= 192 && reg <= 199)
+    return ARM_WC0_REGNUM + reg - 192;
 
-         /* We do not support atomic sequences that use any *other*
-            instructions but conditional branches to change the PC.
-            Fall back to standard code to avoid losing control of
-            execution.  */
-         else if (thumb2_instruction_changes_pc (insn1, insn2))
-           return 0;
+  /* VFP v2 registers.  A double precision value is actually
+     in d1 rather than s2, but the ABI only defines numbering
+     for the single precision registers.  This will "just work"
+     in GDB for little endian targets (we'll read eight bytes,
+     starting in s0 and then progressing to s1), but will be
+     reversed on big endian targets with VFP.  This won't
+     be a problem for the new Neon quad registers; you're supposed
+     to use DW_OP_piece for those.  */
+  if (reg >= 64 && reg <= 95)
+    {
+      char name_buf[4];
 
-         /* If we find a strex{,b,h,d}, we're done.  */
-         if ((insn1 & 0xfff0) == 0xe840
-             || ((insn1 & 0xfff0) == 0xe8c0 && (insn2 & 0x00c0) == 0x0040))
-           break;
-       }
+      xsnprintf (name_buf, sizeof (name_buf), "s%d", reg - 64);
+      return user_reg_map_name_to_regnum (gdbarch, name_buf,
+                                         strlen (name_buf));
     }
 
-  /* If we didn't find the strex{,b,h,d}, we cannot handle the sequence.  */
-  if (insn_count == atomic_sequence_length)
-    return 0;
-
-  /* Insert a breakpoint right after the end of the atomic sequence.  */
-  breaks[0] = loc;
-
-  /* Check for duplicated breakpoints.  Check also for a breakpoint
-     placed (branch instruction's destination) anywhere in sequence.  */
-  if (last_breakpoint
-      && (breaks[1] == breaks[0]
-         || (breaks[1] >= pc && breaks[1] < loc)))
-    last_breakpoint = 0;
+  /* VFP v3 / Neon registers.  This range is also used for VFP v2
+     registers, except that it now describes d0 instead of s0.  */
+  if (reg >= 256 && reg <= 287)
+    {
+      char name_buf[4];
 
-  /* Effectively inserts the breakpoints.  */
-  for (index = 0; index <= last_breakpoint; index++)
-    arm_insert_single_step_breakpoint (gdbarch, aspace,
-                                      MAKE_THUMB_ADDR (breaks[index]));
+      xsnprintf (name_buf, sizeof (name_buf), "d%d", reg - 256);
+      return user_reg_map_name_to_regnum (gdbarch, name_buf,
+                                         strlen (name_buf));
+    }
 
-  return 1;
+  return -1;
 }
 
+/* Map GDB internal REGNUM onto the Arm simulator register numbers.  */
 static int
-arm_deal_with_atomic_sequence_raw (struct frame_info *frame)
+arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
 {
-  struct gdbarch *gdbarch = get_frame_arch (frame);
-  struct address_space *aspace = get_frame_address_space (frame);
-  enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
-  CORE_ADDR pc = get_frame_pc (frame);
-  CORE_ADDR breaks[2] = {-1, -1};
-  CORE_ADDR loc = pc;
-  unsigned int insn;
-  int insn_count;
-  int index;
-  int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed).  */
-  const int atomic_sequence_length = 16; /* Instruction sequence length.  */
-
-  /* Assume all atomic sequences start with a ldrex{,b,h,d} instruction.
-     Note that we do not currently support conditionally executed atomic
-     instructions.  */
-  insn = read_memory_unsigned_integer (loc, 4, byte_order_for_code);
-  loc += 4;
-  if ((insn & 0xff9000f0) != 0xe1900090)
-    return 0;
+  int reg = regnum;
+  gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
 
-  /* Assume that no atomic sequence is longer than "atomic_sequence_length"
-     instructions.  */
-  for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
-    {
-      insn = read_memory_unsigned_integer (loc, 4, byte_order_for_code);
-      loc += 4;
+  if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
+    return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
 
-      /* Assume that there is at most one conditional branch in the atomic
-         sequence.  If a conditional branch is found, put a breakpoint in
-         its destination address.  */
-      if (bits (insn, 24, 27) == 0xa)
-       {
-          if (last_breakpoint > 0)
-            return 0; /* More than one conditional branch found, fallback
-                         to the standard single-step code.  */
+  if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
+    return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
 
-         breaks[1] = BranchDest (loc - 4, insn);
-         last_breakpoint++;
-        }
+  if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
+    return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
 
-      /* We do not support atomic sequences that use any *other* instructions
-         but conditional branches to change the PC.  Fall back to standard
-        code to avoid losing control of execution.  */
-      else if (arm_instruction_changes_pc (insn))
-       return 0;
+  if (reg < NUM_GREGS)
+    return SIM_ARM_R0_REGNUM + reg;
+  reg -= NUM_GREGS;
 
-      /* If we find a strex{,b,h,d}, we're done.  */
-      if ((insn & 0xff9000f0) == 0xe1800090)
-       break;
-    }
+  if (reg < NUM_FREGS)
+    return SIM_ARM_FP0_REGNUM + reg;
+  reg -= NUM_FREGS;
 
-  /* If we didn't find the strex{,b,h,d}, we cannot handle the sequence.  */
-  if (insn_count == atomic_sequence_length)
-    return 0;
+  if (reg < NUM_SREGS)
+    return SIM_ARM_FPS_REGNUM + reg;
+  reg -= NUM_SREGS;
 
-  /* Insert a breakpoint right after the end of the atomic sequence.  */
-  breaks[0] = loc;
+  internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
+}
 
-  /* Check for duplicated breakpoints.  Check also for a breakpoint
-     placed (branch instruction's destination) anywhere in sequence.  */
-  if (last_breakpoint
-      && (breaks[1] == breaks[0]
-         || (breaks[1] >= pc && breaks[1] < loc)))
-    last_breakpoint = 0;
+/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
+   convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
+   It is thought that this is is the floating-point register format on
+   little-endian systems.  */
 
-  /* Effectively inserts the breakpoints.  */
-  for (index = 0; index <= last_breakpoint; index++)
-    arm_insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
+static void
+convert_from_extended (const struct floatformat *fmt, const void *ptr,
+                      void *dbl, int endianess)
+{
+  DOUBLEST d;
 
-  return 1;
+  if (endianess == BFD_ENDIAN_BIG)
+    floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
+  else
+    floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
+                            ptr, &d);
+  floatformat_from_doublest (fmt, &d, dbl);
 }
 
-int
-arm_deal_with_atomic_sequence (struct frame_info *frame)
+static void
+convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr,
+                    int endianess)
 {
-  if (arm_frame_is_thumb (frame))
-    return thumb_deal_with_atomic_sequence_raw (frame);
+  DOUBLEST d;
+
+  floatformat_to_doublest (fmt, ptr, &d);
+  if (endianess == BFD_ENDIAN_BIG)
+    floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
   else
-    return arm_deal_with_atomic_sequence_raw (frame);
+    floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
+                              &d, dbl);
 }
 
-/* single_step() is called just before we want to resume the inferior,
-   if we want to single-step it but there is no hardware or kernel
-   single-step support.  We find the target of the coming instruction
-   and breakpoint it.  */
+/* Like insert_single_step_breakpoint, but make sure we use a breakpoint
+   of the appropriate mode (as encoded in the PC value), even if this
+   differs from what would be expected according to the symbol tables.  */
 
-int
-arm_software_single_step (struct frame_info *frame)
+void
+arm_insert_single_step_breakpoint (struct gdbarch *gdbarch,
+                                  struct address_space *aspace,
+                                  CORE_ADDR pc)
 {
-  struct gdbarch *gdbarch = get_frame_arch (frame);
-  struct address_space *aspace = get_frame_address_space (frame);
-  CORE_ADDR next_pc;
+  struct cleanup *old_chain
+    = make_cleanup_restore_integer (&arm_override_mode);
 
-  if (arm_deal_with_atomic_sequence (frame))
-    return 1;
+  arm_override_mode = IS_THUMB_ADDR (pc);
+  pc = gdbarch_addr_bits_remove (gdbarch, pc);
 
-  next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
-  arm_insert_single_step_breakpoint (gdbarch, aspace, next_pc);
+  insert_single_step_breakpoint (gdbarch, aspace, pc);
 
-  return 1;
+  do_cleanups (old_chain);
 }
 
 /* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand
@@ -5358,7 +4120,7 @@ extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr,
   gdb_byte *new_buf;
   int bytes_to_read = new_len - old_len;
 
-  new_buf = xmalloc (new_len);
+  new_buf = (gdb_byte *) xmalloc (new_len);
   memcpy (new_buf + bytes_to_read, buf, old_len);
   xfree (buf);
   if (target_read_memory (endaddr - new_len, new_buf, bytes_to_read) != 0)
@@ -5424,7 +4186,7 @@ arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
     /* No room for an IT instruction.  */
     return bpaddr;
 
-  buf = xmalloc (buf_len);
+  buf = (gdb_byte *) xmalloc (buf_len);
   if (target_read_memory (bpaddr - buf_len, buf, buf_len) != 0)
     return bpaddr;
   any = 0;
@@ -5437,6 +4199,7 @@ arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
          break;
        }
     }
+
   if (any == 0)
     {
       xfree (buf);
@@ -6445,7 +5208,7 @@ install_alu_reg (struct gdbarch *gdbarch, struct regcache *regs,
 
      Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2;
                  r0, r1, r2 <- rd, rn, rm
-     Insn: <op><cond> r0, r1, r2 [, <shift>]
+     Insn: <op><cond> r0, [r1,] r2 [, <shift>]
      Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3
   */
 
@@ -6492,22 +5255,21 @@ thumb_copy_alu_reg (struct gdbarch *gdbarch, uint16_t insn,
                    struct regcache *regs,
                    struct displaced_step_closure *dsc)
 {
-  unsigned rn, rm, rd;
+  unsigned rm, rd;
 
-  rd = bits (insn, 3, 6);
-  rn = (bit (insn, 7) << 3) | bits (insn, 0, 2);
-  rm = 2;
+  rm = bits (insn, 3, 6);
+  rd = (bit (insn, 7) << 3) | bits (insn, 0, 2);
 
-  if (rd != ARM_PC_REGNUM && rn != ARM_PC_REGNUM)
+  if (rd != ARM_PC_REGNUM && rm != ARM_PC_REGNUM)
     return thumb_copy_unmodified_16bit (gdbarch, insn, "ALU reg", dsc);
 
   if (debug_displaced)
-    fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.4x\n",
-                       "ALU", (unsigned short) insn);
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying ALU reg insn %.4x\n",
+                       (unsigned short) insn);
 
-  dsc->modinsn[0] = ((insn & 0xff00) | 0x08);
+  dsc->modinsn[0] = ((insn & 0xff00) | 0x10);
 
-  install_alu_reg (gdbarch, regs, dsc, rd, rn, rm);
+  install_alu_reg (gdbarch, regs, dsc, rd, rd, rm);
 
   return 0;
 }
@@ -7358,6 +6120,82 @@ thumb2_copy_block_xfer (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
   return 0;
 }
 
+/* Wrapper over read_memory_unsigned_integer for use in arm_get_next_pcs.
+ This is used to avoid a dependency on BFD's bfd_endian enum.  */
+
+ULONGEST
+arm_get_next_pcs_read_memory_unsigned_integer (CORE_ADDR memaddr, int len,
+                                              int byte_order)
+{
+  return read_memory_unsigned_integer (memaddr, len,
+                                      (enum bfd_endian) byte_order);
+}
+
+/* Wrapper over gdbarch_addr_bits_remove for use in arm_get_next_pcs.  */
+
+CORE_ADDR
+arm_get_next_pcs_addr_bits_remove (struct arm_get_next_pcs *self,
+                                  CORE_ADDR val)
+{
+  return gdbarch_addr_bits_remove (get_regcache_arch (self->regcache), val);
+}
+
+/* Wrapper over syscall_next_pc for use in get_next_pcs.  */
+
+CORE_ADDR
+arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self, CORE_ADDR pc)
+{
+  struct gdbarch_tdep *tdep;
+
+  tdep = gdbarch_tdep (get_regcache_arch (self->regcache));
+  if (tdep->syscall_next_pc != NULL)
+    return tdep->syscall_next_pc (self->regcache);
+
+  return 0;
+}
+
+/* Wrapper over arm_is_thumb for use in arm_get_next_pcs.  */
+
+int
+arm_get_next_pcs_is_thumb (struct arm_get_next_pcs *self)
+{
+  return arm_is_thumb (self->regcache);
+}
+
+/* single_step() is called just before we want to resume the inferior,
+   if we want to single-step it but there is no hardware or kernel
+   single-step support.  We find the target of the coming instructions
+   and breakpoint them.  */
+
+int
+arm_software_single_step (struct frame_info *frame)
+{
+  struct regcache *regcache = get_current_regcache ();
+  struct gdbarch *gdbarch = get_regcache_arch (regcache);
+  struct address_space *aspace = get_regcache_aspace (regcache);
+  struct arm_get_next_pcs next_pcs_ctx;
+  CORE_ADDR pc;
+  int i;
+  VEC (CORE_ADDR) *next_pcs = NULL;
+  struct cleanup *old_chain = make_cleanup (VEC_cleanup (CORE_ADDR), &next_pcs);
+
+  arm_get_next_pcs_ctor (&next_pcs_ctx,
+                        &arm_get_next_pcs_ops,
+                        gdbarch_byte_order (gdbarch),
+                        gdbarch_byte_order_for_code (gdbarch),
+                        gdbarch_tdep (gdbarch)->thumb2_breakpoint,
+                        regcache);
+
+  next_pcs = arm_get_next_pcs (&next_pcs_ctx, regcache_read_pc (regcache));
+
+  for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); i++)
+    arm_insert_single_step_breakpoint (gdbarch, aspace, pc);
+
+  do_cleanups (old_chain);
+
+  return 1;
+}
+
 /* Cleanup/copy SVC (SWI) instructions.  These two functions are overridden
    for Linux, where some SVC instructions must be treated specially.  */
 
@@ -8771,8 +7609,8 @@ arm_displaced_step_copy_insn (struct gdbarch *gdbarch,
                              CORE_ADDR from, CORE_ADDR to,
                              struct regcache *regs)
 {
-  struct displaced_step_closure *dsc
-    = xmalloc (sizeof (struct displaced_step_closure));
+  struct displaced_step_closure *dsc = XNEW (struct displaced_step_closure);
+
   arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
   arm_displaced_init_closure (gdbarch, from, to, dsc);
 
@@ -8803,7 +7641,7 @@ arm_displaced_step_fixup (struct gdbarch *gdbarch,
 static int
 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
 {
-  struct gdbarch *gdbarch = info->application_data;
+  struct gdbarch *gdbarch = (struct gdbarch *) info->application_data;
 
   if (arm_pc_is_thumb (gdbarch, memaddr))
     {
@@ -9039,99 +7877,113 @@ arm_extract_return_value (struct type *type, struct regcache *regs,
 static int
 arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
 {
-  int nRc;
   enum type_code code;
 
-  CHECK_TYPEDEF (type);
-
-  /* In the ARM ABI, "integer" like aggregate types are returned in
-     registers.  For an aggregate type to be integer like, its size
-     must be less than or equal to INT_REGISTER_SIZE and the
-     offset of each addressable subfield must be zero.  Note that bit
-     fields are not addressable, and all addressable subfields of
-     unions always start at offset zero.
+  type = check_typedef (type);
 
-     This function is based on the behaviour of GCC 2.95.1.
-     See: gcc/arm.c: arm_return_in_memory() for details.
-
-     Note: All versions of GCC before GCC 2.95.2 do not set up the
-     parameters correctly for a function returning the following
-     structure: struct { float f;}; This should be returned in memory,
-     not a register.  Richard Earnshaw sent me a patch, but I do not
-     know of any way to detect if a function like the above has been
-     compiled with the correct calling convention.  */
+  /* Simple, non-aggregate types (ie not including vectors and
+     complex) are always returned in a register (or registers).  */
+  code = TYPE_CODE (type);
+  if (TYPE_CODE_STRUCT != code && TYPE_CODE_UNION != code
+      && TYPE_CODE_ARRAY != code && TYPE_CODE_COMPLEX != code)
+    return 0;
 
-  /* All aggregate types that won't fit in a register must be returned
-     in memory.  */
-  if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
+  if (TYPE_CODE_ARRAY == code && TYPE_VECTOR (type))
     {
-      return 1;
+      /* Vector values should be returned using ARM registers if they
+        are not over 16 bytes.  */
+      return (TYPE_LENGTH (type) > 16);
     }
 
-  /* The AAPCS says all aggregates not larger than a word are returned
-     in a register.  */
   if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
-    return 0;
-
-  /* The only aggregate types that can be returned in a register are
-     structs and unions.  Arrays must be returned in memory.  */
-  code = TYPE_CODE (type);
-  if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
     {
+      /* The AAPCS says all aggregates not larger than a word are returned
+        in a register.  */
+      if (TYPE_LENGTH (type) <= INT_REGISTER_SIZE)
+       return 0;
+
       return 1;
     }
+  else
+    {
+      int nRc;
 
-  /* Assume all other aggregate types can be returned in a register.
-     Run a check for structures, unions and arrays.  */
-  nRc = 0;
+      /* All aggregate types that won't fit in a register must be returned
+        in memory.  */
+      if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
+       return 1;
 
-  if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
-    {
-      int i;
-      /* Need to check if this struct/union is "integer" like.  For
-         this to be true, its size must be less than or equal to
-         INT_REGISTER_SIZE and the offset of each addressable
-         subfield must be zero.  Note that bit fields are not
-         addressable, and unions always start at offset zero.  If any
-         of the subfields is a floating point type, the struct/union
-         cannot be an integer type.  */
-
-      /* For each field in the object, check:
-         1) Is it FP? --> yes, nRc = 1;
-         2) Is it addressable (bitpos != 0) and
-         not packed (bitsize == 0)?
-         --> yes, nRc = 1  
-       */
-
-      for (i = 0; i < TYPE_NFIELDS (type); i++)
-       {
-         enum type_code field_type_code;
-         field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type,
-                                                                      i)));
+      /* In the ARM ABI, "integer" like aggregate types are returned in
+        registers.  For an aggregate type to be integer like, its size
+        must be less than or equal to INT_REGISTER_SIZE and the
+        offset of each addressable subfield must be zero.  Note that bit
+        fields are not addressable, and all addressable subfields of
+        unions always start at offset zero.
 
-         /* Is it a floating point type field?  */
-         if (field_type_code == TYPE_CODE_FLT)
-           {
-             nRc = 1;
-             break;
-           }
+        This function is based on the behaviour of GCC 2.95.1.
+        See: gcc/arm.c: arm_return_in_memory() for details.
 
-         /* If bitpos != 0, then we have to care about it.  */
-         if (TYPE_FIELD_BITPOS (type, i) != 0)
+        Note: All versions of GCC before GCC 2.95.2 do not set up the
+        parameters correctly for a function returning the following
+        structure: struct { float f;}; This should be returned in memory,
+        not a register.  Richard Earnshaw sent me a patch, but I do not
+        know of any way to detect if a function like the above has been
+        compiled with the correct calling convention.  */
+
+      /* Assume all other aggregate types can be returned in a register.
+        Run a check for structures, unions and arrays.  */
+      nRc = 0;
+
+      if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
+       {
+         int i;
+         /* Need to check if this struct/union is "integer" like.  For
+            this to be true, its size must be less than or equal to
+            INT_REGISTER_SIZE and the offset of each addressable
+            subfield must be zero.  Note that bit fields are not
+            addressable, and unions always start at offset zero.  If any
+            of the subfields is a floating point type, the struct/union
+            cannot be an integer type.  */
+
+         /* For each field in the object, check:
+            1) Is it FP? --> yes, nRc = 1;
+            2) Is it addressable (bitpos != 0) and
+            not packed (bitsize == 0)?
+            --> yes, nRc = 1
+         */
+
+         for (i = 0; i < TYPE_NFIELDS (type); i++)
            {
-             /* Bitfields are not addressable.  If the field bitsize is 
-                zero, then the field is not packed.  Hence it cannot be
-                a bitfield or any other packed type.  */
-             if (TYPE_FIELD_BITSIZE (type, i) == 0)
+             enum type_code field_type_code;
+
+             field_type_code
+               = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type,
+                                                            i)));
+
+             /* Is it a floating point type field?  */
+             if (field_type_code == TYPE_CODE_FLT)
                {
                  nRc = 1;
                  break;
                }
+
+             /* If bitpos != 0, then we have to care about it.  */
+             if (TYPE_FIELD_BITPOS (type, i) != 0)
+               {
+                 /* Bitfields are not addressable.  If the field bitsize is 
+                    zero, then the field is not packed.  Hence it cannot be
+                    a bitfield or any other packed type.  */
+                 if (TYPE_FIELD_BITSIZE (type, i) == 0)
+                   {
+                     nRc = 1;
+                     break;
+                   }
+               }
            }
        }
-    }
 
-  return nRc;
+      return nRc;
+    }
 }
 
 /* Write into appropriate registers a function return value of type
@@ -9286,12 +8138,11 @@ arm_return_value (struct gdbarch *gdbarch, struct value *function,
          || arm_return_in_memory (gdbarch, valtype))
        return RETURN_VALUE_STRUCT_CONVENTION;
     }
-
-  /* AAPCS returns complex types longer than a register in memory.  */
-  if (tdep->arm_abi != ARM_ABI_APCS
-      && TYPE_CODE (valtype) == TYPE_CODE_COMPLEX
-      && TYPE_LENGTH (valtype) > INT_REGISTER_SIZE)
-    return RETURN_VALUE_STRUCT_CONVENTION;
+  else if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX)
+    {
+      if (arm_return_in_memory (gdbarch, valtype))
+       return RETURN_VALUE_STRUCT_CONVENTION;
+    }
 
   if (writebuf)
     arm_store_return_value (valtype, regcache, writebuf);
@@ -9349,8 +8200,8 @@ arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
      _call_via_xx, where x is the register name.  The possible names
      are r0-r9, sl, fp, ip, sp, and lr.  ARM RealView has similar
      functions, named __ARM_call_via_r[0-7].  */
-  if (strncmp (name, "_call_via_", 10) == 0
-      || strncmp (name, "__ARM_call_via_", strlen ("__ARM_call_via_")) == 0)
+  if (startswith (name, "_call_via_")
+      || startswith (name, "__ARM_call_via_"))
     {
       /* Use the name suffix to determine which register contains the
          target PC.  */
@@ -9372,11 +8223,9 @@ arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
   namelen = strlen (name);
   if (name[0] == '_' && name[1] == '_'
       && ((namelen > 2 + strlen ("_from_thumb")
-          && strncmp (name + namelen - strlen ("_from_thumb"), "_from_thumb",
-                      strlen ("_from_thumb")) == 0)
+          && startswith (name + namelen - strlen ("_from_thumb"), "_from_thumb"))
          || (namelen > 2 + strlen ("_from_arm")
-             && strncmp (name + namelen - strlen ("_from_arm"), "_from_arm",
-                         strlen ("_from_arm")) == 0)))
+             && startswith (name + namelen - strlen ("_from_arm"), "_from_arm"))))
     {
       char *target_name;
       int target_len = namelen - 2;
@@ -9389,7 +8238,7 @@ arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
       else
        target_len -= strlen ("_from_arm");
 
-      target_name = alloca (target_len + 1);
+      target_name = (char *) alloca (target_len + 1);
       memcpy (target_name, name + 2, target_len);
       target_name[target_len] = '\0';
 
@@ -9439,12 +8288,12 @@ static void
 set_fp_model_sfunc (char *args, int from_tty,
                    struct cmd_list_element *c)
 {
-  enum arm_float_model fp_model;
+  int fp_model;
 
   for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
     if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
       {
-       arm_fp_model = fp_model;
+       arm_fp_model = (enum arm_float_model) fp_model;
        break;
       }
 
@@ -9476,12 +8325,12 @@ static void
 arm_set_abi (char *args, int from_tty,
             struct cmd_list_element *c)
 {
-  enum arm_abi_kind arm_abi;
+  int arm_abi;
 
   for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
     if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
       {
-       arm_abi_global = arm_abi;
+       arm_abi_global = (enum arm_abi_kind) arm_abi;
        break;
       }
 
@@ -9633,7 +8482,7 @@ arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
 static void
 arm_objfile_data_free (struct objfile *objfile, void *arg)
 {
-  struct arm_per_objfile *data = arg;
+  struct arm_per_objfile *data = (struct arm_per_objfile *) arg;
   unsigned int i;
 
   for (i = 0; i < objfile->obfd->section_count; i++)
@@ -9653,7 +8502,8 @@ arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile,
   if (name[1] != 'a' && name[1] != 't' && name[1] != 'd')
     return;
 
-  data = objfile_data (objfile, arm_objfile_data_key);
+  data = (struct arm_per_objfile *) objfile_data (objfile,
+                                                 arm_objfile_data_key);
   if (data == NULL)
     {
       data = OBSTACK_ZALLOC (&objfile->objfile_obstack,
@@ -9857,7 +8707,7 @@ arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
 static struct value *
 value_of_arm_user_reg (struct frame_info *frame, const void *baton)
 {
-  const int *reg_p = baton;
+  const int *reg_p = (const int *) baton;
   return value_of_register (*reg_p, frame);
 }
 \f
@@ -9957,7 +8807,8 @@ arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
   enum arm_float_model fp_model = arm_fp_model;
   struct tdesc_arch_data *tdesc_data = NULL;
   int i, is_m = 0;
-  int have_vfp_registers = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0;
+  int vfp_register_count = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0;
+  int have_wmmx_registers = 0;
   int have_neon = 0;
   int have_fpa_registers = 1;
   const struct target_desc *tdesc = info.target_desc;
@@ -9993,7 +8844,7 @@ arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
                 anyway, so assume APCS.  */
              arm_abi = ARM_ABI_APCS;
            }
-         else if (ei_osabi == ELFOSABI_NONE)
+         else if (ei_osabi == ELFOSABI_NONE || ei_osabi == ELFOSABI_GNU)
            {
              int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
              int attr_arch, attr_profile;
@@ -10019,27 +8870,34 @@ arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
                                                        OBJ_ATTR_PROC,
                                                        Tag_ABI_VFP_args))
                        {
-                       case 0:
+                       case AEABI_VFP_args_base:
                          /* "The user intended FP parameter/result
                             passing to conform to AAPCS, base
                             variant".  */
                          fp_model = ARM_FLOAT_SOFT_VFP;
                          break;
-                       case 1:
+                       case AEABI_VFP_args_vfp:
                          /* "The user intended FP parameter/result
                             passing to conform to AAPCS, VFP
                             variant".  */
                          fp_model = ARM_FLOAT_VFP;
                          break;
-                       case 2:
+                       case AEABI_VFP_args_toolchain:
                          /* "The user intended FP parameter/result
                             passing to conform to tool chain-specific
                             conventions" - we don't know any such
                             conventions, so leave it as "auto".  */
                          break;
+                       case AEABI_VFP_args_compatible:
+                         /* "Code is compatible with both the base
+                            and VFP variants; the user did not permit
+                            non-variadic functions to pass FP
+                            parameters/results" - leave it as
+                            "auto".  */
+                         break;
                        default:
                          /* Attribute value not mentioned in the
-                            October 2008 ABI, so leave it as
+                            November 2012 ABI, so leave it as
                             "auto".  */
                          break;
                        }
@@ -10214,6 +9072,8 @@ arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
              tdesc_data_cleanup (tdesc_data);
              return NULL;
            }
+
+         have_wmmx_registers = 1;
        }
 
       /* If we have a VFP unit, check whether the single precision registers
@@ -10256,7 +9116,7 @@ arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
          if (tdesc_unnumbered_register (feature, "s0") == 0)
            have_vfp_pseudos = 1;
 
-         have_vfp_registers = 1;
+         vfp_register_count = i;
 
          /* If we have VFP, also check for NEON.  The architecture allows
             NEON without VFP (integer vector operations only), but GDB
@@ -10316,7 +9176,7 @@ arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
       return best_arch->gdbarch;
     }
 
-  tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
+  tdep = XCNEW (struct gdbarch_tdep);
   gdbarch = gdbarch_alloc (&info, tdep);
 
   /* Record additional information about the architecture we are defining.
@@ -10325,7 +9185,11 @@ arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
   tdep->fp_model = fp_model;
   tdep->is_m = is_m;
   tdep->have_fpa_registers = have_fpa_registers;
-  tdep->have_vfp_registers = have_vfp_registers;
+  tdep->have_wmmx_registers = have_wmmx_registers;
+  gdb_assert (vfp_register_count == 0
+             || vfp_register_count == 16
+             || vfp_register_count == 32);
+  tdep->vfp_register_count = vfp_register_count;
   tdep->have_vfp_pseudos = have_vfp_pseudos;
   tdep->have_neon_pseudos = have_neon_pseudos;
   tdep->have_neon = have_neon;
@@ -10390,8 +9254,8 @@ arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
   /* Advance PC across function entry code.  */
   set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
 
-  /* Detect whether PC is in function epilogue.  */
-  set_gdbarch_in_function_epilogue_p (gdbarch, arm_in_function_epilogue_p);
+  /* Detect whether PC is at a point where the stack has been destroyed.  */
+  set_gdbarch_stack_frame_destroyed_p (gdbarch, arm_stack_frame_destroyed_p);
 
   /* Skip trampolines.  */
   set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
@@ -10593,8 +9457,8 @@ _initialize_arm_tdep (void)
 
   /* Initialize the array that will be passed to
      add_setshow_enum_cmd().  */
-  valid_disassembly_styles
-    = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
+  valid_disassembly_styles = XNEWVEC (const char *,
+                                     num_disassembly_options + 1);
   for (i = 0; i < num_disassembly_options; i++)
     {
       numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
@@ -13838,7 +12702,7 @@ decode_insn (insn_decode_record *arm_record, record_type_t record_type,
 {
 
   /* (Starting from numerical 0); bits 25, 26, 27 decodes type of arm instruction.  */
-  static const sti_arm_hdl_fp_t const arm_handle_insn[8] =                    
+  static const sti_arm_hdl_fp_t arm_handle_insn[8] =
   {
     arm_record_data_proc_misc_ld_str,   /* 000.  */
     arm_record_data_proc_imm,           /* 001.  */
@@ -13851,7 +12715,7 @@ decode_insn (insn_decode_record *arm_record, record_type_t record_type,
   };
 
   /* (Starting from numerical 0); bits 13,14,15 decodes type of thumb instruction.  */
-  static const sti_arm_hdl_fp_t const thumb_handle_insn[8] =
+  static const sti_arm_hdl_fp_t thumb_handle_insn[8] =
   { \
     thumb_record_shift_add_sub,        /* 000.  */
     thumb_record_add_sub_cmp_mov,      /* 001.  */
This page took 0.053494 seconds and 4 git commands to generate.