* tracepoint.h (set_traceframe_number)
[deliverable/binutils-gdb.git] / gdb / ax-gdb.c
index adb4b17cc3a4a8f5478b6d7a432783ccb8ceeb3b..3e151deccfbaf0c909656e3a4c53c8c1970ea9d7 100644 (file)
@@ -1,13 +1,13 @@
 /* GDB-specific functions for operating on agent expressions.
 
-   Copyright (C) 1998, 1999, 2000, 2001, 2003, 2007
+   Copyright (C) 1998, 1999, 2000, 2001, 2003, 2007, 2008, 2009, 2010
    Free Software Foundation, Inc.
 
    This file is part of GDB.
 
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
-   the Free Software Foundation; either version 2 of the License, or
+   the Free Software Foundation; either version 3 of the License, or
    (at your option) any later version.
 
    This program is distributed in the hope that it will be useful,
    GNU General Public License for more details.
 
    You should have received a copy of the GNU General Public License
-   along with this program; if not, write to the Free Software
-   Foundation, Inc., 51 Franklin Street, Fifth Floor,
-   Boston, MA 02110-1301, USA.  */
+   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 #include "defs.h"
 #include "symtab.h"
 #include "symfile.h"
 #include "gdbtypes.h"
+#include "language.h"
 #include "value.h"
 #include "expression.h"
 #include "command.h"
 #include "gdb_string.h"
 #include "block.h"
 #include "regcache.h"
+#include "user-regs.h"
+#include "language.h"
+#include "dictionary.h"
+#include "breakpoint.h"
+#include "tracepoint.h"
 
 /* To make sense of this file, you should read doc/agentexpr.texi.
    Then look at the types and enums in ax-gdb.h.  For the code itself,
@@ -73,11 +77,11 @@ static void gen_fetch (struct agent_expr *, struct type *);
 static void gen_left_shift (struct agent_expr *, int);
 
 
-static void gen_frame_args_address (struct agent_expr *);
-static void gen_frame_locals_address (struct agent_expr *);
+static void gen_frame_args_address (struct gdbarch *, struct agent_expr *);
+static void gen_frame_locals_address (struct gdbarch *, struct agent_expr *);
 static void gen_offset (struct agent_expr *ax, int offset);
 static void gen_sym_offset (struct agent_expr *, struct symbol *);
-static void gen_var_ref (struct agent_expr *ax,
+static void gen_var_ref (struct gdbarch *, struct agent_expr *ax,
                         struct axs_value *value, struct symbol *var);
 
 
@@ -87,52 +91,63 @@ static void gen_int_literal (struct agent_expr *ax,
 
 
 static void require_rvalue (struct agent_expr *ax, struct axs_value *value);
-static void gen_usual_unary (struct agent_expr *ax, struct axs_value *value);
+static void gen_usual_unary (struct expression *exp, struct agent_expr *ax,
+                            struct axs_value *value);
 static int type_wider_than (struct type *type1, struct type *type2);
 static struct type *max_type (struct type *type1, struct type *type2);
 static void gen_conversion (struct agent_expr *ax,
                            struct type *from, struct type *to);
 static int is_nontrivial_conversion (struct type *from, struct type *to);
-static void gen_usual_arithmetic (struct agent_expr *ax,
+static void gen_usual_arithmetic (struct expression *exp,
+                                 struct agent_expr *ax,
                                  struct axs_value *value1,
                                  struct axs_value *value2);
-static void gen_integral_promotions (struct agent_expr *ax,
+static void gen_integral_promotions (struct expression *exp,
+                                    struct agent_expr *ax,
                                     struct axs_value *value);
 static void gen_cast (struct agent_expr *ax,
                      struct axs_value *value, struct type *type);
 static void gen_scale (struct agent_expr *ax,
                       enum agent_op op, struct type *type);
-static void gen_add (struct agent_expr *ax,
-                    struct axs_value *value,
-                    struct axs_value *value1,
-                    struct axs_value *value2, char *name);
-static void gen_sub (struct agent_expr *ax,
-                    struct axs_value *value,
-                    struct axs_value *value1, struct axs_value *value2);
+static void gen_ptradd (struct agent_expr *ax, struct axs_value *value,
+                       struct axs_value *value1, struct axs_value *value2);
+static void gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
+                       struct axs_value *value1, struct axs_value *value2);
+static void gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
+                        struct axs_value *value1, struct axs_value *value2,
+                        struct type *result_type);
 static void gen_binop (struct agent_expr *ax,
                       struct axs_value *value,
                       struct axs_value *value1,
                       struct axs_value *value2,
                       enum agent_op op,
                       enum agent_op op_unsigned, int may_carry, char *name);
-static void gen_logical_not (struct agent_expr *ax, struct axs_value *value);
+static void gen_logical_not (struct agent_expr *ax, struct axs_value *value,
+                            struct type *result_type);
 static void gen_complement (struct agent_expr *ax, struct axs_value *value);
 static void gen_deref (struct agent_expr *, struct axs_value *);
 static void gen_address_of (struct agent_expr *, struct axs_value *);
 static int find_field (struct type *type, char *name);
-static void gen_bitfield_ref (struct agent_expr *ax,
+static void gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
                              struct axs_value *value,
                              struct type *type, int start, int end);
-static void gen_struct_ref (struct agent_expr *ax,
+static void gen_struct_ref (struct expression *exp, struct agent_expr *ax,
                            struct axs_value *value,
                            char *field,
                            char *operator_name, char *operand_name);
-static void gen_repeat (union exp_element **pc,
+static void gen_repeat (struct expression *exp, union exp_element **pc,
                        struct agent_expr *ax, struct axs_value *value);
-static void gen_sizeof (union exp_element **pc,
-                       struct agent_expr *ax, struct axs_value *value);
-static void gen_expr (union exp_element **pc,
+static void gen_sizeof (struct expression *exp, union exp_element **pc,
+                       struct agent_expr *ax, struct axs_value *value,
+                       struct type *size_type);
+static void gen_expr (struct expression *exp, union exp_element **pc,
                      struct agent_expr *ax, struct axs_value *value);
+static void gen_expr_binop_rest (struct expression *exp,
+                                enum exp_opcode op, union exp_element **pc,
+                                struct agent_expr *ax,
+                                struct axs_value *value,
+                                struct axs_value *value1,
+                                struct axs_value *value2);
 
 static void agent_command (char *exp, int from_tty);
 \f
@@ -321,7 +336,7 @@ gen_traced_pop (struct agent_expr *ax, struct axs_value *value)
 
       case axs_lvalue_memory:
        {
-         int length = TYPE_LENGTH (value->type);
+         int length = TYPE_LENGTH (check_typedef (value->type));
 
          /* There's no point in trying to use a trace_quick bytecode
             here, since "trace_quick SIZE pop" is three bytes, whereas
@@ -388,6 +403,7 @@ gen_fetch (struct agent_expr *ax, struct type *type)
   switch (TYPE_CODE (type))
     {
     case TYPE_CODE_PTR:
+    case TYPE_CODE_REF:
     case TYPE_CODE_ENUM:
     case TYPE_CODE_INT:
     case TYPE_CODE_CHAR:
@@ -456,12 +472,12 @@ gen_left_shift (struct agent_expr *ax, int distance)
 /* Generate code to push the base address of the argument portion of
    the top stack frame.  */
 static void
-gen_frame_args_address (struct agent_expr *ax)
+gen_frame_args_address (struct gdbarch *gdbarch, struct agent_expr *ax)
 {
   int frame_reg;
   LONGEST frame_offset;
 
-  gdbarch_virtual_frame_pointer (current_gdbarch,
+  gdbarch_virtual_frame_pointer (gdbarch,
                                 ax->scope, &frame_reg, &frame_offset);
   ax_reg (ax, frame_reg);
   gen_offset (ax, frame_offset);
@@ -471,12 +487,12 @@ gen_frame_args_address (struct agent_expr *ax)
 /* Generate code to push the base address of the locals portion of the
    top stack frame.  */
 static void
-gen_frame_locals_address (struct agent_expr *ax)
+gen_frame_locals_address (struct gdbarch *gdbarch, struct agent_expr *ax)
 {
   int frame_reg;
   LONGEST frame_offset;
 
-  gdbarch_virtual_frame_pointer (current_gdbarch,
+  gdbarch_virtual_frame_pointer (gdbarch,
                                 ax->scope, &frame_reg, &frame_offset);
   ax_reg (ax, frame_reg);
   gen_offset (ax, frame_offset);
@@ -521,7 +537,8 @@ gen_sym_offset (struct agent_expr *ax, struct symbol *var)
    symbol VAR.  Set VALUE to describe the result.  */
 
 static void
-gen_var_ref (struct agent_expr *ax, struct axs_value *value, struct symbol *var)
+gen_var_ref (struct gdbarch *gdbarch, struct agent_expr *ax,
+            struct axs_value *value, struct symbol *var)
 {
   /* Dereference any typedefs. */
   value->type = check_typedef (SYMBOL_TYPE (var));
@@ -551,30 +568,22 @@ gen_var_ref (struct agent_expr *ax, struct axs_value *value, struct symbol *var)
       break;
 
     case LOC_ARG:              /* var lives in argument area of frame */
-      gen_frame_args_address (ax);
+      gen_frame_args_address (gdbarch, ax);
       gen_sym_offset (ax, var);
       value->kind = axs_lvalue_memory;
       break;
 
     case LOC_REF_ARG:          /* As above, but the frame slot really
                                   holds the address of the variable.  */
-      gen_frame_args_address (ax);
+      gen_frame_args_address (gdbarch, ax);
       gen_sym_offset (ax, var);
       /* Don't assume any particular pointer size.  */
-      gen_fetch (ax, lookup_pointer_type (builtin_type_void));
+      gen_fetch (ax, builtin_type (gdbarch)->builtin_data_ptr);
       value->kind = axs_lvalue_memory;
       break;
 
     case LOC_LOCAL:            /* var lives in locals area of frame */
-    case LOC_LOCAL_ARG:
-      gen_frame_locals_address (ax);
-      gen_sym_offset (ax, var);
-      value->kind = axs_lvalue_memory;
-      break;
-
-    case LOC_BASEREG:          /* relative to some base register */
-    case LOC_BASEREG_ARG:
-      ax_reg (ax, SYMBOL_BASEREG (var));
+      gen_frame_locals_address (gdbarch, ax);
       gen_sym_offset (ax, var);
       value->kind = axs_lvalue_memory;
       break;
@@ -590,27 +599,26 @@ gen_var_ref (struct agent_expr *ax, struct axs_value *value, struct symbol *var)
       break;
 
     case LOC_REGISTER:
-    case LOC_REGPARM:
       /* Don't generate any code at all; in the process of treating
          this as an lvalue or rvalue, the caller will generate the
          right code.  */
       value->kind = axs_lvalue_register;
-      value->u.reg = SYMBOL_VALUE (var);
+      value->u.reg = SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch);
       break;
 
       /* A lot like LOC_REF_ARG, but the pointer lives directly in a
-         register, not on the stack.  Simpler than LOC_REGISTER and
-         LOC_REGPARM, because it's just like any other case where the
-         thing has a real address.  */
+         register, not on the stack.  Simpler than LOC_REGISTER
+         because it's just like any other case where the thing
+        has a real address.  */
     case LOC_REGPARM_ADDR:
-      ax_reg (ax, SYMBOL_VALUE (var));
+      ax_reg (ax, SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch));
       value->kind = axs_lvalue_memory;
       break;
 
     case LOC_UNRESOLVED:
       {
        struct minimal_symbol *msym
-       = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (var), NULL, NULL);
+         = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (var), NULL, NULL);
        if (!msym)
          error (_("Couldn't resolve symbol `%s'."), SYMBOL_PRINT_NAME (var));
 
@@ -621,13 +629,12 @@ gen_var_ref (struct agent_expr *ax, struct axs_value *value, struct symbol *var)
       break;
 
     case LOC_COMPUTED:
-    case LOC_COMPUTED_ARG:
       /* FIXME: cagney/2004-01-26: It should be possible to
-        unconditionally call the SYMBOL_OPS method when available.
+        unconditionally call the SYMBOL_COMPUTED_OPS method when available.
         Unfortunately DWARF 2 stores the frame-base (instead of the
         function) location in a function's symbol.  Oops!  For the
         moment enable this when/where applicable.  */
-      SYMBOL_OPS (var)->tracepoint_var_ref (var, ax, value);
+      SYMBOL_COMPUTED_OPS (var)->tracepoint_var_ref (var, gdbarch, ax, value);
       break;
 
     case LOC_OPTIMIZED_OUT:
@@ -652,7 +659,7 @@ gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
 {
   ax_const_l (ax, k);
   value->kind = axs_rvalue;
-  value->type = type;
+  value->type = check_typedef (type);
 }
 \f
 
@@ -708,7 +715,8 @@ require_rvalue (struct agent_expr *ax, struct axs_value *value)
    lvalue through unchanged, and let `+' raise an error.  */
 
 static void
-gen_usual_unary (struct agent_expr *ax, struct axs_value *value)
+gen_usual_unary (struct expression *exp, struct agent_expr *ax,
+                struct axs_value *value)
 {
   /* We don't have to generate any code for the usual integral
      conversions, since values are always represented as full-width on
@@ -743,7 +751,7 @@ gen_usual_unary (struct agent_expr *ax, struct axs_value *value)
 
       /* If the value is an enum, call it an integer.  */
     case TYPE_CODE_ENUM:
-      value->type = builtin_type_int;
+      value->type = builtin_type (exp->gdbarch)->builtin_int;
       break;
     }
 
@@ -828,8 +836,8 @@ is_nontrivial_conversion (struct type *from, struct type *to)
    and promotes each argument to that type.  *VALUE1 and *VALUE2
    describe the values as they are passed in, and as they are left.  */
 static void
-gen_usual_arithmetic (struct agent_expr *ax, struct axs_value *value1,
-                     struct axs_value *value2)
+gen_usual_arithmetic (struct expression *exp, struct agent_expr *ax,
+                     struct axs_value *value1, struct axs_value *value2)
 {
   /* Do the usual binary conversions.  */
   if (TYPE_CODE (value1->type) == TYPE_CODE_INT
@@ -840,7 +848,7 @@ gen_usual_arithmetic (struct agent_expr *ax, struct axs_value *value1,
          unsigned type is considered "wider" than an n-bit signed
          type.  Promote to the "wider" of the two types, and always
          promote at least to int.  */
-      struct type *target = max_type (builtin_type_int,
+      struct type *target = max_type (builtin_type (exp->gdbarch)->builtin_int,
                                      max_type (value1->type, value2->type));
 
       /* Deal with value2, on the top of the stack.  */
@@ -856,7 +864,7 @@ gen_usual_arithmetic (struct agent_expr *ax, struct axs_value *value1,
          ax_simple (ax, aop_swap);
        }
 
-      value1->type = value2->type = target;
+      value1->type = value2->type = check_typedef (target);
     }
 }
 
@@ -865,17 +873,20 @@ gen_usual_arithmetic (struct agent_expr *ax, struct axs_value *value1,
    the value on the top of the stack, as described by VALUE.  Assume
    the value has integral type.  */
 static void
-gen_integral_promotions (struct agent_expr *ax, struct axs_value *value)
+gen_integral_promotions (struct expression *exp, struct agent_expr *ax,
+                        struct axs_value *value)
 {
-  if (!type_wider_than (value->type, builtin_type_int))
+  const struct builtin_type *builtin = builtin_type (exp->gdbarch);
+
+  if (!type_wider_than (value->type, builtin->builtin_int))
     {
-      gen_conversion (ax, value->type, builtin_type_int);
-      value->type = builtin_type_int;
+      gen_conversion (ax, value->type, builtin->builtin_int);
+      value->type = builtin->builtin_int;
     }
-  else if (!type_wider_than (value->type, builtin_type_unsigned_int))
+  else if (!type_wider_than (value->type, builtin->builtin_unsigned_int))
     {
-      gen_conversion (ax, value->type, builtin_type_unsigned_int);
-      value->type = builtin_type_unsigned_int;
+      gen_conversion (ax, value->type, builtin->builtin_unsigned_int);
+      value->type = builtin->builtin_unsigned_int;
     }
 }
 
@@ -893,6 +904,7 @@ gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
   switch (TYPE_CODE (type))
     {
     case TYPE_CODE_PTR:
+    case TYPE_CODE_REF:
       /* It's implementation-defined, and I'll bet this is what GCC
          does.  */
       break;
@@ -907,9 +919,8 @@ gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
       /* We don't have to worry about the size of the value, because
          all our integral values are fully sign-extended, and when
          casting pointers we can do anything we like.  Is there any
-         way for us to actually know what GCC actually does with a
-         cast like this?  */
-      value->type = type;
+         way for us to know what GCC actually does with a cast like
+         this?  */
       break;
 
     case TYPE_CODE_INT:
@@ -949,105 +960,60 @@ gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
 }
 
 
-/* Generate code for an addition; non-trivial because we deal with
-   pointer arithmetic.  We set VALUE to describe the result value; we
-   assume VALUE1 and VALUE2 describe the two operands, and that
-   they've undergone the usual binary conversions.  Used by both
-   BINOP_ADD and BINOP_SUBSCRIPT.  NAME is used in error messages.  */
+/* Generate code for pointer arithmetic PTR + INT.  */
 static void
-gen_add (struct agent_expr *ax, struct axs_value *value,
-        struct axs_value *value1, struct axs_value *value2, char *name)
+gen_ptradd (struct agent_expr *ax, struct axs_value *value,
+           struct axs_value *value1, struct axs_value *value2)
 {
-  /* Is it INT+PTR?  */
-  if (TYPE_CODE (value1->type) == TYPE_CODE_INT
-      && TYPE_CODE (value2->type) == TYPE_CODE_PTR)
-    {
-      /* Swap the values and proceed normally.  */
-      ax_simple (ax, aop_swap);
-      gen_scale (ax, aop_mul, value2->type);
-      ax_simple (ax, aop_add);
-      gen_extend (ax, value2->type);   /* Catch overflow.  */
-      value->type = value2->type;
-    }
+  gdb_assert (pointer_type (value1->type));
+  gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
 
-  /* Is it PTR+INT?  */
-  else if (TYPE_CODE (value1->type) == TYPE_CODE_PTR
-          && TYPE_CODE (value2->type) == TYPE_CODE_INT)
-    {
-      gen_scale (ax, aop_mul, value1->type);
-      ax_simple (ax, aop_add);
-      gen_extend (ax, value1->type);   /* Catch overflow.  */
-      value->type = value1->type;
-    }
+  gen_scale (ax, aop_mul, value1->type);
+  ax_simple (ax, aop_add);
+  gen_extend (ax, value1->type);       /* Catch overflow.  */
+  value->type = value1->type;
+  value->kind = axs_rvalue;
+}
 
-  /* Must be number + number; the usual binary conversions will have
-     brought them both to the same width.  */
-  else if (TYPE_CODE (value1->type) == TYPE_CODE_INT
-          && TYPE_CODE (value2->type) == TYPE_CODE_INT)
-    {
-      ax_simple (ax, aop_add);
-      gen_extend (ax, value1->type);   /* Catch overflow.  */
-      value->type = value1->type;
-    }
 
-  else
-    error (_("Invalid combination of types in %s."), name);
+/* Generate code for pointer arithmetic PTR - INT.  */
+static void
+gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
+           struct axs_value *value1, struct axs_value *value2)
+{
+  gdb_assert (pointer_type (value1->type));
+  gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
 
+  gen_scale (ax, aop_mul, value1->type);
+  ax_simple (ax, aop_sub);
+  gen_extend (ax, value1->type);       /* Catch overflow.  */
+  value->type = value1->type;
   value->kind = axs_rvalue;
 }
 
 
-/* Generate code for an addition; non-trivial because we have to deal
-   with pointer arithmetic.  We set VALUE to describe the result
-   value; we assume VALUE1 and VALUE2 describe the two operands, and
-   that they've undergone the usual binary conversions.  */
+/* Generate code for pointer arithmetic PTR - PTR.  */
 static void
-gen_sub (struct agent_expr *ax, struct axs_value *value,
-        struct axs_value *value1, struct axs_value *value2)
+gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
+            struct axs_value *value1, struct axs_value *value2,
+            struct type *result_type)
 {
-  if (TYPE_CODE (value1->type) == TYPE_CODE_PTR)
-    {
-      /* Is it PTR - INT?  */
-      if (TYPE_CODE (value2->type) == TYPE_CODE_INT)
-       {
-         gen_scale (ax, aop_mul, value1->type);
-         ax_simple (ax, aop_sub);
-         gen_extend (ax, value1->type);        /* Catch overflow.  */
-         value->type = value1->type;
-       }
+  gdb_assert (pointer_type (value1->type));
+  gdb_assert (pointer_type (value2->type));
 
-      /* Is it PTR - PTR?  Strictly speaking, the types ought to
-         match, but this is what the normal GDB expression evaluator
-         tests for.  */
-      else if (TYPE_CODE (value2->type) == TYPE_CODE_PTR
-              && (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
-                  == TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type))))
-       {
-         ax_simple (ax, aop_sub);
-         gen_scale (ax, aop_div_unsigned, value1->type);
-         value->type = builtin_type_long;      /* FIXME --- should be ptrdiff_t */
-       }
-      else
-       error (_("\
+  if (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
+      != TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type)))
+    error (_("\
 First argument of `-' is a pointer, but second argument is neither\n\
 an integer nor a pointer of the same type."));
-    }
-
-  /* Must be number + number.  */
-  else if (TYPE_CODE (value1->type) == TYPE_CODE_INT
-          && TYPE_CODE (value2->type) == TYPE_CODE_INT)
-    {
-      ax_simple (ax, aop_sub);
-      gen_extend (ax, value1->type);   /* Catch overflow.  */
-      value->type = value1->type;
-    }
-
-  else
-    error (_("Invalid combination of types in subtraction."));
 
+  ax_simple (ax, aop_sub);
+  gen_scale (ax, aop_div_unsigned, value1->type);
+  value->type = result_type;
   value->kind = axs_rvalue;
 }
 
+
 /* Generate code for a binary operator that doesn't do pointer magic.
    We set VALUE to describe the result value; we assume VALUE1 and
    VALUE2 describe the two operands, and that they've undergone the
@@ -1074,15 +1040,15 @@ gen_binop (struct agent_expr *ax, struct axs_value *value,
 
 
 static void
-gen_logical_not (struct agent_expr *ax, struct axs_value *value)
+gen_logical_not (struct agent_expr *ax, struct axs_value *value,
+                struct type *result_type)
 {
   if (TYPE_CODE (value->type) != TYPE_CODE_INT
       && TYPE_CODE (value->type) != TYPE_CODE_PTR)
     error (_("Invalid type of operand to `!'."));
 
-  gen_usual_unary (ax, value);
   ax_simple (ax, aop_log_not);
-  value->type = builtin_type_int;
+  value->type = result_type;
 }
 
 
@@ -1092,8 +1058,6 @@ gen_complement (struct agent_expr *ax, struct axs_value *value)
   if (TYPE_CODE (value->type) != TYPE_CODE_INT)
     error (_("Invalid type of operand to `~'."));
 
-  gen_usual_unary (ax, value);
-  gen_integral_promotions (ax, value);
   ax_simple (ax, aop_bit_not);
   gen_extend (ax, value->type);
 }
@@ -1108,7 +1072,7 @@ gen_deref (struct agent_expr *ax, struct axs_value *value)
 {
   /* The caller should check the type, because several operators use
      this, and we don't know what error message to generate.  */
-  if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
+  if (!pointer_type (value->type))
     internal_error (__FILE__, __LINE__,
                    _("gen_deref: expected a pointer"));
 
@@ -1118,6 +1082,8 @@ gen_deref (struct agent_expr *ax, struct axs_value *value)
      T" to "T", and mark the value as an lvalue in memory.  Leave it
      to the consumer to actually dereference it.  */
   value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
+  if (TYPE_CODE (value->type) == TYPE_CODE_VOID)
+    error (_("Attempt to dereference a generic pointer."));
   value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
                 ? axs_rvalue : axs_lvalue_memory);
 }
@@ -1195,8 +1161,9 @@ find_field (struct type *type, char *name)
    starting and one-past-ending *bit* numbers of the field within the
    structure.  */
 static void
-gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
-                 struct type *type, int start, int end)
+gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
+                 struct axs_value *value, struct type *type,
+                 int start, int end)
 {
   /* Note that ops[i] fetches 8 << i bits.  */
   static enum agent_op ops[]
@@ -1322,7 +1289,7 @@ gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
             the sign/zero extension will wipe them out.
             - If we're in the interior of the word, then there is no garbage
             on either end, because the ref operators zero-extend.  */
-         if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
+         if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
            gen_left_shift (ax, end - (offset + op_size));
          else
            gen_left_shift (ax, offset - start);
@@ -1356,7 +1323,8 @@ gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
    the operator being compiled, and OPERAND_NAME is the kind of thing
    it operates on; we use them in error messages.  */
 static void
-gen_struct_ref (struct agent_expr *ax, struct axs_value *value, char *field,
+gen_struct_ref (struct expression *exp, struct agent_expr *ax,
+               struct axs_value *value, char *field,
                char *operator_name, char *operand_name)
 {
   struct type *type;
@@ -1365,9 +1333,9 @@ gen_struct_ref (struct agent_expr *ax, struct axs_value *value, char *field,
   /* Follow pointers until we reach a non-pointer.  These aren't the C
      semantics, but they're what the normal GDB evaluator does, so we
      should at least be consistent.  */
-  while (TYPE_CODE (value->type) == TYPE_CODE_PTR)
+  while (pointer_type (value->type))
     {
-      gen_usual_unary (ax, value);
+      require_rvalue (ax, value);
       gen_deref (ax, value);
     }
   type = check_typedef (value->type);
@@ -1387,7 +1355,7 @@ gen_struct_ref (struct agent_expr *ax, struct axs_value *value, char *field,
 
   /* Is this a bitfield?  */
   if (TYPE_FIELD_PACKED (type, i))
-    gen_bitfield_ref (ax, value, TYPE_FIELD_TYPE (type, i),
+    gen_bitfield_ref (exp, ax, value, TYPE_FIELD_TYPE (type, i),
                      TYPE_FIELD_BITPOS (type, i),
                      (TYPE_FIELD_BITPOS (type, i)
                       + TYPE_FIELD_BITSIZE (type, i)));
@@ -1412,13 +1380,13 @@ gen_struct_ref (struct agent_expr *ax, struct axs_value *value, char *field,
    stack slots, doing weird things with sizeof, etc.  So we require
    the right operand to be a constant expression.  */
 static void
-gen_repeat (union exp_element **pc, struct agent_expr *ax,
-           struct axs_value *value)
+gen_repeat (struct expression *exp, union exp_element **pc,
+           struct agent_expr *ax, struct axs_value *value)
 {
   struct axs_value value1;
   /* We don't want to turn this into an rvalue, so no conversions
      here.  */
-  gen_expr (pc, ax, &value1);
+  gen_expr (exp, pc, ax, &value1);
   if (value1.kind != axs_lvalue_memory)
     error (_("Left operand of `@' must be an object in memory."));
 
@@ -1440,9 +1408,8 @@ gen_repeat (union exp_element **pc, struct agent_expr *ax,
     {
       /* FIXME-type-allocation: need a way to free this type when we are
          done with it.  */
-      struct type *range
-      = create_range_type (0, builtin_type_int, 0, length - 1);
-      struct type *array = create_array_type (0, value1.type, range);
+      struct type *array
+       = lookup_array_range_type (value1.type, 0, length - 1);
 
       value->kind = axs_lvalue_memory;
       value->type = array;
@@ -1455,8 +1422,9 @@ gen_repeat (union exp_element **pc, struct agent_expr *ax,
    *PC should point at the start of the operand expression; we advance it
    to the first instruction after the operand.  */
 static void
-gen_sizeof (union exp_element **pc, struct agent_expr *ax,
-           struct axs_value *value)
+gen_sizeof (struct expression *exp, union exp_element **pc,
+           struct agent_expr *ax, struct axs_value *value,
+           struct type *size_type)
 {
   /* We don't care about the value of the operand expression; we only
      care about its type.  However, in the current arrangement, the
@@ -1464,14 +1432,14 @@ gen_sizeof (union exp_element **pc, struct agent_expr *ax,
      So we generate code for the operand, and then throw it away,
      replacing it with code that simply pushes its size.  */
   int start = ax->len;
-  gen_expr (pc, ax, value);
+  gen_expr (exp, pc, ax, value);
 
   /* Throw away the code we just generated.  */
   ax->len = start;
 
   ax_const_l (ax, TYPE_LENGTH (value->type));
   value->kind = axs_rvalue;
-  value->type = builtin_type_int;
+  value->type = size_type;
 }
 \f
 
@@ -1481,12 +1449,13 @@ gen_sizeof (union exp_element **pc, struct agent_expr *ax,
 /* A gen_expr function written by a Gen-X'er guy.
    Append code for the subexpression of EXPR starting at *POS_P to AX.  */
 static void
-gen_expr (union exp_element **pc, struct agent_expr *ax,
-         struct axs_value *value)
+gen_expr (struct expression *exp, union exp_element **pc,
+         struct agent_expr *ax, struct axs_value *value)
 {
   /* Used to hold the descriptions of operand expressions.  */
-  struct axs_value value1, value2;
-  enum exp_opcode op = (*pc)[0].opcode;
+  struct axs_value value1, value2, value3;
+  enum exp_opcode op = (*pc)[0].opcode, op2;
+  int if1, go1, if2, go2, end;
 
   /* If we're looking at a constant expression, just push its value.  */
   {
@@ -1514,59 +1483,137 @@ gen_expr (union exp_element **pc, struct agent_expr *ax,
     case BINOP_BITWISE_AND:
     case BINOP_BITWISE_IOR:
     case BINOP_BITWISE_XOR:
+    case BINOP_EQUAL:
+    case BINOP_NOTEQUAL:
+    case BINOP_LESS:
+    case BINOP_GTR:
+    case BINOP_LEQ:
+    case BINOP_GEQ:
       (*pc)++;
-      gen_expr (pc, ax, &value1);
-      gen_usual_unary (ax, &value1);
-      gen_expr (pc, ax, &value2);
-      gen_usual_unary (ax, &value2);
-      gen_usual_arithmetic (ax, &value1, &value2);
-      switch (op)
-       {
-       case BINOP_ADD:
-         gen_add (ax, value, &value1, &value2, "addition");
-         break;
-       case BINOP_SUB:
-         gen_sub (ax, value, &value1, &value2);
-         break;
-       case BINOP_MUL:
-         gen_binop (ax, value, &value1, &value2,
-                    aop_mul, aop_mul, 1, "multiplication");
-         break;
-       case BINOP_DIV:
-         gen_binop (ax, value, &value1, &value2,
-                    aop_div_signed, aop_div_unsigned, 1, "division");
-         break;
-       case BINOP_REM:
-         gen_binop (ax, value, &value1, &value2,
-                    aop_rem_signed, aop_rem_unsigned, 1, "remainder");
-         break;
-       case BINOP_SUBSCRIPT:
-         gen_add (ax, value, &value1, &value2, "array subscripting");
-         if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
-           error (_("Invalid combination of types in array subscripting."));
-         gen_deref (ax, value);
-         break;
-       case BINOP_BITWISE_AND:
-         gen_binop (ax, value, &value1, &value2,
-                    aop_bit_and, aop_bit_and, 0, "bitwise and");
-         break;
+      gen_expr (exp, pc, ax, &value1);
+      gen_usual_unary (exp, ax, &value1);
+      gen_expr_binop_rest (exp, op, pc, ax, value, &value1, &value2);
+      break;
 
-       case BINOP_BITWISE_IOR:
-         gen_binop (ax, value, &value1, &value2,
-                    aop_bit_or, aop_bit_or, 0, "bitwise or");
-         break;
+    case BINOP_LOGICAL_AND:
+      (*pc)++;
+      /* Generate the obvious sequence of tests and jumps.  */
+      gen_expr (exp, pc, ax, &value1);
+      gen_usual_unary (exp, ax, &value1);
+      if1 = ax_goto (ax, aop_if_goto);
+      go1 = ax_goto (ax, aop_goto);
+      ax_label (ax, if1, ax->len);
+      gen_expr (exp, pc, ax, &value2);
+      gen_usual_unary (exp, ax, &value2);
+      if2 = ax_goto (ax, aop_if_goto);
+      go2 = ax_goto (ax, aop_goto);
+      ax_label (ax, if2, ax->len);
+      ax_const_l (ax, 1);
+      end = ax_goto (ax, aop_goto);
+      ax_label (ax, go1, ax->len);
+      ax_label (ax, go2, ax->len);
+      ax_const_l (ax, 0);
+      ax_label (ax, end, ax->len);
+      value->kind = axs_rvalue;
+      value->type = language_bool_type (exp->language_defn, exp->gdbarch);
+      break;
 
-       case BINOP_BITWISE_XOR:
-         gen_binop (ax, value, &value1, &value2,
-                    aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
-         break;
+    case BINOP_LOGICAL_OR:
+      (*pc)++;
+      /* Generate the obvious sequence of tests and jumps.  */
+      gen_expr (exp, pc, ax, &value1);
+      gen_usual_unary (exp, ax, &value1);
+      if1 = ax_goto (ax, aop_if_goto);
+      gen_expr (exp, pc, ax, &value2);
+      gen_usual_unary (exp, ax, &value2);
+      if2 = ax_goto (ax, aop_if_goto);
+      ax_const_l (ax, 0);
+      end = ax_goto (ax, aop_goto);
+      ax_label (ax, if1, ax->len);
+      ax_label (ax, if2, ax->len);
+      ax_const_l (ax, 1);
+      ax_label (ax, end, ax->len);
+      value->kind = axs_rvalue;
+      value->type = language_bool_type (exp->language_defn, exp->gdbarch);
+      break;
 
-       default:
-         /* We should only list operators in the outer case statement
-            that we actually handle in the inner case statement.  */
-         internal_error (__FILE__, __LINE__,
-                         _("gen_expr: op case sets don't match"));
+    case TERNOP_COND:
+      (*pc)++;
+      gen_expr (exp, pc, ax, &value1);
+      gen_usual_unary (exp, ax, &value1);
+      /* For (A ? B : C), it's easiest to generate subexpression
+        bytecodes in order, but if_goto jumps on true, so we invert
+        the sense of A.  Then we can do B by dropping through, and
+        jump to do C.  */
+      gen_logical_not (ax, &value1,
+                      language_bool_type (exp->language_defn, exp->gdbarch));
+      if1 = ax_goto (ax, aop_if_goto);
+      gen_expr (exp, pc, ax, &value2);
+      gen_usual_unary (exp, ax, &value2);
+      end = ax_goto (ax, aop_goto);
+      ax_label (ax, if1, ax->len);
+      gen_expr (exp, pc, ax, &value3);
+      gen_usual_unary (exp, ax, &value3);
+      ax_label (ax, end, ax->len);
+      /* This is arbitary - what if B and C are incompatible types? */
+      value->type = value2.type;
+      value->kind = value2.kind;
+      break;
+
+    case BINOP_ASSIGN:
+      (*pc)++;
+      if ((*pc)[0].opcode == OP_INTERNALVAR)
+       {
+         char *name = internalvar_name ((*pc)[1].internalvar);
+         struct trace_state_variable *tsv;
+         (*pc) += 3;
+         gen_expr (exp, pc, ax, value);
+         tsv = find_trace_state_variable (name);
+         if (tsv)
+           {
+             ax_tsv (ax, aop_setv, tsv->number);
+             if (trace_kludge)
+               ax_tsv (ax, aop_tracev, tsv->number);
+           }
+         else
+           error (_("$%s is not a trace state variable, may not assign to it"), name);
+       }
+      else
+       error (_("May only assign to trace state variables"));
+      break;
+
+    case BINOP_ASSIGN_MODIFY:
+      (*pc)++;
+      op2 = (*pc)[0].opcode;
+      (*pc)++;
+      (*pc)++;
+      if ((*pc)[0].opcode == OP_INTERNALVAR)
+       {
+         char *name = internalvar_name ((*pc)[1].internalvar);
+         struct trace_state_variable *tsv;
+         (*pc) += 3;
+         tsv = find_trace_state_variable (name);
+         if (tsv)
+           {
+             /* The tsv will be the left half of the binary operation.  */
+             ax_tsv (ax, aop_getv, tsv->number);
+             if (trace_kludge)
+               ax_tsv (ax, aop_tracev, tsv->number);
+             /* Trace state variables are always 64-bit integers.  */
+             value1.kind = axs_rvalue;
+             value1.type = builtin_type (exp->gdbarch)->builtin_long_long;
+             /* Now do right half of expression.  */
+             gen_expr_binop_rest (exp, op2, pc, ax, value, &value1, &value2);
+             /* We have a result of the binary op, set the tsv.  */
+             ax_tsv (ax, aop_setv, tsv->number);
+             if (trace_kludge)
+               ax_tsv (ax, aop_tracev, tsv->number);
+           }
+         else
+           error (_("$%s is not a trace state variable, may not assign to it"), name);
        }
+      else
+       error (_("May only assign to trace state variables"));
       break;
 
       /* Note that we need to be a little subtle about generating code
@@ -1577,12 +1624,12 @@ gen_expr (union exp_element **pc, struct agent_expr *ax,
          variables it mentions get traced.  */
     case BINOP_COMMA:
       (*pc)++;
-      gen_expr (pc, ax, &value1);
+      gen_expr (exp, pc, ax, &value1);
       /* Don't just dispose of the left operand.  We might be tracing,
          in which case we want to emit code to trace it if it's an
          lvalue.  */
       gen_traced_pop (ax, &value1);
-      gen_expr (pc, ax, value);
+      gen_expr (exp, pc, ax, value);
       /* It's the consumer's responsibility to trace the right operand.  */
       break;
 
@@ -1596,7 +1643,7 @@ gen_expr (union exp_element **pc, struct agent_expr *ax,
       break;
 
     case OP_VAR_VALUE:
-      gen_var_ref (ax, value, (*pc)[2].symbol);
+      gen_var_ref (exp->gdbarch, ax, value, (*pc)[2].symbol);
       (*pc) += 4;
       break;
 
@@ -1605,32 +1652,52 @@ gen_expr (union exp_element **pc, struct agent_expr *ax,
        const char *name = &(*pc)[2].string;
        int reg;
        (*pc) += 4 + BYTES_TO_EXP_ELEM ((*pc)[1].longconst + 1);
-       reg = frame_map_name_to_regnum (deprecated_safe_get_selected_frame (),
-                                       name, strlen (name));
+       reg = user_reg_map_name_to_regnum (exp->gdbarch, name, strlen (name));
        if (reg == -1)
          internal_error (__FILE__, __LINE__,
                          _("Register $%s not available"), name);
+       if (reg >= gdbarch_num_regs (exp->gdbarch))
+         error (_("'%s' is a pseudo-register; "
+                  "GDB cannot yet trace pseudoregister contents."),
+                name);
        value->kind = axs_lvalue_register;
        value->u.reg = reg;
-       value->type = register_type (current_gdbarch, reg);
+       value->type = register_type (exp->gdbarch, reg);
       }
       break;
 
     case OP_INTERNALVAR:
-      error (_("GDB agent expressions cannot use convenience variables."));
+      {
+       const char *name = internalvar_name ((*pc)[1].internalvar);
+       struct trace_state_variable *tsv;
+       (*pc) += 3;
+       tsv = find_trace_state_variable (name);
+       if (tsv)
+         {
+           ax_tsv (ax, aop_getv, tsv->number);
+           if (trace_kludge)
+             ax_tsv (ax, aop_tracev, tsv->number);
+           /* Trace state variables are always 64-bit integers.  */
+           value->kind = axs_rvalue;
+           value->type = builtin_type (exp->gdbarch)->builtin_long_long;
+         }
+       else
+         error (_("$%s is not a trace state variable; GDB agent expressions cannot use convenience variables."), name);
+      }
+      break;
 
       /* Weirdo operator: see comments for gen_repeat for details.  */
     case BINOP_REPEAT:
       /* Note that gen_repeat handles its own argument evaluation.  */
       (*pc)++;
-      gen_repeat (pc, ax, value);
+      gen_repeat (exp, pc, ax, value);
       break;
 
     case UNOP_CAST:
       {
        struct type *type = (*pc)[1].type;
        (*pc) += 3;
-       gen_expr (pc, ax, value);
+       gen_expr (exp, pc, ax, value);
        gen_cast (ax, value, type);
       }
       break;
@@ -1639,7 +1706,7 @@ gen_expr (union exp_element **pc, struct agent_expr *ax,
       {
        struct type *type = check_typedef ((*pc)[1].type);
        (*pc) += 3;
-       gen_expr (pc, ax, value);
+       gen_expr (exp, pc, ax, value);
        /* I'm not sure I understand UNOP_MEMVAL entirely.  I think
           it's just a hack for dealing with minsyms; you take some
           integer constant, pretend it's the address of an lvalue of
@@ -1656,45 +1723,50 @@ gen_expr (union exp_element **pc, struct agent_expr *ax,
     case UNOP_PLUS:
       (*pc)++;
       /* + FOO is equivalent to 0 + FOO, which can be optimized. */
-      gen_expr (pc, ax, value);
-      gen_usual_unary (ax, value);
+      gen_expr (exp, pc, ax, value);
+      gen_usual_unary (exp, ax, value);
       break;
       
     case UNOP_NEG:
       (*pc)++;
       /* -FOO is equivalent to 0 - FOO.  */
-      gen_int_literal (ax, &value1, (LONGEST) 0, builtin_type_int);
-      gen_usual_unary (ax, &value1);   /* shouldn't do much */
-      gen_expr (pc, ax, &value2);
-      gen_usual_unary (ax, &value2);
-      gen_usual_arithmetic (ax, &value1, &value2);
-      gen_sub (ax, value, &value1, &value2);
+      gen_int_literal (ax, &value1, 0,
+                      builtin_type (exp->gdbarch)->builtin_int);
+      gen_usual_unary (exp, ax, &value1);      /* shouldn't do much */
+      gen_expr (exp, pc, ax, &value2);
+      gen_usual_unary (exp, ax, &value2);
+      gen_usual_arithmetic (exp, ax, &value1, &value2);
+      gen_binop (ax, value, &value1, &value2, aop_sub, aop_sub, 1, "negation");
       break;
 
     case UNOP_LOGICAL_NOT:
       (*pc)++;
-      gen_expr (pc, ax, value);
-      gen_logical_not (ax, value);
+      gen_expr (exp, pc, ax, value);
+      gen_usual_unary (exp, ax, value);
+      gen_logical_not (ax, value,
+                      language_bool_type (exp->language_defn, exp->gdbarch));
       break;
 
     case UNOP_COMPLEMENT:
       (*pc)++;
-      gen_expr (pc, ax, value);
+      gen_expr (exp, pc, ax, value);
+      gen_usual_unary (exp, ax, value);
+      gen_integral_promotions (exp, ax, value);
       gen_complement (ax, value);
       break;
 
     case UNOP_IND:
       (*pc)++;
-      gen_expr (pc, ax, value);
-      gen_usual_unary (ax, value);
-      if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
+      gen_expr (exp, pc, ax, value);
+      gen_usual_unary (exp, ax, value);
+      if (!pointer_type (value->type))
        error (_("Argument of unary `*' is not a pointer."));
       gen_deref (ax, value);
       break;
 
     case UNOP_ADDR:
       (*pc)++;
-      gen_expr (pc, ax, value);
+      gen_expr (exp, pc, ax, value);
       gen_address_of (ax, value);
       break;
 
@@ -1703,7 +1775,8 @@ gen_expr (union exp_element **pc, struct agent_expr *ax,
       /* Notice that gen_sizeof handles its own operand, unlike most
          of the other unary operator functions.  This is because we
          have to throw away the code we generate.  */
-      gen_sizeof (pc, ax, value);
+      gen_sizeof (exp, pc, ax, value,
+                 builtin_type (exp->gdbarch)->builtin_int);
       break;
 
     case STRUCTOP_STRUCT:
@@ -1713,11 +1786,11 @@ gen_expr (union exp_element **pc, struct agent_expr *ax,
        char *name = &(*pc)[2].string;
 
        (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
-       gen_expr (pc, ax, value);
+       gen_expr (exp, pc, ax, value);
        if (op == STRUCTOP_STRUCT)
-         gen_struct_ref (ax, value, name, ".", "structure or union");
+         gen_struct_ref (exp, ax, value, name, ".", "structure or union");
        else if (op == STRUCTOP_PTR)
-         gen_struct_ref (ax, value, name, "->",
+         gen_struct_ref (exp, ax, value, name, "->",
                          "pointer to a structure or union");
        else
          /* If this `if' chain doesn't handle it, then the case list
@@ -1727,6 +1800,27 @@ gen_expr (union exp_element **pc, struct agent_expr *ax,
       }
       break;
 
+    case OP_THIS:
+      {
+       char *this_name;
+       struct symbol *func, *sym;
+       struct block *b;
+
+       func = block_linkage_function (block_for_pc (ax->scope));
+       this_name = language_def (SYMBOL_LANGUAGE (func))->la_name_of_this;
+       b = SYMBOL_BLOCK_VALUE (func);
+
+       /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
+          symbol instead of the LOC_ARG one (if both exist).  */
+       sym = lookup_block_symbol (b, this_name, NULL, VAR_DOMAIN);
+       if (!sym)
+         error (_("no `%s' found"), this_name);
+
+       gen_var_ref (exp->gdbarch, ax, value, sym);
+       (*pc) += 2;
+      }
+      break;
+
     case OP_TYPE:
       error (_("Attempt to use a type name as an expression."));
 
@@ -1734,60 +1828,191 @@ gen_expr (union exp_element **pc, struct agent_expr *ax,
       error (_("Unsupported operator in expression."));
     }
 }
-\f
 
+/* This handles the middle-to-right-side of code generation for binary
+   expressions, which is shared between regular binary operations and
+   assign-modify (+= and friends) expressions.  */
 
-/* Generating bytecode from GDB expressions: driver */
-
-/* Given a GDB expression EXPR, produce a string of agent bytecode
-   which computes its value.  Return the agent expression, and set
-   *VALUE to describe its type, and whether it's an lvalue or rvalue.  */
-struct agent_expr *
-expr_to_agent (struct expression *expr, struct axs_value *value)
+static void
+gen_expr_binop_rest (struct expression *exp,
+                    enum exp_opcode op, union exp_element **pc,
+                    struct agent_expr *ax, struct axs_value *value,
+                    struct axs_value *value1, struct axs_value *value2)
 {
-  struct cleanup *old_chain = 0;
-  struct agent_expr *ax = new_agent_expr (0);
-  union exp_element *pc;
+  gen_expr (exp, pc, ax, value2);
+  gen_usual_unary (exp, ax, value2);
+  gen_usual_arithmetic (exp, ax, value1, value2);
+  switch (op)
+    {
+    case BINOP_ADD:
+      if (TYPE_CODE (value1->type) == TYPE_CODE_INT
+         && pointer_type (value2->type))
+       {
+         /* Swap the values and proceed normally.  */
+         ax_simple (ax, aop_swap);
+         gen_ptradd (ax, value, value2, value1);
+       }
+      else if (pointer_type (value1->type)
+              && TYPE_CODE (value2->type) == TYPE_CODE_INT)
+       gen_ptradd (ax, value, value1, value2);
+      else
+       gen_binop (ax, value, value1, value2,
+                  aop_add, aop_add, 1, "addition");
+      break;
+    case BINOP_SUB:
+      if (pointer_type (value1->type)
+         && TYPE_CODE (value2->type) == TYPE_CODE_INT)
+       gen_ptrsub (ax,value, value1, value2);
+      else if (pointer_type (value1->type)
+              && pointer_type (value2->type))
+       /* FIXME --- result type should be ptrdiff_t */
+       gen_ptrdiff (ax, value, value1, value2,
+                    builtin_type (exp->gdbarch)->builtin_long);
+      else
+       gen_binop (ax, value, value1, value2,
+                  aop_sub, aop_sub, 1, "subtraction");
+      break;
+    case BINOP_MUL:
+      gen_binop (ax, value, value1, value2,
+                aop_mul, aop_mul, 1, "multiplication");
+      break;
+    case BINOP_DIV:
+      gen_binop (ax, value, value1, value2,
+                aop_div_signed, aop_div_unsigned, 1, "division");
+      break;
+    case BINOP_REM:
+      gen_binop (ax, value, value1, value2,
+                aop_rem_signed, aop_rem_unsigned, 1, "remainder");
+      break;
+    case BINOP_SUBSCRIPT:
+      {
+       struct type *type;
 
-  old_chain = make_cleanup_free_agent_expr (ax);
+       if (binop_types_user_defined_p (op, value1->type, value2->type))
+         {
+           error (_("\
+cannot subscript requested type: cannot call user defined functions"));
+         }
+       else
+         {
+           /* If the user attempts to subscript something that is not
+              an array or pointer type (like a plain int variable for
+              example), then report this as an error.  */
+           type = check_typedef (value1->type);
+           if (TYPE_CODE (type) != TYPE_CODE_ARRAY
+               && TYPE_CODE (type) != TYPE_CODE_PTR)
+             {
+               if (TYPE_NAME (type))
+                 error (_("cannot subscript something of type `%s'"),
+                        TYPE_NAME (type));
+               else
+                 error (_("cannot subscript requested type"));
+             }
+         }
+
+       if (!is_integral_type (value2->type))
+         error (_("Argument to arithmetic operation not a number or boolean."));
+
+       gen_ptradd (ax, value, value1, value2);
+       gen_deref (ax, value);
+       break;
+      }
+    case BINOP_BITWISE_AND:
+      gen_binop (ax, value, value1, value2,
+                aop_bit_and, aop_bit_and, 0, "bitwise and");
+      break;
 
-  pc = expr->elts;
-  trace_kludge = 0;
-  gen_expr (&pc, ax, value);
+    case BINOP_BITWISE_IOR:
+      gen_binop (ax, value, value1, value2,
+                aop_bit_or, aop_bit_or, 0, "bitwise or");
+      break;
+      
+    case BINOP_BITWISE_XOR:
+      gen_binop (ax, value, value1, value2,
+                aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
+      break;
 
-  /* We have successfully built the agent expr, so cancel the cleanup
-     request.  If we add more cleanups that we always want done, this
-     will have to get more complicated.  */
-  discard_cleanups (old_chain);
-  return ax;
-}
+    case BINOP_EQUAL:
+      gen_binop (ax, value, value1, value2,
+                aop_equal, aop_equal, 0, "equal");
+      break;
+
+    case BINOP_NOTEQUAL:
+      gen_binop (ax, value, value1, value2,
+                aop_equal, aop_equal, 0, "equal");
+      gen_logical_not (ax, value,
+                      language_bool_type (exp->language_defn,
+                                          exp->gdbarch));
+      break;
+
+    case BINOP_LESS:
+      gen_binop (ax, value, value1, value2,
+                aop_less_signed, aop_less_unsigned, 0, "less than");
+      break;
+
+    case BINOP_GTR:
+      ax_simple (ax, aop_swap);
+      gen_binop (ax, value, value1, value2,
+                aop_less_signed, aop_less_unsigned, 0, "less than");
+      break;
+
+    case BINOP_LEQ:
+      ax_simple (ax, aop_swap);
+      gen_binop (ax, value, value1, value2,
+                aop_less_signed, aop_less_unsigned, 0, "less than");
+      gen_logical_not (ax, value,
+                      language_bool_type (exp->language_defn,
+                                          exp->gdbarch));
+      break;
 
+    case BINOP_GEQ:
+      gen_binop (ax, value, value1, value2,
+                aop_less_signed, aop_less_unsigned, 0, "less than");
+      gen_logical_not (ax, value,
+                      language_bool_type (exp->language_defn,
+                                          exp->gdbarch));
+      break;
+
+    default:
+      /* We should only list operators in the outer case statement
+        that we actually handle in the inner case statement.  */
+      internal_error (__FILE__, __LINE__,
+                     _("gen_expr: op case sets don't match"));
+    }
+}
+\f
 
-#if 0                          /* not used */
-/* Given a GDB expression EXPR denoting an lvalue in memory, produce a
-   string of agent bytecode which will leave its address and size on
-   the top of stack.  Return the agent expression.
+/* Given a single variable and a scope, generate bytecodes to trace
+   its value.  This is for use in situations where we have only a
+   variable's name, and no parsed expression; for instance, when the
+   name comes from a list of local variables of a function.  */
 
-   Not sure this function is useful at all.  */
 struct agent_expr *
-expr_to_address_and_size (struct expression *expr)
+gen_trace_for_var (CORE_ADDR scope, struct symbol *var)
 {
+  struct cleanup *old_chain = 0;
+  struct agent_expr *ax = new_agent_expr (scope);
   struct axs_value value;
-  struct agent_expr *ax = expr_to_agent (expr, &value);
 
-  /* Complain if the result is not a memory lvalue.  */
-  if (value.kind != axs_lvalue_memory)
-    {
-      free_agent_expr (ax);
-      error (_("Expression does not denote an object in memory."));
-    }
+  old_chain = make_cleanup_free_agent_expr (ax);
+
+  trace_kludge = 1;
+  gen_var_ref (NULL, ax, &value, var);
+
+  /* Make sure we record the final object, and get rid of it.  */
+  gen_traced_pop (ax, &value);
 
-  /* Push the object's size on the stack.  */
-  ax_const_l (ax, TYPE_LENGTH (value.type));
+  /* Oh, and terminate.  */
+  ax_simple (ax, aop_end);
 
+  /* We have successfully built the agent expr, so cancel the cleanup
+     request.  If we add more cleanups that we always want done, this
+     will have to get more complicated.  */
+  discard_cleanups (old_chain);
   return ax;
 }
-#endif
+
+/* Generating bytecode from GDB expressions: driver */
 
 /* Given a GDB expression EXPR, return bytecode to trace its value.
    The result will use the `trace' and `trace_quick' bytecodes to
@@ -1806,7 +2031,7 @@ gen_trace_for_expr (CORE_ADDR scope, struct expression *expr)
 
   pc = expr->elts;
   trace_kludge = 1;
-  gen_expr (&pc, ax, &value);
+  gen_expr (expr, &pc, ax, &value);
 
   /* Make sure we record the final object, and get rid of it.  */
   gen_traced_pop (ax, &value);
@@ -1821,6 +2046,37 @@ gen_trace_for_expr (CORE_ADDR scope, struct expression *expr)
   return ax;
 }
 
+/* Given a GDB expression EXPR, return a bytecode sequence that will
+   evaluate and return a result.  The bytecodes will do a direct
+   evaluation, using the current data on the target, rather than
+   recording blocks of memory and registers for later use, as
+   gen_trace_for_expr does.  The generated bytecode sequence leaves
+   the result of expression evaluation on the top of the stack.  */
+
+struct agent_expr *
+gen_eval_for_expr (CORE_ADDR scope, struct expression *expr)
+{
+  struct cleanup *old_chain = 0;
+  struct agent_expr *ax = new_agent_expr (scope);
+  union exp_element *pc;
+  struct axs_value value;
+
+  old_chain = make_cleanup_free_agent_expr (ax);
+
+  pc = expr->elts;
+  trace_kludge = 0;
+  gen_expr (expr, &pc, ax, &value);
+
+  /* Oh, and terminate.  */
+  ax_simple (ax, aop_end);
+
+  /* We have successfully built the agent expr, so cancel the cleanup
+     request.  If we add more cleanups that we always want done, this
+     will have to get more complicated.  */
+  discard_cleanups (old_chain);
+  return ax;
+}
+
 static void
 agent_command (char *exp, int from_tty)
 {
@@ -1851,6 +2107,41 @@ agent_command (char *exp, int from_tty)
   do_cleanups (old_chain);
   dont_repeat ();
 }
+
+/* Parse the given expression, compile it into an agent expression
+   that does direct evaluation, and display the resulting
+   expression.  */
+
+static void
+agent_eval_command (char *exp, int from_tty)
+{
+  struct cleanup *old_chain = 0;
+  struct expression *expr;
+  struct agent_expr *agent;
+  struct frame_info *fi = get_current_frame ();        /* need current scope */
+
+  /* We don't deal with overlay debugging at the moment.  We need to
+     think more carefully about this.  If you copy this code into
+     another command, change the error message; the user shouldn't
+     have to know anything about agent expressions.  */
+  if (overlay_debugging)
+    error (_("GDB can't do agent expression translation with overlays."));
+
+  if (exp == 0)
+    error_no_arg (_("expression to translate"));
+
+  expr = parse_expression (exp);
+  old_chain = make_cleanup (free_current_contents, &expr);
+  agent = gen_eval_for_expr (get_frame_pc (fi), expr);
+  make_cleanup_free_agent_expr (agent);
+  ax_print (gdb_stdout, agent);
+
+  /* It would be nice to call ax_reqs here to gather some general info
+     about the expression, and then print out the result.  */
+
+  do_cleanups (old_chain);
+  dont_repeat ();
+}
 \f
 
 /* Initialization code.  */
@@ -1860,6 +2151,10 @@ void
 _initialize_ax_gdb (void)
 {
   add_cmd ("agent", class_maintenance, agent_command,
-          _("Translate an expression into remote agent bytecode."),
+          _("Translate an expression into remote agent bytecode for tracing."),
+          &maintenancelist);
+
+  add_cmd ("agent-eval", class_maintenance, agent_eval_command,
+          _("Translate an expression into remote agent bytecode for evaluation."),
           &maintenancelist);
 }
This page took 0.048396 seconds and 4 git commands to generate.