gdb/
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
index 7ffc885886750de107c35de7a3c814b824fb08ac..08c5ed4a6c2a0357e68421c0b3cd28f3b7c84bae 100644 (file)
@@ -1,8 +1,7 @@
 /* Common target dependent code for GDB on ARM systems.
 
-   Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
-   2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
-   Free Software Foundation, Inc.
+   Copyright (C) 1988-1989, 1991-1993, 1995-1996, 1998-2012 Free
+   Software Foundation, Inc.
 
    This file is part of GDB.
 
@@ -19,7 +18,7 @@
    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
-#include <ctype.h>             /* XXX for isupper () */
+#include <ctype.h>             /* XXX for isupper () */
 
 #include "defs.h"
 #include "frame.h"
@@ -27,8 +26,9 @@
 #include "gdbcmd.h"
 #include "gdbcore.h"
 #include "gdb_string.h"
-#include "dis-asm.h"           /* For register styles. */
+#include "dis-asm.h"           /* For register styles.  */
 #include "regcache.h"
+#include "reggroups.h"
 #include "doublest.h"
 #include "value.h"
 #include "arch-utils.h"
 #include "dwarf2-frame.h"
 #include "gdbtypes.h"
 #include "prologue-value.h"
+#include "remote.h"
 #include "target-descriptions.h"
 #include "user-regs.h"
+#include "observer.h"
 
 #include "arm-tdep.h"
 #include "gdb/sim-arm.h"
 #include "gdb_assert.h"
 #include "vec.h"
 
+#include "record.h"
+
+#include "features/arm-with-m.c"
+#include "features/arm-with-m-fpa-layout.c"
+#include "features/arm-with-iwmmxt.c"
+#include "features/arm-with-vfpv2.c"
+#include "features/arm-with-vfpv3.c"
+#include "features/arm-with-neon.c"
+
 static int arm_debug;
 
 /* Macros for setting and testing a bit in a minimal symbol that marks
@@ -62,25 +73,11 @@ static int arm_debug;
    MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
    MSYMBOL_IS_SPECIAL   Tests the "special" bit in a minimal symbol.  */
 
-#define MSYMBOL_SET_SPECIAL(msym)                                      \
-       MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym))    \
-                                       | 0x80000000)
+#define MSYMBOL_SET_SPECIAL(msym)                              \
+       MSYMBOL_TARGET_FLAG_1 (msym) = 1
 
 #define MSYMBOL_IS_SPECIAL(msym)                               \
-       (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
-
-/* Macros for swapping shorts and ints. In the unlikely case that anybody else needs these,
-   move to a general header. (A better solution might be to define memory read routines that
-   know whether they are reading code or data.)  */
-
-#define SWAP_SHORT(x) \
-  ((((x) & 0xff00) >> 8) | (((x) & 0x00ff) << 8));
-
-#define SWAP_INT(x) \
-  (  ((x & 0xff000000) >> 24) \
-   | ((x & 0x00ff0000) >> 8)  \
-   | ((x & 0x0000ff00) << 8)  \
-   | ((x & 0x000000ff) << 24))
+       MSYMBOL_TARGET_FLAG_1 (msym)
 
 /* Per-objfile data used for mapping symbols.  */
 static const struct objfile_data *arm_objfile_data_key;
@@ -104,7 +101,7 @@ static struct cmd_list_element *showarmcmdlist = NULL;
 
 /* The type of floating-point to use.  Keep this in sync with enum
    arm_float_model, and the help string in _initialize_arm_tdep.  */
-static const char *fp_model_strings[] =
+static const char *const fp_model_strings[] =
 {
   "auto",
   "softfpa",
@@ -119,7 +116,7 @@ static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
 static const char *current_fp_model = "auto";
 
 /* The ABI to use.  Keep this in sync with arm_abi_kind.  */
-static const char *arm_abi_strings[] =
+static const char *const arm_abi_strings[] =
 {
   "auto",
   "APCS",
@@ -132,20 +129,31 @@ static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
 static const char *arm_abi_string = "auto";
 
 /* The execution mode to assume.  */
-static const char *arm_mode_strings[] =
+static const char *const arm_mode_strings[] =
   {
     "auto",
     "arm",
-    "thumb"
+    "thumb",
+    NULL
   };
 
 static const char *arm_fallback_mode_string = "auto";
 static const char *arm_force_mode_string = "auto";
 
+/* Internal override of the execution mode.  -1 means no override,
+   0 means override to ARM mode, 1 means override to Thumb mode.
+   The effect is the same as if arm_force_mode has been set by the
+   user (except the internal override has precedence over a user's
+   arm_force_mode override).  */
+static int arm_override_mode = -1;
+
 /* Number of different reg name sets (options).  */
 static int num_disassembly_options;
 
-/* The standard register names, and all the valid aliases for them.  */
+/* The standard register names, and all the valid aliases for them.  Note
+   that `fp', `sp' and `pc' are not added in this alias list, because they
+   have been added as builtin user registers in
+   std-regs.c:_initialize_frame_reg.  */
 static const struct
 {
   const char *name;
@@ -186,12 +194,9 @@ static const struct
   { "tr", 9 },
   /* Special names.  */
   { "ip", 12 },
-  { "sp", 13 },
   { "lr", 14 },
-  { "pc", 15 },
   /* Names used by GCC (not listed in the ARM EABI).  */
   { "sl", 10 },
-  { "fp", 11 },
   /* A special name from the older ATPCS.  */
   { "wr", 7 },
 };
@@ -222,6 +227,15 @@ static void convert_from_extended (const struct floatformat *, const void *,
 static void convert_to_extended (const struct floatformat *, void *,
                                 const void *, int);
 
+static enum register_status arm_neon_quad_read (struct gdbarch *gdbarch,
+                                               struct regcache *regcache,
+                                               int regnum, gdb_byte *buf);
+static void arm_neon_quad_write (struct gdbarch *gdbarch,
+                                struct regcache *regcache,
+                                int regnum, const gdb_byte *buf);
+
+static int thumb_insn_size (unsigned short inst1);
+
 struct arm_prologue_cache
 {
   /* The stack pointer at the time this frame was created; i.e. the
@@ -242,6 +256,16 @@ struct arm_prologue_cache
   struct trad_frame_saved_reg *saved_regs;
 };
 
+static CORE_ADDR arm_analyze_prologue (struct gdbarch *gdbarch,
+                                      CORE_ADDR prologue_start,
+                                      CORE_ADDR prologue_end,
+                                      struct arm_prologue_cache *cache);
+
+/* Architecture version for displaced stepping.  This effects the behaviour of
+   certain instructions, and really should not be hard-wired.  */
+
+#define DISPLACED_STEPPING_ARCH_VERSION                5
+
 /* Addresses for calling Thumb functions have the bit 0 set.
    Here are some macros to test, set, or clear bit 0 of addresses.  */
 #define IS_THUMB_ADDR(addr)    ((addr) & 1)
@@ -252,12 +276,24 @@ struct arm_prologue_cache
 
 int arm_apcs_32 = 1;
 
+/* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode.  */
+
+int
+arm_psr_thumb_bit (struct gdbarch *gdbarch)
+{
+  if (gdbarch_tdep (gdbarch)->is_m)
+    return XPSR_T;
+  else
+    return CPSR_T;
+}
+
 /* Determine if FRAME is executing in Thumb mode.  */
 
-static int
+int
 arm_frame_is_thumb (struct frame_info *frame)
 {
   CORE_ADDR cpsr;
+  ULONGEST t_bit = arm_psr_thumb_bit (get_frame_arch (frame));
 
   /* Every ARM frame unwinder can unwind the T bit of the CPSR, either
      directly (from a signal frame or dummy frame) or by interpreting
@@ -265,7 +301,7 @@ arm_frame_is_thumb (struct frame_info *frame)
      trust the unwinders.  */
   cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
 
-  return (cpsr & CPSR_T) != 0;
+  return (cpsr & t_bit) != 0;
 }
 
 /* Callback for VEC_lower_bound.  */
@@ -277,25 +313,14 @@ arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs,
   return lhs->value < rhs->value;
 }
 
-/* Determine if the program counter specified in MEMADDR is in a Thumb
-   function.  This function should be called for addresses unrelated to
-   any executing frame; otherwise, prefer arm_frame_is_thumb.  */
+/* Search for the mapping symbol covering MEMADDR.  If one is found,
+   return its type.  Otherwise, return 0.  If START is non-NULL,
+   set *START to the location of the mapping symbol.  */
 
-static int
-arm_pc_is_thumb (CORE_ADDR memaddr)
+static char
+arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start)
 {
   struct obj_section *sec;
-  struct minimal_symbol *sym;
-
-  /* If bit 0 of the address is set, assume this is a Thumb address.  */
-  if (IS_THUMB_ADDR (memaddr))
-    return 1;
-
-  /* If the user wants to override the symbol table, let him.  */
-  if (strcmp (arm_force_mode_string, "arm") == 0)
-    return 0;
-  if (strcmp (arm_force_mode_string, "thumb") == 0)
-    return 1;
 
   /* If there are mapping symbols, consult them.  */
   sec = find_pc_section (memaddr);
@@ -326,18 +351,75 @@ arm_pc_is_thumb (CORE_ADDR memaddr)
                {
                  map_sym = VEC_index (arm_mapping_symbol_s, map, idx);
                  if (map_sym->value == map_key.value)
-                   return map_sym->type == 't';
+                   {
+                     if (start)
+                       *start = map_sym->value + obj_section_addr (sec);
+                     return map_sym->type;
+                   }
                }
 
              if (idx > 0)
                {
                  map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1);
-                 return map_sym->type == 't';
+                 if (start)
+                   *start = map_sym->value + obj_section_addr (sec);
+                 return map_sym->type;
                }
            }
        }
     }
 
+  return 0;
+}
+
+/* Determine if the program counter specified in MEMADDR is in a Thumb
+   function.  This function should be called for addresses unrelated to
+   any executing frame; otherwise, prefer arm_frame_is_thumb.  */
+
+int
+arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr)
+{
+  struct obj_section *sec;
+  struct minimal_symbol *sym;
+  char type;
+  struct displaced_step_closure* dsc
+    = get_displaced_step_closure_by_addr(memaddr);
+
+  /* If checking the mode of displaced instruction in copy area, the mode
+     should be determined by instruction on the original address.  */
+  if (dsc)
+    {
+      if (debug_displaced)
+       fprintf_unfiltered (gdb_stdlog,
+                           "displaced: check mode of %.8lx instead of %.8lx\n",
+                           (unsigned long) dsc->insn_addr,
+                           (unsigned long) memaddr);
+      memaddr = dsc->insn_addr;
+    }
+
+  /* If bit 0 of the address is set, assume this is a Thumb address.  */
+  if (IS_THUMB_ADDR (memaddr))
+    return 1;
+
+  /* Respect internal mode override if active.  */
+  if (arm_override_mode != -1)
+    return arm_override_mode;
+
+  /* If the user wants to override the symbol table, let him.  */
+  if (strcmp (arm_force_mode_string, "arm") == 0)
+    return 0;
+  if (strcmp (arm_force_mode_string, "thumb") == 0)
+    return 1;
+
+  /* ARM v6-M and v7-M are always in Thumb mode.  */
+  if (gdbarch_tdep (gdbarch)->is_m)
+    return 1;
+
+  /* If there are mapping symbols, consult them.  */
+  type = arm_find_mapping_symbol (memaddr, NULL);
+  if (type)
+    return type == 't';
+
   /* Thumb functions have a "special" bit set in minimal symbols.  */
   sym = lookup_minimal_symbol_by_pc (memaddr);
   if (sym)
@@ -379,34 +461,260 @@ arm_smash_text_address (struct gdbarch *gdbarch, CORE_ADDR val)
   return val & ~1;
 }
 
+/* Return 1 if PC is the start of a compiler helper function which
+   can be safely ignored during prologue skipping.  IS_THUMB is true
+   if the function is known to be a Thumb function due to the way it
+   is being called.  */
+static int
+skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb)
+{
+  enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
+  struct minimal_symbol *msym;
+
+  msym = lookup_minimal_symbol_by_pc (pc);
+  if (msym != NULL
+      && SYMBOL_VALUE_ADDRESS (msym) == pc
+      && SYMBOL_LINKAGE_NAME (msym) != NULL)
+    {
+      const char *name = SYMBOL_LINKAGE_NAME (msym);
+
+      /* The GNU linker's Thumb call stub to foo is named
+        __foo_from_thumb.  */
+      if (strstr (name, "_from_thumb") != NULL)
+       name += 2;
+
+      /* On soft-float targets, __truncdfsf2 is called to convert promoted
+        arguments to their argument types in non-prototyped
+        functions.  */
+      if (strncmp (name, "__truncdfsf2", strlen ("__truncdfsf2")) == 0)
+       return 1;
+      if (strncmp (name, "__aeabi_d2f", strlen ("__aeabi_d2f")) == 0)
+       return 1;
+
+      /* Internal functions related to thread-local storage.  */
+      if (strncmp (name, "__tls_get_addr", strlen ("__tls_get_addr")) == 0)
+       return 1;
+      if (strncmp (name, "__aeabi_read_tp", strlen ("__aeabi_read_tp")) == 0)
+       return 1;
+    }
+  else
+    {
+      /* If we run against a stripped glibc, we may be unable to identify
+        special functions by name.  Check for one important case,
+        __aeabi_read_tp, by comparing the *code* against the default
+        implementation (this is hand-written ARM assembler in glibc).  */
+
+      if (!is_thumb
+         && read_memory_unsigned_integer (pc, 4, byte_order_for_code)
+            == 0xe3e00a0f /* mov r0, #0xffff0fff */
+         && read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code)
+            == 0xe240f01f) /* sub pc, r0, #31 */
+       return 1;
+    }
+
+  return 0;
+}
+
+/* Support routines for instruction parsing.  */
+#define submask(x) ((1L << ((x) + 1)) - 1)
+#define bit(obj,st) (((obj) >> (st)) & 1)
+#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
+#define sbits(obj,st,fn) \
+  ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
+#define BranchDest(addr,instr) \
+  ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
+
+/* Extract the immediate from instruction movw/movt of encoding T.  INSN1 is
+   the first 16-bit of instruction, and INSN2 is the second 16-bit of
+   instruction.  */
+#define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \
+  ((bits ((insn1), 0, 3) << 12)               \
+   | (bits ((insn1), 10, 10) << 11)           \
+   | (bits ((insn2), 12, 14) << 8)            \
+   | bits ((insn2), 0, 7))
+
+/* Extract the immediate from instruction movw/movt of encoding A.  INSN is
+   the 32-bit instruction.  */
+#define EXTRACT_MOVW_MOVT_IMM_A(insn) \
+  ((bits ((insn), 16, 19) << 12) \
+   | bits ((insn), 0, 11))
+
+/* Decode immediate value; implements ThumbExpandImmediate pseudo-op.  */
+
+static unsigned int
+thumb_expand_immediate (unsigned int imm)
+{
+  unsigned int count = imm >> 7;
+
+  if (count < 8)
+    switch (count / 2)
+      {
+      case 0:
+       return imm & 0xff;
+      case 1:
+       return (imm & 0xff) | ((imm & 0xff) << 16);
+      case 2:
+       return ((imm & 0xff) << 8) | ((imm & 0xff) << 24);
+      case 3:
+       return (imm & 0xff) | ((imm & 0xff) << 8)
+               | ((imm & 0xff) << 16) | ((imm & 0xff) << 24);
+      }
+
+  return (0x80 | (imm & 0x7f)) << (32 - count);
+}
+
+/* Return 1 if the 16-bit Thumb instruction INST might change
+   control flow, 0 otherwise.  */
+
+static int
+thumb_instruction_changes_pc (unsigned short inst)
+{
+  if ((inst & 0xff00) == 0xbd00)       /* pop {rlist, pc} */
+    return 1;
+
+  if ((inst & 0xf000) == 0xd000)       /* conditional branch */
+    return 1;
+
+  if ((inst & 0xf800) == 0xe000)       /* unconditional branch */
+    return 1;
+
+  if ((inst & 0xff00) == 0x4700)       /* bx REG, blx REG */
+    return 1;
+
+  if ((inst & 0xff87) == 0x4687)       /* mov pc, REG */
+    return 1;
+
+  if ((inst & 0xf500) == 0xb100)       /* CBNZ or CBZ.  */
+    return 1;
+
+  return 0;
+}
+
+/* Return 1 if the 32-bit Thumb instruction in INST1 and INST2
+   might change control flow, 0 otherwise.  */
+
+static int
+thumb2_instruction_changes_pc (unsigned short inst1, unsigned short inst2)
+{
+  if ((inst1 & 0xf800) == 0xf000 && (inst2 & 0x8000) == 0x8000)
+    {
+      /* Branches and miscellaneous control instructions.  */
+
+      if ((inst2 & 0x1000) != 0 || (inst2 & 0xd001) == 0xc000)
+       {
+         /* B, BL, BLX.  */
+         return 1;
+       }
+      else if (inst1 == 0xf3de && (inst2 & 0xff00) == 0x3f00)
+       {
+         /* SUBS PC, LR, #imm8.  */
+         return 1;
+       }
+      else if ((inst2 & 0xd000) == 0x8000 && (inst1 & 0x0380) != 0x0380)
+       {
+         /* Conditional branch.  */
+         return 1;
+       }
+
+      return 0;
+    }
+
+  if ((inst1 & 0xfe50) == 0xe810)
+    {
+      /* Load multiple or RFE.  */
+
+      if (bit (inst1, 7) && !bit (inst1, 8))
+       {
+         /* LDMIA or POP */
+         if (bit (inst2, 15))
+           return 1;
+       }
+      else if (!bit (inst1, 7) && bit (inst1, 8))
+       {
+         /* LDMDB */
+         if (bit (inst2, 15))
+           return 1;
+       }
+      else if (bit (inst1, 7) && bit (inst1, 8))
+       {
+         /* RFEIA */
+         return 1;
+       }
+      else if (!bit (inst1, 7) && !bit (inst1, 8))
+       {
+         /* RFEDB */
+         return 1;
+       }
+
+      return 0;
+    }
+
+  if ((inst1 & 0xffef) == 0xea4f && (inst2 & 0xfff0) == 0x0f00)
+    {
+      /* MOV PC or MOVS PC.  */
+      return 1;
+    }
+
+  if ((inst1 & 0xff70) == 0xf850 && (inst2 & 0xf000) == 0xf000)
+    {
+      /* LDR PC.  */
+      if (bits (inst1, 0, 3) == 15)
+       return 1;
+      if (bit (inst1, 7))
+       return 1;
+      if (bit (inst2, 11))
+       return 1;
+      if ((inst2 & 0x0fc0) == 0x0000)
+       return 1;       
+
+      return 0;
+    }
+
+  if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf000)
+    {
+      /* TBB.  */
+      return 1;
+    }
+
+  if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf010)
+    {
+      /* TBH.  */
+      return 1;
+    }
+
+  return 0;
+}
+
 /* Analyze a Thumb prologue, looking for a recognizable stack frame
    and frame pointer.  Scan until we encounter a store that could
-   clobber the stack frame unexpectedly, or an unknown instruction.  */
+   clobber the stack frame unexpectedly, or an unknown instruction.
+   Return the last address which is definitely safe to skip for an
+   initial breakpoint.  */
 
 static CORE_ADDR
 thumb_analyze_prologue (struct gdbarch *gdbarch,
                        CORE_ADDR start, CORE_ADDR limit,
                        struct arm_prologue_cache *cache)
 {
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
   int i;
   pv_t regs[16];
   struct pv_area *stack;
   struct cleanup *back_to;
   CORE_ADDR offset;
+  CORE_ADDR unrecognized_pc = 0;
 
   for (i = 0; i < 16; i++)
     regs[i] = pv_register (i, 0);
-  stack = make_pv_area (ARM_SP_REGNUM);
+  stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
   back_to = make_cleanup_free_pv_area (stack);
 
   while (start < limit)
     {
       unsigned short insn;
 
-      insn = read_memory_unsigned_integer (start, 2);
-
-      if (gdbarch_byte_order_for_code (gdbarch) != gdbarch_byte_order (gdbarch))
-       insn = SWAP_SHORT (insn);
+      insn = read_memory_unsigned_integer (start, 2, byte_order_for_code);
 
       if ((insn & 0xfe00) == 0xb400)           /* push { rlist } */
        {
@@ -440,9 +748,29 @@ thumb_analyze_prologue (struct gdbarch *gdbarch,
            regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
                                                   offset);
        }
-      else if ((insn & 0xff00) == 0xaf00)      /* add r7, sp, #imm */
-       regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
-                                                (insn & 0xff) << 2);
+      else if ((insn & 0xf800) == 0xa800)      /* add Rd, sp, #imm */
+       regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM],
+                                                   (insn & 0xff) << 2);
+      else if ((insn & 0xfe00) == 0x1c00       /* add Rd, Rn, #imm */
+              && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
+       regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)],
+                                                  bits (insn, 6, 8));
+      else if ((insn & 0xf800) == 0x3000       /* add Rd, #imm */
+              && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
+       regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)],
+                                                   bits (insn, 0, 7));
+      else if ((insn & 0xfe00) == 0x1800       /* add Rd, Rn, Rm */
+              && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM)
+              && pv_is_constant (regs[bits (insn, 3, 5)]))
+       regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)],
+                                         regs[bits (insn, 6, 8)]);
+      else if ((insn & 0xff00) == 0x4400       /* add Rd, Rm */
+              && pv_is_constant (regs[bits (insn, 3, 6)]))
+       {
+         int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2);
+         int rm = bits (insn, 3, 6);
+         regs[rd] = pv_add (regs[rd], regs[rm]);
+       }
       else if ((insn & 0xff00) == 0x4600)      /* mov hi, lo or mov lo, hi */
        {
          int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
@@ -465,120 +793,667 @@ thumb_analyze_prologue (struct gdbarch *gdbarch,
 
          pv_area_store (stack, addr, 4, regs[regno]);
        }
-      else
+      else if ((insn & 0xf800) == 0x6000)      /* str rd, [rn, #off] */
        {
-         /* We don't know what this instruction is.  We're finished
-            scanning.  NOTE: Recognizing more safe-to-ignore
-            instructions here will improve support for optimized
-            code.  */
-         break;
-       }
+         int rd = bits (insn, 0, 2);
+         int rn = bits (insn, 3, 5);
+         pv_t addr;
 
-      start += 2;
-    }
+         offset = bits (insn, 6, 10) << 2;
+         addr = pv_add_constant (regs[rn], offset);
 
-  if (cache == NULL)
-    {
-      do_cleanups (back_to);
-      return start;
-    }
+         if (pv_area_store_would_trash (stack, addr))
+           break;
 
-  if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
-    {
-      /* Frame pointer is fp.  Frame size is constant.  */
-      cache->framereg = ARM_FP_REGNUM;
-      cache->framesize = -regs[ARM_FP_REGNUM].k;
-    }
-  else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
-    {
-      /* Frame pointer is r7.  Frame size is constant.  */
-      cache->framereg = THUMB_FP_REGNUM;
-      cache->framesize = -regs[THUMB_FP_REGNUM].k;
-    }
-  else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
-    {
-      /* Try the stack pointer... this is a bit desperate.  */
-      cache->framereg = ARM_SP_REGNUM;
-      cache->framesize = -regs[ARM_SP_REGNUM].k;
-    }
-  else
-    {
-      /* We're just out of luck.  We don't know where the frame is.  */
-      cache->framereg = -1;
-      cache->framesize = 0;
-    }
+         pv_area_store (stack, addr, 4, regs[rd]);
+       }
+      else if (((insn & 0xf800) == 0x7000      /* strb Rd, [Rn, #off] */
+               || (insn & 0xf800) == 0x8000)   /* strh Rd, [Rn, #off] */
+              && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
+       /* Ignore stores of argument registers to the stack.  */
+       ;
+      else if ((insn & 0xf800) == 0xc800       /* ldmia Rn!, { registers } */
+              && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
+       /* Ignore block loads from the stack, potentially copying
+          parameters from memory.  */
+       ;
+      else if ((insn & 0xf800) == 0x9800       /* ldr Rd, [Rn, #immed] */
+              || ((insn & 0xf800) == 0x6800    /* ldr Rd, [sp, #immed] */
+                  && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)))
+       /* Similarly ignore single loads from the stack.  */
+       ;
+      else if ((insn & 0xffc0) == 0x0000       /* lsls Rd, Rm, #0 */
+              || (insn & 0xffc0) == 0x1c00)    /* add Rd, Rn, #0 */
+       /* Skip register copies, i.e. saves to another register
+          instead of the stack.  */
+       ;
+      else if ((insn & 0xf800) == 0x2000)      /* movs Rd, #imm */
+       /* Recognize constant loads; even with small stacks these are necessary
+          on Thumb.  */
+       regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7));
+      else if ((insn & 0xf800) == 0x4800)      /* ldr Rd, [pc, #imm] */
+       {
+         /* Constant pool loads, for the same reason.  */
+         unsigned int constant;
+         CORE_ADDR loc;
 
-  for (i = 0; i < 16; i++)
-    if (pv_area_find_reg (stack, gdbarch, i, &offset))
-      cache->saved_regs[i].addr = offset;
+         loc = start + 4 + bits (insn, 0, 7) * 4;
+         constant = read_memory_unsigned_integer (loc, 4, byte_order);
+         regs[bits (insn, 8, 10)] = pv_constant (constant);
+       }
+      else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instructions.  */
+       {
+         unsigned short inst2;
 
-  do_cleanups (back_to);
-  return start;
-}
+         inst2 = read_memory_unsigned_integer (start + 2, 2,
+                                               byte_order_for_code);
 
-/* Advance the PC across any function entry prologue instructions to
-   reach some "real" code.
+         if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800)
+           {
+             /* BL, BLX.  Allow some special function calls when
+                skipping the prologue; GCC generates these before
+                storing arguments to the stack.  */
+             CORE_ADDR nextpc;
+             int j1, j2, imm1, imm2;
+
+             imm1 = sbits (insn, 0, 10);
+             imm2 = bits (inst2, 0, 10);
+             j1 = bit (inst2, 13);
+             j2 = bit (inst2, 11);
+
+             offset = ((imm1 << 12) + (imm2 << 1));
+             offset ^= ((!j2) << 22) | ((!j1) << 23);
+
+             nextpc = start + 4 + offset;
+             /* For BLX make sure to clear the low bits.  */
+             if (bit (inst2, 12) == 0)
+               nextpc = nextpc & 0xfffffffc;
+
+             if (!skip_prologue_function (gdbarch, nextpc,
+                                          bit (inst2, 12) != 0))
+               break;
+           }
 
-   The APCS (ARM Procedure Call Standard) defines the following
-   prologue:
+         else if ((insn & 0xffd0) == 0xe900    /* stmdb Rn{!},
+                                                  { registers } */
+                  && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
+           {
+             pv_t addr = regs[bits (insn, 0, 3)];
+             int regno;
 
-   mov          ip, sp
-   [stmfd       sp!, {a1,a2,a3,a4}]
-   stmfd        sp!, {...,fp,ip,lr,pc}
-   [stfe        f7, [sp, #-12]!]
-   [stfe        f6, [sp, #-12]!]
-   [stfe        f5, [sp, #-12]!]
-   [stfe        f4, [sp, #-12]!]
-   sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
+             if (pv_area_store_would_trash (stack, addr))
+               break;
 
-static CORE_ADDR
-arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
-{
-  unsigned long inst;
-  CORE_ADDR skip_pc;
-  CORE_ADDR func_addr, limit_pc;
-  struct symtab_and_line sal;
+             /* Calculate offsets of saved registers.  */
+             for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
+               if (inst2 & (1 << regno))
+                 {
+                   addr = pv_add_constant (addr, -4);
+                   pv_area_store (stack, addr, 4, regs[regno]);
+                 }
 
-  /* If we're in a dummy frame, don't even try to skip the prologue.  */
-  if (deprecated_pc_in_call_dummy (pc))
-    return pc;
+             if (insn & 0x0020)
+               regs[bits (insn, 0, 3)] = addr;
+           }
 
-  /* See if we can determine the end of the prologue via the symbol table.
-     If so, then return either PC, or the PC after the prologue, whichever
-     is greater.  */
-  if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
-    {
-      CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
-      if (post_prologue_pc != 0)
-       return max (pc, post_prologue_pc);
-    }
+         else if ((insn & 0xff50) == 0xe940    /* strd Rt, Rt2,
+                                                  [Rn, #+/-imm]{!} */
+                  && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
+           {
+             int regno1 = bits (inst2, 12, 15);
+             int regno2 = bits (inst2, 8, 11);
+             pv_t addr = regs[bits (insn, 0, 3)];
 
-  /* Can't determine prologue from the symbol table, need to examine
-     instructions.  */
+             offset = inst2 & 0xff;
+             if (insn & 0x0080)
+               addr = pv_add_constant (addr, offset);
+             else
+               addr = pv_add_constant (addr, -offset);
 
-  /* Find an upper limit on the function prologue using the debug
-     information.  If the debug information could not be used to provide
-     that bound, then use an arbitrary large number as the upper bound.  */
-  /* Like arm_scan_prologue, stop no later than pc + 64. */
-  limit_pc = skip_prologue_using_sal (pc);
-  if (limit_pc == 0)
-    limit_pc = pc + 64;          /* Magic.  */
+             if (pv_area_store_would_trash (stack, addr))
+               break;
 
+             pv_area_store (stack, addr, 4, regs[regno1]);
+             pv_area_store (stack, pv_add_constant (addr, 4),
+                            4, regs[regno2]);
 
-  /* Check if this is Thumb code.  */
-  if (arm_pc_is_thumb (pc))
-    return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL);
+             if (insn & 0x0020)
+               regs[bits (insn, 0, 3)] = addr;
+           }
 
-  for (skip_pc = pc; skip_pc < limit_pc; skip_pc += 4)
-    {
-      inst = read_memory_unsigned_integer (skip_pc, 4);
+         else if ((insn & 0xfff0) == 0xf8c0    /* str Rt,[Rn,+/-#imm]{!} */
+                  && (inst2 & 0x0c00) == 0x0c00
+                  && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
+           {
+             int regno = bits (inst2, 12, 15);
+             pv_t addr = regs[bits (insn, 0, 3)];
 
-      if (gdbarch_byte_order_for_code (gdbarch) != gdbarch_byte_order (gdbarch))
-       inst = SWAP_INT (inst);
+             offset = inst2 & 0xff;
+             if (inst2 & 0x0200)
+               addr = pv_add_constant (addr, offset);
+             else
+               addr = pv_add_constant (addr, -offset);
 
-      /* "mov ip, sp" is no longer a required part of the prologue.  */
-      if (inst == 0xe1a0c00d)                  /* mov ip, sp */
-       continue;
+             if (pv_area_store_would_trash (stack, addr))
+               break;
+
+             pv_area_store (stack, addr, 4, regs[regno]);
+
+             if (inst2 & 0x0100)
+               regs[bits (insn, 0, 3)] = addr;
+           }
+
+         else if ((insn & 0xfff0) == 0xf8c0    /* str.w Rt,[Rn,#imm] */
+                  && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
+           {
+             int regno = bits (inst2, 12, 15);
+             pv_t addr;
+
+             offset = inst2 & 0xfff;
+             addr = pv_add_constant (regs[bits (insn, 0, 3)], offset);
+
+             if (pv_area_store_would_trash (stack, addr))
+               break;
+
+             pv_area_store (stack, addr, 4, regs[regno]);
+           }
+
+         else if ((insn & 0xffd0) == 0xf880    /* str{bh}.w Rt,[Rn,#imm] */
+                  && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
+           /* Ignore stores of argument registers to the stack.  */
+           ;
+
+         else if ((insn & 0xffd0) == 0xf800    /* str{bh} Rt,[Rn,#+/-imm] */
+                  && (inst2 & 0x0d00) == 0x0c00
+                  && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
+           /* Ignore stores of argument registers to the stack.  */
+           ;
+
+         else if ((insn & 0xffd0) == 0xe890    /* ldmia Rn[!],
+                                                  { registers } */
+                  && (inst2 & 0x8000) == 0x0000
+                  && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
+           /* Ignore block loads from the stack, potentially copying
+              parameters from memory.  */
+           ;
+
+         else if ((insn & 0xffb0) == 0xe950    /* ldrd Rt, Rt2,
+                                                  [Rn, #+/-imm] */
+                  && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
+           /* Similarly ignore dual loads from the stack.  */
+           ;
+
+         else if ((insn & 0xfff0) == 0xf850    /* ldr Rt,[Rn,#+/-imm] */
+                  && (inst2 & 0x0d00) == 0x0c00
+                  && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
+           /* Similarly ignore single loads from the stack.  */
+           ;
+
+         else if ((insn & 0xfff0) == 0xf8d0    /* ldr.w Rt,[Rn,#imm] */
+                  && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
+           /* Similarly ignore single loads from the stack.  */
+           ;
+
+         else if ((insn & 0xfbf0) == 0xf100    /* add.w Rd, Rn, #imm */
+                  && (inst2 & 0x8000) == 0x0000)
+           {
+             unsigned int imm = ((bits (insn, 10, 10) << 11)
+                                 | (bits (inst2, 12, 14) << 8)
+                                 | bits (inst2, 0, 7));
+
+             regs[bits (inst2, 8, 11)]
+               = pv_add_constant (regs[bits (insn, 0, 3)],
+                                  thumb_expand_immediate (imm));
+           }
+
+         else if ((insn & 0xfbf0) == 0xf200    /* addw Rd, Rn, #imm */
+                  && (inst2 & 0x8000) == 0x0000)
+           {
+             unsigned int imm = ((bits (insn, 10, 10) << 11)
+                                 | (bits (inst2, 12, 14) << 8)
+                                 | bits (inst2, 0, 7));
+
+             regs[bits (inst2, 8, 11)]
+               = pv_add_constant (regs[bits (insn, 0, 3)], imm);
+           }
+
+         else if ((insn & 0xfbf0) == 0xf1a0    /* sub.w Rd, Rn, #imm */
+                  && (inst2 & 0x8000) == 0x0000)
+           {
+             unsigned int imm = ((bits (insn, 10, 10) << 11)
+                                 | (bits (inst2, 12, 14) << 8)
+                                 | bits (inst2, 0, 7));
+
+             regs[bits (inst2, 8, 11)]
+               = pv_add_constant (regs[bits (insn, 0, 3)],
+                                  - (CORE_ADDR) thumb_expand_immediate (imm));
+           }
+
+         else if ((insn & 0xfbf0) == 0xf2a0    /* subw Rd, Rn, #imm */
+                  && (inst2 & 0x8000) == 0x0000)
+           {
+             unsigned int imm = ((bits (insn, 10, 10) << 11)
+                                 | (bits (inst2, 12, 14) << 8)
+                                 | bits (inst2, 0, 7));
+
+             regs[bits (inst2, 8, 11)]
+               = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm);
+           }
+
+         else if ((insn & 0xfbff) == 0xf04f)   /* mov.w Rd, #const */
+           {
+             unsigned int imm = ((bits (insn, 10, 10) << 11)
+                                 | (bits (inst2, 12, 14) << 8)
+                                 | bits (inst2, 0, 7));
+
+             regs[bits (inst2, 8, 11)]
+               = pv_constant (thumb_expand_immediate (imm));
+           }
+
+         else if ((insn & 0xfbf0) == 0xf240)   /* movw Rd, #const */
+           {
+             unsigned int imm
+               = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2);
+
+             regs[bits (inst2, 8, 11)] = pv_constant (imm);
+           }
+
+         else if (insn == 0xea5f               /* mov.w Rd,Rm */
+                  && (inst2 & 0xf0f0) == 0)
+           {
+             int dst_reg = (inst2 & 0x0f00) >> 8;
+             int src_reg = inst2 & 0xf;
+             regs[dst_reg] = regs[src_reg];
+           }
+
+         else if ((insn & 0xff7f) == 0xf85f)   /* ldr.w Rt,<label> */
+           {
+             /* Constant pool loads.  */
+             unsigned int constant;
+             CORE_ADDR loc;
+
+             offset = bits (insn, 0, 11);
+             if (insn & 0x0080)
+               loc = start + 4 + offset;
+             else
+               loc = start + 4 - offset;
+
+             constant = read_memory_unsigned_integer (loc, 4, byte_order);
+             regs[bits (inst2, 12, 15)] = pv_constant (constant);
+           }
+
+         else if ((insn & 0xff7f) == 0xe95f)   /* ldrd Rt,Rt2,<label> */
+           {
+             /* Constant pool loads.  */
+             unsigned int constant;
+             CORE_ADDR loc;
+
+             offset = bits (insn, 0, 7) << 2;
+             if (insn & 0x0080)
+               loc = start + 4 + offset;
+             else
+               loc = start + 4 - offset;
+
+             constant = read_memory_unsigned_integer (loc, 4, byte_order);
+             regs[bits (inst2, 12, 15)] = pv_constant (constant);
+
+             constant = read_memory_unsigned_integer (loc + 4, 4, byte_order);
+             regs[bits (inst2, 8, 11)] = pv_constant (constant);
+           }
+
+         else if (thumb2_instruction_changes_pc (insn, inst2))
+           {
+             /* Don't scan past anything that might change control flow.  */
+             break;
+           }
+         else
+           {
+             /* The optimizer might shove anything into the prologue,
+                so we just skip what we don't recognize.  */
+             unrecognized_pc = start;
+           }
+
+         start += 2;
+       }
+      else if (thumb_instruction_changes_pc (insn))
+       {
+         /* Don't scan past anything that might change control flow.  */
+         break;
+       }
+      else
+       {
+         /* The optimizer might shove anything into the prologue,
+            so we just skip what we don't recognize.  */
+         unrecognized_pc = start;
+       }
+
+      start += 2;
+    }
+
+  if (arm_debug)
+    fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
+                       paddress (gdbarch, start));
+
+  if (unrecognized_pc == 0)
+    unrecognized_pc = start;
+
+  if (cache == NULL)
+    {
+      do_cleanups (back_to);
+      return unrecognized_pc;
+    }
+
+  if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
+    {
+      /* Frame pointer is fp.  Frame size is constant.  */
+      cache->framereg = ARM_FP_REGNUM;
+      cache->framesize = -regs[ARM_FP_REGNUM].k;
+    }
+  else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
+    {
+      /* Frame pointer is r7.  Frame size is constant.  */
+      cache->framereg = THUMB_FP_REGNUM;
+      cache->framesize = -regs[THUMB_FP_REGNUM].k;
+    }
+  else
+    {
+      /* Try the stack pointer... this is a bit desperate.  */
+      cache->framereg = ARM_SP_REGNUM;
+      cache->framesize = -regs[ARM_SP_REGNUM].k;
+    }
+
+  for (i = 0; i < 16; i++)
+    if (pv_area_find_reg (stack, gdbarch, i, &offset))
+      cache->saved_regs[i].addr = offset;
+
+  do_cleanups (back_to);
+  return unrecognized_pc;
+}
+
+
+/* Try to analyze the instructions starting from PC, which load symbol
+   __stack_chk_guard.  Return the address of instruction after loading this
+   symbol, set the dest register number to *BASEREG, and set the size of
+   instructions for loading symbol in OFFSET.  Return 0 if instructions are
+   not recognized.  */
+
+static CORE_ADDR
+arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch,
+                                unsigned int *destreg, int *offset)
+{
+  enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
+  int is_thumb = arm_pc_is_thumb (gdbarch, pc);
+  unsigned int low, high, address;
+
+  address = 0;
+  if (is_thumb)
+    {
+      unsigned short insn1
+       = read_memory_unsigned_integer (pc, 2, byte_order_for_code);
+
+      if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */
+       {
+         *destreg = bits (insn1, 8, 10);
+         *offset = 2;
+         address = bits (insn1, 0, 7);
+       }
+      else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */
+       {
+         unsigned short insn2
+           = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code);
+
+         low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
+
+         insn1
+           = read_memory_unsigned_integer (pc + 4, 2, byte_order_for_code);
+         insn2
+           = read_memory_unsigned_integer (pc + 6, 2, byte_order_for_code);
+
+         /* movt Rd, #const */
+         if ((insn1 & 0xfbc0) == 0xf2c0)
+           {
+             high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
+             *destreg = bits (insn2, 8, 11);
+             *offset = 8;
+             address = (high << 16 | low);
+           }
+       }
+    }
+  else
+    {
+      unsigned int insn
+       = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
+
+      if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, #immed */
+       {
+         address = bits (insn, 0, 11);
+         *destreg = bits (insn, 12, 15);
+         *offset = 4;
+       }
+      else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */
+       {
+         low = EXTRACT_MOVW_MOVT_IMM_A (insn);
+
+         insn
+           = read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code);
+
+         if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */
+           {
+             high = EXTRACT_MOVW_MOVT_IMM_A (insn);
+             *destreg = bits (insn, 12, 15);
+             *offset = 8;
+             address = (high << 16 | low);
+           }
+       }
+    }
+
+  return address;
+}
+
+/* Try to skip a sequence of instructions used for stack protector.  If PC
+   points to the first instruction of this sequence, return the address of
+   first instruction after this sequence, otherwise, return original PC.
+
+   On arm, this sequence of instructions is composed of mainly three steps,
+     Step 1: load symbol __stack_chk_guard,
+     Step 2: load from address of __stack_chk_guard,
+     Step 3: store it to somewhere else.
+
+   Usually, instructions on step 2 and step 3 are the same on various ARM
+   architectures.  On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and
+   on step 3, it is also one instruction 'str Rx, [r7, #immd]'.  However,
+   instructions in step 1 vary from different ARM architectures.  On ARMv7,
+   they are,
+
+       movw    Rn, #:lower16:__stack_chk_guard
+       movt    Rn, #:upper16:__stack_chk_guard
+
+   On ARMv5t, it is,
+
+       ldr     Rn, .Label
+       ....
+       .Lable:
+       .word   __stack_chk_guard
+
+   Since ldr/str is a very popular instruction, we can't use them as
+   'fingerprint' or 'signature' of stack protector sequence.  Here we choose
+   sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not
+   stripped, as the 'fingerprint' of a stack protector cdoe sequence.  */
+
+static CORE_ADDR
+arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch)
+{
+  enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
+  unsigned int address, basereg;
+  struct minimal_symbol *stack_chk_guard;
+  int offset;
+  int is_thumb = arm_pc_is_thumb (gdbarch, pc);
+  CORE_ADDR addr;
+
+  /* Try to parse the instructions in Step 1.  */
+  addr = arm_analyze_load_stack_chk_guard (pc, gdbarch,
+                                          &basereg, &offset);
+  if (!addr)
+    return pc;
+
+  stack_chk_guard = lookup_minimal_symbol_by_pc (addr);
+  /* If name of symbol doesn't start with '__stack_chk_guard', this
+     instruction sequence is not for stack protector.  If symbol is
+     removed, we conservatively think this sequence is for stack protector.  */
+  if (stack_chk_guard
+      && strncmp (SYMBOL_LINKAGE_NAME (stack_chk_guard), "__stack_chk_guard",
+                 strlen ("__stack_chk_guard")) != 0)
+   return pc;
+
+  if (is_thumb)
+    {
+      unsigned int destreg;
+      unsigned short insn
+       = read_memory_unsigned_integer (pc + offset, 2, byte_order_for_code);
+
+      /* Step 2: ldr Rd, [Rn, #immed], encoding T1.  */
+      if ((insn & 0xf800) != 0x6800)
+       return pc;
+      if (bits (insn, 3, 5) != basereg)
+       return pc;
+      destreg = bits (insn, 0, 2);
+
+      insn = read_memory_unsigned_integer (pc + offset + 2, 2,
+                                          byte_order_for_code);
+      /* Step 3: str Rd, [Rn, #immed], encoding T1.  */
+      if ((insn & 0xf800) != 0x6000)
+       return pc;
+      if (destreg != bits (insn, 0, 2))
+       return pc;
+    }
+  else
+    {
+      unsigned int destreg;
+      unsigned int insn
+       = read_memory_unsigned_integer (pc + offset, 4, byte_order_for_code);
+
+      /* Step 2: ldr Rd, [Rn, #immed], encoding A1.  */
+      if ((insn & 0x0e500000) != 0x04100000)
+       return pc;
+      if (bits (insn, 16, 19) != basereg)
+       return pc;
+      destreg = bits (insn, 12, 15);
+      /* Step 3: str Rd, [Rn, #immed], encoding A1.  */
+      insn = read_memory_unsigned_integer (pc + offset + 4,
+                                          4, byte_order_for_code);
+      if ((insn & 0x0e500000) != 0x04000000)
+       return pc;
+      if (bits (insn, 12, 15) != destreg)
+       return pc;
+    }
+  /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8
+     on arm.  */
+  if (is_thumb)
+    return pc + offset + 4;
+  else
+    return pc + offset + 8;
+}
+
+/* Advance the PC across any function entry prologue instructions to
+   reach some "real" code.
+
+   The APCS (ARM Procedure Call Standard) defines the following
+   prologue:
+
+   mov          ip, sp
+   [stmfd       sp!, {a1,a2,a3,a4}]
+   stmfd        sp!, {...,fp,ip,lr,pc}
+   [stfe        f7, [sp, #-12]!]
+   [stfe        f6, [sp, #-12]!]
+   [stfe        f5, [sp, #-12]!]
+   [stfe        f4, [sp, #-12]!]
+   sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn.  */
+
+static CORE_ADDR
+arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
+{
+  enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
+  unsigned long inst;
+  CORE_ADDR skip_pc;
+  CORE_ADDR func_addr, limit_pc;
+  struct symtab_and_line sal;
+
+  /* See if we can determine the end of the prologue via the symbol table.
+     If so, then return either PC, or the PC after the prologue, whichever
+     is greater.  */
+  if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
+    {
+      CORE_ADDR post_prologue_pc
+       = skip_prologue_using_sal (gdbarch, func_addr);
+      struct symtab *s = find_pc_symtab (func_addr);
+
+      if (post_prologue_pc)
+       post_prologue_pc
+         = arm_skip_stack_protector (post_prologue_pc, gdbarch);
+
+
+      /* GCC always emits a line note before the prologue and another
+        one after, even if the two are at the same address or on the
+        same line.  Take advantage of this so that we do not need to
+        know every instruction that might appear in the prologue.  We
+        will have producer information for most binaries; if it is
+        missing (e.g. for -gstabs), assuming the GNU tools.  */
+      if (post_prologue_pc
+         && (s == NULL
+             || s->producer == NULL
+             || strncmp (s->producer, "GNU ", sizeof ("GNU ") - 1) == 0))
+       return post_prologue_pc;
+
+      if (post_prologue_pc != 0)
+       {
+         CORE_ADDR analyzed_limit;
+
+         /* For non-GCC compilers, make sure the entire line is an
+            acceptable prologue; GDB will round this function's
+            return value up to the end of the following line so we
+            can not skip just part of a line (and we do not want to).
+
+            RealView does not treat the prologue specially, but does
+            associate prologue code with the opening brace; so this
+            lets us skip the first line if we think it is the opening
+            brace.  */
+         if (arm_pc_is_thumb (gdbarch, func_addr))
+           analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr,
+                                                    post_prologue_pc, NULL);
+         else
+           analyzed_limit = arm_analyze_prologue (gdbarch, func_addr,
+                                                  post_prologue_pc, NULL);
+
+         if (analyzed_limit != post_prologue_pc)
+           return func_addr;
+
+         return post_prologue_pc;
+       }
+    }
+
+  /* Can't determine prologue from the symbol table, need to examine
+     instructions.  */
+
+  /* Find an upper limit on the function prologue using the debug
+     information.  If the debug information could not be used to provide
+     that bound, then use an arbitrary large number as the upper bound.  */
+  /* Like arm_scan_prologue, stop no later than pc + 64.  */
+  limit_pc = skip_prologue_using_sal (gdbarch, pc);
+  if (limit_pc == 0)
+    limit_pc = pc + 64;          /* Magic.  */
+
+
+  /* Check if this is Thumb code.  */
+  if (arm_pc_is_thumb (gdbarch, pc))
+    return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL);
+
+  for (skip_pc = pc; skip_pc < limit_pc; skip_pc += 4)
+    {
+      inst = read_memory_unsigned_integer (skip_pc, 4, byte_order_for_code);
+
+      /* "mov ip, sp" is no longer a required part of the prologue.  */
+      if (inst == 0xe1a0c00d)                  /* mov ip, sp */
+       continue;
 
       if ((inst & 0xfffff000) == 0xe28dc000)    /* add ip, sp #n */
        continue;
@@ -615,21 +1490,21 @@ arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
       if ((inst & 0xfffff000) == 0xe24dd000)   /* sub sp, sp, #nn */
        continue;
 
-      if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
-         (inst & 0xffffc0f0) == 0xe14b00b0 ||  /* strh r(0123),[r11,#-nn] */
-         (inst & 0xffffc000) == 0xe50b0000)    /* str  r(0123),[r11,#-nn] */
+      if ((inst & 0xffffc000) == 0xe54b0000    /* strb r(0123),[r11,#-nn] */
+         || (inst & 0xffffc0f0) == 0xe14b00b0  /* strh r(0123),[r11,#-nn] */
+         || (inst & 0xffffc000) == 0xe50b0000) /* str  r(0123),[r11,#-nn] */
        continue;
 
-      if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
-         (inst & 0xffffc0f0) == 0xe1cd00b0 ||  /* strh r(0123),[sp,#nn] */
-         (inst & 0xffffc000) == 0xe58d0000)    /* str  r(0123),[sp,#nn] */
+      if ((inst & 0xffffc000) == 0xe5cd0000    /* strb r(0123),[sp,#nn] */
+         || (inst & 0xffffc0f0) == 0xe1cd00b0  /* strh r(0123),[sp,#nn] */
+         || (inst & 0xffffc000) == 0xe58d0000) /* str  r(0123),[sp,#nn] */
        continue;
 
       /* Un-recognized instruction; stop scanning.  */
       break;
     }
 
-  return skip_pc;              /* End of prologue */
+  return skip_pc;              /* End of prologue */
 }
 
 /* *INDENT-OFF* */
@@ -648,7 +1523,7 @@ arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
      R7 ->       0  local variables (16 bytes)
      SP ->     -12  additional stack space (12 bytes)
    The frame size would thus be 36 bytes, and the frame offset would be
-   12 bytes.  The frame register is R7. 
+   12 bytes.  The frame register is R7.
    
    The comments for thumb_skip_prolog() describe the algorithm we use
    to detect the end of the prolog.  */
@@ -665,12 +1540,12 @@ thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
   if (find_pc_partial_function (block_addr, NULL, &prologue_start,
                                &prologue_end))
     {
-      struct symtab_and_line sal = find_pc_line (prologue_start, 0);
-
-      if (sal.line == 0)               /* no line info, use current PC  */
-       prologue_end = prev_pc;
-      else if (sal.end < prologue_end) /* next line begins after fn end */
-       prologue_end = sal.end;         /* (probably means no prologue)  */
+      /* See comment in arm_scan_prologue for an explanation of
+        this heuristics.  */
+      if (prologue_end > prologue_start + 64)
+       {
+         prologue_end = prologue_start + 64;
+       }
     }
   else
     /* We're in the boondocks: we have no idea where the start of the
@@ -682,165 +1557,124 @@ thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
   thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
 }
 
-/* This function decodes an ARM function prologue to determine:
-   1) the size of the stack frame
-   2) which registers are saved on it
-   3) the offsets of saved regs
-   4) the offset from the stack pointer to the frame pointer
-   This information is stored in the "extra" fields of the frame_info.
-
-   There are two basic forms for the ARM prologue.  The fixed argument
-   function call will look like:
-
-   mov    ip, sp
-   stmfd  sp!, {fp, ip, lr, pc}
-   sub    fp, ip, #4
-   [sub sp, sp, #4]
-
-   Which would create this stack frame (offsets relative to FP):
-   IP ->   4    (caller's stack)
-   FP ->   0    PC (points to address of stmfd instruction + 8 in callee)
-   -4   LR (return address in caller)
-   -8   IP (copy of caller's SP)
-   -12  FP (caller's FP)
-   SP -> -28    Local variables
-
-   The frame size would thus be 32 bytes, and the frame offset would be
-   28 bytes.  The stmfd call can also save any of the vN registers it
-   plans to use, which increases the frame size accordingly.
-
-   Note: The stored PC is 8 off of the STMFD instruction that stored it
-   because the ARM Store instructions always store PC + 8 when you read
-   the PC register.
-
-   A variable argument function call will look like:
-
-   mov    ip, sp
-   stmfd  sp!, {a1, a2, a3, a4}
-   stmfd  sp!, {fp, ip, lr, pc}
-   sub    fp, ip, #20
-
-   Which would create this stack frame (offsets relative to FP):
-   IP ->  20    (caller's stack)
-   16  A4
-   12  A3
-   8  A2
-   4  A1
-   FP ->   0    PC (points to address of stmfd instruction + 8 in callee)
-   -4   LR (return address in caller)
-   -8   IP (copy of caller's SP)
-   -12  FP (caller's FP)
-   SP -> -28    Local variables
-
-   The frame size would thus be 48 bytes, and the frame offset would be
-   28 bytes.
-
-   There is another potential complication, which is that the optimizer
-   will try to separate the store of fp in the "stmfd" instruction from
-   the "sub fp, ip, #NN" instruction.  Almost anything can be there, so
-   we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
-
-   Also, note, the original version of the ARM toolchain claimed that there
-   should be an
-
-   instruction at the end of the prologue.  I have never seen GCC produce
-   this, and the ARM docs don't mention it.  We still test for it below in
-   case it happens...
-
- */
+/* Return 1 if THIS_INSTR might change control flow, 0 otherwise.  */
 
-static void
-arm_scan_prologue (struct frame_info *this_frame,
-                  struct arm_prologue_cache *cache)
+static int
+arm_instruction_changes_pc (uint32_t this_instr)
 {
-  struct gdbarch *gdbarch = get_frame_arch (this_frame);
+  if (bits (this_instr, 28, 31) == INST_NV)
+    /* Unconditional instructions.  */
+    switch (bits (this_instr, 24, 27))
+      {
+      case 0xa:
+      case 0xb:
+       /* Branch with Link and change to Thumb.  */
+       return 1;
+      case 0xc:
+      case 0xd:
+      case 0xe:
+       /* Coprocessor register transfer.  */
+        if (bits (this_instr, 12, 15) == 15)
+         error (_("Invalid update to pc in instruction"));
+       return 0;
+      default:
+       return 0;
+      }
+  else
+    switch (bits (this_instr, 25, 27))
+      {
+      case 0x0:
+       if (bits (this_instr, 23, 24) == 2 && bit (this_instr, 20) == 0)
+         {
+           /* Multiplies and extra load/stores.  */
+           if (bit (this_instr, 4) == 1 && bit (this_instr, 7) == 1)
+             /* Neither multiplies nor extension load/stores are allowed
+                to modify PC.  */
+             return 0;
+
+           /* Otherwise, miscellaneous instructions.  */
+
+           /* BX <reg>, BXJ <reg>, BLX <reg> */
+           if (bits (this_instr, 4, 27) == 0x12fff1
+               || bits (this_instr, 4, 27) == 0x12fff2
+               || bits (this_instr, 4, 27) == 0x12fff3)
+             return 1;
+
+           /* Other miscellaneous instructions are unpredictable if they
+              modify PC.  */
+           return 0;
+         }
+       /* Data processing instruction.  Fall through.  */
+
+      case 0x1:
+       if (bits (this_instr, 12, 15) == 15)
+         return 1;
+       else
+         return 0;
+
+      case 0x2:
+      case 0x3:
+       /* Media instructions and architecturally undefined instructions.  */
+       if (bits (this_instr, 25, 27) == 3 && bit (this_instr, 4) == 1)
+         return 0;
+
+       /* Stores.  */
+       if (bit (this_instr, 20) == 0)
+         return 0;
+
+       /* Loads.  */
+       if (bits (this_instr, 12, 15) == ARM_PC_REGNUM)
+         return 1;
+       else
+         return 0;
+
+      case 0x4:
+       /* Load/store multiple.  */
+       if (bit (this_instr, 20) == 1 && bit (this_instr, 15) == 1)
+         return 1;
+       else
+         return 0;
+
+      case 0x5:
+       /* Branch and branch with link.  */
+       return 1;
+
+      case 0x6:
+      case 0x7:
+       /* Coprocessor transfers or SWIs can not affect PC.  */
+       return 0;
+
+      default:
+       internal_error (__FILE__, __LINE__, _("bad value in switch"));
+      }
+}
+
+/* Analyze an ARM mode prologue starting at PROLOGUE_START and
+   continuing no further than PROLOGUE_END.  If CACHE is non-NULL,
+   fill it in.  Return the first address not recognized as a prologue
+   instruction.
+
+   We recognize all the instructions typically found in ARM prologues,
+   plus harmless instructions which can be skipped (either for analysis
+   purposes, or a more restrictive set that can be skipped when finding
+   the end of the prologue).  */
+
+static CORE_ADDR
+arm_analyze_prologue (struct gdbarch *gdbarch,
+                     CORE_ADDR prologue_start, CORE_ADDR prologue_end,
+                     struct arm_prologue_cache *cache)
+{
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
   int regno;
-  CORE_ADDR prologue_start, prologue_end, current_pc;
-  CORE_ADDR prev_pc = get_frame_pc (this_frame);
-  CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
+  CORE_ADDR offset, current_pc;
   pv_t regs[ARM_FPS_REGNUM];
   struct pv_area *stack;
   struct cleanup *back_to;
-  CORE_ADDR offset;
+  int framereg, framesize;
+  CORE_ADDR unrecognized_pc = 0;
 
-  /* Assume there is no frame until proven otherwise.  */
-  cache->framereg = ARM_SP_REGNUM;
-  cache->framesize = 0;
-
-  /* Check for Thumb prologue.  */
-  if (arm_frame_is_thumb (this_frame))
-    {
-      thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache);
-      return;
-    }
-
-  /* Find the function prologue.  If we can't find the function in
-     the symbol table, peek in the stack frame to find the PC.  */
-  if (find_pc_partial_function (block_addr, NULL, &prologue_start,
-                               &prologue_end))
-    {
-      /* One way to find the end of the prologue (which works well
-         for unoptimized code) is to do the following:
-
-           struct symtab_and_line sal = find_pc_line (prologue_start, 0);
-
-           if (sal.line == 0)
-             prologue_end = prev_pc;
-           else if (sal.end < prologue_end)
-             prologue_end = sal.end;
-
-        This mechanism is very accurate so long as the optimizer
-        doesn't move any instructions from the function body into the
-        prologue.  If this happens, sal.end will be the last
-        instruction in the first hunk of prologue code just before
-        the first instruction that the scheduler has moved from
-        the body to the prologue.
-
-        In order to make sure that we scan all of the prologue
-        instructions, we use a slightly less accurate mechanism which
-        may scan more than necessary.  To help compensate for this
-        lack of accuracy, the prologue scanning loop below contains
-        several clauses which'll cause the loop to terminate early if
-        an implausible prologue instruction is encountered.  
-        
-        The expression
-        
-             prologue_start + 64
-           
-        is a suitable endpoint since it accounts for the largest
-        possible prologue plus up to five instructions inserted by
-        the scheduler.  */
-         
-      if (prologue_end > prologue_start + 64)
-       {
-         prologue_end = prologue_start + 64;   /* See above.  */
-       }
-    }
-  else
-    {
-      /* We have no symbol information.  Our only option is to assume this
-        function has a standard stack frame and the normal frame register.
-        Then, we can find the value of our frame pointer on entrance to
-        the callee (or at the present moment if this is the innermost frame).
-        The value stored there should be the address of the stmfd + 8.  */
-      CORE_ADDR frame_loc;
-      LONGEST return_value;
-
-      frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM);
-      if (!safe_read_memory_integer (frame_loc, 4, &return_value))
-        return;
-      else
-        {
-          prologue_start = gdbarch_addr_bits_remove 
-                            (gdbarch, return_value) - 8;
-          prologue_end = prologue_start + 64;  /* See above.  */
-        }
-    }
-
-  if (prev_pc < prologue_end)
-    prologue_end = prev_pc;
-
-  /* Now search the prologue looking for instructions that set up the
+  /* Search the prologue looking for instructions that set up the
      frame pointer, adjust the stack pointer, and save registers.
 
      Be careful, however, and if it doesn't look like a prologue,
@@ -848,60 +1682,53 @@ arm_scan_prologue (struct frame_info *this_frame,
      begins with stmfd sp!, then we will tell ourselves there is
      a frame, which will confuse stack traceback, as well as "finish" 
      and other operations that rely on a knowledge of the stack
-     traceback.
-
-     In the APCS, the prologue should start with  "mov ip, sp" so
-     if we don't see this as the first insn, we will stop.  
-
-     [Note: This doesn't seem to be true any longer, so it's now an
-     optional part of the prologue.  - Kevin Buettner, 2001-11-20]
-
-     [Note further: The "mov ip,sp" only seems to be missing in
-     frameless functions at optimization level "-O2" or above,
-     in which case it is often (but not always) replaced by
-     "str lr, [sp, #-4]!".  - Michael Snyder, 2002-04-23]  */
+     traceback.  */
 
   for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
     regs[regno] = pv_register (regno, 0);
-  stack = make_pv_area (ARM_SP_REGNUM);
+  stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
   back_to = make_cleanup_free_pv_area (stack);
 
   for (current_pc = prologue_start;
        current_pc < prologue_end;
        current_pc += 4)
     {
-      unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
-
-      if (gdbarch_byte_order_for_code (gdbarch) != gdbarch_byte_order (gdbarch))
-       insn = SWAP_INT (insn);
+      unsigned int insn
+       = read_memory_unsigned_integer (current_pc, 4, byte_order_for_code);
 
       if (insn == 0xe1a0c00d)          /* mov ip, sp */
        {
          regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
          continue;
        }
-      else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
+      else if ((insn & 0xfff00000) == 0xe2800000       /* add Rd, Rn, #n */
+              && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
        {
          unsigned imm = insn & 0xff;                   /* immediate value */
          unsigned rot = (insn & 0xf00) >> 7;           /* rotate amount */
+         int rd = bits (insn, 12, 15);
          imm = (imm >> rot) | (imm << (32 - rot));
-         regs[ARM_IP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], imm);
+         regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm);
          continue;
        }
-      else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
+      else if ((insn & 0xfff00000) == 0xe2400000       /* sub Rd, Rn, #n */
+              && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
        {
          unsigned imm = insn & 0xff;                   /* immediate value */
          unsigned rot = (insn & 0xf00) >> 7;           /* rotate amount */
+         int rd = bits (insn, 12, 15);
          imm = (imm >> rot) | (imm << (32 - rot));
-         regs[ARM_IP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
+         regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm);
          continue;
        }
-      else if (insn == 0xe52de004)     /* str lr, [sp, #-4]! */
+      else if ((insn & 0xffff0fff) == 0xe52d0004)      /* str Rd,
+                                                          [sp, #-4]! */
        {
          if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
            break;
          regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
-         pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[ARM_LR_REGNUM]);
+         pv_area_store (stack, regs[ARM_SP_REGNUM], 4,
+                        regs[bits (insn, 12, 15)]);
          continue;
        }
       else if ((insn & 0xffff0000) == 0xe92d0000)
@@ -918,24 +1745,32 @@ arm_scan_prologue (struct frame_info *this_frame,
          for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
            if (mask & (1 << regno))
              {
-               regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
+               regs[ARM_SP_REGNUM]
+                 = pv_add_constant (regs[ARM_SP_REGNUM], -4);
                pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
              }
        }
-      else if ((insn & 0xffffc000) == 0xe54b0000 ||    /* strb rx,[r11,#-n] */
-              (insn & 0xffffc0f0) == 0xe14b00b0 ||     /* strh rx,[r11,#-n] */
-              (insn & 0xffffc000) == 0xe50b0000)       /* str  rx,[r11,#-n] */
+      else if ((insn & 0xffff0000) == 0xe54b0000       /* strb rx,[r11,#-n] */
+              || (insn & 0xffff00f0) == 0xe14b00b0     /* strh rx,[r11,#-n] */
+              || (insn & 0xffffc000) == 0xe50b0000)    /* str  rx,[r11,#-n] */
        {
          /* No need to add this to saved_regs -- it's just an arg reg.  */
          continue;
        }
-      else if ((insn & 0xffffc000) == 0xe5cd0000 ||    /* strb rx,[sp,#n] */
-              (insn & 0xffffc0f0) == 0xe1cd00b0 ||     /* strh rx,[sp,#n] */
-              (insn & 0xffffc000) == 0xe58d0000)       /* str  rx,[sp,#n] */
+      else if ((insn & 0xffff0000) == 0xe5cd0000       /* strb rx,[sp,#n] */
+              || (insn & 0xffff00f0) == 0xe1cd00b0     /* strh rx,[sp,#n] */
+              || (insn & 0xffffc000) == 0xe58d0000)    /* str  rx,[sp,#n] */
        {
          /* No need to add this to saved_regs -- it's just an arg reg.  */
          continue;
        }
+      else if ((insn & 0xfff00000) == 0xe8800000       /* stm Rn,
+                                                          { registers } */
+              && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
+       {
+         /* No need to add this to saved_regs -- it's just arg regs.  */
+         continue;
+       }
       else if ((insn & 0xfffff000) == 0xe24cb000)      /* sub fp, ip #n */
        {
          unsigned imm = insn & 0xff;                   /* immediate value */
@@ -950,7 +1785,8 @@ arm_scan_prologue (struct frame_info *this_frame,
          imm = (imm >> rot) | (imm << (32 - rot));
          regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
        }
-      else if ((insn & 0xffff7fff) == 0xed6d0103       /* stfe f?, [sp, -#c]! */
+      else if ((insn & 0xffff7fff) == 0xed6d0103       /* stfe f?,
+                                                          [sp, -#c]! */
               && gdbarch_tdep (gdbarch)->have_fpa_registers)
        {
          if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
@@ -960,7 +1796,8 @@ arm_scan_prologue (struct frame_info *this_frame,
          regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
          pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]);
        }
-      else if ((insn & 0xffbf0fff) == 0xec2d0200       /* sfmfd f0, 4, [sp!] */
+      else if ((insn & 0xffbf0fff) == 0xec2d0200       /* sfmfd f0, 4,
+                                                          [sp!] */
               && gdbarch_tdep (gdbarch)->have_fpa_registers)
        {
          int n_saved_fp_regs;
@@ -993,42 +1830,174 @@ arm_scan_prologue (struct frame_info *this_frame,
                             regs[fp_start_reg++]);
            }
        }
+      else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */
+       {
+         /* Allow some special function calls when skipping the
+            prologue; GCC generates these before storing arguments to
+            the stack.  */
+         CORE_ADDR dest = BranchDest (current_pc, insn);
+
+         if (skip_prologue_function (gdbarch, dest, 0))
+           continue;
+         else
+           break;
+       }
       else if ((insn & 0xf0000000) != 0xe0000000)
-       break;                  /* Condition not true, exit early */
-      else if ((insn & 0xfe200000) == 0xe8200000)      /* ldm? */
-       break;                  /* Don't scan past a block load */
-      else
-       /* The optimizer might shove anything into the prologue,
-          so we just skip what we don't recognize.  */
+       break;                  /* Condition not true, exit early.  */
+      else if (arm_instruction_changes_pc (insn))
+       /* Don't scan past anything that might change control flow.  */
+       break;
+      else if ((insn & 0xfe500000) == 0xe8100000       /* ldm */
+              && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
+       /* Ignore block loads from the stack, potentially copying
+          parameters from memory.  */
+       continue;
+      else if ((insn & 0xfc500000) == 0xe4100000
+              && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
+       /* Similarly ignore single loads from the stack.  */
+       continue;
+      else if ((insn & 0xffff0ff0) == 0xe1a00000)
+       /* MOV Rd, Rm.  Skip register copies, i.e. saves to another
+          register instead of the stack.  */
        continue;
+      else
+       {
+         /* The optimizer might shove anything into the prologue,
+            so we just skip what we don't recognize.  */
+         unrecognized_pc = current_pc;
+         continue;
+       }
     }
 
+  if (unrecognized_pc == 0)
+    unrecognized_pc = current_pc;
+
   /* The frame size is just the distance from the frame register
      to the original stack pointer.  */
   if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
     {
       /* Frame pointer is fp.  */
-      cache->framereg = ARM_FP_REGNUM;
-      cache->framesize = -regs[ARM_FP_REGNUM].k;
+      framereg = ARM_FP_REGNUM;
+      framesize = -regs[ARM_FP_REGNUM].k;
     }
-  else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
+  else
     {
       /* Try the stack pointer... this is a bit desperate.  */
-      cache->framereg = ARM_SP_REGNUM;
-      cache->framesize = -regs[ARM_SP_REGNUM].k;
+      framereg = ARM_SP_REGNUM;
+      framesize = -regs[ARM_SP_REGNUM].k;
     }
-  else
+
+  if (cache)
     {
-      /* We're just out of luck.  We don't know where the frame is.  */
-      cache->framereg = -1;
-      cache->framesize = 0;
+      cache->framereg = framereg;
+      cache->framesize = framesize;
+
+      for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
+       if (pv_area_find_reg (stack, gdbarch, regno, &offset))
+         cache->saved_regs[regno].addr = offset;
     }
 
-  for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
-    if (pv_area_find_reg (stack, gdbarch, regno, &offset))
-      cache->saved_regs[regno].addr = offset;
+  if (arm_debug)
+    fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
+                       paddress (gdbarch, unrecognized_pc));
 
   do_cleanups (back_to);
+  return unrecognized_pc;
+}
+
+static void
+arm_scan_prologue (struct frame_info *this_frame,
+                  struct arm_prologue_cache *cache)
+{
+  struct gdbarch *gdbarch = get_frame_arch (this_frame);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  int regno;
+  CORE_ADDR prologue_start, prologue_end, current_pc;
+  CORE_ADDR prev_pc = get_frame_pc (this_frame);
+  CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
+  pv_t regs[ARM_FPS_REGNUM];
+  struct pv_area *stack;
+  struct cleanup *back_to;
+  CORE_ADDR offset;
+
+  /* Assume there is no frame until proven otherwise.  */
+  cache->framereg = ARM_SP_REGNUM;
+  cache->framesize = 0;
+
+  /* Check for Thumb prologue.  */
+  if (arm_frame_is_thumb (this_frame))
+    {
+      thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache);
+      return;
+    }
+
+  /* Find the function prologue.  If we can't find the function in
+     the symbol table, peek in the stack frame to find the PC.  */
+  if (find_pc_partial_function (block_addr, NULL, &prologue_start,
+                               &prologue_end))
+    {
+      /* One way to find the end of the prologue (which works well
+         for unoptimized code) is to do the following:
+
+           struct symtab_and_line sal = find_pc_line (prologue_start, 0);
+
+           if (sal.line == 0)
+             prologue_end = prev_pc;
+           else if (sal.end < prologue_end)
+             prologue_end = sal.end;
+
+        This mechanism is very accurate so long as the optimizer
+        doesn't move any instructions from the function body into the
+        prologue.  If this happens, sal.end will be the last
+        instruction in the first hunk of prologue code just before
+        the first instruction that the scheduler has moved from
+        the body to the prologue.
+
+        In order to make sure that we scan all of the prologue
+        instructions, we use a slightly less accurate mechanism which
+        may scan more than necessary.  To help compensate for this
+        lack of accuracy, the prologue scanning loop below contains
+        several clauses which'll cause the loop to terminate early if
+        an implausible prologue instruction is encountered.
+
+        The expression
+
+             prologue_start + 64
+
+        is a suitable endpoint since it accounts for the largest
+        possible prologue plus up to five instructions inserted by
+        the scheduler.  */
+
+      if (prologue_end > prologue_start + 64)
+       {
+         prologue_end = prologue_start + 64;   /* See above.  */
+       }
+    }
+  else
+    {
+      /* We have no symbol information.  Our only option is to assume this
+        function has a standard stack frame and the normal frame register.
+        Then, we can find the value of our frame pointer on entrance to
+        the callee (or at the present moment if this is the innermost frame).
+        The value stored there should be the address of the stmfd + 8.  */
+      CORE_ADDR frame_loc;
+      LONGEST return_value;
+
+      frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM);
+      if (!safe_read_memory_integer (frame_loc, 4, byte_order, &return_value))
+        return;
+      else
+        {
+          prologue_start = gdbarch_addr_bits_remove
+                            (gdbarch, return_value) - 8;
+          prologue_end = prologue_start + 64;  /* See above.  */
+        }
+    }
+
+  if (prev_pc < prologue_end)
+    prologue_end = prev_pc;
+
+  arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
 }
 
 static struct arm_prologue_cache *
@@ -1083,7 +2052,13 @@ arm_prologue_this_id (struct frame_info *this_frame,
   if (cache->prev_sp == 0)
     return;
 
+  /* Use function start address as part of the frame ID.  If we cannot
+     identify the start address (due to missing symbol information),
+     fall back to just using the current PC.  */
   func = get_frame_func (this_frame);
+  if (!func)
+    func = pc;
+
   id = frame_id_build (cache->prev_sp, func);
   *this_id = id;
 }
@@ -1131,13 +2106,14 @@ arm_prologue_prev_register (struct frame_info *this_frame,
   if (prev_regnum == ARM_PS_REGNUM)
     {
       CORE_ADDR lr, cpsr;
+      ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
 
       cpsr = get_frame_register_unsigned (this_frame, prev_regnum);
       lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
       if (IS_THUMB_ADDR (lr))
-       cpsr |= CPSR_T;
+       cpsr |= t_bit;
       else
-       cpsr &= ~CPSR_T;
+       cpsr &= ~t_bit;
       return frame_unwind_got_constant (this_frame, prev_regnum, cpsr);
     }
 
@@ -1147,2377 +2123,10385 @@ arm_prologue_prev_register (struct frame_info *this_frame,
 
 struct frame_unwind arm_prologue_unwind = {
   NORMAL_FRAME,
+  default_frame_unwind_stop_reason,
   arm_prologue_this_id,
   arm_prologue_prev_register,
   NULL,
   default_frame_sniffer
 };
 
-static struct arm_prologue_cache *
-arm_make_stub_cache (struct frame_info *this_frame)
-{
-  int reg;
-  struct arm_prologue_cache *cache;
-  CORE_ADDR unwound_fp;
-
-  cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
-  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
+/* Maintain a list of ARM exception table entries per objfile, similar to the
+   list of mapping symbols.  We only cache entries for standard ARM-defined
+   personality routines; the cache will contain only the frame unwinding
+   instructions associated with the entry (not the descriptors).  */
 
-  cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
+static const struct objfile_data *arm_exidx_data_key;
 
-  return cache;
-}
+struct arm_exidx_entry
+{
+  bfd_vma addr;
+  gdb_byte *entry;
+};
+typedef struct arm_exidx_entry arm_exidx_entry_s;
+DEF_VEC_O(arm_exidx_entry_s);
 
-/* Our frame ID for a stub frame is the current SP and LR.  */
+struct arm_exidx_data
+{
+  VEC(arm_exidx_entry_s) **section_maps;
+};
 
 static void
-arm_stub_this_id (struct frame_info *this_frame,
-                 void **this_cache,
-                 struct frame_id *this_id)
+arm_exidx_data_free (struct objfile *objfile, void *arg)
 {
-  struct arm_prologue_cache *cache;
+  struct arm_exidx_data *data = arg;
+  unsigned int i;
 
-  if (*this_cache == NULL)
-    *this_cache = arm_make_stub_cache (this_frame);
-  cache = *this_cache;
+  for (i = 0; i < objfile->obfd->section_count; i++)
+    VEC_free (arm_exidx_entry_s, data->section_maps[i]);
+}
 
-  *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
+static inline int
+arm_compare_exidx_entries (const struct arm_exidx_entry *lhs,
+                          const struct arm_exidx_entry *rhs)
+{
+  return lhs->addr < rhs->addr;
 }
 
-static int
-arm_stub_unwind_sniffer (const struct frame_unwind *self,
-                        struct frame_info *this_frame,
-                        void **this_prologue_cache)
+static struct obj_section *
+arm_obj_section_from_vma (struct objfile *objfile, bfd_vma vma)
 {
-  CORE_ADDR addr_in_block;
-  char dummy[4];
+  struct obj_section *osect;
 
-  addr_in_block = get_frame_address_in_block (this_frame);
-  if (in_plt_section (addr_in_block, NULL)
-      || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
-    return 1;
+  ALL_OBJFILE_OSECTIONS (objfile, osect)
+    if (bfd_get_section_flags (objfile->obfd,
+                              osect->the_bfd_section) & SEC_ALLOC)
+      {
+       bfd_vma start, size;
+       start = bfd_get_section_vma (objfile->obfd, osect->the_bfd_section);
+       size = bfd_get_section_size (osect->the_bfd_section);
 
-  return 0;
+       if (start <= vma && vma < start + size)
+         return osect;
+      }
+
+  return NULL;
 }
 
-struct frame_unwind arm_stub_unwind = {
-  NORMAL_FRAME,
-  arm_stub_this_id,
-  arm_prologue_prev_register,
-  NULL,
-  arm_stub_unwind_sniffer
-};
+/* Parse contents of exception table and exception index sections
+   of OBJFILE, and fill in the exception table entry cache.
 
-static CORE_ADDR
-arm_normal_frame_base (struct frame_info *this_frame, void **this_cache)
+   For each entry that refers to a standard ARM-defined personality
+   routine, extract the frame unwinding instructions (from either
+   the index or the table section).  The unwinding instructions
+   are normalized by:
+    - extracting them from the rest of the table data
+    - converting to host endianness
+    - appending the implicit 0xb0 ("Finish") code
+
+   The extracted and normalized instructions are stored for later
+   retrieval by the arm_find_exidx_entry routine.  */
+static void
+arm_exidx_new_objfile (struct objfile *objfile)
 {
-  struct arm_prologue_cache *cache;
+  struct cleanup *cleanups;
+  struct arm_exidx_data *data;
+  asection *exidx, *extab;
+  bfd_vma exidx_vma = 0, extab_vma = 0;
+  bfd_size_type exidx_size = 0, extab_size = 0;
+  gdb_byte *exidx_data = NULL, *extab_data = NULL;
+  LONGEST i;
+
+  /* If we've already touched this file, do nothing.  */
+  if (!objfile || objfile_data (objfile, arm_exidx_data_key) != NULL)
+    return;
+  cleanups = make_cleanup (null_cleanup, NULL);
 
-  if (*this_cache == NULL)
-    *this_cache = arm_make_prologue_cache (this_frame);
-  cache = *this_cache;
+  /* Read contents of exception table and index.  */
+  exidx = bfd_get_section_by_name (objfile->obfd, ".ARM.exidx");
+  if (exidx)
+    {
+      exidx_vma = bfd_section_vma (objfile->obfd, exidx);
+      exidx_size = bfd_get_section_size (exidx);
+      exidx_data = xmalloc (exidx_size);
+      make_cleanup (xfree, exidx_data);
 
-  return cache->prev_sp - cache->framesize;
-}
+      if (!bfd_get_section_contents (objfile->obfd, exidx,
+                                    exidx_data, 0, exidx_size))
+       {
+         do_cleanups (cleanups);
+         return;
+       }
+    }
 
-struct frame_base arm_normal_base = {
-  &arm_prologue_unwind,
-  arm_normal_frame_base,
-  arm_normal_frame_base,
-  arm_normal_frame_base
-};
+  extab = bfd_get_section_by_name (objfile->obfd, ".ARM.extab");
+  if (extab)
+    {
+      extab_vma = bfd_section_vma (objfile->obfd, extab);
+      extab_size = bfd_get_section_size (extab);
+      extab_data = xmalloc (extab_size);
+      make_cleanup (xfree, extab_data);
 
-/* Assuming THIS_FRAME is a dummy, return the frame ID of that
-   dummy frame.  The frame ID's base needs to match the TOS value
-   saved by save_dummy_frame_tos() and returned from
-   arm_push_dummy_call, and the PC needs to match the dummy frame's
-   breakpoint.  */
+      if (!bfd_get_section_contents (objfile->obfd, extab,
+                                    extab_data, 0, extab_size))
+       {
+         do_cleanups (cleanups);
+         return;
+       }
+    }
 
-static struct frame_id
-arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
-{
-  return frame_id_build (get_frame_register_unsigned (this_frame, ARM_SP_REGNUM),
-                        get_frame_pc (this_frame));
-}
+  /* Allocate exception table data structure.  */
+  data = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct arm_exidx_data);
+  set_objfile_data (objfile, arm_exidx_data_key, data);
+  data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
+                                      objfile->obfd->section_count,
+                                      VEC(arm_exidx_entry_s) *);
 
-/* Given THIS_FRAME, find the previous frame's resume PC (which will
-   be used to construct the previous frame's ID, after looking up the
-   containing function).  */
+  /* Fill in exception table.  */
+  for (i = 0; i < exidx_size / 8; i++)
+    {
+      struct arm_exidx_entry new_exidx_entry;
+      bfd_vma idx = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8);
+      bfd_vma val = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8 + 4);
+      bfd_vma addr = 0, word = 0;
+      int n_bytes = 0, n_words = 0;
+      struct obj_section *sec;
+      gdb_byte *entry = NULL;
 
-static CORE_ADDR
-arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
-{
-  CORE_ADDR pc;
-  pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
-  return arm_addr_bits_remove (gdbarch, pc);
-}
+      /* Extract address of start of function.  */
+      idx = ((idx & 0x7fffffff) ^ 0x40000000) - 0x40000000;
+      idx += exidx_vma + i * 8;
 
-static CORE_ADDR
-arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
-{
-  return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
-}
+      /* Find section containing function and compute section offset.  */
+      sec = arm_obj_section_from_vma (objfile, idx);
+      if (sec == NULL)
+       continue;
+      idx -= bfd_get_section_vma (objfile->obfd, sec->the_bfd_section);
 
-static struct value *
-arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
-                         int regnum)
-{
-  struct gdbarch * gdbarch = get_frame_arch (this_frame);
-  CORE_ADDR lr, cpsr;
+      /* Determine address of exception table entry.  */
+      if (val == 1)
+       {
+         /* EXIDX_CANTUNWIND -- no exception table entry present.  */
+       }
+      else if ((val & 0xff000000) == 0x80000000)
+       {
+         /* Exception table entry embedded in .ARM.exidx
+            -- must be short form.  */
+         word = val;
+         n_bytes = 3;
+       }
+      else if (!(val & 0x80000000))
+       {
+         /* Exception table entry in .ARM.extab.  */
+         addr = ((val & 0x7fffffff) ^ 0x40000000) - 0x40000000;
+         addr += exidx_vma + i * 8 + 4;
 
-  switch (regnum)
-    {
-    case ARM_PC_REGNUM:
-      /* The PC is normally copied from the return column, which
-        describes saves of LR.  However, that version may have an
-        extra bit set to indicate Thumb state.  The bit is not
-        part of the PC.  */
-      lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
-      return frame_unwind_got_constant (this_frame, regnum,
-                                       arm_addr_bits_remove (gdbarch, lr));
+         if (addr >= extab_vma && addr + 4 <= extab_vma + extab_size)
+           {
+             word = bfd_h_get_32 (objfile->obfd,
+                                  extab_data + addr - extab_vma);
+             addr += 4;
 
-    case ARM_PS_REGNUM:
-      /* Reconstruct the T bit; see arm_prologue_prev_register for details.  */
-      cpsr = get_frame_register_unsigned (this_frame, regnum);
-      lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
-      if (IS_THUMB_ADDR (lr))
-       cpsr |= CPSR_T;
-      else
-       cpsr &= ~CPSR_T;
-      return frame_unwind_got_constant (this_frame, regnum, cpsr);
+             if ((word & 0xff000000) == 0x80000000)
+               {
+                 /* Short form.  */
+                 n_bytes = 3;
+               }
+             else if ((word & 0xff000000) == 0x81000000
+                      || (word & 0xff000000) == 0x82000000)
+               {
+                 /* Long form.  */
+                 n_bytes = 2;
+                 n_words = ((word >> 16) & 0xff);
+               }
+             else if (!(word & 0x80000000))
+               {
+                 bfd_vma pers;
+                 struct obj_section *pers_sec;
+                 int gnu_personality = 0;
+
+                 /* Custom personality routine.  */
+                 pers = ((word & 0x7fffffff) ^ 0x40000000) - 0x40000000;
+                 pers = UNMAKE_THUMB_ADDR (pers + addr - 4);
+
+                 /* Check whether we've got one of the variants of the
+                    GNU personality routines.  */
+                 pers_sec = arm_obj_section_from_vma (objfile, pers);
+                 if (pers_sec)
+                   {
+                     static const char *personality[] = 
+                       {
+                         "__gcc_personality_v0",
+                         "__gxx_personality_v0",
+                         "__gcj_personality_v0",
+                         "__gnu_objc_personality_v0",
+                         NULL
+                       };
+
+                     CORE_ADDR pc = pers + obj_section_offset (pers_sec);
+                     int k;
+
+                     for (k = 0; personality[k]; k++)
+                       if (lookup_minimal_symbol_by_pc_name
+                             (pc, personality[k], objfile))
+                         {
+                           gnu_personality = 1;
+                           break;
+                         }
+                   }
 
-    default:
-      internal_error (__FILE__, __LINE__,
-                     _("Unexpected register %d"), regnum);
-    }
-}
+                 /* If so, the next word contains a word count in the high
+                    byte, followed by the same unwind instructions as the
+                    pre-defined forms.  */
+                 if (gnu_personality
+                     && addr + 4 <= extab_vma + extab_size)
+                   {
+                     word = bfd_h_get_32 (objfile->obfd,
+                                          extab_data + addr - extab_vma);
+                     addr += 4;
+                     n_bytes = 3;
+                     n_words = ((word >> 24) & 0xff);
+                   }
+               }
+           }
+       }
 
-static void
-arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
-                          struct dwarf2_frame_state_reg *reg,
-                          struct frame_info *this_frame)
-{
-  switch (regnum)
-    {
-    case ARM_PC_REGNUM:
-    case ARM_PS_REGNUM:
-      reg->how = DWARF2_FRAME_REG_FN;
-      reg->loc.fn = arm_dwarf2_prev_register;
-      break;
-    case ARM_SP_REGNUM:
-      reg->how = DWARF2_FRAME_REG_CFA;
-      break;
-    }
-}
+      /* Sanity check address.  */
+      if (n_words)
+       if (addr < extab_vma || addr + 4 * n_words > extab_vma + extab_size)
+         n_words = n_bytes = 0;
 
-/* When arguments must be pushed onto the stack, they go on in reverse
-   order.  The code below implements a FILO (stack) to do this.  */
+      /* The unwind instructions reside in WORD (only the N_BYTES least
+        significant bytes are valid), followed by N_WORDS words in the
+        extab section starting at ADDR.  */
+      if (n_bytes || n_words)
+       {
+         gdb_byte *p = entry = obstack_alloc (&objfile->objfile_obstack,
+                                              n_bytes + n_words * 4 + 1);
 
-struct stack_item
-{
-  int len;
-  struct stack_item *prev;
-  void *data;
-};
+         while (n_bytes--)
+           *p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff);
 
-static struct stack_item *
-push_stack_item (struct stack_item *prev, void *contents, int len)
-{
-  struct stack_item *si;
-  si = xmalloc (sizeof (struct stack_item));
-  si->data = xmalloc (len);
-  si->len = len;
-  si->prev = prev;
-  memcpy (si->data, contents, len);
-  return si;
-}
+         while (n_words--)
+           {
+             word = bfd_h_get_32 (objfile->obfd,
+                                  extab_data + addr - extab_vma);
+             addr += 4;
+
+             *p++ = (gdb_byte) ((word >> 24) & 0xff);
+             *p++ = (gdb_byte) ((word >> 16) & 0xff);
+             *p++ = (gdb_byte) ((word >> 8) & 0xff);
+             *p++ = (gdb_byte) (word & 0xff);
+           }
 
-static struct stack_item *
-pop_stack_item (struct stack_item *si)
-{
-  struct stack_item *dead = si;
-  si = si->prev;
-  xfree (dead->data);
-  xfree (dead);
-  return si;
-}
+         /* Implied "Finish" to terminate the list.  */
+         *p++ = 0xb0;
+       }
 
+      /* Push entry onto vector.  They are guaranteed to always
+        appear in order of increasing addresses.  */
+      new_exidx_entry.addr = idx;
+      new_exidx_entry.entry = entry;
+      VEC_safe_push (arm_exidx_entry_s,
+                    data->section_maps[sec->the_bfd_section->index],
+                    &new_exidx_entry);
+    }
 
-/* Return the alignment (in bytes) of the given type.  */
+  do_cleanups (cleanups);
+}
 
-static int
-arm_type_align (struct type *t)
+/* Search for the exception table entry covering MEMADDR.  If one is found,
+   return a pointer to its data.  Otherwise, return 0.  If START is non-NULL,
+   set *START to the start of the region covered by this entry.  */
+
+static gdb_byte *
+arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start)
 {
-  int n;
-  int align;
-  int falign;
+  struct obj_section *sec;
 
-  t = check_typedef (t);
-  switch (TYPE_CODE (t))
+  sec = find_pc_section (memaddr);
+  if (sec != NULL)
     {
-    default:
-      /* Should never happen.  */
-      internal_error (__FILE__, __LINE__, _("unknown type alignment"));
-      return 4;
+      struct arm_exidx_data *data;
+      VEC(arm_exidx_entry_s) *map;
+      struct arm_exidx_entry map_key = { memaddr - obj_section_addr (sec), 0 };
+      unsigned int idx;
 
-    case TYPE_CODE_PTR:
-    case TYPE_CODE_ENUM:
-    case TYPE_CODE_INT:
-    case TYPE_CODE_FLT:
-    case TYPE_CODE_SET:
-    case TYPE_CODE_RANGE:
-    case TYPE_CODE_BITSTRING:
-    case TYPE_CODE_REF:
-    case TYPE_CODE_CHAR:
-    case TYPE_CODE_BOOL:
-      return TYPE_LENGTH (t);
+      data = objfile_data (sec->objfile, arm_exidx_data_key);
+      if (data != NULL)
+       {
+         map = data->section_maps[sec->the_bfd_section->index];
+         if (!VEC_empty (arm_exidx_entry_s, map))
+           {
+             struct arm_exidx_entry *map_sym;
 
-    case TYPE_CODE_ARRAY:
-    case TYPE_CODE_COMPLEX:
-      /* TODO: What about vector types?  */
-      return arm_type_align (TYPE_TARGET_TYPE (t));
+             idx = VEC_lower_bound (arm_exidx_entry_s, map, &map_key,
+                                    arm_compare_exidx_entries);
 
-    case TYPE_CODE_STRUCT:
-    case TYPE_CODE_UNION:
-      align = 1;
-      for (n = 0; n < TYPE_NFIELDS (t); n++)
-       {
-         falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
-         if (falign > align)
-           align = falign;
+             /* VEC_lower_bound finds the earliest ordered insertion
+                point.  If the following symbol starts at this exact
+                address, we use that; otherwise, the preceding
+                exception table entry covers this address.  */
+             if (idx < VEC_length (arm_exidx_entry_s, map))
+               {
+                 map_sym = VEC_index (arm_exidx_entry_s, map, idx);
+                 if (map_sym->addr == map_key.addr)
+                   {
+                     if (start)
+                       *start = map_sym->addr + obj_section_addr (sec);
+                     return map_sym->entry;
+                   }
+               }
+
+             if (idx > 0)
+               {
+                 map_sym = VEC_index (arm_exidx_entry_s, map, idx - 1);
+                 if (start)
+                   *start = map_sym->addr + obj_section_addr (sec);
+                 return map_sym->entry;
+               }
+           }
        }
-      return align;
     }
-}
 
-/* We currently only support passing parameters in integer registers.  This
-   conforms with GCC's default model.  Several other variants exist and
-   we should probably support some of them based on the selected ABI.  */
+  return NULL;
+}
 
-static CORE_ADDR
-arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
-                    struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
-                    struct value **args, CORE_ADDR sp, int struct_return,
-                    CORE_ADDR struct_addr)
-{
-  int argnum;
-  int argreg;
-  int nstack;
-  struct stack_item *si = NULL;
+/* Given the current frame THIS_FRAME, and its associated frame unwinding
+   instruction list from the ARM exception table entry ENTRY, allocate and
+   return a prologue cache structure describing how to unwind this frame.
 
-  /* Set the return address.  For the ARM, the return breakpoint is
-     always at BP_ADDR.  */
-  /* XXX Fix for Thumb.  */
-  regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
+   Return NULL if the unwinding instruction list contains a "spare",
+   "reserved" or "refuse to unwind" instruction as defined in section
+   "9.3 Frame unwinding instructions" of the "Exception Handling ABI
+   for the ARM Architecture" document.  */
 
-  /* Walk through the list of args and determine how large a temporary
-     stack is required.  Need to take care here as structs may be
-     passed on the stack, and we have to to push them.  */
-  nstack = 0;
+static struct arm_prologue_cache *
+arm_exidx_fill_cache (struct frame_info *this_frame, gdb_byte *entry)
+{
+  CORE_ADDR vsp = 0;
+  int vsp_valid = 0;
 
-  argreg = ARM_A1_REGNUM;
-  nstack = 0;
+  struct arm_prologue_cache *cache;
+  cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
+  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
 
-  /* The struct_return pointer occupies the first parameter
-     passing register.  */
-  if (struct_return)
+  for (;;)
     {
-      if (arm_debug)
-       fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
-                           gdbarch_register_name (gdbarch, argreg),
-                           paddr (struct_addr));
-      regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
-      argreg++;
-    }
+      gdb_byte insn;
 
-  for (argnum = 0; argnum < nargs; argnum++)
-    {
-      int len;
-      struct type *arg_type;
-      struct type *target_type;
-      enum type_code typecode;
-      bfd_byte *val;
-      int align;
+      /* Whenever we reload SP, we actually have to retrieve its
+        actual value in the current frame.  */
+      if (!vsp_valid)
+       {
+         if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
+           {
+             int reg = cache->saved_regs[ARM_SP_REGNUM].realreg;
+             vsp = get_frame_register_unsigned (this_frame, reg);
+           }
+         else
+           {
+             CORE_ADDR addr = cache->saved_regs[ARM_SP_REGNUM].addr;
+             vsp = get_frame_memory_unsigned (this_frame, addr, 4);
+           }
 
-      arg_type = check_typedef (value_type (args[argnum]));
-      len = TYPE_LENGTH (arg_type);
-      target_type = TYPE_TARGET_TYPE (arg_type);
-      typecode = TYPE_CODE (arg_type);
-      val = value_contents_writeable (args[argnum]);
+         vsp_valid = 1;
+       }
 
-      align = arm_type_align (arg_type);
-      /* Round alignment up to a whole number of words.  */
-      align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
-      /* Different ABIs have different maximum alignments.  */
-      if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
+      /* Decode next unwind instruction.  */
+      insn = *entry++;
+
+      if ((insn & 0xc0) == 0)
        {
-         /* The APCS ABI only requires word alignment.  */
-         align = INT_REGISTER_SIZE;
+         int offset = insn & 0x3f;
+         vsp += (offset << 2) + 4;
        }
-      else
+      else if ((insn & 0xc0) == 0x40)
        {
-         /* The AAPCS requires at most doubleword alignment.  */
-         if (align > INT_REGISTER_SIZE * 2)
-           align = INT_REGISTER_SIZE * 2;
+         int offset = insn & 0x3f;
+         vsp -= (offset << 2) + 4;
        }
-
-      /* Push stack padding for dowubleword alignment.  */
-      if (nstack & (align - 1))
+      else if ((insn & 0xf0) == 0x80)
        {
-         si = push_stack_item (si, val, INT_REGISTER_SIZE);
-         nstack += INT_REGISTER_SIZE;
+         int mask = ((insn & 0xf) << 8) | *entry++;
+         int i;
+
+         /* The special case of an all-zero mask identifies
+            "Refuse to unwind".  We return NULL to fall back
+            to the prologue analyzer.  */
+         if (mask == 0)
+           return NULL;
+
+         /* Pop registers r4..r15 under mask.  */
+         for (i = 0; i < 12; i++)
+           if (mask & (1 << i))
+             {
+               cache->saved_regs[4 + i].addr = vsp;
+               vsp += 4;
+             }
+
+         /* Special-case popping SP -- we need to reload vsp.  */
+         if (mask & (1 << (ARM_SP_REGNUM - 4)))
+           vsp_valid = 0;
        }
-      
-      /* Doubleword aligned quantities must go in even register pairs.  */
-      if (argreg <= ARM_LAST_ARG_REGNUM
-         && align > INT_REGISTER_SIZE
-         && argreg & 1)
-       argreg++;
+      else if ((insn & 0xf0) == 0x90)
+       {
+         int reg = insn & 0xf;
 
-      /* If the argument is a pointer to a function, and it is a
-        Thumb function, create a LOCAL copy of the value and set
-        the THUMB bit in it.  */
-      if (TYPE_CODE_PTR == typecode
-         && target_type != NULL
-         && TYPE_CODE_FUNC == TYPE_CODE (target_type))
+         /* Reserved cases.  */
+         if (reg == ARM_SP_REGNUM || reg == ARM_PC_REGNUM)
+           return NULL;
+
+         /* Set SP from another register and mark VSP for reload.  */
+         cache->saved_regs[ARM_SP_REGNUM] = cache->saved_regs[reg];
+         vsp_valid = 0;
+       }
+      else if ((insn & 0xf0) == 0xa0)
        {
-         CORE_ADDR regval = extract_unsigned_integer (val, len);
-         if (arm_pc_is_thumb (regval))
+         int count = insn & 0x7;
+         int pop_lr = (insn & 0x8) != 0;
+         int i;
+
+         /* Pop r4..r[4+count].  */
+         for (i = 0; i <= count; i++)
+           {
+             cache->saved_regs[4 + i].addr = vsp;
+             vsp += 4;
+           }
+
+         /* If indicated by flag, pop LR as well.  */
+         if (pop_lr)
            {
-             val = alloca (len);
-             store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
+             cache->saved_regs[ARM_LR_REGNUM].addr = vsp;
+             vsp += 4;
            }
        }
+      else if (insn == 0xb0)
+       {
+         /* We could only have updated PC by popping into it; if so, it
+            will show up as address.  Otherwise, copy LR into PC.  */
+         if (!trad_frame_addr_p (cache->saved_regs, ARM_PC_REGNUM))
+           cache->saved_regs[ARM_PC_REGNUM]
+             = cache->saved_regs[ARM_LR_REGNUM];
 
-      /* Copy the argument to general registers or the stack in
-        register-sized pieces.  Large arguments are split between
-        registers and stack.  */
-      while (len > 0)
+         /* We're done.  */
+         break;
+       }
+      else if (insn == 0xb1)
        {
-         int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
+         int mask = *entry++;
+         int i;
 
-         if (argreg <= ARM_LAST_ARG_REGNUM)
-           {
-             /* The argument is being passed in a general purpose
-                register.  */
-             CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
-             if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
-               regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
-             if (arm_debug)
-               fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
-                                   argnum,
-                                   gdbarch_register_name
-                                     (gdbarch, argreg),
-                                   phex (regval, INT_REGISTER_SIZE));
-             regcache_cooked_write_unsigned (regcache, argreg, regval);
-             argreg++;
-           }
-         else
+         /* All-zero mask and mask >= 16 is "spare".  */
+         if (mask == 0 || mask >= 16)
+           return NULL;
+
+         /* Pop r0..r3 under mask.  */
+         for (i = 0; i < 4; i++)
+           if (mask & (1 << i))
+             {
+               cache->saved_regs[i].addr = vsp;
+               vsp += 4;
+             }
+       }
+      else if (insn == 0xb2)
+       {
+         ULONGEST offset = 0;
+         unsigned shift = 0;
+
+         do
            {
-             /* Push the arguments onto the stack.  */
-             if (arm_debug)
-               fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
-                                   argnum, nstack);
-             si = push_stack_item (si, val, INT_REGISTER_SIZE);
-             nstack += INT_REGISTER_SIZE;
+             offset |= (*entry & 0x7f) << shift;
+             shift += 7;
            }
-             
-         len -= partial_len;
-         val += partial_len;
-       }
-    }
-  /* If we have an odd number of words to push, then decrement the stack
-     by one word now, so first stack argument will be dword aligned.  */
-  if (nstack & 4)
-    sp -= 4;
+         while (*entry++ & 0x80);
 
-  while (si)
-    {
-      sp -= si->len;
-      write_memory (sp, si->data, si->len);
-      si = pop_stack_item (si);
-    }
+         vsp += 0x204 + (offset << 2);
+       }
+      else if (insn == 0xb3)
+       {
+         int start = *entry >> 4;
+         int count = (*entry++) & 0xf;
+         int i;
 
-  /* Finally, update teh SP register.  */
-  regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
+         /* Only registers D0..D15 are valid here.  */
+         if (start + count >= 16)
+           return NULL;
 
-  return sp;
-}
+         /* Pop VFP double-precision registers D[start]..D[start+count].  */
+         for (i = 0; i <= count; i++)
+           {
+             cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
+             vsp += 8;
+           }
 
+         /* Add an extra 4 bytes for FSTMFDX-style stack.  */
+         vsp += 4;
+       }
+      else if ((insn & 0xf8) == 0xb8)
+       {
+         int count = insn & 0x7;
+         int i;
 
-/* Always align the frame to an 8-byte boundary.  This is required on
-   some platforms and harmless on the rest.  */
+         /* Pop VFP double-precision registers D[8]..D[8+count].  */
+         for (i = 0; i <= count; i++)
+           {
+             cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
+             vsp += 8;
+           }
 
-static CORE_ADDR
-arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
-{
-  /* Align the stack to eight bytes.  */
-  return sp & ~ (CORE_ADDR) 7;
-}
+         /* Add an extra 4 bytes for FSTMFDX-style stack.  */
+         vsp += 4;
+       }
+      else if (insn == 0xc6)
+       {
+         int start = *entry >> 4;
+         int count = (*entry++) & 0xf;
+         int i;
 
-static void
-print_fpu_flags (int flags)
-{
-  if (flags & (1 << 0))
-    fputs ("IVO ", stdout);
-  if (flags & (1 << 1))
-    fputs ("DVZ ", stdout);
-  if (flags & (1 << 2))
-    fputs ("OFL ", stdout);
-  if (flags & (1 << 3))
-    fputs ("UFL ", stdout);
-  if (flags & (1 << 4))
-    fputs ("INX ", stdout);
-  putchar ('\n');
-}
+         /* Only registers WR0..WR15 are valid.  */
+         if (start + count >= 16)
+           return NULL;
 
-/* Print interesting information about the floating point processor
-   (if present) or emulator.  */
-static void
-arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
-                     struct frame_info *frame, const char *args)
-{
-  unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
-  int type;
+         /* Pop iwmmx registers WR[start]..WR[start+count].  */
+         for (i = 0; i <= count; i++)
+           {
+             cache->saved_regs[ARM_WR0_REGNUM + start + i].addr = vsp;
+             vsp += 8;
+           }
+       }
+      else if (insn == 0xc7)
+       {
+         int mask = *entry++;
+         int i;
 
-  type = (status >> 24) & 127;
-  if (status & (1 << 31))
-    printf (_("Hardware FPU type %d\n"), type);
-  else
-    printf (_("Software FPU type %d\n"), type);
-  /* i18n: [floating point unit] mask */
-  fputs (_("mask: "), stdout);
-  print_fpu_flags (status >> 16);
-  /* i18n: [floating point unit] flags */
-  fputs (_("flags: "), stdout);
-  print_fpu_flags (status);
-}
+         /* All-zero mask and mask >= 16 is "spare".  */
+         if (mask == 0 || mask >= 16)
+           return NULL;
 
-/* Return the GDB type object for the "standard" data type of data in
-   register N.  */
+         /* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask.  */
+         for (i = 0; i < 4; i++)
+           if (mask & (1 << i))
+             {
+               cache->saved_regs[ARM_WCGR0_REGNUM + i].addr = vsp;
+               vsp += 4;
+             }
+       }
+      else if ((insn & 0xf8) == 0xc0)
+       {
+         int count = insn & 0x7;
+         int i;
 
-static struct type *
-arm_register_type (struct gdbarch *gdbarch, int regnum)
-{
-  if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
-    return builtin_type_arm_ext;
-  else if (regnum == ARM_SP_REGNUM)
-    return builtin_type (gdbarch)->builtin_data_ptr;
-  else if (regnum == ARM_PC_REGNUM)
-    return builtin_type (gdbarch)->builtin_func_ptr;
-  else if (regnum >= ARRAY_SIZE (arm_register_names))
-    /* These registers are only supported on targets which supply
-       an XML description.  */
-    return builtin_type_int0;
-  else
-    return builtin_type_uint32;
-}
+         /* Pop iwmmx registers WR[10]..WR[10+count].  */
+         for (i = 0; i <= count; i++)
+           {
+             cache->saved_regs[ARM_WR0_REGNUM + 10 + i].addr = vsp;
+             vsp += 8;
+           }
+       }
+      else if (insn == 0xc8)
+       {
+         int start = *entry >> 4;
+         int count = (*entry++) & 0xf;
+         int i;
 
-/* Map a DWARF register REGNUM onto the appropriate GDB register
-   number.  */
+         /* Only registers D0..D31 are valid.  */
+         if (start + count >= 16)
+           return NULL;
 
-static int
-arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
-{
-  /* Core integer regs.  */
-  if (reg >= 0 && reg <= 15)
-    return reg;
+         /* Pop VFP double-precision registers
+            D[16+start]..D[16+start+count].  */
+         for (i = 0; i <= count; i++)
+           {
+             cache->saved_regs[ARM_D0_REGNUM + 16 + start + i].addr = vsp;
+             vsp += 8;
+           }
+       }
+      else if (insn == 0xc9)
+       {
+         int start = *entry >> 4;
+         int count = (*entry++) & 0xf;
+         int i;
 
-  /* Legacy FPA encoding.  These were once used in a way which
-     overlapped with VFP register numbering, so their use is
-     discouraged, but GDB doesn't support the ARM toolchain
-     which used them for VFP.  */
-  if (reg >= 16 && reg <= 23)
-    return ARM_F0_REGNUM + reg - 16;
+         /* Pop VFP double-precision registers D[start]..D[start+count].  */
+         for (i = 0; i <= count; i++)
+           {
+             cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
+             vsp += 8;
+           }
+       }
+      else if ((insn & 0xf8) == 0xd0)
+       {
+         int count = insn & 0x7;
+         int i;
 
-  /* New assignments for the FPA registers.  */
-  if (reg >= 96 && reg <= 103)
-    return ARM_F0_REGNUM + reg - 96;
+         /* Pop VFP double-precision registers D[8]..D[8+count].  */
+         for (i = 0; i <= count; i++)
+           {
+             cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
+             vsp += 8;
+           }
+       }
+      else
+       {
+         /* Everything else is "spare".  */
+         return NULL;
+       }
+    }
 
-  /* WMMX register assignments.  */
-  if (reg >= 104 && reg <= 111)
-    return ARM_WCGR0_REGNUM + reg - 104;
+  /* If we restore SP from a register, assume this was the frame register.
+     Otherwise just fall back to SP as frame register.  */
+  if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
+    cache->framereg = cache->saved_regs[ARM_SP_REGNUM].realreg;
+  else
+    cache->framereg = ARM_SP_REGNUM;
 
-  if (reg >= 112 && reg <= 127)
-    return ARM_WR0_REGNUM + reg - 112;
+  /* Determine offset to previous frame.  */
+  cache->framesize
+    = vsp - get_frame_register_unsigned (this_frame, cache->framereg);
 
-  if (reg >= 192 && reg <= 199)
-    return ARM_WC0_REGNUM + reg - 192;
+  /* We already got the previous SP.  */
+  cache->prev_sp = vsp;
 
-  return -1;
+  return cache;
 }
 
-/* Map GDB internal REGNUM onto the Arm simulator register numbers.  */
+/* Unwinding via ARM exception table entries.  Note that the sniffer
+   already computes a filled-in prologue cache, which is then used
+   with the same arm_prologue_this_id and arm_prologue_prev_register
+   routines also used for prologue-parsing based unwinding.  */
+
 static int
-arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
+arm_exidx_unwind_sniffer (const struct frame_unwind *self,
+                         struct frame_info *this_frame,
+                         void **this_prologue_cache)
 {
-  int reg = regnum;
-  gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
+  struct gdbarch *gdbarch = get_frame_arch (this_frame);
+  enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
+  CORE_ADDR addr_in_block, exidx_region, func_start;
+  struct arm_prologue_cache *cache;
+  gdb_byte *entry;
 
-  if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
-    return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
+  /* See if we have an ARM exception table entry covering this address.  */
+  addr_in_block = get_frame_address_in_block (this_frame);
+  entry = arm_find_exidx_entry (addr_in_block, &exidx_region);
+  if (!entry)
+    return 0;
 
-  if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
-    return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
+  /* The ARM exception table does not describe unwind information
+     for arbitrary PC values, but is guaranteed to be correct only
+     at call sites.  We have to decide here whether we want to use
+     ARM exception table information for this frame, or fall back
+     to using prologue parsing.  (Note that if we have DWARF CFI,
+     this sniffer isn't even called -- CFI is always preferred.)
+
+     Before we make this decision, however, we check whether we
+     actually have *symbol* information for the current frame.
+     If not, prologue parsing would not work anyway, so we might
+     as well use the exception table and hope for the best.  */
+  if (find_pc_partial_function (addr_in_block, NULL, &func_start, NULL))
+    {
+      int exc_valid = 0;
+
+      /* If the next frame is "normal", we are at a call site in this
+        frame, so exception information is guaranteed to be valid.  */
+      if (get_next_frame (this_frame)
+         && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
+       exc_valid = 1;
+
+      /* We also assume exception information is valid if we're currently
+        blocked in a system call.  The system library is supposed to
+        ensure this, so that e.g. pthread cancellation works.  */
+      if (arm_frame_is_thumb (this_frame))
+       {
+         LONGEST insn;
 
-  if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
-    return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
+         if (safe_read_memory_integer (get_frame_pc (this_frame) - 2, 2,
+                                       byte_order_for_code, &insn)
+             && (insn & 0xff00) == 0xdf00 /* svc */)
+           exc_valid = 1;
+       }
+      else
+       {
+         LONGEST insn;
 
-  if (reg < NUM_GREGS)
-    return SIM_ARM_R0_REGNUM + reg;
-  reg -= NUM_GREGS;
+         if (safe_read_memory_integer (get_frame_pc (this_frame) - 4, 4,
+                                       byte_order_for_code, &insn)
+             && (insn & 0x0f000000) == 0x0f000000 /* svc */)
+           exc_valid = 1;
+       }
+       
+      /* Bail out if we don't know that exception information is valid.  */
+      if (!exc_valid)
+       return 0;
 
-  if (reg < NUM_FREGS)
-    return SIM_ARM_FP0_REGNUM + reg;
-  reg -= NUM_FREGS;
+     /* The ARM exception index does not mark the *end* of the region
+       covered by the entry, and some functions will not have any entry.
+       To correctly recognize the end of the covered region, the linker
+       should have inserted dummy records with a CANTUNWIND marker.
+
+       Unfortunately, current versions of GNU ld do not reliably do
+       this, and thus we may have found an incorrect entry above.
+       As a (temporary) sanity check, we only use the entry if it
+       lies *within* the bounds of the function.  Note that this check
+       might reject perfectly valid entries that just happen to cover
+       multiple functions; therefore this check ought to be removed
+       once the linker is fixed.  */
+      if (func_start > exidx_region)
+       return 0;
+    }
 
-  if (reg < NUM_SREGS)
-    return SIM_ARM_FPS_REGNUM + reg;
-  reg -= NUM_SREGS;
+  /* Decode the list of unwinding instructions into a prologue cache.
+     Note that this may fail due to e.g. a "refuse to unwind" code.  */
+  cache = arm_exidx_fill_cache (this_frame, entry);
+  if (!cache)
+    return 0;
 
-  internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
+  *this_prologue_cache = cache;
+  return 1;
 }
 
-/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
-   convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
-   It is thought that this is is the floating-point register format on
-   little-endian systems.  */
+struct frame_unwind arm_exidx_unwind = {
+  NORMAL_FRAME,
+  default_frame_unwind_stop_reason,
+  arm_prologue_this_id,
+  arm_prologue_prev_register,
+  NULL,
+  arm_exidx_unwind_sniffer
+};
 
-static void
-convert_from_extended (const struct floatformat *fmt, const void *ptr,
-                      void *dbl, int endianess)
+static struct arm_prologue_cache *
+arm_make_stub_cache (struct frame_info *this_frame)
 {
-  DOUBLEST d;
+  struct arm_prologue_cache *cache;
 
-  if (endianess == BFD_ENDIAN_BIG)
-    floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
-  else
-    floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
-                            ptr, &d);
-  floatformat_from_doublest (fmt, &d, dbl);
+  cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
+  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
+
+  cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
+
+  return cache;
 }
 
+/* Our frame ID for a stub frame is the current SP and LR.  */
+
 static void
-convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr,
-                    int endianess)
+arm_stub_this_id (struct frame_info *this_frame,
+                 void **this_cache,
+                 struct frame_id *this_id)
 {
-  DOUBLEST d;
+  struct arm_prologue_cache *cache;
 
-  floatformat_to_doublest (fmt, ptr, &d);
-  if (endianess == BFD_ENDIAN_BIG)
-    floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
-  else
-    floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
-                              &d, dbl);
+  if (*this_cache == NULL)
+    *this_cache = arm_make_stub_cache (this_frame);
+  cache = *this_cache;
+
+  *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
 }
 
 static int
-condition_true (unsigned long cond, unsigned long status_reg)
+arm_stub_unwind_sniffer (const struct frame_unwind *self,
+                        struct frame_info *this_frame,
+                        void **this_prologue_cache)
 {
-  if (cond == INST_AL || cond == INST_NV)
+  CORE_ADDR addr_in_block;
+  char dummy[4];
+
+  addr_in_block = get_frame_address_in_block (this_frame);
+  if (in_plt_section (addr_in_block, NULL)
+      /* We also use the stub winder if the target memory is unreadable
+        to avoid having the prologue unwinder trying to read it.  */
+      || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
     return 1;
 
-  switch (cond)
-    {
-    case INST_EQ:
-      return ((status_reg & FLAG_Z) != 0);
-    case INST_NE:
-      return ((status_reg & FLAG_Z) == 0);
-    case INST_CS:
-      return ((status_reg & FLAG_C) != 0);
-    case INST_CC:
-      return ((status_reg & FLAG_C) == 0);
-    case INST_MI:
-      return ((status_reg & FLAG_N) != 0);
-    case INST_PL:
-      return ((status_reg & FLAG_N) == 0);
-    case INST_VS:
-      return ((status_reg & FLAG_V) != 0);
-    case INST_VC:
-      return ((status_reg & FLAG_V) == 0);
-    case INST_HI:
-      return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
-    case INST_LS:
-      return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
-    case INST_GE:
-      return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
-    case INST_LT:
-      return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
-    case INST_GT:
-      return (((status_reg & FLAG_Z) == 0) &&
-             (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
-    case INST_LE:
-      return (((status_reg & FLAG_Z) != 0) ||
-             (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
-    }
-  return 1;
+  return 0;
 }
 
-/* Support routines for single stepping.  Calculate the next PC value.  */
-#define submask(x) ((1L << ((x) + 1)) - 1)
-#define bit(obj,st) (((obj) >> (st)) & 1)
-#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
-#define sbits(obj,st,fn) \
-  ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
-#define BranchDest(addr,instr) \
-  ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
-#define ARM_PC_32 1
+struct frame_unwind arm_stub_unwind = {
+  NORMAL_FRAME,
+  default_frame_unwind_stop_reason,
+  arm_stub_this_id,
+  arm_prologue_prev_register,
+  NULL,
+  arm_stub_unwind_sniffer
+};
 
-static unsigned long
-shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry,
-                unsigned long pc_val, unsigned long status_reg)
+static CORE_ADDR
+arm_normal_frame_base (struct frame_info *this_frame, void **this_cache)
 {
-  unsigned long res, shift;
-  int rm = bits (inst, 0, 3);
-  unsigned long shifttype = bits (inst, 5, 6);
-
-  if (bit (inst, 4))
-    {
-      int rs = bits (inst, 8, 11);
-      shift = (rs == 15 ? pc_val + 8
-                       : get_frame_register_unsigned (frame, rs)) & 0xFF;
-    }
-  else
-    shift = bits (inst, 7, 11);
-
-  res = (rm == 15
-        ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
-           + (bit (inst, 4) ? 12 : 8))
-        : get_frame_register_unsigned (frame, rm));
+  struct arm_prologue_cache *cache;
 
-  switch (shifttype)
-    {
-    case 0:                    /* LSL */
-      res = shift >= 32 ? 0 : res << shift;
-      break;
+  if (*this_cache == NULL)
+    *this_cache = arm_make_prologue_cache (this_frame);
+  cache = *this_cache;
 
-    case 1:                    /* LSR */
-      res = shift >= 32 ? 0 : res >> shift;
-      break;
+  return cache->prev_sp - cache->framesize;
+}
 
-    case 2:                    /* ASR */
-      if (shift >= 32)
-       shift = 31;
-      res = ((res & 0x80000000L)
-            ? ~((~res) >> shift) : res >> shift);
-      break;
+struct frame_base arm_normal_base = {
+  &arm_prologue_unwind,
+  arm_normal_frame_base,
+  arm_normal_frame_base,
+  arm_normal_frame_base
+};
 
-    case 3:                    /* ROR/RRX */
-      shift &= 31;
-      if (shift == 0)
-       res = (res >> 1) | (carry ? 0x80000000L : 0);
-      else
-       res = (res >> shift) | (res << (32 - shift));
-      break;
-    }
+/* Assuming THIS_FRAME is a dummy, return the frame ID of that
+   dummy frame.  The frame ID's base needs to match the TOS value
+   saved by save_dummy_frame_tos() and returned from
+   arm_push_dummy_call, and the PC needs to match the dummy frame's
+   breakpoint.  */
 
-  return res & 0xffffffff;
+static struct frame_id
+arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
+{
+  return frame_id_build (get_frame_register_unsigned (this_frame,
+                                                     ARM_SP_REGNUM),
+                        get_frame_pc (this_frame));
 }
 
-/* Return number of 1-bits in VAL.  */
+/* Given THIS_FRAME, find the previous frame's resume PC (which will
+   be used to construct the previous frame's ID, after looking up the
+   containing function).  */
 
-static int
-bitcount (unsigned long val)
+static CORE_ADDR
+arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
 {
-  int nbits;
-  for (nbits = 0; val != 0; nbits++)
-    val &= val - 1;            /* delete rightmost 1-bit in val */
-  return nbits;
+  CORE_ADDR pc;
+  pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
+  return arm_addr_bits_remove (gdbarch, pc);
 }
 
 static CORE_ADDR
-thumb_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
+arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
 {
-  struct gdbarch *gdbarch = get_frame_arch (frame);
-  unsigned long pc_val = ((unsigned long) pc) + 4;     /* PC after prefetch */
-  unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
-  CORE_ADDR nextpc = pc + 2;           /* default is next instruction */
-  unsigned long offset;
+  return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
+}
 
-  if (gdbarch_byte_order_for_code (gdbarch) != gdbarch_byte_order (gdbarch))
-    inst1 = SWAP_SHORT (inst1);
+static struct value *
+arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
+                         int regnum)
+{
+  struct gdbarch * gdbarch = get_frame_arch (this_frame);
+  CORE_ADDR lr, cpsr;
+  ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
 
-  if ((inst1 & 0xff00) == 0xbd00)      /* pop {rlist, pc} */
+  switch (regnum)
     {
-      CORE_ADDR sp;
+    case ARM_PC_REGNUM:
+      /* The PC is normally copied from the return column, which
+        describes saves of LR.  However, that version may have an
+        extra bit set to indicate Thumb state.  The bit is not
+        part of the PC.  */
+      lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
+      return frame_unwind_got_constant (this_frame, regnum,
+                                       arm_addr_bits_remove (gdbarch, lr));
 
-      /* Fetch the saved PC from the stack.  It's stored above
-         all of the other registers.  */
-      offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE;
-      sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM);
-      nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
-      nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
-      if (nextpc == pc)
-       error (_("Infinite loop detected"));
-    }
-  else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
-    {
-      unsigned long status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
-      unsigned long cond = bits (inst1, 8, 11);
-      if (cond != 0x0f && condition_true (cond, status))    /* 0x0f = SWI */
-       nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
-    }
-  else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
-    {
-      nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
-    }
-  else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
-    {
-      unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
-      if (gdbarch_byte_order_for_code (gdbarch) != gdbarch_byte_order (gdbarch))
-       inst2 = SWAP_SHORT (inst2);
-      offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
-      nextpc = pc_val + offset;
-      /* For BLX make sure to clear the low bits.  */
-      if (bits (inst2, 11, 12) == 1)
-       nextpc = nextpc & 0xfffffffc;
-    }
-  else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
-    {
-      if (bits (inst1, 3, 6) == 0x0f)
-       nextpc = pc_val;
+    case ARM_PS_REGNUM:
+      /* Reconstruct the T bit; see arm_prologue_prev_register for details.  */
+      cpsr = get_frame_register_unsigned (this_frame, regnum);
+      lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
+      if (IS_THUMB_ADDR (lr))
+       cpsr |= t_bit;
       else
-       nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
+       cpsr &= ~t_bit;
+      return frame_unwind_got_constant (this_frame, regnum, cpsr);
 
-      nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
-      if (nextpc == pc)
-       error (_("Infinite loop detected"));
+    default:
+      internal_error (__FILE__, __LINE__,
+                     _("Unexpected register %d"), regnum);
     }
+}
 
-  return nextpc;
+static void
+arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
+                          struct dwarf2_frame_state_reg *reg,
+                          struct frame_info *this_frame)
+{
+  switch (regnum)
+    {
+    case ARM_PC_REGNUM:
+    case ARM_PS_REGNUM:
+      reg->how = DWARF2_FRAME_REG_FN;
+      reg->loc.fn = arm_dwarf2_prev_register;
+      break;
+    case ARM_SP_REGNUM:
+      reg->how = DWARF2_FRAME_REG_CFA;
+      break;
+    }
 }
 
-CORE_ADDR
-arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
+/* Return true if we are in the function's epilogue, i.e. after the
+   instruction that destroyed the function's stack frame.  */
+
+static int
+thumb_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
 {
-  struct gdbarch *gdbarch = get_frame_arch (frame);
-  unsigned long pc_val;
-  unsigned long this_instr;
-  unsigned long status;
-  CORE_ADDR nextpc;
+  enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
+  unsigned int insn, insn2;
+  int found_return = 0, found_stack_adjust = 0;
+  CORE_ADDR func_start, func_end;
+  CORE_ADDR scan_pc;
+  gdb_byte buf[4];
+
+  if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
+    return 0;
 
-  if (arm_frame_is_thumb (frame))
-    return thumb_get_next_pc (frame, pc);
+  /* The epilogue is a sequence of instructions along the following lines:
 
-  pc_val = (unsigned long) pc;
-  this_instr = read_memory_unsigned_integer (pc, 4);
+    - add stack frame size to SP or FP
+    - [if frame pointer used] restore SP from FP
+    - restore registers from SP [may include PC]
+    - a return-type instruction [if PC wasn't already restored]
 
-  if (gdbarch_byte_order_for_code (gdbarch) != gdbarch_byte_order (gdbarch))
-    this_instr = SWAP_INT (this_instr);
+    In a first pass, we scan forward from the current PC and verify the
+    instructions we find as compatible with this sequence, ending in a
+    return instruction.
 
-  status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
-  nextpc = (CORE_ADDR) (pc_val + 4);   /* Default case */
+    However, this is not sufficient to distinguish indirect function calls
+    within a function from indirect tail calls in the epilogue in some cases.
+    Therefore, if we didn't already find any SP-changing instruction during
+    forward scan, we add a backward scanning heuristic to ensure we actually
+    are in the epilogue.  */
 
-  if (bits (this_instr, 28, 31) == INST_NV)
-    switch (bits (this_instr, 24, 27))
-      {
-      case 0xa:
-      case 0xb:
-       {
-         /* Branch with Link and change to Thumb.  */
-         nextpc = BranchDest (pc, this_instr);
-         nextpc |= bit (this_instr, 24) << 1;
+  scan_pc = pc;
+  while (scan_pc < func_end && !found_return)
+    {
+      if (target_read_memory (scan_pc, buf, 2))
+       break;
 
-         nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
-         if (nextpc == pc)
-           error (_("Infinite loop detected"));
-         break;
+      scan_pc += 2;
+      insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
+
+      if ((insn & 0xff80) == 0x4700)  /* bx <Rm> */
+       found_return = 1;
+      else if (insn == 0x46f7)  /* mov pc, lr */
+       found_return = 1;
+      else if (insn == 0x46bd)  /* mov sp, r7 */
+       found_stack_adjust = 1;
+      else if ((insn & 0xff00) == 0xb000)  /* add sp, imm or sub sp, imm  */
+       found_stack_adjust = 1;
+      else if ((insn & 0xfe00) == 0xbc00)  /* pop <registers> */
+       {
+         found_stack_adjust = 1;
+         if (insn & 0x0100)  /* <registers> include PC.  */
+           found_return = 1;
        }
-      case 0xc:
-      case 0xd:
-      case 0xe:
-       /* Coprocessor register transfer.  */
-        if (bits (this_instr, 12, 15) == 15)
-         error (_("Invalid update to pc in instruction"));
-       break;
-      }
-  else if (condition_true (bits (this_instr, 28, 31), status))
-    {
-      switch (bits (this_instr, 24, 27))
+      else if (thumb_insn_size (insn) == 4)  /* 32-bit Thumb-2 instruction */
        {
-       case 0x0:
-       case 0x1:                       /* data processing */
-       case 0x2:
-       case 0x3:
-         {
-           unsigned long operand1, operand2, result = 0;
-           unsigned long rn;
-           int c;
+         if (target_read_memory (scan_pc, buf, 2))
+           break;
 
-           if (bits (this_instr, 12, 15) != 15)
-             break;
+         scan_pc += 2;
+         insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code);
 
-           if (bits (this_instr, 22, 25) == 0
-               && bits (this_instr, 4, 7) == 9)        /* multiply */
-             error (_("Invalid update to pc in instruction"));
+         if (insn == 0xe8bd)  /* ldm.w sp!, <registers> */
+           {
+             found_stack_adjust = 1;
+             if (insn2 & 0x8000)  /* <registers> include PC.  */
+               found_return = 1;
+           }
+         else if (insn == 0xf85d  /* ldr.w <Rt>, [sp], #4 */
+                  && (insn2 & 0x0fff) == 0x0b04)
+           {
+             found_stack_adjust = 1;
+             if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC.  */
+               found_return = 1;
+           }
+         else if ((insn & 0xffbf) == 0xecbd  /* vldm sp!, <list> */
+                  && (insn2 & 0x0e00) == 0x0a00)
+           found_stack_adjust = 1;
+         else
+           break;
+       }
+      else
+       break;
+    }
 
-           /* BX <reg>, BLX <reg> */
-           if (bits (this_instr, 4, 27) == 0x12fff1
-               || bits (this_instr, 4, 27) == 0x12fff3)
-             {
-               rn = bits (this_instr, 0, 3);
-               result = (rn == 15) ? pc_val + 8
-                                   : get_frame_register_unsigned (frame, rn);
-               nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
-                                      (gdbarch, result);
+  if (!found_return)
+    return 0;
 
-               if (nextpc == pc)
-                 error (_("Infinite loop detected"));
+  /* Since any instruction in the epilogue sequence, with the possible
+     exception of return itself, updates the stack pointer, we need to
+     scan backwards for at most one instruction.  Try either a 16-bit or
+     a 32-bit instruction.  This is just a heuristic, so we do not worry
+     too much about false positives.  */
 
-               return nextpc;
-             }
+  if (!found_stack_adjust)
+    {
+      if (pc - 4 < func_start)
+       return 0;
+      if (target_read_memory (pc - 4, buf, 4))
+       return 0;
 
-           /* Multiply into PC */
-           c = (status & FLAG_C) ? 1 : 0;
-           rn = bits (this_instr, 16, 19);
-           operand1 = (rn == 15) ? pc_val + 8
-                                 : get_frame_register_unsigned (frame, rn);
+      insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
+      insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code);
+
+      if (insn2 == 0x46bd)  /* mov sp, r7 */
+       found_stack_adjust = 1;
+      else if ((insn2 & 0xff00) == 0xb000)  /* add sp, imm or sub sp, imm  */
+       found_stack_adjust = 1;
+      else if ((insn2 & 0xff00) == 0xbc00)  /* pop <registers> without PC */
+       found_stack_adjust = 1;
+      else if (insn == 0xe8bd)  /* ldm.w sp!, <registers> */
+       found_stack_adjust = 1;
+      else if (insn == 0xf85d  /* ldr.w <Rt>, [sp], #4 */
+              && (insn2 & 0x0fff) == 0x0b04)
+       found_stack_adjust = 1;
+      else if ((insn & 0xffbf) == 0xecbd  /* vldm sp!, <list> */
+              && (insn2 & 0x0e00) == 0x0a00)
+       found_stack_adjust = 1;
+    }
 
-           if (bit (this_instr, 25))
-             {
-               unsigned long immval = bits (this_instr, 0, 7);
-               unsigned long rotate = 2 * bits (this_instr, 8, 11);
-               operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
-                 & 0xffffffff;
-             }
-           else                /* operand 2 is a shifted register */
-             operand2 = shifted_reg_val (frame, this_instr, c, pc_val, status);
+  return found_stack_adjust;
+}
 
-           switch (bits (this_instr, 21, 24))
-             {
-             case 0x0: /*and */
-               result = operand1 & operand2;
-               break;
+/* Return true if we are in the function's epilogue, i.e. after the
+   instruction that destroyed the function's stack frame.  */
 
-             case 0x1: /*eor */
-               result = operand1 ^ operand2;
-               break;
+static int
+arm_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
+{
+  enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
+  unsigned int insn;
+  int found_return, found_stack_adjust;
+  CORE_ADDR func_start, func_end;
 
-             case 0x2: /*sub */
-               result = operand1 - operand2;
-               break;
+  if (arm_pc_is_thumb (gdbarch, pc))
+    return thumb_in_function_epilogue_p (gdbarch, pc);
 
-             case 0x3: /*rsb */
-               result = operand2 - operand1;
-               break;
+  if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
+    return 0;
 
-             case 0x4: /*add */
-               result = operand1 + operand2;
-               break;
+  /* We are in the epilogue if the previous instruction was a stack
+     adjustment and the next instruction is a possible return (bx, mov
+     pc, or pop).  We could have to scan backwards to find the stack
+     adjustment, or forwards to find the return, but this is a decent
+     approximation.  First scan forwards.  */
 
-             case 0x5: /*adc */
-               result = operand1 + operand2 + c;
-               break;
+  found_return = 0;
+  insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
+  if (bits (insn, 28, 31) != INST_NV)
+    {
+      if ((insn & 0x0ffffff0) == 0x012fff10)
+       /* BX.  */
+       found_return = 1;
+      else if ((insn & 0x0ffffff0) == 0x01a0f000)
+       /* MOV PC.  */
+       found_return = 1;
+      else if ((insn & 0x0fff0000) == 0x08bd0000
+         && (insn & 0x0000c000) != 0)
+       /* POP (LDMIA), including PC or LR.  */
+       found_return = 1;
+    }
 
-             case 0x6: /*sbc */
-               result = operand1 - operand2 + c;
-               break;
+  if (!found_return)
+    return 0;
 
-             case 0x7: /*rsc */
-               result = operand2 - operand1 + c;
-               break;
+  /* Scan backwards.  This is just a heuristic, so do not worry about
+     false positives from mode changes.  */
 
-             case 0x8:
-             case 0x9:
-             case 0xa:
-             case 0xb: /* tst, teq, cmp, cmn */
-               result = (unsigned long) nextpc;
-               break;
+  if (pc < func_start + 4)
+    return 0;
 
-             case 0xc: /*orr */
-               result = operand1 | operand2;
-               break;
+  found_stack_adjust = 0;
+  insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
+  if (bits (insn, 28, 31) != INST_NV)
+    {
+      if ((insn & 0x0df0f000) == 0x0080d000)
+       /* ADD SP (register or immediate).  */
+       found_stack_adjust = 1;
+      else if ((insn & 0x0df0f000) == 0x0040d000)
+       /* SUB SP (register or immediate).  */
+       found_stack_adjust = 1;
+      else if ((insn & 0x0ffffff0) == 0x01a0d000)
+       /* MOV SP.  */
+       found_stack_adjust = 1;
+      else if ((insn & 0x0fff0000) == 0x08bd0000)
+       /* POP (LDMIA).  */
+       found_stack_adjust = 1;
+    }
 
-             case 0xd: /*mov */
-               /* Always step into a function.  */
-               result = operand2;
-               break;
+  if (found_stack_adjust)
+    return 1;
 
-             case 0xe: /*bic */
-               result = operand1 & ~operand2;
-               break;
+  return 0;
+}
 
-             case 0xf: /*mvn */
-               result = ~operand2;
-               break;
-             }
-           nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
-                                  (gdbarch, result);
 
-           if (nextpc == pc)
-             error (_("Infinite loop detected"));
-           break;
-         }
+/* When arguments must be pushed onto the stack, they go on in reverse
+   order.  The code below implements a FILO (stack) to do this.  */
 
-       case 0x4:
-       case 0x5:               /* data transfer */
-       case 0x6:
-       case 0x7:
-         if (bit (this_instr, 20))
-           {
-             /* load */
-             if (bits (this_instr, 12, 15) == 15)
-               {
-                 /* rd == pc */
-                 unsigned long rn;
-                 unsigned long base;
+struct stack_item
+{
+  int len;
+  struct stack_item *prev;
+  void *data;
+};
 
-                 if (bit (this_instr, 22))
-                   error (_("Invalid update to pc in instruction"));
+static struct stack_item *
+push_stack_item (struct stack_item *prev, const void *contents, int len)
+{
+  struct stack_item *si;
+  si = xmalloc (sizeof (struct stack_item));
+  si->data = xmalloc (len);
+  si->len = len;
+  si->prev = prev;
+  memcpy (si->data, contents, len);
+  return si;
+}
 
-                 /* byte write to PC */
-                 rn = bits (this_instr, 16, 19);
-                 base = (rn == 15) ? pc_val + 8
-                                   : get_frame_register_unsigned (frame, rn);
-                 if (bit (this_instr, 24))
-                   {
-                     /* pre-indexed */
-                     int c = (status & FLAG_C) ? 1 : 0;
-                     unsigned long offset =
-                     (bit (this_instr, 25)
-                      ? shifted_reg_val (frame, this_instr, c, pc_val, status)
-                      : bits (this_instr, 0, 11));
+static struct stack_item *
+pop_stack_item (struct stack_item *si)
+{
+  struct stack_item *dead = si;
+  si = si->prev;
+  xfree (dead->data);
+  xfree (dead);
+  return si;
+}
 
-                     if (bit (this_instr, 23))
-                       base += offset;
-                     else
-                       base -= offset;
-                   }
-                 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
-                                                           4);
 
-                 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
+/* Return the alignment (in bytes) of the given type.  */
 
-                 if (nextpc == pc)
-                   error (_("Infinite loop detected"));
-               }
-           }
-         break;
+static int
+arm_type_align (struct type *t)
+{
+  int n;
+  int align;
+  int falign;
 
-       case 0x8:
-       case 0x9:               /* block transfer */
-         if (bit (this_instr, 20))
-           {
-             /* LDM */
-             if (bit (this_instr, 15))
-               {
-                 /* loading pc */
-                 int offset = 0;
+  t = check_typedef (t);
+  switch (TYPE_CODE (t))
+    {
+    default:
+      /* Should never happen.  */
+      internal_error (__FILE__, __LINE__, _("unknown type alignment"));
+      return 4;
 
-                 if (bit (this_instr, 23))
-                   {
-                     /* up */
-                     unsigned long reglist = bits (this_instr, 0, 14);
-                     offset = bitcount (reglist) * 4;
-                     if (bit (this_instr, 24))         /* pre */
-                       offset += 4;
-                   }
-                 else if (bit (this_instr, 24))
-                   offset = -4;
+    case TYPE_CODE_PTR:
+    case TYPE_CODE_ENUM:
+    case TYPE_CODE_INT:
+    case TYPE_CODE_FLT:
+    case TYPE_CODE_SET:
+    case TYPE_CODE_RANGE:
+    case TYPE_CODE_BITSTRING:
+    case TYPE_CODE_REF:
+    case TYPE_CODE_CHAR:
+    case TYPE_CODE_BOOL:
+      return TYPE_LENGTH (t);
 
-                 {
-                   unsigned long rn_val =
-                   get_frame_register_unsigned (frame,
-                                                bits (this_instr, 16, 19));
-                   nextpc =
-                     (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
-                                                                 + offset),
-                                                      4);
-                 }
-                 nextpc = gdbarch_addr_bits_remove
-                            (gdbarch, nextpc);
-                 if (nextpc == pc)
-                   error (_("Infinite loop detected"));
-               }
-           }
-         break;
+    case TYPE_CODE_ARRAY:
+    case TYPE_CODE_COMPLEX:
+      /* TODO: What about vector types?  */
+      return arm_type_align (TYPE_TARGET_TYPE (t));
 
-       case 0xb:               /* branch & link */
-       case 0xa:               /* branch */
-         {
-           nextpc = BranchDest (pc, this_instr);
+    case TYPE_CODE_STRUCT:
+    case TYPE_CODE_UNION:
+      align = 1;
+      for (n = 0; n < TYPE_NFIELDS (t); n++)
+       {
+         falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
+         if (falign > align)
+           align = falign;
+       }
+      return align;
+    }
+}
 
-           nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
-           if (nextpc == pc)
-             error (_("Infinite loop detected"));
-           break;
-         }
+/* Possible base types for a candidate for passing and returning in
+   VFP registers.  */
 
-       case 0xc:
-       case 0xd:
-       case 0xe:               /* coproc ops */
-       case 0xf:               /* SWI */
-         break;
+enum arm_vfp_cprc_base_type
+{
+  VFP_CPRC_UNKNOWN,
+  VFP_CPRC_SINGLE,
+  VFP_CPRC_DOUBLE,
+  VFP_CPRC_VEC64,
+  VFP_CPRC_VEC128
+};
 
-       default:
-         fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
-         return (pc);
-       }
-    }
+/* The length of one element of base type B.  */
 
-  return nextpc;
+static unsigned
+arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b)
+{
+  switch (b)
+    {
+    case VFP_CPRC_SINGLE:
+      return 4;
+    case VFP_CPRC_DOUBLE:
+      return 8;
+    case VFP_CPRC_VEC64:
+      return 8;
+    case VFP_CPRC_VEC128:
+      return 16;
+    default:
+      internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
+                     (int) b);
+    }
 }
 
-/* single_step() is called just before we want to resume the inferior,
-   if we want to single-step it but there is no hardware or kernel
-   single-step support.  We find the target of the coming instruction
-   and breakpoint it.  */
+/* The character ('s', 'd' or 'q') for the type of VFP register used
+   for passing base type B.  */
 
-int
-arm_software_single_step (struct frame_info *frame)
+static int
+arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b)
 {
-  /* NOTE: This may insert the wrong breakpoint instruction when
-     single-stepping over a mode-changing instruction, if the
-     CPSR heuristics are used.  */
-
-  CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
-  insert_single_step_breakpoint (next_pc);
-
-  return 1;
+  switch (b)
+    {
+    case VFP_CPRC_SINGLE:
+      return 's';
+    case VFP_CPRC_DOUBLE:
+      return 'd';
+    case VFP_CPRC_VEC64:
+      return 'd';
+    case VFP_CPRC_VEC128:
+      return 'q';
+    default:
+      internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
+                     (int) b);
+    }
 }
 
-#include "bfd-in2.h"
-#include "libcoff.h"
+/* Determine whether T may be part of a candidate for passing and
+   returning in VFP registers, ignoring the limit on the total number
+   of components.  If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the
+   classification of the first valid component found; if it is not
+   VFP_CPRC_UNKNOWN, all components must have the same classification
+   as *BASE_TYPE.  If it is found that T contains a type not permitted
+   for passing and returning in VFP registers, a type differently
+   classified from *BASE_TYPE, or two types differently classified
+   from each other, return -1, otherwise return the total number of
+   base-type elements found (possibly 0 in an empty structure or
+   array).  Vectors and complex types are not currently supported,
+   matching the generic AAPCS support.  */
 
 static int
-gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
+arm_vfp_cprc_sub_candidate (struct type *t,
+                           enum arm_vfp_cprc_base_type *base_type)
 {
-  if (arm_pc_is_thumb (memaddr))
+  t = check_typedef (t);
+  switch (TYPE_CODE (t))
     {
-      static asymbol *asym;
-      static combined_entry_type ce;
-      static struct coff_symbol_struct csym;
-      static struct bfd fake_bfd;
-      static bfd_target fake_target;
-
-      if (csym.native == NULL)
+    case TYPE_CODE_FLT:
+      switch (TYPE_LENGTH (t))
        {
-         /* Create a fake symbol vector containing a Thumb symbol.
-            This is solely so that the code in print_insn_little_arm() 
-            and print_insn_big_arm() in opcodes/arm-dis.c will detect
-            the presence of a Thumb symbol and switch to decoding
-            Thumb instructions.  */
+       case 4:
+         if (*base_type == VFP_CPRC_UNKNOWN)
+           *base_type = VFP_CPRC_SINGLE;
+         else if (*base_type != VFP_CPRC_SINGLE)
+           return -1;
+         return 1;
+
+       case 8:
+         if (*base_type == VFP_CPRC_UNKNOWN)
+           *base_type = VFP_CPRC_DOUBLE;
+         else if (*base_type != VFP_CPRC_DOUBLE)
+           return -1;
+         return 1;
 
-         fake_target.flavour = bfd_target_coff_flavour;
-         fake_bfd.xvec = &fake_target;
-         ce.u.syment.n_sclass = C_THUMBEXTFUNC;
-         csym.native = &ce;
-         csym.symbol.the_bfd = &fake_bfd;
-         csym.symbol.name = "fake";
-         asym = (asymbol *) & csym;
+       default:
+         return -1;
        }
+      break;
 
-      memaddr = UNMAKE_THUMB_ADDR (memaddr);
-      info->symbols = &asym;
+    case TYPE_CODE_ARRAY:
+      {
+       int count;
+       unsigned unitlen;
+       count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t), base_type);
+       if (count == -1)
+         return -1;
+       if (TYPE_LENGTH (t) == 0)
+         {
+           gdb_assert (count == 0);
+           return 0;
+         }
+       else if (count == 0)
+         return -1;
+       unitlen = arm_vfp_cprc_unit_length (*base_type);
+       gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0);
+       return TYPE_LENGTH (t) / unitlen;
+      }
+      break;
+
+    case TYPE_CODE_STRUCT:
+      {
+       int count = 0;
+       unsigned unitlen;
+       int i;
+       for (i = 0; i < TYPE_NFIELDS (t); i++)
+         {
+           int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
+                                                       base_type);
+           if (sub_count == -1)
+             return -1;
+           count += sub_count;
+         }
+       if (TYPE_LENGTH (t) == 0)
+         {
+           gdb_assert (count == 0);
+           return 0;
+         }
+       else if (count == 0)
+         return -1;
+       unitlen = arm_vfp_cprc_unit_length (*base_type);
+       if (TYPE_LENGTH (t) != unitlen * count)
+         return -1;
+       return count;
+      }
+
+    case TYPE_CODE_UNION:
+      {
+       int count = 0;
+       unsigned unitlen;
+       int i;
+       for (i = 0; i < TYPE_NFIELDS (t); i++)
+         {
+           int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
+                                                       base_type);
+           if (sub_count == -1)
+             return -1;
+           count = (count > sub_count ? count : sub_count);
+         }
+       if (TYPE_LENGTH (t) == 0)
+         {
+           gdb_assert (count == 0);
+           return 0;
+         }
+       else if (count == 0)
+         return -1;
+       unitlen = arm_vfp_cprc_unit_length (*base_type);
+       if (TYPE_LENGTH (t) != unitlen * count)
+         return -1;
+       return count;
+      }
+
+    default:
+      break;
     }
-  else
-    info->symbols = NULL;
 
-  if (info->endian == BFD_ENDIAN_BIG)
-    return print_insn_big_arm (memaddr, info);
-  else
-    return print_insn_little_arm (memaddr, info);
+  return -1;
 }
 
-/* The following define instruction sequences that will cause ARM
-   cpu's to take an undefined instruction trap.  These are used to
-   signal a breakpoint to GDB.
-   
-   The newer ARMv4T cpu's are capable of operating in ARM or Thumb
-   modes.  A different instruction is required for each mode.  The ARM
-   cpu's can also be big or little endian.  Thus four different
-   instructions are needed to support all cases.
-   
-   Note: ARMv4 defines several new instructions that will take the
-   undefined instruction trap.  ARM7TDMI is nominally ARMv4T, but does
-   not in fact add the new instructions.  The new undefined
-   instructions in ARMv4 are all instructions that had no defined
-   behaviour in earlier chips.  There is no guarantee that they will
-   raise an exception, but may be treated as NOP's.  In practice, it
-   may only safe to rely on instructions matching:
-   
-   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 
-   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
-   C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
-   
-   Even this may only true if the condition predicate is true. The
-   following use a condition predicate of ALWAYS so it is always TRUE.
-   
-   There are other ways of forcing a breakpoint.  GNU/Linux, RISC iX,
-   and NetBSD all use a software interrupt rather than an undefined
-   instruction to force a trap.  This can be handled by by the
-   abi-specific code during establishment of the gdbarch vector.  */
-
-#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
-#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
-#define THUMB_LE_BREAKPOINT {0xbe,0xbe}
-#define THUMB_BE_BREAKPOINT {0xbe,0xbe}
+/* Determine whether T is a VFP co-processor register candidate (CPRC)
+   if passed to or returned from a non-variadic function with the VFP
+   ABI in effect.  Return 1 if it is, 0 otherwise.  If it is, set
+   *BASE_TYPE to the base type for T and *COUNT to the number of
+   elements of that base type before returning.  */
 
-static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
-static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
-static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
-static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
+static int
+arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type,
+                       int *count)
+{
+  enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN;
+  int c = arm_vfp_cprc_sub_candidate (t, &b);
+  if (c <= 0 || c > 4)
+    return 0;
+  *base_type = b;
+  *count = c;
+  return 1;
+}
 
-/* Determine the type and size of breakpoint to insert at PCPTR.  Uses
-   the program counter value to determine whether a 16-bit or 32-bit
-   breakpoint should be used.  It returns a pointer to a string of
-   bytes that encode a breakpoint instruction, stores the length of
-   the string to *lenptr, and adjusts the program counter (if
-   necessary) to point to the actual memory location where the
-   breakpoint should be inserted.  */
+/* Return 1 if the VFP ABI should be used for passing arguments to and
+   returning values from a function of type FUNC_TYPE, 0
+   otherwise.  */
 
-static const unsigned char *
-arm_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
+static int
+arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type)
 {
   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
-  if (arm_pc_is_thumb (*pcptr))
-    {
-      *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
-      *lenptr = tdep->thumb_breakpoint_size;
-      return tdep->thumb_breakpoint;
-    }
-  else
-    {
-      *lenptr = tdep->arm_breakpoint_size;
-      return tdep->arm_breakpoint;
-    }
+  /* Variadic functions always use the base ABI.  Assume that functions
+     without debug info are not variadic.  */
+  if (func_type && TYPE_VARARGS (check_typedef (func_type)))
+    return 0;
+  /* The VFP ABI is only supported as a variant of AAPCS.  */
+  if (tdep->arm_abi != ARM_ABI_AAPCS)
+    return 0;
+  return gdbarch_tdep (gdbarch)->fp_model == ARM_FLOAT_VFP;
 }
 
-/* Extract from an array REGBUF containing the (raw) register state a
-   function return value of type TYPE, and copy that, in virtual
-   format, into VALBUF.  */
+/* We currently only support passing parameters in integer registers, which
+   conforms with GCC's default model, and VFP argument passing following
+   the VFP variant of AAPCS.  Several other variants exist and
+   we should probably support some of them based on the selected ABI.  */
 
-static void
-arm_extract_return_value (struct type *type, struct regcache *regs,
-                         gdb_byte *valbuf)
+static CORE_ADDR
+arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
+                    struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
+                    struct value **args, CORE_ADDR sp, int struct_return,
+                    CORE_ADDR struct_addr)
 {
-  struct gdbarch *gdbarch = get_regcache_arch (regs);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  int argnum;
+  int argreg;
+  int nstack;
+  struct stack_item *si = NULL;
+  int use_vfp_abi;
+  struct type *ftype;
+  unsigned vfp_regs_free = (1 << 16) - 1;
 
-  if (TYPE_CODE_FLT == TYPE_CODE (type))
-    {
-      switch (gdbarch_tdep (gdbarch)->fp_model)
-       {
-       case ARM_FLOAT_FPA:
-         {
-           /* The value is in register F0 in internal format.  We need to
-              extract the raw value and then convert it to the desired
-              internal type.  */
-           bfd_byte tmpbuf[FP_REGISTER_SIZE];
+  /* Determine the type of this function and whether the VFP ABI
+     applies.  */
+  ftype = check_typedef (value_type (function));
+  if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
+    ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
+  use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype);
 
-           regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
-           convert_from_extended (floatformat_from_type (type), tmpbuf,
-                                  valbuf, gdbarch_byte_order (gdbarch));
-         }
-         break;
+  /* Set the return address.  For the ARM, the return breakpoint is
+     always at BP_ADDR.  */
+  if (arm_pc_is_thumb (gdbarch, bp_addr))
+    bp_addr |= 1;
+  regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
 
-       case ARM_FLOAT_SOFT_FPA:
-       case ARM_FLOAT_SOFT_VFP:
-         regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
-         if (TYPE_LENGTH (type) > 4)
-           regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
-                                 valbuf + INT_REGISTER_SIZE);
-         break;
+  /* Walk through the list of args and determine how large a temporary
+     stack is required.  Need to take care here as structs may be
+     passed on the stack, and we have to push them.  */
+  nstack = 0;
 
-       default:
-         internal_error
-           (__FILE__, __LINE__,
-            _("arm_extract_return_value: Floating point model not supported"));
-         break;
-       }
+  argreg = ARM_A1_REGNUM;
+  nstack = 0;
+
+  /* The struct_return pointer occupies the first parameter
+     passing register.  */
+  if (struct_return)
+    {
+      if (arm_debug)
+       fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n",
+                           gdbarch_register_name (gdbarch, argreg),
+                           paddress (gdbarch, struct_addr));
+      regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
+      argreg++;
     }
-  else if (TYPE_CODE (type) == TYPE_CODE_INT
-          || TYPE_CODE (type) == TYPE_CODE_CHAR
-          || TYPE_CODE (type) == TYPE_CODE_BOOL
-          || TYPE_CODE (type) == TYPE_CODE_PTR
-          || TYPE_CODE (type) == TYPE_CODE_REF
-          || TYPE_CODE (type) == TYPE_CODE_ENUM)
+
+  for (argnum = 0; argnum < nargs; argnum++)
     {
-      /* If the the type is a plain integer, then the access is
-        straight-forward.  Otherwise we have to play around a bit more.  */
-      int len = TYPE_LENGTH (type);
-      int regno = ARM_A1_REGNUM;
-      ULONGEST tmp;
+      int len;
+      struct type *arg_type;
+      struct type *target_type;
+      enum type_code typecode;
+      const bfd_byte *val;
+      int align;
+      enum arm_vfp_cprc_base_type vfp_base_type;
+      int vfp_base_count;
+      int may_use_core_reg = 1;
 
-      while (len > 0)
+      arg_type = check_typedef (value_type (args[argnum]));
+      len = TYPE_LENGTH (arg_type);
+      target_type = TYPE_TARGET_TYPE (arg_type);
+      typecode = TYPE_CODE (arg_type);
+      val = value_contents (args[argnum]);
+
+      align = arm_type_align (arg_type);
+      /* Round alignment up to a whole number of words.  */
+      align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
+      /* Different ABIs have different maximum alignments.  */
+      if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
        {
-         /* By using store_unsigned_integer we avoid having to do
-            anything special for small big-endian values.  */
-         regcache_cooked_read_unsigned (regs, regno++, &tmp);
-         store_unsigned_integer (valbuf, 
-                                 (len > INT_REGISTER_SIZE
-                                  ? INT_REGISTER_SIZE : len),
-                                 tmp);
-         len -= INT_REGISTER_SIZE;
-         valbuf += INT_REGISTER_SIZE;
+         /* The APCS ABI only requires word alignment.  */
+         align = INT_REGISTER_SIZE;
+       }
+      else
+       {
+         /* The AAPCS requires at most doubleword alignment.  */
+         if (align > INT_REGISTER_SIZE * 2)
+           align = INT_REGISTER_SIZE * 2;
+       }
+
+      if (use_vfp_abi
+         && arm_vfp_call_candidate (arg_type, &vfp_base_type,
+                                    &vfp_base_count))
+       {
+         int regno;
+         int unit_length;
+         int shift;
+         unsigned mask;
+
+         /* Because this is a CPRC it cannot go in a core register or
+            cause a core register to be skipped for alignment.
+            Either it goes in VFP registers and the rest of this loop
+            iteration is skipped for this argument, or it goes on the
+            stack (and the stack alignment code is correct for this
+            case).  */
+         may_use_core_reg = 0;
+
+         unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
+         shift = unit_length / 4;
+         mask = (1 << (shift * vfp_base_count)) - 1;
+         for (regno = 0; regno < 16; regno += shift)
+           if (((vfp_regs_free >> regno) & mask) == mask)
+             break;
+
+         if (regno < 16)
+           {
+             int reg_char;
+             int reg_scaled;
+             int i;
+
+             vfp_regs_free &= ~(mask << regno);
+             reg_scaled = regno / shift;
+             reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
+             for (i = 0; i < vfp_base_count; i++)
+               {
+                 char name_buf[4];
+                 int regnum;
+                 if (reg_char == 'q')
+                   arm_neon_quad_write (gdbarch, regcache, reg_scaled + i,
+                                        val + i * unit_length);
+                 else
+                   {
+                     sprintf (name_buf, "%c%d", reg_char, reg_scaled + i);
+                     regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
+                                                           strlen (name_buf));
+                     regcache_cooked_write (regcache, regnum,
+                                            val + i * unit_length);
+                   }
+               }
+             continue;
+           }
+         else
+           {
+             /* This CPRC could not go in VFP registers, so all VFP
+                registers are now marked as used.  */
+             vfp_regs_free = 0;
+           }
+       }
+
+      /* Push stack padding for dowubleword alignment.  */
+      if (nstack & (align - 1))
+       {
+         si = push_stack_item (si, val, INT_REGISTER_SIZE);
+         nstack += INT_REGISTER_SIZE;
+       }
+      
+      /* Doubleword aligned quantities must go in even register pairs.  */
+      if (may_use_core_reg
+         && argreg <= ARM_LAST_ARG_REGNUM
+         && align > INT_REGISTER_SIZE
+         && argreg & 1)
+       argreg++;
+
+      /* If the argument is a pointer to a function, and it is a
+        Thumb function, create a LOCAL copy of the value and set
+        the THUMB bit in it.  */
+      if (TYPE_CODE_PTR == typecode
+         && target_type != NULL
+         && TYPE_CODE_FUNC == TYPE_CODE (check_typedef (target_type)))
+       {
+         CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order);
+         if (arm_pc_is_thumb (gdbarch, regval))
+           {
+             bfd_byte *copy = alloca (len);
+             store_unsigned_integer (copy, len, byte_order,
+                                     MAKE_THUMB_ADDR (regval));
+             val = copy;
+           }
        }
-    }
-  else
-    {
-      /* For a structure or union the behaviour is as if the value had
-         been stored to word-aligned memory and then loaded into 
-         registers with 32-bit load instruction(s).  */
-      int len = TYPE_LENGTH (type);
-      int regno = ARM_A1_REGNUM;
-      bfd_byte tmpbuf[INT_REGISTER_SIZE];
 
+      /* Copy the argument to general registers or the stack in
+        register-sized pieces.  Large arguments are split between
+        registers and stack.  */
       while (len > 0)
        {
-         regcache_cooked_read (regs, regno++, tmpbuf);
-         memcpy (valbuf, tmpbuf,
-                 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
-         len -= INT_REGISTER_SIZE;
-         valbuf += INT_REGISTER_SIZE;
+         int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
+
+         if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM)
+           {
+             /* The argument is being passed in a general purpose
+                register.  */
+             CORE_ADDR regval
+               = extract_unsigned_integer (val, partial_len, byte_order);
+             if (byte_order == BFD_ENDIAN_BIG)
+               regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
+             if (arm_debug)
+               fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
+                                   argnum,
+                                   gdbarch_register_name
+                                     (gdbarch, argreg),
+                                   phex (regval, INT_REGISTER_SIZE));
+             regcache_cooked_write_unsigned (regcache, argreg, regval);
+             argreg++;
+           }
+         else
+           {
+             /* Push the arguments onto the stack.  */
+             if (arm_debug)
+               fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
+                                   argnum, nstack);
+             si = push_stack_item (si, val, INT_REGISTER_SIZE);
+             nstack += INT_REGISTER_SIZE;
+           }
+             
+         len -= partial_len;
+         val += partial_len;
        }
     }
+  /* If we have an odd number of words to push, then decrement the stack
+     by one word now, so first stack argument will be dword aligned.  */
+  if (nstack & 4)
+    sp -= 4;
+
+  while (si)
+    {
+      sp -= si->len;
+      write_memory (sp, si->data, si->len);
+      si = pop_stack_item (si);
+    }
+
+  /* Finally, update teh SP register.  */
+  regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
+
+  return sp;
 }
 
 
-/* Will a function return an aggregate type in memory or in a
-   register?  Return 0 if an aggregate type can be returned in a
-   register, 1 if it must be returned in memory.  */
+/* Always align the frame to an 8-byte boundary.  This is required on
+   some platforms and harmless on the rest.  */
 
-static int
-arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
+static CORE_ADDR
+arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
 {
-  int nRc;
-  enum type_code code;
-
-  CHECK_TYPEDEF (type);
+  /* Align the stack to eight bytes.  */
+  return sp & ~ (CORE_ADDR) 7;
+}
 
-  /* In the ARM ABI, "integer" like aggregate types are returned in
-     registers.  For an aggregate type to be integer like, its size
-     must be less than or equal to INT_REGISTER_SIZE and the
-     offset of each addressable subfield must be zero.  Note that bit
-     fields are not addressable, and all addressable subfields of
-     unions always start at offset zero.
+static void
+print_fpu_flags (int flags)
+{
+  if (flags & (1 << 0))
+    fputs ("IVO ", stdout);
+  if (flags & (1 << 1))
+    fputs ("DVZ ", stdout);
+  if (flags & (1 << 2))
+    fputs ("OFL ", stdout);
+  if (flags & (1 << 3))
+    fputs ("UFL ", stdout);
+  if (flags & (1 << 4))
+    fputs ("INX ", stdout);
+  putchar ('\n');
+}
 
-     This function is based on the behaviour of GCC 2.95.1.
-     See: gcc/arm.c: arm_return_in_memory() for details.
+/* Print interesting information about the floating point processor
+   (if present) or emulator.  */
+static void
+arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
+                     struct frame_info *frame, const char *args)
+{
+  unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
+  int type;
 
-     Note: All versions of GCC before GCC 2.95.2 do not set up the
-     parameters correctly for a function returning the following
-     structure: struct { float f;}; This should be returned in memory,
-     not a register.  Richard Earnshaw sent me a patch, but I do not
-     know of any way to detect if a function like the above has been
-     compiled with the correct calling convention.  */
+  type = (status >> 24) & 127;
+  if (status & (1 << 31))
+    printf (_("Hardware FPU type %d\n"), type);
+  else
+    printf (_("Software FPU type %d\n"), type);
+  /* i18n: [floating point unit] mask */
+  fputs (_("mask: "), stdout);
+  print_fpu_flags (status >> 16);
+  /* i18n: [floating point unit] flags */
+  fputs (_("flags: "), stdout);
+  print_fpu_flags (status);
+}
 
-  /* All aggregate types that won't fit in a register must be returned
-     in memory.  */
-  if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
-    {
-      return 1;
-    }
+/* Construct the ARM extended floating point type.  */
+static struct type *
+arm_ext_type (struct gdbarch *gdbarch)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-  /* The AAPCS says all aggregates not larger than a word are returned
-     in a register.  */
-  if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
-    return 0;
+  if (!tdep->arm_ext_type)
+    tdep->arm_ext_type
+      = arch_float_type (gdbarch, -1, "builtin_type_arm_ext",
+                        floatformats_arm_ext);
 
-  /* The only aggregate types that can be returned in a register are
-     structs and unions.  Arrays must be returned in memory.  */
-  code = TYPE_CODE (type);
-  if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
-    {
-      return 1;
-    }
+  return tdep->arm_ext_type;
+}
 
-  /* Assume all other aggregate types can be returned in a register.
-     Run a check for structures, unions and arrays.  */
-  nRc = 0;
+static struct type *
+arm_neon_double_type (struct gdbarch *gdbarch)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-  if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
+  if (tdep->neon_double_type == NULL)
     {
-      int i;
-      /* Need to check if this struct/union is "integer" like.  For
-         this to be true, its size must be less than or equal to
-         INT_REGISTER_SIZE and the offset of each addressable
-         subfield must be zero.  Note that bit fields are not
-         addressable, and unions always start at offset zero.  If any
-         of the subfields is a floating point type, the struct/union
-         cannot be an integer type.  */
+      struct type *t, *elem;
+
+      t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d",
+                              TYPE_CODE_UNION);
+      elem = builtin_type (gdbarch)->builtin_uint8;
+      append_composite_type_field (t, "u8", init_vector_type (elem, 8));
+      elem = builtin_type (gdbarch)->builtin_uint16;
+      append_composite_type_field (t, "u16", init_vector_type (elem, 4));
+      elem = builtin_type (gdbarch)->builtin_uint32;
+      append_composite_type_field (t, "u32", init_vector_type (elem, 2));
+      elem = builtin_type (gdbarch)->builtin_uint64;
+      append_composite_type_field (t, "u64", elem);
+      elem = builtin_type (gdbarch)->builtin_float;
+      append_composite_type_field (t, "f32", init_vector_type (elem, 2));
+      elem = builtin_type (gdbarch)->builtin_double;
+      append_composite_type_field (t, "f64", elem);
+
+      TYPE_VECTOR (t) = 1;
+      TYPE_NAME (t) = "neon_d";
+      tdep->neon_double_type = t;
+    }
 
-      /* For each field in the object, check:
-         1) Is it FP? --> yes, nRc = 1;
-         2) Is it addressable (bitpos != 0) and
-         not packed (bitsize == 0)?
-         --> yes, nRc = 1  
-       */
+  return tdep->neon_double_type;
+}
 
-      for (i = 0; i < TYPE_NFIELDS (type); i++)
-       {
-         enum type_code field_type_code;
-         field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
+/* FIXME: The vector types are not correctly ordered on big-endian
+   targets.  Just as s0 is the low bits of d0, d0[0] is also the low
+   bits of d0 - regardless of what unit size is being held in d0.  So
+   the offset of the first uint8 in d0 is 7, but the offset of the
+   first float is 4.  This code works as-is for little-endian
+   targets.  */
 
-         /* Is it a floating point type field?  */
-         if (field_type_code == TYPE_CODE_FLT)
-           {
-             nRc = 1;
-             break;
-           }
+static struct type *
+arm_neon_quad_type (struct gdbarch *gdbarch)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-         /* If bitpos != 0, then we have to care about it.  */
-         if (TYPE_FIELD_BITPOS (type, i) != 0)
-           {
-             /* Bitfields are not addressable.  If the field bitsize is 
-                zero, then the field is not packed.  Hence it cannot be
-                a bitfield or any other packed type.  */
-             if (TYPE_FIELD_BITSIZE (type, i) == 0)
-               {
-                 nRc = 1;
-                 break;
-               }
-           }
-       }
+  if (tdep->neon_quad_type == NULL)
+    {
+      struct type *t, *elem;
+
+      t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q",
+                              TYPE_CODE_UNION);
+      elem = builtin_type (gdbarch)->builtin_uint8;
+      append_composite_type_field (t, "u8", init_vector_type (elem, 16));
+      elem = builtin_type (gdbarch)->builtin_uint16;
+      append_composite_type_field (t, "u16", init_vector_type (elem, 8));
+      elem = builtin_type (gdbarch)->builtin_uint32;
+      append_composite_type_field (t, "u32", init_vector_type (elem, 4));
+      elem = builtin_type (gdbarch)->builtin_uint64;
+      append_composite_type_field (t, "u64", init_vector_type (elem, 2));
+      elem = builtin_type (gdbarch)->builtin_float;
+      append_composite_type_field (t, "f32", init_vector_type (elem, 4));
+      elem = builtin_type (gdbarch)->builtin_double;
+      append_composite_type_field (t, "f64", init_vector_type (elem, 2));
+
+      TYPE_VECTOR (t) = 1;
+      TYPE_NAME (t) = "neon_q";
+      tdep->neon_quad_type = t;
     }
 
-  return nRc;
+  return tdep->neon_quad_type;
 }
 
-/* Write into appropriate registers a function return value of type
-   TYPE, given in virtual format.  */
+/* Return the GDB type object for the "standard" data type of data in
+   register N.  */
 
-static void
-arm_store_return_value (struct type *type, struct regcache *regs,
-                       const gdb_byte *valbuf)
+static struct type *
+arm_register_type (struct gdbarch *gdbarch, int regnum)
 {
-  struct gdbarch *gdbarch = get_regcache_arch (regs);
+  int num_regs = gdbarch_num_regs (gdbarch);
 
-  if (TYPE_CODE (type) == TYPE_CODE_FLT)
-    {
-      char buf[MAX_REGISTER_SIZE];
+  if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
+      && regnum >= num_regs && regnum < num_regs + 32)
+    return builtin_type (gdbarch)->builtin_float;
 
-      switch (gdbarch_tdep (gdbarch)->fp_model)
-       {
-       case ARM_FLOAT_FPA:
+  if (gdbarch_tdep (gdbarch)->have_neon_pseudos
+      && regnum >= num_regs + 32 && regnum < num_regs + 32 + 16)
+    return arm_neon_quad_type (gdbarch);
 
-         convert_to_extended (floatformat_from_type (type), buf, valbuf,
-                              gdbarch_byte_order (gdbarch));
-         regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
-         break;
+  /* If the target description has register information, we are only
+     in this function so that we can override the types of
+     double-precision registers for NEON.  */
+  if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
+    {
+      struct type *t = tdesc_register_type (gdbarch, regnum);
 
-       case ARM_FLOAT_SOFT_FPA:
-       case ARM_FLOAT_SOFT_VFP:
-         regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
-         if (TYPE_LENGTH (type) > 4)
-           regcache_cooked_write (regs, ARM_A1_REGNUM + 1, 
-                                  valbuf + INT_REGISTER_SIZE);
-         break;
-
-       default:
-         internal_error
-           (__FILE__, __LINE__,
-            _("arm_store_return_value: Floating point model not supported"));
-         break;
-       }
-    }
-  else if (TYPE_CODE (type) == TYPE_CODE_INT
-          || TYPE_CODE (type) == TYPE_CODE_CHAR
-          || TYPE_CODE (type) == TYPE_CODE_BOOL
-          || TYPE_CODE (type) == TYPE_CODE_PTR
-          || TYPE_CODE (type) == TYPE_CODE_REF
-          || TYPE_CODE (type) == TYPE_CODE_ENUM)
-    {
-      if (TYPE_LENGTH (type) <= 4)
-       {
-         /* Values of one word or less are zero/sign-extended and
-            returned in r0.  */
-         bfd_byte tmpbuf[INT_REGISTER_SIZE];
-         LONGEST val = unpack_long (type, valbuf);
-
-         store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
-         regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
-       }
+      if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32
+         && TYPE_CODE (t) == TYPE_CODE_FLT
+         && gdbarch_tdep (gdbarch)->have_neon)
+       return arm_neon_double_type (gdbarch);
       else
-       {
-         /* Integral values greater than one word are stored in consecutive
-            registers starting with r0.  This will always be a multiple of
-            the regiser size.  */
-         int len = TYPE_LENGTH (type);
-         int regno = ARM_A1_REGNUM;
-
-         while (len > 0)
-           {
-             regcache_cooked_write (regs, regno++, valbuf);
-             len -= INT_REGISTER_SIZE;
-             valbuf += INT_REGISTER_SIZE;
-           }
-       }
+       return t;
     }
-  else
+
+  if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
     {
-      /* For a structure or union the behaviour is as if the value had
-         been stored to word-aligned memory and then loaded into 
-         registers with 32-bit load instruction(s).  */
-      int len = TYPE_LENGTH (type);
-      int regno = ARM_A1_REGNUM;
-      bfd_byte tmpbuf[INT_REGISTER_SIZE];
+      if (!gdbarch_tdep (gdbarch)->have_fpa_registers)
+       return builtin_type (gdbarch)->builtin_void;
 
-      while (len > 0)
-       {
-         memcpy (tmpbuf, valbuf,
-                 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
-         regcache_cooked_write (regs, regno++, tmpbuf);
-         len -= INT_REGISTER_SIZE;
-         valbuf += INT_REGISTER_SIZE;
-       }
+      return arm_ext_type (gdbarch);
     }
+  else if (regnum == ARM_SP_REGNUM)
+    return builtin_type (gdbarch)->builtin_data_ptr;
+  else if (regnum == ARM_PC_REGNUM)
+    return builtin_type (gdbarch)->builtin_func_ptr;
+  else if (regnum >= ARRAY_SIZE (arm_register_names))
+    /* These registers are only supported on targets which supply
+       an XML description.  */
+    return builtin_type (gdbarch)->builtin_int0;
+  else
+    return builtin_type (gdbarch)->builtin_uint32;
 }
 
+/* Map a DWARF register REGNUM onto the appropriate GDB register
+   number.  */
 
-/* Handle function return values.  */
-
-static enum return_value_convention
-arm_return_value (struct gdbarch *gdbarch, struct type *func_type,
-                 struct type *valtype, struct regcache *regcache,
-                 gdb_byte *readbuf, const gdb_byte *writebuf)
+static int
+arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
 {
-  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  /* Core integer regs.  */
+  if (reg >= 0 && reg <= 15)
+    return reg;
 
-  if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
-      || TYPE_CODE (valtype) == TYPE_CODE_UNION
-      || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
+  /* Legacy FPA encoding.  These were once used in a way which
+     overlapped with VFP register numbering, so their use is
+     discouraged, but GDB doesn't support the ARM toolchain
+     which used them for VFP.  */
+  if (reg >= 16 && reg <= 23)
+    return ARM_F0_REGNUM + reg - 16;
+
+  /* New assignments for the FPA registers.  */
+  if (reg >= 96 && reg <= 103)
+    return ARM_F0_REGNUM + reg - 96;
+
+  /* WMMX register assignments.  */
+  if (reg >= 104 && reg <= 111)
+    return ARM_WCGR0_REGNUM + reg - 104;
+
+  if (reg >= 112 && reg <= 127)
+    return ARM_WR0_REGNUM + reg - 112;
+
+  if (reg >= 192 && reg <= 199)
+    return ARM_WC0_REGNUM + reg - 192;
+
+  /* VFP v2 registers.  A double precision value is actually
+     in d1 rather than s2, but the ABI only defines numbering
+     for the single precision registers.  This will "just work"
+     in GDB for little endian targets (we'll read eight bytes,
+     starting in s0 and then progressing to s1), but will be
+     reversed on big endian targets with VFP.  This won't
+     be a problem for the new Neon quad registers; you're supposed
+     to use DW_OP_piece for those.  */
+  if (reg >= 64 && reg <= 95)
     {
-      if (tdep->struct_return == pcc_struct_return
-         || arm_return_in_memory (gdbarch, valtype))
-       return RETURN_VALUE_STRUCT_CONVENTION;
+      char name_buf[4];
+
+      sprintf (name_buf, "s%d", reg - 64);
+      return user_reg_map_name_to_regnum (gdbarch, name_buf,
+                                         strlen (name_buf));
     }
 
-  if (writebuf)
-    arm_store_return_value (valtype, regcache, writebuf);
+  /* VFP v3 / Neon registers.  This range is also used for VFP v2
+     registers, except that it now describes d0 instead of s0.  */
+  if (reg >= 256 && reg <= 287)
+    {
+      char name_buf[4];
 
-  if (readbuf)
-    arm_extract_return_value (valtype, regcache, readbuf);
+      sprintf (name_buf, "d%d", reg - 256);
+      return user_reg_map_name_to_regnum (gdbarch, name_buf,
+                                         strlen (name_buf));
+    }
 
-  return RETURN_VALUE_REGISTER_CONVENTION;
+  return -1;
 }
 
-
+/* Map GDB internal REGNUM onto the Arm simulator register numbers.  */
 static int
-arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
+arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
 {
-  CORE_ADDR jb_addr;
-  char buf[INT_REGISTER_SIZE];
-  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
-  
-  jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
+  int reg = regnum;
+  gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
 
-  if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
-                         INT_REGISTER_SIZE))
-    return 0;
+  if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
+    return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
 
-  *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
-  return 1;
+  if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
+    return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
+
+  if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
+    return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
+
+  if (reg < NUM_GREGS)
+    return SIM_ARM_R0_REGNUM + reg;
+  reg -= NUM_GREGS;
+
+  if (reg < NUM_FREGS)
+    return SIM_ARM_FP0_REGNUM + reg;
+  reg -= NUM_FREGS;
+
+  if (reg < NUM_SREGS)
+    return SIM_ARM_FPS_REGNUM + reg;
+  reg -= NUM_SREGS;
+
+  internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
 }
 
-/* Recognize GCC and GNU ld's trampolines.  If we are in a trampoline,
-   return the target PC.  Otherwise return 0.  */
+/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
+   convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
+   It is thought that this is is the floating-point register format on
+   little-endian systems.  */
 
-CORE_ADDR
-arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
+static void
+convert_from_extended (const struct floatformat *fmt, const void *ptr,
+                      void *dbl, int endianess)
 {
-  char *name;
-  int namelen;
-  CORE_ADDR start_addr;
+  DOUBLEST d;
 
-  /* Find the starting address and name of the function containing the PC.  */
-  if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
-    return 0;
+  if (endianess == BFD_ENDIAN_BIG)
+    floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
+  else
+    floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
+                            ptr, &d);
+  floatformat_from_doublest (fmt, &d, dbl);
+}
 
-  /* If PC is in a Thumb call or return stub, return the address of the
-     target PC, which is in a register.  The thunk functions are called
-     _call_via_xx, where x is the register name.  The possible names
-     are r0-r9, sl, fp, ip, sp, and lr.  */
-  if (strncmp (name, "_call_via_", 10) == 0)
-    {
-      /* Use the name suffix to determine which register contains the
-         target PC.  */
-      static char *table[15] =
-      {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
-       "r8", "r9", "sl", "fp", "ip", "sp", "lr"
-      };
-      int regno;
-      int offset = strlen (name) - 2;
+static void
+convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr,
+                    int endianess)
+{
+  DOUBLEST d;
 
-      for (regno = 0; regno <= 14; regno++)
-       if (strcmp (&name[offset], table[regno]) == 0)
-         return get_frame_register_unsigned (frame, regno);
-    }
+  floatformat_to_doublest (fmt, ptr, &d);
+  if (endianess == BFD_ENDIAN_BIG)
+    floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
+  else
+    floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
+                              &d, dbl);
+}
 
-  /* GNU ld generates __foo_from_arm or __foo_from_thumb for
-     non-interworking calls to foo.  We could decode the stubs
-     to find the target but it's easier to use the symbol table.  */
-  namelen = strlen (name);
-  if (name[0] == '_' && name[1] == '_'
-      && ((namelen > 2 + strlen ("_from_thumb")
-          && strncmp (name + namelen - strlen ("_from_thumb"), "_from_thumb",
-                      strlen ("_from_thumb")) == 0)
-         || (namelen > 2 + strlen ("_from_arm")
-             && strncmp (name + namelen - strlen ("_from_arm"), "_from_arm",
-                         strlen ("_from_arm")) == 0)))
+static int
+condition_true (unsigned long cond, unsigned long status_reg)
+{
+  if (cond == INST_AL || cond == INST_NV)
+    return 1;
+
+  switch (cond)
     {
-      char *target_name;
-      int target_len = namelen - 2;
-      struct minimal_symbol *minsym;
-      struct objfile *objfile;
-      struct obj_section *sec;
+    case INST_EQ:
+      return ((status_reg & FLAG_Z) != 0);
+    case INST_NE:
+      return ((status_reg & FLAG_Z) == 0);
+    case INST_CS:
+      return ((status_reg & FLAG_C) != 0);
+    case INST_CC:
+      return ((status_reg & FLAG_C) == 0);
+    case INST_MI:
+      return ((status_reg & FLAG_N) != 0);
+    case INST_PL:
+      return ((status_reg & FLAG_N) == 0);
+    case INST_VS:
+      return ((status_reg & FLAG_V) != 0);
+    case INST_VC:
+      return ((status_reg & FLAG_V) == 0);
+    case INST_HI:
+      return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
+    case INST_LS:
+      return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
+    case INST_GE:
+      return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
+    case INST_LT:
+      return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
+    case INST_GT:
+      return (((status_reg & FLAG_Z) == 0)
+             && (((status_reg & FLAG_N) == 0)
+                 == ((status_reg & FLAG_V) == 0)));
+    case INST_LE:
+      return (((status_reg & FLAG_Z) != 0)
+             || (((status_reg & FLAG_N) == 0)
+                 != ((status_reg & FLAG_V) == 0)));
+    }
+  return 1;
+}
 
-      if (name[namelen - 1] == 'b')
-       target_len -= strlen ("_from_thumb");
+static unsigned long
+shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry,
+                unsigned long pc_val, unsigned long status_reg)
+{
+  unsigned long res, shift;
+  int rm = bits (inst, 0, 3);
+  unsigned long shifttype = bits (inst, 5, 6);
+
+  if (bit (inst, 4))
+    {
+      int rs = bits (inst, 8, 11);
+      shift = (rs == 15 ? pc_val + 8
+                       : get_frame_register_unsigned (frame, rs)) & 0xFF;
+    }
+  else
+    shift = bits (inst, 7, 11);
+
+  res = (rm == ARM_PC_REGNUM
+        ? (pc_val + (bit (inst, 4) ? 12 : 8))
+        : get_frame_register_unsigned (frame, rm));
+
+  switch (shifttype)
+    {
+    case 0:                    /* LSL */
+      res = shift >= 32 ? 0 : res << shift;
+      break;
+
+    case 1:                    /* LSR */
+      res = shift >= 32 ? 0 : res >> shift;
+      break;
+
+    case 2:                    /* ASR */
+      if (shift >= 32)
+       shift = 31;
+      res = ((res & 0x80000000L)
+            ? ~((~res) >> shift) : res >> shift);
+      break;
+
+    case 3:                    /* ROR/RRX */
+      shift &= 31;
+      if (shift == 0)
+       res = (res >> 1) | (carry ? 0x80000000L : 0);
       else
-       target_len -= strlen ("_from_arm");
+       res = (res >> shift) | (res << (32 - shift));
+      break;
+    }
 
-      target_name = alloca (target_len + 1);
-      memcpy (target_name, name + 2, target_len);
-      target_name[target_len] = '\0';
+  return res & 0xffffffff;
+}
 
-      sec = find_pc_section (pc);
-      objfile = (sec == NULL) ? NULL : sec->objfile;
-      minsym = lookup_minimal_symbol (target_name, NULL, objfile);
-      if (minsym != NULL)
-       return SYMBOL_VALUE_ADDRESS (minsym);
+/* Return number of 1-bits in VAL.  */
+
+static int
+bitcount (unsigned long val)
+{
+  int nbits;
+  for (nbits = 0; val != 0; nbits++)
+    val &= val - 1;            /* Delete rightmost 1-bit in val.  */
+  return nbits;
+}
+
+/* Return the size in bytes of the complete Thumb instruction whose
+   first halfword is INST1.  */
+
+static int
+thumb_insn_size (unsigned short inst1)
+{
+  if ((inst1 & 0xe000) == 0xe000 && (inst1 & 0x1800) != 0)
+    return 4;
+  else
+    return 2;
+}
+
+static int
+thumb_advance_itstate (unsigned int itstate)
+{
+  /* Preserve IT[7:5], the first three bits of the condition.  Shift
+     the upcoming condition flags left by one bit.  */
+  itstate = (itstate & 0xe0) | ((itstate << 1) & 0x1f);
+
+  /* If we have finished the IT block, clear the state.  */
+  if ((itstate & 0x0f) == 0)
+    itstate = 0;
+
+  return itstate;
+}
+
+/* Find the next PC after the current instruction executes.  In some
+   cases we can not statically determine the answer (see the IT state
+   handling in this function); in that case, a breakpoint may be
+   inserted in addition to the returned PC, which will be used to set
+   another breakpoint by our caller.  */
+
+static CORE_ADDR
+thumb_get_next_pc_raw (struct frame_info *frame, CORE_ADDR pc)
+{
+  struct gdbarch *gdbarch = get_frame_arch (frame);
+  struct address_space *aspace = get_frame_address_space (frame);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
+  unsigned long pc_val = ((unsigned long) pc) + 4;     /* PC after prefetch */
+  unsigned short inst1;
+  CORE_ADDR nextpc = pc + 2;           /* Default is next instruction.  */
+  unsigned long offset;
+  ULONGEST status, itstate;
+
+  nextpc = MAKE_THUMB_ADDR (nextpc);
+  pc_val = MAKE_THUMB_ADDR (pc_val);
+
+  inst1 = read_memory_unsigned_integer (pc, 2, byte_order_for_code);
+
+  /* Thumb-2 conditional execution support.  There are eight bits in
+     the CPSR which describe conditional execution state.  Once
+     reconstructed (they're in a funny order), the low five bits
+     describe the low bit of the condition for each instruction and
+     how many instructions remain.  The high three bits describe the
+     base condition.  One of the low four bits will be set if an IT
+     block is active.  These bits read as zero on earlier
+     processors.  */
+  status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
+  itstate = ((status >> 8) & 0xfc) | ((status >> 25) & 0x3);
+
+  /* If-Then handling.  On GNU/Linux, where this routine is used, we
+     use an undefined instruction as a breakpoint.  Unlike BKPT, IT
+     can disable execution of the undefined instruction.  So we might
+     miss the breakpoint if we set it on a skipped conditional
+     instruction.  Because conditional instructions can change the
+     flags, affecting the execution of further instructions, we may
+     need to set two breakpoints.  */
+
+  if (gdbarch_tdep (gdbarch)->thumb2_breakpoint != NULL)
+    {
+      if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
+       {
+         /* An IT instruction.  Because this instruction does not
+            modify the flags, we can accurately predict the next
+            executed instruction.  */
+         itstate = inst1 & 0x00ff;
+         pc += thumb_insn_size (inst1);
+
+         while (itstate != 0 && ! condition_true (itstate >> 4, status))
+           {
+             inst1 = read_memory_unsigned_integer (pc, 2,
+                                                   byte_order_for_code);
+             pc += thumb_insn_size (inst1);
+             itstate = thumb_advance_itstate (itstate);
+           }
+
+         return MAKE_THUMB_ADDR (pc);
+       }
+      else if (itstate != 0)
+       {
+         /* We are in a conditional block.  Check the condition.  */
+         if (! condition_true (itstate >> 4, status))
+           {
+             /* Advance to the next executed instruction.  */
+             pc += thumb_insn_size (inst1);
+             itstate = thumb_advance_itstate (itstate);
+
+             while (itstate != 0 && ! condition_true (itstate >> 4, status))
+               {
+                 inst1 = read_memory_unsigned_integer (pc, 2, 
+                                                       byte_order_for_code);
+                 pc += thumb_insn_size (inst1);
+                 itstate = thumb_advance_itstate (itstate);
+               }
+
+             return MAKE_THUMB_ADDR (pc);
+           }
+         else if ((itstate & 0x0f) == 0x08)
+           {
+             /* This is the last instruction of the conditional
+                block, and it is executed.  We can handle it normally
+                because the following instruction is not conditional,
+                and we must handle it normally because it is
+                permitted to branch.  Fall through.  */
+           }
+         else
+           {
+             int cond_negated;
+
+             /* There are conditional instructions after this one.
+                If this instruction modifies the flags, then we can
+                not predict what the next executed instruction will
+                be.  Fortunately, this instruction is architecturally
+                forbidden to branch; we know it will fall through.
+                Start by skipping past it.  */
+             pc += thumb_insn_size (inst1);
+             itstate = thumb_advance_itstate (itstate);
+
+             /* Set a breakpoint on the following instruction.  */
+             gdb_assert ((itstate & 0x0f) != 0);
+             arm_insert_single_step_breakpoint (gdbarch, aspace,
+                                                MAKE_THUMB_ADDR (pc));
+             cond_negated = (itstate >> 4) & 1;
+
+             /* Skip all following instructions with the same
+                condition.  If there is a later instruction in the IT
+                block with the opposite condition, set the other
+                breakpoint there.  If not, then set a breakpoint on
+                the instruction after the IT block.  */
+             do
+               {
+                 inst1 = read_memory_unsigned_integer (pc, 2,
+                                                       byte_order_for_code);
+                 pc += thumb_insn_size (inst1);
+                 itstate = thumb_advance_itstate (itstate);
+               }
+             while (itstate != 0 && ((itstate >> 4) & 1) == cond_negated);
+
+             return MAKE_THUMB_ADDR (pc);
+           }
+       }
+    }
+  else if (itstate & 0x0f)
+    {
+      /* We are in a conditional block.  Check the condition.  */
+      int cond = itstate >> 4;
+
+      if (! condition_true (cond, status))
+       /* Advance to the next instruction.  All the 32-bit
+          instructions share a common prefix.  */
+       return MAKE_THUMB_ADDR (pc + thumb_insn_size (inst1));
+
+      /* Otherwise, handle the instruction normally.  */
+    }
+
+  if ((inst1 & 0xff00) == 0xbd00)      /* pop {rlist, pc} */
+    {
+      CORE_ADDR sp;
+
+      /* Fetch the saved PC from the stack.  It's stored above
+         all of the other registers.  */
+      offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE;
+      sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM);
+      nextpc = read_memory_unsigned_integer (sp + offset, 4, byte_order);
+    }
+  else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
+    {
+      unsigned long cond = bits (inst1, 8, 11);
+      if (cond == 0x0f)  /* 0x0f = SWI */
+       {
+         struct gdbarch_tdep *tdep;
+         tdep = gdbarch_tdep (gdbarch);
+
+         if (tdep->syscall_next_pc != NULL)
+           nextpc = tdep->syscall_next_pc (frame);
+
+       }
+      else if (cond != 0x0f && condition_true (cond, status))
+       nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
+    }
+  else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
+    {
+      nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
+    }
+  else if (thumb_insn_size (inst1) == 4) /* 32-bit instruction */
+    {
+      unsigned short inst2;
+      inst2 = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code);
+
+      /* Default to the next instruction.  */
+      nextpc = pc + 4;
+      nextpc = MAKE_THUMB_ADDR (nextpc);
+
+      if ((inst1 & 0xf800) == 0xf000 && (inst2 & 0x8000) == 0x8000)
+       {
+         /* Branches and miscellaneous control instructions.  */
+
+         if ((inst2 & 0x1000) != 0 || (inst2 & 0xd001) == 0xc000)
+           {
+             /* B, BL, BLX.  */
+             int j1, j2, imm1, imm2;
+
+             imm1 = sbits (inst1, 0, 10);
+             imm2 = bits (inst2, 0, 10);
+             j1 = bit (inst2, 13);
+             j2 = bit (inst2, 11);
+
+             offset = ((imm1 << 12) + (imm2 << 1));
+             offset ^= ((!j2) << 22) | ((!j1) << 23);
+
+             nextpc = pc_val + offset;
+             /* For BLX make sure to clear the low bits.  */
+             if (bit (inst2, 12) == 0)
+               nextpc = nextpc & 0xfffffffc;
+           }
+         else if (inst1 == 0xf3de && (inst2 & 0xff00) == 0x3f00)
+           {
+             /* SUBS PC, LR, #imm8.  */
+             nextpc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
+             nextpc -= inst2 & 0x00ff;
+           }
+         else if ((inst2 & 0xd000) == 0x8000 && (inst1 & 0x0380) != 0x0380)
+           {
+             /* Conditional branch.  */
+             if (condition_true (bits (inst1, 6, 9), status))
+               {
+                 int sign, j1, j2, imm1, imm2;
+
+                 sign = sbits (inst1, 10, 10);
+                 imm1 = bits (inst1, 0, 5);
+                 imm2 = bits (inst2, 0, 10);
+                 j1 = bit (inst2, 13);
+                 j2 = bit (inst2, 11);
+
+                 offset = (sign << 20) + (j2 << 19) + (j1 << 18);
+                 offset += (imm1 << 12) + (imm2 << 1);
+
+                 nextpc = pc_val + offset;
+               }
+           }
+       }
+      else if ((inst1 & 0xfe50) == 0xe810)
+       {
+         /* Load multiple or RFE.  */
+         int rn, offset, load_pc = 1;
+
+         rn = bits (inst1, 0, 3);
+         if (bit (inst1, 7) && !bit (inst1, 8))
+           {
+             /* LDMIA or POP */
+             if (!bit (inst2, 15))
+               load_pc = 0;
+             offset = bitcount (inst2) * 4 - 4;
+           }
+         else if (!bit (inst1, 7) && bit (inst1, 8))
+           {
+             /* LDMDB */
+             if (!bit (inst2, 15))
+               load_pc = 0;
+             offset = -4;
+           }
+         else if (bit (inst1, 7) && bit (inst1, 8))
+           {
+             /* RFEIA */
+             offset = 0;
+           }
+         else if (!bit (inst1, 7) && !bit (inst1, 8))
+           {
+             /* RFEDB */
+             offset = -8;
+           }
+         else
+           load_pc = 0;
+
+         if (load_pc)
+           {
+             CORE_ADDR addr = get_frame_register_unsigned (frame, rn);
+             nextpc = get_frame_memory_unsigned (frame, addr + offset, 4);
+           }
+       }
+      else if ((inst1 & 0xffef) == 0xea4f && (inst2 & 0xfff0) == 0x0f00)
+       {
+         /* MOV PC or MOVS PC.  */
+         nextpc = get_frame_register_unsigned (frame, bits (inst2, 0, 3));
+         nextpc = MAKE_THUMB_ADDR (nextpc);
+       }
+      else if ((inst1 & 0xff70) == 0xf850 && (inst2 & 0xf000) == 0xf000)
+       {
+         /* LDR PC.  */
+         CORE_ADDR base;
+         int rn, load_pc = 1;
+
+         rn = bits (inst1, 0, 3);
+         base = get_frame_register_unsigned (frame, rn);
+         if (rn == ARM_PC_REGNUM)
+           {
+             base = (base + 4) & ~(CORE_ADDR) 0x3;
+             if (bit (inst1, 7))
+               base += bits (inst2, 0, 11);
+             else
+               base -= bits (inst2, 0, 11);
+           }
+         else if (bit (inst1, 7))
+           base += bits (inst2, 0, 11);
+         else if (bit (inst2, 11))
+           {
+             if (bit (inst2, 10))
+               {
+                 if (bit (inst2, 9))
+                   base += bits (inst2, 0, 7);
+                 else
+                   base -= bits (inst2, 0, 7);
+               }
+           }
+         else if ((inst2 & 0x0fc0) == 0x0000)
+           {
+             int shift = bits (inst2, 4, 5), rm = bits (inst2, 0, 3);
+             base += get_frame_register_unsigned (frame, rm) << shift;
+           }
+         else
+           /* Reserved.  */
+           load_pc = 0;
+
+         if (load_pc)
+           nextpc = get_frame_memory_unsigned (frame, base, 4);
+       }
+      else if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf000)
+       {
+         /* TBB.  */
+         CORE_ADDR tbl_reg, table, offset, length;
+
+         tbl_reg = bits (inst1, 0, 3);
+         if (tbl_reg == 0x0f)
+           table = pc + 4;  /* Regcache copy of PC isn't right yet.  */
+         else
+           table = get_frame_register_unsigned (frame, tbl_reg);
+
+         offset = get_frame_register_unsigned (frame, bits (inst2, 0, 3));
+         length = 2 * get_frame_memory_unsigned (frame, table + offset, 1);
+         nextpc = pc_val + length;
+       }
+      else if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf010)
+       {
+         /* TBH.  */
+         CORE_ADDR tbl_reg, table, offset, length;
+
+         tbl_reg = bits (inst1, 0, 3);
+         if (tbl_reg == 0x0f)
+           table = pc + 4;  /* Regcache copy of PC isn't right yet.  */
+         else
+           table = get_frame_register_unsigned (frame, tbl_reg);
+
+         offset = 2 * get_frame_register_unsigned (frame, bits (inst2, 0, 3));
+         length = 2 * get_frame_memory_unsigned (frame, table + offset, 2);
+         nextpc = pc_val + length;
+       }
+    }
+  else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
+    {
+      if (bits (inst1, 3, 6) == 0x0f)
+       nextpc = pc_val;
       else
-       return 0;
+       nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
     }
+  else if ((inst1 & 0xff87) == 0x4687) /* mov pc, REG */
+    {
+      if (bits (inst1, 3, 6) == 0x0f)
+       nextpc = pc_val;
+      else
+       nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
+
+      nextpc = MAKE_THUMB_ADDR (nextpc);
+    }
+  else if ((inst1 & 0xf500) == 0xb100)
+    {
+      /* CBNZ or CBZ.  */
+      int imm = (bit (inst1, 9) << 6) + (bits (inst1, 3, 7) << 1);
+      ULONGEST reg = get_frame_register_unsigned (frame, bits (inst1, 0, 2));
+
+      if (bit (inst1, 11) && reg != 0)
+       nextpc = pc_val + imm;
+      else if (!bit (inst1, 11) && reg == 0)
+       nextpc = pc_val + imm;
+    }
+  return nextpc;
+}
+
+/* Get the raw next address.  PC is the current program counter, in 
+   FRAME, which is assumed to be executing in ARM mode.
+
+   The value returned has the execution state of the next instruction 
+   encoded in it.  Use IS_THUMB_ADDR () to see whether the instruction is
+   in Thumb-State, and gdbarch_addr_bits_remove () to get the plain memory
+   address.  */
+
+static CORE_ADDR
+arm_get_next_pc_raw (struct frame_info *frame, CORE_ADDR pc)
+{
+  struct gdbarch *gdbarch = get_frame_arch (frame);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
+  unsigned long pc_val;
+  unsigned long this_instr;
+  unsigned long status;
+  CORE_ADDR nextpc;
+
+  pc_val = (unsigned long) pc;
+  this_instr = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
+
+  status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
+  nextpc = (CORE_ADDR) (pc_val + 4);   /* Default case */
+
+  if (bits (this_instr, 28, 31) == INST_NV)
+    switch (bits (this_instr, 24, 27))
+      {
+      case 0xa:
+      case 0xb:
+       {
+         /* Branch with Link and change to Thumb.  */
+         nextpc = BranchDest (pc, this_instr);
+         nextpc |= bit (this_instr, 24) << 1;
+         nextpc = MAKE_THUMB_ADDR (nextpc);
+         break;
+       }
+      case 0xc:
+      case 0xd:
+      case 0xe:
+       /* Coprocessor register transfer.  */
+        if (bits (this_instr, 12, 15) == 15)
+         error (_("Invalid update to pc in instruction"));
+       break;
+      }
+  else if (condition_true (bits (this_instr, 28, 31), status))
+    {
+      switch (bits (this_instr, 24, 27))
+       {
+       case 0x0:
+       case 0x1:                       /* data processing */
+       case 0x2:
+       case 0x3:
+         {
+           unsigned long operand1, operand2, result = 0;
+           unsigned long rn;
+           int c;
+
+           if (bits (this_instr, 12, 15) != 15)
+             break;
+
+           if (bits (this_instr, 22, 25) == 0
+               && bits (this_instr, 4, 7) == 9)        /* multiply */
+             error (_("Invalid update to pc in instruction"));
+
+           /* BX <reg>, BLX <reg> */
+           if (bits (this_instr, 4, 27) == 0x12fff1
+               || bits (this_instr, 4, 27) == 0x12fff3)
+             {
+               rn = bits (this_instr, 0, 3);
+               nextpc = ((rn == ARM_PC_REGNUM)
+                         ? (pc_val + 8)
+                         : get_frame_register_unsigned (frame, rn));
+
+               return nextpc;
+             }
+
+           /* Multiply into PC.  */
+           c = (status & FLAG_C) ? 1 : 0;
+           rn = bits (this_instr, 16, 19);
+           operand1 = ((rn == ARM_PC_REGNUM)
+                       ? (pc_val + 8)
+                       : get_frame_register_unsigned (frame, rn));
+
+           if (bit (this_instr, 25))
+             {
+               unsigned long immval = bits (this_instr, 0, 7);
+               unsigned long rotate = 2 * bits (this_instr, 8, 11);
+               operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
+                 & 0xffffffff;
+             }
+           else                /* operand 2 is a shifted register.  */
+             operand2 = shifted_reg_val (frame, this_instr, c,
+                                         pc_val, status);
+
+           switch (bits (this_instr, 21, 24))
+             {
+             case 0x0: /*and */
+               result = operand1 & operand2;
+               break;
+
+             case 0x1: /*eor */
+               result = operand1 ^ operand2;
+               break;
+
+             case 0x2: /*sub */
+               result = operand1 - operand2;
+               break;
+
+             case 0x3: /*rsb */
+               result = operand2 - operand1;
+               break;
+
+             case 0x4: /*add */
+               result = operand1 + operand2;
+               break;
+
+             case 0x5: /*adc */
+               result = operand1 + operand2 + c;
+               break;
+
+             case 0x6: /*sbc */
+               result = operand1 - operand2 + c;
+               break;
+
+             case 0x7: /*rsc */
+               result = operand2 - operand1 + c;
+               break;
+
+             case 0x8:
+             case 0x9:
+             case 0xa:
+             case 0xb: /* tst, teq, cmp, cmn */
+               result = (unsigned long) nextpc;
+               break;
+
+             case 0xc: /*orr */
+               result = operand1 | operand2;
+               break;
+
+             case 0xd: /*mov */
+               /* Always step into a function.  */
+               result = operand2;
+               break;
+
+             case 0xe: /*bic */
+               result = operand1 & ~operand2;
+               break;
+
+             case 0xf: /*mvn */
+               result = ~operand2;
+               break;
+             }
+
+            /* In 26-bit APCS the bottom two bits of the result are 
+              ignored, and we always end up in ARM state.  */
+           if (!arm_apcs_32)
+             nextpc = arm_addr_bits_remove (gdbarch, result);
+           else
+             nextpc = result;
+
+           break;
+         }
+
+       case 0x4:
+       case 0x5:               /* data transfer */
+       case 0x6:
+       case 0x7:
+         if (bit (this_instr, 20))
+           {
+             /* load */
+             if (bits (this_instr, 12, 15) == 15)
+               {
+                 /* rd == pc */
+                 unsigned long rn;
+                 unsigned long base;
+
+                 if (bit (this_instr, 22))
+                   error (_("Invalid update to pc in instruction"));
+
+                 /* byte write to PC */
+                 rn = bits (this_instr, 16, 19);
+                 base = ((rn == ARM_PC_REGNUM)
+                         ? (pc_val + 8)
+                         : get_frame_register_unsigned (frame, rn));
+
+                 if (bit (this_instr, 24))
+                   {
+                     /* pre-indexed */
+                     int c = (status & FLAG_C) ? 1 : 0;
+                     unsigned long offset =
+                     (bit (this_instr, 25)
+                      ? shifted_reg_val (frame, this_instr, c, pc_val, status)
+                      : bits (this_instr, 0, 11));
+
+                     if (bit (this_instr, 23))
+                       base += offset;
+                     else
+                       base -= offset;
+                   }
+                 nextpc =
+                   (CORE_ADDR) read_memory_unsigned_integer ((CORE_ADDR) base,
+                                                             4, byte_order);
+               }
+           }
+         break;
+
+       case 0x8:
+       case 0x9:               /* block transfer */
+         if (bit (this_instr, 20))
+           {
+             /* LDM */
+             if (bit (this_instr, 15))
+               {
+                 /* loading pc */
+                 int offset = 0;
+                 unsigned long rn_val
+                   = get_frame_register_unsigned (frame,
+                                                  bits (this_instr, 16, 19));
+
+                 if (bit (this_instr, 23))
+                   {
+                     /* up */
+                     unsigned long reglist = bits (this_instr, 0, 14);
+                     offset = bitcount (reglist) * 4;
+                     if (bit (this_instr, 24))         /* pre */
+                       offset += 4;
+                   }
+                 else if (bit (this_instr, 24))
+                   offset = -4;
+
+                 nextpc =
+                   (CORE_ADDR) read_memory_unsigned_integer ((CORE_ADDR)
+                                                             (rn_val + offset),
+                                                             4, byte_order);
+               }
+           }
+         break;
+
+       case 0xb:               /* branch & link */
+       case 0xa:               /* branch */
+         {
+           nextpc = BranchDest (pc, this_instr);
+           break;
+         }
+
+       case 0xc:
+       case 0xd:
+       case 0xe:               /* coproc ops */
+         break;
+       case 0xf:               /* SWI */
+         {
+           struct gdbarch_tdep *tdep;
+           tdep = gdbarch_tdep (gdbarch);
+
+           if (tdep->syscall_next_pc != NULL)
+             nextpc = tdep->syscall_next_pc (frame);
+
+         }
+         break;
+
+       default:
+         fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
+         return (pc);
+       }
+    }
+
+  return nextpc;
+}
+
+/* Determine next PC after current instruction executes.  Will call either
+   arm_get_next_pc_raw or thumb_get_next_pc_raw.  Error out if infinite
+   loop is detected.  */
+
+CORE_ADDR
+arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
+{
+  CORE_ADDR nextpc;
+
+  if (arm_frame_is_thumb (frame))
+    {
+      nextpc = thumb_get_next_pc_raw (frame, pc);
+      if (nextpc == MAKE_THUMB_ADDR (pc))
+       error (_("Infinite loop detected"));
+    }
+  else
+    {
+      nextpc = arm_get_next_pc_raw (frame, pc);
+      if (nextpc == pc)
+       error (_("Infinite loop detected"));
+    }
+
+  return nextpc;
+}
+
+/* Like insert_single_step_breakpoint, but make sure we use a breakpoint
+   of the appropriate mode (as encoded in the PC value), even if this
+   differs from what would be expected according to the symbol tables.  */
+
+void
+arm_insert_single_step_breakpoint (struct gdbarch *gdbarch,
+                                  struct address_space *aspace,
+                                  CORE_ADDR pc)
+{
+  struct cleanup *old_chain
+    = make_cleanup_restore_integer (&arm_override_mode);
+
+  arm_override_mode = IS_THUMB_ADDR (pc);
+  pc = gdbarch_addr_bits_remove (gdbarch, pc);
+
+  insert_single_step_breakpoint (gdbarch, aspace, pc);
+
+  do_cleanups (old_chain);
+}
+
+/* Checks for an atomic sequence of instructions beginning with a LDREX{,B,H,D}
+   instruction and ending with a STREX{,B,H,D} instruction.  If such a sequence
+   is found, attempt to step through it.  A breakpoint is placed at the end of
+   the sequence.  */
+
+static int
+thumb_deal_with_atomic_sequence_raw (struct frame_info *frame)
+{
+  struct gdbarch *gdbarch = get_frame_arch (frame);
+  struct address_space *aspace = get_frame_address_space (frame);
+  enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
+  CORE_ADDR pc = get_frame_pc (frame);
+  CORE_ADDR breaks[2] = {-1, -1};
+  CORE_ADDR loc = pc;
+  unsigned short insn1, insn2;
+  int insn_count;
+  int index;
+  int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed).  */
+  const int atomic_sequence_length = 16; /* Instruction sequence length.  */
+  ULONGEST status, itstate;
+
+  /* We currently do not support atomic sequences within an IT block.  */
+  status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
+  itstate = ((status >> 8) & 0xfc) | ((status >> 25) & 0x3);
+  if (itstate & 0x0f)
+    return 0;
+
+  /* Assume all atomic sequences start with a ldrex{,b,h,d} instruction.  */
+  insn1 = read_memory_unsigned_integer (loc, 2, byte_order_for_code);
+  loc += 2;
+  if (thumb_insn_size (insn1) != 4)
+    return 0;
+
+  insn2 = read_memory_unsigned_integer (loc, 2, byte_order_for_code);
+  loc += 2;
+  if (!((insn1 & 0xfff0) == 0xe850
+        || ((insn1 & 0xfff0) == 0xe8d0 && (insn2 & 0x00c0) == 0x0040)))
+    return 0;
+
+  /* Assume that no atomic sequence is longer than "atomic_sequence_length"
+     instructions.  */
+  for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
+    {
+      insn1 = read_memory_unsigned_integer (loc, 2, byte_order_for_code);
+      loc += 2;
+
+      if (thumb_insn_size (insn1) != 4)
+       {
+         /* Assume that there is at most one conditional branch in the
+            atomic sequence.  If a conditional branch is found, put a
+            breakpoint in its destination address.  */
+         if ((insn1 & 0xf000) == 0xd000 && bits (insn1, 8, 11) != 0x0f)
+           {
+             if (last_breakpoint > 0)
+               return 0; /* More than one conditional branch found,
+                            fallback to the standard code.  */
+
+             breaks[1] = loc + 2 + (sbits (insn1, 0, 7) << 1);
+             last_breakpoint++;
+           }
+
+         /* We do not support atomic sequences that use any *other*
+            instructions but conditional branches to change the PC.
+            Fall back to standard code to avoid losing control of
+            execution.  */
+         else if (thumb_instruction_changes_pc (insn1))
+           return 0;
+       }
+      else
+       {
+         insn2 = read_memory_unsigned_integer (loc, 2, byte_order_for_code);
+         loc += 2;
+
+         /* Assume that there is at most one conditional branch in the
+            atomic sequence.  If a conditional branch is found, put a
+            breakpoint in its destination address.  */
+         if ((insn1 & 0xf800) == 0xf000
+             && (insn2 & 0xd000) == 0x8000
+             && (insn1 & 0x0380) != 0x0380)
+           {
+             int sign, j1, j2, imm1, imm2;
+             unsigned int offset;
+
+             sign = sbits (insn1, 10, 10);
+             imm1 = bits (insn1, 0, 5);
+             imm2 = bits (insn2, 0, 10);
+             j1 = bit (insn2, 13);
+             j2 = bit (insn2, 11);
+
+             offset = (sign << 20) + (j2 << 19) + (j1 << 18);
+             offset += (imm1 << 12) + (imm2 << 1);
+
+             if (last_breakpoint > 0)
+               return 0; /* More than one conditional branch found,
+                            fallback to the standard code.  */
+
+             breaks[1] = loc + offset;
+             last_breakpoint++;
+           }
+
+         /* We do not support atomic sequences that use any *other*
+            instructions but conditional branches to change the PC.
+            Fall back to standard code to avoid losing control of
+            execution.  */
+         else if (thumb2_instruction_changes_pc (insn1, insn2))
+           return 0;
+
+         /* If we find a strex{,b,h,d}, we're done.  */
+         if ((insn1 & 0xfff0) == 0xe840
+             || ((insn1 & 0xfff0) == 0xe8c0 && (insn2 & 0x00c0) == 0x0040))
+           break;
+       }
+    }
+
+  /* If we didn't find the strex{,b,h,d}, we cannot handle the sequence.  */
+  if (insn_count == atomic_sequence_length)
+    return 0;
+
+  /* Insert a breakpoint right after the end of the atomic sequence.  */
+  breaks[0] = loc;
+
+  /* Check for duplicated breakpoints.  Check also for a breakpoint
+     placed (branch instruction's destination) anywhere in sequence.  */
+  if (last_breakpoint
+      && (breaks[1] == breaks[0]
+         || (breaks[1] >= pc && breaks[1] < loc)))
+    last_breakpoint = 0;
+
+  /* Effectively inserts the breakpoints.  */
+  for (index = 0; index <= last_breakpoint; index++)
+    arm_insert_single_step_breakpoint (gdbarch, aspace,
+                                      MAKE_THUMB_ADDR (breaks[index]));
+
+  return 1;
+}
+
+static int
+arm_deal_with_atomic_sequence_raw (struct frame_info *frame)
+{
+  struct gdbarch *gdbarch = get_frame_arch (frame);
+  struct address_space *aspace = get_frame_address_space (frame);
+  enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
+  CORE_ADDR pc = get_frame_pc (frame);
+  CORE_ADDR breaks[2] = {-1, -1};
+  CORE_ADDR loc = pc;
+  unsigned int insn;
+  int insn_count;
+  int index;
+  int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed).  */
+  const int atomic_sequence_length = 16; /* Instruction sequence length.  */
+
+  /* Assume all atomic sequences start with a ldrex{,b,h,d} instruction.
+     Note that we do not currently support conditionally executed atomic
+     instructions.  */
+  insn = read_memory_unsigned_integer (loc, 4, byte_order_for_code);
+  loc += 4;
+  if ((insn & 0xff9000f0) != 0xe1900090)
+    return 0;
+
+  /* Assume that no atomic sequence is longer than "atomic_sequence_length"
+     instructions.  */
+  for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
+    {
+      insn = read_memory_unsigned_integer (loc, 4, byte_order_for_code);
+      loc += 4;
+
+      /* Assume that there is at most one conditional branch in the atomic
+         sequence.  If a conditional branch is found, put a breakpoint in
+         its destination address.  */
+      if (bits (insn, 24, 27) == 0xa)
+       {
+          if (last_breakpoint > 0)
+            return 0; /* More than one conditional branch found, fallback
+                         to the standard single-step code.  */
+
+         breaks[1] = BranchDest (loc - 4, insn);
+         last_breakpoint++;
+        }
+
+      /* We do not support atomic sequences that use any *other* instructions
+         but conditional branches to change the PC.  Fall back to standard
+        code to avoid losing control of execution.  */
+      else if (arm_instruction_changes_pc (insn))
+       return 0;
+
+      /* If we find a strex{,b,h,d}, we're done.  */
+      if ((insn & 0xff9000f0) == 0xe1800090)
+       break;
+    }
+
+  /* If we didn't find the strex{,b,h,d}, we cannot handle the sequence.  */
+  if (insn_count == atomic_sequence_length)
+    return 0;
+
+  /* Insert a breakpoint right after the end of the atomic sequence.  */
+  breaks[0] = loc;
+
+  /* Check for duplicated breakpoints.  Check also for a breakpoint
+     placed (branch instruction's destination) anywhere in sequence.  */
+  if (last_breakpoint
+      && (breaks[1] == breaks[0]
+         || (breaks[1] >= pc && breaks[1] < loc)))
+    last_breakpoint = 0;
+
+  /* Effectively inserts the breakpoints.  */
+  for (index = 0; index <= last_breakpoint; index++)
+    arm_insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
+
+  return 1;
+}
+
+int
+arm_deal_with_atomic_sequence (struct frame_info *frame)
+{
+  if (arm_frame_is_thumb (frame))
+    return thumb_deal_with_atomic_sequence_raw (frame);
+  else
+    return arm_deal_with_atomic_sequence_raw (frame);
+}
+
+/* single_step() is called just before we want to resume the inferior,
+   if we want to single-step it but there is no hardware or kernel
+   single-step support.  We find the target of the coming instruction
+   and breakpoint it.  */
+
+int
+arm_software_single_step (struct frame_info *frame)
+{
+  struct gdbarch *gdbarch = get_frame_arch (frame);
+  struct address_space *aspace = get_frame_address_space (frame);
+  CORE_ADDR next_pc;
+
+  if (arm_deal_with_atomic_sequence (frame))
+    return 1;
+
+  next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
+  arm_insert_single_step_breakpoint (gdbarch, aspace, next_pc);
+
+  return 1;
+}
+
+/* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand
+   the buffer to be NEW_LEN bytes ending at ENDADDR.  Return
+   NULL if an error occurs.  BUF is freed.  */
+
+static gdb_byte *
+extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr,
+                      int old_len, int new_len)
+{
+  gdb_byte *new_buf, *middle;
+  int bytes_to_read = new_len - old_len;
+
+  new_buf = xmalloc (new_len);
+  memcpy (new_buf + bytes_to_read, buf, old_len);
+  xfree (buf);
+  if (target_read_memory (endaddr - new_len, new_buf, bytes_to_read) != 0)
+    {
+      xfree (new_buf);
+      return NULL;
+    }
+  return new_buf;
+}
+
+/* An IT block is at most the 2-byte IT instruction followed by
+   four 4-byte instructions.  The furthest back we must search to
+   find an IT block that affects the current instruction is thus
+   2 + 3 * 4 == 14 bytes.  */
+#define MAX_IT_BLOCK_PREFIX 14
+
+/* Use a quick scan if there are more than this many bytes of
+   code.  */
+#define IT_SCAN_THRESHOLD 32
+
+/* Adjust a breakpoint's address to move breakpoints out of IT blocks.
+   A breakpoint in an IT block may not be hit, depending on the
+   condition flags.  */
+static CORE_ADDR
+arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
+{
+  gdb_byte *buf;
+  char map_type;
+  CORE_ADDR boundary, func_start;
+  int buf_len, buf2_len;
+  enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch);
+  int i, any, last_it, last_it_count;
+
+  /* If we are using BKPT breakpoints, none of this is necessary.  */
+  if (gdbarch_tdep (gdbarch)->thumb2_breakpoint == NULL)
+    return bpaddr;
+
+  /* ARM mode does not have this problem.  */
+  if (!arm_pc_is_thumb (gdbarch, bpaddr))
+    return bpaddr;
+
+  /* We are setting a breakpoint in Thumb code that could potentially
+     contain an IT block.  The first step is to find how much Thumb
+     code there is; we do not need to read outside of known Thumb
+     sequences.  */
+  map_type = arm_find_mapping_symbol (bpaddr, &boundary);
+  if (map_type == 0)
+    /* Thumb-2 code must have mapping symbols to have a chance.  */
+    return bpaddr;
+
+  bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr);
+
+  if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL)
+      && func_start > boundary)
+    boundary = func_start;
+
+  /* Search for a candidate IT instruction.  We have to do some fancy
+     footwork to distinguish a real IT instruction from the second
+     half of a 32-bit instruction, but there is no need for that if
+     there's no candidate.  */
+  buf_len = min (bpaddr - boundary, MAX_IT_BLOCK_PREFIX);
+  if (buf_len == 0)
+    /* No room for an IT instruction.  */
+    return bpaddr;
+
+  buf = xmalloc (buf_len);
+  if (target_read_memory (bpaddr - buf_len, buf, buf_len) != 0)
+    return bpaddr;
+  any = 0;
+  for (i = 0; i < buf_len; i += 2)
+    {
+      unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
+      if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
+       {
+         any = 1;
+         break;
+       }
+    }
+  if (any == 0)
+    {
+      xfree (buf);
+      return bpaddr;
+    }
+
+  /* OK, the code bytes before this instruction contain at least one
+     halfword which resembles an IT instruction.  We know that it's
+     Thumb code, but there are still two possibilities.  Either the
+     halfword really is an IT instruction, or it is the second half of
+     a 32-bit Thumb instruction.  The only way we can tell is to
+     scan forwards from a known instruction boundary.  */
+  if (bpaddr - boundary > IT_SCAN_THRESHOLD)
+    {
+      int definite;
+
+      /* There's a lot of code before this instruction.  Start with an
+        optimistic search; it's easy to recognize halfwords that can
+        not be the start of a 32-bit instruction, and use that to
+        lock on to the instruction boundaries.  */
+      buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD);
+      if (buf == NULL)
+       return bpaddr;
+      buf_len = IT_SCAN_THRESHOLD;
+
+      definite = 0;
+      for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2)
+       {
+         unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
+         if (thumb_insn_size (inst1) == 2)
+           {
+             definite = 1;
+             break;
+           }
+       }
+
+      /* At this point, if DEFINITE, BUF[I] is the first place we
+        are sure that we know the instruction boundaries, and it is far
+        enough from BPADDR that we could not miss an IT instruction
+        affecting BPADDR.  If ! DEFINITE, give up - start from a
+        known boundary.  */
+      if (! definite)
+       {
+         buf = extend_buffer_earlier (buf, bpaddr, buf_len,
+                                      bpaddr - boundary);
+         if (buf == NULL)
+           return bpaddr;
+         buf_len = bpaddr - boundary;
+         i = 0;
+       }
+    }
+  else
+    {
+      buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary);
+      if (buf == NULL)
+       return bpaddr;
+      buf_len = bpaddr - boundary;
+      i = 0;
+    }
+
+  /* Scan forwards.  Find the last IT instruction before BPADDR.  */
+  last_it = -1;
+  last_it_count = 0;
+  while (i < buf_len)
+    {
+      unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
+      last_it_count--;
+      if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
+       {
+         last_it = i;
+         if (inst1 & 0x0001)
+           last_it_count = 4;
+         else if (inst1 & 0x0002)
+           last_it_count = 3;
+         else if (inst1 & 0x0004)
+           last_it_count = 2;
+         else
+           last_it_count = 1;
+       }
+      i += thumb_insn_size (inst1);
+    }
+
+  xfree (buf);
+
+  if (last_it == -1)
+    /* There wasn't really an IT instruction after all.  */
+    return bpaddr;
+
+  if (last_it_count < 1)
+    /* It was too far away.  */
+    return bpaddr;
+
+  /* This really is a trouble spot.  Move the breakpoint to the IT
+     instruction.  */
+  return bpaddr - buf_len + last_it;
+}
+
+/* ARM displaced stepping support.
+
+   Generally ARM displaced stepping works as follows:
+
+   1. When an instruction is to be single-stepped, it is first decoded by
+      arm_process_displaced_insn (called from arm_displaced_step_copy_insn).
+      Depending on the type of instruction, it is then copied to a scratch
+      location, possibly in a modified form.  The copy_* set of functions
+      performs such modification, as necessary.  A breakpoint is placed after
+      the modified instruction in the scratch space to return control to GDB.
+      Note in particular that instructions which modify the PC will no longer
+      do so after modification.
+
+   2. The instruction is single-stepped, by setting the PC to the scratch
+      location address, and resuming.  Control returns to GDB when the
+      breakpoint is hit.
+
+   3. A cleanup function (cleanup_*) is called corresponding to the copy_*
+      function used for the current instruction.  This function's job is to
+      put the CPU/memory state back to what it would have been if the
+      instruction had been executed unmodified in its original location.  */
+
+/* NOP instruction (mov r0, r0).  */
+#define ARM_NOP                                0xe1a00000
+#define THUMB_NOP 0x4600
+
+/* Helper for register reads for displaced stepping.  In particular, this
+   returns the PC as it would be seen by the instruction at its original
+   location.  */
+
+ULONGEST
+displaced_read_reg (struct regcache *regs, struct displaced_step_closure *dsc,
+                   int regno)
+{
+  ULONGEST ret;
+  CORE_ADDR from = dsc->insn_addr;
+
+  if (regno == ARM_PC_REGNUM)
+    {
+      /* Compute pipeline offset:
+        - When executing an ARM instruction, PC reads as the address of the
+        current instruction plus 8.
+        - When executing a Thumb instruction, PC reads as the address of the
+        current instruction plus 4.  */
+
+      if (!dsc->is_thumb)
+       from += 8;
+      else
+       from += 4;
+
+      if (debug_displaced)
+       fprintf_unfiltered (gdb_stdlog, "displaced: read pc value %.8lx\n",
+                           (unsigned long) from);
+      return (ULONGEST) from;
+    }
+  else
+    {
+      regcache_cooked_read_unsigned (regs, regno, &ret);
+      if (debug_displaced)
+       fprintf_unfiltered (gdb_stdlog, "displaced: read r%d value %.8lx\n",
+                           regno, (unsigned long) ret);
+      return ret;
+    }
+}
+
+static int
+displaced_in_arm_mode (struct regcache *regs)
+{
+  ULONGEST ps;
+  ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
+
+  regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
+
+  return (ps & t_bit) == 0;
+}
+
+/* Write to the PC as from a branch instruction.  */
+
+static void
+branch_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
+                ULONGEST val)
+{
+  if (!dsc->is_thumb)
+    /* Note: If bits 0/1 are set, this branch would be unpredictable for
+       architecture versions < 6.  */
+    regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
+                                   val & ~(ULONGEST) 0x3);
+  else
+    regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
+                                   val & ~(ULONGEST) 0x1);
+}
+
+/* Write to the PC as from a branch-exchange instruction.  */
+
+static void
+bx_write_pc (struct regcache *regs, ULONGEST val)
+{
+  ULONGEST ps;
+  ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
+
+  regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
+
+  if ((val & 1) == 1)
+    {
+      regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit);
+      regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe);
+    }
+  else if ((val & 2) == 0)
+    {
+      regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
+      regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val);
+    }
+  else
+    {
+      /* Unpredictable behaviour.  Try to do something sensible (switch to ARM
+         mode, align dest to 4 bytes).  */
+      warning (_("Single-stepping BX to non-word-aligned ARM instruction."));
+      regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
+      regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc);
+    }
+}
+
+/* Write to the PC as if from a load instruction.  */
+
+static void
+load_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
+              ULONGEST val)
+{
+  if (DISPLACED_STEPPING_ARCH_VERSION >= 5)
+    bx_write_pc (regs, val);
+  else
+    branch_write_pc (regs, dsc, val);
+}
+
+/* Write to the PC as if from an ALU instruction.  */
+
+static void
+alu_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
+             ULONGEST val)
+{
+  if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && !dsc->is_thumb)
+    bx_write_pc (regs, val);
+  else
+    branch_write_pc (regs, dsc, val);
+}
+
+/* Helper for writing to registers for displaced stepping.  Writing to the PC
+   has a varying effects depending on the instruction which does the write:
+   this is controlled by the WRITE_PC argument.  */
+
+void
+displaced_write_reg (struct regcache *regs, struct displaced_step_closure *dsc,
+                    int regno, ULONGEST val, enum pc_write_style write_pc)
+{
+  if (regno == ARM_PC_REGNUM)
+    {
+      if (debug_displaced)
+       fprintf_unfiltered (gdb_stdlog, "displaced: writing pc %.8lx\n",
+                           (unsigned long) val);
+      switch (write_pc)
+       {
+       case BRANCH_WRITE_PC:
+         branch_write_pc (regs, dsc, val);
+         break;
+
+       case BX_WRITE_PC:
+         bx_write_pc (regs, val);
+         break;
+
+       case LOAD_WRITE_PC:
+         load_write_pc (regs, dsc, val);
+         break;
+
+       case ALU_WRITE_PC:
+         alu_write_pc (regs, dsc, val);
+         break;
+
+       case CANNOT_WRITE_PC:
+         warning (_("Instruction wrote to PC in an unexpected way when "
+                    "single-stepping"));
+         break;
+
+       default:
+         internal_error (__FILE__, __LINE__,
+                         _("Invalid argument to displaced_write_reg"));
+       }
+
+      dsc->wrote_to_pc = 1;
+    }
+  else
+    {
+      if (debug_displaced)
+       fprintf_unfiltered (gdb_stdlog, "displaced: writing r%d value %.8lx\n",
+                           regno, (unsigned long) val);
+      regcache_cooked_write_unsigned (regs, regno, val);
+    }
+}
+
+/* This function is used to concisely determine if an instruction INSN
+   references PC.  Register fields of interest in INSN should have the
+   corresponding fields of BITMASK set to 0b1111.  The function
+   returns return 1 if any of these fields in INSN reference the PC
+   (also 0b1111, r15), else it returns 0.  */
+
+static int
+insn_references_pc (uint32_t insn, uint32_t bitmask)
+{
+  uint32_t lowbit = 1;
+
+  while (bitmask != 0)
+    {
+      uint32_t mask;
+
+      for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1)
+       ;
+
+      if (!lowbit)
+       break;
+
+      mask = lowbit * 0xf;
+
+      if ((insn & mask) == mask)
+       return 1;
+
+      bitmask &= ~mask;
+    }
+
+  return 0;
+}
+
+/* The simplest copy function.  Many instructions have the same effect no
+   matter what address they are executed at: in those cases, use this.  */
+
+static int
+arm_copy_unmodified (struct gdbarch *gdbarch, uint32_t insn,
+                    const char *iname, struct displaced_step_closure *dsc)
+{
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx, "
+                       "opcode/class '%s' unmodified\n", (unsigned long) insn,
+                       iname);
+
+  dsc->modinsn[0] = insn;
+
+  return 0;
+}
+
+static int
+thumb_copy_unmodified_32bit (struct gdbarch *gdbarch, uint16_t insn1,
+                            uint16_t insn2, const char *iname,
+                            struct displaced_step_closure *dsc)
+{
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x %.4x, "
+                       "opcode/class '%s' unmodified\n", insn1, insn2,
+                       iname);
+
+  dsc->modinsn[0] = insn1;
+  dsc->modinsn[1] = insn2;
+  dsc->numinsns = 2;
+
+  return 0;
+}
+
+/* Copy 16-bit Thumb(Thumb and 16-bit Thumb-2) instruction without any
+   modification.  */
+static int
+thumb_copy_unmodified_16bit (struct gdbarch *gdbarch, unsigned int insn,
+                            const char *iname,
+                            struct displaced_step_closure *dsc)
+{
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x, "
+                       "opcode/class '%s' unmodified\n", insn,
+                       iname);
+
+  dsc->modinsn[0] = insn;
+
+  return 0;
+}
+
+/* Preload instructions with immediate offset.  */
+
+static void
+cleanup_preload (struct gdbarch *gdbarch,
+                struct regcache *regs, struct displaced_step_closure *dsc)
+{
+  displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
+  if (!dsc->u.preload.immed)
+    displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
+}
+
+static void
+install_preload (struct gdbarch *gdbarch, struct regcache *regs,
+                struct displaced_step_closure *dsc, unsigned int rn)
+{
+  ULONGEST rn_val;
+  /* Preload instructions:
+
+     {pli/pld} [rn, #+/-imm]
+     ->
+     {pli/pld} [r0, #+/-imm].  */
+
+  dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
+  rn_val = displaced_read_reg (regs, dsc, rn);
+  displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
+  dsc->u.preload.immed = 1;
+
+  dsc->cleanup = &cleanup_preload;
+}
+
+static int
+arm_copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
+                 struct displaced_step_closure *dsc)
+{
+  unsigned int rn = bits (insn, 16, 19);
+
+  if (!insn_references_pc (insn, 0x000f0000ul))
+    return arm_copy_unmodified (gdbarch, insn, "preload", dsc);
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
+                       (unsigned long) insn);
+
+  dsc->modinsn[0] = insn & 0xfff0ffff;
+
+  install_preload (gdbarch, regs, dsc, rn);
+
+  return 0;
+}
+
+static int
+thumb2_copy_preload (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
+                    struct regcache *regs, struct displaced_step_closure *dsc)
+{
+  unsigned int rn = bits (insn1, 0, 3);
+  unsigned int u_bit = bit (insn1, 7);
+  int imm12 = bits (insn2, 0, 11);
+  ULONGEST pc_val;
+
+  if (rn != ARM_PC_REGNUM)
+    return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "preload", dsc);
+
+  /* PC is only allowed to use in PLI (immediate,literal) Encoding T3, and
+     PLD (literal) Encoding T1.  */
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog,
+                       "displaced: copying pld/pli pc (0x%x) %c imm12 %.4x\n",
+                       (unsigned int) dsc->insn_addr, u_bit ? '+' : '-',
+                       imm12);
+
+  if (!u_bit)
+    imm12 = -1 * imm12;
+
+  /* Rewrite instruction {pli/pld} PC imm12 into:
+     Prepare: tmp[0] <- r0, tmp[1] <- r1, r0 <- pc, r1 <- imm12
+
+     {pli/pld} [r0, r1]
+
+     Cleanup: r0 <- tmp[0], r1 <- tmp[1].  */
+
+  dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
+  dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
+
+  pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
+
+  displaced_write_reg (regs, dsc, 0, pc_val, CANNOT_WRITE_PC);
+  displaced_write_reg (regs, dsc, 1, imm12, CANNOT_WRITE_PC);
+  dsc->u.preload.immed = 0;
+
+  /* {pli/pld} [r0, r1] */
+  dsc->modinsn[0] = insn1 & 0xfff0;
+  dsc->modinsn[1] = 0xf001;
+  dsc->numinsns = 2;
+
+  dsc->cleanup = &cleanup_preload;
+  return 0;
+}
+
+/* Preload instructions with register offset.  */
+
+static void
+install_preload_reg(struct gdbarch *gdbarch, struct regcache *regs,
+                   struct displaced_step_closure *dsc, unsigned int rn,
+                   unsigned int rm)
+{
+  ULONGEST rn_val, rm_val;
+
+  /* Preload register-offset instructions:
+
+     {pli/pld} [rn, rm {, shift}]
+     ->
+     {pli/pld} [r0, r1 {, shift}].  */
+
+  dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
+  dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
+  rn_val = displaced_read_reg (regs, dsc, rn);
+  rm_val = displaced_read_reg (regs, dsc, rm);
+  displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
+  displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC);
+  dsc->u.preload.immed = 0;
+
+  dsc->cleanup = &cleanup_preload;
+}
+
+static int
+arm_copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn,
+                     struct regcache *regs,
+                     struct displaced_step_closure *dsc)
+{
+  unsigned int rn = bits (insn, 16, 19);
+  unsigned int rm = bits (insn, 0, 3);
+
+
+  if (!insn_references_pc (insn, 0x000f000ful))
+    return arm_copy_unmodified (gdbarch, insn, "preload reg", dsc);
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
+                       (unsigned long) insn);
+
+  dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1;
+
+  install_preload_reg (gdbarch, regs, dsc, rn, rm);
+  return 0;
+}
+
+/* Copy/cleanup coprocessor load and store instructions.  */
+
+static void
+cleanup_copro_load_store (struct gdbarch *gdbarch,
+                         struct regcache *regs,
+                         struct displaced_step_closure *dsc)
+{
+  ULONGEST rn_val = displaced_read_reg (regs, dsc, 0);
+
+  displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
+
+  if (dsc->u.ldst.writeback)
+    displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC);
+}
+
+static void
+install_copro_load_store (struct gdbarch *gdbarch, struct regcache *regs,
+                         struct displaced_step_closure *dsc,
+                         int writeback, unsigned int rn)
+{
+  ULONGEST rn_val;
+
+  /* Coprocessor load/store instructions:
+
+     {stc/stc2} [<Rn>, #+/-imm]  (and other immediate addressing modes)
+     ->
+     {stc/stc2} [r0, #+/-imm].
+
+     ldc/ldc2 are handled identically.  */
+
+  dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
+  rn_val = displaced_read_reg (regs, dsc, rn);
+  /* PC should be 4-byte aligned.  */
+  rn_val = rn_val & 0xfffffffc;
+  displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
+
+  dsc->u.ldst.writeback = writeback;
+  dsc->u.ldst.rn = rn;
+
+  dsc->cleanup = &cleanup_copro_load_store;
+}
+
+static int
+arm_copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn,
+                          struct regcache *regs,
+                          struct displaced_step_closure *dsc)
+{
+  unsigned int rn = bits (insn, 16, 19);
+
+  if (!insn_references_pc (insn, 0x000f0000ul))
+    return arm_copy_unmodified (gdbarch, insn, "copro load/store", dsc);
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
+                       "load/store insn %.8lx\n", (unsigned long) insn);
+
+  dsc->modinsn[0] = insn & 0xfff0ffff;
+
+  install_copro_load_store (gdbarch, regs, dsc, bit (insn, 25), rn);
+
+  return 0;
+}
+
+static int
+thumb2_copy_copro_load_store (struct gdbarch *gdbarch, uint16_t insn1,
+                             uint16_t insn2, struct regcache *regs,
+                             struct displaced_step_closure *dsc)
+{
+  unsigned int rn = bits (insn1, 0, 3);
+
+  if (rn != ARM_PC_REGNUM)
+    return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
+                                       "copro load/store", dsc);
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
+                       "load/store insn %.4x%.4x\n", insn1, insn2);
+
+  dsc->modinsn[0] = insn1 & 0xfff0;
+  dsc->modinsn[1] = insn2;
+  dsc->numinsns = 2;
+
+  /* This function is called for copying instruction LDC/LDC2/VLDR, which
+     doesn't support writeback, so pass 0.  */
+  install_copro_load_store (gdbarch, regs, dsc, 0, rn);
+
+  return 0;
+}
+
+/* Clean up branch instructions (actually perform the branch, by setting
+   PC).  */
+
+static void
+cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs,
+               struct displaced_step_closure *dsc)
+{
+  uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
+  int branch_taken = condition_true (dsc->u.branch.cond, status);
+  enum pc_write_style write_pc = dsc->u.branch.exchange
+                                ? BX_WRITE_PC : BRANCH_WRITE_PC;
+
+  if (!branch_taken)
+    return;
+
+  if (dsc->u.branch.link)
+    {
+      /* The value of LR should be the next insn of current one.  In order
+       not to confuse logic hanlding later insn `bx lr', if current insn mode
+       is Thumb, the bit 0 of LR value should be set to 1.  */
+      ULONGEST next_insn_addr = dsc->insn_addr + dsc->insn_size;
+
+      if (dsc->is_thumb)
+       next_insn_addr |= 0x1;
+
+      displaced_write_reg (regs, dsc, ARM_LR_REGNUM, next_insn_addr,
+                          CANNOT_WRITE_PC);
+    }
+
+  displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->u.branch.dest, write_pc);
+}
+
+/* Copy B/BL/BLX instructions with immediate destinations.  */
+
+static void
+install_b_bl_blx (struct gdbarch *gdbarch, struct regcache *regs,
+                 struct displaced_step_closure *dsc,
+                 unsigned int cond, int exchange, int link, long offset)
+{
+  /* Implement "BL<cond> <label>" as:
+
+     Preparation: cond <- instruction condition
+     Insn: mov r0, r0  (nop)
+     Cleanup: if (condition true) { r14 <- pc; pc <- label }.
+
+     B<cond> similar, but don't set r14 in cleanup.  */
+
+  dsc->u.branch.cond = cond;
+  dsc->u.branch.link = link;
+  dsc->u.branch.exchange = exchange;
+
+  dsc->u.branch.dest = dsc->insn_addr;
+  if (link && exchange)
+    /* For BLX, offset is computed from the Align (PC, 4).  */
+    dsc->u.branch.dest = dsc->u.branch.dest & 0xfffffffc;
+
+  if (dsc->is_thumb)
+    dsc->u.branch.dest += 4 + offset;
+  else
+    dsc->u.branch.dest += 8 + offset;
+
+  dsc->cleanup = &cleanup_branch;
+}
+static int
+arm_copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn,
+                  struct regcache *regs, struct displaced_step_closure *dsc)
+{
+  unsigned int cond = bits (insn, 28, 31);
+  int exchange = (cond == 0xf);
+  int link = exchange || bit (insn, 24);
+  long offset;
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying %s immediate insn "
+                       "%.8lx\n", (exchange) ? "blx" : (link) ? "bl" : "b",
+                       (unsigned long) insn);
+  if (exchange)
+    /* For BLX, set bit 0 of the destination.  The cleanup_branch function will
+       then arrange the switch into Thumb mode.  */
+    offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1;
+  else
+    offset = bits (insn, 0, 23) << 2;
+
+  if (bit (offset, 25))
+    offset = offset | ~0x3ffffff;
+
+  dsc->modinsn[0] = ARM_NOP;
+
+  install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
+  return 0;
+}
+
+static int
+thumb2_copy_b_bl_blx (struct gdbarch *gdbarch, uint16_t insn1,
+                     uint16_t insn2, struct regcache *regs,
+                     struct displaced_step_closure *dsc)
+{
+  int link = bit (insn2, 14);
+  int exchange = link && !bit (insn2, 12);
+  int cond = INST_AL;
+  long offset = 0;
+  int j1 = bit (insn2, 13);
+  int j2 = bit (insn2, 11);
+  int s = sbits (insn1, 10, 10);
+  int i1 = !(j1 ^ bit (insn1, 10));
+  int i2 = !(j2 ^ bit (insn1, 10));
+
+  if (!link && !exchange) /* B */
+    {
+      offset = (bits (insn2, 0, 10) << 1);
+      if (bit (insn2, 12)) /* Encoding T4 */
+       {
+         offset |= (bits (insn1, 0, 9) << 12)
+           | (i2 << 22)
+           | (i1 << 23)
+           | (s << 24);
+         cond = INST_AL;
+       }
+      else /* Encoding T3 */
+       {
+         offset |= (bits (insn1, 0, 5) << 12)
+           | (j1 << 18)
+           | (j2 << 19)
+           | (s << 20);
+         cond = bits (insn1, 6, 9);
+       }
+    }
+  else
+    {
+      offset = (bits (insn1, 0, 9) << 12);
+      offset |= ((i2 << 22) | (i1 << 23) | (s << 24));
+      offset |= exchange ?
+       (bits (insn2, 1, 10) << 2) : (bits (insn2, 0, 10) << 1);
+    }
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying %s insn "
+                       "%.4x %.4x with offset %.8lx\n",
+                       link ? (exchange) ? "blx" : "bl" : "b",
+                       insn1, insn2, offset);
+
+  dsc->modinsn[0] = THUMB_NOP;
+
+  install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
+  return 0;
+}
+
+/* Copy B Thumb instructions.  */
+static int
+thumb_copy_b (struct gdbarch *gdbarch, unsigned short insn,
+             struct displaced_step_closure *dsc)
+{
+  unsigned int cond = 0;
+  int offset = 0;
+  unsigned short bit_12_15 = bits (insn, 12, 15);
+  CORE_ADDR from = dsc->insn_addr;
+
+  if (bit_12_15 == 0xd)
+    {
+      /* offset = SignExtend (imm8:0, 32) */
+      offset = sbits ((insn << 1), 0, 8);
+      cond = bits (insn, 8, 11);
+    }
+  else if (bit_12_15 == 0xe) /* Encoding T2 */
+    {
+      offset = sbits ((insn << 1), 0, 11);
+      cond = INST_AL;
+    }
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog,
+                       "displaced: copying b immediate insn %.4x "
+                       "with offset %d\n", insn, offset);
+
+  dsc->u.branch.cond = cond;
+  dsc->u.branch.link = 0;
+  dsc->u.branch.exchange = 0;
+  dsc->u.branch.dest = from + 4 + offset;
+
+  dsc->modinsn[0] = THUMB_NOP;
+
+  dsc->cleanup = &cleanup_branch;
+
+  return 0;
+}
+
+/* Copy BX/BLX with register-specified destinations.  */
+
+static void
+install_bx_blx_reg (struct gdbarch *gdbarch, struct regcache *regs,
+                   struct displaced_step_closure *dsc, int link,
+                   unsigned int cond, unsigned int rm)
+{
+  /* Implement {BX,BLX}<cond> <reg>" as:
+
+     Preparation: cond <- instruction condition
+     Insn: mov r0, r0 (nop)
+     Cleanup: if (condition true) { r14 <- pc; pc <- dest; }.
+
+     Don't set r14 in cleanup for BX.  */
+
+  dsc->u.branch.dest = displaced_read_reg (regs, dsc, rm);
+
+  dsc->u.branch.cond = cond;
+  dsc->u.branch.link = link;
+
+  dsc->u.branch.exchange = 1;
+
+  dsc->cleanup = &cleanup_branch;
+}
+
+static int
+arm_copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn,
+                    struct regcache *regs, struct displaced_step_closure *dsc)
+{
+  unsigned int cond = bits (insn, 28, 31);
+  /* BX:  x12xxx1x
+     BLX: x12xxx3x.  */
+  int link = bit (insn, 5);
+  unsigned int rm = bits (insn, 0, 3);
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx",
+                       (unsigned long) insn);
+
+  dsc->modinsn[0] = ARM_NOP;
+
+  install_bx_blx_reg (gdbarch, regs, dsc, link, cond, rm);
+  return 0;
+}
+
+static int
+thumb_copy_bx_blx_reg (struct gdbarch *gdbarch, uint16_t insn,
+                      struct regcache *regs,
+                      struct displaced_step_closure *dsc)
+{
+  int link = bit (insn, 7);
+  unsigned int rm = bits (insn, 3, 6);
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x",
+                       (unsigned short) insn);
+
+  dsc->modinsn[0] = THUMB_NOP;
+
+  install_bx_blx_reg (gdbarch, regs, dsc, link, INST_AL, rm);
+
+  return 0;
+}
+
+
+/* Copy/cleanup arithmetic/logic instruction with immediate RHS.  */
+
+static void
+cleanup_alu_imm (struct gdbarch *gdbarch,
+                struct regcache *regs, struct displaced_step_closure *dsc)
+{
+  ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
+  displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
+  displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
+  displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
+}
+
+static int
+arm_copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
+                 struct displaced_step_closure *dsc)
+{
+  unsigned int rn = bits (insn, 16, 19);
+  unsigned int rd = bits (insn, 12, 15);
+  unsigned int op = bits (insn, 21, 24);
+  int is_mov = (op == 0xd);
+  ULONGEST rd_val, rn_val;
+
+  if (!insn_references_pc (insn, 0x000ff000ul))
+    return arm_copy_unmodified (gdbarch, insn, "ALU immediate", dsc);
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying immediate %s insn "
+                       "%.8lx\n", is_mov ? "move" : "ALU",
+                       (unsigned long) insn);
+
+  /* Instruction is of form:
+
+     <op><cond> rd, [rn,] #imm
+
+     Rewrite as:
+
+     Preparation: tmp1, tmp2 <- r0, r1;
+                 r0, r1 <- rd, rn
+     Insn: <op><cond> r0, r1, #imm
+     Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
+  */
+
+  dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
+  dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
+  rn_val = displaced_read_reg (regs, dsc, rn);
+  rd_val = displaced_read_reg (regs, dsc, rd);
+  displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
+  displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
+  dsc->rd = rd;
+
+  if (is_mov)
+    dsc->modinsn[0] = insn & 0xfff00fff;
+  else
+    dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000;
+
+  dsc->cleanup = &cleanup_alu_imm;
+
+  return 0;
+}
+
+static int
+thumb2_copy_alu_imm (struct gdbarch *gdbarch, uint16_t insn1,
+                    uint16_t insn2, struct regcache *regs,
+                    struct displaced_step_closure *dsc)
+{
+  unsigned int op = bits (insn1, 5, 8);
+  unsigned int rn, rm, rd;
+  ULONGEST rd_val, rn_val;
+
+  rn = bits (insn1, 0, 3); /* Rn */
+  rm = bits (insn2, 0, 3); /* Rm */
+  rd = bits (insn2, 8, 11); /* Rd */
+
+  /* This routine is only called for instruction MOV.  */
+  gdb_assert (op == 0x2 && rn == 0xf);
+
+  if (rm != ARM_PC_REGNUM && rd != ARM_PC_REGNUM)
+    return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ALU imm", dsc);
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.4x%.4x\n",
+                       "ALU", insn1, insn2);
+
+  /* Instruction is of form:
+
+     <op><cond> rd, [rn,] #imm
+
+     Rewrite as:
+
+     Preparation: tmp1, tmp2 <- r0, r1;
+                 r0, r1 <- rd, rn
+     Insn: <op><cond> r0, r1, #imm
+     Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
+  */
+
+  dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
+  dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
+  rn_val = displaced_read_reg (regs, dsc, rn);
+  rd_val = displaced_read_reg (regs, dsc, rd);
+  displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
+  displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
+  dsc->rd = rd;
+
+  dsc->modinsn[0] = insn1;
+  dsc->modinsn[1] = ((insn2 & 0xf0f0) | 0x1);
+  dsc->numinsns = 2;
+
+  dsc->cleanup = &cleanup_alu_imm;
+
+  return 0;
+}
+
+/* Copy/cleanup arithmetic/logic insns with register RHS.  */
+
+static void
+cleanup_alu_reg (struct gdbarch *gdbarch,
+                struct regcache *regs, struct displaced_step_closure *dsc)
+{
+  ULONGEST rd_val;
+  int i;
+
+  rd_val = displaced_read_reg (regs, dsc, 0);
+
+  for (i = 0; i < 3; i++)
+    displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
+
+  displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
+}
+
+static void
+install_alu_reg (struct gdbarch *gdbarch, struct regcache *regs,
+                struct displaced_step_closure *dsc,
+                unsigned int rd, unsigned int rn, unsigned int rm)
+{
+  ULONGEST rd_val, rn_val, rm_val;
+
+  /* Instruction is of form:
+
+     <op><cond> rd, [rn,] rm [, <shift>]
+
+     Rewrite as:
+
+     Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2;
+                 r0, r1, r2 <- rd, rn, rm
+     Insn: <op><cond> r0, r1, r2 [, <shift>]
+     Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3
+  */
+
+  dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
+  dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
+  dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
+  rd_val = displaced_read_reg (regs, dsc, rd);
+  rn_val = displaced_read_reg (regs, dsc, rn);
+  rm_val = displaced_read_reg (regs, dsc, rm);
+  displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
+  displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
+  displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
+  dsc->rd = rd;
+
+  dsc->cleanup = &cleanup_alu_reg;
+}
+
+static int
+arm_copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
+                 struct displaced_step_closure *dsc)
+{
+  unsigned int op = bits (insn, 21, 24);
+  int is_mov = (op == 0xd);
+
+  if (!insn_references_pc (insn, 0x000ff00ful))
+    return arm_copy_unmodified (gdbarch, insn, "ALU reg", dsc);
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.8lx\n",
+                       is_mov ? "move" : "ALU", (unsigned long) insn);
+
+  if (is_mov)
+    dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2;
+  else
+    dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002;
+
+  install_alu_reg (gdbarch, regs, dsc, bits (insn, 12, 15), bits (insn, 16, 19),
+                  bits (insn, 0, 3));
+  return 0;
+}
+
+static int
+thumb_copy_alu_reg (struct gdbarch *gdbarch, uint16_t insn,
+                   struct regcache *regs,
+                   struct displaced_step_closure *dsc)
+{
+  unsigned rn, rm, rd;
+
+  rd = bits (insn, 3, 6);
+  rn = (bit (insn, 7) << 3) | bits (insn, 0, 2);
+  rm = 2;
+
+  if (rd != ARM_PC_REGNUM && rn != ARM_PC_REGNUM)
+    return thumb_copy_unmodified_16bit (gdbarch, insn, "ALU reg", dsc);
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.4x\n",
+                       "ALU", (unsigned short) insn);
+
+  dsc->modinsn[0] = ((insn & 0xff00) | 0x08);
+
+  install_alu_reg (gdbarch, regs, dsc, rd, rn, rm);
+
+  return 0;
+}
+
+/* Cleanup/copy arithmetic/logic insns with shifted register RHS.  */
+
+static void
+cleanup_alu_shifted_reg (struct gdbarch *gdbarch,
+                        struct regcache *regs,
+                        struct displaced_step_closure *dsc)
+{
+  ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
+  int i;
+
+  for (i = 0; i < 4; i++)
+    displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
+
+  displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
+}
+
+static void
+install_alu_shifted_reg (struct gdbarch *gdbarch, struct regcache *regs,
+                        struct displaced_step_closure *dsc,
+                        unsigned int rd, unsigned int rn, unsigned int rm,
+                        unsigned rs)
+{
+  int i;
+  ULONGEST rd_val, rn_val, rm_val, rs_val;
+
+  /* Instruction is of form:
+
+     <op><cond> rd, [rn,] rm, <shift> rs
+
+     Rewrite as:
+
+     Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3
+                 r0, r1, r2, r3 <- rd, rn, rm, rs
+     Insn: <op><cond> r0, r1, r2, <shift> r3
+     Cleanup: tmp5 <- r0
+             r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4
+             rd <- tmp5
+  */
+
+  for (i = 0; i < 4; i++)
+    dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
+
+  rd_val = displaced_read_reg (regs, dsc, rd);
+  rn_val = displaced_read_reg (regs, dsc, rn);
+  rm_val = displaced_read_reg (regs, dsc, rm);
+  rs_val = displaced_read_reg (regs, dsc, rs);
+  displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
+  displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
+  displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
+  displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC);
+  dsc->rd = rd;
+  dsc->cleanup = &cleanup_alu_shifted_reg;
+}
+
+static int
+arm_copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn,
+                         struct regcache *regs,
+                         struct displaced_step_closure *dsc)
+{
+  unsigned int op = bits (insn, 21, 24);
+  int is_mov = (op == 0xd);
+  unsigned int rd, rn, rm, rs;
+
+  if (!insn_references_pc (insn, 0x000fff0ful))
+    return arm_copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc);
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying shifted reg %s insn "
+                       "%.8lx\n", is_mov ? "move" : "ALU",
+                       (unsigned long) insn);
+
+  rn = bits (insn, 16, 19);
+  rm = bits (insn, 0, 3);
+  rs = bits (insn, 8, 11);
+  rd = bits (insn, 12, 15);
+
+  if (is_mov)
+    dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302;
+  else
+    dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302;
+
+  install_alu_shifted_reg (gdbarch, regs, dsc, rd, rn, rm, rs);
+
+  return 0;
+}
+
+/* Clean up load instructions.  */
+
+static void
+cleanup_load (struct gdbarch *gdbarch, struct regcache *regs,
+             struct displaced_step_closure *dsc)
+{
+  ULONGEST rt_val, rt_val2 = 0, rn_val;
+
+  rt_val = displaced_read_reg (regs, dsc, 0);
+  if (dsc->u.ldst.xfersize == 8)
+    rt_val2 = displaced_read_reg (regs, dsc, 1);
+  rn_val = displaced_read_reg (regs, dsc, 2);
+
+  displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
+  if (dsc->u.ldst.xfersize > 4)
+    displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
+  displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
+  if (!dsc->u.ldst.immed)
+    displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
+
+  /* Handle register writeback.  */
+  if (dsc->u.ldst.writeback)
+    displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
+  /* Put result in right place.  */
+  displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC);
+  if (dsc->u.ldst.xfersize == 8)
+    displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC);
+}
+
+/* Clean up store instructions.  */
+
+static void
+cleanup_store (struct gdbarch *gdbarch, struct regcache *regs,
+              struct displaced_step_closure *dsc)
+{
+  ULONGEST rn_val = displaced_read_reg (regs, dsc, 2);
+
+  displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
+  if (dsc->u.ldst.xfersize > 4)
+    displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
+  displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
+  if (!dsc->u.ldst.immed)
+    displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
+  if (!dsc->u.ldst.restore_r4)
+    displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC);
+
+  /* Writeback.  */
+  if (dsc->u.ldst.writeback)
+    displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
+}
+
+/* Copy "extra" load/store instructions.  These are halfword/doubleword
+   transfers, which have a different encoding to byte/word transfers.  */
+
+static int
+arm_copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unpriveleged,
+                     struct regcache *regs, struct displaced_step_closure *dsc)
+{
+  unsigned int op1 = bits (insn, 20, 24);
+  unsigned int op2 = bits (insn, 5, 6);
+  unsigned int rt = bits (insn, 12, 15);
+  unsigned int rn = bits (insn, 16, 19);
+  unsigned int rm = bits (insn, 0, 3);
+  char load[12]     = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1};
+  char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2};
+  int immed = (op1 & 0x4) != 0;
+  int opcode;
+  ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0;
+
+  if (!insn_references_pc (insn, 0x000ff00ful))
+    return arm_copy_unmodified (gdbarch, insn, "extra load/store", dsc);
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying %sextra load/store "
+                       "insn %.8lx\n", unpriveleged ? "unpriveleged " : "",
+                       (unsigned long) insn);
+
+  opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4;
+
+  if (opcode < 0)
+    internal_error (__FILE__, __LINE__,
+                   _("copy_extra_ld_st: instruction decode error"));
+
+  dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
+  dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
+  dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
+  if (!immed)
+    dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
+
+  rt_val = displaced_read_reg (regs, dsc, rt);
+  if (bytesize[opcode] == 8)
+    rt_val2 = displaced_read_reg (regs, dsc, rt + 1);
+  rn_val = displaced_read_reg (regs, dsc, rn);
+  if (!immed)
+    rm_val = displaced_read_reg (regs, dsc, rm);
+
+  displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
+  if (bytesize[opcode] == 8)
+    displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC);
+  displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
+  if (!immed)
+    displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
+
+  dsc->rd = rt;
+  dsc->u.ldst.xfersize = bytesize[opcode];
+  dsc->u.ldst.rn = rn;
+  dsc->u.ldst.immed = immed;
+  dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0;
+  dsc->u.ldst.restore_r4 = 0;
+
+  if (immed)
+    /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm]
+       ->
+       {ldr,str}<width><cond> r0, [r1,] [r2, #imm].  */
+    dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
+  else
+    /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm]
+       ->
+       {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3].  */
+    dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
+
+  dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store;
+
+  return 0;
+}
+
+/* Copy byte/half word/word loads and stores.  */
+
+static void
+install_load_store (struct gdbarch *gdbarch, struct regcache *regs,
+                   struct displaced_step_closure *dsc, int load,
+                   int immed, int writeback, int size, int usermode,
+                   int rt, int rm, int rn)
+{
+  ULONGEST rt_val, rn_val, rm_val = 0;
+
+  dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
+  dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
+  if (!immed)
+    dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
+  if (!load)
+    dsc->tmp[4] = displaced_read_reg (regs, dsc, 4);
+
+  rt_val = displaced_read_reg (regs, dsc, rt);
+  rn_val = displaced_read_reg (regs, dsc, rn);
+  if (!immed)
+    rm_val = displaced_read_reg (regs, dsc, rm);
+
+  displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
+  displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
+  if (!immed)
+    displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
+  dsc->rd = rt;
+  dsc->u.ldst.xfersize = size;
+  dsc->u.ldst.rn = rn;
+  dsc->u.ldst.immed = immed;
+  dsc->u.ldst.writeback = writeback;
+
+  /* To write PC we can do:
+
+     Before this sequence of instructions:
+     r0 is the PC value got from displaced_read_reg, so r0 = from + 8;
+     r2 is the Rn value got from dispalced_read_reg.
+
+     Insn1: push {pc} Write address of STR instruction + offset on stack
+     Insn2: pop  {r4} Read it back from stack, r4 = addr(Insn1) + offset
+     Insn3: sub r4, r4, pc   r4 = addr(Insn1) + offset - pc
+                                = addr(Insn1) + offset - addr(Insn3) - 8
+                                = offset - 16
+     Insn4: add r4, r4, #8   r4 = offset - 8
+     Insn5: add r0, r0, r4   r0 = from + 8 + offset - 8
+                                = from + offset
+     Insn6: str r0, [r2, #imm] (or str r0, [r2, r3])
+
+     Otherwise we don't know what value to write for PC, since the offset is
+     architecture-dependent (sometimes PC+8, sometimes PC+12).  More details
+     of this can be found in Section "Saving from r15" in
+     http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */
+
+  dsc->cleanup = load ? &cleanup_load : &cleanup_store;
+}
+
+
+static int
+thumb2_copy_load_literal (struct gdbarch *gdbarch, uint16_t insn1,
+                         uint16_t insn2, struct regcache *regs,
+                         struct displaced_step_closure *dsc, int size)
+{
+  unsigned int u_bit = bit (insn1, 7);
+  unsigned int rt = bits (insn2, 12, 15);
+  int imm12 = bits (insn2, 0, 11);
+  ULONGEST pc_val;
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog,
+                       "displaced: copying ldr pc (0x%x) R%d %c imm12 %.4x\n",
+                       (unsigned int) dsc->insn_addr, rt, u_bit ? '+' : '-',
+                       imm12);
+
+  if (!u_bit)
+    imm12 = -1 * imm12;
+
+  /* Rewrite instruction LDR Rt imm12 into:
+
+     Prepare: tmp[0] <- r0, tmp[1] <- r2, tmp[2] <- r3, r2 <- pc, r3 <- imm12
+
+     LDR R0, R2, R3,
+
+     Cleanup: rt <- r0, r0 <- tmp[0], r2 <- tmp[1], r3 <- tmp[2].  */
+
+
+  dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
+  dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
+  dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
+
+  pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
+
+  pc_val = pc_val & 0xfffffffc;
+
+  displaced_write_reg (regs, dsc, 2, pc_val, CANNOT_WRITE_PC);
+  displaced_write_reg (regs, dsc, 3, imm12, CANNOT_WRITE_PC);
+
+  dsc->rd = rt;
+
+  dsc->u.ldst.xfersize = size;
+  dsc->u.ldst.immed = 0;
+  dsc->u.ldst.writeback = 0;
+  dsc->u.ldst.restore_r4 = 0;
+
+  /* LDR R0, R2, R3 */
+  dsc->modinsn[0] = 0xf852;
+  dsc->modinsn[1] = 0x3;
+  dsc->numinsns = 2;
+
+  dsc->cleanup = &cleanup_load;
+
+  return 0;
+}
+
+static int
+thumb2_copy_load_reg_imm (struct gdbarch *gdbarch, uint16_t insn1,
+                         uint16_t insn2, struct regcache *regs,
+                         struct displaced_step_closure *dsc,
+                         int writeback, int immed)
+{
+  unsigned int rt = bits (insn2, 12, 15);
+  unsigned int rn = bits (insn1, 0, 3);
+  unsigned int rm = bits (insn2, 0, 3);  /* Only valid if !immed.  */
+  /* In LDR (register), there is also a register Rm, which is not allowed to
+     be PC, so we don't have to check it.  */
+
+  if (rt != ARM_PC_REGNUM && rn != ARM_PC_REGNUM)
+    return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "load",
+                                       dsc);
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog,
+                       "displaced: copying ldr r%d [r%d] insn %.4x%.4x\n",
+                        rt, rn, insn1, insn2);
+
+  install_load_store (gdbarch, regs, dsc, 1, immed, writeback, 4,
+                     0, rt, rm, rn);
+
+  dsc->u.ldst.restore_r4 = 0;
+
+  if (immed)
+    /* ldr[b]<cond> rt, [rn, #imm], etc.
+       ->
+       ldr[b]<cond> r0, [r2, #imm].  */
+    {
+      dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
+      dsc->modinsn[1] = insn2 & 0x0fff;
+    }
+  else
+    /* ldr[b]<cond> rt, [rn, rm], etc.
+       ->
+       ldr[b]<cond> r0, [r2, r3].  */
+    {
+      dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
+      dsc->modinsn[1] = (insn2 & 0x0ff0) | 0x3;
+    }
+
+  dsc->numinsns = 2;
+
+  return 0;
+}
+
+
+static int
+arm_copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn,
+                           struct regcache *regs,
+                           struct displaced_step_closure *dsc,
+                           int load, int size, int usermode)
+{
+  int immed = !bit (insn, 25);
+  int writeback = (bit (insn, 24) == 0 || bit (insn, 21) != 0);
+  unsigned int rt = bits (insn, 12, 15);
+  unsigned int rn = bits (insn, 16, 19);
+  unsigned int rm = bits (insn, 0, 3);  /* Only valid if !immed.  */
+
+  if (!insn_references_pc (insn, 0x000ff00ful))
+    return arm_copy_unmodified (gdbarch, insn, "load/store", dsc);
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog,
+                       "displaced: copying %s%s r%d [r%d] insn %.8lx\n",
+                       load ? (size == 1 ? "ldrb" : "ldr")
+                            : (size == 1 ? "strb" : "str"), usermode ? "t" : "",
+                       rt, rn,
+                       (unsigned long) insn);
+
+  install_load_store (gdbarch, regs, dsc, load, immed, writeback, size,
+                     usermode, rt, rm, rn);
+
+  if (load || rt != ARM_PC_REGNUM)
+    {
+      dsc->u.ldst.restore_r4 = 0;
+
+      if (immed)
+       /* {ldr,str}[b]<cond> rt, [rn, #imm], etc.
+          ->
+          {ldr,str}[b]<cond> r0, [r2, #imm].  */
+       dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
+      else
+       /* {ldr,str}[b]<cond> rt, [rn, rm], etc.
+          ->
+          {ldr,str}[b]<cond> r0, [r2, r3].  */
+       dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
+    }
+  else
+    {
+      /* We need to use r4 as scratch.  Make sure it's restored afterwards.  */
+      dsc->u.ldst.restore_r4 = 1;
+      dsc->modinsn[0] = 0xe92d8000;  /* push {pc} */
+      dsc->modinsn[1] = 0xe8bd0010;  /* pop  {r4} */
+      dsc->modinsn[2] = 0xe044400f;  /* sub r4, r4, pc.  */
+      dsc->modinsn[3] = 0xe2844008;  /* add r4, r4, #8.  */
+      dsc->modinsn[4] = 0xe0800004;  /* add r0, r0, r4.  */
+
+      /* As above.  */
+      if (immed)
+       dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000;
+      else
+       dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003;
+
+      dsc->numinsns = 6;
+    }
+
+  dsc->cleanup = load ? &cleanup_load : &cleanup_store;
+
+  return 0;
+}
+
+/* Cleanup LDM instructions with fully-populated register list.  This is an
+   unfortunate corner case: it's impossible to implement correctly by modifying
+   the instruction.  The issue is as follows: we have an instruction,
+
+   ldm rN, {r0-r15}
+
+   which we must rewrite to avoid loading PC.  A possible solution would be to
+   do the load in two halves, something like (with suitable cleanup
+   afterwards):
+
+   mov r8, rN
+   ldm[id][ab] r8!, {r0-r7}
+   str r7, <temp>
+   ldm[id][ab] r8, {r7-r14}
+   <bkpt>
+
+   but at present there's no suitable place for <temp>, since the scratch space
+   is overwritten before the cleanup routine is called.  For now, we simply
+   emulate the instruction.  */
+
+static void
+cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs,
+                       struct displaced_step_closure *dsc)
+{
+  int inc = dsc->u.block.increment;
+  int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0;
+  int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4);
+  uint32_t regmask = dsc->u.block.regmask;
+  int regno = inc ? 0 : 15;
+  CORE_ADDR xfer_addr = dsc->u.block.xfer_addr;
+  int exception_return = dsc->u.block.load && dsc->u.block.user
+                        && (regmask & 0x8000) != 0;
+  uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
+  int do_transfer = condition_true (dsc->u.block.cond, status);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+
+  if (!do_transfer)
+    return;
+
+  /* If the instruction is ldm rN, {...pc}^, I don't think there's anything
+     sensible we can do here.  Complain loudly.  */
+  if (exception_return)
+    error (_("Cannot single-step exception return"));
+
+  /* We don't handle any stores here for now.  */
+  gdb_assert (dsc->u.block.load != 0);
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: emulating block transfer: "
+                       "%s %s %s\n", dsc->u.block.load ? "ldm" : "stm",
+                       dsc->u.block.increment ? "inc" : "dec",
+                       dsc->u.block.before ? "before" : "after");
+
+  while (regmask)
+    {
+      uint32_t memword;
+
+      if (inc)
+       while (regno <= ARM_PC_REGNUM && (regmask & (1 << regno)) == 0)
+         regno++;
+      else
+       while (regno >= 0 && (regmask & (1 << regno)) == 0)
+         regno--;
+
+      xfer_addr += bump_before;
+
+      memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order);
+      displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC);
+
+      xfer_addr += bump_after;
+
+      regmask &= ~(1 << regno);
+    }
+
+  if (dsc->u.block.writeback)
+    displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr,
+                        CANNOT_WRITE_PC);
+}
+
+/* Clean up an STM which included the PC in the register list.  */
+
+static void
+cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs,
+                       struct displaced_step_closure *dsc)
+{
+  uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
+  int store_executed = condition_true (dsc->u.block.cond, status);
+  CORE_ADDR pc_stored_at, transferred_regs = bitcount (dsc->u.block.regmask);
+  CORE_ADDR stm_insn_addr;
+  uint32_t pc_val;
+  long offset;
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+
+  /* If condition code fails, there's nothing else to do.  */
+  if (!store_executed)
+    return;
+
+  if (dsc->u.block.increment)
+    {
+      pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs;
+
+      if (dsc->u.block.before)
+        pc_stored_at += 4;
+    }
+  else
+    {
+      pc_stored_at = dsc->u.block.xfer_addr;
+
+      if (dsc->u.block.before)
+        pc_stored_at -= 4;
+    }
+
+  pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order);
+  stm_insn_addr = dsc->scratch_base;
+  offset = pc_val - stm_insn_addr;
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: detected PC offset %.8lx for "
+                       "STM instruction\n", offset);
+
+  /* Rewrite the stored PC to the proper value for the non-displaced original
+     instruction.  */
+  write_memory_unsigned_integer (pc_stored_at, 4, byte_order,
+                                dsc->insn_addr + offset);
+}
+
+/* Clean up an LDM which includes the PC in the register list.  We clumped all
+   the registers in the transferred list into a contiguous range r0...rX (to
+   avoid loading PC directly and losing control of the debugged program), so we
+   must undo that here.  */
+
+static void
+cleanup_block_load_pc (struct gdbarch *gdbarch,
+                      struct regcache *regs,
+                      struct displaced_step_closure *dsc)
+{
+  uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
+  int load_executed = condition_true (dsc->u.block.cond, status), i;
+  unsigned int mask = dsc->u.block.regmask, write_reg = ARM_PC_REGNUM;
+  unsigned int regs_loaded = bitcount (mask);
+  unsigned int num_to_shuffle = regs_loaded, clobbered;
+
+  /* The method employed here will fail if the register list is fully populated
+     (we need to avoid loading PC directly).  */
+  gdb_assert (num_to_shuffle < 16);
+
+  if (!load_executed)
+    return;
+
+  clobbered = (1 << num_to_shuffle) - 1;
+
+  while (num_to_shuffle > 0)
+    {
+      if ((mask & (1 << write_reg)) != 0)
+       {
+         unsigned int read_reg = num_to_shuffle - 1;
+
+         if (read_reg != write_reg)
+           {
+             ULONGEST rval = displaced_read_reg (regs, dsc, read_reg);
+             displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC);
+             if (debug_displaced)
+               fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: move "
+                                   "loaded register r%d to r%d\n"), read_reg,
+                                   write_reg);
+           }
+         else if (debug_displaced)
+           fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: register "
+                               "r%d already in the right place\n"),
+                               write_reg);
+
+         clobbered &= ~(1 << write_reg);
+
+         num_to_shuffle--;
+       }
+
+      write_reg--;
+    }
+
+  /* Restore any registers we scribbled over.  */
+  for (write_reg = 0; clobbered != 0; write_reg++)
+    {
+      if ((clobbered & (1 << write_reg)) != 0)
+       {
+         displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg],
+                              CANNOT_WRITE_PC);
+         if (debug_displaced)
+           fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: restored "
+                               "clobbered register r%d\n"), write_reg);
+         clobbered &= ~(1 << write_reg);
+       }
+    }
+
+  /* Perform register writeback manually.  */
+  if (dsc->u.block.writeback)
+    {
+      ULONGEST new_rn_val = dsc->u.block.xfer_addr;
+
+      if (dsc->u.block.increment)
+       new_rn_val += regs_loaded * 4;
+      else
+       new_rn_val -= regs_loaded * 4;
+
+      displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val,
+                          CANNOT_WRITE_PC);
+    }
+}
+
+/* Handle ldm/stm, apart from some tricky cases which are unlikely to occur
+   in user-level code (in particular exception return, ldm rn, {...pc}^).  */
+
+static int
+arm_copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn,
+                    struct regcache *regs,
+                    struct displaced_step_closure *dsc)
+{
+  int load = bit (insn, 20);
+  int user = bit (insn, 22);
+  int increment = bit (insn, 23);
+  int before = bit (insn, 24);
+  int writeback = bit (insn, 21);
+  int rn = bits (insn, 16, 19);
+
+  /* Block transfers which don't mention PC can be run directly
+     out-of-line.  */
+  if (rn != ARM_PC_REGNUM && (insn & 0x8000) == 0)
+    return arm_copy_unmodified (gdbarch, insn, "ldm/stm", dsc);
+
+  if (rn == ARM_PC_REGNUM)
+    {
+      warning (_("displaced: Unpredictable LDM or STM with "
+                "base register r15"));
+      return arm_copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc);
+    }
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
+                       "%.8lx\n", (unsigned long) insn);
+
+  dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
+  dsc->u.block.rn = rn;
+
+  dsc->u.block.load = load;
+  dsc->u.block.user = user;
+  dsc->u.block.increment = increment;
+  dsc->u.block.before = before;
+  dsc->u.block.writeback = writeback;
+  dsc->u.block.cond = bits (insn, 28, 31);
+
+  dsc->u.block.regmask = insn & 0xffff;
+
+  if (load)
+    {
+      if ((insn & 0xffff) == 0xffff)
+       {
+         /* LDM with a fully-populated register list.  This case is
+            particularly tricky.  Implement for now by fully emulating the
+            instruction (which might not behave perfectly in all cases, but
+            these instructions should be rare enough for that not to matter
+            too much).  */
+         dsc->modinsn[0] = ARM_NOP;
+
+         dsc->cleanup = &cleanup_block_load_all;
+       }
+      else
+       {
+         /* LDM of a list of registers which includes PC.  Implement by
+            rewriting the list of registers to be transferred into a
+            contiguous chunk r0...rX before doing the transfer, then shuffling
+            registers into the correct places in the cleanup routine.  */
+         unsigned int regmask = insn & 0xffff;
+         unsigned int num_in_list = bitcount (regmask), new_regmask, bit = 1;
+         unsigned int to = 0, from = 0, i, new_rn;
+
+         for (i = 0; i < num_in_list; i++)
+           dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
+
+         /* Writeback makes things complicated.  We need to avoid clobbering
+            the base register with one of the registers in our modified
+            register list, but just using a different register can't work in
+            all cases, e.g.:
+
+              ldm r14!, {r0-r13,pc}
+
+            which would need to be rewritten as:
+
+              ldm rN!, {r0-r14}
+
+            but that can't work, because there's no free register for N.
+
+            Solve this by turning off the writeback bit, and emulating
+            writeback manually in the cleanup routine.  */
+
+         if (writeback)
+           insn &= ~(1 << 21);
+
+         new_regmask = (1 << num_in_list) - 1;
+
+         if (debug_displaced)
+           fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
+                               "{..., pc}: original reg list %.4x, modified "
+                               "list %.4x\n"), rn, writeback ? "!" : "",
+                               (int) insn & 0xffff, new_regmask);
+
+         dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff);
+
+         dsc->cleanup = &cleanup_block_load_pc;
+       }
+    }
+  else
+    {
+      /* STM of a list of registers which includes PC.  Run the instruction
+        as-is, but out of line: this will store the wrong value for the PC,
+        so we must manually fix up the memory in the cleanup routine.
+        Doing things this way has the advantage that we can auto-detect
+        the offset of the PC write (which is architecture-dependent) in
+        the cleanup routine.  */
+      dsc->modinsn[0] = insn;
+
+      dsc->cleanup = &cleanup_block_store_pc;
+    }
+
+  return 0;
+}
+
+static int
+thumb2_copy_block_xfer (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
+                       struct regcache *regs,
+                       struct displaced_step_closure *dsc)
+{
+  int rn = bits (insn1, 0, 3);
+  int load = bit (insn1, 4);
+  int writeback = bit (insn1, 5);
+
+  /* Block transfers which don't mention PC can be run directly
+     out-of-line.  */
+  if (rn != ARM_PC_REGNUM && (insn2 & 0x8000) == 0)
+    return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ldm/stm", dsc);
+
+  if (rn == ARM_PC_REGNUM)
+    {
+      warning (_("displaced: Unpredictable LDM or STM with "
+                "base register r15"));
+      return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
+                                         "unpredictable ldm/stm", dsc);
+    }
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
+                       "%.4x%.4x\n", insn1, insn2);
+
+  /* Clear bit 13, since it should be always zero.  */
+  dsc->u.block.regmask = (insn2 & 0xdfff);
+  dsc->u.block.rn = rn;
+
+  dsc->u.block.load = load;
+  dsc->u.block.user = 0;
+  dsc->u.block.increment = bit (insn1, 7);
+  dsc->u.block.before = bit (insn1, 8);
+  dsc->u.block.writeback = writeback;
+  dsc->u.block.cond = INST_AL;
+  dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
+
+  if (load)
+    {
+      if (dsc->u.block.regmask == 0xffff)
+       {
+         /* This branch is impossible to happen.  */
+         gdb_assert (0);
+       }
+      else
+       {
+         unsigned int regmask = dsc->u.block.regmask;
+         unsigned int num_in_list = bitcount (regmask), new_regmask, bit = 1;
+         unsigned int to = 0, from = 0, i, new_rn;
+
+         for (i = 0; i < num_in_list; i++)
+           dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
+
+         if (writeback)
+           insn1 &= ~(1 << 5);
+
+         new_regmask = (1 << num_in_list) - 1;
+
+         if (debug_displaced)
+           fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
+                               "{..., pc}: original reg list %.4x, modified "
+                               "list %.4x\n"), rn, writeback ? "!" : "",
+                               (int) dsc->u.block.regmask, new_regmask);
+
+         dsc->modinsn[0] = insn1;
+         dsc->modinsn[1] = (new_regmask & 0xffff);
+         dsc->numinsns = 2;
+
+         dsc->cleanup = &cleanup_block_load_pc;
+       }
+    }
+  else
+    {
+      dsc->modinsn[0] = insn1;
+      dsc->modinsn[1] = insn2;
+      dsc->numinsns = 2;
+      dsc->cleanup = &cleanup_block_store_pc;
+    }
+  return 0;
+}
+
+/* Cleanup/copy SVC (SWI) instructions.  These two functions are overridden
+   for Linux, where some SVC instructions must be treated specially.  */
+
+static void
+cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs,
+            struct displaced_step_closure *dsc)
+{
+  CORE_ADDR resume_addr = dsc->insn_addr + dsc->insn_size;
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: cleanup for svc, resume at "
+                       "%.8lx\n", (unsigned long) resume_addr);
+
+  displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC);
+}
+
+
+/* Common copy routine for svc instruciton.  */
+
+static int
+install_svc (struct gdbarch *gdbarch, struct regcache *regs,
+            struct displaced_step_closure *dsc)
+{
+  /* Preparation: none.
+     Insn: unmodified svc.
+     Cleanup: pc <- insn_addr + insn_size.  */
+
+  /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
+     instruction.  */
+  dsc->wrote_to_pc = 1;
+
+  /* Allow OS-specific code to override SVC handling.  */
+  if (dsc->u.svc.copy_svc_os)
+    return dsc->u.svc.copy_svc_os (gdbarch, regs, dsc);
+  else
+    {
+      dsc->cleanup = &cleanup_svc;
+      return 0;
+    }
+}
+
+static int
+arm_copy_svc (struct gdbarch *gdbarch, uint32_t insn,
+             struct regcache *regs, struct displaced_step_closure *dsc)
+{
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.8lx\n",
+                       (unsigned long) insn);
+
+  dsc->modinsn[0] = insn;
+
+  return install_svc (gdbarch, regs, dsc);
+}
+
+static int
+thumb_copy_svc (struct gdbarch *gdbarch, uint16_t insn,
+               struct regcache *regs, struct displaced_step_closure *dsc)
+{
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.4x\n",
+                       insn);
+
+  dsc->modinsn[0] = insn;
+
+  return install_svc (gdbarch, regs, dsc);
+}
+
+/* Copy undefined instructions.  */
+
+static int
+arm_copy_undef (struct gdbarch *gdbarch, uint32_t insn,
+               struct displaced_step_closure *dsc)
+{
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog,
+                       "displaced: copying undefined insn %.8lx\n",
+                       (unsigned long) insn);
+
+  dsc->modinsn[0] = insn;
+
+  return 0;
+}
+
+static int
+thumb_32bit_copy_undef (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
+                       struct displaced_step_closure *dsc)
+{
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying undefined insn "
+                       "%.4x %.4x\n", (unsigned short) insn1,
+                       (unsigned short) insn2);
+
+  dsc->modinsn[0] = insn1;
+  dsc->modinsn[1] = insn2;
+  dsc->numinsns = 2;
+
+  return 0;
+}
+
+/* Copy unpredictable instructions.  */
+
+static int
+arm_copy_unpred (struct gdbarch *gdbarch, uint32_t insn,
+                struct displaced_step_closure *dsc)
+{
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying unpredictable insn "
+                       "%.8lx\n", (unsigned long) insn);
+
+  dsc->modinsn[0] = insn;
+
+  return 0;
+}
+
+/* The decode_* functions are instruction decoding helpers.  They mostly follow
+   the presentation in the ARM ARM.  */
+
+static int
+arm_decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn,
+                             struct regcache *regs,
+                             struct displaced_step_closure *dsc)
+{
+  unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7);
+  unsigned int rn = bits (insn, 16, 19);
+
+  if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0xe) == 0x0)
+    return arm_copy_unmodified (gdbarch, insn, "cps", dsc);
+  else if (op1 == 0x10 && op2 == 0x0 && (rn & 0xe) == 0x1)
+    return arm_copy_unmodified (gdbarch, insn, "setend", dsc);
+  else if ((op1 & 0x60) == 0x20)
+    return arm_copy_unmodified (gdbarch, insn, "neon dataproc", dsc);
+  else if ((op1 & 0x71) == 0x40)
+    return arm_copy_unmodified (gdbarch, insn, "neon elt/struct load/store",
+                               dsc);
+  else if ((op1 & 0x77) == 0x41)
+    return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
+  else if ((op1 & 0x77) == 0x45)
+    return arm_copy_preload (gdbarch, insn, regs, dsc);  /* pli.  */
+  else if ((op1 & 0x77) == 0x51)
+    {
+      if (rn != 0xf)
+       return arm_copy_preload (gdbarch, insn, regs, dsc);  /* pld/pldw.  */
+      else
+       return arm_copy_unpred (gdbarch, insn, dsc);
+    }
+  else if ((op1 & 0x77) == 0x55)
+    return arm_copy_preload (gdbarch, insn, regs, dsc);  /* pld/pldw.  */
+  else if (op1 == 0x57)
+    switch (op2)
+      {
+      case 0x1: return arm_copy_unmodified (gdbarch, insn, "clrex", dsc);
+      case 0x4: return arm_copy_unmodified (gdbarch, insn, "dsb", dsc);
+      case 0x5: return arm_copy_unmodified (gdbarch, insn, "dmb", dsc);
+      case 0x6: return arm_copy_unmodified (gdbarch, insn, "isb", dsc);
+      default: return arm_copy_unpred (gdbarch, insn, dsc);
+      }
+  else if ((op1 & 0x63) == 0x43)
+    return arm_copy_unpred (gdbarch, insn, dsc);
+  else if ((op2 & 0x1) == 0x0)
+    switch (op1 & ~0x80)
+      {
+      case 0x61:
+       return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
+      case 0x65:
+       return arm_copy_preload_reg (gdbarch, insn, regs, dsc);  /* pli reg.  */
+      case 0x71: case 0x75:
+        /* pld/pldw reg.  */
+       return arm_copy_preload_reg (gdbarch, insn, regs, dsc);
+      case 0x63: case 0x67: case 0x73: case 0x77:
+       return arm_copy_unpred (gdbarch, insn, dsc);
+      default:
+       return arm_copy_undef (gdbarch, insn, dsc);
+      }
+  else
+    return arm_copy_undef (gdbarch, insn, dsc);  /* Probably unreachable.  */
+}
+
+static int
+arm_decode_unconditional (struct gdbarch *gdbarch, uint32_t insn,
+                         struct regcache *regs,
+                         struct displaced_step_closure *dsc)
+{
+  if (bit (insn, 27) == 0)
+    return arm_decode_misc_memhint_neon (gdbarch, insn, regs, dsc);
+  /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx.  */
+  else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20))
+    {
+    case 0x0: case 0x2:
+      return arm_copy_unmodified (gdbarch, insn, "srs", dsc);
+
+    case 0x1: case 0x3:
+      return arm_copy_unmodified (gdbarch, insn, "rfe", dsc);
+
+    case 0x4: case 0x5: case 0x6: case 0x7:
+      return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
+
+    case 0x8:
+      switch ((insn & 0xe00000) >> 21)
+       {
+       case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7:
+         /* stc/stc2.  */
+         return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
+
+       case 0x2:
+         return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
+
+       default:
+         return arm_copy_undef (gdbarch, insn, dsc);
+       }
+
+    case 0x9:
+      {
+        int rn_f = (bits (insn, 16, 19) == 0xf);
+       switch ((insn & 0xe00000) >> 21)
+         {
+         case 0x1: case 0x3:
+           /* ldc/ldc2 imm (undefined for rn == pc).  */
+           return rn_f ? arm_copy_undef (gdbarch, insn, dsc)
+                       : arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
+
+         case 0x2:
+           return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
+
+         case 0x4: case 0x5: case 0x6: case 0x7:
+           /* ldc/ldc2 lit (undefined for rn != pc).  */
+           return rn_f ? arm_copy_copro_load_store (gdbarch, insn, regs, dsc)
+                       : arm_copy_undef (gdbarch, insn, dsc);
+
+         default:
+           return arm_copy_undef (gdbarch, insn, dsc);
+         }
+      }
+
+    case 0xa:
+      return arm_copy_unmodified (gdbarch, insn, "stc/stc2", dsc);
+
+    case 0xb:
+      if (bits (insn, 16, 19) == 0xf)
+        /* ldc/ldc2 lit.  */
+       return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
+      else
+       return arm_copy_undef (gdbarch, insn, dsc);
+
+    case 0xc:
+      if (bit (insn, 4))
+       return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
+      else
+       return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
+
+    case 0xd:
+      if (bit (insn, 4))
+       return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
+      else
+       return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
+
+    default:
+      return arm_copy_undef (gdbarch, insn, dsc);
+    }
+}
+
+/* Decode miscellaneous instructions in dp/misc encoding space.  */
+
+static int
+arm_decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn,
+                         struct regcache *regs,
+                         struct displaced_step_closure *dsc)
+{
+  unsigned int op2 = bits (insn, 4, 6);
+  unsigned int op = bits (insn, 21, 22);
+  unsigned int op1 = bits (insn, 16, 19);
+
+  switch (op2)
+    {
+    case 0x0:
+      return arm_copy_unmodified (gdbarch, insn, "mrs/msr", dsc);
+
+    case 0x1:
+      if (op == 0x1)  /* bx.  */
+       return arm_copy_bx_blx_reg (gdbarch, insn, regs, dsc);
+      else if (op == 0x3)
+       return arm_copy_unmodified (gdbarch, insn, "clz", dsc);
+      else
+       return arm_copy_undef (gdbarch, insn, dsc);
+
+    case 0x2:
+      if (op == 0x1)
+        /* Not really supported.  */
+       return arm_copy_unmodified (gdbarch, insn, "bxj", dsc);
+      else
+       return arm_copy_undef (gdbarch, insn, dsc);
+
+    case 0x3:
+      if (op == 0x1)
+       return arm_copy_bx_blx_reg (gdbarch, insn,
+                               regs, dsc);  /* blx register.  */
+      else
+       return arm_copy_undef (gdbarch, insn, dsc);
+
+    case 0x5:
+      return arm_copy_unmodified (gdbarch, insn, "saturating add/sub", dsc);
+
+    case 0x7:
+      if (op == 0x1)
+       return arm_copy_unmodified (gdbarch, insn, "bkpt", dsc);
+      else if (op == 0x3)
+        /* Not really supported.  */
+       return arm_copy_unmodified (gdbarch, insn, "smc", dsc);
+
+    default:
+      return arm_copy_undef (gdbarch, insn, dsc);
+    }
+}
+
+static int
+arm_decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn,
+                   struct regcache *regs,
+                   struct displaced_step_closure *dsc)
+{
+  if (bit (insn, 25))
+    switch (bits (insn, 20, 24))
+      {
+      case 0x10:
+       return arm_copy_unmodified (gdbarch, insn, "movw", dsc);
+
+      case 0x14:
+       return arm_copy_unmodified (gdbarch, insn, "movt", dsc);
+
+      case 0x12: case 0x16:
+       return arm_copy_unmodified (gdbarch, insn, "msr imm", dsc);
+
+      default:
+       return arm_copy_alu_imm (gdbarch, insn, regs, dsc);
+      }
+  else
+    {
+      uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7);
+
+      if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0)
+       return arm_copy_alu_reg (gdbarch, insn, regs, dsc);
+      else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1)
+       return arm_copy_alu_shifted_reg (gdbarch, insn, regs, dsc);
+      else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0)
+       return arm_decode_miscellaneous (gdbarch, insn, regs, dsc);
+      else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8)
+       return arm_copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc);
+      else if ((op1 & 0x10) == 0x00 && op2 == 0x9)
+       return arm_copy_unmodified (gdbarch, insn, "mul/mla", dsc);
+      else if ((op1 & 0x10) == 0x10 && op2 == 0x9)
+       return arm_copy_unmodified (gdbarch, insn, "synch", dsc);
+      else if (op2 == 0xb || (op2 & 0xd) == 0xd)
+       /* 2nd arg means "unpriveleged".  */
+       return arm_copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs,
+                                    dsc);
+    }
+
+  /* Should be unreachable.  */
+  return 1;
+}
+
+static int
+arm_decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn,
+                            struct regcache *regs,
+                            struct displaced_step_closure *dsc)
+{
+  int a = bit (insn, 25), b = bit (insn, 4);
+  uint32_t op1 = bits (insn, 20, 24);
+  int rn_f = bits (insn, 16, 19) == 0xf;
+
+  if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02)
+      || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b))
+    return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 0);
+  else if ((!a && (op1 & 0x17) == 0x02)
+           || (a && (op1 & 0x17) == 0x02 && !b))
+    return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 1);
+  else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03)
+           || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b))
+    return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 0);
+  else if ((!a && (op1 & 0x17) == 0x03)
+          || (a && (op1 & 0x17) == 0x03 && !b))
+    return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 1);
+  else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06)
+           || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b))
+    return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0);
+  else if ((!a && (op1 & 0x17) == 0x06)
+          || (a && (op1 & 0x17) == 0x06 && !b))
+    return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1);
+  else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07)
+          || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b))
+    return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0);
+  else if ((!a && (op1 & 0x17) == 0x07)
+          || (a && (op1 & 0x17) == 0x07 && !b))
+    return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1);
+
+  /* Should be unreachable.  */
+  return 1;
+}
+
+static int
+arm_decode_media (struct gdbarch *gdbarch, uint32_t insn,
+                 struct displaced_step_closure *dsc)
+{
+  switch (bits (insn, 20, 24))
+    {
+    case 0x00: case 0x01: case 0x02: case 0x03:
+      return arm_copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc);
+
+    case 0x04: case 0x05: case 0x06: case 0x07:
+      return arm_copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc);
+
+    case 0x08: case 0x09: case 0x0a: case 0x0b:
+    case 0x0c: case 0x0d: case 0x0e: case 0x0f:
+      return arm_copy_unmodified (gdbarch, insn,
+                             "decode/pack/unpack/saturate/reverse", dsc);
+
+    case 0x18:
+      if (bits (insn, 5, 7) == 0)  /* op2.  */
+        {
+         if (bits (insn, 12, 15) == 0xf)
+           return arm_copy_unmodified (gdbarch, insn, "usad8", dsc);
+         else
+           return arm_copy_unmodified (gdbarch, insn, "usada8", dsc);
+       }
+      else
+        return arm_copy_undef (gdbarch, insn, dsc);
+
+    case 0x1a: case 0x1b:
+      if (bits (insn, 5, 6) == 0x2)  /* op2[1:0].  */
+       return arm_copy_unmodified (gdbarch, insn, "sbfx", dsc);
+      else
+       return arm_copy_undef (gdbarch, insn, dsc);
+
+    case 0x1c: case 0x1d:
+      if (bits (insn, 5, 6) == 0x0)  /* op2[1:0].  */
+        {
+         if (bits (insn, 0, 3) == 0xf)
+           return arm_copy_unmodified (gdbarch, insn, "bfc", dsc);
+         else
+           return arm_copy_unmodified (gdbarch, insn, "bfi", dsc);
+       }
+      else
+       return arm_copy_undef (gdbarch, insn, dsc);
+
+    case 0x1e: case 0x1f:
+      if (bits (insn, 5, 6) == 0x2)  /* op2[1:0].  */
+       return arm_copy_unmodified (gdbarch, insn, "ubfx", dsc);
+      else
+       return arm_copy_undef (gdbarch, insn, dsc);
+    }
+
+  /* Should be unreachable.  */
+  return 1;
+}
+
+static int
+arm_decode_b_bl_ldmstm (struct gdbarch *gdbarch, int32_t insn,
+                       struct regcache *regs,
+                       struct displaced_step_closure *dsc)
+{
+  if (bit (insn, 25))
+    return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
+  else
+    return arm_copy_block_xfer (gdbarch, insn, regs, dsc);
+}
+
+static int
+arm_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn,
+                         struct regcache *regs,
+                         struct displaced_step_closure *dsc)
+{
+  unsigned int opcode = bits (insn, 20, 24);
+
+  switch (opcode)
+    {
+    case 0x04: case 0x05:  /* VFP/Neon mrrc/mcrr.  */
+      return arm_copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc);
+
+    case 0x08: case 0x0a: case 0x0c: case 0x0e:
+    case 0x12: case 0x16:
+      return arm_copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc);
+
+    case 0x09: case 0x0b: case 0x0d: case 0x0f:
+    case 0x13: case 0x17:
+      return arm_copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc);
+
+    case 0x10: case 0x14: case 0x18: case 0x1c:  /* vstr.  */
+    case 0x11: case 0x15: case 0x19: case 0x1d:  /* vldr.  */
+      /* Note: no writeback for these instructions.  Bit 25 will always be
+        zero though (via caller), so the following works OK.  */
+      return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
+    }
+
+  /* Should be unreachable.  */
+  return 1;
+}
+
+/* Decode shifted register instructions.  */
+
+static int
+thumb2_decode_dp_shift_reg (struct gdbarch *gdbarch, uint16_t insn1,
+                           uint16_t insn2,  struct regcache *regs,
+                           struct displaced_step_closure *dsc)
+{
+  /* PC is only allowed to be used in instruction MOV.  */
+
+  unsigned int op = bits (insn1, 5, 8);
+  unsigned int rn = bits (insn1, 0, 3);
+
+  if (op == 0x2 && rn == 0xf) /* MOV */
+    return thumb2_copy_alu_imm (gdbarch, insn1, insn2, regs, dsc);
+  else
+    return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
+                                       "dp (shift reg)", dsc);
+}
+
+
+/* Decode extension register load/store.  Exactly the same as
+   arm_decode_ext_reg_ld_st.  */
+
+static int
+thumb2_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint16_t insn1,
+                            uint16_t insn2,  struct regcache *regs,
+                            struct displaced_step_closure *dsc)
+{
+  unsigned int opcode = bits (insn1, 4, 8);
+
+  switch (opcode)
+    {
+    case 0x04: case 0x05:
+      return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
+                                         "vfp/neon vmov", dsc);
+
+    case 0x08: case 0x0c: /* 01x00 */
+    case 0x0a: case 0x0e: /* 01x10 */
+    case 0x12: case 0x16: /* 10x10 */
+      return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
+                                         "vfp/neon vstm/vpush", dsc);
+
+    case 0x09: case 0x0d: /* 01x01 */
+    case 0x0b: case 0x0f: /* 01x11 */
+    case 0x13: case 0x17: /* 10x11 */
+      return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
+                                         "vfp/neon vldm/vpop", dsc);
+
+    case 0x10: case 0x14: case 0x18: case 0x1c:  /* vstr.  */
+      return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
+                                         "vstr", dsc);
+    case 0x11: case 0x15: case 0x19: case 0x1d:  /* vldr.  */
+      return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, regs, dsc);
+    }
+
+  /* Should be unreachable.  */
+  return 1;
+}
+
+static int
+arm_decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn, CORE_ADDR to,
+                     struct regcache *regs, struct displaced_step_closure *dsc)
+{
+  unsigned int op1 = bits (insn, 20, 25);
+  int op = bit (insn, 4);
+  unsigned int coproc = bits (insn, 8, 11);
+  unsigned int rn = bits (insn, 16, 19);
+
+  if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa)
+    return arm_decode_ext_reg_ld_st (gdbarch, insn, regs, dsc);
+  else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00
+          && (coproc & 0xe) != 0xa)
+    /* stc/stc2.  */
+    return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
+  else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00
+          && (coproc & 0xe) != 0xa)
+    /* ldc/ldc2 imm/lit.  */
+    return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
+  else if ((op1 & 0x3e) == 0x00)
+    return arm_copy_undef (gdbarch, insn, dsc);
+  else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa)
+    return arm_copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc);
+  else if (op1 == 0x04 && (coproc & 0xe) != 0xa)
+    return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
+  else if (op1 == 0x05 && (coproc & 0xe) != 0xa)
+    return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
+  else if ((op1 & 0x30) == 0x20 && !op)
+    {
+      if ((coproc & 0xe) == 0xa)
+       return arm_copy_unmodified (gdbarch, insn, "vfp dataproc", dsc);
+      else
+       return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
+    }
+  else if ((op1 & 0x30) == 0x20 && op)
+    return arm_copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc);
+  else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa)
+    return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
+  else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa)
+    return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
+  else if ((op1 & 0x30) == 0x30)
+    return arm_copy_svc (gdbarch, insn, regs, dsc);
+  else
+    return arm_copy_undef (gdbarch, insn, dsc);  /* Possibly unreachable.  */
+}
+
+static int
+thumb2_decode_svc_copro (struct gdbarch *gdbarch, uint16_t insn1,
+                        uint16_t insn2, struct regcache *regs,
+                        struct displaced_step_closure *dsc)
+{
+  unsigned int coproc = bits (insn2, 8, 11);
+  unsigned int op1 = bits (insn1, 4, 9);
+  unsigned int bit_5_8 = bits (insn1, 5, 8);
+  unsigned int bit_9 = bit (insn1, 9);
+  unsigned int bit_4 = bit (insn1, 4);
+  unsigned int rn = bits (insn1, 0, 3);
+
+  if (bit_9 == 0)
+    {
+      if (bit_5_8 == 2)
+       return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
+                                           "neon 64bit xfer/mrrc/mrrc2/mcrr/mcrr2",
+                                           dsc);
+      else if (bit_5_8 == 0) /* UNDEFINED.  */
+       return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
+      else
+       {
+          /*coproc is 101x.  SIMD/VFP, ext registers load/store.  */
+         if ((coproc & 0xe) == 0xa)
+           return thumb2_decode_ext_reg_ld_st (gdbarch, insn1, insn2, regs,
+                                               dsc);
+         else /* coproc is not 101x.  */
+           {
+             if (bit_4 == 0) /* STC/STC2.  */
+               return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
+                                                   "stc/stc2", dsc);
+             else /* LDC/LDC2 {literal, immeidate}.  */
+               return thumb2_copy_copro_load_store (gdbarch, insn1, insn2,
+                                                    regs, dsc);
+           }
+       }
+    }
+  else
+    return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "coproc", dsc);
+
+  return 0;
+}
+
+static void
+install_pc_relative (struct gdbarch *gdbarch, struct regcache *regs,
+                    struct displaced_step_closure *dsc, int rd)
+{
+  /* ADR Rd, #imm
+
+     Rewrite as:
+
+     Preparation: Rd <- PC
+     Insn: ADD Rd, #imm
+     Cleanup: Null.
+  */
+
+  /* Rd <- PC */
+  int val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
+  displaced_write_reg (regs, dsc, rd, val, CANNOT_WRITE_PC);
+}
+
+static int
+thumb_copy_pc_relative_16bit (struct gdbarch *gdbarch, struct regcache *regs,
+                             struct displaced_step_closure *dsc,
+                             int rd, unsigned int imm)
+{
+
+  /* Encoding T2: ADDS Rd, #imm */
+  dsc->modinsn[0] = (0x3000 | (rd << 8) | imm);
+
+  install_pc_relative (gdbarch, regs, dsc, rd);
+
+  return 0;
+}
+
+static int
+thumb_decode_pc_relative_16bit (struct gdbarch *gdbarch, uint16_t insn,
+                               struct regcache *regs,
+                               struct displaced_step_closure *dsc)
+{
+  unsigned int rd = bits (insn, 8, 10);
+  unsigned int imm8 = bits (insn, 0, 7);
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog,
+                       "displaced: copying thumb adr r%d, #%d insn %.4x\n",
+                       rd, imm8, insn);
+
+  return thumb_copy_pc_relative_16bit (gdbarch, regs, dsc, rd, imm8);
+}
+
+static int
+thumb_copy_pc_relative_32bit (struct gdbarch *gdbarch, uint16_t insn1,
+                             uint16_t insn2, struct regcache *regs,
+                             struct displaced_step_closure *dsc)
+{
+  unsigned int rd = bits (insn2, 8, 11);
+  /* Since immediate has the same encoding in ADR ADD and SUB, so we simply
+     extract raw immediate encoding rather than computing immediate.  When
+     generating ADD or SUB instruction, we can simply perform OR operation to
+     set immediate into ADD.  */
+  unsigned int imm_3_8 = insn2 & 0x70ff;
+  unsigned int imm_i = insn1 & 0x0400; /* Clear all bits except bit 10.  */
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog,
+                       "displaced: copying thumb adr r%d, #%d:%d insn %.4x%.4x\n",
+                       rd, imm_i, imm_3_8, insn1, insn2);
+
+  if (bit (insn1, 7)) /* Encoding T2 */
+    {
+      /* Encoding T3: SUB Rd, Rd, #imm */
+      dsc->modinsn[0] = (0xf1a0 | rd | imm_i);
+      dsc->modinsn[1] = ((rd << 8) | imm_3_8);
+    }
+  else /* Encoding T3 */
+    {
+      /* Encoding T3: ADD Rd, Rd, #imm */
+      dsc->modinsn[0] = (0xf100 | rd | imm_i);
+      dsc->modinsn[1] = ((rd << 8) | imm_3_8);
+    }
+  dsc->numinsns = 2;
+
+  install_pc_relative (gdbarch, regs, dsc, rd);
+
+  return 0;
+}
+
+static int
+thumb_copy_16bit_ldr_literal (struct gdbarch *gdbarch, unsigned short insn1,
+                             struct regcache *regs,
+                             struct displaced_step_closure *dsc)
+{
+  unsigned int rt = bits (insn1, 8, 10);
+  unsigned int pc;
+  int imm8 = (bits (insn1, 0, 7) << 2);
+  CORE_ADDR from = dsc->insn_addr;
+
+  /* LDR Rd, #imm8
+
+     Rwrite as:
+
+     Preparation: tmp0 <- R0, tmp2 <- R2, tmp3 <- R3, R2 <- PC, R3 <- #imm8;
+
+     Insn: LDR R0, [R2, R3];
+     Cleanup: R2 <- tmp2, R3 <- tmp3, Rd <- R0, R0 <- tmp0 */
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog,
+                       "displaced: copying thumb ldr r%d [pc #%d]\n"
+                       , rt, imm8);
+
+  dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
+  dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
+  dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
+  pc = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
+  /* The assembler calculates the required value of the offset from the
+     Align(PC,4) value of this instruction to the label.  */
+  pc = pc & 0xfffffffc;
+
+  displaced_write_reg (regs, dsc, 2, pc, CANNOT_WRITE_PC);
+  displaced_write_reg (regs, dsc, 3, imm8, CANNOT_WRITE_PC);
+
+  dsc->rd = rt;
+  dsc->u.ldst.xfersize = 4;
+  dsc->u.ldst.rn = 0;
+  dsc->u.ldst.immed = 0;
+  dsc->u.ldst.writeback = 0;
+  dsc->u.ldst.restore_r4 = 0;
+
+  dsc->modinsn[0] = 0x58d0; /* ldr r0, [r2, r3]*/
+
+  dsc->cleanup = &cleanup_load;
+
+  return 0;
+}
+
+/* Copy Thumb cbnz/cbz insruction.  */
+
+static int
+thumb_copy_cbnz_cbz (struct gdbarch *gdbarch, uint16_t insn1,
+                    struct regcache *regs,
+                    struct displaced_step_closure *dsc)
+{
+  int non_zero = bit (insn1, 11);
+  unsigned int imm5 = (bit (insn1, 9) << 6) | (bits (insn1, 3, 7) << 1);
+  CORE_ADDR from = dsc->insn_addr;
+  int rn = bits (insn1, 0, 2);
+  int rn_val = displaced_read_reg (regs, dsc, rn);
+
+  dsc->u.branch.cond = (rn_val && non_zero) || (!rn_val && !non_zero);
+  /* CBNZ and CBZ do not affect the condition flags.  If condition is true,
+     set it INST_AL, so cleanup_branch will know branch is taken, otherwise,
+     condition is false, let it be, cleanup_branch will do nothing.  */
+  if (dsc->u.branch.cond)
+    {
+      dsc->u.branch.cond = INST_AL;
+      dsc->u.branch.dest = from + 4 + imm5;
+    }
+  else
+      dsc->u.branch.dest = from + 2;
+
+  dsc->u.branch.link = 0;
+  dsc->u.branch.exchange = 0;
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copying %s [r%d = 0x%x]"
+                       " insn %.4x to %.8lx\n", non_zero ? "cbnz" : "cbz",
+                       rn, rn_val, insn1, dsc->u.branch.dest);
+
+  dsc->modinsn[0] = THUMB_NOP;
+
+  dsc->cleanup = &cleanup_branch;
+  return 0;
+}
+
+/* Copy Table Branch Byte/Halfword */
+static int
+thumb2_copy_table_branch (struct gdbarch *gdbarch, uint16_t insn1,
+                         uint16_t insn2, struct regcache *regs,
+                         struct displaced_step_closure *dsc)
+{
+  ULONGEST rn_val, rm_val;
+  int is_tbh = bit (insn2, 4);
+  CORE_ADDR halfwords = 0;
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+
+  rn_val = displaced_read_reg (regs, dsc, bits (insn1, 0, 3));
+  rm_val = displaced_read_reg (regs, dsc, bits (insn2, 0, 3));
+
+  if (is_tbh)
+    {
+      gdb_byte buf[2];
+
+      target_read_memory (rn_val + 2 * rm_val, buf, 2);
+      halfwords = extract_unsigned_integer (buf, 2, byte_order);
+    }
+  else
+    {
+      gdb_byte buf[1];
+
+      target_read_memory (rn_val + rm_val, buf, 1);
+      halfwords = extract_unsigned_integer (buf, 1, byte_order);
+    }
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: %s base 0x%x offset 0x%x"
+                       " offset 0x%x\n", is_tbh ? "tbh" : "tbb",
+                       (unsigned int) rn_val, (unsigned int) rm_val,
+                       (unsigned int) halfwords);
+
+  dsc->u.branch.cond = INST_AL;
+  dsc->u.branch.link = 0;
+  dsc->u.branch.exchange = 0;
+  dsc->u.branch.dest = dsc->insn_addr + 4 + 2 * halfwords;
+
+  dsc->cleanup = &cleanup_branch;
+
+  return 0;
+}
+
+static void
+cleanup_pop_pc_16bit_all (struct gdbarch *gdbarch, struct regcache *regs,
+                         struct displaced_step_closure *dsc)
+{
+  /* PC <- r7 */
+  int val = displaced_read_reg (regs, dsc, 7);
+  displaced_write_reg (regs, dsc, ARM_PC_REGNUM, val, BX_WRITE_PC);
+
+  /* r7 <- r8 */
+  val = displaced_read_reg (regs, dsc, 8);
+  displaced_write_reg (regs, dsc, 7, val, CANNOT_WRITE_PC);
+
+  /* r8 <- tmp[0] */
+  displaced_write_reg (regs, dsc, 8, dsc->tmp[0], CANNOT_WRITE_PC);
+
+}
+
+static int
+thumb_copy_pop_pc_16bit (struct gdbarch *gdbarch, unsigned short insn1,
+                        struct regcache *regs,
+                        struct displaced_step_closure *dsc)
+{
+  dsc->u.block.regmask = insn1 & 0x00ff;
+
+  /* Rewrite instruction: POP {rX, rY, ...,rZ, PC}
+     to :
+
+     (1) register list is full, that is, r0-r7 are used.
+     Prepare: tmp[0] <- r8
+
+     POP {r0, r1, ...., r6, r7}; remove PC from reglist
+     MOV r8, r7; Move value of r7 to r8;
+     POP {r7}; Store PC value into r7.
+
+     Cleanup: PC <- r7, r7 <- r8, r8 <-tmp[0]
+
+     (2) register list is not full, supposing there are N registers in
+     register list (except PC, 0 <= N <= 7).
+     Prepare: for each i, 0 - N, tmp[i] <- ri.
+
+     POP {r0, r1, ...., rN};
+
+     Cleanup: Set registers in original reglist from r0 - rN.  Restore r0 - rN
+     from tmp[] properly.
+  */
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog,
+                       "displaced: copying thumb pop {%.8x, pc} insn %.4x\n",
+                       dsc->u.block.regmask, insn1);
+
+  if (dsc->u.block.regmask == 0xff)
+    {
+      dsc->tmp[0] = displaced_read_reg (regs, dsc, 8);
+
+      dsc->modinsn[0] = (insn1 & 0xfeff); /* POP {r0,r1,...,r6, r7} */
+      dsc->modinsn[1] = 0x46b8; /* MOV r8, r7 */
+      dsc->modinsn[2] = 0xbc80; /* POP {r7} */
+
+      dsc->numinsns = 3;
+      dsc->cleanup = &cleanup_pop_pc_16bit_all;
+    }
+  else
+    {
+      unsigned int num_in_list = bitcount (dsc->u.block.regmask);
+      unsigned int new_regmask, bit = 1;
+      unsigned int to = 0, from = 0, i, new_rn;
+
+      for (i = 0; i < num_in_list + 1; i++)
+       dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
+
+      new_regmask = (1 << (num_in_list + 1)) - 1;
+
+      if (debug_displaced)
+       fprintf_unfiltered (gdb_stdlog, _("displaced: POP "
+                                         "{..., pc}: original reg list %.4x,"
+                                         " modified list %.4x\n"),
+                           (int) dsc->u.block.regmask, new_regmask);
+
+      dsc->u.block.regmask |= 0x8000;
+      dsc->u.block.writeback = 0;
+      dsc->u.block.cond = INST_AL;
+
+      dsc->modinsn[0] = (insn1 & ~0x1ff) | (new_regmask & 0xff);
+
+      dsc->cleanup = &cleanup_block_load_pc;
+    }
+
+  return 0;
+}
+
+static void
+thumb_process_displaced_16bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
+                                   struct regcache *regs,
+                                   struct displaced_step_closure *dsc)
+{
+  unsigned short op_bit_12_15 = bits (insn1, 12, 15);
+  unsigned short op_bit_10_11 = bits (insn1, 10, 11);
+  int err = 0;
+
+  /* 16-bit thumb instructions.  */
+  switch (op_bit_12_15)
+    {
+      /* Shift (imme), add, subtract, move and compare.  */
+    case 0: case 1: case 2: case 3:
+      err = thumb_copy_unmodified_16bit (gdbarch, insn1,
+                                        "shift/add/sub/mov/cmp",
+                                        dsc);
+      break;
+    case 4:
+      switch (op_bit_10_11)
+       {
+       case 0: /* Data-processing */
+         err = thumb_copy_unmodified_16bit (gdbarch, insn1,
+                                            "data-processing",
+                                            dsc);
+         break;
+       case 1: /* Special data instructions and branch and exchange.  */
+         {
+           unsigned short op = bits (insn1, 7, 9);
+           if (op == 6 || op == 7) /* BX or BLX */
+             err = thumb_copy_bx_blx_reg (gdbarch, insn1, regs, dsc);
+           else if (bits (insn1, 6, 7) != 0) /* ADD/MOV/CMP high registers.  */
+             err = thumb_copy_alu_reg (gdbarch, insn1, regs, dsc);
+           else
+             err = thumb_copy_unmodified_16bit (gdbarch, insn1, "special data",
+                                                dsc);
+         }
+         break;
+       default: /* LDR (literal) */
+         err = thumb_copy_16bit_ldr_literal (gdbarch, insn1, regs, dsc);
+       }
+      break;
+    case 5: case 6: case 7: case 8: case 9: /* Load/Store single data item */
+      err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldr/str", dsc);
+      break;
+    case 10:
+      if (op_bit_10_11 < 2) /* Generate PC-relative address */
+       err = thumb_decode_pc_relative_16bit (gdbarch, insn1, regs, dsc);
+      else /* Generate SP-relative address */
+       err = thumb_copy_unmodified_16bit (gdbarch, insn1, "sp-relative", dsc);
+      break;
+    case 11: /* Misc 16-bit instructions */
+      {
+       switch (bits (insn1, 8, 11))
+         {
+         case 1: case 3:  case 9: case 11: /* CBNZ, CBZ */
+           err = thumb_copy_cbnz_cbz (gdbarch, insn1, regs, dsc);
+           break;
+         case 12: case 13: /* POP */
+           if (bit (insn1, 8)) /* PC is in register list.  */
+             err = thumb_copy_pop_pc_16bit (gdbarch, insn1, regs, dsc);
+           else
+             err = thumb_copy_unmodified_16bit (gdbarch, insn1, "pop", dsc);
+           break;
+         case 15: /* If-Then, and hints */
+           if (bits (insn1, 0, 3))
+             /* If-Then makes up to four following instructions conditional.
+                IT instruction itself is not conditional, so handle it as a
+                common unmodified instruction.  */
+             err = thumb_copy_unmodified_16bit (gdbarch, insn1, "If-Then",
+                                                dsc);
+           else
+             err = thumb_copy_unmodified_16bit (gdbarch, insn1, "hints", dsc);
+           break;
+         default:
+           err = thumb_copy_unmodified_16bit (gdbarch, insn1, "misc", dsc);
+         }
+      }
+      break;
+    case 12:
+      if (op_bit_10_11 < 2) /* Store multiple registers */
+       err = thumb_copy_unmodified_16bit (gdbarch, insn1, "stm", dsc);
+      else /* Load multiple registers */
+       err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldm", dsc);
+      break;
+    case 13: /* Conditional branch and supervisor call */
+      if (bits (insn1, 9, 11) != 7) /* conditional branch */
+       err = thumb_copy_b (gdbarch, insn1, dsc);
+      else
+       err = thumb_copy_svc (gdbarch, insn1, regs, dsc);
+      break;
+    case 14: /* Unconditional branch */
+      err = thumb_copy_b (gdbarch, insn1, dsc);
+      break;
+    default:
+      err = 1;
+    }
+
+  if (err)
+    internal_error (__FILE__, __LINE__,
+                   _("thumb_process_displaced_16bit_insn: Instruction decode error"));
+}
+
+static int
+decode_thumb_32bit_ld_mem_hints (struct gdbarch *gdbarch,
+                                uint16_t insn1, uint16_t insn2,
+                                struct regcache *regs,
+                                struct displaced_step_closure *dsc)
+{
+  int rt = bits (insn2, 12, 15);
+  int rn = bits (insn1, 0, 3);
+  int op1 = bits (insn1, 7, 8);
+  int err = 0;
+
+  switch (bits (insn1, 5, 6))
+    {
+    case 0: /* Load byte and memory hints */
+      if (rt == 0xf) /* PLD/PLI */
+       {
+         if (rn == 0xf)
+           /* PLD literal or Encoding T3 of PLI(immediate, literal).  */
+           return thumb2_copy_preload (gdbarch, insn1, insn2, regs, dsc);
+         else
+           return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
+                                               "pli/pld", dsc);
+       }
+      else
+       {
+         if (rn == 0xf) /* LDRB/LDRSB (literal) */
+           return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
+                                            1);
+         else
+           return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
+                                               "ldrb{reg, immediate}/ldrbt",
+                                               dsc);
+       }
+
+      break;
+    case 1: /* Load halfword and memory hints.  */
+      if (rt == 0xf) /* PLD{W} and Unalloc memory hint.  */
+       return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
+                                           "pld/unalloc memhint", dsc);
+      else
+       {
+         if (rn == 0xf)
+           return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
+                                            2);
+         else
+           return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
+                                               "ldrh/ldrht", dsc);
+       }
+      break;
+    case 2: /* Load word */
+      {
+       int insn2_bit_8_11 = bits (insn2, 8, 11);
+
+       if (rn == 0xf)
+         return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, 4);
+       else if (op1 == 0x1) /* Encoding T3 */
+         return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, dsc,
+                                          0, 1);
+       else /* op1 == 0x0 */
+         {
+           if (insn2_bit_8_11 == 0xc || (insn2_bit_8_11 & 0x9) == 0x9)
+             /* LDR (immediate) */
+             return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
+                                              dsc, bit (insn2, 8), 1);
+           else if (insn2_bit_8_11 == 0xe) /* LDRT */
+             return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
+                                                 "ldrt", dsc);
+           else
+             /* LDR (register) */
+             return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
+                                              dsc, 0, 0);
+         }
+       break;
+      }
+    default:
+      return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
+      break;
+    }
+  return 0;
+}
+
+static void
+thumb_process_displaced_32bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
+                                   uint16_t insn2, struct regcache *regs,
+                                   struct displaced_step_closure *dsc)
+{
+  int err = 0;
+  unsigned short op = bit (insn2, 15);
+  unsigned int op1 = bits (insn1, 11, 12);
+
+  switch (op1)
+    {
+    case 1:
+      {
+       switch (bits (insn1, 9, 10))
+         {
+         case 0:
+           if (bit (insn1, 6))
+             {
+               /* Load/store {dual, execlusive}, table branch.  */
+               if (bits (insn1, 7, 8) == 1 && bits (insn1, 4, 5) == 1
+                   && bits (insn2, 5, 7) == 0)
+                 err = thumb2_copy_table_branch (gdbarch, insn1, insn2, regs,
+                                                 dsc);
+               else
+                 /* PC is not allowed to use in load/store {dual, exclusive}
+                    instructions.  */
+                 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
+                                                    "load/store dual/ex", dsc);
+             }
+           else /* load/store multiple */
+             {
+               switch (bits (insn1, 7, 8))
+                 {
+                 case 0: case 3: /* SRS, RFE */
+                   err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
+                                                      "srs/rfe", dsc);
+                   break;
+                 case 1: case 2: /* LDM/STM/PUSH/POP */
+                   err = thumb2_copy_block_xfer (gdbarch, insn1, insn2, regs, dsc);
+                   break;
+                 }
+             }
+           break;
+
+         case 1:
+           /* Data-processing (shift register).  */
+           err = thumb2_decode_dp_shift_reg (gdbarch, insn1, insn2, regs,
+                                             dsc);
+           break;
+         default: /* Coprocessor instructions.  */
+           err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
+           break;
+         }
+      break;
+      }
+    case 2: /* op1 = 2 */
+      if (op) /* Branch and misc control.  */
+       {
+         if (bit (insn2, 14)  /* BLX/BL */
+             || bit (insn2, 12) /* Unconditional branch */
+             || (bits (insn1, 7, 9) != 0x7)) /* Conditional branch */
+           err = thumb2_copy_b_bl_blx (gdbarch, insn1, insn2, regs, dsc);
+         else
+           err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
+                                              "misc ctrl", dsc);
+       }
+      else
+       {
+         if (bit (insn1, 9)) /* Data processing (plain binary imm).  */
+           {
+             int op = bits (insn1, 4, 8);
+             int rn = bits (insn1, 0, 3);
+             if ((op == 0 || op == 0xa) && rn == 0xf)
+               err = thumb_copy_pc_relative_32bit (gdbarch, insn1, insn2,
+                                                   regs, dsc);
+             else
+               err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
+                                                  "dp/pb", dsc);
+           }
+         else /* Data processing (modified immeidate) */
+           err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
+                                              "dp/mi", dsc);
+       }
+      break;
+    case 3: /* op1 = 3 */
+      switch (bits (insn1, 9, 10))
+       {
+       case 0:
+         if (bit (insn1, 4))
+           err = decode_thumb_32bit_ld_mem_hints (gdbarch, insn1, insn2,
+                                                  regs, dsc);
+         else /* NEON Load/Store and Store single data item */
+           err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
+                                              "neon elt/struct load/store",
+                                              dsc);
+         break;
+       case 1: /* op1 = 3, bits (9, 10) == 1 */
+         switch (bits (insn1, 7, 8))
+           {
+           case 0: case 1: /* Data processing (register) */
+             err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
+                                                "dp(reg)", dsc);
+             break;
+           case 2: /* Multiply and absolute difference */
+             err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
+                                                "mul/mua/diff", dsc);
+             break;
+           case 3: /* Long multiply and divide */
+             err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
+                                                "lmul/lmua", dsc);
+             break;
+           }
+         break;
+       default: /* Coprocessor instructions */
+         err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
+         break;
+       }
+      break;
+    default:
+      err = 1;
+    }
+
+  if (err)
+    internal_error (__FILE__, __LINE__,
+                   _("thumb_process_displaced_32bit_insn: Instruction decode error"));
+
+}
+
+static void
+thumb_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
+                             CORE_ADDR to, struct regcache *regs,
+                             struct displaced_step_closure *dsc)
+{
+  enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
+  uint16_t insn1
+    = read_memory_unsigned_integer (from, 2, byte_order_for_code);
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: process thumb insn %.4x "
+                       "at %.8lx\n", insn1, (unsigned long) from);
+
+  dsc->is_thumb = 1;
+  dsc->insn_size = thumb_insn_size (insn1);
+  if (thumb_insn_size (insn1) == 4)
+    {
+      uint16_t insn2
+       = read_memory_unsigned_integer (from + 2, 2, byte_order_for_code);
+      thumb_process_displaced_32bit_insn (gdbarch, insn1, insn2, regs, dsc);
+    }
+  else
+    thumb_process_displaced_16bit_insn (gdbarch, insn1, regs, dsc);
+}
+
+void
+arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
+                           CORE_ADDR to, struct regcache *regs,
+                           struct displaced_step_closure *dsc)
+{
+  int err = 0;
+  enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
+  uint32_t insn;
+
+  /* Most displaced instructions use a 1-instruction scratch space, so set this
+     here and override below if/when necessary.  */
+  dsc->numinsns = 1;
+  dsc->insn_addr = from;
+  dsc->scratch_base = to;
+  dsc->cleanup = NULL;
+  dsc->wrote_to_pc = 0;
+
+  if (!displaced_in_arm_mode (regs))
+    return thumb_process_displaced_insn (gdbarch, from, to, regs, dsc);
+
+  dsc->is_thumb = 0;
+  dsc->insn_size = 4;
+  insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx "
+                       "at %.8lx\n", (unsigned long) insn,
+                       (unsigned long) from);
+
+  if ((insn & 0xf0000000) == 0xf0000000)
+    err = arm_decode_unconditional (gdbarch, insn, regs, dsc);
+  else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24))
+    {
+    case 0x0: case 0x1: case 0x2: case 0x3:
+      err = arm_decode_dp_misc (gdbarch, insn, regs, dsc);
+      break;
+
+    case 0x4: case 0x5: case 0x6:
+      err = arm_decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc);
+      break;
+
+    case 0x7:
+      err = arm_decode_media (gdbarch, insn, dsc);
+      break;
+
+    case 0x8: case 0x9: case 0xa: case 0xb:
+      err = arm_decode_b_bl_ldmstm (gdbarch, insn, regs, dsc);
+      break;
+
+    case 0xc: case 0xd: case 0xe: case 0xf:
+      err = arm_decode_svc_copro (gdbarch, insn, to, regs, dsc);
+      break;
+    }
+
+  if (err)
+    internal_error (__FILE__, __LINE__,
+                   _("arm_process_displaced_insn: Instruction decode error"));
+}
+
+/* Actually set up the scratch space for a displaced instruction.  */
+
+void
+arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from,
+                           CORE_ADDR to, struct displaced_step_closure *dsc)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  unsigned int i, len, offset;
+  enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
+  int size = dsc->is_thumb? 2 : 4;
+  const unsigned char *bkp_insn;
+
+  offset = 0;
+  /* Poke modified instruction(s).  */
+  for (i = 0; i < dsc->numinsns; i++)
+    {
+      if (debug_displaced)
+       {
+         fprintf_unfiltered (gdb_stdlog, "displaced: writing insn ");
+         if (size == 4)
+           fprintf_unfiltered (gdb_stdlog, "%.8lx",
+                               dsc->modinsn[i]);
+         else if (size == 2)
+           fprintf_unfiltered (gdb_stdlog, "%.4x",
+                               (unsigned short)dsc->modinsn[i]);
+
+         fprintf_unfiltered (gdb_stdlog, " at %.8lx\n",
+                             (unsigned long) to + offset);
+
+       }
+      write_memory_unsigned_integer (to + offset, size,
+                                    byte_order_for_code,
+                                    dsc->modinsn[i]);
+      offset += size;
+    }
+
+  /* Choose the correct breakpoint instruction.  */
+  if (dsc->is_thumb)
+    {
+      bkp_insn = tdep->thumb_breakpoint;
+      len = tdep->thumb_breakpoint_size;
+    }
+  else
+    {
+      bkp_insn = tdep->arm_breakpoint;
+      len = tdep->arm_breakpoint_size;
+    }
+
+  /* Put breakpoint afterwards.  */
+  write_memory (to + offset, bkp_insn, len);
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
+                       paddress (gdbarch, from), paddress (gdbarch, to));
+}
+
+/* Entry point for copying an instruction into scratch space for displaced
+   stepping.  */
+
+struct displaced_step_closure *
+arm_displaced_step_copy_insn (struct gdbarch *gdbarch,
+                             CORE_ADDR from, CORE_ADDR to,
+                             struct regcache *regs)
+{
+  struct displaced_step_closure *dsc
+    = xmalloc (sizeof (struct displaced_step_closure));
+  arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
+  arm_displaced_init_closure (gdbarch, from, to, dsc);
+
+  return dsc;
+}
+
+/* Entry point for cleaning things up after a displaced instruction has been
+   single-stepped.  */
+
+void
+arm_displaced_step_fixup (struct gdbarch *gdbarch,
+                         struct displaced_step_closure *dsc,
+                         CORE_ADDR from, CORE_ADDR to,
+                         struct regcache *regs)
+{
+  if (dsc->cleanup)
+    dsc->cleanup (gdbarch, regs, dsc);
+
+  if (!dsc->wrote_to_pc)
+    regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
+                                   dsc->insn_addr + dsc->insn_size);
+
+}
+
+#include "bfd-in2.h"
+#include "libcoff.h"
+
+static int
+gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
+{
+  struct gdbarch *gdbarch = info->application_data;
+
+  if (arm_pc_is_thumb (gdbarch, memaddr))
+    {
+      static asymbol *asym;
+      static combined_entry_type ce;
+      static struct coff_symbol_struct csym;
+      static struct bfd fake_bfd;
+      static bfd_target fake_target;
+
+      if (csym.native == NULL)
+       {
+         /* Create a fake symbol vector containing a Thumb symbol.
+            This is solely so that the code in print_insn_little_arm() 
+            and print_insn_big_arm() in opcodes/arm-dis.c will detect
+            the presence of a Thumb symbol and switch to decoding
+            Thumb instructions.  */
+
+         fake_target.flavour = bfd_target_coff_flavour;
+         fake_bfd.xvec = &fake_target;
+         ce.u.syment.n_sclass = C_THUMBEXTFUNC;
+         csym.native = &ce;
+         csym.symbol.the_bfd = &fake_bfd;
+         csym.symbol.name = "fake";
+         asym = (asymbol *) & csym;
+       }
+
+      memaddr = UNMAKE_THUMB_ADDR (memaddr);
+      info->symbols = &asym;
+    }
+  else
+    info->symbols = NULL;
+
+  if (info->endian == BFD_ENDIAN_BIG)
+    return print_insn_big_arm (memaddr, info);
+  else
+    return print_insn_little_arm (memaddr, info);
+}
+
+/* The following define instruction sequences that will cause ARM
+   cpu's to take an undefined instruction trap.  These are used to
+   signal a breakpoint to GDB.
+   
+   The newer ARMv4T cpu's are capable of operating in ARM or Thumb
+   modes.  A different instruction is required for each mode.  The ARM
+   cpu's can also be big or little endian.  Thus four different
+   instructions are needed to support all cases.
+   
+   Note: ARMv4 defines several new instructions that will take the
+   undefined instruction trap.  ARM7TDMI is nominally ARMv4T, but does
+   not in fact add the new instructions.  The new undefined
+   instructions in ARMv4 are all instructions that had no defined
+   behaviour in earlier chips.  There is no guarantee that they will
+   raise an exception, but may be treated as NOP's.  In practice, it
+   may only safe to rely on instructions matching:
+   
+   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 
+   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
+   C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
+   
+   Even this may only true if the condition predicate is true.  The
+   following use a condition predicate of ALWAYS so it is always TRUE.
+   
+   There are other ways of forcing a breakpoint.  GNU/Linux, RISC iX,
+   and NetBSD all use a software interrupt rather than an undefined
+   instruction to force a trap.  This can be handled by by the
+   abi-specific code during establishment of the gdbarch vector.  */
+
+#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
+#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
+#define THUMB_LE_BREAKPOINT {0xbe,0xbe}
+#define THUMB_BE_BREAKPOINT {0xbe,0xbe}
+
+static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
+static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
+static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
+static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
+
+/* Determine the type and size of breakpoint to insert at PCPTR.  Uses
+   the program counter value to determine whether a 16-bit or 32-bit
+   breakpoint should be used.  It returns a pointer to a string of
+   bytes that encode a breakpoint instruction, stores the length of
+   the string to *lenptr, and adjusts the program counter (if
+   necessary) to point to the actual memory location where the
+   breakpoint should be inserted.  */
+
+static const unsigned char *
+arm_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
+
+  if (arm_pc_is_thumb (gdbarch, *pcptr))
+    {
+      *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
+
+      /* If we have a separate 32-bit breakpoint instruction for Thumb-2,
+        check whether we are replacing a 32-bit instruction.  */
+      if (tdep->thumb2_breakpoint != NULL)
+       {
+         gdb_byte buf[2];
+         if (target_read_memory (*pcptr, buf, 2) == 0)
+           {
+             unsigned short inst1;
+             inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code);
+             if (thumb_insn_size (inst1) == 4)
+               {
+                 *lenptr = tdep->thumb2_breakpoint_size;
+                 return tdep->thumb2_breakpoint;
+               }
+           }
+       }
+
+      *lenptr = tdep->thumb_breakpoint_size;
+      return tdep->thumb_breakpoint;
+    }
+  else
+    {
+      *lenptr = tdep->arm_breakpoint_size;
+      return tdep->arm_breakpoint;
+    }
+}
+
+static void
+arm_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
+                              int *kindptr)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  arm_breakpoint_from_pc (gdbarch, pcptr, kindptr);
+
+  if (arm_pc_is_thumb (gdbarch, *pcptr) && *kindptr == 4)
+    /* The documented magic value for a 32-bit Thumb-2 breakpoint, so
+       that this is not confused with a 32-bit ARM breakpoint.  */
+    *kindptr = 3;
+}
+
+/* Extract from an array REGBUF containing the (raw) register state a
+   function return value of type TYPE, and copy that, in virtual
+   format, into VALBUF.  */
+
+static void
+arm_extract_return_value (struct type *type, struct regcache *regs,
+                         gdb_byte *valbuf)
+{
+  struct gdbarch *gdbarch = get_regcache_arch (regs);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+
+  if (TYPE_CODE_FLT == TYPE_CODE (type))
+    {
+      switch (gdbarch_tdep (gdbarch)->fp_model)
+       {
+       case ARM_FLOAT_FPA:
+         {
+           /* The value is in register F0 in internal format.  We need to
+              extract the raw value and then convert it to the desired
+              internal type.  */
+           bfd_byte tmpbuf[FP_REGISTER_SIZE];
+
+           regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
+           convert_from_extended (floatformat_from_type (type), tmpbuf,
+                                  valbuf, gdbarch_byte_order (gdbarch));
+         }
+         break;
+
+       case ARM_FLOAT_SOFT_FPA:
+       case ARM_FLOAT_SOFT_VFP:
+         /* ARM_FLOAT_VFP can arise if this is a variadic function so
+            not using the VFP ABI code.  */
+       case ARM_FLOAT_VFP:
+         regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
+         if (TYPE_LENGTH (type) > 4)
+           regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
+                                 valbuf + INT_REGISTER_SIZE);
+         break;
+
+       default:
+         internal_error (__FILE__, __LINE__,
+                         _("arm_extract_return_value: "
+                           "Floating point model not supported"));
+         break;
+       }
+    }
+  else if (TYPE_CODE (type) == TYPE_CODE_INT
+          || TYPE_CODE (type) == TYPE_CODE_CHAR
+          || TYPE_CODE (type) == TYPE_CODE_BOOL
+          || TYPE_CODE (type) == TYPE_CODE_PTR
+          || TYPE_CODE (type) == TYPE_CODE_REF
+          || TYPE_CODE (type) == TYPE_CODE_ENUM)
+    {
+      /* If the type is a plain integer, then the access is
+        straight-forward.  Otherwise we have to play around a bit
+        more.  */
+      int len = TYPE_LENGTH (type);
+      int regno = ARM_A1_REGNUM;
+      ULONGEST tmp;
+
+      while (len > 0)
+       {
+         /* By using store_unsigned_integer we avoid having to do
+            anything special for small big-endian values.  */
+         regcache_cooked_read_unsigned (regs, regno++, &tmp);
+         store_unsigned_integer (valbuf, 
+                                 (len > INT_REGISTER_SIZE
+                                  ? INT_REGISTER_SIZE : len),
+                                 byte_order, tmp);
+         len -= INT_REGISTER_SIZE;
+         valbuf += INT_REGISTER_SIZE;
+       }
+    }
+  else
+    {
+      /* For a structure or union the behaviour is as if the value had
+         been stored to word-aligned memory and then loaded into 
+         registers with 32-bit load instruction(s).  */
+      int len = TYPE_LENGTH (type);
+      int regno = ARM_A1_REGNUM;
+      bfd_byte tmpbuf[INT_REGISTER_SIZE];
+
+      while (len > 0)
+       {
+         regcache_cooked_read (regs, regno++, tmpbuf);
+         memcpy (valbuf, tmpbuf,
+                 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
+         len -= INT_REGISTER_SIZE;
+         valbuf += INT_REGISTER_SIZE;
+       }
+    }
+}
+
+
+/* Will a function return an aggregate type in memory or in a
+   register?  Return 0 if an aggregate type can be returned in a
+   register, 1 if it must be returned in memory.  */
+
+static int
+arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
+{
+  int nRc;
+  enum type_code code;
+
+  CHECK_TYPEDEF (type);
+
+  /* In the ARM ABI, "integer" like aggregate types are returned in
+     registers.  For an aggregate type to be integer like, its size
+     must be less than or equal to INT_REGISTER_SIZE and the
+     offset of each addressable subfield must be zero.  Note that bit
+     fields are not addressable, and all addressable subfields of
+     unions always start at offset zero.
+
+     This function is based on the behaviour of GCC 2.95.1.
+     See: gcc/arm.c: arm_return_in_memory() for details.
+
+     Note: All versions of GCC before GCC 2.95.2 do not set up the
+     parameters correctly for a function returning the following
+     structure: struct { float f;}; This should be returned in memory,
+     not a register.  Richard Earnshaw sent me a patch, but I do not
+     know of any way to detect if a function like the above has been
+     compiled with the correct calling convention.  */
+
+  /* All aggregate types that won't fit in a register must be returned
+     in memory.  */
+  if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
+    {
+      return 1;
+    }
+
+  /* The AAPCS says all aggregates not larger than a word are returned
+     in a register.  */
+  if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
+    return 0;
+
+  /* The only aggregate types that can be returned in a register are
+     structs and unions.  Arrays must be returned in memory.  */
+  code = TYPE_CODE (type);
+  if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
+    {
+      return 1;
+    }
+
+  /* Assume all other aggregate types can be returned in a register.
+     Run a check for structures, unions and arrays.  */
+  nRc = 0;
+
+  if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
+    {
+      int i;
+      /* Need to check if this struct/union is "integer" like.  For
+         this to be true, its size must be less than or equal to
+         INT_REGISTER_SIZE and the offset of each addressable
+         subfield must be zero.  Note that bit fields are not
+         addressable, and unions always start at offset zero.  If any
+         of the subfields is a floating point type, the struct/union
+         cannot be an integer type.  */
+
+      /* For each field in the object, check:
+         1) Is it FP? --> yes, nRc = 1;
+         2) Is it addressable (bitpos != 0) and
+         not packed (bitsize == 0)?
+         --> yes, nRc = 1  
+       */
+
+      for (i = 0; i < TYPE_NFIELDS (type); i++)
+       {
+         enum type_code field_type_code;
+         field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type,
+                                                                      i)));
+
+         /* Is it a floating point type field?  */
+         if (field_type_code == TYPE_CODE_FLT)
+           {
+             nRc = 1;
+             break;
+           }
+
+         /* If bitpos != 0, then we have to care about it.  */
+         if (TYPE_FIELD_BITPOS (type, i) != 0)
+           {
+             /* Bitfields are not addressable.  If the field bitsize is 
+                zero, then the field is not packed.  Hence it cannot be
+                a bitfield or any other packed type.  */
+             if (TYPE_FIELD_BITSIZE (type, i) == 0)
+               {
+                 nRc = 1;
+                 break;
+               }
+           }
+       }
+    }
+
+  return nRc;
+}
+
+/* Write into appropriate registers a function return value of type
+   TYPE, given in virtual format.  */
+
+static void
+arm_store_return_value (struct type *type, struct regcache *regs,
+                       const gdb_byte *valbuf)
+{
+  struct gdbarch *gdbarch = get_regcache_arch (regs);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+
+  if (TYPE_CODE (type) == TYPE_CODE_FLT)
+    {
+      char buf[MAX_REGISTER_SIZE];
+
+      switch (gdbarch_tdep (gdbarch)->fp_model)
+       {
+       case ARM_FLOAT_FPA:
+
+         convert_to_extended (floatformat_from_type (type), buf, valbuf,
+                              gdbarch_byte_order (gdbarch));
+         regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
+         break;
+
+       case ARM_FLOAT_SOFT_FPA:
+       case ARM_FLOAT_SOFT_VFP:
+         /* ARM_FLOAT_VFP can arise if this is a variadic function so
+            not using the VFP ABI code.  */
+       case ARM_FLOAT_VFP:
+         regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
+         if (TYPE_LENGTH (type) > 4)
+           regcache_cooked_write (regs, ARM_A1_REGNUM + 1, 
+                                  valbuf + INT_REGISTER_SIZE);
+         break;
+
+       default:
+         internal_error (__FILE__, __LINE__,
+                         _("arm_store_return_value: Floating "
+                           "point model not supported"));
+         break;
+       }
+    }
+  else if (TYPE_CODE (type) == TYPE_CODE_INT
+          || TYPE_CODE (type) == TYPE_CODE_CHAR
+          || TYPE_CODE (type) == TYPE_CODE_BOOL
+          || TYPE_CODE (type) == TYPE_CODE_PTR
+          || TYPE_CODE (type) == TYPE_CODE_REF
+          || TYPE_CODE (type) == TYPE_CODE_ENUM)
+    {
+      if (TYPE_LENGTH (type) <= 4)
+       {
+         /* Values of one word or less are zero/sign-extended and
+            returned in r0.  */
+         bfd_byte tmpbuf[INT_REGISTER_SIZE];
+         LONGEST val = unpack_long (type, valbuf);
+
+         store_signed_integer (tmpbuf, INT_REGISTER_SIZE, byte_order, val);
+         regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
+       }
+      else
+       {
+         /* Integral values greater than one word are stored in consecutive
+            registers starting with r0.  This will always be a multiple of
+            the regiser size.  */
+         int len = TYPE_LENGTH (type);
+         int regno = ARM_A1_REGNUM;
+
+         while (len > 0)
+           {
+             regcache_cooked_write (regs, regno++, valbuf);
+             len -= INT_REGISTER_SIZE;
+             valbuf += INT_REGISTER_SIZE;
+           }
+       }
+    }
+  else
+    {
+      /* For a structure or union the behaviour is as if the value had
+         been stored to word-aligned memory and then loaded into 
+         registers with 32-bit load instruction(s).  */
+      int len = TYPE_LENGTH (type);
+      int regno = ARM_A1_REGNUM;
+      bfd_byte tmpbuf[INT_REGISTER_SIZE];
+
+      while (len > 0)
+       {
+         memcpy (tmpbuf, valbuf,
+                 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
+         regcache_cooked_write (regs, regno++, tmpbuf);
+         len -= INT_REGISTER_SIZE;
+         valbuf += INT_REGISTER_SIZE;
+       }
+    }
+}
+
+
+/* Handle function return values.  */
+
+static enum return_value_convention
+arm_return_value (struct gdbarch *gdbarch, struct type *func_type,
+                 struct type *valtype, struct regcache *regcache,
+                 gdb_byte *readbuf, const gdb_byte *writebuf)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  enum arm_vfp_cprc_base_type vfp_base_type;
+  int vfp_base_count;
+
+  if (arm_vfp_abi_for_function (gdbarch, func_type)
+      && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count))
+    {
+      int reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
+      int unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
+      int i;
+      for (i = 0; i < vfp_base_count; i++)
+       {
+         if (reg_char == 'q')
+           {
+             if (writebuf)
+               arm_neon_quad_write (gdbarch, regcache, i,
+                                    writebuf + i * unit_length);
+
+             if (readbuf)
+               arm_neon_quad_read (gdbarch, regcache, i,
+                                   readbuf + i * unit_length);
+           }
+         else
+           {
+             char name_buf[4];
+             int regnum;
+
+             sprintf (name_buf, "%c%d", reg_char, i);
+             regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
+                                                   strlen (name_buf));
+             if (writebuf)
+               regcache_cooked_write (regcache, regnum,
+                                      writebuf + i * unit_length);
+             if (readbuf)
+               regcache_cooked_read (regcache, regnum,
+                                     readbuf + i * unit_length);
+           }
+       }
+      return RETURN_VALUE_REGISTER_CONVENTION;
+    }
+
+  if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
+      || TYPE_CODE (valtype) == TYPE_CODE_UNION
+      || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
+    {
+      if (tdep->struct_return == pcc_struct_return
+         || arm_return_in_memory (gdbarch, valtype))
+       return RETURN_VALUE_STRUCT_CONVENTION;
+    }
+
+  /* AAPCS returns complex types longer than a register in memory.  */
+  if (tdep->arm_abi != ARM_ABI_APCS
+      && TYPE_CODE (valtype) == TYPE_CODE_COMPLEX
+      && TYPE_LENGTH (valtype) > INT_REGISTER_SIZE)
+    return RETURN_VALUE_STRUCT_CONVENTION;
+
+  if (writebuf)
+    arm_store_return_value (valtype, regcache, writebuf);
+
+  if (readbuf)
+    arm_extract_return_value (valtype, regcache, readbuf);
+
+  return RETURN_VALUE_REGISTER_CONVENTION;
+}
+
+
+static int
+arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
+{
+  struct gdbarch *gdbarch = get_frame_arch (frame);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  CORE_ADDR jb_addr;
+  char buf[INT_REGISTER_SIZE];
+  
+  jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
+
+  if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
+                         INT_REGISTER_SIZE))
+    return 0;
+
+  *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE, byte_order);
+  return 1;
+}
+
+/* Recognize GCC and GNU ld's trampolines.  If we are in a trampoline,
+   return the target PC.  Otherwise return 0.  */
+
+CORE_ADDR
+arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
+{
+  const char *name;
+  int namelen;
+  CORE_ADDR start_addr;
+
+  /* Find the starting address and name of the function containing the PC.  */
+  if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
+    return 0;
+
+  /* If PC is in a Thumb call or return stub, return the address of the
+     target PC, which is in a register.  The thunk functions are called
+     _call_via_xx, where x is the register name.  The possible names
+     are r0-r9, sl, fp, ip, sp, and lr.  ARM RealView has similar
+     functions, named __ARM_call_via_r[0-7].  */
+  if (strncmp (name, "_call_via_", 10) == 0
+      || strncmp (name, "__ARM_call_via_", strlen ("__ARM_call_via_")) == 0)
+    {
+      /* Use the name suffix to determine which register contains the
+         target PC.  */
+      static char *table[15] =
+      {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+       "r8", "r9", "sl", "fp", "ip", "sp", "lr"
+      };
+      int regno;
+      int offset = strlen (name) - 2;
+
+      for (regno = 0; regno <= 14; regno++)
+       if (strcmp (&name[offset], table[regno]) == 0)
+         return get_frame_register_unsigned (frame, regno);
+    }
+
+  /* GNU ld generates __foo_from_arm or __foo_from_thumb for
+     non-interworking calls to foo.  We could decode the stubs
+     to find the target but it's easier to use the symbol table.  */
+  namelen = strlen (name);
+  if (name[0] == '_' && name[1] == '_'
+      && ((namelen > 2 + strlen ("_from_thumb")
+          && strncmp (name + namelen - strlen ("_from_thumb"), "_from_thumb",
+                      strlen ("_from_thumb")) == 0)
+         || (namelen > 2 + strlen ("_from_arm")
+             && strncmp (name + namelen - strlen ("_from_arm"), "_from_arm",
+                         strlen ("_from_arm")) == 0)))
+    {
+      char *target_name;
+      int target_len = namelen - 2;
+      struct minimal_symbol *minsym;
+      struct objfile *objfile;
+      struct obj_section *sec;
+
+      if (name[namelen - 1] == 'b')
+       target_len -= strlen ("_from_thumb");
+      else
+       target_len -= strlen ("_from_arm");
+
+      target_name = alloca (target_len + 1);
+      memcpy (target_name, name + 2, target_len);
+      target_name[target_len] = '\0';
+
+      sec = find_pc_section (pc);
+      objfile = (sec == NULL) ? NULL : sec->objfile;
+      minsym = lookup_minimal_symbol (target_name, NULL, objfile);
+      if (minsym != NULL)
+       return SYMBOL_VALUE_ADDRESS (minsym);
+      else
+       return 0;
+    }
+
+  return 0;                    /* not a stub */
+}
+
+static void
+set_arm_command (char *args, int from_tty)
+{
+  printf_unfiltered (_("\
+\"set arm\" must be followed by an apporpriate subcommand.\n"));
+  help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
+}
+
+static void
+show_arm_command (char *args, int from_tty)
+{
+  cmd_show_list (showarmcmdlist, from_tty, "");
+}
+
+static void
+arm_update_current_architecture (void)
+{
+  struct gdbarch_info info;
+
+  /* If the current architecture is not ARM, we have nothing to do.  */
+  if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_arm)
+    return;
+
+  /* Update the architecture.  */
+  gdbarch_info_init (&info);
+
+  if (!gdbarch_update_p (info))
+    internal_error (__FILE__, __LINE__, _("could not update architecture"));
+}
+
+static void
+set_fp_model_sfunc (char *args, int from_tty,
+                   struct cmd_list_element *c)
+{
+  enum arm_float_model fp_model;
+
+  for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
+    if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
+      {
+       arm_fp_model = fp_model;
+       break;
+      }
+
+  if (fp_model == ARM_FLOAT_LAST)
+    internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
+                   current_fp_model);
+
+  arm_update_current_architecture ();
+}
+
+static void
+show_fp_model (struct ui_file *file, int from_tty,
+              struct cmd_list_element *c, const char *value)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
+
+  if (arm_fp_model == ARM_FLOAT_AUTO
+      && gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_arm)
+    fprintf_filtered (file, _("\
+The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
+                     fp_model_strings[tdep->fp_model]);
+  else
+    fprintf_filtered (file, _("\
+The current ARM floating point model is \"%s\".\n"),
+                     fp_model_strings[arm_fp_model]);
+}
+
+static void
+arm_set_abi (char *args, int from_tty,
+            struct cmd_list_element *c)
+{
+  enum arm_abi_kind arm_abi;
+
+  for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
+    if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
+      {
+       arm_abi_global = arm_abi;
+       break;
+      }
+
+  if (arm_abi == ARM_ABI_LAST)
+    internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
+                   arm_abi_string);
+
+  arm_update_current_architecture ();
+}
+
+static void
+arm_show_abi (struct ui_file *file, int from_tty,
+            struct cmd_list_element *c, const char *value)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
+
+  if (arm_abi_global == ARM_ABI_AUTO
+      && gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_arm)
+    fprintf_filtered (file, _("\
+The current ARM ABI is \"auto\" (currently \"%s\").\n"),
+                     arm_abi_strings[tdep->arm_abi]);
+  else
+    fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
+                     arm_abi_string);
+}
+
+static void
+arm_show_fallback_mode (struct ui_file *file, int from_tty,
+                       struct cmd_list_element *c, const char *value)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
+
+  fprintf_filtered (file,
+                   _("The current execution mode assumed "
+                     "(when symbols are unavailable) is \"%s\".\n"),
+                   arm_fallback_mode_string);
+}
+
+static void
+arm_show_force_mode (struct ui_file *file, int from_tty,
+                    struct cmd_list_element *c, const char *value)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
+
+  fprintf_filtered (file,
+                   _("The current execution mode assumed "
+                     "(even when symbols are available) is \"%s\".\n"),
+                   arm_force_mode_string);
+}
+
+/* If the user changes the register disassembly style used for info
+   register and other commands, we have to also switch the style used
+   in opcodes for disassembly output.  This function is run in the "set
+   arm disassembly" command, and does that.  */
+
+static void
+set_disassembly_style_sfunc (char *args, int from_tty,
+                             struct cmd_list_element *c)
+{
+  set_disassembly_style ();
+}
+\f
+/* Return the ARM register name corresponding to register I.  */
+static const char *
+arm_register_name (struct gdbarch *gdbarch, int i)
+{
+  const int num_regs = gdbarch_num_regs (gdbarch);
+
+  if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
+      && i >= num_regs && i < num_regs + 32)
+    {
+      static const char *const vfp_pseudo_names[] = {
+       "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
+       "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
+       "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
+       "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
+      };
+
+      return vfp_pseudo_names[i - num_regs];
+    }
+
+  if (gdbarch_tdep (gdbarch)->have_neon_pseudos
+      && i >= num_regs + 32 && i < num_regs + 32 + 16)
+    {
+      static const char *const neon_pseudo_names[] = {
+       "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
+       "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15",
+      };
+
+      return neon_pseudo_names[i - num_regs - 32];
+    }
+
+  if (i >= ARRAY_SIZE (arm_register_names))
+    /* These registers are only supported on targets which supply
+       an XML description.  */
+    return "";
+
+  return arm_register_names[i];
+}
+
+static void
+set_disassembly_style (void)
+{
+  int current;
+
+  /* Find the style that the user wants.  */
+  for (current = 0; current < num_disassembly_options; current++)
+    if (disassembly_style == valid_disassembly_styles[current])
+      break;
+  gdb_assert (current < num_disassembly_options);
+
+  /* Synchronize the disassembler.  */
+  set_arm_regname_option (current);
+}
+
+/* Test whether the coff symbol specific value corresponds to a Thumb
+   function.  */
+
+static int
+coff_sym_is_thumb (int val)
+{
+  return (val == C_THUMBEXT
+         || val == C_THUMBSTAT
+         || val == C_THUMBEXTFUNC
+         || val == C_THUMBSTATFUNC
+         || val == C_THUMBLABEL);
+}
+
+/* arm_coff_make_msymbol_special()
+   arm_elf_make_msymbol_special()
+   
+   These functions test whether the COFF or ELF symbol corresponds to
+   an address in thumb code, and set a "special" bit in a minimal
+   symbol to indicate that it does.  */
+   
+static void
+arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
+{
+  if (ARM_SYM_BRANCH_TYPE (&((elf_symbol_type *)sym)->internal_elf_sym)
+      == ST_BRANCH_TO_THUMB)
+    MSYMBOL_SET_SPECIAL (msym);
+}
+
+static void
+arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
+{
+  if (coff_sym_is_thumb (val))
+    MSYMBOL_SET_SPECIAL (msym);
+}
+
+static void
+arm_objfile_data_free (struct objfile *objfile, void *arg)
+{
+  struct arm_per_objfile *data = arg;
+  unsigned int i;
+
+  for (i = 0; i < objfile->obfd->section_count; i++)
+    VEC_free (arm_mapping_symbol_s, data->section_maps[i]);
+}
+
+static void
+arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile,
+                          asymbol *sym)
+{
+  const char *name = bfd_asymbol_name (sym);
+  struct arm_per_objfile *data;
+  VEC(arm_mapping_symbol_s) **map_p;
+  struct arm_mapping_symbol new_map_sym;
+
+  gdb_assert (name[0] == '$');
+  if (name[1] != 'a' && name[1] != 't' && name[1] != 'd')
+    return;
+
+  data = objfile_data (objfile, arm_objfile_data_key);
+  if (data == NULL)
+    {
+      data = OBSTACK_ZALLOC (&objfile->objfile_obstack,
+                            struct arm_per_objfile);
+      set_objfile_data (objfile, arm_objfile_data_key, data);
+      data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
+                                          objfile->obfd->section_count,
+                                          VEC(arm_mapping_symbol_s) *);
+    }
+  map_p = &data->section_maps[bfd_get_section (sym)->index];
+
+  new_map_sym.value = sym->value;
+  new_map_sym.type = name[1];
+
+  /* Assume that most mapping symbols appear in order of increasing
+     value.  If they were randomly distributed, it would be faster to
+     always push here and then sort at first use.  */
+  if (!VEC_empty (arm_mapping_symbol_s, *map_p))
+    {
+      struct arm_mapping_symbol *prev_map_sym;
+
+      prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p);
+      if (prev_map_sym->value >= sym->value)
+       {
+         unsigned int idx;
+         idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym,
+                                arm_compare_mapping_symbols);
+         VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym);
+         return;
+       }
+    }
+
+  VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym);
+}
+
+static void
+arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
+{
+  struct gdbarch *gdbarch = get_regcache_arch (regcache);
+  regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
+
+  /* If necessary, set the T bit.  */
+  if (arm_apcs_32)
+    {
+      ULONGEST val, t_bit;
+      regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
+      t_bit = arm_psr_thumb_bit (gdbarch);
+      if (arm_pc_is_thumb (gdbarch, pc))
+       regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
+                                       val | t_bit);
+      else
+       regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
+                                       val & ~t_bit);
+    }
+}
+
+/* Read the contents of a NEON quad register, by reading from two
+   double registers.  This is used to implement the quad pseudo
+   registers, and for argument passing in case the quad registers are
+   missing; vectors are passed in quad registers when using the VFP
+   ABI, even if a NEON unit is not present.  REGNUM is the index of
+   the quad register, in [0, 15].  */
+
+static enum register_status
+arm_neon_quad_read (struct gdbarch *gdbarch, struct regcache *regcache,
+                   int regnum, gdb_byte *buf)
+{
+  char name_buf[4];
+  gdb_byte reg_buf[8];
+  int offset, double_regnum;
+  enum register_status status;
+
+  sprintf (name_buf, "d%d", regnum << 1);
+  double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
+                                              strlen (name_buf));
+
+  /* d0 is always the least significant half of q0.  */
+  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
+    offset = 8;
+  else
+    offset = 0;
+
+  status = regcache_raw_read (regcache, double_regnum, reg_buf);
+  if (status != REG_VALID)
+    return status;
+  memcpy (buf + offset, reg_buf, 8);
+
+  offset = 8 - offset;
+  status = regcache_raw_read (regcache, double_regnum + 1, reg_buf);
+  if (status != REG_VALID)
+    return status;
+  memcpy (buf + offset, reg_buf, 8);
+
+  return REG_VALID;
+}
+
+static enum register_status
+arm_pseudo_read (struct gdbarch *gdbarch, struct regcache *regcache,
+                int regnum, gdb_byte *buf)
+{
+  const int num_regs = gdbarch_num_regs (gdbarch);
+  char name_buf[4];
+  gdb_byte reg_buf[8];
+  int offset, double_regnum;
+
+  gdb_assert (regnum >= num_regs);
+  regnum -= num_regs;
+
+  if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
+    /* Quad-precision register.  */
+    return arm_neon_quad_read (gdbarch, regcache, regnum - 32, buf);
+  else
+    {
+      enum register_status status;
+
+      /* Single-precision register.  */
+      gdb_assert (regnum < 32);
+
+      /* s0 is always the least significant half of d0.  */
+      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
+       offset = (regnum & 1) ? 0 : 4;
+      else
+       offset = (regnum & 1) ? 4 : 0;
+
+      sprintf (name_buf, "d%d", regnum >> 1);
+      double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
+                                                  strlen (name_buf));
+
+      status = regcache_raw_read (regcache, double_regnum, reg_buf);
+      if (status == REG_VALID)
+       memcpy (buf, reg_buf + offset, 4);
+      return status;
+    }
+}
+
+/* Store the contents of BUF to a NEON quad register, by writing to
+   two double registers.  This is used to implement the quad pseudo
+   registers, and for argument passing in case the quad registers are
+   missing; vectors are passed in quad registers when using the VFP
+   ABI, even if a NEON unit is not present.  REGNUM is the index
+   of the quad register, in [0, 15].  */
+
+static void
+arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache,
+                    int regnum, const gdb_byte *buf)
+{
+  char name_buf[4];
+  gdb_byte reg_buf[8];
+  int offset, double_regnum;
+
+  sprintf (name_buf, "d%d", regnum << 1);
+  double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
+                                              strlen (name_buf));
+
+  /* d0 is always the least significant half of q0.  */
+  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
+    offset = 8;
+  else
+    offset = 0;
+
+  regcache_raw_write (regcache, double_regnum, buf + offset);
+  offset = 8 - offset;
+  regcache_raw_write (regcache, double_regnum + 1, buf + offset);
+}
+
+static void
+arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
+                 int regnum, const gdb_byte *buf)
+{
+  const int num_regs = gdbarch_num_regs (gdbarch);
+  char name_buf[4];
+  gdb_byte reg_buf[8];
+  int offset, double_regnum;
+
+  gdb_assert (regnum >= num_regs);
+  regnum -= num_regs;
+
+  if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
+    /* Quad-precision register.  */
+    arm_neon_quad_write (gdbarch, regcache, regnum - 32, buf);
+  else
+    {
+      /* Single-precision register.  */
+      gdb_assert (regnum < 32);
+
+      /* s0 is always the least significant half of d0.  */
+      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
+       offset = (regnum & 1) ? 0 : 4;
+      else
+       offset = (regnum & 1) ? 4 : 0;
+
+      sprintf (name_buf, "d%d", regnum >> 1);
+      double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
+                                                  strlen (name_buf));
+
+      regcache_raw_read (regcache, double_regnum, reg_buf);
+      memcpy (reg_buf + offset, buf, 4);
+      regcache_raw_write (regcache, double_regnum, reg_buf);
+    }
+}
+
+static struct value *
+value_of_arm_user_reg (struct frame_info *frame, const void *baton)
+{
+  const int *reg_p = baton;
+  return value_of_register (*reg_p, frame);
+}
+\f
+static enum gdb_osabi
+arm_elf_osabi_sniffer (bfd *abfd)
+{
+  unsigned int elfosabi;
+  enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
+
+  elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
+
+  if (elfosabi == ELFOSABI_ARM)
+    /* GNU tools use this value.  Check note sections in this case,
+       as well.  */
+    bfd_map_over_sections (abfd,
+                          generic_elf_osabi_sniff_abi_tag_sections, 
+                          &osabi);
+
+  /* Anything else will be handled by the generic ELF sniffer.  */
+  return osabi;
+}
+
+static int
+arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
+                         struct reggroup *group)
+{
+  /* FPS register's type is INT, but belongs to float_reggroup.  Beside
+     this, FPS register belongs to save_regroup, restore_reggroup, and
+     all_reggroup, of course.  */
+  if (regnum == ARM_FPS_REGNUM)
+    return (group == float_reggroup
+           || group == save_reggroup
+           || group == restore_reggroup
+           || group == all_reggroup);
+  else
+    return default_register_reggroup_p (gdbarch, regnum, group);
+}
+
+\f
+/* For backward-compatibility we allow two 'g' packet lengths with
+   the remote protocol depending on whether FPA registers are
+   supplied.  M-profile targets do not have FPA registers, but some
+   stubs already exist in the wild which use a 'g' packet which
+   supplies them albeit with dummy values.  The packet format which
+   includes FPA registers should be considered deprecated for
+   M-profile targets.  */
+
+static void
+arm_register_g_packet_guesses (struct gdbarch *gdbarch)
+{
+  if (gdbarch_tdep (gdbarch)->is_m)
+    {
+      /* If we know from the executable this is an M-profile target,
+        cater for remote targets whose register set layout is the
+        same as the FPA layout.  */
+      register_remote_g_packet_guess (gdbarch,
+                                     /* r0-r12,sp,lr,pc; f0-f7; fps,cpsr */
+                                     (16 * INT_REGISTER_SIZE)
+                                     + (8 * FP_REGISTER_SIZE)
+                                     + (2 * INT_REGISTER_SIZE),
+                                     tdesc_arm_with_m_fpa_layout);
+
+      /* The regular M-profile layout.  */
+      register_remote_g_packet_guess (gdbarch,
+                                     /* r0-r12,sp,lr,pc; xpsr */
+                                     (16 * INT_REGISTER_SIZE)
+                                     + INT_REGISTER_SIZE,
+                                     tdesc_arm_with_m);
+    }
+
+  /* Otherwise we don't have a useful guess.  */
+}
+
+\f
+/* Initialize the current architecture based on INFO.  If possible,
+   re-use an architecture from ARCHES, which is a list of
+   architectures already created during this debugging session.
+
+   Called e.g. at program startup, when reading a core file, and when
+   reading a binary file.  */
+
+static struct gdbarch *
+arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
+{
+  struct gdbarch_tdep *tdep;
+  struct gdbarch *gdbarch;
+  struct gdbarch_list *best_arch;
+  enum arm_abi_kind arm_abi = arm_abi_global;
+  enum arm_float_model fp_model = arm_fp_model;
+  struct tdesc_arch_data *tdesc_data = NULL;
+  int i, is_m = 0;
+  int have_vfp_registers = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0;
+  int have_neon = 0;
+  int have_fpa_registers = 1;
+  const struct target_desc *tdesc = info.target_desc;
+
+  /* If we have an object to base this architecture on, try to determine
+     its ABI.  */
+
+  if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
+    {
+      int ei_osabi, e_flags;
+
+      switch (bfd_get_flavour (info.abfd))
+       {
+       case bfd_target_aout_flavour:
+         /* Assume it's an old APCS-style ABI.  */
+         arm_abi = ARM_ABI_APCS;
+         break;
+
+       case bfd_target_coff_flavour:
+         /* Assume it's an old APCS-style ABI.  */
+         /* XXX WinCE?  */
+         arm_abi = ARM_ABI_APCS;
+         break;
+
+       case bfd_target_elf_flavour:
+         ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
+         e_flags = elf_elfheader (info.abfd)->e_flags;
+
+         if (ei_osabi == ELFOSABI_ARM)
+           {
+             /* GNU tools used to use this value, but do not for EABI
+                objects.  There's nowhere to tag an EABI version
+                anyway, so assume APCS.  */
+             arm_abi = ARM_ABI_APCS;
+           }
+         else if (ei_osabi == ELFOSABI_NONE)
+           {
+             int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
+             int attr_arch, attr_profile;
+
+             switch (eabi_ver)
+               {
+               case EF_ARM_EABI_UNKNOWN:
+                 /* Assume GNU tools.  */
+                 arm_abi = ARM_ABI_APCS;
+                 break;
+
+               case EF_ARM_EABI_VER4:
+               case EF_ARM_EABI_VER5:
+                 arm_abi = ARM_ABI_AAPCS;
+                 /* EABI binaries default to VFP float ordering.
+                    They may also contain build attributes that can
+                    be used to identify if the VFP argument-passing
+                    ABI is in use.  */
+                 if (fp_model == ARM_FLOAT_AUTO)
+                   {
+#ifdef HAVE_ELF
+                     switch (bfd_elf_get_obj_attr_int (info.abfd,
+                                                       OBJ_ATTR_PROC,
+                                                       Tag_ABI_VFP_args))
+                       {
+                       case 0:
+                         /* "The user intended FP parameter/result
+                            passing to conform to AAPCS, base
+                            variant".  */
+                         fp_model = ARM_FLOAT_SOFT_VFP;
+                         break;
+                       case 1:
+                         /* "The user intended FP parameter/result
+                            passing to conform to AAPCS, VFP
+                            variant".  */
+                         fp_model = ARM_FLOAT_VFP;
+                         break;
+                       case 2:
+                         /* "The user intended FP parameter/result
+                            passing to conform to tool chain-specific
+                            conventions" - we don't know any such
+                            conventions, so leave it as "auto".  */
+                         break;
+                       default:
+                         /* Attribute value not mentioned in the
+                            October 2008 ABI, so leave it as
+                            "auto".  */
+                         break;
+                       }
+#else
+                     fp_model = ARM_FLOAT_SOFT_VFP;
+#endif
+                   }
+                 break;
+
+               default:
+                 /* Leave it as "auto".  */
+                 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
+                 break;
+               }
+
+#ifdef HAVE_ELF
+             /* Detect M-profile programs.  This only works if the
+                executable file includes build attributes; GCC does
+                copy them to the executable, but e.g. RealView does
+                not.  */
+             attr_arch = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
+                                                   Tag_CPU_arch);
+             attr_profile = bfd_elf_get_obj_attr_int (info.abfd,
+                                                      OBJ_ATTR_PROC,
+                                                      Tag_CPU_arch_profile);
+             /* GCC specifies the profile for v6-M; RealView only
+                specifies the profile for architectures starting with
+                V7 (as opposed to architectures with a tag
+                numerically greater than TAG_CPU_ARCH_V7).  */
+             if (!tdesc_has_registers (tdesc)
+                 && (attr_arch == TAG_CPU_ARCH_V6_M
+                     || attr_arch == TAG_CPU_ARCH_V6S_M
+                     || attr_profile == 'M'))
+               is_m = 1;
+#endif
+           }
+
+         if (fp_model == ARM_FLOAT_AUTO)
+           {
+             int e_flags = elf_elfheader (info.abfd)->e_flags;
+
+             switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
+               {
+               case 0:
+                 /* Leave it as "auto".  Strictly speaking this case
+                    means FPA, but almost nobody uses that now, and
+                    many toolchains fail to set the appropriate bits
+                    for the floating-point model they use.  */
+                 break;
+               case EF_ARM_SOFT_FLOAT:
+                 fp_model = ARM_FLOAT_SOFT_FPA;
+                 break;
+               case EF_ARM_VFP_FLOAT:
+                 fp_model = ARM_FLOAT_VFP;
+                 break;
+               case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
+                 fp_model = ARM_FLOAT_SOFT_VFP;
+                 break;
+               }
+           }
+
+         if (e_flags & EF_ARM_BE8)
+           info.byte_order_for_code = BFD_ENDIAN_LITTLE;
+
+         break;
+
+       default:
+         /* Leave it as "auto".  */
+         break;
+       }
+    }
+
+  /* Check any target description for validity.  */
+  if (tdesc_has_registers (tdesc))
+    {
+      /* For most registers we require GDB's default names; but also allow
+        the numeric names for sp / lr / pc, as a convenience.  */
+      static const char *const arm_sp_names[] = { "r13", "sp", NULL };
+      static const char *const arm_lr_names[] = { "r14", "lr", NULL };
+      static const char *const arm_pc_names[] = { "r15", "pc", NULL };
+
+      const struct tdesc_feature *feature;
+      int valid_p;
+
+      feature = tdesc_find_feature (tdesc,
+                                   "org.gnu.gdb.arm.core");
+      if (feature == NULL)
+       {
+         feature = tdesc_find_feature (tdesc,
+                                       "org.gnu.gdb.arm.m-profile");
+         if (feature == NULL)
+           return NULL;
+         else
+           is_m = 1;
+       }
+
+      tdesc_data = tdesc_data_alloc ();
+
+      valid_p = 1;
+      for (i = 0; i < ARM_SP_REGNUM; i++)
+       valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
+                                           arm_register_names[i]);
+      valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
+                                                 ARM_SP_REGNUM,
+                                                 arm_sp_names);
+      valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
+                                                 ARM_LR_REGNUM,
+                                                 arm_lr_names);
+      valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
+                                                 ARM_PC_REGNUM,
+                                                 arm_pc_names);
+      if (is_m)
+       valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                           ARM_PS_REGNUM, "xpsr");
+      else
+       valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                           ARM_PS_REGNUM, "cpsr");
+
+      if (!valid_p)
+       {
+         tdesc_data_cleanup (tdesc_data);
+         return NULL;
+       }
+
+      feature = tdesc_find_feature (tdesc,
+                                   "org.gnu.gdb.arm.fpa");
+      if (feature != NULL)
+       {
+         valid_p = 1;
+         for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
+           valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
+                                               arm_register_names[i]);
+         if (!valid_p)
+           {
+             tdesc_data_cleanup (tdesc_data);
+             return NULL;
+           }
+       }
+      else
+       have_fpa_registers = 0;
+
+      feature = tdesc_find_feature (tdesc,
+                                   "org.gnu.gdb.xscale.iwmmxt");
+      if (feature != NULL)
+       {
+         static const char *const iwmmxt_names[] = {
+           "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
+           "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
+           "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
+           "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
+         };
+
+         valid_p = 1;
+         for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
+           valid_p
+             &= tdesc_numbered_register (feature, tdesc_data, i,
+                                         iwmmxt_names[i - ARM_WR0_REGNUM]);
+
+         /* Check for the control registers, but do not fail if they
+            are missing.  */
+         for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
+           tdesc_numbered_register (feature, tdesc_data, i,
+                                    iwmmxt_names[i - ARM_WR0_REGNUM]);
+
+         for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
+           valid_p
+             &= tdesc_numbered_register (feature, tdesc_data, i,
+                                         iwmmxt_names[i - ARM_WR0_REGNUM]);
+
+         if (!valid_p)
+           {
+             tdesc_data_cleanup (tdesc_data);
+             return NULL;
+           }
+       }
+
+      /* If we have a VFP unit, check whether the single precision registers
+        are present.  If not, then we will synthesize them as pseudo
+        registers.  */
+      feature = tdesc_find_feature (tdesc,
+                                   "org.gnu.gdb.arm.vfp");
+      if (feature != NULL)
+       {
+         static const char *const vfp_double_names[] = {
+           "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
+           "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
+           "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
+           "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
+         };
+
+         /* Require the double precision registers.  There must be either
+            16 or 32.  */
+         valid_p = 1;
+         for (i = 0; i < 32; i++)
+           {
+             valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                                 ARM_D0_REGNUM + i,
+                                                 vfp_double_names[i]);
+             if (!valid_p)
+               break;
+           }
+         if (!valid_p && i == 16)
+           valid_p = 1;
+
+         /* Also require FPSCR.  */
+         valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                             ARM_FPSCR_REGNUM, "fpscr");
+         if (!valid_p)
+           {
+             tdesc_data_cleanup (tdesc_data);
+             return NULL;
+           }
+
+         if (tdesc_unnumbered_register (feature, "s0") == 0)
+           have_vfp_pseudos = 1;
+
+         have_vfp_registers = 1;
+
+         /* If we have VFP, also check for NEON.  The architecture allows
+            NEON without VFP (integer vector operations only), but GDB
+            does not support that.  */
+         feature = tdesc_find_feature (tdesc,
+                                       "org.gnu.gdb.arm.neon");
+         if (feature != NULL)
+           {
+             /* NEON requires 32 double-precision registers.  */
+             if (i != 32)
+               {
+                 tdesc_data_cleanup (tdesc_data);
+                 return NULL;
+               }
+
+             /* If there are quad registers defined by the stub, use
+                their type; otherwise (normally) provide them with
+                the default type.  */
+             if (tdesc_unnumbered_register (feature, "q0") == 0)
+               have_neon_pseudos = 1;
+
+             have_neon = 1;
+           }
+       }
+    }
+
+  /* If there is already a candidate, use it.  */
+  for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
+       best_arch != NULL;
+       best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
+    {
+      if (arm_abi != ARM_ABI_AUTO
+         && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
+       continue;
+
+      if (fp_model != ARM_FLOAT_AUTO
+         && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
+       continue;
+
+      /* There are various other properties in tdep that we do not
+        need to check here: those derived from a target description,
+        since gdbarches with a different target description are
+        automatically disqualified.  */
+
+      /* Do check is_m, though, since it might come from the binary.  */
+      if (is_m != gdbarch_tdep (best_arch->gdbarch)->is_m)
+       continue;
+
+      /* Found a match.  */
+      break;
+    }
+
+  if (best_arch != NULL)
+    {
+      if (tdesc_data != NULL)
+       tdesc_data_cleanup (tdesc_data);
+      return best_arch->gdbarch;
+    }
+
+  tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
+  gdbarch = gdbarch_alloc (&info, tdep);
+
+  /* Record additional information about the architecture we are defining.
+     These are gdbarch discriminators, like the OSABI.  */
+  tdep->arm_abi = arm_abi;
+  tdep->fp_model = fp_model;
+  tdep->is_m = is_m;
+  tdep->have_fpa_registers = have_fpa_registers;
+  tdep->have_vfp_registers = have_vfp_registers;
+  tdep->have_vfp_pseudos = have_vfp_pseudos;
+  tdep->have_neon_pseudos = have_neon_pseudos;
+  tdep->have_neon = have_neon;
+
+  arm_register_g_packet_guesses (gdbarch);
+
+  /* Breakpoints.  */
+  switch (info.byte_order_for_code)
+    {
+    case BFD_ENDIAN_BIG:
+      tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
+      tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
+      tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
+      tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
+
+      break;
+
+    case BFD_ENDIAN_LITTLE:
+      tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
+      tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
+      tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
+      tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
+
+      break;
+
+    default:
+      internal_error (__FILE__, __LINE__,
+                     _("arm_gdbarch_init: bad byte order for float format"));
+    }
+
+  /* On ARM targets char defaults to unsigned.  */
+  set_gdbarch_char_signed (gdbarch, 0);
+
+  /* Note: for displaced stepping, this includes the breakpoint, and one word
+     of additional scratch space.  This setting isn't used for anything beside
+     displaced stepping at present.  */
+  set_gdbarch_max_insn_length (gdbarch, 4 * DISPLACED_MODIFIED_INSNS);
+
+  /* This should be low enough for everything.  */
+  tdep->lowest_pc = 0x20;
+  tdep->jb_pc = -1;    /* Longjump support not enabled by default.  */
+
+  /* The default, for both APCS and AAPCS, is to return small
+     structures in registers.  */
+  tdep->struct_return = reg_struct_return;
+
+  set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
+  set_gdbarch_frame_align (gdbarch, arm_frame_align);
+
+  set_gdbarch_write_pc (gdbarch, arm_write_pc);
+
+  /* Frame handling.  */
+  set_gdbarch_dummy_id (gdbarch, arm_dummy_id);
+  set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
+  set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
+
+  frame_base_set_default (gdbarch, &arm_normal_base);
+
+  /* Address manipulation.  */
+  set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
+  set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
+
+  /* Advance PC across function entry code.  */
+  set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
+
+  /* Detect whether PC is in function epilogue.  */
+  set_gdbarch_in_function_epilogue_p (gdbarch, arm_in_function_epilogue_p);
+
+  /* Skip trampolines.  */
+  set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
+
+  /* The stack grows downward.  */
+  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+
+  /* Breakpoint manipulation.  */
+  set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
+  set_gdbarch_remote_breakpoint_from_pc (gdbarch,
+                                        arm_remote_breakpoint_from_pc);
+
+  /* Information about registers, etc.  */
+  set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
+  set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
+  set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
+  set_gdbarch_register_type (gdbarch, arm_register_type);
+  set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p);
+
+  /* This "info float" is FPA-specific.  Use the generic version if we
+     do not have FPA.  */
+  if (gdbarch_tdep (gdbarch)->have_fpa_registers)
+    set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
+
+  /* Internal <-> external register number maps.  */
+  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
+  set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
+
+  set_gdbarch_register_name (gdbarch, arm_register_name);
+
+  /* Returning results.  */
+  set_gdbarch_return_value (gdbarch, arm_return_value);
+
+  /* Disassembly.  */
+  set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
+
+  /* Minsymbol frobbing.  */
+  set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
+  set_gdbarch_coff_make_msymbol_special (gdbarch,
+                                        arm_coff_make_msymbol_special);
+  set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol);
+
+  /* Thumb-2 IT block support.  */
+  set_gdbarch_adjust_breakpoint_address (gdbarch,
+                                        arm_adjust_breakpoint_address);
+
+  /* Virtual tables.  */
+  set_gdbarch_vbit_in_delta (gdbarch, 1);
+
+  /* Hook in the ABI-specific overrides, if they have been registered.  */
+  gdbarch_init_osabi (info, gdbarch);
+
+  dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg);
+
+  /* Add some default predicates.  */
+  frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind);
+  dwarf2_append_unwinders (gdbarch);
+  frame_unwind_append_unwinder (gdbarch, &arm_exidx_unwind);
+  frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind);
+
+  /* Now we have tuned the configuration, set a few final things,
+     based on what the OS ABI has told us.  */
+
+  /* If the ABI is not otherwise marked, assume the old GNU APCS.  EABI
+     binaries are always marked.  */
+  if (tdep->arm_abi == ARM_ABI_AUTO)
+    tdep->arm_abi = ARM_ABI_APCS;
+
+  /* Watchpoints are not steppable.  */
+  set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
+
+  /* We used to default to FPA for generic ARM, but almost nobody
+     uses that now, and we now provide a way for the user to force
+     the model.  So default to the most useful variant.  */
+  if (tdep->fp_model == ARM_FLOAT_AUTO)
+    tdep->fp_model = ARM_FLOAT_SOFT_FPA;
+
+  if (tdep->jb_pc >= 0)
+    set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
+
+  /* Floating point sizes and format.  */
+  set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
+  if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
+    {
+      set_gdbarch_double_format
+       (gdbarch, floatformats_ieee_double_littlebyte_bigword);
+      set_gdbarch_long_double_format
+       (gdbarch, floatformats_ieee_double_littlebyte_bigword);
+    }
+  else
+    {
+      set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
+      set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
+    }
+
+  if (have_vfp_pseudos)
+    {
+      /* NOTE: These are the only pseudo registers used by
+        the ARM target at the moment.  If more are added, a
+        little more care in numbering will be needed.  */
+
+      int num_pseudos = 32;
+      if (have_neon_pseudos)
+       num_pseudos += 16;
+      set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos);
+      set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read);
+      set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write);
+    }
+
+  if (tdesc_data)
+    {
+      set_tdesc_pseudo_register_name (gdbarch, arm_register_name);
+
+      tdesc_use_registers (gdbarch, tdesc, tdesc_data);
+
+      /* Override tdesc_register_type to adjust the types of VFP
+        registers for NEON.  */
+      set_gdbarch_register_type (gdbarch, arm_register_type);
+    }
+
+  /* Add standard register aliases.  We add aliases even for those
+     nanes which are used by the current architecture - it's simpler,
+     and does no harm, since nothing ever lists user registers.  */
+  for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
+    user_reg_add (gdbarch, arm_register_aliases[i].name,
+                 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
+
+  return gdbarch;
+}
+
+static void
+arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  if (tdep == NULL)
+    return;
+
+  fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
+                     (unsigned long) tdep->lowest_pc);
+}
+
+extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
+
+void
+_initialize_arm_tdep (void)
+{
+  struct ui_file *stb;
+  long length;
+  struct cmd_list_element *new_set, *new_show;
+  const char *setname;
+  const char *setdesc;
+  const char *const *regnames;
+  int numregs, i, j;
+  static char *helptext;
+  char regdesc[1024], *rdptr = regdesc;
+  size_t rest = sizeof (regdesc);
+
+  gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
+
+  arm_objfile_data_key
+    = register_objfile_data_with_cleanup (NULL, arm_objfile_data_free);
+
+  /* Add ourselves to objfile event chain.  */
+  observer_attach_new_objfile (arm_exidx_new_objfile);
+  arm_exidx_data_key
+    = register_objfile_data_with_cleanup (NULL, arm_exidx_data_free);
+
+  /* Register an ELF OS ABI sniffer for ARM binaries.  */
+  gdbarch_register_osabi_sniffer (bfd_arch_arm,
+                                 bfd_target_elf_flavour,
+                                 arm_elf_osabi_sniffer);
+
+  /* Initialize the standard target descriptions.  */
+  initialize_tdesc_arm_with_m ();
+  initialize_tdesc_arm_with_m_fpa_layout ();
+  initialize_tdesc_arm_with_iwmmxt ();
+  initialize_tdesc_arm_with_vfpv2 ();
+  initialize_tdesc_arm_with_vfpv3 ();
+  initialize_tdesc_arm_with_neon ();
+
+  /* Get the number of possible sets of register names defined in opcodes.  */
+  num_disassembly_options = get_arm_regname_num_options ();
+
+  /* Add root prefix command for all "set arm"/"show arm" commands.  */
+  add_prefix_cmd ("arm", no_class, set_arm_command,
+                 _("Various ARM-specific commands."),
+                 &setarmcmdlist, "set arm ", 0, &setlist);
+
+  add_prefix_cmd ("arm", no_class, show_arm_command,
+                 _("Various ARM-specific commands."),
+                 &showarmcmdlist, "show arm ", 0, &showlist);
+
+  /* Sync the opcode insn printer with our register viewer.  */
+  parse_arm_disassembler_option ("reg-names-std");
+
+  /* Initialize the array that will be passed to
+     add_setshow_enum_cmd().  */
+  valid_disassembly_styles
+    = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
+  for (i = 0; i < num_disassembly_options; i++)
+    {
+      numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
+      valid_disassembly_styles[i] = setname;
+      length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
+      rdptr += length;
+      rest -= length;
+      /* When we find the default names, tell the disassembler to use
+        them.  */
+      if (!strcmp (setname, "std"))
+       {
+          disassembly_style = setname;
+          set_arm_regname_option (i);
+       }
+    }
+  /* Mark the end of valid options.  */
+  valid_disassembly_styles[num_disassembly_options] = NULL;
+
+  /* Create the help text.  */
+  stb = mem_fileopen ();
+  fprintf_unfiltered (stb, "%s%s%s",
+                     _("The valid values are:\n"),
+                     regdesc,
+                     _("The default is \"std\"."));
+  helptext = ui_file_xstrdup (stb, NULL);
+  ui_file_delete (stb);
+
+  add_setshow_enum_cmd("disassembler", no_class,
+                      valid_disassembly_styles, &disassembly_style,
+                      _("Set the disassembly style."),
+                      _("Show the disassembly style."),
+                      helptext,
+                      set_disassembly_style_sfunc,
+                      NULL, /* FIXME: i18n: The disassembly style is
+                               \"%s\".  */
+                      &setarmcmdlist, &showarmcmdlist);
+
+  add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
+                          _("Set usage of ARM 32-bit mode."),
+                          _("Show usage of ARM 32-bit mode."),
+                          _("When off, a 26-bit PC will be used."),
+                          NULL,
+                          NULL, /* FIXME: i18n: Usage of ARM 32-bit
+                                   mode is %s.  */
+                          &setarmcmdlist, &showarmcmdlist);
+
+  /* Add a command to allow the user to force the FPU model.  */
+  add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
+                       _("Set the floating point type."),
+                       _("Show the floating point type."),
+                       _("auto - Determine the FP typefrom the OS-ABI.\n\
+softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
+fpa - FPA co-processor (GCC compiled).\n\
+softvfp - Software FP with pure-endian doubles.\n\
+vfp - VFP co-processor."),
+                       set_fp_model_sfunc, show_fp_model,
+                       &setarmcmdlist, &showarmcmdlist);
+
+  /* Add a command to allow the user to force the ABI.  */
+  add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
+                       _("Set the ABI."),
+                       _("Show the ABI."),
+                       NULL, arm_set_abi, arm_show_abi,
+                       &setarmcmdlist, &showarmcmdlist);
+
+  /* Add two commands to allow the user to force the assumed
+     execution mode.  */
+  add_setshow_enum_cmd ("fallback-mode", class_support,
+                       arm_mode_strings, &arm_fallback_mode_string,
+                       _("Set the mode assumed when symbols are unavailable."),
+                       _("Show the mode assumed when symbols are unavailable."),
+                       NULL, NULL, arm_show_fallback_mode,
+                       &setarmcmdlist, &showarmcmdlist);
+  add_setshow_enum_cmd ("force-mode", class_support,
+                       arm_mode_strings, &arm_force_mode_string,
+                       _("Set the mode assumed even when symbols are available."),
+                       _("Show the mode assumed even when symbols are available."),
+                       NULL, NULL, arm_show_force_mode,
+                       &setarmcmdlist, &showarmcmdlist);
+
+  /* Debugging flag.  */
+  add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
+                          _("Set ARM debugging."),
+                          _("Show ARM debugging."),
+                          _("When on, arm-specific debugging is enabled."),
+                          NULL,
+                          NULL, /* FIXME: i18n: "ARM debugging is %s.  */
+                          &setdebuglist, &showdebuglist);
+}
+
+/* ARM-reversible process record data structures.  */
+
+#define ARM_INSN_SIZE_BYTES 4    
+#define THUMB_INSN_SIZE_BYTES 2
+#define THUMB2_INSN_SIZE_BYTES 4
+
+
+#define INSN_S_L_BIT_NUM 20
+
+#define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
+        do  \
+          { \
+            unsigned int reg_len = LENGTH; \
+            if (reg_len) \
+              { \
+                REGS = XNEWVEC (uint32_t, reg_len); \
+                memcpy(&REGS[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
+              } \
+          } \
+        while (0)
+
+#define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
+        do  \
+          { \
+            unsigned int mem_len = LENGTH; \
+            if (mem_len) \
+            { \
+              MEMS =  XNEWVEC (struct arm_mem_r, mem_len);  \
+              memcpy(&MEMS->len, &RECORD_BUF[0], \
+                     sizeof(struct arm_mem_r) * LENGTH); \
+            } \
+          } \
+          while (0)
+
+/* Checks whether insn is already recorded or yet to be decoded. (boolean expression).  */
+#define INSN_RECORDED(ARM_RECORD) \
+        (0 != (ARM_RECORD)->reg_rec_count || 0 != (ARM_RECORD)->mem_rec_count)
+
+/* ARM memory record structure.  */
+struct arm_mem_r
+{
+  uint32_t len;    /* Record length.  */
+  CORE_ADDR addr;  /* Memory address.  */
+};
+
+/* ARM instruction record contains opcode of current insn
+   and execution state (before entry to decode_insn()),
+   contains list of to-be-modified registers and
+   memory blocks (on return from decode_insn()).  */
+
+typedef struct insn_decode_record_t
+{
+  struct gdbarch *gdbarch;
+  struct regcache *regcache;
+  CORE_ADDR this_addr;          /* Address of the insn being decoded.  */
+  uint32_t arm_insn;            /* Should accommodate thumb.  */
+  uint32_t cond;                /* Condition code.  */
+  uint32_t opcode;              /* Insn opcode.  */
+  uint32_t decode;              /* Insn decode bits.  */
+  uint32_t mem_rec_count;       /* No of mem records.  */
+  uint32_t reg_rec_count;       /* No of reg records.  */
+  uint32_t *arm_regs;           /* Registers to be saved for this record.  */
+  struct arm_mem_r *arm_mems;   /* Memory to be saved for this record.  */
+} insn_decode_record;
+
 
-  return 0;                    /* not a stub */
-}
+/* Checks ARM SBZ and SBO mandatory fields.  */
 
-static void
-set_arm_command (char *args, int from_tty)
+static int
+sbo_sbz (uint32_t insn, uint32_t bit_num, uint32_t len, uint32_t sbo)
 {
-  printf_unfiltered (_("\
-\"set arm\" must be followed by an apporpriate subcommand.\n"));
-  help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
+  uint32_t ones = bits (insn, bit_num - 1, (bit_num -1) + (len - 1));
+
+  if (!len)
+    return 1;
+
+  if (!sbo)
+    ones = ~ones;
+
+  while (ones)
+    {
+      if (!(ones & sbo))
+        {
+          return 0;
+        }
+      ones = ones >> 1;
+    }
+  return 1;
 }
 
-static void
-show_arm_command (char *args, int from_tty)
+typedef enum
 {
-  cmd_show_list (showarmcmdlist, from_tty, "");
-}
+  ARM_RECORD_STRH=1,
+  ARM_RECORD_STRD
+} arm_record_strx_t;
 
-static void
-arm_update_current_architecture (void)
+typedef enum
 {
-  struct gdbarch_info info;
+  ARM_RECORD=1,
+  THUMB_RECORD,
+  THUMB2_RECORD
+} record_type_t;
 
-  /* If the current architecture is not ARM, we have nothing to do.  */
-  if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_arm)
-    return;
 
-  /* Update the architecture.  */
-  gdbarch_info_init (&info);
+static int
+arm_record_strx (insn_decode_record *arm_insn_r, uint32_t *record_buf, 
+                 uint32_t *record_buf_mem, arm_record_strx_t str_type)
+{
 
-  if (!gdbarch_update_p (info))
-    internal_error (__FILE__, __LINE__, "could not update architecture");
-}
+  struct regcache *reg_cache = arm_insn_r->regcache;
+  ULONGEST u_regval[2]= {0};
 
-static void
-set_fp_model_sfunc (char *args, int from_tty,
-                   struct cmd_list_element *c)
-{
-  enum arm_float_model fp_model;
+  uint32_t reg_src1 = 0, reg_src2 = 0;
+  uint32_t immed_high = 0, immed_low = 0,offset_8 = 0, tgt_mem_addr = 0;
+  uint32_t opcode1 = 0;
 
-  for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
-    if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
-      {
-       arm_fp_model = fp_model;
-       break;
-      }
+  arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
+  arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
+  opcode1 = bits (arm_insn_r->arm_insn, 20, 24);
 
-  if (fp_model == ARM_FLOAT_LAST)
-    internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
-                   current_fp_model);
 
-  arm_update_current_architecture ();
+  if (14 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
+    {
+      /* 1) Handle misc store, immediate offset.  */
+      immed_low = bits (arm_insn_r->arm_insn, 0, 3);
+      immed_high = bits (arm_insn_r->arm_insn, 8, 11);
+      reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
+      regcache_raw_read_unsigned (reg_cache, reg_src1,
+                                  &u_regval[0]);
+      if (ARM_PC_REGNUM == reg_src1)
+        {
+          /* If R15 was used as Rn, hence current PC+8.  */
+          u_regval[0] = u_regval[0] + 8;
+        }
+      offset_8 = (immed_high << 4) | immed_low;
+      /* Calculate target store address.  */
+      if (14 == arm_insn_r->opcode)
+        {
+          tgt_mem_addr = u_regval[0] + offset_8;
+        }
+      else
+        {
+          tgt_mem_addr = u_regval[0] - offset_8;
+        }
+      if (ARM_RECORD_STRH == str_type)
+        {
+          record_buf_mem[0] = 2;
+          record_buf_mem[1] = tgt_mem_addr;
+          arm_insn_r->mem_rec_count = 1;
+        }
+      else if (ARM_RECORD_STRD == str_type)
+        {
+          record_buf_mem[0] = 4;
+          record_buf_mem[1] = tgt_mem_addr;
+          record_buf_mem[2] = 4;
+          record_buf_mem[3] = tgt_mem_addr + 4;
+          arm_insn_r->mem_rec_count = 2;
+        }
+    }
+  else if (12 == arm_insn_r->opcode || 8 == arm_insn_r->opcode)
+    {
+      /* 2) Store, register offset.  */
+      /* Get Rm.  */
+      reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
+      /* Get Rn.  */
+      reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
+      regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
+      regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
+      if (15 == reg_src2)
+        {
+          /* If R15 was used as Rn, hence current PC+8.  */
+          u_regval[0] = u_regval[0] + 8;
+        }
+      /* Calculate target store address, Rn +/- Rm, register offset.  */
+      if (12 == arm_insn_r->opcode)
+        {
+          tgt_mem_addr = u_regval[0] + u_regval[1];
+        }
+      else
+        {
+          tgt_mem_addr = u_regval[1] - u_regval[0];
+        }
+      if (ARM_RECORD_STRH == str_type)
+        {
+          record_buf_mem[0] = 2;
+          record_buf_mem[1] = tgt_mem_addr;
+          arm_insn_r->mem_rec_count = 1;
+        }
+      else if (ARM_RECORD_STRD == str_type)
+        {
+          record_buf_mem[0] = 4;
+          record_buf_mem[1] = tgt_mem_addr;
+          record_buf_mem[2] = 4;
+          record_buf_mem[3] = tgt_mem_addr + 4;
+          arm_insn_r->mem_rec_count = 2;
+        }
+    }
+  else if (11 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
+           || 2 == arm_insn_r->opcode  || 6 == arm_insn_r->opcode)
+    {
+      /* 3) Store, immediate pre-indexed.  */
+      /* 5) Store, immediate post-indexed.  */
+      immed_low = bits (arm_insn_r->arm_insn, 0, 3);
+      immed_high = bits (arm_insn_r->arm_insn, 8, 11);
+      offset_8 = (immed_high << 4) | immed_low;
+      reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
+      regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
+      /* Calculate target store address, Rn +/- Rm, register offset.  */
+      if (15 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
+        {
+          tgt_mem_addr = u_regval[0] + offset_8;
+        }
+      else
+        {
+          tgt_mem_addr = u_regval[0] - offset_8;
+        }
+      if (ARM_RECORD_STRH == str_type)
+        {
+          record_buf_mem[0] = 2;
+          record_buf_mem[1] = tgt_mem_addr;
+          arm_insn_r->mem_rec_count = 1;
+        }
+      else if (ARM_RECORD_STRD == str_type)
+        {
+          record_buf_mem[0] = 4;
+          record_buf_mem[1] = tgt_mem_addr;
+          record_buf_mem[2] = 4;
+          record_buf_mem[3] = tgt_mem_addr + 4;
+          arm_insn_r->mem_rec_count = 2;
+        }
+      /* Record Rn also as it changes.  */
+      *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
+      arm_insn_r->reg_rec_count = 1;
+    }
+  else if (9 == arm_insn_r->opcode || 13 == arm_insn_r->opcode
+           || 0 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
+    {
+      /* 4) Store, register pre-indexed.  */
+      /* 6) Store, register post -indexed.  */
+      reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
+      reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
+      regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
+      regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
+      /* Calculate target store address, Rn +/- Rm, register offset.  */
+      if (13 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
+        {
+          tgt_mem_addr = u_regval[0] + u_regval[1];
+        }
+      else
+        {
+          tgt_mem_addr = u_regval[1] - u_regval[0];
+        }
+      if (ARM_RECORD_STRH == str_type)
+        {
+          record_buf_mem[0] = 2;
+          record_buf_mem[1] = tgt_mem_addr;
+          arm_insn_r->mem_rec_count = 1;
+        }
+      else if (ARM_RECORD_STRD == str_type)
+        {
+          record_buf_mem[0] = 4;
+          record_buf_mem[1] = tgt_mem_addr;
+          record_buf_mem[2] = 4;
+          record_buf_mem[3] = tgt_mem_addr + 4;
+          arm_insn_r->mem_rec_count = 2;
+        }
+      /* Record Rn also as it changes.  */
+      *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
+      arm_insn_r->reg_rec_count = 1;
+    }
+  return 0;
 }
 
-static void
-show_fp_model (struct ui_file *file, int from_tty,
-              struct cmd_list_element *c, const char *value)
+/* Handling ARM extension space insns.  */
+
+static int
+arm_record_extension_space (insn_decode_record *arm_insn_r)
 {
-  struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
+  uint32_t ret = 0;  /* Return value: -1:record failure ;  0:success  */
+  uint32_t opcode1 = 0, opcode2 = 0, insn_op1 = 0;
+  uint32_t record_buf[8], record_buf_mem[8];
+  uint32_t reg_src1 = 0;
+  uint32_t immed_high = 0, immed_low = 0,offset_8 = 0, tgt_mem_addr = 0;
+  struct regcache *reg_cache = arm_insn_r->regcache;
+  ULONGEST u_regval = 0;
+
+  gdb_assert (!INSN_RECORDED(arm_insn_r));
+  /* Handle unconditional insn extension space.  */
+
+  opcode1 = bits (arm_insn_r->arm_insn, 20, 27);
+  opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
+  if (arm_insn_r->cond)
+    {
+      /* PLD has no affect on architectural state, it just affects
+         the caches.  */
+      if (5 == ((opcode1 & 0xE0) >> 5))
+        {
+          /* BLX(1) */
+          record_buf[0] = ARM_PS_REGNUM;
+          record_buf[1] = ARM_LR_REGNUM;
+          arm_insn_r->reg_rec_count = 2;
+        }
+      /* STC2, LDC2, MCR2, MRC2, CDP2: <TBD>, co-processor insn.  */
+    }
 
-  if (arm_fp_model == ARM_FLOAT_AUTO
-      && gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_arm)
-    fprintf_filtered (file, _("\
-The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
-                     fp_model_strings[tdep->fp_model]);
-  else
-    fprintf_filtered (file, _("\
-The current ARM floating point model is \"%s\".\n"),
-                     fp_model_strings[arm_fp_model]);
-}
 
-static void
-arm_set_abi (char *args, int from_tty,
-            struct cmd_list_element *c)
-{
-  enum arm_abi_kind arm_abi;
+  opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
+  if (3 == opcode1 && bit (arm_insn_r->arm_insn, 4))
+    {
+      ret = -1;
+      /* Undefined instruction on ARM V5; need to handle if later 
+         versions define it.  */
+    }
 
-  for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
-    if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
+  opcode1 = bits (arm_insn_r->arm_insn, 24, 27);
+  opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
+  insn_op1 = bits (arm_insn_r->arm_insn, 20, 23);
+
+  /* Handle arithmetic insn extension space.  */
+  if (!opcode1 && 9 == opcode2 && 1 != arm_insn_r->cond
+      && !INSN_RECORDED(arm_insn_r))
+    {
+      /* Handle MLA(S) and MUL(S).  */
+      if (0 <= insn_op1 && 3 >= insn_op1)
       {
-       arm_abi_global = arm_abi;
-       break;
+        record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
+        record_buf[1] = ARM_PS_REGNUM;
+        arm_insn_r->reg_rec_count = 2;
+      }
+      else if (4 <= insn_op1 && 15 >= insn_op1)
+      {
+        /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S).  */
+        record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
+        record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
+        record_buf[2] = ARM_PS_REGNUM;
+        arm_insn_r->reg_rec_count = 3;
       }
+    }
 
-  if (arm_abi == ARM_ABI_LAST)
-    internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
-                   arm_abi_string);
+  opcode1 = bits (arm_insn_r->arm_insn, 26, 27);
+  opcode2 = bits (arm_insn_r->arm_insn, 23, 24);
+  insn_op1 = bits (arm_insn_r->arm_insn, 21, 22);
 
-  arm_update_current_architecture ();
-}
+  /* Handle control insn extension space.  */
 
-static void
-arm_show_abi (struct ui_file *file, int from_tty,
-            struct cmd_list_element *c, const char *value)
-{
-  struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
+  if (!opcode1 && 2 == opcode2 && !bit (arm_insn_r->arm_insn, 20)
+      && 1 != arm_insn_r->cond && !INSN_RECORDED(arm_insn_r))
+    {
+      if (!bit (arm_insn_r->arm_insn,25))
+        {
+          if (!bits (arm_insn_r->arm_insn, 4, 7))
+            {
+              if ((0 == insn_op1) || (2 == insn_op1))
+                {
+                  /* MRS.  */
+                  record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
+                  arm_insn_r->reg_rec_count = 1;
+                }
+              else if (1 == insn_op1)
+                {
+                  /* CSPR is going to be changed.  */
+                  record_buf[0] = ARM_PS_REGNUM;
+                  arm_insn_r->reg_rec_count = 1;
+                }
+              else if (3 == insn_op1)
+                {
+                  /* SPSR is going to be changed.  */
+                  /* We need to get SPSR value, which is yet to be done.  */
+                  printf_unfiltered (_("Process record does not support "
+                                     "instruction  0x%0x at address %s.\n"),
+                                     arm_insn_r->arm_insn,
+                                     paddress (arm_insn_r->gdbarch, 
+                                     arm_insn_r->this_addr));
+                  return -1;
+                }
+            }
+          else if (1 == bits (arm_insn_r->arm_insn, 4, 7))
+            {
+              if (1 == insn_op1)
+                {
+                  /* BX.  */
+                  record_buf[0] = ARM_PS_REGNUM;
+                  arm_insn_r->reg_rec_count = 1;
+                }
+              else if (3 == insn_op1)
+                {
+                  /* CLZ.  */
+                  record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
+                  arm_insn_r->reg_rec_count = 1;
+                }
+            }
+          else if (3 == bits (arm_insn_r->arm_insn, 4, 7))
+            {
+              /* BLX.  */
+              record_buf[0] = ARM_PS_REGNUM;
+              record_buf[1] = ARM_LR_REGNUM;
+              arm_insn_r->reg_rec_count = 2;
+            }
+          else if (5 == bits (arm_insn_r->arm_insn, 4, 7))
+            {
+              /* QADD, QSUB, QDADD, QDSUB */
+              record_buf[0] = ARM_PS_REGNUM;
+              record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
+              arm_insn_r->reg_rec_count = 2;
+            }
+          else if (7 == bits (arm_insn_r->arm_insn, 4, 7))
+            {
+              /* BKPT.  */
+              record_buf[0] = ARM_PS_REGNUM;
+              record_buf[1] = ARM_LR_REGNUM;
+              arm_insn_r->reg_rec_count = 2;
+
+              /* Save SPSR also;how?  */
+              printf_unfiltered (_("Process record does not support "
+                                  "instruction 0x%0x at address %s.\n"),
+                                  arm_insn_r->arm_insn,
+                  paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr));
+              return -1;
+            }
+          else if(8 == bits (arm_insn_r->arm_insn, 4, 7) 
+                  || 10 == bits (arm_insn_r->arm_insn, 4, 7)
+                  || 12 == bits (arm_insn_r->arm_insn, 4, 7)
+                  || 14 == bits (arm_insn_r->arm_insn, 4, 7)
+                 )
+            {
+              if (0 == insn_op1 || 1 == insn_op1)
+                {
+                  /* SMLA<x><y>, SMLAW<y>, SMULW<y>.  */
+                  /* We dont do optimization for SMULW<y> where we
+                     need only Rd.  */
+                  record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
+                  record_buf[1] = ARM_PS_REGNUM;
+                  arm_insn_r->reg_rec_count = 2;
+                }
+              else if (2 == insn_op1)
+                {
+                  /* SMLAL<x><y>.  */
+                  record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
+                  record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
+                  arm_insn_r->reg_rec_count = 2;
+                }
+              else if (3 == insn_op1)
+                {
+                  /* SMUL<x><y>.  */
+                  record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
+                  arm_insn_r->reg_rec_count = 1;
+                }
+            }
+        }
+      else
+        {
+          /* MSR : immediate form.  */
+          if (1 == insn_op1)
+            {
+              /* CSPR is going to be changed.  */
+              record_buf[0] = ARM_PS_REGNUM;
+              arm_insn_r->reg_rec_count = 1;
+            }
+          else if (3 == insn_op1)
+            {
+              /* SPSR is going to be changed.  */
+              /* we need to get SPSR value, which is yet to be done  */
+              printf_unfiltered (_("Process record does not support "
+                                   "instruction 0x%0x at address %s.\n"),
+                                    arm_insn_r->arm_insn,
+                                    paddress (arm_insn_r->gdbarch, 
+                                    arm_insn_r->this_addr));
+              return -1;
+            }
+        }
+    }
 
-  if (arm_abi_global == ARM_ABI_AUTO
-      && gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_arm)
-    fprintf_filtered (file, _("\
-The current ARM ABI is \"auto\" (currently \"%s\").\n"),
-                     arm_abi_strings[tdep->arm_abi]);
-  else
-    fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
-                     arm_abi_string);
-}
+  opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
+  opcode2 = bits (arm_insn_r->arm_insn, 20, 24);
+  insn_op1 = bits (arm_insn_r->arm_insn, 5, 6);
 
-static void
-arm_show_fallback_mode (struct ui_file *file, int from_tty,
-                       struct cmd_list_element *c, const char *value)
-{
-  struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
+  /* Handle load/store insn extension space.  */
 
-  fprintf_filtered (file, _("\
-The current execution mode assumed (when symbols are unavailable) is \"%s\".\n"),
-                   arm_fallback_mode_string);
-}
+  if (!opcode1 && bit (arm_insn_r->arm_insn, 7) 
+      && bit (arm_insn_r->arm_insn, 4) && 1 != arm_insn_r->cond
+      && !INSN_RECORDED(arm_insn_r))
+    {
+      /* SWP/SWPB.  */
+      if (0 == insn_op1)
+        {
+          /* These insn, changes register and memory as well.  */
+          /* SWP or SWPB insn.  */
+          /* Get memory address given by Rn.  */
+          reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
+          regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
+          /* SWP insn ?, swaps word.  */
+          if (8 == arm_insn_r->opcode)
+            {
+              record_buf_mem[0] = 4;
+            }
+          else
+            {
+              /* SWPB insn, swaps only byte.  */
+              record_buf_mem[0] = 1;
+            }
+          record_buf_mem[1] = u_regval;
+          arm_insn_r->mem_rec_count = 1;
+          record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
+          arm_insn_r->reg_rec_count = 1;
+        }
+      else if (1 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
+        {
+          /* STRH.  */
+          arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
+                          ARM_RECORD_STRH);
+        }
+      else if (2 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
+        {
+          /* LDRD.  */
+          record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
+          record_buf[1] = record_buf[0] + 1;
+          arm_insn_r->reg_rec_count = 2;
+        }
+      else if (3 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
+        {
+          /* STRD.  */
+          arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
+                        ARM_RECORD_STRD);
+        }
+      else if (bit (arm_insn_r->arm_insn, 20) && insn_op1 <= 3)
+        {
+          /* LDRH, LDRSB, LDRSH.  */
+          record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
+          arm_insn_r->reg_rec_count = 1;
+        }
 
-static void
-arm_show_force_mode (struct ui_file *file, int from_tty,
-                    struct cmd_list_element *c, const char *value)
-{
-  struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
+    }
 
-  fprintf_filtered (file, _("\
-The current execution mode assumed (even when symbols are available) is \"%s\".\n"),
-                   arm_force_mode_string);
-}
+  opcode1 = bits (arm_insn_r->arm_insn, 23, 27);
+  if (24 == opcode1 && bit (arm_insn_r->arm_insn, 21)
+      && !INSN_RECORDED(arm_insn_r))
+    {
+      ret = -1;
+      /* Handle coprocessor insn extension space.  */
+    }
 
-/* If the user changes the register disassembly style used for info
-   register and other commands, we have to also switch the style used
-   in opcodes for disassembly output.  This function is run in the "set
-   arm disassembly" command, and does that.  */
+  /* To be done for ARMv5 and later; as of now we return -1.  */
+  if (-1 == ret)
+    printf_unfiltered (_("Process record does not support instruction x%0x "
+                         "at address %s.\n"),arm_insn_r->arm_insn,
+                         paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr));
 
-static void
-set_disassembly_style_sfunc (char *args, int from_tty,
-                             struct cmd_list_element *c)
-{
-  set_disassembly_style ();
-}
-\f
-/* Return the ARM register name corresponding to register I.  */
-static const char *
-arm_register_name (struct gdbarch *gdbarch, int i)
-{
-  if (i >= ARRAY_SIZE (arm_register_names))
-    /* These registers are only supported on targets which supply
-       an XML description.  */
-    return "";
 
-  return arm_register_names[i];
+  REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
+  MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
+
+  return ret;
 }
 
-static void
-set_disassembly_style (void)
-{
-  int current;
+/* Handling opcode 000 insns.  */
 
-  /* Find the style that the user wants.  */
-  for (current = 0; current < num_disassembly_options; current++)
-    if (disassembly_style == valid_disassembly_styles[current])
-      break;
-  gdb_assert (current < num_disassembly_options);
+static int
+arm_record_data_proc_misc_ld_str (insn_decode_record *arm_insn_r)
+{
+  struct regcache *reg_cache = arm_insn_r->regcache;
+  uint32_t record_buf[8], record_buf_mem[8];
+  ULONGEST u_regval[2] = {0};
+
+  uint32_t reg_src1 = 0, reg_src2 = 0, reg_dest = 0;
+  uint32_t immed_high = 0, immed_low = 0, offset_8 = 0, tgt_mem_addr = 0;
+  uint32_t opcode1 = 0;
+
+  arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
+  arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
+  opcode1 = bits (arm_insn_r->arm_insn, 20, 24);
+
+  /* Data processing insn /multiply insn.  */
+  if (9 == arm_insn_r->decode
+      && ((4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
+      ||  (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)))
+    {
+      /* Handle multiply instructions.  */
+      /* MLA, MUL, SMLAL, SMULL, UMLAL, UMULL.  */
+        if (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)
+          {
+            /* Handle MLA and MUL.  */
+            record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
+            record_buf[1] = ARM_PS_REGNUM;
+            arm_insn_r->reg_rec_count = 2;
+          }
+        else if (4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
+          {
+            /* Handle SMLAL, SMULL, UMLAL, UMULL.  */
+            record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
+            record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
+            record_buf[2] = ARM_PS_REGNUM;
+            arm_insn_r->reg_rec_count = 3;
+          }
+    }
+  else if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
+           && (11 == arm_insn_r->decode || 13 == arm_insn_r->decode))
+    {
+      /* Handle misc load insns, as 20th bit  (L = 1).  */
+      /* LDR insn has a capability to do branching, if
+         MOV LR, PC is precceded by LDR insn having Rn as R15
+         in that case, it emulates branch and link insn, and hence we 
+         need to save CSPR and PC as well. I am not sure this is right
+         place; as opcode = 010 LDR insn make this happen, if R15 was
+         used.  */
+      reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
+      if (15 != reg_dest)
+        {
+          record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
+          arm_insn_r->reg_rec_count = 1;
+        }
+      else
+        {
+          record_buf[0] = reg_dest;
+          record_buf[1] = ARM_PS_REGNUM;
+          arm_insn_r->reg_rec_count = 2;
+        }
+    }
+  else if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
+           && sbo_sbz (arm_insn_r->arm_insn, 5, 12, 0)
+           && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
+           && 2 == bits (arm_insn_r->arm_insn, 20, 21))
+    {
+      /* Handle MSR insn.  */
+      if (9 == arm_insn_r->opcode)
+        {
+          /* CSPR is going to be changed.  */
+          record_buf[0] = ARM_PS_REGNUM;
+          arm_insn_r->reg_rec_count = 1;
+        }
+      else
+        {
+          /* SPSR is going to be changed.  */
+          /* How to read SPSR value?  */
+          printf_unfiltered (_("Process record does not support instruction "
+                            "0x%0x at address %s.\n"),
+                            arm_insn_r->arm_insn,
+                        paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr));
+          return -1;
+        }
+    }
+  else if (9 == arm_insn_r->decode
+           && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
+           && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
+    {
+      /* Handling SWP, SWPB.  */
+      /* These insn, changes register and memory as well.  */
+      /* SWP or SWPB insn.  */
+
+      reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
+      regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
+      /* SWP insn ?, swaps word.  */
+      if (8 == arm_insn_r->opcode)
+        {
+          record_buf_mem[0] = 4;
+        }
+        else
+        {
+          /* SWPB insn, swaps only byte.  */
+          record_buf_mem[0] = 1;
+        }
+      record_buf_mem[1] = u_regval[0];
+      arm_insn_r->mem_rec_count = 1;
+      record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
+      arm_insn_r->reg_rec_count = 1;
+    }
+  else if (3 == arm_insn_r->decode && 0x12 == opcode1
+           && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
+    {
+      /* Handle BLX, branch and link/exchange.  */
+      if (9 == arm_insn_r->opcode)
+      {
+        /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm,
+           and R14 stores the return address.  */
+        record_buf[0] = ARM_PS_REGNUM;
+        record_buf[1] = ARM_LR_REGNUM;
+        arm_insn_r->reg_rec_count = 2;
+      }
+    }
+  else if (7 == arm_insn_r->decode && 0x12 == opcode1)
+    {
+      /* Handle enhanced software breakpoint insn, BKPT.  */
+      /* CPSR is changed to be executed in ARM state,  disabling normal
+         interrupts, entering abort mode.  */
+      /* According to high vector configuration PC is set.  */
+      /* user hit breakpoint and type reverse, in
+         that case, we need to go back with previous CPSR and
+         Program Counter.  */
+      record_buf[0] = ARM_PS_REGNUM;
+      record_buf[1] = ARM_LR_REGNUM;
+      arm_insn_r->reg_rec_count = 2;
+
+      /* Save SPSR also; how?  */
+      printf_unfiltered (_("Process record does not support instruction "
+                           "0x%0x at address %s.\n"),arm_insn_r->arm_insn,
+                           paddress (arm_insn_r->gdbarch, 
+                           arm_insn_r->this_addr));
+      return -1;
+    }
+  else if (11 == arm_insn_r->decode
+           && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
+  {
+    /* Handle enhanced store insns and DSP insns (e.g. LDRD).  */
+
+    /* Handle str(x) insn */
+    arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
+                    ARM_RECORD_STRH);
+  }
+  else if (1 == arm_insn_r->decode && 0x12 == opcode1
+           && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
+    {
+      /* Handle BX, branch and link/exchange.  */
+      /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm.  */
+      record_buf[0] = ARM_PS_REGNUM;
+      arm_insn_r->reg_rec_count = 1;
+    }
+  else if (1 == arm_insn_r->decode && 0x16 == opcode1
+           && sbo_sbz (arm_insn_r->arm_insn, 9, 4, 1)
+           && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1))
+    {
+      /* Count leading zeros: CLZ.  */
+      record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
+      arm_insn_r->reg_rec_count = 1;
+    }
+  else if (!bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
+           && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
+           && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1)
+           && sbo_sbz (arm_insn_r->arm_insn, 1, 12, 0)
+          )
+    {
+      /* Handle MRS insn.  */
+      record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
+      arm_insn_r->reg_rec_count = 1;
+    }
+  else if (arm_insn_r->opcode <= 15)
+    {
+      /* Normal data processing insns.  */
+      /* Out of 11 shifter operands mode, all the insn modifies destination
+         register, which is specified by 13-16 decode.  */
+      record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
+      record_buf[1] = ARM_PS_REGNUM;
+      arm_insn_r->reg_rec_count = 2;
+    }
+  else
+    {
+      return -1;
+    }
 
-  /* Synchronize the disassembler.  */
-  set_arm_regname_option (current);
+  REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
+  MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
+  return 0;
 }
 
-/* Test whether the coff symbol specific value corresponds to a Thumb
-   function.  */
+/* Handling opcode 001 insns.  */
 
 static int
-coff_sym_is_thumb (int val)
+arm_record_data_proc_imm (insn_decode_record *arm_insn_r)
 {
-  return (val == C_THUMBEXT ||
-         val == C_THUMBSTAT ||
-         val == C_THUMBEXTFUNC ||
-         val == C_THUMBSTATFUNC ||
-         val == C_THUMBLABEL);
-}
+  uint32_t record_buf[8], record_buf_mem[8];
 
-/* arm_coff_make_msymbol_special()
-   arm_elf_make_msymbol_special()
-   
-   These functions test whether the COFF or ELF symbol corresponds to
-   an address in thumb code, and set a "special" bit in a minimal
-   symbol to indicate that it does.  */
-   
-static void
-arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
-{
-  /* Thumb symbols are of type STT_LOPROC, (synonymous with
-     STT_ARM_TFUNC).  */
-  if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
-      == STT_LOPROC)
-    MSYMBOL_SET_SPECIAL (msym);
-}
+  arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
+  arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
 
-static void
-arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
-{
-  if (coff_sym_is_thumb (val))
-    MSYMBOL_SET_SPECIAL (msym);
+  if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
+      && 2 == bits (arm_insn_r->arm_insn, 20, 21)
+      && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
+     )
+    {
+      /* Handle MSR insn.  */
+      if (9 == arm_insn_r->opcode)
+        {
+          /* CSPR is going to be changed.  */
+          record_buf[0] = ARM_PS_REGNUM;
+          arm_insn_r->reg_rec_count = 1;
+        }
+      else
+        {
+          /* SPSR is going to be changed.  */
+        }
+    }
+  else if (arm_insn_r->opcode <= 15)
+    {
+      /* Normal data processing insns.  */
+      /* Out of 11 shifter operands mode, all the insn modifies destination
+         register, which is specified by 13-16 decode.  */
+      record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
+      record_buf[1] = ARM_PS_REGNUM;
+      arm_insn_r->reg_rec_count = 2;
+    }
+  else
+    {
+      return -1;
+    }
+
+  REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
+  MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
+  return 0;
 }
 
-static void
-arm_objfile_data_cleanup (struct objfile *objfile, void *arg)
+/* Handling opcode 010 insns.  */
+
+static int
+arm_record_ld_st_imm_offset (insn_decode_record *arm_insn_r)
 {
-  struct arm_per_objfile *data = arg;
-  unsigned int i;
+  struct regcache *reg_cache = arm_insn_r->regcache;
 
-  for (i = 0; i < objfile->obfd->section_count; i++)
-    VEC_free (arm_mapping_symbol_s, data->section_maps[i]);
-}
+  uint32_t reg_src1 = 0 , reg_dest = 0;
+  uint32_t offset_12 = 0, tgt_mem_addr = 0;
+  uint32_t record_buf[8], record_buf_mem[8];
 
-static void
-arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile,
-                          asymbol *sym)
-{
-  const char *name = bfd_asymbol_name (sym);
-  struct arm_per_objfile *data;
-  VEC(arm_mapping_symbol_s) **map_p;
-  struct arm_mapping_symbol new_map_sym;
+  ULONGEST u_regval = 0;
 
-  gdb_assert (name[0] == '$');
-  if (name[1] != 'a' && name[1] != 't' && name[1] != 'd')
-    return;
+  arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
+  arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
 
-  data = objfile_data (objfile, arm_objfile_data_key);
-  if (data == NULL)
+  if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
     {
-      data = OBSTACK_ZALLOC (&objfile->objfile_obstack,
-                            struct arm_per_objfile);
-      set_objfile_data (objfile, arm_objfile_data_key, data);
-      data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
-                                          objfile->obfd->section_count,
-                                          VEC(arm_mapping_symbol_s) *);
+      reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
+      /* LDR insn has a capability to do branching, if
+         MOV LR, PC is precedded by LDR insn having Rn as R15
+         in that case, it emulates branch and link insn, and hence we
+         need to save CSPR and PC as well.  */
+      if (ARM_PC_REGNUM != reg_dest)
+        {
+          record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
+          arm_insn_r->reg_rec_count = 1;
+        }
+      else
+        {
+          record_buf[0] = reg_dest;
+          record_buf[1] = ARM_PS_REGNUM;
+          arm_insn_r->reg_rec_count = 2;
+        }
     }
-  map_p = &data->section_maps[bfd_get_section (sym)->index];
-
-  new_map_sym.value = sym->value;
-  new_map_sym.type = name[1];
-
-  /* Assume that most mapping symbols appear in order of increasing
-     value.  If they were randomly distributed, it would be faster to
-     always push here and then sort at first use.  */
-  if (!VEC_empty (arm_mapping_symbol_s, *map_p))
+  else
     {
-      struct arm_mapping_symbol *prev_map_sym;
+      /* Store, immediate offset, immediate pre-indexed,
+         immediate post-indexed.  */
+      reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
+      offset_12 = bits (arm_insn_r->arm_insn, 0, 11);
+      regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
+      /* U == 1 */
+      if (bit (arm_insn_r->arm_insn, 23))
+        {
+          tgt_mem_addr = u_regval + offset_12;
+        }
+      else
+        {
+          tgt_mem_addr = u_regval - offset_12;
+        }
 
-      prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p);
-      if (prev_map_sym->value >= sym->value)
-       {
-         unsigned int idx;
-         idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym,
-                                arm_compare_mapping_symbols);
-         VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym);
-         return;
-       }
+      switch (arm_insn_r->opcode)
+        {
+          /* STR.  */
+          case 8:
+          case 12:
+          /* STR.  */
+          case 9:
+          case 13:
+          /* STRT.  */    
+          case 1:
+          case 5:
+          /* STR.  */    
+          case 4:
+          case 0:
+            record_buf_mem[0] = 4;
+          break;
+
+          /* STRB.  */
+          case 10:
+          case 14:
+          /* STRB.  */    
+          case 11:
+          case 15:
+          /* STRBT.  */    
+          case 3:
+          case 7:
+          /* STRB.  */    
+          case 2:
+          case 6:
+            record_buf_mem[0] = 1;
+          break;
+
+          default:
+            gdb_assert_not_reached ("no decoding pattern found");
+          break;
+        }
+      record_buf_mem[1] = tgt_mem_addr;
+      arm_insn_r->mem_rec_count = 1;
+
+      if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
+          || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
+          || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
+          || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
+          || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
+          || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
+         )
+        {
+          /* We are handling pre-indexed mode; post-indexed mode;
+             where Rn is going to be changed.  */
+          record_buf[0] = reg_src1;
+          arm_insn_r->reg_rec_count = 1;
+        }
     }
 
-  VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym);
+  REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
+  MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
+  return 0;
 }
 
-static void
-arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
+/* Handling opcode 011 insns.  */
+
+static int
+arm_record_ld_st_reg_offset (insn_decode_record *arm_insn_r)
 {
-  regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
+  struct regcache *reg_cache = arm_insn_r->regcache;
 
-  /* If necessary, set the T bit.  */
-  if (arm_apcs_32)
+  uint32_t shift_imm = 0;
+  uint32_t reg_src1 = 0, reg_src2 = 0, reg_dest = 0;
+  uint32_t offset_12 = 0, tgt_mem_addr = 0;
+  uint32_t record_buf[8], record_buf_mem[8];
+
+  LONGEST s_word;
+  ULONGEST u_regval[2];
+
+  arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
+  arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
+
+  /* Handle enhanced store insns and LDRD DSP insn,
+     order begins according to addressing modes for store insns
+     STRH insn.  */
+
+  /* LDR or STR?  */
+  if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
     {
-      ULONGEST val;
-      regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
-      if (arm_pc_is_thumb (pc))
-       regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, val | CPSR_T);
+      reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
+      /* LDR insn has a capability to do branching, if
+         MOV LR, PC is precedded by LDR insn having Rn as R15
+         in that case, it emulates branch and link insn, and hence we
+         need to save CSPR and PC as well.  */
+      if (15 != reg_dest)
+        {
+          record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
+          arm_insn_r->reg_rec_count = 1;
+        }
       else
-       regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
-                                       val & ~(ULONGEST) CPSR_T);
+        {
+          record_buf[0] = reg_dest;
+          record_buf[1] = ARM_PS_REGNUM;
+          arm_insn_r->reg_rec_count = 2;
+        }
+    }
+  else
+    {
+      if (! bits (arm_insn_r->arm_insn, 4, 11))
+        {
+          /* Store insn, register offset and register pre-indexed,
+             register post-indexed.  */
+          /* Get Rm.  */
+          reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
+          /* Get Rn.  */
+          reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
+          regcache_raw_read_unsigned (reg_cache, reg_src1
+                                      , &u_regval[0]);
+          regcache_raw_read_unsigned (reg_cache, reg_src2
+                                      , &u_regval[1]);
+          if (15 == reg_src2)
+            {
+              /* If R15 was used as Rn, hence current PC+8.  */
+              /* Pre-indexed mode doesnt reach here ; illegal insn.  */
+                u_regval[0] = u_regval[0] + 8;
+            }
+          /* Calculate target store address, Rn +/- Rm, register offset.  */
+          /* U == 1.  */
+          if (bit (arm_insn_r->arm_insn, 23))
+            {
+              tgt_mem_addr = u_regval[0] + u_regval[1];
+            }
+          else
+            {
+              tgt_mem_addr = u_regval[1] - u_regval[0];
+            }
+
+          switch (arm_insn_r->opcode)
+            {
+              /* STR.  */
+              case 8:
+              case 12:
+              /* STR.  */    
+              case 9:
+              case 13:
+              /* STRT.  */
+              case 1:
+              case 5:
+              /* STR.  */
+              case 0:
+              case 4:
+                record_buf_mem[0] = 4;
+              break;
+
+              /* STRB.  */
+              case 10:
+              case 14:
+              /* STRB.  */
+              case 11:
+              case 15:
+              /* STRBT.  */    
+              case 3:
+              case 7:
+              /* STRB.  */
+              case 2:
+              case 6:
+                record_buf_mem[0] = 1;
+              break;
+
+              default:
+                gdb_assert_not_reached ("no decoding pattern found");
+              break;
+            }
+          record_buf_mem[1] = tgt_mem_addr;
+          arm_insn_r->mem_rec_count = 1;
+
+          if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
+              || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
+              || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
+              || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
+              || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
+              || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
+             )
+            {
+              /* Rn is going to be changed in pre-indexed mode and
+                 post-indexed mode as well.  */
+              record_buf[0] = reg_src2;
+              arm_insn_r->reg_rec_count = 1;
+            }
+        }
+      else
+        {
+          /* Store insn, scaled register offset; scaled pre-indexed.  */
+          offset_12 = bits (arm_insn_r->arm_insn, 5, 6);
+          /* Get Rm.  */
+          reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
+          /* Get Rn.  */
+          reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
+          /* Get shift_imm.  */
+          shift_imm = bits (arm_insn_r->arm_insn, 7, 11);
+          regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
+          regcache_raw_read_signed (reg_cache, reg_src1, &s_word);
+          regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
+          /* Offset_12 used as shift.  */
+          switch (offset_12)
+            {
+              case 0:
+                /* Offset_12 used as index.  */
+                offset_12 = u_regval[0] << shift_imm;
+              break;
+
+              case 1:
+                offset_12 = (!shift_imm)?0:u_regval[0] >> shift_imm;
+              break;
+
+              case 2:
+                if (!shift_imm)
+                  {
+                    if (bit (u_regval[0], 31))
+                      {
+                        offset_12 = 0xFFFFFFFF;
+                      }
+                    else
+                      {
+                        offset_12 = 0;
+                      }
+                  }
+                else
+                  {
+                    /* This is arithmetic shift.  */
+                    offset_12 = s_word >> shift_imm;
+                  }
+                break;
+
+              case 3:
+                if (!shift_imm)
+                  {
+                    regcache_raw_read_unsigned (reg_cache, ARM_PS_REGNUM,
+                                                &u_regval[1]);
+                    /* Get C flag value and shift it by 31.  */
+                    offset_12 = (((bit (u_regval[1], 29)) << 31) \
+                                  | (u_regval[0]) >> 1);
+                  }
+                else
+                  {
+                    offset_12 = (u_regval[0] >> shift_imm) \
+                                | (u_regval[0] <<
+                                (sizeof(uint32_t) - shift_imm));
+                  }
+              break;
+
+              default:
+                gdb_assert_not_reached ("no decoding pattern found");
+              break;
+            }
+
+          regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
+          /* bit U set.  */
+          if (bit (arm_insn_r->arm_insn, 23))
+            {
+              tgt_mem_addr = u_regval[1] + offset_12;
+            }
+          else
+            {
+              tgt_mem_addr = u_regval[1] - offset_12;
+            }
+
+          switch (arm_insn_r->opcode)
+            {
+              /* STR.  */
+              case 8:
+              case 12:
+              /* STR.  */    
+              case 9:
+              case 13:
+              /* STRT.  */
+              case 1:
+              case 5:
+              /* STR.  */
+              case 0:
+              case 4:
+                record_buf_mem[0] = 4;
+              break;
+
+              /* STRB.  */
+              case 10:
+              case 14:
+              /* STRB.  */
+              case 11:
+              case 15:
+              /* STRBT.  */    
+              case 3:
+              case 7:
+              /* STRB.  */
+              case 2:
+              case 6:
+                record_buf_mem[0] = 1;
+              break;
+
+              default:
+                gdb_assert_not_reached ("no decoding pattern found");
+              break;
+            }
+          record_buf_mem[1] = tgt_mem_addr;
+          arm_insn_r->mem_rec_count = 1;
+
+          if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
+              || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
+              || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
+              || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
+              || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
+              || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
+             )
+            {
+              /* Rn is going to be changed in register scaled pre-indexed
+                 mode,and scaled post indexed mode.  */
+              record_buf[0] = reg_src2;
+              arm_insn_r->reg_rec_count = 1;
+            }
+        }
     }
-}
 
-static struct value *
-value_of_arm_user_reg (struct frame_info *frame, const void *baton)
-{
-  const int *reg_p = baton;
-  return value_of_register (*reg_p, frame);
+  REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
+  MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
+  return 0;
 }
-\f
-static enum gdb_osabi
-arm_elf_osabi_sniffer (bfd *abfd)
+
+/* Handling opcode 100 insns.  */
+
+static int
+arm_record_ld_st_multiple (insn_decode_record *arm_insn_r)
 {
-  unsigned int elfosabi;
-  enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
+  struct regcache *reg_cache = arm_insn_r->regcache;
 
-  elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
+  uint32_t register_list[16] = {0}, register_count = 0, register_bits = 0;
+  uint32_t reg_src1 = 0, addr_mode = 0, no_of_regs = 0;
+  uint32_t start_address = 0, index = 0;
+  uint32_t record_buf[24], record_buf_mem[48];
 
-  if (elfosabi == ELFOSABI_ARM)
-    /* GNU tools use this value.  Check note sections in this case,
-       as well.  */
-    bfd_map_over_sections (abfd,
-                          generic_elf_osabi_sniff_abi_tag_sections, 
-                          &osabi);
+  ULONGEST u_regval[2] = {0};
 
-  /* Anything else will be handled by the generic ELF sniffer.  */
-  return osabi;
-}
+  /* This mode is exclusively for load and store multiple.  */
+  /* Handle incremenrt after/before and decrment after.before mode;
+     Rn is changing depending on W bit, but as of now we store Rn too
+     without optimization.  */
 
-\f
-/* Initialize the current architecture based on INFO.  If possible,
-   re-use an architecture from ARCHES, which is a list of
-   architectures already created during this debugging session.
+  if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
+    {
+      /* LDM  (1,2,3) where LDM  (3) changes CPSR too.  */
 
-   Called e.g. at program startup, when reading a core file, and when
-   reading a binary file.  */
+      if (bit (arm_insn_r->arm_insn, 20) && !bit (arm_insn_r->arm_insn, 22))
+        {
+          register_bits = bits (arm_insn_r->arm_insn, 0, 15);
+          no_of_regs = 15;
+        }
+      else
+        {
+          register_bits = bits (arm_insn_r->arm_insn, 0, 14);
+          no_of_regs = 14;
+        }
+      /* Get Rn.  */
+      reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
+      while (register_bits)
+      {
+        if (register_bits & 0x00000001)
+          register_list[register_count++] = 1;
+        register_bits = register_bits >> 1;
+      }
 
-static struct gdbarch *
-arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
-{
-  struct gdbarch_tdep *tdep;
-  struct gdbarch *gdbarch;
-  struct gdbarch_list *best_arch;
-  enum arm_abi_kind arm_abi = arm_abi_global;
-  enum arm_float_model fp_model = arm_fp_model;
-  struct tdesc_arch_data *tdesc_data = NULL;
-  int i;
-  int have_fpa_registers = 1;
+        /* Extra space for Base Register and CPSR; wihtout optimization.  */
+        record_buf[register_count] = reg_src1;
+        record_buf[register_count + 1] = ARM_PS_REGNUM;
+        arm_insn_r->reg_rec_count = register_count + 2;
+
+        for (register_count = 0; register_count < no_of_regs; register_count++)
+          {
+            if  (register_list[register_count])
+              {
+                /* Register_count gives total no of registers
+                and dually working as reg number.  */
+                record_buf[index] = register_count;
+                index++;
+              }
+          }
 
-  /* Check any target description for validity.  */
-  if (tdesc_has_registers (info.target_desc))
+    }
+  else
     {
-      /* For most registers we require GDB's default names; but also allow
-        the numeric names for sp / lr / pc, as a convenience.  */
-      static const char *const arm_sp_names[] = { "r13", "sp", NULL };
-      static const char *const arm_lr_names[] = { "r14", "lr", NULL };
-      static const char *const arm_pc_names[] = { "r15", "pc", NULL };
+      /* It handles both STM(1) and STM(2).  */
+      addr_mode = bits (arm_insn_r->arm_insn, 23, 24);    
+
+      register_bits = bits (arm_insn_r->arm_insn, 0, 15);
+      /* Get Rn.  */
+      reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
+      regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
+      while (register_bits)
+        {
+          if (register_bits & 0x00000001)
+            register_count++;
+          register_bits = register_bits >> 1;
+        }
 
-      const struct tdesc_feature *feature;
-      int i, valid_p;
+      switch (addr_mode)
+        {
+          /* Decrement after.  */
+          case 0:                          
+            start_address = (u_regval[0]) - (register_count * 4) + 4;
+            arm_insn_r->mem_rec_count = register_count;
+            while (register_count)
+              {
+                record_buf_mem[(register_count * 2) - 1] = start_address;
+                record_buf_mem[(register_count * 2) - 2] = 4;
+                start_address = start_address + 4;
+                register_count--;
+              }
+          break;    
+
+          /* Increment after.  */
+          case 1:
+            start_address = u_regval[0];
+            arm_insn_r->mem_rec_count = register_count;
+            while (register_count)
+              {
+                record_buf_mem[(register_count * 2) - 1] = start_address;
+                record_buf_mem[(register_count * 2) - 2] = 4;
+                start_address = start_address + 4;
+                register_count--;
+              }
+          break;    
+
+          /* Decrement before.  */
+          case 2:
+
+            start_address = (u_regval[0]) - (register_count * 4);
+            arm_insn_r->mem_rec_count = register_count;
+            while (register_count)
+              {
+                record_buf_mem[(register_count * 2) - 1] = start_address;
+                record_buf_mem[(register_count * 2) - 2] = 4;
+                start_address = start_address + 4;
+                register_count--;
+              }
+          break;    
+
+          /* Increment before.  */
+          case 3:
+            start_address = u_regval[0] + 4;
+            arm_insn_r->mem_rec_count = register_count;
+            while (register_count)
+              {
+                record_buf_mem[(register_count * 2) - 1] = start_address;
+                record_buf_mem[(register_count * 2) - 2] = 4;
+                start_address = start_address + 4;
+                register_count--;
+              }
+          break;    
+
+          default:
+            gdb_assert_not_reached ("no decoding pattern found");
+          break;    
+        }
 
-      feature = tdesc_find_feature (info.target_desc,
-                                   "org.gnu.gdb.arm.core");
-      if (feature == NULL)
-       return NULL;
+      /* Base register also changes; based on condition and W bit.  */
+      /* We save it anyway without optimization.  */
+      record_buf[0] = reg_src1;
+      arm_insn_r->reg_rec_count = 1;
+    }
 
-      tdesc_data = tdesc_data_alloc ();
+  REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
+  MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
+  return 0;
+}
 
-      valid_p = 1;
-      for (i = 0; i < ARM_SP_REGNUM; i++)
-       valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
-                                           arm_register_names[i]);
-      valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
-                                                 ARM_SP_REGNUM,
-                                                 arm_sp_names);
-      valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
-                                                 ARM_LR_REGNUM,
-                                                 arm_lr_names);
-      valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
-                                                 ARM_PC_REGNUM,
-                                                 arm_pc_names);
-      valid_p &= tdesc_numbered_register (feature, tdesc_data,
-                                         ARM_PS_REGNUM, "cpsr");
+/* Handling opcode 101 insns.  */
 
-      if (!valid_p)
-       {
-         tdesc_data_cleanup (tdesc_data);
-         return NULL;
-       }
+static int
+arm_record_b_bl (insn_decode_record *arm_insn_r)
+{
+  uint32_t record_buf[8];
 
-      feature = tdesc_find_feature (info.target_desc,
-                                   "org.gnu.gdb.arm.fpa");
-      if (feature != NULL)
-       {
-         valid_p = 1;
-         for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
-           valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
-                                               arm_register_names[i]);
-         if (!valid_p)
-           {
-             tdesc_data_cleanup (tdesc_data);
-             return NULL;
-           }
-       }
-      else
-       have_fpa_registers = 0;
+  /* Handle B, BL, BLX(1) insns.  */
+  /* B simply branches so we do nothing here.  */
+  /* Note: BLX(1) doesnt fall here but instead it falls into
+     extension space.  */
+  if (bit (arm_insn_r->arm_insn, 24))
+  {
+    record_buf[0] = ARM_LR_REGNUM;
+    arm_insn_r->reg_rec_count = 1;
+  }
+
+  REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
+
+  return 0;
+}
+
+/* Handling opcode 110 insns.  */
+
+static int
+arm_record_coproc (insn_decode_record *arm_insn_r)
+{
+  printf_unfiltered (_("Process record does not support instruction "
+                    "0x%0x at address %s.\n"),arm_insn_r->arm_insn,
+                    paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr));
+
+  return -1;
+}
+
+/* Handling opcode 111 insns.  */
+
+static int
+arm_record_coproc_data_proc (insn_decode_record *arm_insn_r)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (arm_insn_r->gdbarch);
+  struct regcache *reg_cache = arm_insn_r->regcache;
+  uint32_t ret = 0; /* function return value: -1:record failure ;  0:success  */
+
+  /* Handle SWI insn; system call would be handled over here.  */
+
+  arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 24, 27);
+  if (15 == arm_insn_r->opcode)
+  {
+    /* Handle arm syscall insn.  */
+    if (tdep->arm_swi_record != NULL)
+      {
+        ret = tdep->arm_swi_record(reg_cache);
+      }
+    else
+      {
+        printf_unfiltered (_("no syscall record support\n"));
+        ret = -1;
+      }
+  }
 
-      feature = tdesc_find_feature (info.target_desc,
-                                   "org.gnu.gdb.xscale.iwmmxt");
-      if (feature != NULL)
-       {
-         static const char *const iwmmxt_names[] = {
-           "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
-           "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
-           "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
-           "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
-         };
+  printf_unfiltered (_("Process record does not support instruction "
+                        "0x%0x at address %s.\n"),arm_insn_r->arm_insn,
+                        paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr));
+  return ret;
+}
 
-         valid_p = 1;
-         for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
-           valid_p
-             &= tdesc_numbered_register (feature, tdesc_data, i,
-                                         iwmmxt_names[i - ARM_WR0_REGNUM]);
+/* Handling opcode 000 insns.  */
 
-         /* Check for the control registers, but do not fail if they
-            are missing.  */
-         for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
-           tdesc_numbered_register (feature, tdesc_data, i,
-                                    iwmmxt_names[i - ARM_WR0_REGNUM]);
+static int
+thumb_record_shift_add_sub (insn_decode_record *thumb_insn_r)
+{
+  uint32_t record_buf[8];
+  uint32_t reg_src1 = 0;
 
-         for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
-           valid_p
-             &= tdesc_numbered_register (feature, tdesc_data, i,
-                                         iwmmxt_names[i - ARM_WR0_REGNUM]);
+  reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
 
-         if (!valid_p)
-           {
-             tdesc_data_cleanup (tdesc_data);
-             return NULL;
-           }
-       }
-    }
+  record_buf[0] = ARM_PS_REGNUM;
+  record_buf[1] = reg_src1;
+  thumb_insn_r->reg_rec_count = 2;
 
-  /* If we have an object to base this architecture on, try to determine
-     its ABI.  */
+  REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
 
-  if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
-    {
-      int ei_osabi, e_flags;
+  return 0;
+}
 
-      switch (bfd_get_flavour (info.abfd))
-       {
-       case bfd_target_aout_flavour:
-         /* Assume it's an old APCS-style ABI.  */
-         arm_abi = ARM_ABI_APCS;
-         break;
 
-       case bfd_target_coff_flavour:
-         /* Assume it's an old APCS-style ABI.  */
-         /* XXX WinCE?  */
-         arm_abi = ARM_ABI_APCS;
-         break;
+/* Handling opcode 001 insns.  */
 
-       case bfd_target_elf_flavour:
-         ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
-         e_flags = elf_elfheader (info.abfd)->e_flags;
+static int
+thumb_record_add_sub_cmp_mov (insn_decode_record *thumb_insn_r)
+{
+  uint32_t record_buf[8];
+  uint32_t reg_src1 = 0;
 
-         if (ei_osabi == ELFOSABI_ARM)
-           {
-             /* GNU tools used to use this value, but do not for EABI
-                objects.  There's nowhere to tag an EABI version
-                anyway, so assume APCS.  */
-             arm_abi = ARM_ABI_APCS;
-           }
-         else if (ei_osabi == ELFOSABI_NONE)
-           {
-             int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
+  reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
 
-             switch (eabi_ver)
-               {
-               case EF_ARM_EABI_UNKNOWN:
-                 /* Assume GNU tools.  */
-                 arm_abi = ARM_ABI_APCS;
-                 break;
+  record_buf[0] = ARM_PS_REGNUM;
+  record_buf[1] = reg_src1;
+  thumb_insn_r->reg_rec_count = 2;
 
-               case EF_ARM_EABI_VER4:
-               case EF_ARM_EABI_VER5:
-                 arm_abi = ARM_ABI_AAPCS;
-                 /* EABI binaries default to VFP float ordering.  */
-                 if (fp_model == ARM_FLOAT_AUTO)
-                   fp_model = ARM_FLOAT_SOFT_VFP;
-                 break;
+  REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
 
-               default:
-                 /* Leave it as "auto".  */
-                 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
-                 break;
-               }
-           }
+  return 0;
+}
 
-         if (fp_model == ARM_FLOAT_AUTO)
-           {
-             int e_flags = elf_elfheader (info.abfd)->e_flags;
+/* Handling opcode 010 insns.  */
 
-             switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
-               {
-               case 0:
-                 /* Leave it as "auto".  Strictly speaking this case
-                    means FPA, but almost nobody uses that now, and
-                    many toolchains fail to set the appropriate bits
-                    for the floating-point model they use.  */
-                 break;
-               case EF_ARM_SOFT_FLOAT:
-                 fp_model = ARM_FLOAT_SOFT_FPA;
-                 break;
-               case EF_ARM_VFP_FLOAT:
-                 fp_model = ARM_FLOAT_VFP;
-                 break;
-               case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
-                 fp_model = ARM_FLOAT_SOFT_VFP;
-                 break;
-               }
-           }
+static int
+thumb_record_ld_st_reg_offset (insn_decode_record *thumb_insn_r)
+{
+  struct regcache *reg_cache =  thumb_insn_r->regcache;
+  uint32_t record_buf[8], record_buf_mem[8];
 
-         if (e_flags & EF_ARM_BE8)
-           info.byte_order_for_code = BFD_ENDIAN_LITTLE;
+  uint32_t reg_src1 = 0, reg_src2 = 0;
+  uint32_t opcode1 = 0, opcode2 = 0, opcode3 = 0;
 
-         break;
+  ULONGEST u_regval[2] = {0};
 
-       default:
-         /* Leave it as "auto".  */
-         break;
-       }
-    }
+  opcode1 = bits (thumb_insn_r->arm_insn, 10, 12);
 
-  /* If there is already a candidate, use it.  */
-  for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
-       best_arch != NULL;
-       best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
+  if (bit (thumb_insn_r->arm_insn, 12))
     {
-      if (arm_abi != ARM_ABI_AUTO
-         && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
-       continue;
+      /* Handle load/store register offset.  */
+      opcode2 = bits (thumb_insn_r->arm_insn, 9, 10);
+      if (opcode2 >= 12 && opcode2 <= 15)
+        {
+          /* LDR(2), LDRB(2) , LDRH(2), LDRSB, LDRSH.  */
+          reg_src1 = bits (thumb_insn_r->arm_insn,0, 2);
+          record_buf[0] = reg_src1;
+          thumb_insn_r->reg_rec_count = 1;
+        }
+      else if (opcode2 >= 8 && opcode2 <= 10)
+        {
+          /* STR(2), STRB(2), STRH(2) .  */
+          reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
+          reg_src2 = bits (thumb_insn_r->arm_insn, 6, 8);
+          regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
+          regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
+          if (8 == opcode2)
+            record_buf_mem[0] = 4;    /* STR (2).  */
+          else if (10 == opcode2)
+            record_buf_mem[0] = 1;    /*  STRB (2).  */
+          else if (9 == opcode2)
+            record_buf_mem[0] = 2;    /* STRH (2).  */
+          record_buf_mem[1] = u_regval[0] + u_regval[1];
+          thumb_insn_r->mem_rec_count = 1;
+        }
+    }
+  else if (bit (thumb_insn_r->arm_insn, 11))
+    {
+      /* Handle load from literal pool.  */
+      /* LDR(3).  */
+      reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
+      record_buf[0] = reg_src1;
+      thumb_insn_r->reg_rec_count = 1;
+    }
+  else if (opcode1)
+    {
+      opcode2 = bits (thumb_insn_r->arm_insn, 8, 9);
+      opcode3 = bits (thumb_insn_r->arm_insn, 0, 2);
+      if ((3 == opcode2) && (!opcode3))
+        {
+          /* Branch with exchange.  */
+          record_buf[0] = ARM_PS_REGNUM;
+          thumb_insn_r->reg_rec_count = 1;
+        }
+      else
+        {
+          /* Format 8; special data processing insns.  */
+          reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
+          record_buf[0] = ARM_PS_REGNUM;
+          record_buf[1] = reg_src1;
+          thumb_insn_r->reg_rec_count = 2;
+        }
+    }
+  else
+    {
+      /* Format 5; data processing insns.  */
+      reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
+      if (bit (thumb_insn_r->arm_insn, 7))
+        {
+          reg_src1 = reg_src1 + 8;
+        }
+      record_buf[0] = ARM_PS_REGNUM;
+      record_buf[1] = reg_src1;
+      thumb_insn_r->reg_rec_count = 2;
+    }
 
-      if (fp_model != ARM_FLOAT_AUTO
-         && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
-       continue;
+  REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
+  MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
+             record_buf_mem);
 
-      /* Found a match.  */
-      break;
-    }
+  return 0;
+}
 
-  if (best_arch != NULL)
+/* Handling opcode 001 insns.  */
+
+static int
+thumb_record_ld_st_imm_offset (insn_decode_record *thumb_insn_r)
+{
+  struct regcache *reg_cache = thumb_insn_r->regcache;
+  uint32_t record_buf[8], record_buf_mem[8];
+
+  uint32_t reg_src1 = 0;
+  uint32_t opcode = 0, immed_5 = 0;
+
+  ULONGEST u_regval = 0;
+
+  opcode = bits (thumb_insn_r->arm_insn, 11, 12);
+
+  if (opcode)
     {
-      if (tdesc_data != NULL)
-       tdesc_data_cleanup (tdesc_data);
-      return best_arch->gdbarch;
+      /* LDR(1).  */
+      reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
+      record_buf[0] = reg_src1;
+      thumb_insn_r->reg_rec_count = 1;
+    }
+  else
+    {
+      /* STR(1).  */
+      reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
+      immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
+      regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
+      record_buf_mem[0] = 4;
+      record_buf_mem[1] = u_regval + (immed_5 * 4);
+      thumb_insn_r->mem_rec_count = 1;
     }
 
-  tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
-  gdbarch = gdbarch_alloc (&info, tdep);
+  REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
+  MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, 
+             record_buf_mem);
 
-  /* Record additional information about the architecture we are defining.
-     These are gdbarch discriminators, like the OSABI.  */
-  tdep->arm_abi = arm_abi;
-  tdep->fp_model = fp_model;
-  tdep->have_fpa_registers = have_fpa_registers;
+  return 0;
+}
 
-  /* Breakpoints.  */
-  switch (info.byte_order_for_code)
+/* Handling opcode 100 insns.  */
+
+static int
+thumb_record_ld_st_stack (insn_decode_record *thumb_insn_r)
+{
+  struct regcache *reg_cache = thumb_insn_r->regcache;
+  uint32_t record_buf[8], record_buf_mem[8];
+
+  uint32_t reg_src1 = 0;
+  uint32_t opcode = 0, immed_8 = 0, immed_5 = 0;
+
+  ULONGEST u_regval = 0;
+
+  opcode = bits (thumb_insn_r->arm_insn, 11, 12);
+
+  if (3 == opcode)
     {
-    case BFD_ENDIAN_BIG:
-      tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
-      tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
-      tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
-      tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
+      /* LDR(4).  */
+      reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
+      record_buf[0] = reg_src1;
+      thumb_insn_r->reg_rec_count = 1;
+    }
+  else if (1 == opcode)
+    {
+      /* LDRH(1).  */
+      reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
+      record_buf[0] = reg_src1;
+      thumb_insn_r->reg_rec_count = 1;
+    }
+  else if (2 == opcode)
+    {
+      /* STR(3).  */
+      immed_8 = bits (thumb_insn_r->arm_insn, 0, 7);
+      regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
+      record_buf_mem[0] = 4;
+      record_buf_mem[1] = u_regval + (immed_8 * 4);
+      thumb_insn_r->mem_rec_count = 1;
+    }
+  else if (0 == opcode)
+    {
+      /* STRH(1).  */
+      immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
+      reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
+      regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
+      record_buf_mem[0] = 2;
+      record_buf_mem[1] = u_regval + (immed_5 * 2);
+      thumb_insn_r->mem_rec_count = 1;
+    }
 
-      break;
+  REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
+  MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
+             record_buf_mem);
 
-    case BFD_ENDIAN_LITTLE:
-      tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
-      tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
-      tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
-      tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
+  return 0;
+}
 
-      break;
+/* Handling opcode 101 insns.  */
 
-    default:
-      internal_error (__FILE__, __LINE__,
-                     _("arm_gdbarch_init: bad byte order for float format"));
+static int
+thumb_record_misc (insn_decode_record *thumb_insn_r)
+{
+  struct regcache *reg_cache = thumb_insn_r->regcache;
+
+  uint32_t opcode = 0, opcode1 = 0, opcode2 = 0;
+  uint32_t register_bits = 0, register_count = 0;
+  uint32_t register_list[8] = {0}, index = 0, start_address = 0;
+  uint32_t record_buf[24], record_buf_mem[48];
+  uint32_t reg_src1;
+
+  ULONGEST u_regval = 0;
+
+  opcode = bits (thumb_insn_r->arm_insn, 11, 12);
+  opcode1 = bits (thumb_insn_r->arm_insn, 8, 12);
+  opcode2 = bits (thumb_insn_r->arm_insn, 9, 12);
+
+  if (14 == opcode2)
+    {
+      /* POP.  */
+      register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
+      while (register_bits)
+        {
+          if (register_bits & 0x00000001)
+            register_list[register_count++] = 1;
+          register_bits = register_bits >> 1;
+        }
+      record_buf[register_count] = ARM_PS_REGNUM;
+      record_buf[register_count + 1] = ARM_SP_REGNUM;
+      thumb_insn_r->reg_rec_count = register_count + 2;
+      for (register_count = 0; register_count < 8; register_count++)
+        {
+          if  (register_list[register_count])
+            {
+              record_buf[index] = register_count;
+              index++;
+            }
+        }
+    }
+  else if (10 == opcode2)
+    {
+      /* PUSH.  */
+      register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
+      regcache_raw_read_unsigned (reg_cache, ARM_PC_REGNUM, &u_regval);
+      while (register_bits)
+        {
+          if (register_bits & 0x00000001)
+            register_count++;
+          register_bits = register_bits >> 1;
+        }
+      start_address = u_regval -  \
+                  (4 * (bit (thumb_insn_r->arm_insn, 8) + register_count));
+      thumb_insn_r->mem_rec_count = register_count;
+      while (register_count)
+        {
+          record_buf_mem[(register_count * 2) - 1] = start_address;
+          record_buf_mem[(register_count * 2) - 2] = 4;
+          start_address = start_address + 4;
+          register_count--;
+        }
+      record_buf[0] = ARM_SP_REGNUM;
+      thumb_insn_r->reg_rec_count = 1;
+    }
+  else if (0x1E == opcode1)
+    {
+      /* BKPT insn.  */
+      /* Handle enhanced software breakpoint insn, BKPT.  */
+      /* CPSR is changed to be executed in ARM state,  disabling normal
+         interrupts, entering abort mode.  */
+      /* According to high vector configuration PC is set.  */
+      /* User hits breakpoint and type reverse, in that case, we need to go back with 
+      previous CPSR and Program Counter.  */
+      record_buf[0] = ARM_PS_REGNUM;
+      record_buf[1] = ARM_LR_REGNUM;
+      thumb_insn_r->reg_rec_count = 2;
+      /* We need to save SPSR value, which is not yet done.  */
+      printf_unfiltered (_("Process record does not support instruction "
+                           "0x%0x at address %s.\n"),
+                           thumb_insn_r->arm_insn,
+                           paddress (thumb_insn_r->gdbarch,
+                           thumb_insn_r->this_addr));
+      return -1;
+    }
+  else if ((0 == opcode) || (1 == opcode))
+    {
+      /* ADD(5), ADD(6).  */
+      reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
+      record_buf[0] = reg_src1;
+      thumb_insn_r->reg_rec_count = 1;
+    }
+  else if (2 == opcode)
+    {
+      /* ADD(7), SUB(4).  */
+      reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
+      record_buf[0] = ARM_SP_REGNUM;
+      thumb_insn_r->reg_rec_count = 1;
     }
 
-  /* On ARM targets char defaults to unsigned.  */
-  set_gdbarch_char_signed (gdbarch, 0);
+  REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
+  MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
+             record_buf_mem);
 
-  /* This should be low enough for everything.  */
-  tdep->lowest_pc = 0x20;
-  tdep->jb_pc = -1;    /* Longjump support not enabled by default.  */
+  return 0;
+}
 
-  /* The default, for both APCS and AAPCS, is to return small
-     structures in registers.  */
-  tdep->struct_return = reg_struct_return;
+/* Handling opcode 110 insns.  */
 
-  set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
-  set_gdbarch_frame_align (gdbarch, arm_frame_align);
+static int
+thumb_record_ldm_stm_swi (insn_decode_record *thumb_insn_r)                
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (thumb_insn_r->gdbarch);
+  struct regcache *reg_cache = thumb_insn_r->regcache;
 
-  set_gdbarch_write_pc (gdbarch, arm_write_pc);
+  uint32_t ret = 0; /* function return value: -1:record failure ;  0:success  */
+  uint32_t reg_src1 = 0;
+  uint32_t opcode1 = 0, opcode2 = 0, register_bits = 0, register_count = 0;
+  uint32_t register_list[8] = {0}, index = 0, start_address = 0;
+  uint32_t record_buf[24], record_buf_mem[48];
 
-  /* Frame handling.  */
-  set_gdbarch_dummy_id (gdbarch, arm_dummy_id);
-  set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
-  set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
+  ULONGEST u_regval = 0;
 
-  frame_base_set_default (gdbarch, &arm_normal_base);
+  opcode1 = bits (thumb_insn_r->arm_insn, 8, 12);
+  opcode2 = bits (thumb_insn_r->arm_insn, 11, 12);
+
+  if (1 == opcode2)
+    {
+
+      /* LDMIA.  */
+      register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
+      /* Get Rn.  */
+      reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
+      while (register_bits)
+        {
+          if (register_bits & 0x00000001)
+            register_list[register_count++] = 1;
+          register_bits = register_bits >> 1;
+        }
+      record_buf[register_count] = reg_src1;
+      thumb_insn_r->reg_rec_count = register_count + 1;
+      for (register_count = 0; register_count < 8; register_count++)
+        {
+          if (register_list[register_count])
+            {
+              record_buf[index] = register_count;
+              index++;
+            }
+        }
+    }
+  else if (0 == opcode2)
+    {
+      /* It handles both STMIA.  */
+      register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
+      /* Get Rn.  */
+      reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
+      regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
+      while (register_bits)
+        {
+          if (register_bits & 0x00000001)
+            register_count++;
+          register_bits = register_bits >> 1;
+        }
+      start_address = u_regval;
+      thumb_insn_r->mem_rec_count = register_count;
+      while (register_count)
+        {
+          record_buf_mem[(register_count * 2) - 1] = start_address;
+          record_buf_mem[(register_count * 2) - 2] = 4;
+          start_address = start_address + 4;
+          register_count--;
+        }
+    }
+  else if (0x1F == opcode1)
+    {
+        /* Handle arm syscall insn.  */
+        if (tdep->arm_swi_record != NULL)
+          {
+            ret = tdep->arm_swi_record(reg_cache);
+          }
+        else
+          {
+            printf_unfiltered (_("no syscall record support\n"));
+            return -1;
+          }
+    }
 
-  /* Address manipulation.  */
-  set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
-  set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
+  /* B (1), conditional branch is automatically taken care in process_record,
+    as PC is saved there.  */
 
-  /* Advance PC across function entry code.  */
-  set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
+  REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
+  MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
+             record_buf_mem);
 
-  /* Skip trampolines.  */
-  set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
+  return ret;
+}
 
-  /* The stack grows downward.  */
-  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+/* Handling opcode 111 insns.  */
 
-  /* Breakpoint manipulation.  */
-  set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
+static int
+thumb_record_branch (insn_decode_record *thumb_insn_r)
+{
+  uint32_t record_buf[8];
+  uint32_t bits_h = 0;
 
-  /* Information about registers, etc.  */
-  set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM);   /* ??? */
-  set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
-  set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
-  set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
-  set_gdbarch_register_type (gdbarch, arm_register_type);
+  bits_h = bits (thumb_insn_r->arm_insn, 11, 12);
 
-  /* This "info float" is FPA-specific.  Use the generic version if we
-     do not have FPA.  */
-  if (gdbarch_tdep (gdbarch)->have_fpa_registers)
-    set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
+  if (2 == bits_h || 3 == bits_h)
+    {
+      /* BL */
+      record_buf[0] = ARM_LR_REGNUM;
+      thumb_insn_r->reg_rec_count = 1;
+    }
+  else if (1 == bits_h)
+    {
+      /* BLX(1). */
+      record_buf[0] = ARM_PS_REGNUM;
+      record_buf[1] = ARM_LR_REGNUM;
+      thumb_insn_r->reg_rec_count = 2;
+    }
 
-  /* Internal <-> external register number maps.  */
-  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
-  set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
+  /* B(2) is automatically taken care in process_record, as PC is 
+     saved there.  */
 
-  set_gdbarch_register_name (gdbarch, arm_register_name);
+  REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
 
-  /* Returning results.  */
-  set_gdbarch_return_value (gdbarch, arm_return_value);
+  return 0;     
+}
 
-  /* Disassembly.  */
-  set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
 
-  /* Minsymbol frobbing.  */
-  set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
-  set_gdbarch_coff_make_msymbol_special (gdbarch,
-                                        arm_coff_make_msymbol_special);
-  set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol);
+/* Extracts arm/thumb/thumb2 insn depending on the size, and returns 0 on success 
+and positive val on fauilure.  */
 
-  /* Virtual tables.  */
-  set_gdbarch_vbit_in_delta (gdbarch, 1);
+static int
+extract_arm_insn (insn_decode_record *insn_record, uint32_t insn_size)
+{
+  gdb_byte buf[insn_size];
 
-  /* Hook in the ABI-specific overrides, if they have been registered.  */
-  gdbarch_init_osabi (info, gdbarch);
+  memset (&buf[0], 0, insn_size);
+  
+  if (target_read_memory (insn_record->this_addr, &buf[0], insn_size))
+    return 1;
+  insn_record->arm_insn = (uint32_t) extract_unsigned_integer (&buf[0],
+                           insn_size, 
+                           gdbarch_byte_order (insn_record->gdbarch));
+  return 0;
+}
 
-  dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg);
+typedef int (*sti_arm_hdl_fp_t) (insn_decode_record*);
 
-  /* Add some default predicates.  */
-  frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind);
-  dwarf2_append_unwinders (gdbarch);
-  frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind);
+/* Decode arm/thumb insn depending on condition cods and opcodes; and
+   dispatch it.  */
 
-  /* Now we have tuned the configuration, set a few final things,
-     based on what the OS ABI has told us.  */
+static int
+decode_insn (insn_decode_record *arm_record, record_type_t record_type,
+                uint32_t insn_size)
+{
 
-  /* If the ABI is not otherwise marked, assume the old GNU APCS.  EABI
-     binaries are always marked.  */
-  if (tdep->arm_abi == ARM_ABI_AUTO)
-    tdep->arm_abi = ARM_ABI_APCS;
+  /* (Starting from numerical 0); bits 25, 26, 27 decodes type of arm instruction.  */
+  static const sti_arm_hdl_fp_t const arm_handle_insn[8] =                    
+  {
+    arm_record_data_proc_misc_ld_str,   /* 000.  */
+    arm_record_data_proc_imm,           /* 001.  */
+    arm_record_ld_st_imm_offset,        /* 010.  */
+    arm_record_ld_st_reg_offset,        /* 011.  */
+    arm_record_ld_st_multiple,          /* 100.  */
+    arm_record_b_bl,                    /* 101.  */
+    arm_record_coproc,                  /* 110.  */
+    arm_record_coproc_data_proc         /* 111.  */
+  };
 
-  /* We used to default to FPA for generic ARM, but almost nobody
-     uses that now, and we now provide a way for the user to force
-     the model.  So default to the most useful variant.  */
-  if (tdep->fp_model == ARM_FLOAT_AUTO)
-    tdep->fp_model = ARM_FLOAT_SOFT_FPA;
+  /* (Starting from numerical 0); bits 13,14,15 decodes type of thumb instruction.  */
+  static const sti_arm_hdl_fp_t const thumb_handle_insn[8] =
+  { \
+    thumb_record_shift_add_sub,        /* 000.  */
+    thumb_record_add_sub_cmp_mov,      /* 001.  */
+    thumb_record_ld_st_reg_offset,     /* 010.  */
+    thumb_record_ld_st_imm_offset,     /* 011.  */
+    thumb_record_ld_st_stack,          /* 100.  */
+    thumb_record_misc,                 /* 101.  */
+    thumb_record_ldm_stm_swi,          /* 110.  */
+    thumb_record_branch                /* 111.  */
+  };
 
-  if (tdep->jb_pc >= 0)
-    set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
+  uint32_t ret = 0;    /* return value: negative:failure   0:success.  */
+  uint32_t insn_id = 0;
 
-  /* Floating point sizes and format.  */
-  set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
-  if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
+  if (extract_arm_insn (arm_record, insn_size))
     {
-      set_gdbarch_double_format
-       (gdbarch, floatformats_ieee_double_littlebyte_bigword);
-      set_gdbarch_long_double_format
-       (gdbarch, floatformats_ieee_double_littlebyte_bigword);
+      if (record_debug)
+        {
+          printf_unfiltered (_("Process record: error reading memory at "
+                              "addr %s len = %d.\n"),
+          paddress (arm_record->gdbarch, arm_record->this_addr), insn_size);        
+        }
+      return -1;
+    }
+  else if (ARM_RECORD == record_type)
+    {
+      arm_record->cond = bits (arm_record->arm_insn, 28, 31);
+      insn_id = bits (arm_record->arm_insn, 25, 27);
+      ret = arm_record_extension_space (arm_record);
+      /* If this insn has fallen into extension space 
+         then we need not decode it anymore.  */
+      if (ret != -1 && !INSN_RECORDED(arm_record))
+        {
+          ret = arm_handle_insn[insn_id] (arm_record);
+        }
+    }
+  else if (THUMB_RECORD == record_type)
+    {
+      /* As thumb does not have condition codes, we set negative.  */
+      arm_record->cond = -1;
+      insn_id = bits (arm_record->arm_insn, 13, 15);
+      ret = thumb_handle_insn[insn_id] (arm_record);
+    }
+  else if (THUMB2_RECORD == record_type)
+    {
+      printf_unfiltered (_("Process record doesnt support thumb32 instruction "
+                           "0x%0x at address %s.\n"),arm_record->arm_insn,
+                           paddress (arm_record->gdbarch, 
+                           arm_record->this_addr));
+      ret = -1;
     }
   else
     {
-      set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
-      set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
+      /* Throw assertion.  */
+      gdb_assert_not_reached ("not a valid instruction, could not decode");
     }
 
-  if (tdesc_data)
-    tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
-
-  /* Add standard register aliases.  We add aliases even for those
-     nanes which are used by the current architecture - it's simpler,
-     and does no harm, since nothing ever lists user registers.  */
-  for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
-    user_reg_add (gdbarch, arm_register_aliases[i].name,
-                 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
-
-  return gdbarch;
+  return ret;
 }
 
-static void
-arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
-{
-  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-  if (tdep == NULL)
-    return;
+/* Cleans up local record registers and memory allocations.  */
 
-  fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
-                     (unsigned long) tdep->lowest_pc);
+static void 
+deallocate_reg_mem (insn_decode_record *record)
+{
+  xfree (record->arm_regs);
+  xfree (record->arm_mems);    
 }
 
-extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
 
-void
-_initialize_arm_tdep (void)
-{
-  struct ui_file *stb;
-  long length;
-  struct cmd_list_element *new_set, *new_show;
-  const char *setname;
-  const char *setdesc;
-  const char *const *regnames;
-  int numregs, i, j;
-  static char *helptext;
-  char regdesc[1024], *rdptr = regdesc;
-  size_t rest = sizeof (regdesc);
+/* Parse the current instruction and record the values of the registers and    
+   memory that will be changed in current instruction to record_arch_list".
+   Return -1 if something is wrong.  */
 
-  gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
+int
+arm_process_record (struct gdbarch *gdbarch, struct regcache *regcache, 
+                        CORE_ADDR insn_addr)
+{
 
-  arm_objfile_data_key
-    = register_objfile_data_with_cleanup (arm_objfile_data_cleanup);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  uint32_t no_of_rec = 0;
+  uint32_t ret = 0;  /* return value: -1:record failure ;  0:success  */
+  ULONGEST t_bit = 0, insn_id = 0;
 
-  /* Register an ELF OS ABI sniffer for ARM binaries.  */
-  gdbarch_register_osabi_sniffer (bfd_arch_arm,
-                                 bfd_target_elf_flavour,
-                                 arm_elf_osabi_sniffer);
+  ULONGEST u_regval = 0;
 
-  /* Get the number of possible sets of register names defined in opcodes.  */
-  num_disassembly_options = get_arm_regname_num_options ();
+  insn_decode_record arm_record;
 
-  /* Add root prefix command for all "set arm"/"show arm" commands.  */
-  add_prefix_cmd ("arm", no_class, set_arm_command,
-                 _("Various ARM-specific commands."),
-                 &setarmcmdlist, "set arm ", 0, &setlist);
+  memset (&arm_record, 0, sizeof (insn_decode_record));
+  arm_record.regcache = regcache;
+  arm_record.this_addr = insn_addr;
+  arm_record.gdbarch = gdbarch;
 
-  add_prefix_cmd ("arm", no_class, show_arm_command,
-                 _("Various ARM-specific commands."),
-                 &showarmcmdlist, "show arm ", 0, &showlist);
 
-  /* Sync the opcode insn printer with our register viewer.  */
-  parse_arm_disassembler_option ("reg-names-std");
+  if (record_debug > 1)
+    {
+      fprintf_unfiltered (gdb_stdlog, "Process record: arm_process_record "
+                                      "addr = %s\n",
+      paddress (gdbarch, arm_record.this_addr));
+    }
 
-  /* Initialize the array that will be passed to
-     add_setshow_enum_cmd().  */
-  valid_disassembly_styles
-    = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
-  for (i = 0; i < num_disassembly_options; i++)
+  if (extract_arm_insn (&arm_record, 2))
     {
-      numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
-      valid_disassembly_styles[i] = setname;
-      length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
-      rdptr += length;
-      rest -= length;
-      /* When we find the default names, tell the disassembler to use
-        them.  */
-      if (!strcmp (setname, "std"))
-       {
-          disassembly_style = setname;
-          set_arm_regname_option (i);
-       }
+      if (record_debug)
+        {
+          printf_unfiltered (_("Process record: error reading memory at "
+                             "addr %s len = %d.\n"),
+                             paddress (arm_record.gdbarch, 
+                             arm_record.this_addr), 2);
+        }
+      return -1;
     }
-  /* Mark the end of valid options.  */
-  valid_disassembly_styles[num_disassembly_options] = NULL;
 
-  /* Create the help text.  */
-  stb = mem_fileopen ();
-  fprintf_unfiltered (stb, "%s%s%s",
-                     _("The valid values are:\n"),
-                     regdesc,
-                     _("The default is \"std\"."));
-  helptext = ui_file_xstrdup (stb, &length);
-  ui_file_delete (stb);
+  /* Check the insn, whether it is thumb or arm one.  */
 
-  add_setshow_enum_cmd("disassembler", no_class,
-                      valid_disassembly_styles, &disassembly_style,
-                      _("Set the disassembly style."),
-                      _("Show the disassembly style."),
-                      helptext,
-                      set_disassembly_style_sfunc,
-                      NULL, /* FIXME: i18n: The disassembly style is \"%s\".  */
-                      &setarmcmdlist, &showarmcmdlist);
+  t_bit = arm_psr_thumb_bit (arm_record.gdbarch);
+  regcache_raw_read_unsigned (arm_record.regcache, ARM_PS_REGNUM, &u_regval);
 
-  add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
-                          _("Set usage of ARM 32-bit mode."),
-                          _("Show usage of ARM 32-bit mode."),
-                          _("When off, a 26-bit PC will be used."),
-                          NULL,
-                          NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s.  */
-                          &setarmcmdlist, &showarmcmdlist);
 
-  /* Add a command to allow the user to force the FPU model.  */
-  add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
-                       _("Set the floating point type."),
-                       _("Show the floating point type."),
-                       _("auto - Determine the FP typefrom the OS-ABI.\n\
-softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
-fpa - FPA co-processor (GCC compiled).\n\
-softvfp - Software FP with pure-endian doubles.\n\
-vfp - VFP co-processor."),
-                       set_fp_model_sfunc, show_fp_model,
-                       &setarmcmdlist, &showarmcmdlist);
+  if (!(u_regval & t_bit))
+    {
+      /* We are decoding arm insn.  */
+      ret = decode_insn (&arm_record, ARM_RECORD, ARM_INSN_SIZE_BYTES);
+    }
+  else
+    {
+      insn_id = bits (arm_record.arm_insn, 11, 15);
+      /* is it thumb2 insn?  */
+      if ((0x1D == insn_id) || (0x1E == insn_id) || (0x1F == insn_id))
+        {
+          ret = decode_insn (&arm_record, THUMB2_RECORD, 
+                             THUMB2_INSN_SIZE_BYTES);
+        }
+      else
+        {
+          /* We are decoding thumb insn.  */
+          ret = decode_insn (&arm_record, THUMB_RECORD, THUMB_INSN_SIZE_BYTES);
+        }
+    }
 
-  /* Add a command to allow the user to force the ABI.  */
-  add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
-                       _("Set the ABI."),
-                       _("Show the ABI."),
-                       NULL, arm_set_abi, arm_show_abi,
-                       &setarmcmdlist, &showarmcmdlist);
+  if (0 == ret)
+    {
+      /* Record registers.  */
+      record_arch_list_add_reg (arm_record.regcache, ARM_PC_REGNUM);
+      if (arm_record.arm_regs)
+        {
+          for (no_of_rec = 0; no_of_rec < arm_record.reg_rec_count; no_of_rec++)
+            {
+              if (record_arch_list_add_reg (arm_record.regcache , 
+                                            arm_record.arm_regs[no_of_rec]))
+              ret = -1;
+            }
+        }
+      /* Record memories.  */
+      if (arm_record.arm_mems)
+        {
+          for (no_of_rec = 0; no_of_rec < arm_record.mem_rec_count; no_of_rec++)
+            {
+              if (record_arch_list_add_mem 
+                  ((CORE_ADDR)arm_record.arm_mems[no_of_rec].addr,
+                  arm_record.arm_mems[no_of_rec].len))
+                ret = -1;
+            }
+        }
 
-  /* Add two commands to allow the user to force the assumed
-     execution mode.  */
-  add_setshow_enum_cmd ("fallback-mode", class_support,
-                       arm_mode_strings, &arm_fallback_mode_string,
-                       _("Set the mode assumed when symbols are unavailable."),
-                       _("Show the mode assumed when symbols are unavailable."),
-                       NULL, NULL, arm_show_fallback_mode,
-                       &setarmcmdlist, &showarmcmdlist);
-  add_setshow_enum_cmd ("force-mode", class_support,
-                       arm_mode_strings, &arm_force_mode_string,
-                       _("Set the mode assumed even when symbols are available."),
-                       _("Show the mode assumed even when symbols are available."),
-                       NULL, NULL, arm_show_force_mode,
-                       &setarmcmdlist, &showarmcmdlist);
+      if (record_arch_list_add_end ())
+        ret = -1;
+    }
 
-  /* Debugging flag.  */
-  add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
-                          _("Set ARM debugging."),
-                          _("Show ARM debugging."),
-                          _("When on, arm-specific debugging is enabled."),
-                          NULL,
-                          NULL, /* FIXME: i18n: "ARM debugging is %s.  */
-                          &setdebuglist, &showdebuglist);
+
+  deallocate_reg_mem (&arm_record);
+
+  return ret;
 }
+
This page took 0.185622 seconds and 4 git commands to generate.