bfd/
[deliverable/binutils-gdb.git] / gdb / doc / gdb.texinfo
index 076d166a6c757e3f0fad05509d3af8feb7351dd2..c42e0e612e384909bb9513b39315ad7ebb24bffb 100644 (file)
@@ -128,6 +128,7 @@ Copyright (C) 1988-2002 Free Software Foundation, Inc.
 * Stack::                       Examining the stack
 * Source::                      Examining source files
 * Data::                        Examining data
+* Macros::                      Preprocessor Macros
 * Tracepoints::                 Debugging remote targets non-intrusively
 * Overlays::                    Debugging programs that use overlays
 
@@ -154,6 +155,8 @@ Copyright (C) 1988-2002 Free Software Foundation, Inc.
 * Installing GDB::              Installing GDB
 * Maintenance Commands::        Maintenance Commands
 * Remote Protocol::             GDB Remote Serial Protocol
+* Copying::                    GNU General Public License says
+                                how you can copy and share GDB
 * GNU Free Documentation License::  The license for this documentation
 * Index::                       Index
 @end menu
@@ -191,10 +194,12 @@ You can use @value{GDBN} to debug programs written in C and C++.
 For more information, see @ref{Support,,Supported languages}.
 For more information, see @ref{C,,C and C++}.
 
-@cindex Chill
+@c OBSOLETE @cindex Chill
 @cindex Modula-2
-Support for Modula-2 and Chill is partial.  For information on Modula-2,
-see @ref{Modula-2,,Modula-2}.  For information on Chill, see @ref{Chill}.
+Support for Modula-2
+@c OBSOLETE and Chill
+is partial.  For information on Modula-2, see @ref{Modula-2,,Modula-2}.
+@c OBSOLETE For information on Chill, see @ref{Chill}.
 
 @cindex Pascal
 Debugging Pascal programs which use sets, subranges, file variables, or
@@ -340,7 +345,7 @@ omitted from this list, we would like to add your names!
 So that they may not regard their many labors as thankless, we
 particularly thank those who shepherded @value{GDBN} through major
 releases:
-Andrew Cagney (releases 5.0 and 5.1);
+Andrew Cagney (releases 5.3, 5.2, 5.1 and 5.0);
 Jim Blandy (release 4.18);
 Jason Molenda (release 4.17);
 Stan Shebs (release 4.14);
@@ -460,6 +465,8 @@ Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
 Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
 Zuhn have made contributions both large and small.
 
+Jim Blandy added support for preprocessor macros, while working for Red
+Hat.
 
 @node Sample Session
 @chapter A Sample @value{GDBN} Session
@@ -765,24 +772,24 @@ options may effectively be unavailable.
 The most usual way to start @value{GDBN} is with one argument,
 specifying an executable program:
 
-@example
+@smallexample
 @value{GDBP} @var{program}
-@end example
+@end smallexample
 
 @noindent
 You can also start with both an executable program and a core file
 specified:
 
-@example
+@smallexample
 @value{GDBP} @var{program} @var{core}
-@end example
+@end smallexample
 
 You can, instead, specify a process ID as a second argument, if you want
 to debug a running process:
 
-@example
+@smallexample
 @value{GDBP} @var{program} 1234
-@end example
+@end smallexample
 
 @noindent
 would attach @value{GDBN} to process @code{1234} (unless you also have a file
@@ -797,9 +804,9 @@ will warn you if it is unable to attach or to read core dumps.
 You can optionally have @code{@value{GDBP}} pass any arguments after the
 executable file to the inferior using @code{--args}.  This option stops
 option processing.
-@example
+@smallexample
 gdb --args gcc -O2 -c foo.c
-@end example
+@end smallexample
 This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
 @code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
 
@@ -817,9 +824,9 @@ options.  @value{GDBN} itself can remind you of the options available.
 @noindent
 Type
 
-@example
+@smallexample
 @value{GDBP} -help
-@end example
+@end smallexample
 
 @noindent
 to display all available options and briefly describe their use
@@ -948,9 +955,9 @@ information.  (@xref{Files,,Commands to specify files}, for information
 on @file{.syms} files.)  A simple @value{GDBN} invocation to do nothing
 but build a @file{.syms} file for future use is:
 
-@example
+@smallexample
 gdb -batch -nx -mapped -readnow programname
-@end example
+@end smallexample
 
 @node Mode Options
 @subsection Choosing modes
@@ -989,9 +996,9 @@ Batch mode may be useful for running @value{GDBN} as a filter, for
 example to download and run a program on another computer; in order to
 make this more useful, the message
 
-@example
+@smallexample
 Program exited normally.
-@end example
+@end smallexample
 
 @noindent
 (which is ordinarily issued whenever a program running under
@@ -1281,17 +1288,17 @@ enter it).  For example, if you type
 @c complete accuracy in these examples; space introduced for clarity.
 @c If texinfo enhancements make it unnecessary, it would be nice to
 @c replace " @key" by "@key" in the following...
-@example
+@smallexample
 (@value{GDBP}) info bre @key{TAB}
-@end example
+@end smallexample
 
 @noindent
 @value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
 the only @code{info} subcommand beginning with @samp{bre}:
 
-@example
+@smallexample
 (@value{GDBP}) info breakpoints
-@end example
+@end smallexample
 
 @noindent
 You can either press @key{RET} at this point, to run the @code{info
@@ -1311,7 +1318,7 @@ just sounds the bell.  Typing @key{TAB} again displays all the
 function names in your program that begin with those characters, for
 example:
 
-@example
+@smallexample
 (@value{GDBP}) b make_ @key{TAB}
 @exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
 make_a_section_from_file     make_environ
@@ -1320,7 +1327,7 @@ make_blockvector             make_pointer_type
 make_cleanup                 make_reference_type
 make_command                 make_symbol_completion_list
 (@value{GDBP}) b make_
-@end example
+@end smallexample
 
 @noindent
 After displaying the available possibilities, @value{GDBN} copies your
@@ -1353,22 +1360,22 @@ word-completion facilities in this situation, type a single quote
 @value{GDBN} that it may need to consider more information than usual
 when you press @key{TAB} or @kbd{M-?} to request word completion:
 
-@example
+@smallexample
 (@value{GDBP}) b 'bubble( @kbd{M-?}
 bubble(double,double)    bubble(int,int)
 (@value{GDBP}) b 'bubble(
-@end example
+@end smallexample
 
 In some cases, @value{GDBN} can tell that completing a name requires using
 quotes.  When this happens, @value{GDBN} inserts the quote for you (while
 completing as much as it can) if you do not type the quote in the first
 place:
 
-@example
+@smallexample
 (@value{GDBP}) b bub @key{TAB}
 @exdent @value{GDBN} alters your input line to the following, and rings a bell:
 (@value{GDBP}) b 'bubble(
-@end example
+@end smallexample
 
 @noindent
 In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
@@ -1607,6 +1614,16 @@ and addresses in the executable code.
 To request debugging information, specify the @samp{-g} option when you run
 the compiler.
 
+Most compilers do not include information about preprocessor macros in
+the debugging information if you specify the @option{-g} flag alone,
+because this information is rather large.  Version 3.1 of @value{NGCC},
+the @sc{gnu} C compiler, provides macro information if you specify the
+options @option{-gdwarf-2} and @option{-g3}; the former option requests
+debugging information in the Dwarf 2 format, and the latter requests
+``extra information''.  In the future, we hope to find more compact ways
+to represent macro information, so that it can be included with
+@option{-g} alone.
+
 Many C compilers are unable to handle the @samp{-g} and @samp{-O}
 options together.  Using those compilers, you cannot generate optimized
 executables containing debugging information.
@@ -1804,9 +1821,9 @@ null value.
 
 For example, this command:
 
-@example
+@smallexample
 set env USER = foo
-@end example
+@end smallexample
 
 @noindent
 tells the debugged program, when subsequently run, that its user is named
@@ -1877,9 +1894,9 @@ program is using.
 You can redirect your program's input and/or output using shell
 redirection with the @code{run} command.  For example,
 
-@example
+@smallexample
 run > outfile
-@end example
+@end smallexample
 
 @noindent
 starts your program, diverting its output to the file @file{outfile}.
@@ -1892,9 +1909,9 @@ argument, and causes this file to be the default for future @code{run}
 commands.  It also resets the controlling terminal for the child
 process, for future @code{run} commands.  For example,
 
-@example
+@smallexample
 tty /dev/ttyb
-@end example
+@end smallexample
 
 @noindent
 directs that processes started with subsequent @code{run} commands
@@ -2053,9 +2070,9 @@ form @samp{[New @var{systag}]}.  @var{systag} is a thread identifier
 whose form varies depending on the particular system.  For example, on
 LynxOS, you might see
 
-@example
+@smallexample
 [New process 35 thread 27]
-@end example
+@end smallexample
 
 @noindent
 when @value{GDBN} notices a new thread.  In contrast, on an SGI system,
@@ -2064,7 +2081,7 @@ further qualifier.
 
 @c FIXME!! (1) Does the [New...] message appear even for the very first
 @c         thread of a program, or does it only appear for the
-@c         second---i.e., when it becomes obvious we have a multithread
+@c         second---i.e.@: when it becomes obvious we have a multithread
 @c         program?
 @c         (2) *Is* there necessarily a first thread always?  Or do some
 @c         multithread systems permit starting a program with multiple
@@ -2124,9 +2141,9 @@ form @samp{[New @var{systag}]}.  @var{systag} is a thread identifier
 whose form varies depending on the particular system.  For example, on
 HP-UX, you see
 
-@example
+@smallexample
 [New thread 2 (system thread 26594)]
-@end example
+@end smallexample
 
 @noindent
 when @value{GDBN} notices a new thread.
@@ -2153,7 +2170,7 @@ For example,
 @end table
 @c end table here to get a little more width for example
 
-@example
+@smallexample
 (@value{GDBP}) info threads
     * 3 system thread 26607  worker (wptr=0x7b09c318 "@@") \@*
                                at quicksort.c:137
@@ -2161,7 +2178,7 @@ For example,
                                from /usr/lib/libc.2
       1 system thread 27905  0x7b003498 in _brk () \@*
                                from /usr/lib/libc.2
-@end example
+@end smallexample
 
 @table @code
 @kindex thread @var{threadno}
@@ -2637,9 +2654,9 @@ statement, not the instruction, after the change occurs.
 
 When you issue the @code{watch} command, @value{GDBN} reports
 
-@example
+@smallexample
 Hardware watchpoint @var{num}: @var{expr}
-@end example
+@end smallexample
 
 @noindent
 if it was able to set a hardware watchpoint.
@@ -2818,11 +2835,11 @@ knowledge of the implementation.  In the case of @sc{gnu} C@t{++}, exceptions ar
 raised by calling a library function named @code{__raise_exception}
 which has the following ANSI C interface:
 
-@example
+@smallexample
     /* @var{addr} is where the exception identifier is stored.
        @var{id} is the exception identifier.  */
     void __raise_exception (void **addr, void *id);
-@end example
+@end smallexample
 
 @noindent
 To make the debugger catch all exceptions before any stack
@@ -3015,9 +3032,9 @@ referents in the context of your breakpoint.  If @var{expression} uses
 symbols not referenced in the context of the breakpoint, @value{GDBN}
 prints an error message:
 
-@example
+@smallexample
 No symbol "foo" in current context.
-@end example
+@end smallexample
 
 @noindent
 @value{GDBN} does
@@ -3126,14 +3143,14 @@ breakpoints.  @xref{Output, ,Commands for controlled output}.
 For example, here is how you could use breakpoint commands to print the
 value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
 
-@example
+@smallexample
 break foo if x>0
 commands
 silent
 printf "x is %d\n",x
 cont
 end
-@end example
+@end smallexample
 
 One application for breakpoint commands is to compensate for one bug so
 you can test for another.  Put a breakpoint just after the erroneous line
@@ -3143,14 +3160,14 @@ to any variables that need them.  End with the @code{continue} command
 so that your program does not stop, and start with the @code{silent}
 command so that no output is produced.  Here is an example:
 
-@example
+@smallexample
 break 403
 commands
 silent
 set x = y + 4
 cont
 end
-@end example
+@end smallexample
 
 @node Breakpoint Menus
 @subsection Breakpoint menus
@@ -3209,10 +3226,10 @@ any other process is running that program.  In this situation,
 attempting to run or continue a program with a breakpoint causes
 @value{GDBN} to print an error message:
 
-@example
+@smallexample
 Cannot insert breakpoints.
 The same program may be running in another process.
-@end example
+@end smallexample
 
 When this happens, you have three ways to proceed:
 
@@ -3417,13 +3434,13 @@ example, in the following excerpt from a debugging session, the @code{f}
 (@code{frame}) command shows that execution is stopped at line
 @code{206}; yet when we use @code{until}, we get to line @code{195}:
 
-@example
+@smallexample
 (@value{GDBP}) f
 #0  main (argc=4, argv=0xf7fffae8) at m4.c:206
 206                 expand_input();
 (@value{GDBP}) until
 195             for ( ; argc > 0; NEXTARG) @{
-@end example
+@end smallexample
 
 This happened because, for execution efficiency, the compiler had
 generated code for the loop closure test at the end, rather than the
@@ -3745,9 +3762,9 @@ frames in @value{GDBN} commands.
 @cindex frameless execution
 Some compilers provide a way to compile functions so that they operate
 without stack frames.  (For example, the @value{GCC} option
-@example
+@smallexample
 @samp{-fomit-frame-pointer}
-@end example
+@end smallexample
 generates functions without a frame.)
 This is occasionally done with heavily used library functions to save
 the frame setup time.  @value{GDBN} has limited facilities for dealing
@@ -4401,7 +4418,9 @@ Table}.
 * Convenience Vars::            Convenience variables
 * Registers::                   Registers
 * Floating Point Hardware::     Floating point hardware
+* Vector Unit::                 Vector Unit
 * Memory Region Attributes::    Memory region attributes
+* Dump/Restore Files::          Copy between memory and a file
 @end menu
 
 @node Expressions
@@ -4411,9 +4430,10 @@ Table}.
 @code{print} and many other @value{GDBN} commands accept an expression and
 compute its value.  Any kind of constant, variable or operator defined
 by the programming language you are using is valid in an expression in
-@value{GDBN}.  This includes conditional expressions, function calls, casts
-and string constants.  It unfortunately does not include symbols defined
-by preprocessor @code{#define} commands.
+@value{GDBN}.  This includes conditional expressions, function calls,
+casts, and string constants.  It also includes preprocessor macros, if
+you compiled your program to include this information; see
+@ref{Compilation}.
 
 @value{GDBN} supports array constants in expressions input by
 the user.  The syntax is @{@var{element}, @var{element}@dots{}@}.  For example,
@@ -4481,7 +4501,7 @@ programming language from the point of execution in that frame
 
 @noindent This means that in the function
 
-@example
+@smallexample
 foo (a)
      int a;
 @{
@@ -4491,7 +4511,7 @@ foo (a)
     bar (b);
   @}
 @}
-@end example
+@end smallexample
 
 @noindent
 you can examine and use the variable @code{a} whenever your program is
@@ -4513,10 +4533,10 @@ using the colon-colon notation:
 @c info cannot cope with a :: index entry, but why deprive hard copy readers?
 @cindex @code{::}, context for variables/functions
 @end iftex
-@example
+@smallexample
 @var{file}::@var{variable}
 @var{function}::@var{variable}
-@end example
+@end smallexample
 
 @noindent
 Here @var{file} or @var{function} is the name of the context for the
@@ -4524,9 +4544,9 @@ static @var{variable}.  In the case of file names, you can use quotes to
 make sure @value{GDBN} parses the file name as a single word---for example,
 to print a global value of @code{x} defined in @file{f2.c}:
 
-@example
+@smallexample
 (@value{GDBP}) p 'f2.c'::x
-@end example
+@end smallexample
 
 @cindex C@t{++} scope resolution
 This use of @samp{::} is very rarely in conflict with the very similar
@@ -4563,9 +4583,9 @@ offered by the debug info format used by the compiler, @value{GDBN}
 might not be able to display values for such local variables.  If that
 happens, @value{GDBN} will print a message like this:
 
-@example
+@smallexample
 No symbol "foo" in current context.
-@end example
+@end smallexample
 
 To solve such problems, either recompile without optimizations, or use a
 different debug info format, if the compiler supports several such
@@ -4598,16 +4618,16 @@ argument; the second element comes from bytes of memory immediately
 following those that hold the first element, and so on.  Here is an
 example.  If a program says
 
-@example
+@smallexample
 int *array = (int *) malloc (len * sizeof (int));
-@end example
+@end smallexample
 
 @noindent
 you can print the contents of @code{array} with
 
-@example
+@smallexample
 p *array@@len
-@end example
+@end smallexample
 
 The left operand of @samp{@@} must reside in memory.  Array values made
 with @samp{@@} in this way behave just like other arrays in terms of
@@ -4618,18 +4638,18 @@ Artificial arrays most often appear in expressions via the value history
 Another way to create an artificial array is to use a cast.
 This re-interprets a value as if it were an array.
 The value need not be in memory:
-@example
+@smallexample
 (@value{GDBP}) p/x (short[2])0x12345678
 $1 = @{0x1234, 0x5678@}
-@end example
+@end smallexample
 
 As a convenience, if you leave the array length out (as in
 @samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
 the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
-@example
+@smallexample
 (@value{GDBP}) p/x (short[])0x12345678
 $2 = @{0x1234, 0x5678@}
-@end example
+@end smallexample
 
 Sometimes the artificial array mechanism is not quite enough; in
 moderately complex data structures, the elements of interest may not
@@ -4642,13 +4662,13 @@ instance, suppose you have an array @code{dtab} of pointers to
 structures, and you are interested in the values of a field @code{fv}
 in each structure.  Here is an example of what you might type:
 
-@example
+@smallexample
 set $i = 0
 p dtab[$i++]->fv
 @key{RET}
 @key{RET}
 @dots{}
-@end example
+@end smallexample
 
 @node Output Formats
 @section Output formats
@@ -4693,10 +4713,10 @@ Print as an address, both absolute in hexadecimal and as an offset from
 the nearest preceding symbol.  You can use this format used to discover
 where (in what function) an unknown address is located:
 
-@example
+@smallexample
 (@value{GDBP}) p/a 0x54320
 $3 = 0x54320 <_initialize_vx+396>
-@end example
+@end smallexample
 
 @noindent
 The command @code{info symbol 0x54320} yields similar results.
@@ -4712,9 +4732,9 @@ using typical floating point syntax.
 
 For example, to print the program counter in hex (@pxref{Registers}), type
 
-@example
+@smallexample
 p/x $pc
-@end example
+@end smallexample
 
 @noindent
 Note that no space is required before the slash; this is because command
@@ -4841,10 +4861,10 @@ Each expression added to the list is given a number to identify it;
 to remove an expression from the list, you specify that number.
 The automatic display looks like this:
 
-@example
+@smallexample
 2: foo = 38
 3: bar[5] = (struct hack *) 0x3804
-@end example
+@end smallexample
 
 @noindent
 This display shows item numbers, expressions and their current values.  As with
@@ -5032,11 +5052,11 @@ and source file location of the variable where it points, using
 For example, here @value{GDBN} shows that a variable @code{ptt} points
 at another variable @code{t}, defined in @file{hi2.c}:
 
-@example
+@smallexample
 (@value{GDBP}) set print symbol-filename on
 (@value{GDBP}) p/a ptt
 $4 = 0xe008 <t in hi2.c>
-@end example
+@end smallexample
 
 @quotation
 @emph{Warning:} For pointers that point to a local variable, @samp{p/a}
@@ -5318,16 +5338,16 @@ is the value just prior to @code{$$}, @code{$$1} is equivalent to
 For example, suppose you have just printed a pointer to a structure and
 want to see the contents of the structure.  It suffices to type
 
-@example
+@smallexample
 p *$
-@end example
+@end smallexample
 
 If you have a chain of structures where the component @code{next} points
 to the next one, you can print the contents of the next one with this:
 
-@example
+@smallexample
 p *$.next
-@end example
+@end smallexample
 
 @noindent
 You can print successive links in the chain by repeating this
@@ -5336,10 +5356,10 @@ command---which you can do by just typing @key{RET}.
 Note that the history records values, not expressions.  If the value of
 @code{x} is 4 and you type these commands:
 
-@example
+@smallexample
 print x
 set x=5
-@end example
+@end smallexample
 
 @noindent
 then the value recorded in the value history by the @code{print} command
@@ -5383,9 +5403,9 @@ You can save a value in a convenience variable with an assignment
 expression, just as you would set a variable in your program.
 For example:
 
-@example
+@smallexample
 set $foo = *object_ptr
-@end example
+@end smallexample
 
 @noindent
 would save in @code{$foo} the value contained in the object pointed to by
@@ -5411,10 +5431,10 @@ One of the ways to use a convenience variable is as a counter to be
 incremented or a pointer to be advanced.  For example, to print
 a field from successive elements of an array of structures:
 
-@example
+@smallexample
 set $i = 0
 print bar[$i++]->contents
-@end example
+@end smallexample
 
 @noindent
 Repeat that command by typing @key{RET}.
@@ -5486,16 +5506,16 @@ pointer to the current stack frame, and @code{$ps} is used for a
 register that contains the processor status.  For example,
 you could print the program counter in hex with
 
-@example
+@smallexample
 p/x $pc
-@end example
+@end smallexample
 
 @noindent
 or print the instruction to be executed next with
 
-@example
+@smallexample
 x/i $pc
-@end example
+@end smallexample
 
 @noindent
 or add four to the stack pointer@footnote{This is a way of removing
@@ -5506,9 +5526,9 @@ stack frames are selected.  To pop entire frames off the stack,
 regardless of machine architecture, use @code{return};
 see @ref{Returning, ,Returning from a function}.} with
 
-@example
+@smallexample
 set $sp += 4
-@end example
+@end smallexample
 
 Whenever possible, these four standard register names are available on
 your machine even though the machine has different canonical mnemonics,
@@ -5564,8 +5584,22 @@ floating point chip.  Currently, @samp{info float} is supported on
 the ARM and x86 machines.
 @end table
 
+@node Vector Unit
+@section Vector Unit
+@cindex vector unit
+
+Depending on the configuration, @value{GDBN} may be able to give you
+more information about the status of the vector unit.
+
+@table @code
+@kindex info vector
+@item info vector
+Display information about the vector unit.  The exact contents and
+layout vary depending on the hardware.
+@end table
+
 @node Memory Region Attributes
-@section Memory Region Attributes 
+@section Memory region attributes 
 @cindex memory region attributes
 
 @dfn{Memory region attributes} allow you to describe special handling 
@@ -5584,23 +5618,25 @@ to enable, disable, or remove a memory region, you specify that number.
 
 @table @code
 @kindex mem
-@item mem @var{address1} @var{address1} @var{attributes}@dots{}
-Define memory region bounded by @var{address1} and @var{address2}
-with attributes @var{attributes}@dots{}.
+@item mem @var{lower} @var{upper} @var{attributes}@dots{}
+Define memory region bounded by @var{lower} and @var{upper} with
+attributes @var{attributes}@dots{}.  Note that @var{upper} == 0 is a
+special case: it is treated as the the target's maximum memory address.
+(0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)
 
 @kindex delete mem
 @item delete mem @var{nums}@dots{}
-Remove memory region numbers @var{nums}.
+Remove memory regions @var{nums}@dots{}.
 
 @kindex disable mem
 @item disable mem @var{nums}@dots{}
-Disable memory region numbers @var{nums}.
+Disable memory regions @var{nums}@dots{}.
 A disabled memory region is not forgotten.  
 It may be enabled again later.
 
 @kindex enable mem
 @item enable mem @var{nums}@dots{}
-Enable memory region numbers @var{nums}.
+Enable memory regions @var{nums}@dots{}.
 
 @kindex info mem
 @item info mem
@@ -5641,7 +5677,7 @@ Memory is read only.
 @item wo
 Memory is write only.
 @item rw
-Memory is read/write (default).
+Memory is read/write.  This is the default.
 @end table
 
 @subsubsection Memory Access Size
@@ -5682,8 +5718,8 @@ registers.
 @table @code
 @item cache
 Enable @value{GDBN} to cache target memory. 
-@item nocache (default)
-Disable @value{GDBN} from caching target memory.
+@item nocache
+Disable @value{GDBN} from caching target memory.  This is the default.
 @end table
 
 @c @subsubsection Memory Write Verification
@@ -5695,6 +5731,306 @@ Disable @value{GDBN} from caching target memory.
 @c @item noverify (default)
 @c @end table
 
+@node Dump/Restore Files
+@section Copy between memory and a file
+@cindex dump/restore files
+@cindex append data to a file
+@cindex dump data to a file
+@cindex restore data from a file
+@kindex dump
+@kindex append
+@kindex restore
+
+The commands @code{dump}, @code{append}, and @code{restore} are used
+for copying data between target memory and a file.  Data is written
+into a file using @code{dump} or @code{append}, and restored from a 
+file into memory by using @code{restore}.  Files may be binary, srec,
+intel hex, or tekhex (but only binary files can be appended).
+
+@table @code
+@kindex dump binary 
+@kindex append binary 
+@item dump binary memory @var{filename} @var{start_addr} @var{end_addr}
+Dump contents of memory from @var{start_addr} to @var{end_addr} into 
+raw binary format file @var{filename}.
+
+@item append binary memory @var{filename} @var{start_addr} @var{end_addr}
+Append contents of memory from @var{start_addr} to @var{end_addr} to
+raw binary format file @var{filename}.
+
+@item dump binary value @var{filename} @var{expression}
+Dump value of @var{expression} into raw binary format file @var{filename}.
+
+@item append binary memory @var{filename} @var{expression}
+Append value of @var{expression} to raw binary format file @var{filename}.
+
+@kindex dump ihex 
+@item dump ihex memory @var{filename} @var{start_addr} @var{end_addr}
+Dump contents of memory from @var{start_addr} to @var{end_addr} into 
+intel hex format file @var{filename}.
+
+@item dump ihex value @var{filename} @var{expression}
+Dump value of @var{expression} into intel hex format file @var{filename}.
+
+@kindex dump srec 
+@item dump srec memory @var{filename} @var{start_addr} @var{end_addr}
+Dump contents of memory from @var{start_addr} to @var{end_addr} into 
+srec format file @var{filename}.
+
+@item dump srec value @var{filename} @var{expression}
+Dump value of @var{expression} into srec format file @var{filename}.
+
+@kindex dump tekhex 
+@item dump tekhex memory @var{filename} @var{start_addr} @var{end_addr}
+Dump contents of memory from @var{start_addr} to @var{end_addr} into 
+tekhex format file @var{filename}.
+
+@item dump tekhex value @var{filename} @var{expression}
+Dump value of @var{expression} into tekhex format file @var{filename}.
+
+@item restore @var{filename} [@var{binary}] @var{bias} @var{start} @var{end}
+Restore the contents of file @var{filename} into memory.  The @code{restore}
+command can automatically recognize any known bfd file format, except for
+raw binary.  To restore a raw binary file you must use the optional argument
+@var{binary} after the filename.
+
+If @var{bias} is non-zero, its value will be added to the addresses 
+contained in the file.  Binary files always start at address zero, so
+they will be restored at address @var{bias}.  Other bfd files have
+a built-in location; they will be restored at offset @var{bias}
+from that location.
+
+If @var{start} and/or @var{end} are non-zero, then only data between
+file offset @var{start} and file offset @var{end} will be restored.
+These offsets are relative to the addresses in the file, before 
+the @var{bias} argument is applied.
+
+@end table
+
+@node Macros
+@chapter C Preprocessor Macros
+
+Some languages, such as C and C++, provide a way to define and invoke
+``preprocessor macros'' which expand into strings of tokens.
+@value{GDBN} can evaluate expressions containing macro invocations, show
+the result of macro expansion, and show a macro's definition, including
+where it was defined.
+
+You may need to compile your program specially to provide @value{GDBN}
+with information about preprocessor macros.  Most compilers do not
+include macros in their debugging information, even when you compile
+with the @option{-g} flag.  @xref{Compilation}.
+
+A program may define a macro at one point, remove that definition later,
+and then provide a different definition after that.  Thus, at different
+points in the program, a macro may have different definitions, or have
+no definition at all.  If there is a current stack frame, @value{GDBN}
+uses the macros in scope at that frame's source code line.  Otherwise,
+@value{GDBN} uses the macros in scope at the current listing location;
+see @ref{List}.
+
+At the moment, @value{GDBN} does not support the @code{##}
+token-splicing operator, the @code{#} stringification operator, or
+variable-arity macros.
+
+Whenever @value{GDBN} evaluates an expression, it always expands any
+macro invocations present in the expression.  @value{GDBN} also provides
+the following commands for working with macros explicitly.
+
+@table @code
+
+@kindex macro expand
+@cindex macro expansion, showing the results of preprocessor
+@cindex preprocessor macro expansion, showing the results of
+@cindex expanding preprocessor macros
+@item macro expand @var{expression}
+@itemx macro exp @var{expression}
+Show the results of expanding all preprocessor macro invocations in
+@var{expression}.  Since @value{GDBN} simply expands macros, but does
+not parse the result, @var{expression} need not be a valid expression;
+it can be any string of tokens.
+
+@kindex macro expand-once
+@item macro expand-once @var{expression}
+@itemx macro exp1 @var{expression}
+@i{(This command is not yet implemented.)}  Show the results of
+expanding those preprocessor macro invocations that appear explicitly in
+@var{expression}.  Macro invocations appearing in that expansion are
+left unchanged.  This command allows you to see the effect of a
+particular macro more clearly, without being confused by further
+expansions.  Since @value{GDBN} simply expands macros, but does not
+parse the result, @var{expression} need not be a valid expression; it
+can be any string of tokens.
+
+@kindex info macro
+@cindex macro definition, showing
+@cindex definition, showing a macro's
+@item info macro @var{macro}
+Show the definition of the macro named @var{macro}, and describe the
+source location where that definition was established.
+
+@kindex macro define
+@cindex user-defined macros
+@cindex defining macros interactively
+@cindex macros, user-defined
+@item macro define @var{macro} @var{replacement-list}
+@itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
+@i{(This command is not yet implemented.)}  Introduce a definition for a
+preprocessor macro named @var{macro}, invocations of which are replaced
+by the tokens given in @var{replacement-list}.  The first form of this
+command defines an ``object-like'' macro, which takes no arguments; the
+second form defines a ``function-like'' macro, which takes the arguments
+given in @var{arglist}.
+
+A definition introduced by this command is in scope in every expression
+evaluated in @value{GDBN}, until it is removed with the @command{macro
+undef} command, described below.  The definition overrides all
+definitions for @var{macro} present in the program being debugged, as
+well as any previous user-supplied definition.
+
+@kindex macro undef
+@item macro undef @var{macro}
+@i{(This command is not yet implemented.)}  Remove any user-supplied
+definition for the macro named @var{macro}.  This command only affects
+definitions provided with the @command{macro define} command, described
+above; it cannot remove definitions present in the program being
+debugged.
+
+@end table
+
+@cindex macros, example of debugging with
+Here is a transcript showing the above commands in action.  First, we
+show our source files:
+
+@smallexample
+$ cat sample.c
+#include <stdio.h>
+#include "sample.h"
+
+#define M 42
+#define ADD(x) (M + x)
+
+main ()
+@{
+#define N 28
+  printf ("Hello, world!\n");
+#undef N
+  printf ("We're so creative.\n");
+#define N 1729
+  printf ("Goodbye, world!\n");
+@}
+$ cat sample.h
+#define Q <
+$
+@end smallexample
+
+Now, we compile the program using the @sc{gnu} C compiler, @value{NGCC}.
+We pass the @option{-gdwarf-2} and @option{-g3} flags to ensure the
+compiler includes information about preprocessor macros in the debugging
+information.
+
+@smallexample
+$ gcc -gdwarf-2 -g3 sample.c -o sample
+$
+@end smallexample
+
+Now, we start @value{GDBN} on our sample program:
+
+@smallexample
+$ gdb -nw sample
+GNU gdb 2002-05-06-cvs
+Copyright 2002 Free Software Foundation, Inc.
+GDB is free software, @dots{}
+(gdb)
+@end smallexample
+
+We can expand macros and examine their definitions, even when the
+program is not running.  @value{GDBN} uses the current listing position
+to decide which macro definitions are in scope:
+
+@smallexample
+(gdb) list main
+3
+4       #define M 42
+5       #define ADD(x) (M + x)
+6
+7       main ()
+8       @{
+9       #define N 28
+10        printf ("Hello, world!\n");
+11      #undef N
+12        printf ("We're so creative.\n");
+(gdb) info macro ADD
+Defined at /home/jimb/gdb/macros/play/sample.c:5
+#define ADD(x) (M + x)
+(gdb) info macro Q
+Defined at /home/jimb/gdb/macros/play/sample.h:1
+  included at /home/jimb/gdb/macros/play/sample.c:2
+#define Q <
+(gdb) macro expand ADD(1)
+expands to: (42 + 1)
+(gdb) macro expand-once ADD(1)
+expands to: once (M + 1)
+(gdb) 
+@end smallexample
+
+In the example above, note that @command{macro expand-once} expands only
+the macro invocation explicit in the original text --- the invocation of
+@code{ADD} --- but does not expand the invocation of the macro @code{M},
+which was introduced by @code{ADD}.
+
+Once the program is running, GDB uses the macro definitions in force at
+the source line of the current stack frame:
+
+@smallexample
+(gdb) break main
+Breakpoint 1 at 0x8048370: file sample.c, line 10.
+(gdb) run
+Starting program: /home/jimb/gdb/macros/play/sample 
+
+Breakpoint 1, main () at sample.c:10
+10        printf ("Hello, world!\n");
+(gdb) 
+@end smallexample
+
+At line 10, the definition of the macro @code{N} at line 9 is in force:
+
+@smallexample
+(gdb) info macro N
+Defined at /home/jimb/gdb/macros/play/sample.c:9
+#define N 28
+(gdb) macro expand N Q M
+expands to: 28 < 42
+(gdb) print N Q M
+$1 = 1
+(gdb) 
+@end smallexample
+
+As we step over directives that remove @code{N}'s definition, and then
+give it a new definition, @value{GDBN} finds the definition (or lack
+thereof) in force at each point:
+
+@smallexample
+(gdb) next
+Hello, world!
+12        printf ("We're so creative.\n");
+(gdb) info macro N
+The symbol `N' has no definition as a C/C++ preprocessor macro
+at /home/jimb/gdb/macros/play/sample.c:12
+(gdb) next
+We're so creative.
+14        printf ("Goodbye, world!\n");
+(gdb) info macro N
+Defined at /home/jimb/gdb/macros/play/sample.c:13
+#define N 1729
+(gdb) macro expand N Q M
+expands to: 1729 < 42
+(gdb) print N Q M
+$2 = 0
+(gdb) 
+@end smallexample
+
+
 @node Tracepoints
 @chapter Tracepoints
 @c This chapter is based on the documentation written by Michael
@@ -6362,44 +6698,48 @@ overlay's machine code from the large memory into the space set aside
 for it in the instruction memory, and then jump to its entry point
 there.
 
-@example
+@c NB:  In the below the mapped area's size is greater or equal to the
+@c size of all overlays.  This is intentional to remind the developer
+@c that overlays don't necessarily need to be the same size.
+
+@smallexample
 @group
-    Data                   Instruction            Larger
-Address Space             Address Space        Address Space
-+-----------+             +-----------+        +-----------+
-|           |             |           |        |           |
-+-----------+             +-----------+        +-----------+<-- overlay 1
-| program   |             |   main    |        |           | load address
-| variables |             |  program  |        | overlay 1 |
-| and heap  |             |           |    ,---|           |
-+-----------+             |           |    |   |           |
-|           |             +-----------+    |   +-----------+
-+-----------+             |           |    |   |           |
-               mapped --->+-----------+    /   +-----------+<-- overlay 2
-               address    |  overlay  | <-'    | overlay 2 | load address
-                          |   area    |  <-----|           |
-                          |           | <---.  +-----------+
-                          |           |     |  |           |
-                          +-----------+     |  |           |
-                          |           |     |  +-----------+<-- overlay 3
-                          +-----------+     `--|           | load address
-                                               | overlay 3 |
-                                               |           |
-                                               +-----------+
-                                               |           |
-                                               +-----------+
-
-    To map an overlay, copy its code from the larger address space
-    to the instruction address space.  Since the overlays shown here
-    all use the same mapped address, only one may be mapped at a time.
+    Data             Instruction            Larger
+Address Space       Address Space        Address Space
++-----------+       +-----------+        +-----------+
+|           |       |           |        |           |
++-----------+       +-----------+        +-----------+<-- overlay 1
+| program   |       |   main    |   .----| overlay 1 | load address
+| variables |       |  program  |   |    +-----------+
+| and heap  |       |           |   |    |           |
++-----------+       |           |   |    +-----------+<-- overlay 2
+|           |       +-----------+   |    |           | load address
++-----------+       |           |   |  .-| overlay 2 |
+                    |           |   |  | |           |
+         mapped --->+-----------+   |  | +-----------+
+         address    |           |   |  | |           |
+                    |  overlay  | <-'  | |           |
+                    |   area    |  <---' +-----------+<-- overlay 3
+                    |           | <---.  |           | load address
+                    +-----------+     `--| overlay 3 |
+                    |           |        |           |
+                    +-----------+        |           |
+                                         +-----------+
+                                         |           |
+                                         +-----------+
+
+                    @anchor{A code overlay}A code overlay
 @end group
-@end example
+@end smallexample
 
-This diagram shows a system with separate data and instruction address
-spaces.  For a system with a single address space for data and
-instructions, the diagram would be similar, except that the program
-variables and heap would share an address space with the main program
-and the overlay area.
+The diagram (@pxref{A code overlay}) shows a system with separate data
+and instruction address spaces.  To map an overlay, the program copies
+its code from the larger address space to the instruction address space.
+Since the overlays shown here all use the same mapped address, only one
+may be mapped at a time.  For a system with a single address space for
+data and instructions, the diagram would be similar, except that the
+program variables and heap would share an address space with the main
+program and the overlay area.
 
 An overlay loaded into instruction memory and ready for use is called a
 @dfn{mapped} overlay; its @dfn{mapped address} is its address in the
@@ -6547,33 +6887,33 @@ addresses, load addresses, and sizes.
 Normally, when @value{GDBN} prints a code address, it includes the name
 of the function the address falls in:
 
-@example
+@smallexample
 (gdb) print main
 $3 = @{int ()@} 0x11a0 <main>
-@end example
+@end smallexample
 @noindent
 When overlay debugging is enabled, @value{GDBN} recognizes code in
 unmapped overlays, and prints the names of unmapped functions with
 asterisks around them.  For example, if @code{foo} is a function in an
 unmapped overlay, @value{GDBN} prints it this way:
 
-@example
+@smallexample
 (gdb) overlay list
 No sections are mapped.
 (gdb) print foo
 $5 = @{int (int)@} 0x100000 <*foo*>
-@end example
+@end smallexample
 @noindent
 When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
 name normally:
 
-@example
+@smallexample
 (gdb) overlay list
 Section .ov.foo.text, loaded at 0x100000 - 0x100034, 
         mapped at 0x1016 - 0x104a
 (gdb) print foo
 $6 = @{int (int)@} 0x1016 <foo>
-@end example
+@end smallexample
 
 When overlay debugging is enabled, @value{GDBN} can find the correct
 address for functions and variables in an overlay, whether or not the
@@ -6615,7 +6955,7 @@ Here are the variables your overlay manager must define to support
 @item @code{_ovly_table}:
 This variable must be an array of the following structures:
 
-@example
+@smallexample
 struct
 @{
   /* The overlay's mapped address.  */
@@ -6631,7 +6971,7 @@ struct
      zero otherwise.  */
   unsigned long mapped;
 @}
-@end example
+@end smallexample
 
 @item @code{_novlys}:
 This variable must be a four-byte signed integer, holding the total
@@ -6646,6 +6986,15 @@ executable file.  When @value{GDBN} finds a matching entry, it consults
 the entry's @code{mapped} member to determine whether the overlay is
 currently mapped.
 
+In addition, your overlay manager may define a function called
+@code{_ovly_debug_event}.  If this function is defined, @value{GDBN}
+will silently set a breakpoint there.  If the overlay manager then
+calls this function whenever it has changed the overlay table, this
+will enable @value{GDBN} to accurately keep track of which overlays
+are in program memory, and update any breakpoints that may be set
+in overlays.  This will allow breakpoints to work even if the 
+overlays are kept in ROM or other non-writable memory while they
+are not being executed.
 
 @node Overlay Sample Program
 @section Overlay Sample Program
@@ -6683,7 +7032,7 @@ and @code{m32r-elf} targets.
 You can build the test program using the @code{d10v-elf} GCC
 cross-compiler like this:
 
-@example
+@smallexample
 $ d10v-elf-gcc -g -c overlays.c
 $ d10v-elf-gcc -g -c ovlymgr.c
 $ d10v-elf-gcc -g -c foo.c
@@ -6692,7 +7041,7 @@ $ d10v-elf-gcc -g -c baz.c
 $ d10v-elf-gcc -g -c grbx.c
 $ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
                   baz.o grbx.o -Wl,-Td10v.ld -o overlays
-@end example
+@end smallexample
 
 The build process is identical for any other architecture, except that
 you must substitute the appropriate compiler and linker script for the
@@ -6782,10 +7131,10 @@ C@t{++} source file
 @itemx .F
 Fortran source file
 
-@item .ch
-@itemx .c186
-@itemx .c286
-CHILL source file
+@c OBSOLETE @item .ch
+@c OBSOLETE @itemx .c186
+@c OBSOLETE @itemx .c286
+@c OBSOLETE CHILL source file
 
 @item .mod
 Modula-2 source file
@@ -6821,9 +7170,9 @@ languages---but means different things.  For instance, if the current
 source file were written in C, and @value{GDBN} was parsing Modula-2, a
 command such as:
 
-@example
+@smallexample
 print a = b + c
-@end example
+@end smallexample
 
 @noindent
 might not have the effect you intended.  In C, this means to add
@@ -7017,9 +7366,9 @@ error.  In many implementations of C, mathematical overflow causes the
 result to ``wrap around'' to lower values---for example, if @var{m} is
 the largest integer value, and @var{s} is the smallest, then
 
-@example
+@smallexample
 @var{m} + 1 @result{} @var{s}
-@end example
+@end smallexample
 
 This, too, is specific to individual languages, and in some cases
 specific to individual compilers or machines.  @xref{Support, ,
@@ -7058,7 +7407,9 @@ being set automatically by @value{GDBN}.
 @node Support
 @section Supported languages
 
-@value{GDBN} supports C, C@t{++}, Fortran, Java, Chill, assembly, and Modula-2.
+@value{GDBN} supports C, C@t{++}, Fortran, Java, 
+@c OBSOLETE Chill,
+assembly, and Modula-2.
 @c This is false ...
 Some @value{GDBN} features may be used in expressions regardless of the
 language you use: the @value{GDBN} @code{@@} and @code{::} operators,
@@ -7077,7 +7428,7 @@ language reference or tutorial.
 @menu
 * C::           C and C@t{++}
 * Modula-2::    Modula-2
-* Chill::        Chill
+@c OBSOLETE * Chill::        Chill
 @end menu
 
 @node C
@@ -7286,8 +7637,8 @@ following ways:
 @itemize @bullet
 @item
 Integer constants are a sequence of digits.  Octal constants are
-specified by a leading @samp{0} (i.e. zero), and hexadecimal constants by
-a leading @samp{0x} or @samp{0X}.  Constants may also end with a letter
+specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
+by a leading @samp{0x} or @samp{0X}.  Constants may also end with a letter
 @samp{l}, specifying that the constant should be treated as a
 @code{long} value.
 
@@ -7379,9 +7730,9 @@ support in @value{GDBN} does @emph{not} work.
 @item
 Member function calls are allowed; you can use expressions like
 
-@example
+@smallexample
 count = aml->GetOriginal(x, y)
-@end example
+@end smallexample
 
 @vindex this@r{, inside C@t{++} member functions}
 @cindex namespace in C@t{++}
@@ -7999,11 +8350,11 @@ There are a few subtle differences between the Modula-2 scope operator
 (@code{.}) and the @value{GDBN} scope operator (@code{::}).  The two have
 similar syntax:
 
-@example
+@smallexample
 
 @var{module} . @var{id}
 @var{scope} :: @var{id}
-@end example
+@end smallexample
 
 @noindent
 where @var{scope} is the name of a module or a procedure,
@@ -8043,515 +8394,515 @@ address can be specified by an integral constant, the construct
 In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
 interpreted as the beginning of a comment.  Use @code{<>} instead.
 
-@node Chill
-@subsection Chill
+@c OBSOLETE @node Chill
+@c OBSOLETE @subsection Chill
+@c OBSOLETE 
+@c OBSOLETE The extensions made to @value{GDBN} to support Chill only support output
+@c OBSOLETE from the @sc{gnu} Chill compiler.  Other Chill compilers are not currently
+@c OBSOLETE supported, and attempting to debug executables produced by them is most
+@c OBSOLETE likely to give an error as @value{GDBN} reads in the executable's symbol
+@c OBSOLETE table.
+@c OBSOLETE 
+@c OBSOLETE @c This used to say "... following Chill related topics ...", but since
+@c OBSOLETE @c menus are not shown in the printed manual, it would look awkward.
+@c OBSOLETE This section covers the Chill related topics and the features
+@c OBSOLETE of @value{GDBN} which support these topics.
+@c OBSOLETE 
+@c OBSOLETE @menu
+@c OBSOLETE * How modes are displayed::        How modes are displayed
+@c OBSOLETE * Locations::                        Locations and their accesses
+@c OBSOLETE * Values and their Operations:: Values and their Operations
+@c OBSOLETE * Chill type and range checks::
+@c OBSOLETE * Chill defaults::
+@c OBSOLETE @end menu
+@c OBSOLETE 
+@c OBSOLETE @node How modes are displayed
+@c OBSOLETE @subsubsection How modes are displayed
+@c OBSOLETE 
+@c OBSOLETE The Chill Datatype- (Mode) support of @value{GDBN} is directly related
+@c OBSOLETE with the functionality of the @sc{gnu} Chill compiler, and therefore deviates
+@c OBSOLETE slightly from the standard specification of the Chill language. The
+@c OBSOLETE provided modes are:
+@c OBSOLETE 
+@c OBSOLETE @c FIXME: this @table's contents effectively disable @code by using @r
+@c OBSOLETE @c on every @item.  So why does it need @code?
+@c OBSOLETE @table @code
+@c OBSOLETE @item @r{@emph{Discrete modes:}}
+@c OBSOLETE @itemize @bullet
+@c OBSOLETE @item
+@c OBSOLETE @emph{Integer Modes} which are predefined by @code{BYTE, UBYTE, INT,
+@c OBSOLETE UINT, LONG, ULONG},
+@c OBSOLETE @item
+@c OBSOLETE @emph{Boolean Mode} which is predefined by @code{BOOL},
+@c OBSOLETE @item
+@c OBSOLETE @emph{Character Mode} which is predefined by @code{CHAR},
+@c OBSOLETE @item
+@c OBSOLETE @emph{Set Mode} which is displayed by the keyword @code{SET}.
+@c OBSOLETE @smallexample
+@c OBSOLETE (@value{GDBP}) ptype x
+@c OBSOLETE type = SET (karli = 10, susi = 20, fritzi = 100)
+@c OBSOLETE @end smallexample
+@c OBSOLETE If the type is an unnumbered set the set element values are omitted.
+@c OBSOLETE @item
+@c OBSOLETE @emph{Range Mode} which is displayed by
+@c OBSOLETE @smallexample
+@c OBSOLETE @code{type = <basemode>(<lower bound> : <upper bound>)}
+@c OBSOLETE @end smallexample
+@c OBSOLETE where @code{<lower bound>, <upper bound>} can be of any discrete literal
+@c OBSOLETE expression (e.g. set element names).
+@c OBSOLETE @end itemize
+@c OBSOLETE 
+@c OBSOLETE @item @r{@emph{Powerset Mode:}}
+@c OBSOLETE A Powerset Mode is displayed by the keyword @code{POWERSET} followed by
+@c OBSOLETE the member mode of the powerset.  The member mode can be any discrete mode.
+@c OBSOLETE @smallexample
+@c OBSOLETE (@value{GDBP}) ptype x
+@c OBSOLETE type = POWERSET SET (egon, hugo, otto)
+@c OBSOLETE @end smallexample
+@c OBSOLETE 
+@c OBSOLETE @item @r{@emph{Reference Modes:}}
+@c OBSOLETE @itemize @bullet
+@c OBSOLETE @item
+@c OBSOLETE @emph{Bound Reference Mode} which is displayed by the keyword @code{REF}
+@c OBSOLETE followed by the mode name to which the reference is bound.
+@c OBSOLETE @item
+@c OBSOLETE @emph{Free Reference Mode} which is displayed by the keyword @code{PTR}.
+@c OBSOLETE @end itemize
+@c OBSOLETE 
+@c OBSOLETE @item @r{@emph{Procedure mode}}
+@c OBSOLETE The procedure mode is displayed by @code{type = PROC(<parameter list>)
+@c OBSOLETE <return mode> EXCEPTIONS (<exception list>)}. The @code{<parameter
+@c OBSOLETE list>} is a list of the parameter modes.  @code{<return mode>} indicates
+@c OBSOLETE the mode of the result of the procedure if any.  The exceptionlist lists
+@c OBSOLETE all possible exceptions which can be raised by the procedure.
+@c OBSOLETE 
+@c OBSOLETE @ignore
+@c OBSOLETE @item @r{@emph{Instance mode}}
+@c OBSOLETE The instance mode is represented by a structure, which has a static
+@c OBSOLETE type, and is therefore not really of interest.
+@c OBSOLETE @end ignore
+@c OBSOLETE 
+@c OBSOLETE @item @r{@emph{Synchronization Modes:}}
+@c OBSOLETE @itemize @bullet
+@c OBSOLETE @item
+@c OBSOLETE @emph{Event Mode} which is displayed by
+@c OBSOLETE @smallexample
+@c OBSOLETE @code{EVENT (<event length>)}
+@c OBSOLETE @end smallexample
+@c OBSOLETE where @code{(<event length>)} is optional.
+@c OBSOLETE @item
+@c OBSOLETE @emph{Buffer Mode} which is displayed by
+@c OBSOLETE @smallexample
+@c OBSOLETE @code{BUFFER (<buffer length>)<buffer element mode>}
+@c OBSOLETE @end smallexample
+@c OBSOLETE where @code{(<buffer length>)} is optional.
+@c OBSOLETE @end itemize
+@c OBSOLETE 
+@c OBSOLETE @item @r{@emph{Timing Modes:}}
+@c OBSOLETE @itemize @bullet
+@c OBSOLETE @item
+@c OBSOLETE @emph{Duration Mode} which is predefined by @code{DURATION}
+@c OBSOLETE @item
+@c OBSOLETE @emph{Absolute Time Mode} which is predefined by @code{TIME}
+@c OBSOLETE @end itemize
+@c OBSOLETE 
+@c OBSOLETE @item @r{@emph{Real Modes:}}
+@c OBSOLETE Real Modes are predefined with @code{REAL} and @code{LONG_REAL}.
+@c OBSOLETE 
+@c OBSOLETE @item @r{@emph{String Modes:}}
+@c OBSOLETE @itemize @bullet
+@c OBSOLETE @item
+@c OBSOLETE @emph{Character String Mode} which is displayed by
+@c OBSOLETE @smallexample
+@c OBSOLETE @code{CHARS(<string length>)}
+@c OBSOLETE @end smallexample
+@c OBSOLETE followed by the keyword @code{VARYING} if the String Mode is a varying
+@c OBSOLETE mode
+@c OBSOLETE @item
+@c OBSOLETE @emph{Bit String Mode} which is displayed by
+@c OBSOLETE @smallexample
+@c OBSOLETE @code{BOOLS(<string
+@c OBSOLETE length>)}
+@c OBSOLETE @end smallexample
+@c OBSOLETE @end itemize
+@c OBSOLETE 
+@c OBSOLETE @item @r{@emph{Array Mode:}}
+@c OBSOLETE The Array Mode is displayed by the keyword @code{ARRAY(<range>)}
+@c OBSOLETE followed by the element mode (which may in turn be an array mode).
+@c OBSOLETE @smallexample
+@c OBSOLETE (@value{GDBP}) ptype x
+@c OBSOLETE type = ARRAY (1:42)
+@c OBSOLETE           ARRAY (1:20)
+@c OBSOLETE              SET (karli = 10, susi = 20, fritzi = 100)
+@c OBSOLETE @end smallexample
+@c OBSOLETE 
+@c OBSOLETE @item @r{@emph{Structure Mode}}
+@c OBSOLETE The Structure mode is displayed by the keyword @code{STRUCT(<field
+@c OBSOLETE list>)}.  The @code{<field list>} consists of names and modes of fields
+@c OBSOLETE of the structure.  Variant structures have the keyword @code{CASE <field>
+@c OBSOLETE OF <variant fields> ESAC} in their field list.  Since the current version
+@c OBSOLETE of the GNU Chill compiler doesn't implement tag processing (no runtime
+@c OBSOLETE checks of variant fields, and therefore no debugging info), the output
+@c OBSOLETE always displays all variant fields.
+@c OBSOLETE @smallexample
+@c OBSOLETE (@value{GDBP}) ptype str
+@c OBSOLETE type = STRUCT (
+@c OBSOLETE     as x,
+@c OBSOLETE     bs x,
+@c OBSOLETE     CASE bs OF
+@c OBSOLETE     (karli):
+@c OBSOLETE         cs a
+@c OBSOLETE     (ott):
+@c OBSOLETE         ds x
+@c OBSOLETE     ESAC
+@c OBSOLETE )
+@c OBSOLETE @end smallexample
+@c OBSOLETE @end table
+@c OBSOLETE 
+@c OBSOLETE @node Locations
+@c OBSOLETE @subsubsection Locations and their accesses
+@c OBSOLETE 
+@c OBSOLETE A location in Chill is an object which can contain values.
+@c OBSOLETE 
+@c OBSOLETE A value of a location is generally accessed by the (declared) name of
+@c OBSOLETE the location.  The output conforms to the specification of values in
+@c OBSOLETE Chill programs.  How values are specified
+@c OBSOLETE is the topic of the next section, @ref{Values and their Operations}.
+@c OBSOLETE 
+@c OBSOLETE The pseudo-location @code{RESULT} (or @code{result}) can be used to
+@c OBSOLETE display or change the result of a currently-active procedure:
+@c OBSOLETE 
+@c OBSOLETE @smallexample
+@c OBSOLETE set result := EXPR
+@c OBSOLETE @end smallexample
+@c OBSOLETE 
+@c OBSOLETE @noindent
+@c OBSOLETE This does the same as the Chill action @code{RESULT EXPR} (which
+@c OBSOLETE is not available in @value{GDBN}).
+@c OBSOLETE 
+@c OBSOLETE Values of reference mode locations are printed by @code{PTR(<hex
+@c OBSOLETE value>)} in case of a free reference mode, and by @code{(REF <reference
+@c OBSOLETE mode>) (<hex-value>)} in case of a bound reference.  @code{<hex value>}
+@c OBSOLETE represents the address where the reference points to.  To access the
+@c OBSOLETE value of the location referenced by the pointer, use the dereference
+@c OBSOLETE operator @samp{->}.
+@c OBSOLETE 
+@c OBSOLETE Values of procedure mode locations are displayed by
+@c OBSOLETE @smallexample
+@c OBSOLETE @code{@{ PROC
+@c OBSOLETE (<argument modes> ) <return mode> @} <address> <name of procedure
+@c OBSOLETE location>}
+@c OBSOLETE @end smallexample
+@c OBSOLETE @code{<argument modes>} is a list of modes according to the parameter
+@c OBSOLETE specification of the procedure and @code{<address>} shows the address of
+@c OBSOLETE the entry point.
+@c OBSOLETE 
+@c OBSOLETE @ignore
+@c OBSOLETE Locations of instance modes are displayed just like a structure with two
+@c OBSOLETE fields specifying the @emph{process type} and the @emph{copy number} of
+@c OBSOLETE the investigated instance location@footnote{This comes from the current
+@c OBSOLETE implementation of instances.  They are implemented as a structure (no
+@c OBSOLETE na).  The output should be something like @code{[<name of the process>;
+@c OBSOLETE <instance number>]}.}.  The field names are @code{__proc_type} and
+@c OBSOLETE @code{__proc_copy}.
+@c OBSOLETE 
+@c OBSOLETE Locations of synchronization modes are displayed like a structure with
+@c OBSOLETE the field name @code{__event_data} in case of a event mode location, and
+@c OBSOLETE like a structure with the field @code{__buffer_data} in case of a buffer
+@c OBSOLETE mode location (refer to previous paragraph).
+@c OBSOLETE 
+@c OBSOLETE Structure Mode locations are printed by @code{[.<field name>: <value>,
+@c OBSOLETE ...]}.  The @code{<field name>} corresponds to the structure mode
+@c OBSOLETE definition and the layout of @code{<value>} varies depending of the mode
+@c OBSOLETE of the field.  If the investigated structure mode location is of variant
+@c OBSOLETE structure mode, the variant parts of the structure are enclosed in curled
+@c OBSOLETE braces (@samp{@{@}}).  Fields enclosed by @samp{@{,@}} are residing
+@c OBSOLETE on the same memory location and represent the current values of the
+@c OBSOLETE memory location in their specific modes.  Since no tag processing is done
+@c OBSOLETE all variants are displayed. A variant field is printed by
+@c OBSOLETE @code{(<variant name>) = .<field name>: <value>}.  (who implements the
+@c OBSOLETE stuff ???)
+@c OBSOLETE @smallexample
+@c OBSOLETE (@value{GDBP}) print str1 $4 = [.as: 0, .bs: karli, .<TAG>: { (karli) =
+@c OBSOLETE [.cs: []], (susi) = [.ds: susi]}]
+@c OBSOLETE @end smallexample
+@c OBSOLETE @end ignore
+@c OBSOLETE 
+@c OBSOLETE Substructures of string mode-, array mode- or structure mode-values
+@c OBSOLETE (e.g. array slices, fields of structure locations) are accessed using
+@c OBSOLETE certain operations which are described in the next section, @ref{Values
+@c OBSOLETE and their Operations}.
+@c OBSOLETE 
+@c OBSOLETE A location value may be interpreted as having a different mode using the
+@c OBSOLETE location conversion.  This mode conversion is written as @code{<mode
+@c OBSOLETE name>(<location>)}.  The user has to consider that the sizes of the modes
+@c OBSOLETE have to be equal otherwise an error occurs.  Furthermore, no range
+@c OBSOLETE checking of the location against the destination mode is performed, and
+@c OBSOLETE therefore the result can be quite confusing.
+@c OBSOLETE 
+@c OBSOLETE @smallexample
+@c OBSOLETE (@value{GDBP}) print int (s(3 up 4)) XXX TO be filled in !! XXX
+@c OBSOLETE @end smallexample
+@c OBSOLETE 
+@c OBSOLETE @node Values and their Operations
+@c OBSOLETE @subsubsection Values and their Operations
+@c OBSOLETE 
+@c OBSOLETE Values are used to alter locations, to investigate complex structures in
+@c OBSOLETE more detail or to filter relevant information out of a large amount of
+@c OBSOLETE data.  There are several (mode dependent) operations defined which enable
+@c OBSOLETE such investigations.  These operations are not only applicable to
+@c OBSOLETE constant values but also to locations, which can become quite useful
+@c OBSOLETE when debugging complex structures.  During parsing the command line
+@c OBSOLETE (e.g. evaluating an expression) @value{GDBN} treats location names as
+@c OBSOLETE the values behind these locations.
+@c OBSOLETE 
+@c OBSOLETE This section describes how values have to be specified and which
+@c OBSOLETE operations are legal to be used with such values.
+@c OBSOLETE 
+@c OBSOLETE @table @code
+@c OBSOLETE @item Literal Values
+@c OBSOLETE Literal values are specified in the same manner as in @sc{gnu} Chill programs.
+@c OBSOLETE For detailed specification refer to the @sc{gnu} Chill implementation Manual
+@c OBSOLETE chapter 1.5.
+@c OBSOLETE @c FIXME: if the Chill Manual is a Texinfo documents, the above should
+@c OBSOLETE @c be converted to a @ref.
+@c OBSOLETE 
+@c OBSOLETE @ignore
+@c OBSOLETE @itemize @bullet
+@c OBSOLETE @item
+@c OBSOLETE @emph{Integer Literals} are specified in the same manner as in Chill
+@c OBSOLETE programs (refer to the Chill Standard z200/88 chpt 5.2.4.2)
+@c OBSOLETE @item
+@c OBSOLETE @emph{Boolean Literals} are defined by @code{TRUE} and @code{FALSE}.
+@c OBSOLETE @item
+@c OBSOLETE @emph{Character Literals} are defined by @code{'<character>'}. (e.g.
+@c OBSOLETE @code{'M'})
+@c OBSOLETE @item
+@c OBSOLETE @emph{Set Literals} are defined by a name which was specified in a set
+@c OBSOLETE mode.  The value delivered by a Set Literal is the set value.  This is
+@c OBSOLETE comparable to an enumeration in C/C@t{++} language.
+@c OBSOLETE @item
+@c OBSOLETE @emph{Emptiness Literal} is predefined by @code{NULL}.  The value of the
+@c OBSOLETE emptiness literal delivers either the empty reference value, the empty
+@c OBSOLETE procedure value or the empty instance value.
+@c OBSOLETE 
+@c OBSOLETE @item
+@c OBSOLETE @emph{Character String Literals} are defined by a sequence of characters
+@c OBSOLETE enclosed in single- or double quotes.  If a single- or double quote has
+@c OBSOLETE to be part of the string literal it has to be stuffed (specified twice).
+@c OBSOLETE @item
+@c OBSOLETE @emph{Bitstring Literals} are specified in the same manner as in Chill
+@c OBSOLETE programs (refer z200/88 chpt 5.2.4.8).
+@c OBSOLETE @item
+@c OBSOLETE @emph{Floating point literals} are specified in the same manner as in
+@c OBSOLETE (gnu-)Chill programs (refer @sc{gnu} Chill implementation Manual chapter 1.5).
+@c OBSOLETE @end itemize
+@c OBSOLETE @end ignore
+@c OBSOLETE 
+@c OBSOLETE @item Tuple Values
+@c OBSOLETE A tuple is specified by @code{<mode name>[<tuple>]}, where @code{<mode
+@c OBSOLETE name>} can be omitted if the mode of the tuple is unambiguous.  This
+@c OBSOLETE unambiguity is derived from the context of a evaluated expression.
+@c OBSOLETE @code{<tuple>} can be one of the following:
+@c OBSOLETE 
+@c OBSOLETE @itemize @bullet
+@c OBSOLETE @item @emph{Powerset Tuple}
+@c OBSOLETE @item @emph{Array Tuple}
+@c OBSOLETE @item @emph{Structure Tuple}
+@c OBSOLETE Powerset tuples, array tuples and structure tuples are specified in the
+@c OBSOLETE same manner as in Chill programs refer to z200/88 chpt 5.2.5.
+@c OBSOLETE @end itemize
+@c OBSOLETE 
+@c OBSOLETE @item String Element Value
+@c OBSOLETE A string element value is specified by
+@c OBSOLETE @smallexample
+@c OBSOLETE @code{<string value>(<index>)}
+@c OBSOLETE @end smallexample
+@c OBSOLETE where @code{<index>} is a integer expression.  It delivers a character
+@c OBSOLETE value which is equivalent to the character indexed by @code{<index>} in
+@c OBSOLETE the string.
+@c OBSOLETE 
+@c OBSOLETE @item String Slice Value
+@c OBSOLETE A string slice value is specified by @code{<string value>(<slice
+@c OBSOLETE spec>)}, where @code{<slice spec>} can be either a range of integer
+@c OBSOLETE expressions or specified by @code{<start expr> up <size>}.
+@c OBSOLETE @code{<size>} denotes the number of elements which the slice contains.
+@c OBSOLETE The delivered value is a string value, which is part of the specified
+@c OBSOLETE string.
+@c OBSOLETE 
+@c OBSOLETE @item Array Element Values
+@c OBSOLETE An array element value is specified by @code{<array value>(<expr>)} and
+@c OBSOLETE delivers a array element value of the mode of the specified array.
+@c OBSOLETE 
+@c OBSOLETE @item Array Slice Values
+@c OBSOLETE An array slice is specified by @code{<array value>(<slice spec>)}, where
+@c OBSOLETE @code{<slice spec>} can be either a range specified by expressions or by
+@c OBSOLETE @code{<start expr> up <size>}.  @code{<size>} denotes the number of
+@c OBSOLETE arrayelements the slice contains.  The delivered value is an array value
+@c OBSOLETE which is part of the specified array.
+@c OBSOLETE 
+@c OBSOLETE @item Structure Field Values
+@c OBSOLETE A structure field value is derived by @code{<structure value>.<field
+@c OBSOLETE name>}, where @code{<field name>} indicates the name of a field specified
+@c OBSOLETE in the mode definition of the structure.  The mode of the delivered value
+@c OBSOLETE corresponds to this mode definition in the structure definition.
+@c OBSOLETE 
+@c OBSOLETE @item Procedure Call Value
+@c OBSOLETE The procedure call value is derived from the return value of the
+@c OBSOLETE procedure@footnote{If a procedure call is used for instance in an
+@c OBSOLETE expression, then this procedure is called with all its side
+@c OBSOLETE effects.  This can lead to confusing results if used carelessly.}.
+@c OBSOLETE 
+@c OBSOLETE Values of duration mode locations are represented by @code{ULONG} literals.
+@c OBSOLETE 
+@c OBSOLETE Values of time mode locations appear as
+@c OBSOLETE @smallexample
+@c OBSOLETE @code{TIME(<secs>:<nsecs>)}
+@c OBSOLETE @end smallexample
+@c OBSOLETE 
+@c OBSOLETE 
+@c OBSOLETE @ignore
+@c OBSOLETE This is not implemented yet:
+@c OBSOLETE @item Built-in Value
+@c OBSOLETE @noindent
+@c OBSOLETE The following built in functions are provided:
+@c OBSOLETE 
+@c OBSOLETE @table @code
+@c OBSOLETE @item @code{ADDR()}
+@c OBSOLETE @item @code{NUM()}
+@c OBSOLETE @item @code{PRED()}
+@c OBSOLETE @item @code{SUCC()}
+@c OBSOLETE @item @code{ABS()}
+@c OBSOLETE @item @code{CARD()}
+@c OBSOLETE @item @code{MAX()}
+@c OBSOLETE @item @code{MIN()}
+@c OBSOLETE @item @code{SIZE()}
+@c OBSOLETE @item @code{UPPER()}
+@c OBSOLETE @item @code{LOWER()}
+@c OBSOLETE @item @code{LENGTH()}
+@c OBSOLETE @item @code{SIN()}
+@c OBSOLETE @item @code{COS()}
+@c OBSOLETE @item @code{TAN()}
+@c OBSOLETE @item @code{ARCSIN()}
+@c OBSOLETE @item @code{ARCCOS()}
+@c OBSOLETE @item @code{ARCTAN()}
+@c OBSOLETE @item @code{EXP()}
+@c OBSOLETE @item @code{LN()}
+@c OBSOLETE @item @code{LOG()}
+@c OBSOLETE @item @code{SQRT()}
+@c OBSOLETE @end table
+@c OBSOLETE 
+@c OBSOLETE For a detailed description refer to the GNU Chill implementation manual
+@c OBSOLETE chapter 1.6.
+@c OBSOLETE @end ignore
+@c OBSOLETE 
+@c OBSOLETE @item Zero-adic Operator Value
+@c OBSOLETE The zero-adic operator value is derived from the instance value for the
+@c OBSOLETE current active process.
+@c OBSOLETE 
+@c OBSOLETE @item Expression Values
+@c OBSOLETE The value delivered by an expression is the result of the evaluation of
+@c OBSOLETE the specified expression.  If there are error conditions (mode
+@c OBSOLETE incompatibility, etc.) the evaluation of expressions is aborted with a
+@c OBSOLETE corresponding error message.  Expressions may be parenthesised which
+@c OBSOLETE causes the evaluation of this expression before any other expression
+@c OBSOLETE which uses the result of the parenthesised expression.  The following
+@c OBSOLETE operators are supported by @value{GDBN}:
+@c OBSOLETE 
+@c OBSOLETE @table @code
+@c OBSOLETE @item @code{OR, ORIF, XOR}
+@c OBSOLETE @itemx @code{AND, ANDIF}
+@c OBSOLETE @itemx @code{NOT}
+@c OBSOLETE Logical operators defined over operands of boolean mode.
+@c OBSOLETE 
+@c OBSOLETE @item @code{=, /=}
+@c OBSOLETE Equality and inequality operators defined over all modes.
+@c OBSOLETE 
+@c OBSOLETE @item @code{>, >=}
+@c OBSOLETE @itemx @code{<, <=}
+@c OBSOLETE Relational operators defined over predefined modes.
+@c OBSOLETE 
+@c OBSOLETE @item @code{+, -}
+@c OBSOLETE @itemx @code{*, /, MOD, REM}
+@c OBSOLETE Arithmetic operators defined over predefined modes.
+@c OBSOLETE 
+@c OBSOLETE @item @code{-}
+@c OBSOLETE Change sign operator.
+@c OBSOLETE 
+@c OBSOLETE @item @code{//}
+@c OBSOLETE String concatenation operator.
+@c OBSOLETE 
+@c OBSOLETE @item @code{()}
+@c OBSOLETE String repetition operator.
+@c OBSOLETE 
+@c OBSOLETE @item @code{->}
+@c OBSOLETE Referenced location operator which can be used either to take the
+@c OBSOLETE address of a location (@code{->loc}), or to dereference a reference
+@c OBSOLETE location (@code{loc->}).
+@c OBSOLETE 
+@c OBSOLETE @item @code{OR, XOR}
+@c OBSOLETE @itemx @code{AND}
+@c OBSOLETE @itemx @code{NOT}
+@c OBSOLETE Powerset and bitstring operators.
+@c OBSOLETE 
+@c OBSOLETE @item @code{>, >=}
+@c OBSOLETE @itemx @code{<, <=}
+@c OBSOLETE Powerset inclusion operators.
+@c OBSOLETE 
+@c OBSOLETE @item @code{IN}
+@c OBSOLETE Membership operator.
+@c OBSOLETE @end table
+@c OBSOLETE @end table
+@c OBSOLETE 
+@c OBSOLETE @node Chill type and range checks
+@c OBSOLETE @subsubsection Chill type and range checks
+@c OBSOLETE 
+@c OBSOLETE @value{GDBN} considers two Chill variables mode equivalent if the sizes
+@c OBSOLETE of the two modes are equal.  This rule applies recursively to more
+@c OBSOLETE complex datatypes which means that complex modes are treated
+@c OBSOLETE equivalent if all element modes (which also can be complex modes like
+@c OBSOLETE structures, arrays, etc.) have the same size.
+@c OBSOLETE 
+@c OBSOLETE Range checking is done on all mathematical operations, assignment, array
+@c OBSOLETE index bounds and all built in procedures.
+@c OBSOLETE 
+@c OBSOLETE Strong type checks are forced using the @value{GDBN} command @code{set
+@c OBSOLETE check strong}.  This enforces strong type and range checks on all
+@c OBSOLETE operations where Chill constructs are used (expressions, built in
+@c OBSOLETE functions, etc.) in respect to the semantics as defined in the z.200
+@c OBSOLETE language specification.
+@c OBSOLETE 
+@c OBSOLETE All checks can be disabled by the @value{GDBN} command @code{set check
+@c OBSOLETE off}.
+@c OBSOLETE 
+@c OBSOLETE @ignore
+@c OBSOLETE @c Deviations from the Chill Standard Z200/88
+@c OBSOLETE see last paragraph ?
+@c OBSOLETE @end ignore
+@c OBSOLETE 
+@c OBSOLETE @node Chill defaults
+@c OBSOLETE @subsubsection Chill defaults
+@c OBSOLETE 
+@c OBSOLETE If type and range checking are set automatically by @value{GDBN}, they
+@c OBSOLETE both default to @code{on} whenever the working language changes to
+@c OBSOLETE Chill.  This happens regardless of whether you or @value{GDBN}
+@c OBSOLETE selected the working language.
+@c OBSOLETE 
+@c OBSOLETE If you allow @value{GDBN} to set the language automatically, then entering
+@c OBSOLETE code compiled from a file whose name ends with @file{.ch} sets the
+@c OBSOLETE working language to Chill.  @xref{Automatically, ,Having @value{GDBN} set
+@c OBSOLETE the language automatically}, for further details.
 
-The extensions made to @value{GDBN} to support Chill only support output
-from the @sc{gnu} Chill compiler.  Other Chill compilers are not currently
-supported, and attempting to debug executables produced by them is most
-likely to give an error as @value{GDBN} reads in the executable's symbol
-table.
+@node Symbols
+@chapter Examining the Symbol Table
 
-@c This used to say "... following Chill related topics ...", but since
-@c menus are not shown in the printed manual, it would look awkward.
-This section covers the Chill related topics and the features
-of @value{GDBN} which support these topics.
-
-@menu
-* How modes are displayed::        How modes are displayed
-* Locations::                        Locations and their accesses
-* Values and their Operations:: Values and their Operations
-* Chill type and range checks::
-* Chill defaults::
-@end menu
-
-@node How modes are displayed
-@subsubsection How modes are displayed
-
-The Chill Datatype- (Mode) support of @value{GDBN} is directly related
-with the functionality of the @sc{gnu} Chill compiler, and therefore deviates
-slightly from the standard specification of the Chill language. The
-provided modes are:
-
-@c FIXME: this @table's contents effectively disable @code by using @r
-@c on every @item.  So why does it need @code?
-@table @code
-@item @r{@emph{Discrete modes:}}
-@itemize @bullet
-@item
-@emph{Integer Modes} which are predefined by @code{BYTE, UBYTE, INT,
-UINT, LONG, ULONG},
-@item
-@emph{Boolean Mode} which is predefined by @code{BOOL},
-@item
-@emph{Character Mode} which is predefined by @code{CHAR},
-@item
-@emph{Set Mode} which is displayed by the keyword @code{SET}.
-@smallexample
-(@value{GDBP}) ptype x
-type = SET (karli = 10, susi = 20, fritzi = 100)
-@end smallexample
-If the type is an unnumbered set the set element values are omitted.
-@item
-@emph{Range Mode} which is displayed by
-@smallexample
-@code{type = <basemode>(<lower bound> : <upper bound>)}
-@end smallexample
-where @code{<lower bound>, <upper bound>} can be of any discrete literal
-expression (e.g. set element names).
-@end itemize
-
-@item @r{@emph{Powerset Mode:}}
-A Powerset Mode is displayed by the keyword @code{POWERSET} followed by
-the member mode of the powerset.  The member mode can be any discrete mode.
-@smallexample
-(@value{GDBP}) ptype x
-type = POWERSET SET (egon, hugo, otto)
-@end smallexample
-
-@item @r{@emph{Reference Modes:}}
-@itemize @bullet
-@item
-@emph{Bound Reference Mode} which is displayed by the keyword @code{REF}
-followed by the mode name to which the reference is bound.
-@item
-@emph{Free Reference Mode} which is displayed by the keyword @code{PTR}.
-@end itemize
-
-@item @r{@emph{Procedure mode}}
-The procedure mode is displayed by @code{type = PROC(<parameter list>)
-<return mode> EXCEPTIONS (<exception list>)}. The @code{<parameter
-list>} is a list of the parameter modes.  @code{<return mode>} indicates
-the mode of the result of the procedure if any.  The exceptionlist lists
-all possible exceptions which can be raised by the procedure.
-
-@ignore
-@item @r{@emph{Instance mode}}
-The instance mode is represented by a structure, which has a static
-type, and is therefore not really of interest.
-@end ignore
-
-@item @r{@emph{Synchronization Modes:}}
-@itemize @bullet
-@item
-@emph{Event Mode} which is displayed by
-@smallexample
-@code{EVENT (<event length>)}
-@end smallexample
-where @code{(<event length>)} is optional.
-@item
-@emph{Buffer Mode} which is displayed by
-@smallexample
-@code{BUFFER (<buffer length>)<buffer element mode>}
-@end smallexample
-where @code{(<buffer length>)} is optional.
-@end itemize
-
-@item @r{@emph{Timing Modes:}}
-@itemize @bullet
-@item
-@emph{Duration Mode} which is predefined by @code{DURATION}
-@item
-@emph{Absolute Time Mode} which is predefined by @code{TIME}
-@end itemize
-
-@item @r{@emph{Real Modes:}}
-Real Modes are predefined with @code{REAL} and @code{LONG_REAL}.
-
-@item @r{@emph{String Modes:}}
-@itemize @bullet
-@item
-@emph{Character String Mode} which is displayed by
-@smallexample
-@code{CHARS(<string length>)}
-@end smallexample
-followed by the keyword @code{VARYING} if the String Mode is a varying
-mode
-@item
-@emph{Bit String Mode} which is displayed by
-@smallexample
-@code{BOOLS(<string
-length>)}
-@end smallexample
-@end itemize
-
-@item @r{@emph{Array Mode:}}
-The Array Mode is displayed by the keyword @code{ARRAY(<range>)}
-followed by the element mode (which may in turn be an array mode).
-@smallexample
-(@value{GDBP}) ptype x
-type = ARRAY (1:42)
-          ARRAY (1:20)
-             SET (karli = 10, susi = 20, fritzi = 100)
-@end smallexample
-
-@item @r{@emph{Structure Mode}}
-The Structure mode is displayed by the keyword @code{STRUCT(<field
-list>)}.  The @code{<field list>} consists of names and modes of fields
-of the structure.  Variant structures have the keyword @code{CASE <field>
-OF <variant fields> ESAC} in their field list.  Since the current version
-of the GNU Chill compiler doesn't implement tag processing (no runtime
-checks of variant fields, and therefore no debugging info), the output
-always displays all variant fields.
-@smallexample
-(@value{GDBP}) ptype str
-type = STRUCT (
-    as x,
-    bs x,
-    CASE bs OF
-    (karli):
-        cs a
-    (ott):
-        ds x
-    ESAC
-)
-@end smallexample
-@end table
-
-@node Locations
-@subsubsection Locations and their accesses
-
-A location in Chill is an object which can contain values.
-
-A value of a location is generally accessed by the (declared) name of
-the location.  The output conforms to the specification of values in
-Chill programs.  How values are specified
-is the topic of the next section, @ref{Values and their Operations}.
-
-The pseudo-location @code{RESULT} (or @code{result}) can be used to
-display or change the result of a currently-active procedure:
-
-@smallexample
-set result := EXPR
-@end smallexample
-
-@noindent
-This does the same as the Chill action @code{RESULT EXPR} (which
-is not available in @value{GDBN}).
-
-Values of reference mode locations are printed by @code{PTR(<hex
-value>)} in case of a free reference mode, and by @code{(REF <reference
-mode>) (<hex-value>)} in case of a bound reference.  @code{<hex value>}
-represents the address where the reference points to.  To access the
-value of the location referenced by the pointer, use the dereference
-operator @samp{->}.
-
-Values of procedure mode locations are displayed by
-@smallexample
-@code{@{ PROC
-(<argument modes> ) <return mode> @} <address> <name of procedure
-location>}
-@end smallexample
-@code{<argument modes>} is a list of modes according to the parameter
-specification of the procedure and @code{<address>} shows the address of
-the entry point.
-
-@ignore
-Locations of instance modes are displayed just like a structure with two
-fields specifying the @emph{process type} and the @emph{copy number} of
-the investigated instance location@footnote{This comes from the current
-implementation of instances.  They are implemented as a structure (no
-na).  The output should be something like @code{[<name of the process>;
-<instance number>]}.}.  The field names are @code{__proc_type} and
-@code{__proc_copy}.
-
-Locations of synchronization modes are displayed like a structure with
-the field name @code{__event_data} in case of a event mode location, and
-like a structure with the field @code{__buffer_data} in case of a buffer
-mode location (refer to previous paragraph).
-
-Structure Mode locations are printed by @code{[.<field name>: <value>,
-...]}.  The @code{<field name>} corresponds to the structure mode
-definition and the layout of @code{<value>} varies depending of the mode
-of the field.  If the investigated structure mode location is of variant
-structure mode, the variant parts of the structure are enclosed in curled
-braces (@samp{@{@}}).  Fields enclosed by @samp{@{,@}} are residing
-on the same memory location and represent the current values of the
-memory location in their specific modes.  Since no tag processing is done
-all variants are displayed. A variant field is printed by
-@code{(<variant name>) = .<field name>: <value>}.  (who implements the
-stuff ???)
-@smallexample
-(@value{GDBP}) print str1 $4 = [.as: 0, .bs: karli, .<TAG>: { (karli) =
-[.cs: []], (susi) = [.ds: susi]}]
-@end smallexample
-@end ignore
-
-Substructures of string mode-, array mode- or structure mode-values
-(e.g. array slices, fields of structure locations) are accessed using
-certain operations which are described in the next section, @ref{Values
-and their Operations}.
-
-A location value may be interpreted as having a different mode using the
-location conversion.  This mode conversion is written as @code{<mode
-name>(<location>)}.  The user has to consider that the sizes of the modes
-have to be equal otherwise an error occurs.  Furthermore, no range
-checking of the location against the destination mode is performed, and
-therefore the result can be quite confusing.
-
-@smallexample
-(@value{GDBP}) print int (s(3 up 4)) XXX TO be filled in !! XXX
-@end smallexample
-
-@node Values and their Operations
-@subsubsection Values and their Operations
-
-Values are used to alter locations, to investigate complex structures in
-more detail or to filter relevant information out of a large amount of
-data.  There are several (mode dependent) operations defined which enable
-such investigations.  These operations are not only applicable to
-constant values but also to locations, which can become quite useful
-when debugging complex structures.  During parsing the command line
-(e.g. evaluating an expression) @value{GDBN} treats location names as
-the values behind these locations.
-
-This section describes how values have to be specified and which
-operations are legal to be used with such values.
-
-@table @code
-@item Literal Values
-Literal values are specified in the same manner as in @sc{gnu} Chill programs.
-For detailed specification refer to the @sc{gnu} Chill implementation Manual
-chapter 1.5.
-@c FIXME: if the Chill Manual is a Texinfo documents, the above should
-@c be converted to a @ref.
-
-@ignore
-@itemize @bullet
-@item
-@emph{Integer Literals} are specified in the same manner as in Chill
-programs (refer to the Chill Standard z200/88 chpt 5.2.4.2)
-@item
-@emph{Boolean Literals} are defined by @code{TRUE} and @code{FALSE}.
-@item
-@emph{Character Literals} are defined by @code{'<character>'}. (e.g.
-@code{'M'})
-@item
-@emph{Set Literals} are defined by a name which was specified in a set
-mode.  The value delivered by a Set Literal is the set value.  This is
-comparable to an enumeration in C/C@t{++} language.
-@item
-@emph{Emptiness Literal} is predefined by @code{NULL}.  The value of the
-emptiness literal delivers either the empty reference value, the empty
-procedure value or the empty instance value.
-
-@item
-@emph{Character String Literals} are defined by a sequence of characters
-enclosed in single- or double quotes.  If a single- or double quote has
-to be part of the string literal it has to be stuffed (specified twice).
-@item
-@emph{Bitstring Literals} are specified in the same manner as in Chill
-programs (refer z200/88 chpt 5.2.4.8).
-@item
-@emph{Floating point literals} are specified in the same manner as in
-(gnu-)Chill programs (refer @sc{gnu} Chill implementation Manual chapter 1.5).
-@end itemize
-@end ignore
-
-@item Tuple Values
-A tuple is specified by @code{<mode name>[<tuple>]}, where @code{<mode
-name>} can be omitted if the mode of the tuple is unambiguous.  This
-unambiguity is derived from the context of a evaluated expression.
-@code{<tuple>} can be one of the following:
-
-@itemize @bullet
-@item @emph{Powerset Tuple}
-@item @emph{Array Tuple}
-@item @emph{Structure Tuple}
-Powerset tuples, array tuples and structure tuples are specified in the
-same manner as in Chill programs refer to z200/88 chpt 5.2.5.
-@end itemize
-
-@item String Element Value
-A string element value is specified by
-@smallexample
-@code{<string value>(<index>)}
-@end smallexample
-where @code{<index>} is a integer expression.  It delivers a character
-value which is equivalent to the character indexed by @code{<index>} in
-the string.
-
-@item String Slice Value
-A string slice value is specified by @code{<string value>(<slice
-spec>)}, where @code{<slice spec>} can be either a range of integer
-expressions or specified by @code{<start expr> up <size>}.
-@code{<size>} denotes the number of elements which the slice contains.
-The delivered value is a string value, which is part of the specified
-string.
-
-@item Array Element Values
-An array element value is specified by @code{<array value>(<expr>)} and
-delivers a array element value of the mode of the specified array.
-
-@item Array Slice Values
-An array slice is specified by @code{<array value>(<slice spec>)}, where
-@code{<slice spec>} can be either a range specified by expressions or by
-@code{<start expr> up <size>}.  @code{<size>} denotes the number of
-arrayelements the slice contains.  The delivered value is an array value
-which is part of the specified array.
-
-@item Structure Field Values
-A structure field value is derived by @code{<structure value>.<field
-name>}, where @code{<field name>} indicates the name of a field specified
-in the mode definition of the structure.  The mode of the delivered value
-corresponds to this mode definition in the structure definition.
-
-@item Procedure Call Value
-The procedure call value is derived from the return value of the
-procedure@footnote{If a procedure call is used for instance in an
-expression, then this procedure is called with all its side
-effects.  This can lead to confusing results if used carelessly.}.
-
-Values of duration mode locations are represented by @code{ULONG} literals.
-
-Values of time mode locations appear as
-@smallexample
-@code{TIME(<secs>:<nsecs>)}
-@end smallexample
-
-
-@ignore
-This is not implemented yet:
-@item Built-in Value
-@noindent
-The following built in functions are provided:
-
-@table @code
-@item @code{ADDR()}
-@item @code{NUM()}
-@item @code{PRED()}
-@item @code{SUCC()}
-@item @code{ABS()}
-@item @code{CARD()}
-@item @code{MAX()}
-@item @code{MIN()}
-@item @code{SIZE()}
-@item @code{UPPER()}
-@item @code{LOWER()}
-@item @code{LENGTH()}
-@item @code{SIN()}
-@item @code{COS()}
-@item @code{TAN()}
-@item @code{ARCSIN()}
-@item @code{ARCCOS()}
-@item @code{ARCTAN()}
-@item @code{EXP()}
-@item @code{LN()}
-@item @code{LOG()}
-@item @code{SQRT()}
-@end table
-
-For a detailed description refer to the GNU Chill implementation manual
-chapter 1.6.
-@end ignore
-
-@item Zero-adic Operator Value
-The zero-adic operator value is derived from the instance value for the
-current active process.
-
-@item Expression Values
-The value delivered by an expression is the result of the evaluation of
-the specified expression.  If there are error conditions (mode
-incompatibility, etc.) the evaluation of expressions is aborted with a
-corresponding error message.  Expressions may be parenthesised which
-causes the evaluation of this expression before any other expression
-which uses the result of the parenthesised expression.  The following
-operators are supported by @value{GDBN}:
-
-@table @code
-@item @code{OR, ORIF, XOR}
-@itemx @code{AND, ANDIF}
-@itemx @code{NOT}
-Logical operators defined over operands of boolean mode.
-
-@item @code{=, /=}
-Equality and inequality operators defined over all modes.
-
-@item @code{>, >=}
-@itemx @code{<, <=}
-Relational operators defined over predefined modes.
-
-@item @code{+, -}
-@itemx @code{*, /, MOD, REM}
-Arithmetic operators defined over predefined modes.
-
-@item @code{-}
-Change sign operator.
-
-@item @code{//}
-String concatenation operator.
-
-@item @code{()}
-String repetition operator.
-
-@item @code{->}
-Referenced location operator which can be used either to take the
-address of a location (@code{->loc}), or to dereference a reference
-location (@code{loc->}).
-
-@item @code{OR, XOR}
-@itemx @code{AND}
-@itemx @code{NOT}
-Powerset and bitstring operators.
-
-@item @code{>, >=}
-@itemx @code{<, <=}
-Powerset inclusion operators.
-
-@item @code{IN}
-Membership operator.
-@end table
-@end table
-
-@node Chill type and range checks
-@subsubsection Chill type and range checks
-
-@value{GDBN} considers two Chill variables mode equivalent if the sizes
-of the two modes are equal.  This rule applies recursively to more
-complex datatypes which means that complex modes are treated
-equivalent if all element modes (which also can be complex modes like
-structures, arrays, etc.) have the same size.
-
-Range checking is done on all mathematical operations, assignment, array
-index bounds and all built in procedures.
-
-Strong type checks are forced using the @value{GDBN} command @code{set
-check strong}.  This enforces strong type and range checks on all
-operations where Chill constructs are used (expressions, built in
-functions, etc.) in respect to the semantics as defined in the z.200
-language specification.
-
-All checks can be disabled by the @value{GDBN} command @code{set check
-off}.
-
-@ignore
-@c Deviations from the Chill Standard Z200/88
-see last paragraph ?
-@end ignore
-
-@node Chill defaults
-@subsubsection Chill defaults
-
-If type and range checking are set automatically by @value{GDBN}, they
-both default to @code{on} whenever the working language changes to
-Chill.  This happens regardless of whether you or @value{GDBN}
-selected the working language.
-
-If you allow @value{GDBN} to set the language automatically, then entering
-code compiled from a file whose name ends with @file{.ch} sets the
-working language to Chill.  @xref{Automatically, ,Having @value{GDBN} set
-the language automatically}, for further details.
-
-@node Symbols
-@chapter Examining the Symbol Table
-
-The commands described in this chapter allow you to inquire about the
-symbols (names of variables, functions and types) defined in your
-program.  This information is inherent in the text of your program and
-does not change as your program executes.  @value{GDBN} finds it in your
-program's symbol table, in the file indicated when you started @value{GDBN}
-(@pxref{File Options, ,Choosing files}), or by one of the
-file-management commands (@pxref{Files, ,Commands to specify files}).
+The commands described in this chapter allow you to inquire about the
+symbols (names of variables, functions and types) defined in your
+program.  This information is inherent in the text of your program and
+does not change as your program executes.  @value{GDBN} finds it in your
+program's symbol table, in the file indicated when you started @value{GDBN}
+(@pxref{File Options, ,Choosing files}), or by one of the
+file-management commands (@pxref{Files, ,Commands to specify files}).
 
 @cindex symbol names
 @cindex names of symbols
@@ -8565,9 +8916,9 @@ ordinarily parse a typical file name, like @file{foo.c}, as the three words
 @samp{foo} @samp{.} @samp{c}.  To allow @value{GDBN} to recognize
 @samp{foo.c} as a single symbol, enclose it in single quotes; for example,
 
-@example
+@smallexample
 p 'foo.c'::x
-@end example
+@end smallexample
 
 @noindent
 looks up the value of @code{x} in the scope of the file @file{foo.c}.
@@ -8592,10 +8943,10 @@ Print the name of a symbol which is stored at the address @var{addr}.
 If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
 nearest symbol and an offset from it:
 
-@example
+@smallexample
 (@value{GDBP}) info symbol 0x54320
 _initialize_vx + 396 in section .text
-@end example
+@end smallexample
 
 @noindent
 This is the opposite of the @code{info address} command.  You can use
@@ -8626,14 +8977,14 @@ of just the name of the type.
 
 For example, for this variable declaration:
 
-@example
+@smallexample
 struct complex @{double real; double imag;@} v;
-@end example
+@end smallexample
 
 @noindent
 the two commands give this output:
 
-@example
+@smallexample
 @group
 (@value{GDBP}) whatis v
 type = struct complex
@@ -8643,7 +8994,7 @@ type = struct complex @{
     double imag;
 @}
 @end group
-@end example
+@end smallexample
 
 @noindent
 As with @code{whatis}, using @code{ptype} without an argument refers to
@@ -8690,9 +9041,25 @@ collect}.
 
 @kindex info source
 @item info source
-Show the name of the current source file---that is, the source file for
-the function containing the current point of execution---and the language
-it was written in.
+Show information about the current source file---that is, the source file for
+the function containing the current point of execution:
+@itemize @bullet
+@item
+the name of the source file, and the directory containing it,
+@item
+the directory it was compiled in,
+@item
+its length, in lines,
+@item
+which programming language it is written in,
+@item
+whether the executable includes debugging information for that file, and
+if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
+@item
+whether the debugging information includes information about
+preprocessor macros.
+@end itemize
+
 
 @kindex info sources
 @item info sources
@@ -8716,7 +9083,7 @@ that conflict with the regular expression language (eg.
 @kindex info variables
 @item info variables
 Print the names and data types of all variables that are declared
-outside of functions (i.e., excluding local variables).
+outside of functions (i.e.@: excluding local variables).
 
 @item info variables @var{regexp}
 Print the names and data types of all variables (except for local
@@ -8839,9 +9206,9 @@ address, or even return prematurely from a function.
 To alter the value of a variable, evaluate an assignment expression.
 @xref{Expressions, ,Expressions}.  For example,
 
-@example
+@smallexample
 print x=4
-@end example
+@end smallexample
 
 @noindent
 stores the value 4 into the variable @code{x}, and then prints the
@@ -8865,22 +9232,22 @@ program has a variable @code{width}, you get an error if you try to set
 a new value with just @samp{set width=13}, because @value{GDBN} has the
 command @code{set width}:
 
-@example
+@smallexample
 (@value{GDBP}) whatis width
 type = double
 (@value{GDBP}) p width
 $4 = 13
 (@value{GDBP}) set width=47
 Invalid syntax in expression.
-@end example
+@end smallexample
 
 @noindent
 The invalid expression, of course, is @samp{=47}.  In
 order to actually set the program's variable @code{width}, use
 
-@example
+@smallexample
 (@value{GDBP}) set var width=47
-@end example
+@end smallexample
 
 Because the @code{set} command has many subcommands that can conflict
 with the names of program variables, it is a good idea to use the
@@ -8889,7 +9256,7 @@ your program has a variable @code{g}, you run into problems if you try
 to set a new value with just @samp{set g=4}, because @value{GDBN} has
 the command @code{set gnutarget}, abbreviated @code{set g}:
 
-@example
+@smallexample
 @group
 (@value{GDBP}) whatis g
 type = double
@@ -8907,16 +9274,16 @@ Starting program: /home/smith/cc_progs/a.out
 (@value{GDBP}) show g
 The current BFD target is "=4".
 @end group
-@end example
+@end smallexample
 
 @noindent
 The program variable @code{g} did not change, and you silently set the
 @code{gnutarget} to an invalid value.  In order to set the variable
 @code{g}, use
 
-@example
+@smallexample
 (@value{GDBP}) set var g=4
-@end example
+@end smallexample
 
 @value{GDBN} allows more implicit conversions in assignments than C; you can
 freely store an integer value into a pointer variable or vice versa,
@@ -8931,9 +9298,9 @@ construct to generate a value of specified type at a specified address
 to memory location @code{0x83040} as an integer (which implies a certain size
 and representation in memory), and
 
-@example
+@smallexample
 set @{int@}0x83040 = 4
-@end example
+@end smallexample
 
 @noindent
 stores the value 4 into that memory location.
@@ -8976,9 +9343,9 @@ difference is that this does not start your program running; it only
 changes the address of where it @emph{will} run when you continue.  For
 example,
 
-@example
+@smallexample
 set $pc = 0x485
-@end example
+@end smallexample
 
 @noindent
 makes the next @code{continue} command or stepping command execute at
@@ -9067,12 +9434,6 @@ execute a function from your program, but without cluttering the output
 with @code{void} returned values.  If the result is not void, it
 is printed and saved in the value history.
 
-@c OBSOLETE For the A29K, a user-controlled variable @code{call_scratch_address},
-@c OBSOLETE specifies the location of a scratch area to be used when @value{GDBN}
-@c OBSOLETE calls a function in the target.  This is necessary because the usual
-@c OBSOLETE method of putting the scratch area on the stack does not work in systems
-@c OBSOLETE that have separate instruction and data spaces.
-
 @node Patching
 @section Patching programs
 
@@ -9410,6 +9771,21 @@ COFF shared library information.
 Section contains common symbols.
 @end table
 @end table
+@kindex set trust-readonly-sections
+@item set trust-readonly-sections on
+Tell @value{GDBN} that readonly sections in your object file
+really are read-only (i.e.@: that their contents will not change).
+In that case, @value{GDBN} can fetch values from these sections
+out of the object file, rather than from the target program.
+For some targets (notably embedded ones), this can be a significant
+enhancement to debugging performance.
+
+The default is off.
+
+@item set trust-readonly-sections off
+Tell @value{GDBN} not to trust readonly sections.  This means that
+the contents of the section might change while the program is running,
+and must therefore be fetched from the target when needed.
 @end table
 
 All file-specifying commands allow both absolute and relative file names
@@ -9499,7 +9875,7 @@ If @var{threshold} is nonzero and shared library autoloading is enabled,
 symbols from all shared object libraries will be loaded until the total
 size of the loaded shared library symbols exceeds this threshold.
 Otherwise, symbols must be loaded manually, using the
-@code{sharedlibrary} command.  The default threshold is 100 (i.e. 100
+@code{sharedlibrary} command.  The default threshold is 100 (i.e.@: 100
 Mb).
 
 @kindex show auto-solib-limit
@@ -9735,11 +10111,11 @@ it somewhere in memory where it won't get clobbered by the download.
 @item target sim
 Builtin CPU simulator.  @value{GDBN} includes simulators for most architectures.
 In general,
-@example
+@smallexample
         target sim
         load
         run
-@end example
+@end smallexample
 @noindent
 works; however, you cannot assume that a specific memory map, device
 drivers, or even basic I/O is available, although some simulators do
@@ -9861,21 +10237,21 @@ displayed is determined on a per-OS basis.
 Use the @code{set os} command to set the operating system.  This tells
 @value{GDBN} which kernel object display module to initialize:
 
-@example
+@smallexample
 (@value{GDBP}) set os cisco
-@end example
+@end smallexample
 
 If @code{set os} succeeds, @value{GDBN} will display some information
 about the operating system, and will create a new @code{info} command
 which can be used to query the target.  The @code{info} command is named
 after the operating system:
 
-@example
+@smallexample
 (@value{GDBP}) info cisco
 List of Cisco Kernel Objects
 Object     Description
 any        Any and all objects
-@end example
+@end smallexample
 
 Further subcommands can be used to query about particular objects known
 by the kernel.
@@ -9928,7 +10304,7 @@ strip the program if necessary to save space.  @value{GDBN} on the host
 system does all the symbol handling.
 
 To use the server, you must tell it how to communicate with @value{GDBN};
-the name of your program; and the arguments for your program.  The
+the name of your program; and the arguments for your program.  The usual
 syntax is:
 
 @smallexample
@@ -9965,6 +10341,16 @@ conflicts with another service, @code{gdbserver} prints an error message
 and exits.}  You must use the same port number with the host @value{GDBN}
 @code{target remote} command.
 
+On some targets, @code{gdbserver} can also attach to running programs.
+This is accomplished via the @code{--attach} argument.  The syntax is:
+
+@smallexample
+target> gdbserver @var{comm} --attach @var{pid}
+@end smallexample
+
+@var{pid} is the process ID of a currently running process.  It isn't necessary
+to point @code{gdbserver} at a binary for the running process.
+
 @item On the @value{GDBN} host machine,
 you need an unstripped copy of your program, since @value{GDBN} needs
 symbols and debugging information.  Start up @value{GDBN} as usual,
@@ -10319,18 +10705,18 @@ Make sure you have defined the supporting low-level routines
 @item
 Insert these lines near the top of your program:
 
-@example
+@smallexample
 set_debug_traps();
 breakpoint();
-@end example
+@end smallexample
 
 @item
 For the 680x0 stub only, you need to provide a variable called
 @code{exceptionHook}.  Normally you just use:
 
-@example
+@smallexample
 void (*exceptionHook)() = 0;
-@end example
+@end smallexample
 
 @noindent
 but if before calling @code{set_debug_traps}, you set it to point to a
@@ -10364,34 +10750,50 @@ of its pure text.
 Establish communication using the @code{target remote} command.
 Its argument specifies how to communicate with the target
 machine---either via a devicename attached to a direct serial line, or a
-TCP port (usually to a terminal server which in turn has a serial line
+TCP or UDP port (usually to a terminal server which in turn has a serial line
 to the target).  For example, to use a serial line connected to the
 device named @file{/dev/ttyb}:
 
-@example
+@smallexample
 target remote /dev/ttyb
-@end example
+@end smallexample
 
 @cindex TCP port, @code{target remote}
 To use a TCP connection, use an argument of the form
-@code{@var{host}:port}.  For example, to connect to port 2828 on a
+@code{@var{host}:@var{port}} or @code{tcp:@var{host}:@var{port}}.
+For example, to connect to port 2828 on a
 terminal server named @code{manyfarms}:
 
-@example
+@smallexample
 target remote manyfarms:2828
-@end example
+@end smallexample
 
 If your remote target is actually running on the same machine as
 your debugger session (e.g.@: a simulator of your target running on
 the same host), you can omit the hostname.  For example, to connect
 to port 1234 on your local machine:
 
-@example
+@smallexample
 target remote :1234
-@end example
+@end smallexample
 @noindent
 
 Note that the colon is still required here.
+
+@cindex UDP port, @code{target remote}
+To use a UDP connection, use an argument of the form
+@code{udp:@var{host}:@var{port}}.  For example, to connect to UDP port 2828
+on a terminal server named @code{manyfarms}:
+
+@smallexample
+target remote udp:manyfarms:2828
+@end smallexample
+
+When using a UDP connection for remote debugging, you should keep in mind
+that the `U' stands for ``Unreliable''.  UDP can silently drop packets on
+busy or unreliable networks, which will cause havoc with your debugging
+session.
+
 @end enumerate
 
 Now you can use all the usual commands to examine and change data and to
@@ -10408,10 +10810,10 @@ program.  This may or may not succeed, depending in part on the hardware
 and the serial drivers the remote system uses.  If you type the
 interrupt character once again, @value{GDBN} displays this prompt:
 
-@example
+@smallexample
 Interrupted while waiting for the program.
 Give up (and stop debugging it)?  (y or n)
-@end example
+@end smallexample
 
 If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
 (If you decide you want to try again later, you can use @samp{target
@@ -10449,6 +10851,7 @@ configurations.
 * HP-UX::                       HP-UX
 * SVR4 Process Information::    SVR4 process information
 * DJGPP Native::                Features specific to the DJGPP port
+* Cygwin Native::              Features specific to the Cygwin port
 @end menu
 
 @node HP-UX
@@ -10647,6 +11050,92 @@ mapped 1:1, i.e.@: the physical and linear addresses are identical.
 This command is supported only with some DPMI servers.
 @end table
 
+@node Cygwin Native
+@subsection Features for Debugging MS Windows PE executables
+@cindex MS Windows debugging
+@cindex native Cygwin debugging
+@cindex Cygwin-specific commands
+
+@value{GDBN} supports native debugging of MS Windows programs, and
+defines a few commands specific to the Cygwin port.  This
+subsection describes those commands.
+
+@table @code
+@kindex info w32
+@item info w32
+This is a prefix of MS Windows specific commands which print
+information about the target system and important OS structures.
+
+@item info w32 selector
+This command displays information returned by
+the Win32 API @code{GetThreadSelectorEntry} function.
+It takes an optional argument that is evaluated to
+a long value to give the information about this given selector.
+Without argument, this command displays information
+about the the six segment registers.
+
+@kindex info dll
+@item info dll
+This is a Cygwin specific alias of info shared.
+
+@kindex dll-symbols
+@item dll-symbols
+This command loads symbols from a dll similarly to
+add-sym command but without the need to specify a base address.
+
+@kindex set new-console 
+@item set new-console @var{mode}
+If @var{mode} is @code{on} the debuggee will 
+be started in a new console on next start.
+If @var{mode} is @code{off}i, the debuggee will
+be started in the same console as the debugger.
+
+@kindex show new-console
+@item show new-console
+Displays whether a new console is used
+when the debuggee is started.
+
+@kindex set new-group
+@item set new-group @var{mode}
+This boolean value controls whether the debuggee should
+start a new group or stay in the same group as the debugger.
+This affects the way the Windows OS handles
+Ctrl-C.
+
+@kindex show new-group
+@item show new-group
+Displays current value of new-group boolean.
+
+@kindex set debugevents
+@item set debugevents
+This boolean value adds debug output concerning events seen by the debugger.
+
+@kindex set debugexec
+@item set debugexec
+This boolean value adds debug output concerning execute events 
+seen by the debugger.
+
+@kindex set debugexceptions
+@item set debugexceptions
+This boolean value adds debug ouptut concerning exception events 
+seen by the debugger.
+
+@kindex set debugmemory
+@item set debugmemory
+This boolean value adds debug ouptut concerning memory events 
+seen by the debugger.
+
+@kindex set shell
+@item set shell
+This boolean values specifies whether the debuggee is called
+via a shell or directly (default value is on).
+
+@kindex show shell
+@item show shell
+Displays if the debuggee will be started with a shell.
+
+@end table
+
 @node Embedded OS
 @section Embedded Operating Systems
 
@@ -10718,9 +11207,9 @@ run @value{GDBN}.  From your Unix host, run @code{@value{GDBP}} (or
 
 @value{GDBN} comes up showing the prompt:
 
-@example
+@smallexample
 (vxgdb)
-@end example
+@end smallexample
 
 @menu
 * VxWorks Connection::          Connecting to VxWorks
@@ -10734,9 +11223,9 @@ run @value{GDBN}.  From your Unix host, run @code{@value{GDBP}} (or
 The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
 network.  To connect to a target whose host name is ``@code{tt}'', type:
 
-@example
+@smallexample
 (vxgdb) target vxworks tt
-@end example
+@end smallexample
 
 @need 750
 @value{GDBN} displays messages like these:
@@ -10753,9 +11242,9 @@ these files by searching the directories listed in the command search
 path (@pxref{Environment, ,Your program's environment}); if it fails
 to find an object file, it displays a message such as:
 
-@example
+@smallexample
 prog.o: No such file or directory.
-@end example
+@end smallexample
 
 When this happens, add the appropriate directory to the search path with
 the @value{GDBN} command @code{path}, and execute the @code{target}
@@ -10781,17 +11270,17 @@ the file by its name, without any path.  For instance, a program
 and in @file{@var{hostpath}/vw/demo/rdb} on the host.  To load this
 program, type this on VxWorks:
 
-@example
+@smallexample
 -> cd "@var{vxpath}/vw/demo/rdb"
-@end example
+@end smallexample
 
 @noindent
 Then, in @value{GDBN}, type:
 
-@example
+@smallexample
 (vxgdb) cd @var{hostpath}/vw/demo/rdb
 (vxgdb) load prog.o
-@end example
+@end smallexample
 
 @value{GDBN} displays a response similar to this:
 
@@ -10814,9 +11303,9 @@ table.)
 You can also attach to an existing task using the @code{attach} command as
 follows:
 
-@example
+@smallexample
 (vxgdb) attach @var{task}
-@end example
+@end smallexample
 
 @noindent
 where @var{task} is the VxWorks hexadecimal task ID.  The task can be running
@@ -10830,7 +11319,6 @@ This section goes into details specific to particular embedded
 configurations.
 
 
-@c OBSOLETE * A29K Embedded::               AMD A29K Embedded
 @menu
 * ARM::                         ARM
 * H8/300::                      Hitachi H8/300
@@ -10838,7 +11326,7 @@ configurations.
 * i960::                        Intel i960
 * M32R/D::                      Mitsubishi M32R/D
 * M68K::                        Motorola M68K
-* M88K::                        Motorola M88K
+@c OBSOLETE * M88K::                        Motorola M88K
 * MIPS Embedded::               MIPS Embedded
 * PA::                          HP PA Embedded
 * PowerPC:                      PowerPC
@@ -10849,251 +11337,6 @@ configurations.
 * Z8000::                       Zilog Z8000
 @end menu
 
-@c OBSOLETE @node A29K Embedded
-@c OBSOLETE @subsection AMD A29K Embedded
-@c OBSOLETE 
-@c OBSOLETE @menu
-@c OBSOLETE * A29K UDI::
-@c OBSOLETE * A29K EB29K::
-@c OBSOLETE * Comms (EB29K)::               Communications setup
-@c OBSOLETE * gdb-EB29K::                   EB29K cross-debugging
-@c OBSOLETE * Remote Log::                  Remote log
-@c OBSOLETE @end menu
-@c OBSOLETE 
-@c OBSOLETE @table @code
-@c OBSOLETE 
-@c OBSOLETE @kindex target adapt
-@c OBSOLETE @item target adapt @var{dev}
-@c OBSOLETE Adapt monitor for A29K.
-@c OBSOLETE 
-@c OBSOLETE @kindex target amd-eb
-@c OBSOLETE @item target amd-eb @var{dev} @var{speed} @var{PROG}
-@c OBSOLETE @cindex AMD EB29K
-@c OBSOLETE Remote PC-resident AMD EB29K board, attached over serial lines.
-@c OBSOLETE @var{dev} is the serial device, as for @code{target remote};
-@c OBSOLETE @var{speed} allows you to specify the linespeed; and @var{PROG} is the
-@c OBSOLETE name of the program to be debugged, as it appears to DOS on the PC.
-@c OBSOLETE @xref{A29K EB29K, ,EBMON protocol for AMD29K}.
-@c OBSOLETE 
-@c OBSOLETE @end table
-@c OBSOLETE 
-@c OBSOLETE @node A29K UDI
-@c OBSOLETE @subsubsection A29K UDI
-@c OBSOLETE 
-@c OBSOLETE @cindex UDI
-@c OBSOLETE @cindex AMD29K via UDI
-@c OBSOLETE 
-@c OBSOLETE @value{GDBN} supports AMD's UDI (``Universal Debugger Interface'')
-@c OBSOLETE protocol for debugging the a29k processor family.  To use this
-@c OBSOLETE configuration with AMD targets running the MiniMON monitor, you need the
-@c OBSOLETE program @code{MONTIP}, available from AMD at no charge.  You can also
-@c OBSOLETE use @value{GDBN} with the UDI-conformant a29k simulator program
-@c OBSOLETE @code{ISSTIP}, also available from AMD.
-@c OBSOLETE 
-@c OBSOLETE @table @code
-@c OBSOLETE @item target udi @var{keyword}
-@c OBSOLETE @kindex udi
-@c OBSOLETE Select the UDI interface to a remote a29k board or simulator, where
-@c OBSOLETE @var{keyword} is an entry in the AMD configuration file @file{udi_soc}.
-@c OBSOLETE This file contains keyword entries which specify parameters used to
-@c OBSOLETE connect to a29k targets.  If the @file{udi_soc} file is not in your
-@c OBSOLETE working directory, you must set the environment variable @samp{UDICONF}
-@c OBSOLETE to its pathname.
-@c OBSOLETE @end table
-@c OBSOLETE 
-@c OBSOLETE @node A29K EB29K
-@c OBSOLETE @subsubsection EBMON protocol for AMD29K
-@c OBSOLETE 
-@c OBSOLETE @cindex EB29K board
-@c OBSOLETE @cindex running 29K programs
-@c OBSOLETE 
-@c OBSOLETE AMD distributes a 29K development board meant to fit in a PC, together
-@c OBSOLETE with a DOS-hosted monitor program called @code{EBMON}.  As a shorthand
-@c OBSOLETE term, this development system is called the ``EB29K''.  To use
-@c OBSOLETE @value{GDBN} from a Unix system to run programs on the EB29K board, you
-@c OBSOLETE must first connect a serial cable between the PC (which hosts the EB29K
-@c OBSOLETE board) and a serial port on the Unix system.  In the following, we
-@c OBSOLETE assume you've hooked the cable between the PC's @file{COM1} port and
-@c OBSOLETE @file{/dev/ttya} on the Unix system.
-@c OBSOLETE 
-@c OBSOLETE @node Comms (EB29K)
-@c OBSOLETE @subsubsection Communications setup
-@c OBSOLETE 
-@c OBSOLETE The next step is to set up the PC's port, by doing something like this
-@c OBSOLETE in DOS on the PC:
-@c OBSOLETE 
-@c OBSOLETE @example
-@c OBSOLETE C:\> MODE com1:9600,n,8,1,none
-@c OBSOLETE @end example
-@c OBSOLETE 
-@c OBSOLETE @noindent
-@c OBSOLETE This example---run on an MS DOS 4.0 system---sets the PC port to 9600
-@c OBSOLETE bps, no parity, eight data bits, one stop bit, and no ``retry'' action;
-@c OBSOLETE you must match the communications parameters when establishing the Unix
-@c OBSOLETE end of the connection as well.
-@c OBSOLETE @c FIXME: Who knows what this "no retry action" crud from the DOS manual may
-@c OBSOLETE @c       mean?  It's optional; leave it out? ---doc@cygnus.com, 25feb91
-@c OBSOLETE @c
-@c OBSOLETE @c It's optional, but it's unwise to omit it: who knows what is the
-@c OBSOLETE @c default value set when the DOS machines boots?  "No retry" means that
-@c OBSOLETE @c the DOS serial device driver won't retry the operation if it fails;
-@c OBSOLETE @c I understand that this is needed because the GDB serial protocol
-@c OBSOLETE @c handles any errors and retransmissions itself. ---Eli Zaretskii, 3sep99
-@c OBSOLETE 
-@c OBSOLETE To give control of the PC to the Unix side of the serial line, type
-@c OBSOLETE the following at the DOS console:
-@c OBSOLETE 
-@c OBSOLETE @example
-@c OBSOLETE C:\> CTTY com1
-@c OBSOLETE @end example
-@c OBSOLETE 
-@c OBSOLETE @noindent
-@c OBSOLETE (Later, if you wish to return control to the DOS console, you can use
-@c OBSOLETE the command @code{CTTY con}---but you must send it over the device that
-@c OBSOLETE had control, in our example over the @file{COM1} serial line.)
-@c OBSOLETE 
-@c OBSOLETE From the Unix host, use a communications program such as @code{tip} or
-@c OBSOLETE @code{cu} to communicate with the PC; for example,
-@c OBSOLETE 
-@c OBSOLETE @example
-@c OBSOLETE cu -s 9600 -l /dev/ttya
-@c OBSOLETE @end example
-@c OBSOLETE 
-@c OBSOLETE @noindent
-@c OBSOLETE The @code{cu} options shown specify, respectively, the linespeed and the
-@c OBSOLETE serial port to use.  If you use @code{tip} instead, your command line
-@c OBSOLETE may look something like the following:
-@c OBSOLETE 
-@c OBSOLETE @example
-@c OBSOLETE tip -9600 /dev/ttya
-@c OBSOLETE @end example
-@c OBSOLETE 
-@c OBSOLETE @noindent
-@c OBSOLETE Your system may require a different name where we show
-@c OBSOLETE @file{/dev/ttya} as the argument to @code{tip}.  The communications
-@c OBSOLETE parameters, including which port to use, are associated with the
-@c OBSOLETE @code{tip} argument in the ``remote'' descriptions file---normally the
-@c OBSOLETE system table @file{/etc/remote}.
-@c OBSOLETE @c FIXME: What if anything needs doing to match the "n,8,1,none" part of
-@c OBSOLETE @c the DOS side's comms setup?  cu can support -o (odd
-@c OBSOLETE @c parity), -e (even parity)---apparently no settings for no parity or
-@c OBSOLETE @c for character size.  Taken from stty maybe...?  John points out tip
-@c OBSOLETE @c can set these as internal variables, eg ~s parity=none; man stty
-@c OBSOLETE @c suggests that it *might* work to stty these options with stdin or
-@c OBSOLETE @c stdout redirected... ---doc@cygnus.com, 25feb91
-@c OBSOLETE @c
-@c OBSOLETE @c There's nothing to be done for the "none" part of the DOS MODE
-@c OBSOLETE @c command.  The rest of the parameters should be matched by the
-@c OBSOLETE @c baudrate, bits, and parity used by the Unix side. ---Eli Zaretskii, 3Sep99
-@c OBSOLETE 
-@c OBSOLETE @kindex EBMON
-@c OBSOLETE Using the @code{tip} or @code{cu} connection, change the DOS working
-@c OBSOLETE directory to the directory containing a copy of your 29K program, then
-@c OBSOLETE start the PC program @code{EBMON} (an EB29K control program supplied
-@c OBSOLETE with your board by AMD).  You should see an initial display from
-@c OBSOLETE @code{EBMON} similar to the one that follows, ending with the
-@c OBSOLETE @code{EBMON} prompt @samp{#}---
-@c OBSOLETE 
-@c OBSOLETE @example
-@c OBSOLETE C:\> G:
-@c OBSOLETE 
-@c OBSOLETE G:\> CD \usr\joe\work29k
-@c OBSOLETE 
-@c OBSOLETE G:\USR\JOE\WORK29K> EBMON
-@c OBSOLETE Am29000 PC Coprocessor Board Monitor, version 3.0-18
-@c OBSOLETE Copyright 1990 Advanced Micro Devices, Inc.
-@c OBSOLETE Written by Gibbons and Associates, Inc.
-@c OBSOLETE 
-@c OBSOLETE Enter '?' or 'H' for help
-@c OBSOLETE 
-@c OBSOLETE PC Coprocessor Type   = EB29K
-@c OBSOLETE I/O Base              = 0x208
-@c OBSOLETE Memory Base           = 0xd0000
-@c OBSOLETE 
-@c OBSOLETE Data Memory Size      = 2048KB
-@c OBSOLETE Available I-RAM Range = 0x8000 to 0x1fffff
-@c OBSOLETE Available D-RAM Range = 0x80002000 to 0x801fffff
-@c OBSOLETE 
-@c OBSOLETE PageSize              = 0x400
-@c OBSOLETE Register Stack Size   = 0x800
-@c OBSOLETE Memory Stack Size     = 0x1800
-@c OBSOLETE 
-@c OBSOLETE CPU PRL               = 0x3
-@c OBSOLETE Am29027 Available     = No
-@c OBSOLETE Byte Write Available  = Yes
-@c OBSOLETE 
-@c OBSOLETE # ~.
-@c OBSOLETE @end example
-@c OBSOLETE 
-@c OBSOLETE Then exit the @code{cu} or @code{tip} program (done in the example by
-@c OBSOLETE typing @code{~.} at the @code{EBMON} prompt).  @code{EBMON} keeps
-@c OBSOLETE running, ready for @value{GDBN} to take over.
-@c OBSOLETE 
-@c OBSOLETE For this example, we've assumed what is probably the most convenient
-@c OBSOLETE way to make sure the same 29K program is on both the PC and the Unix
-@c OBSOLETE system: a PC/NFS connection that establishes ``drive @file{G:}'' on the
-@c OBSOLETE PC as a file system on the Unix host.  If you do not have PC/NFS or
-@c OBSOLETE something similar connecting the two systems, you must arrange some
-@c OBSOLETE other way---perhaps floppy-disk transfer---of getting the 29K program
-@c OBSOLETE from the Unix system to the PC; @value{GDBN} does @emph{not} download it over the
-@c OBSOLETE serial line.
-@c OBSOLETE 
-@c OBSOLETE @node gdb-EB29K
-@c OBSOLETE @subsubsection EB29K cross-debugging
-@c OBSOLETE 
-@c OBSOLETE Finally, @code{cd} to the directory containing an image of your 29K
-@c OBSOLETE program on the Unix system, and start @value{GDBN}---specifying as argument the
-@c OBSOLETE name of your 29K program:
-@c OBSOLETE 
-@c OBSOLETE @example
-@c OBSOLETE cd /usr/joe/work29k
-@c OBSOLETE @value{GDBP} myfoo
-@c OBSOLETE @end example
-@c OBSOLETE 
-@c OBSOLETE @need 500
-@c OBSOLETE Now you can use the @code{target} command:
-@c OBSOLETE 
-@c OBSOLETE @example
-@c OBSOLETE target amd-eb /dev/ttya 9600 MYFOO
-@c OBSOLETE @c FIXME: test above 'target amd-eb' as spelled, with caps!  caps are meant to
-@c OBSOLETE @c emphasize that this is the name as seen by DOS (since I think DOS is
-@c OBSOLETE @c single-minded about case of letters).  ---doc@cygnus.com, 25feb91
-@c OBSOLETE @end example
-@c OBSOLETE 
-@c OBSOLETE @noindent
-@c OBSOLETE In this example, we've assumed your program is in a file called
-@c OBSOLETE @file{myfoo}.  Note that the filename given as the last argument to
-@c OBSOLETE @code{target amd-eb} should be the name of the program as it appears to DOS.
-@c OBSOLETE In our example this is simply @code{MYFOO}, but in general it can include
-@c OBSOLETE a DOS path, and depending on your transfer mechanism may not resemble
-@c OBSOLETE the name on the Unix side.
-@c OBSOLETE 
-@c OBSOLETE At this point, you can set any breakpoints you wish; when you are ready
-@c OBSOLETE to see your program run on the 29K board, use the @value{GDBN} command
-@c OBSOLETE @code{run}.
-@c OBSOLETE 
-@c OBSOLETE To stop debugging the remote program, use the @value{GDBN} @code{detach}
-@c OBSOLETE command.
-@c OBSOLETE 
-@c OBSOLETE To return control of the PC to its console, use @code{tip} or @code{cu}
-@c OBSOLETE once again, after your @value{GDBN} session has concluded, to attach to
-@c OBSOLETE @code{EBMON}.  You can then type the command @code{q} to shut down
-@c OBSOLETE @code{EBMON}, returning control to the DOS command-line interpreter.
-@c OBSOLETE Type @kbd{CTTY con} to return command input to the main DOS console,
-@c OBSOLETE and type @kbd{~.} to leave @code{tip} or @code{cu}.
-@c OBSOLETE 
-@c OBSOLETE @node Remote Log
-@c OBSOLETE @subsubsection Remote log
-@c OBSOLETE @cindex @file{eb.log}, a log file for EB29K
-@c OBSOLETE @cindex log file for EB29K
-@c OBSOLETE 
-@c OBSOLETE The @code{target amd-eb} command creates a file @file{eb.log} in the
-@c OBSOLETE current working directory, to help debug problems with the connection.
-@c OBSOLETE @file{eb.log} records all the output from @code{EBMON}, including echoes
-@c OBSOLETE of the commands sent to it.  Running @samp{tail -f} on this file in
-@c OBSOLETE another window often helps to understand trouble with @code{EBMON}, or
-@c OBSOLETE unexpected events on the PC side of the connection.
-
 @node ARM
 @subsection ARM
 
@@ -11208,7 +11451,7 @@ debugger, you give it just the numeric part of the serial port's name;
 for example, @samp{asyncstr 2} below runs @code{asyncstr} on
 @code{COM2}.
 
-@example
+@smallexample
 C:\H8300\TEST> asynctsr 2
 C:\H8300\TEST> mode com2:9600,n,8,1,p
 
@@ -11216,7 +11459,7 @@ Resident portion of MODE loaded
 
 COM2: 9600, n, 8, 1, p
 
-@end example
+@end smallexample
 
 @quotation
 @emph{Warning:} We have noticed a bug in PC-NFS that conflicts with
@@ -11389,9 +11632,9 @@ If you simply start @code{@value{GDBP}} without using any command-line
 options, you are prompted for what serial port to use, @emph{before} you
 reach the ordinary @value{GDBN} prompt:
 
-@example
+@smallexample
 Attach /dev/ttyNN -- specify NN, or "quit" to quit:
-@end example
+@end smallexample
 
 @noindent
 Respond to the prompt with whatever suffix (after @samp{/dev/tty})
@@ -11518,16 +11761,16 @@ ROMBUG ROM monitor for OS/9000.
 
 @end table
 
-@node M88K
-@subsection M88K
-
-@table @code
-
-@kindex target bug
-@item target bug @var{dev}
-BUG monitor, running on a MVME187 (m88k) board.
-
-@end table
+@c OBSOLETE @node M88K
+@c OBSOLETE @subsection M88K
+@c OBSOLETE 
+@c OBSOLETE @table @code
+@c OBSOLETE 
+@c OBSOLETE @kindex target bug
+@c OBSOLETE @item target bug @var{dev}
+@c OBSOLETE BUG monitor, running on a MVME187 (m88k) board.
+@c OBSOLETE 
+@c OBSOLETE @end table
 
 @node MIPS Embedded
 @subsection MIPS Embedded
@@ -11554,13 +11797,13 @@ For example, this sequence connects to the target board through a serial
 port, and loads and runs a program called @var{prog} through the
 debugger:
 
-@example
+@smallexample
 host$ @value{GDBP} @var{prog}
 @value{GDBN} is free software and @dots{}
 (@value{GDBP}) target mips /dev/ttyb
 (@value{GDBP}) load @var{prog}
 (@value{GDBP}) run
-@end example
+@end smallexample
 
 @item target mips @var{hostname}:@var{portnumber}
 On some @value{GDBN} host configurations, you can specify a TCP
@@ -11757,15 +12000,15 @@ information and @samp{-Ttext} to relocate the program to where you wish to
 load it on the target.  You may also want to add the options @samp{-n} or
 @samp{-N} in order to reduce the size of the sections.  Example:
 
-@example
+@smallexample
 sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
-@end example
+@end smallexample
 
 You can use @code{objdump} to verify that the addresses are what you intended:
 
-@example
+@smallexample
 sparclet-aout-objdump --headers --syms prog
-@end example
+@end smallexample
 
 @cindex running, on Sparclet
 Once you have set
@@ -11775,9 +12018,9 @@ run @value{GDBN}.  From your Unix host, run @code{@value{GDBP}}
 
 @value{GDBN} comes up showing the prompt:
 
-@example
+@smallexample
 (gdbslet)
-@end example
+@end smallexample
 
 @menu
 * Sparclet File::                Setting the file to debug
@@ -11791,9 +12034,9 @@ run @value{GDBN}.  From your Unix host, run @code{@value{GDBP}}
 
 The @value{GDBN} command @code{file} lets you choose with program to debug.
 
-@example
+@smallexample
 (gdbslet) file prog
-@end example
+@end smallexample
 
 @need 1000
 @value{GDBN} then attempts to read the symbol table of @file{prog}.
@@ -11808,9 +12051,9 @@ path (@pxref{Environment, ,Your program's environment}).
 If it fails
 to find a file, it displays a message such as:
 
-@example
+@smallexample
 prog: No such file or directory.
-@end example
+@end smallexample
 
 When this happens, add the appropriate directories to the search paths with
 the @value{GDBN} commands @code{path} and @code{dir}, and execute the
@@ -11822,18 +12065,18 @@ the @value{GDBN} commands @code{path} and @code{dir}, and execute the
 The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
 To connect to a target on serial port ``@code{ttya}'', type:
 
-@example
+@smallexample
 (gdbslet) target sparclet /dev/ttya
 Remote target sparclet connected to /dev/ttya
 main () at ../prog.c:3
-@end example
+@end smallexample
 
 @need 750
 @value{GDBN} displays messages like these:
 
-@example
+@smallexample
 Connected to ttya.
-@end example
+@end smallexample
 
 @node Sparclet Download
 @subsubsection Sparclet download
@@ -11852,10 +12095,10 @@ For instance, if the program
 @file{prog} was linked to text address 0x1201000, with data at 0x12010160
 and bss at 0x12010170, in @value{GDBN}, type:
 
-@example
+@smallexample
 (gdbslet) load prog 0x12010000
 Loading section .text, size 0xdb0 vma 0x12010000
-@end example
+@end smallexample
 
 If the code is loaded at a different address then what the program was linked
 to, you may need to use the @code{section} and @code{add-symbol-file} commands
@@ -11869,7 +12112,7 @@ You can now begin debugging the task using @value{GDBN}'s execution control
 commands, @code{b}, @code{step}, @code{run}, etc.  See the @value{GDBN}
 manual for the list of commands.
 
-@example
+@smallexample
 (gdbslet) b main
 Breakpoint 1 at 0x12010000: file prog.c, line 3.
 (gdbslet) run
@@ -11879,7 +12122,7 @@ Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
 (gdbslet) step
 4        char *execarg = "hello!";
 (gdbslet)
-@end example
+@end smallexample
 
 @node Sparclite
 @subsection Fujitsu Sparclite
@@ -11904,9 +12147,9 @@ STDBUG protocol.
 To connect your ST2000 to the host system, see the manufacturer's
 manual.  Once the ST2000 is physically attached, you can run:
 
-@example
+@smallexample
 target st2000 @var{dev} @var{speed}
-@end example
+@end smallexample
 
 @noindent
 to establish it as your debugging environment.  @var{dev} is normally
@@ -12382,11 +12625,11 @@ By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
 lot of stupid questions to confirm certain commands.  For example, if
 you try to run a program which is already running:
 
-@example
+@smallexample
 (@value{GDBP}) run
 The program being debugged has been started already.
 Start it from the beginning? (y or n)
-@end example
+@end smallexample
 
 If you are willing to unflinchingly face the consequences of your own
 commands, you can disable this ``feature'':
@@ -12577,6 +12820,14 @@ Display the @value{GDBN} commands used to define @var{commandname} (but
 not its documentation).  If no @var{commandname} is given, display the
 definitions for all user-defined commands.
 
+@kindex show max-user-call-depth
+@kindex set max-user-call-depth
+@item show max-user-call-depth
+@itemx set max-user-call-depth
+The value of @code{max-user-call-depth} controls how many recursion
+levels are allowed in user-defined commands before GDB suspects an
+infinite recursion and aborts the command.
+
 @end table
 
 When user-defined commands are executed, the
@@ -12626,7 +12877,7 @@ For example, to ignore @code{SIGALRM} signals while
 single-stepping, but treat them normally during normal execution,
 you could define:
 
-@example
+@smallexample
 define hook-stop
 handle SIGALRM nopass
 end
@@ -12638,13 +12889,13 @@ end
 define hook-continue
 handle SIGLARM pass
 end
-@end example
+@end smallexample
 
 As a further example, to hook at the begining and end of the @code{echo}
 command, and to add extra text to the beginning and end of the message, 
 you could define:
 
-@example
+@smallexample
 define hook-echo
 echo <<<---
 end
@@ -12657,7 +12908,7 @@ end
 <<<---Hello World--->>>
 (@value{GDBP})
 
-@end example
+@end smallexample
 
 You can define a hook for any single-word command in @value{GDBN}, but
 not for command aliases; you should define a hook for the basic command
@@ -12741,8 +12992,8 @@ Execute the command file @var{filename}.
 @end table
 
 The lines in a command file are executed sequentially.  They are not
-printed as they are executed.  An error in any command terminates execution
-of the command file.
+printed as they are executed.  An error in any command terminates
+execution of the command file and control is returned to the console.
 
 Commands that would ask for confirmation if used interactively proceed
 without asking when used in a command file.  Many @value{GDBN} commands that
@@ -12755,9 +13006,9 @@ standard error.  Errors in a command file supplied on standard input do
 not terminate execution of the command file --- execution continues with
 the next command.
 
-@example
+@smallexample
 gdb < cmds > log 2>&1
-@end example
+@end smallexample
 
 (The syntax above will vary depending on the shell used.) This example
 will execute commands from the file @file{cmds}. All output and errors
@@ -12790,19 +13041,19 @@ To print @samp{@w{ }and foo =@w{ }}, use the command
 A backslash at the end of @var{text} can be used, as in C, to continue
 the command onto subsequent lines.  For example,
 
-@example
+@smallexample
 echo This is some text\n\
 which is continued\n\
 onto several lines.\n
-@end example
+@end smallexample
 
 produces the same output as
 
-@example
+@smallexample
 echo This is some text\n
 echo which is continued\n
 echo onto several lines.\n
-@end example
+@end smallexample
 
 @kindex output
 @item output @var{expression}
@@ -12828,9 +13079,9 @@ subroutine
 @c Either this is a bug, or the manual should document what formats are
 @c supported.
 
-@example
+@smallexample
 printf (@var{string}, @var{expressions}@dots{});
-@end example
+@end smallexample
 
 For example, you can print two values in hex like this:
 
@@ -12850,6 +13101,7 @@ letter.
 @menu
 * TUI Overview::                TUI overview
 * TUI Keys::                    TUI key bindings
+* TUI Single Key Mode::         TUI single key mode
 * TUI Commands::                TUI specific commands
 * TUI Configuration::           TUI configuration variables
 @end menu
@@ -12890,8 +13142,6 @@ window is always visible.
 @item source
 The source window shows the source file of the program.  The current
 line as well as active breakpoints are displayed in this window.
-The current program position is shown with the @samp{>} marker and
-active breakpoints are shown with @samp{*} markers.
 
 @item assembly
 The assembly window shows the disassembly output of the program.
@@ -12903,6 +13153,37 @@ changed are highlighted.
 
 @end table
 
+The source and assembly windows show the current program position
+by highlighting the current line and marking them with the @samp{>} marker.
+Breakpoints are also indicated with two markers.  A first one
+indicates the breakpoint type:
+
+@table @code
+@item B
+Breakpoint which was hit at least once.
+
+@item b
+Breakpoint which was never hit.
+
+@item H
+Hardware breakpoint which was hit at least once.
+
+@item h
+Hardware breakpoint which was never hit.
+
+@end table
+
+The second marker indicates whether the breakpoint is enabled or not:
+
+@table @code
+@item +
+Breakpoint is enabled.
+
+@item -
+Breakpoint is disabled.
+
+@end table
+
 The source, assembly and register windows are attached to the thread
 and the frame position.  They are updated when the current thread
 changes, when the frame changes or when the program counter changes.
@@ -12928,6 +13209,35 @@ assembly and registers
 
 @end itemize
 
+On top of the command window a status line gives various information
+concerning the current process begin debugged.  The status line is
+updated when the information it shows changes.  The following fields
+are displayed:
+
+@table @emph
+@item target
+Indicates the current gdb target
+(@pxref{Targets, ,Specifying a Debugging Target}).
+
+@item process
+Gives information about the current process or thread number.
+When no process is being debugged, this field is set to @code{No process}.
+
+@item function
+Gives the current function name for the selected frame.
+The name is demangled if demangling is turned on (@pxref{Print Settings}).
+When there is no symbol corresponding to the current program counter
+the string @code{??} is displayed.
+
+@item line
+Indicates the current line number for the selected frame.
+When the current line number is not known the string @code{??} is displayed.
+
+@item pc
+Indicates the current program counter address.
+
+@end table
+
 @node TUI Keys
 @section TUI Key Bindings
 @cindex TUI key bindings
@@ -12935,7 +13245,9 @@ assembly and registers
 The TUI installs several key bindings in the readline keymaps
 (@pxref{Command Line Editing}).
 They allow to leave or enter in the TUI mode or they operate
-directly on the TUI layout and windows.  The following key bindings
+directly on the TUI layout and windows.  The TUI also provides
+a @emph{SingleKey} keymap which binds several keys directly to
+@value{GDBN} commands.  The following key bindings
 are installed for both TUI mode and the @value{GDBN} standard mode.
 
 @table @kbd
@@ -12968,6 +13280,11 @@ previous layout and the new one.
 
 Think of it as the Emacs @kbd{C-x 2} binding.
 
+@kindex C-x s
+@item C-x s
+Use the TUI @emph{SingleKey} keymap that binds single key to gdb commands
+(@pxref{TUI Single Key Mode}).
+
 @end table
 
 The following key bindings are handled only by the TUI mode:
@@ -13008,6 +13325,65 @@ for scrolling.  This means they are not available for readline.  It is
 necessary to use other readline key bindings such as @key{C-p}, @key{C-n},
 @key{C-b} and @key{C-f}.
 
+@node TUI Single Key Mode
+@section TUI Single Key Mode
+@cindex TUI single key mode
+
+The TUI provides a @emph{SingleKey} mode in which it installs a particular
+key binding in the readline keymaps to connect single keys to
+some gdb commands. 
+
+@table @kbd
+@kindex c @r{(SingleKey TUI key)}
+@item c
+continue
+
+@kindex d @r{(SingleKey TUI key)}
+@item d
+down
+
+@kindex f @r{(SingleKey TUI key)}
+@item f
+finish
+
+@kindex n @r{(SingleKey TUI key)}
+@item n
+next
+
+@kindex q @r{(SingleKey TUI key)}
+@item q
+exit the @emph{SingleKey} mode.
+
+@kindex r @r{(SingleKey TUI key)}
+@item r
+run
+
+@kindex s @r{(SingleKey TUI key)}
+@item s
+step
+
+@kindex u @r{(SingleKey TUI key)}
+@item u
+up
+
+@kindex v @r{(SingleKey TUI key)}
+@item v
+info locals
+
+@kindex w @r{(SingleKey TUI key)}
+@item w
+where
+
+@end table
+
+Other keys temporarily switch to the @value{GDBN} command prompt.
+The key that was pressed is inserted in the editing buffer so that
+it is possible to type most @value{GDBN} commands without interaction
+with the TUI @emph{SingleKey} mode.  Once the command is entered the TUI
+@emph{SingleKey} mode is restored.  The only way to permanently leave
+this mode is by hitting @key{q} or @samp{@key{C-x} @key{s}}.
+
+
 @node TUI Commands
 @section TUI specific commands
 @cindex TUI commands
@@ -13019,6 +13395,10 @@ is in the standard mode, using these commands will automatically switch
 in the TUI mode.
 
 @table @code
+@item info win
+@kindex info win
+List and give the size of all displayed windows.
+
 @item layout next
 @kindex layout next
 Display the next layout.
@@ -13198,9 +13578,9 @@ you need to call @value{GDBN} by a different name (for example, if you keep
 several configurations around, with different names) you can set the
 Emacs variable @code{gdb-command-name}; for example,
 
-@example
+@smallexample
 (setq gdb-command-name "mygdb")
-@end example
+@end smallexample
 
 @noindent
 (preceded by @kbd{M-:} or @kbd{ESC :}, or typed in the @code{*scratch*} buffer, or
@@ -13370,12 +13750,11 @@ individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
 distribution.
 @c should add a web page ref...
 
-In any event, we also recommend that you send bug reports for
-@value{GDBN} to this addresses:
-
-@example
-bug-gdb@@gnu.org
-@end example
+In any event, we also recommend that you submit bug reports for
+@value{GDBN}.  The prefered method is to submit them directly using
+@uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
+page}.  Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
+be used.
 
 @strong{Do not send bug reports to @samp{info-gdb}, or to
 @samp{help-gdb}, or to any newsgroups.}  Most users of @value{GDBN} do
@@ -13391,16 +13770,6 @@ path back to the sender.  Thus, if we need to ask for more information,
 we may be unable to reach you.  For this reason, it is better to send
 bug reports to the mailing list.
 
-As a last resort, send bug reports on paper to:
-
-@example
-@sc{gnu} Debugger Bugs
-Free Software Foundation Inc.
-59 Temple Place - Suite 330
-Boston, MA 02111-1307
-USA
-@end example
-
 The fundamental principle of reporting bugs usefully is this:
 @strong{report all the facts}.  If you are not sure whether to state a
 fact or leave it out, state it!
@@ -13564,9 +13933,9 @@ you can print the reference card immediately with @file{refcard.ps}.
 The release also includes the source for the reference card.  You
 can format it, using @TeX{}, by typing:
 
-@example
+@smallexample
 make refcard.dvi
-@end example
+@end smallexample
 
 The @value{GDBN} reference card is designed to print in @dfn{landscape}
 mode on US ``letter'' size paper;
@@ -13600,10 +13969,10 @@ If you have @code{makeinfo} installed, and are in the top level
 @value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
 version @value{GDBVN}), you can make the Info file by typing:
 
-@example
+@smallexample
 cd gdb
 make gdb.info
-@end example
+@end smallexample
 
 If you want to typeset and print copies of this manual, you need @TeX{},
 a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
@@ -13629,9 +13998,9 @@ typeset and print this manual.  First switch to the the @file{gdb}
 subdirectory of the main source directory (for example, to
 @file{gdb-@value{GDBVN}/gdb}) and type:
 
-@example
+@smallexample
 make gdb.dvi
-@end example
+@end smallexample
 
 Then give @file{gdb.dvi} to your @sc{dvi} printing program.
 
@@ -13697,11 +14066,11 @@ argument.
 
 For example:
 
-@example
+@smallexample
 cd gdb-@value{GDBVN}
 ./configure @var{host}
 make
-@end example
+@end smallexample
 
 @noindent
 where @var{host} is an identifier such as @samp{sun4} or
@@ -13719,9 +14088,9 @@ binaries, are left in the corresponding source directories.
 system does not recognize this automatically when you run a different
 shell, you may need to run @code{sh} on it explicitly:
 
-@example
+@smallexample
 sh configure @var{host}
-@end example
+@end smallexample
 
 If you run @code{configure} from a directory that contains source
 directories for multiple libraries or programs, such as the
@@ -13736,12 +14105,12 @@ configure that subdirectory, but be sure to specify a path to it.
 For example, with version @value{GDBVN}, type the following to configure only
 the @code{bfd} subdirectory:
 
-@example
+@smallexample
 @group
 cd gdb-@value{GDBVN}/bfd
 ../configure @var{host}
 @end group
-@end example
+@end smallexample
 
 You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
 However, you should make sure that the shell on your path (named by
@@ -13777,7 +14146,7 @@ the @samp{--srcdir} option; it is assumed.)
 For example, with version @value{GDBVN}, you can build @value{GDBN} in a
 separate directory for a Sun 4 like this:
 
-@example
+@smallexample
 @group
 cd gdb-@value{GDBVN}
 mkdir ../gdb-sun4
@@ -13785,7 +14154,7 @@ cd ../gdb-sun4
 ../gdb-@value{GDBVN}/configure sun4
 make
 @end group
-@end example
+@end smallexample
 
 When @code{configure} builds a configuration using a remote source
 directory, it creates a tree for the binaries with the same structure
@@ -13824,9 +14193,9 @@ script are based on a three-part naming scheme, but some short predefined
 aliases are also supported.  The full naming scheme encodes three pieces
 of information in the following pattern:
 
-@example
+@smallexample
 @var{architecture}-@var{vendor}-@var{os}
-@end example
+@end smallexample
 
 For example, you can use the alias @code{sun4} as a @var{host} argument,
 or as the value for @var{target} in a @code{--target=@var{target}}
@@ -13866,7 +14235,7 @@ are most often useful for building @value{GDBN}.  @code{configure} also has
 several other options not listed here.  @inforef{What Configure
 Does,,configure.info}, for a full explanation of @code{configure}.
 
-@example
+@smallexample
 configure @r{[}--help@r{]}
           @r{[}--prefix=@var{dir}@r{]}
           @r{[}--exec-prefix=@var{dir}@r{]}
@@ -13874,7 +14243,7 @@ configure @r{[}--help@r{]}
           @r{[}--norecursion@r{]} @r{[}--rm@r{]}
           @r{[}--target=@var{target}@r{]}
           @var{host}
-@end example
+@end smallexample
 
 @noindent
 You may introduce options with a single @samp{-} rather than
@@ -13970,18 +14339,69 @@ Shared library events.
 
 @end table
 
+@kindex maint internal-error
+@kindex maint internal-warning
+@item maint internal-error
+@itemx maint internal-warning
+Cause @value{GDBN} to call the internal function @code{internal_error}
+or @code{internal_warning} and hence behave as though an internal error
+or internal warning has been detected.  In addition to reporting the
+internal problem, these functions give the user the opportunity to
+either quit @value{GDBN} or create a core file of the current
+@value{GDBN} session.
+
+@smallexample
+(gdb) @kbd{maint internal-error testing, 1, 2}
+@dots{}/maint.c:121: internal-error: testing, 1, 2
+A problem internal to GDB has been detected.  Further
+debugging may prove unreliable.
+Quit this debugging session? (y or n) @kbd{n}
+Create a core file? (y or n) @kbd{n}
+(gdb) 
+@end smallexample
+
+Takes an optional parameter that is used as the text of the error or
+warning message.
+
+@kindex maint print registers
+@kindex maint print raw-registers
+@kindex maint print cooked-registers
+@item maint print registers
+@itemx maint print raw-registers
+@itemx maint print cooked-registers
+Print @value{GDBN}'s internal register data structures.
+
+The command @samp{maint print raw-registers} includes the contents of
+the raw register cache; and the command @samp{maint print
+cooked-registers} includes the (cooked) value of all registers.
+@xref{Registers,, Registers, gdbint, @value{GDBN} Internals}.
+
+Takes an optional file parameter.
+
 @end table
 
 
 @node Remote Protocol
 @appendix @value{GDBN} Remote Serial Protocol
 
+@menu
+* Overview::
+* Packets::
+* Stop Reply Packets::
+* General Query Packets::
+* Register Packet Format::
+* Examples::
+@end menu
+
+@node Overview
+@section Overview
+
 There may be occasions when you need to know something about the
 protocol---for example, if there is only one serial port to your target
 machine, you might want your program to do something special if it
 recognizes a packet meant for @value{GDBN}.
 
-In the examples below, @samp{<-} and @samp{->} are used to indicate
+In the examples below, @samp{->} and @samp{<-} are used to indicate
 transmitted and received data respectfully.
 
 @cindex protocol, @value{GDBN} remote serial
@@ -13992,9 +14412,9 @@ sent as a @var{packet}.  A @var{packet} is introduced with the character
 @samp{$}, the actual @var{packet-data}, and the terminating character
 @samp{#} followed by a two-digit @var{checksum}:
 
-@example
+@smallexample
 @code{$}@var{packet-data}@code{#}@var{checksum}
-@end example
+@end smallexample
 @noindent
 
 @cindex checksum, for @value{GDBN} remote
@@ -14006,9 +14426,9 @@ eight bit unsigned checksum).
 Implementors should note that prior to @value{GDBN} 5.0 the protocol
 specification also included an optional two-digit @var{sequence-id}:
 
-@example
+@smallexample
 @code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
-@end example
+@end smallexample
 
 @cindex sequence-id, for @value{GDBN} remote
 @noindent
@@ -14022,10 +14442,10 @@ response expected is an acknowledgment: either @samp{+} (to indicate
 the package was received correctly) or @samp{-} (to request
 retransmission):
 
-@example
-<- @code{$}@var{packet-data}@code{#}@var{checksum}
--> @code{+}
-@end example
+@smallexample
+-> @code{$}@var{packet-data}@code{#}@var{checksum}
+<- @code{+}
+@end smallexample
 @noindent
 
 The host (@value{GDBN}) sends @var{command}s, and the target (the
@@ -14038,8 +14458,9 @@ exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
 exceptions).
 
 Fields within the packet should be separated using @samp{,} @samp{;} or
+@cindex remote protocol, field separator
 @samp{:}.  Except where otherwise noted all numbers are represented in
-HEX with leading zeros suppressed.
+@sc{hex} with leading zeros suppressed.
 
 Implementors should note that prior to @value{GDBN} 5.0, the character
 @samp{:} could not appear as the third character in a packet (as it
@@ -14058,9 +14479,9 @@ loosely refered to as the cisco encoding.  Following the @samp{*}
 character are two hex digits that indicate the size of the packet.
 
 So:
-@example
+@smallexample
 "@code{0* }"
-@end example
+@end smallexample
 @noindent
 means the same as "0000".
 
@@ -14076,166 +14497,179 @@ A stub is required to support the @samp{g}, @samp{G}, @samp{m}, @samp{M},
 @samp{c}, and @samp{s} @var{command}s.  All other @var{command}s are 
 optional.
 
-Below is a complete list of all currently defined @var{command}s and
-their corresponding response @var{data}:
-@page
-@multitable @columnfractions .30 .30 .40
-@item Packet
-@tab Request
-@tab Description
-
-@item extended mode
-@tab @code{!}
-@tab
+@node Packets
+@section Packets
+
+The following table provides a complete list of all currently defined
+@var{command}s and their corresponding response @var{data}.
+
+@table @r
+
+@item @code{!} --- extended mode
+@cindex @code{!} packet
+
 Enable extended mode.  In extended mode, the remote server is made
 persistent.  The @samp{R} packet is used to restart the program being
 debugged.
-@item
-@tab reply @samp{OK}
-@tab
+
+Reply:
+@table @samp
+@item OK
 The remote target both supports and has enabled extended mode.
+@end table
 
-@item last signal
-@tab @code{?}
-@tab
-Indicate the reason the target halted.  The reply is the same as for step
-and continue.
-@item
-@tab reply
-@tab see below
+@item @code{?} --- last signal
+@cindex @code{?} packet
 
+Indicate the reason the target halted.  The reply is the same as for
+step and continue.
 
-@item reserved
-@tab @code{a}
-@tab Reserved for future use
+Reply:
+@xref{Stop Reply Packets}, for the reply specifications.
+
+@item @code{a} --- reserved
+
+Reserved for future use.
+
+@item @code{A}@var{arglen}@code{,}@var{argnum}@code{,}@var{arg}@code{,@dots{}} ---  set program arguments @strong{(reserved)}
+@cindex @code{A} packet
 
-@item set program arguments @strong{(reserved)}
-@tab @code{A}@var{arglen}@code{,}@var{argnum}@code{,}@var{arg}@code{,...}
-@tab
-@item
-@tab
-@tab
 Initialized @samp{argv[]} array passed into program. @var{arglen}
 specifies the number of bytes in the hex encoded byte stream @var{arg}.
-See @file{gdbserver} for more details.
-@item
-@tab reply @code{OK}
-@item
-@tab reply @code{E}@var{NN}
-
-@item set baud @strong{(deprecated)}
-@tab @code{b}@var{baud}
-@tab
-Change the serial line speed to @var{baud}.  JTC: @emph{When does the
-transport layer state change?  When it's received, or after the ACK is
-transmitted.  In either case, there are problems if the command or the
-acknowledgment packet is dropped.} Stan: @emph{If people really wanted
-to add something like this, and get it working for the first time, they
-ought to modify ser-unix.c to send some kind of out-of-band message to a
-specially-setup stub and have the switch happen "in between" packets, so
-that from remote protocol's point of view, nothing actually
-happened.}
-
-@item set breakpoint @strong{(deprecated)}
-@tab @code{B}@var{addr},@var{mode}
-@tab
+See @code{gdbserver} for more details.
+
+Reply:
+@table @samp
+@item OK
+@item E@var{NN}
+@end table
+
+@item @code{b}@var{baud} --- set baud @strong{(deprecated)}
+@cindex @code{b} packet
+
+Change the serial line speed to @var{baud}.
+
+JTC: @emph{When does the transport layer state change?  When it's
+received, or after the ACK is transmitted.  In either case, there are
+problems if the command or the acknowledgment packet is dropped.}
+
+Stan: @emph{If people really wanted to add something like this, and get
+it working for the first time, they ought to modify ser-unix.c to send
+some kind of out-of-band message to a specially-setup stub and have the
+switch happen "in between" packets, so that from remote protocol's point
+of view, nothing actually happened.}
+
+@item @code{B}@var{addr},@var{mode} --- set breakpoint @strong{(deprecated)}
+@cindex @code{B} packet
+
 Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
-breakpoint at @var{addr}.  @emph{This has been replaced by the @samp{Z} and
-@samp{z} packets.}
+breakpoint at @var{addr}.  @emph{This has been replaced by the @samp{Z}
+and @samp{z} packets.}
+
+@item @code{c}@var{addr} --- continue
+@cindex @code{c} packet
 
-@item continue
-@tab @code{c}@var{addr}
-@tab
-@var{addr} is address to resume. If @var{addr} is omitted, resume at
+@var{addr} is address to resume.  If @var{addr} is omitted, resume at
 current address.
-@item
-@tab reply
-@tab see below
 
-@item continue with signal
-@tab @code{C}@var{sig}@code{;}@var{addr}
-@tab
+Reply:
+@xref{Stop Reply Packets}, for the reply specifications.
+
+@item @code{C}@var{sig}@code{;}@var{addr} --- continue with signal
+@cindex @code{C} packet
+
 Continue with signal @var{sig} (hex signal number).  If
 @code{;}@var{addr} is omitted, resume at same address.
-@item
-@tab reply
-@tab see below
 
-@item toggle debug @strong{(deprecated)}
-@tab @code{d}
-@tab
-toggle debug flag.
+Reply:
+@xref{Stop Reply Packets}, for the reply specifications.
 
-@item detach
-@tab @code{D}
-@tab
-Detach @value{GDBN} from the remote system.  Sent to the remote target before
-@value{GDBN} disconnects.
-@item
-@tab reply @emph{no response}
-@tab
+@item @code{d} --- toggle debug @strong{(deprecated)}
+@cindex @code{d} packet
+
+Toggle debug flag.
+
+@item @code{D} --- detach
+@cindex @code{D} packet
+
+Detach @value{GDBN} from the remote system.  Sent to the remote target
+before @value{GDBN} disconnects.
+
+Reply:
+@table @samp
+@item @emph{no response}
 @value{GDBN} does not check for any response after sending this packet.
+@end table
 
-@item reserved
-@tab @code{e}
-@tab Reserved for future use
+@item @code{e} --- reserved
 
-@item reserved
-@tab @code{E}
-@tab Reserved for future use
+Reserved for future use.
 
-@item reserved
-@tab @code{f}
-@tab Reserved for future use
+@item @code{E} --- reserved
 
-@item reserved
-@tab @code{F}
-@tab Reserved for future use
+Reserved for future use.
 
-@item read registers
-@tab @code{g}
-@tab Read general registers.
-@item
-@tab reply @var{XX...}
-@tab
+@item @code{f} --- reserved
+
+Reserved for future use.
+
+@item @code{F} --- reserved
+
+Reserved for future use.
+
+@item @code{g} --- read registers
+@anchor{read registers packet}
+@cindex @code{g} packet
+
+Read general registers.
+
+Reply:
+@table @samp
+@item @var{XX@dots{}}
 Each byte of register data is described by two hex digits.  The bytes
 with the register are transmitted in target byte order.  The size of
 each register and their position within the @samp{g} @var{packet} are
-determined by the @value{GDBN} internal macros @var{REGISTER_RAW_SIZE} and
-@var{REGISTER_NAME} macros.  The specification of several standard
+determined by the @value{GDBN} internal macros @var{REGISTER_RAW_SIZE}
+and @var{REGISTER_NAME} macros.  The specification of several standard
 @code{g} packets is specified below.
-@item
-@tab @code{E}@var{NN}
-@tab for an error.
+@item E@var{NN}
+for an error.
+@end table
 
-@item write regs
-@tab @code{G}@var{XX...}
-@tab
-See @samp{g} for a description of the @var{XX...} data.
-@item
-@tab reply @code{OK}
-@tab for success
-@item
-@tab reply @code{E}@var{NN}
-@tab for an error
+@item @code{G}@var{XX@dots{}} --- write regs
+@cindex @code{G} packet
+
+@xref{read registers packet}, for a description of the @var{XX@dots{}}
+data.
+
+Reply:
+@table @samp
+@item OK
+for success
+@item E@var{NN}
+for an error
+@end table
+
+@item @code{h} --- reserved
+
+Reserved for future use.
 
-@item reserved
-@tab @code{h}
-@tab Reserved for future use
+@item @code{H}@var{c}@var{t@dots{}} --- set thread 
+@cindex @code{H} packet
 
-@item set thread 
-@tab @code{H}@var{c}@var{t...}
-@tab
 Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
-@samp{G}, et.al.).  @var{c} = @samp{c} for thread used in step and
-continue; @var{t...} can be -1 for all threads.  @var{c} = @samp{g} for
-thread used in other operations.  If zero, pick a thread, any thread.
-@item
-@tab reply @code{OK}
-@tab for success
-@item
-@tab reply @code{E}@var{NN}
-@tab for an error
+@samp{G}, et.al.).  @var{c} depends on the operation to be performed: it
+should be @samp{c} for step and continue operations, @samp{g} for other
+operations.  The thread designator @var{t@dots{}} may be -1, meaning all
+the threads, a thread number, or zero which means pick any thread.
+
+Reply:
+@table @samp
+@item OK
+for success
+@item E@var{NN}
+for an error
+@end table
 
 @c FIXME: JTC:
 @c   'H': How restrictive (or permissive) is the thread model.  If a
@@ -14252,262 +14686,289 @@ thread used in other operations.  If zero, pick a thread, any thread.
 @c                selected, sets the registers of the register block of
 @c                that thread; otherwise sets current registers.
 
-@item cycle step @strong{(draft)}
-@tab @code{i}@var{addr}@code{,}@var{nnn}
-@tab
+@item @code{i}@var{addr}@code{,}@var{nnn} --- cycle step @strong{(draft)}
+@anchor{cycle step packet}
+@cindex @code{i} packet
+
 Step the remote target by a single clock cycle.  If @code{,}@var{nnn} is
 present, cycle step @var{nnn} cycles.  If @var{addr} is present, cycle
 step starting at that address.
 
-@item signal then cycle step @strong{(reserved)}
-@tab @code{I}
-@tab
-See @samp{i} and @samp{S} for likely syntax and semantics.
+@item @code{I} --- signal then cycle step @strong{(reserved)}
+@cindex @code{I} packet
+
+@xref{step with signal packet}.  @xref{cycle step packet}.
+
+@item @code{j} --- reserved
 
-@item reserved
-@tab @code{j}
-@tab Reserved for future use
+Reserved for future use.
 
-@item reserved
-@tab @code{J}
-@tab Reserved for future use
+@item @code{J} --- reserved
 
-@item kill request
-@tab @code{k}
-@tab
-FIXME: @emph{There is no description of how operate when a specific
-thread context has been selected (ie. does 'k' kill only that thread?)}.
+Reserved for future use.
 
-@item reserved
-@tab @code{l}
-@tab Reserved for future use
+@item @code{k} --- kill request
+@cindex @code{k} packet
 
-@item reserved
-@tab @code{L}
-@tab Reserved for future use
+FIXME: @emph{There is no description of how to operate when a specific
+thread context has been selected (i.e.@: does 'k' kill only that
+thread?)}.
+
+@item @code{K} --- reserved
+
+Reserved for future use.
+
+@item @code{l} --- reserved
+
+Reserved for future use.
+
+@item @code{L} --- reserved
+
+Reserved for future use.
+
+@item @code{m}@var{addr}@code{,}@var{length} --- read memory
+@cindex @code{m} packet
 
-@item read memory
-@tab @code{m}@var{addr}@code{,}@var{length}
-@tab
 Read @var{length} bytes of memory starting at address @var{addr}.
-Neither @value{GDBN} nor the stub assume that sized memory transfers are assumed
-using word alligned accesses. FIXME: @emph{A word aligned memory
+Neither @value{GDBN} nor the stub assume that sized memory transfers are
+assumed using word alligned accesses. FIXME: @emph{A word aligned memory
 transfer mechanism is needed.}
-@item
-@tab reply @var{XX...}
-@tab
-@var{XX...} is mem contents. Can be fewer bytes than requested if able
-to read only part of the data.  Neither @value{GDBN} nor the stub assume that
-sized memory transfers are assumed using word alligned accesses. FIXME:
-@emph{A word aligned memory transfer mechanism is needed.}
-@item
-@tab reply @code{E}@var{NN}
-@tab @var{NN} is errno
 
-@item write mem
-@tab @code{M}@var{addr},@var{length}@code{:}@var{XX...}
-@tab
+Reply:
+@table @samp
+@item @var{XX@dots{}}
+@var{XX@dots{}} is mem contents. Can be fewer bytes than requested if able
+to read only part of the data.  Neither @value{GDBN} nor the stub assume
+that sized memory transfers are assumed using word alligned
+accesses. FIXME: @emph{A word aligned memory transfer mechanism is
+needed.}
+@item E@var{NN}
+@var{NN} is errno
+@end table
+
+@item @code{M}@var{addr},@var{length}@code{:}@var{XX@dots{}} --- write mem
+@cindex @code{M} packet
+
 Write @var{length} bytes of memory starting at address @var{addr}.
-@var{XX...} is the data.
-@item
-@tab reply @code{OK}
-@tab for success
-@item
-@tab reply @code{E}@var{NN}
-@tab
+@var{XX@dots{}} is the data.
+
+Reply:
+@table @samp
+@item OK
+for success
+@item E@var{NN}
 for an error (this includes the case where only part of the data was
 written).
+@end table
 
-@item reserved
-@tab @code{n}
-@tab Reserved for future use
+@item @code{n} --- reserved
 
-@item reserved
-@tab @code{N}
-@tab Reserved for future use
+Reserved for future use.
 
-@item reserved
-@tab @code{o}
-@tab Reserved for future use
+@item @code{N} --- reserved
 
-@item reserved
-@tab @code{O}
-@tab Reserved for future use
+Reserved for future use.
 
-@item read reg @strong{(reserved)}
-@tab @code{p}@var{n...}
-@tab
-See write register.
-@item
-@tab return @var{r....}
-@tab The hex encoded value of the register in target byte order.
+@item @code{o} --- reserved
+
+Reserved for future use.
+
+@item @code{O} --- reserved
+
+Reserved for future use.
 
-@item write reg
-@tab @code{P}@var{n...}@code{=}@var{r...}
-@tab
-Write register @var{n...} with value @var{r...}, which contains two hex
+@item @code{p}@var{n@dots{}} --- read reg @strong{(reserved)}
+@cindex @code{p} packet
+
+@xref{write register packet}.
+
+Reply:
+@table @samp
+@item @var{r@dots{}.}
+The hex encoded value of the register in target byte order.
+@end table
+
+@item @code{P}@var{n@dots{}}@code{=}@var{r@dots{}} --- write register
+@anchor{write register packet}
+@cindex @code{P} packet
+
+Write register @var{n@dots{}} with value @var{r@dots{}}, which contains two hex
 digits for each byte in the register (target byte order).
-@item
-@tab reply @code{OK}
-@tab for success
-@item
-@tab reply @code{E}@var{NN}
-@tab for an error
 
-@item general query
-@tab @code{q}@var{query}
-@tab
-Request info about @var{query}.  In general @value{GDBN} queries
-have a leading upper case letter.  Custom vendor queries should use a
-company prefix (in lower case) ex: @samp{qfsf.var}.  @var{query} may
-optionally be followed by a @samp{,} or @samp{;} separated list.  Stubs
-must ensure that they match the full @var{query} name.
-@item
-@tab reply @code{XX...}
-@tab Hex encoded data from query.  The reply can not be empty.
-@item
-@tab reply @code{E}@var{NN}
-@tab error reply
+Reply:
+@table @samp
+@item OK
+for success
+@item E@var{NN}
+for an error
+@end table
+
+@item @code{q}@var{query} --- general query
+@anchor{general query packet}
+@cindex @code{q} packet
+
+Request info about @var{query}.  In general @value{GDBN} queries have a
+leading upper case letter.  Custom vendor queries should use a company
+prefix (in lower case) ex: @samp{qfsf.var}.  @var{query} may optionally
+be followed by a @samp{,} or @samp{;} separated list.  Stubs must ensure
+that they match the full @var{query} name.
+
+Reply:
+@table @samp
+@item @var{XX@dots{}}
+Hex encoded data from query.  The reply can not be empty.
+@item E@var{NN}
+error reply
 @item
-@tab reply @samp{}
-@tab Indicating an unrecognized @var{query}.
+Indicating an unrecognized @var{query}.
+@end table
 
-@item general set
-@tab @code{Q}@var{var}@code{=}@var{val}
-@tab
-Set value of @var{var} to @var{val}.  See @samp{q} for a discussing of
-naming conventions.
+@item @code{Q}@var{var}@code{=}@var{val} --- general set
+@cindex @code{Q} packet
+
+Set value of @var{var} to @var{val}.
+
+@xref{general query packet}, for a discussion of naming conventions.
+
+@item @code{r} --- reset @strong{(deprecated)}
+@cindex @code{r} packet
 
-@item reset @strong{(deprecated)}
-@tab @code{r}
-@tab
 Reset the entire system.
 
-@item remote restart
-@tab @code{R}@var{XX}
-@tab
+@item @code{R}@var{XX} --- remote restart
+@cindex @code{R} packet
+
 Restart the program being debugged.  @var{XX}, while needed, is ignored.
 This packet is only available in extended mode.
-@item
-@tab
-no reply
-@tab
+
+Reply:
+@table @samp
+@item @emph{no reply}
 The @samp{R} packet has no reply.
+@end table
+
+@item @code{s}@var{addr} --- step
+@cindex @code{s} packet
 
-@item step
-@tab @code{s}@var{addr}
-@tab
 @var{addr} is address to resume.  If @var{addr} is omitted, resume at
 same address.
-@item
-@tab reply
-@tab see below
 
-@item step with signal
-@tab @code{S}@var{sig}@code{;}@var{addr}
-@tab
+Reply:
+@xref{Stop Reply Packets}, for the reply specifications.
+
+@item @code{S}@var{sig}@code{;}@var{addr} --- step with signal
+@anchor{step with signal packet}
+@cindex @code{S} packet
+
 Like @samp{C} but step not continue.
-@item
-@tab reply
-@tab see below
 
-@item search 
-@tab @code{t}@var{addr}@code{:}@var{PP}@code{,}@var{MM}
-@tab
+Reply:
+@xref{Stop Reply Packets}, for the reply specifications.
+
+@item @code{t}@var{addr}@code{:}@var{PP}@code{,}@var{MM} --- search 
+@cindex @code{t} packet
+
 Search backwards starting at address @var{addr} for a match with pattern
-@var{PP} and mask @var{MM}.  @var{PP} and @var{MM} are 4
-bytes.  @var{addr} must be at least 3 digits.
+@var{PP} and mask @var{MM}.  @var{PP} and @var{MM} are 4 bytes.
+@var{addr} must be at least 3 digits.
 
-@item thread alive
-@tab @code{T}@var{XX}
-@tab Find out if the thread XX is alive.
-@item
-@tab reply @code{OK}
-@tab thread is still alive
-@item
-@tab reply @code{E}@var{NN}
-@tab thread is dead
+@item @code{T}@var{XX} --- thread alive
+@cindex @code{T} packet
+
+Find out if the thread XX is alive.
+
+Reply:
+@table @samp
+@item OK
+thread is still alive
+@item E@var{NN}
+thread is dead
+@end table
+
+@item @code{u} --- reserved
 
-@item reserved
-@tab @code{u}
-@tab Reserved for future use
+Reserved for future use.
 
-@item reserved
-@tab @code{U}
-@tab Reserved for future use
+@item @code{U} --- reserved
 
-@item reserved
-@tab @code{v}
-@tab Reserved for future use
+Reserved for future use.
 
-@item reserved
-@tab @code{V}
-@tab Reserved for future use
+@item @code{v} --- reserved
 
-@item reserved
-@tab @code{w}
-@tab Reserved for future use
+Reserved for future use.
 
-@item reserved
-@tab @code{W}
-@tab Reserved for future use
+@item @code{V} --- reserved
 
-@item reserved
-@tab @code{x}
-@tab Reserved for future use
+Reserved for future use.
 
-@item write mem (binary)
-@tab @code{X}@var{addr}@code{,}@var{length}@var{:}@var{XX...}
-@tab
-@var{addr} is address, @var{length} is number of bytes, @var{XX...} is
-binary data.  The characters @code{$}, @code{#}, and @code{0x7d} are
+@item @code{w} --- reserved
+
+Reserved for future use.
+
+@item @code{W} --- reserved
+
+Reserved for future use.
+
+@item @code{x} --- reserved
+
+Reserved for future use.
+
+@item @code{X}@var{addr}@code{,}@var{length}@var{:}@var{XX@dots{}} --- write mem (binary)
+@cindex @code{X} packet
+
+@var{addr} is address, @var{length} is number of bytes, @var{XX@dots{}}
+is binary data.  The characters @code{$}, @code{#}, and @code{0x7d} are
 escaped using @code{0x7d}.
-@item
-@tab reply @code{OK}
-@tab for success
-@item
-@tab reply @code{E}@var{NN}
-@tab for an error
 
-@item reserved
-@tab @code{y}
-@tab Reserved for future use
+Reply:
+@table @samp
+@item OK
+for success
+@item E@var{NN}
+for an error
+@end table
+
+@item @code{y} --- reserved
+
+Reserved for future use.
+
+@item @code{Y} reserved
 
-@item reserved
-@tab @code{Y}
-@tab Reserved for future use
+Reserved for future use.
 
-@item remove break or watchpoint @strong{(draft)}
-@tab @code{z}@var{t}@code{,}@var{addr}@code{,}@var{length}
-@tab
-See @samp{Z}.
+@item @code{z}@var{t}@code{,}@var{addr}@code{,}@var{length} --- remove break or watchpoint @strong{(draft)}
+@cindex @code{z} packet
+
+@xref{insert breakpoint or watchpoint packet}.
+
+@item @code{Z}@var{t}@code{,}@var{addr}@code{,}@var{length} --- insert break or watchpoint @strong{(draft)}
+@anchor{insert breakpoint or watchpoint packet}
+@cindex @code{Z} packet
 
-@item insert break or watchpoint @strong{(draft)}
-@tab @code{Z}@var{t}@code{,}@var{addr}@code{,}@var{length}
-@tab
 @var{t} is type: @samp{0} - software breakpoint, @samp{1} - hardware
-breakpoint, @samp{2} - write watchpoint, @samp{3} - read watchpoint,
+breakpoint, @samp{2} --- write watchpoint, @samp{3} - read watchpoint,
 @samp{4} - access watchpoint; @var{addr} is address; @var{length} is in
 bytes.  For a software breakpoint, @var{length} specifies the size of
 the instruction to be patched.  For hardware breakpoints and watchpoints
 @var{length} specifies the memory region to be monitored.  To avoid
 potential problems with duplicate packets, the operations should be
 implemented in an idempotent way.
-@item
-@tab reply @code{E}@var{NN}
-@tab for an error
-@item
-@tab reply @code{OK}
-@tab for success
-@item
-@tab @samp{}
-@tab If not supported.
 
-@item reserved
-@tab <other>
-@tab Reserved for future use
+Reply:
+@table @samp
+@item E@var{NN}
+for an error
+@item OK
+for success
+@item @samp{}
+If not supported.
+@end table
+
+@end table
 
-@end multitable
+@node Stop Reply Packets
+@section Stop Reply Packets
+@cindex stop reply packets
 
 The @samp{C}, @samp{c}, @samp{S}, @samp{s} and @samp{?} packets can
 receive any of the below as a reply.  In the case of the @samp{C},
@@ -14516,312 +14977,290 @@ when the target halts.  In the below the exact meaning of @samp{signal
 number} is poorly defined.  In general one of the UNIX signal numbering
 conventions is used.
 
-@multitable @columnfractions .4 .6
+@table @samp
 
-@item @code{S}@var{AA}
-@tab @var{AA} is the signal number
+@item S@var{AA}
+@var{AA} is the signal number
 
 @item @code{T}@var{AA}@var{n...}@code{:}@var{r...}@code{;}@var{n...}@code{:}@var{r...}@code{;}@var{n...}@code{:}@var{r...}@code{;}
-@tab
+@cindex @code{T} packet reply
+
 @var{AA} = two hex digit signal number; @var{n...} = register number
 (hex), @var{r...}  = target byte ordered register contents, size defined
 by @code{REGISTER_RAW_SIZE}; @var{n...} = @samp{thread}, @var{r...} =
-thread process ID, this is a hex integer; @var{n...} = other string not
-starting with valid hex digit.  @value{GDBN} should ignore this
-@var{n...}, @var{r...} pair and go on to the next.  This way we can
-extend the protocol.
+thread process ID, this is a hex integer; @var{n...} = (@samp{watch} | 
+@samp{rwatch} | @samp{awatch}, @var{r...} = data address, this is a hex
+integer; @var{n...} = other string not starting with valid hex digit.
+@value{GDBN} should ignore this @var{n...}, @var{r...} pair and go on
+to the next.  This way we can extend the protocol.
+
+@item W@var{AA}
 
-@item @code{W}@var{AA}
-@tab
 The process exited, and @var{AA} is the exit status.  This is only
-applicable for certains sorts of targets.
+applicable to certain targets.
+
+@item X@var{AA}
 
-@item @code{X}@var{AA}
-@tab
 The process terminated with signal @var{AA}.
 
-@item @code{N}@var{AA}@code{;}@var{t...}@code{;}@var{d...}@code{;}@var{b...} @strong{(obsolete)}
-@tab
-@var{AA} = signal number; @var{t...} = address of symbol "_start";
-@var{d...} = base of data section; @var{b...} = base of bss section.
-@emph{Note: only used by Cisco Systems targets.  The difference between
-this reply and the "qOffsets" query is that the 'N' packet may arrive
-spontaneously whereas the 'qOffsets' is a query initiated by the host
-debugger.}
+@item N@var{AA};@var{t@dots{}};@var{d@dots{}};@var{b@dots{}} @strong{(obsolete)}
+
+@var{AA} = signal number; @var{t@dots{}} = address of symbol
+@code{_start}; @var{d@dots{}} = base of data section; @var{b@dots{}} =
+base of bss section.  @emph{Note: only used by Cisco Systems targets.
+The difference between this reply and the @samp{qOffsets} query is that
+the @samp{N} packet may arrive spontaneously whereas the @samp{qOffsets}
+is a query initiated by the host debugger.}
+
+@item O@var{XX@dots{}}
+
+@var{XX@dots{}} is hex encoding of @sc{ascii} data.  This can happen at
+any time while the program is running and the debugger should continue
+to wait for @samp{W}, @samp{T}, etc.
 
-@item @code{O}@var{XX...}
-@tab
-@var{XX...} is hex encoding of @sc{ascii} data.  This can happen at any time
-while the program is running and the debugger should continue to wait
-for 'W', 'T', etc.
+@end table
 
-@end multitable
+@node General Query Packets
+@section General Query Packets
 
 The following set and query packets have already been defined.
 
-@multitable @columnfractions .2 .2 .6
+@table @r
+
+@item @code{q}@code{C} --- current thread
 
-@item current thread
-@tab @code{q}@code{C}
-@tab Return the current thread id.
-@item
-@tab reply @code{QC}@var{pid}
-@tab
+Return the current thread id.
+
+Reply:
+@table @samp
+@item @code{QC}@var{pid}
 Where @var{pid} is a HEX encoded 16 bit process id.
-@item
-@tab reply *
-@tab Any other reply implies the old pid.
+@item *
+Any other reply implies the old pid.
+@end table
+
+@item @code{q}@code{fThreadInfo} -- all thread ids
+
+@code{q}@code{sThreadInfo}
 
-@item all thread ids
-@tab @code{q}@code{fThreadInfo}
-@item
-@tab @code{q}@code{sThreadInfo}
-@tab
 Obtain a list of active thread ids from the target (OS).  Since there
 may be too many active threads to fit into one reply packet, this query
 works iteratively: it may require more than one query/reply sequence to
 obtain the entire list of threads.  The first query of the sequence will
 be the @code{qf}@code{ThreadInfo} query; subsequent queries in the
 sequence will be the @code{qs}@code{ThreadInfo} query.
-@item
-@tab
-@tab NOTE: replaces the @code{qL} query (see below).
-@item
-@tab reply @code{m}@var{<id>}
-@tab A single thread id
-@item
-@tab reply @code{m}@var{<id>},@var{<id>...}
-@tab a comma-separated list of thread ids
-@item
-@tab reply @code{l}
-@tab (lower case 'el') denotes end of list.
-@item
-@tab
-@tab
-In response to each query, the target will reply with a list of one
-or more thread ids, in big-endian hex, separated by commas.  GDB will
-respond to each reply with a request for more thread ids (using the
+
+NOTE: replaces the @code{qL} query (see below).
+
+Reply:
+@table @samp
+@item @code{m}@var{id}
+A single thread id
+@item @code{m}@var{id},@var{id}@dots{}
+a comma-separated list of thread ids
+@item @code{l}
+(lower case 'el') denotes end of list.
+@end table
+
+In response to each query, the target will reply with a list of one or
+more thread ids, in big-endian hex, separated by commas.  @value{GDBN}
+will respond to each reply with a request for more thread ids (using the
 @code{qs} form of the query), until the target responds with @code{l}
 (lower-case el, for @code{'last'}).
 
-@item extra thread info
-@tab @code{q}@code{ThreadExtraInfo}@code{,}@var{id}
-@tab
-@item
-@tab
-@tab
-Where @var{<id>} is a thread-id in big-endian hex.
-Obtain a printable string description of a thread's attributes from
-the target OS.  This string may contain anything that the target OS
-thinks is interesting for @value{GDBN} to tell the user about the thread.
-The string is displayed in @value{GDBN}'s @samp{info threads} display.
-Some examples of possible thread extra info strings are "Runnable", or
-"Blocked on Mutex".
-@item
-@tab reply @var{XX...}
-@tab
-Where @var{XX...} is a hex encoding of @sc{ascii} data, comprising the
-printable string containing the extra information about the thread's
+@item @code{q}@code{ThreadExtraInfo}@code{,}@var{id} --- extra thread info
+
+Where @var{id} is a thread-id in big-endian hex.  Obtain a printable
+string description of a thread's attributes from the target OS.  This
+string may contain anything that the target OS thinks is interesting for
+@value{GDBN} to tell the user about the thread.  The string is displayed
+in @value{GDBN}'s @samp{info threads} display.  Some examples of
+possible thread extra info strings are ``Runnable'', or ``Blocked on
+Mutex''.
+
+Reply:
+@table @samp
+@item @var{XX@dots{}}
+Where @var{XX@dots{}} is a hex encoding of @sc{ascii} data, comprising
+the printable string containing the extra information about the thread's
 attributes.
+@end table
+
+@item @code{q}@code{L}@var{startflag}@var{threadcount}@var{nextthread} --- query @var{LIST} or @var{threadLIST} @strong{(deprecated)}
 
-@item query @var{LIST} or @var{threadLIST} @strong{(deprecated)}
-@tab @code{q}@code{L}@var{startflag}@var{threadcount}@var{nextthread}
-@tab
-@item
-@tab
-@tab
 Obtain thread information from RTOS.  Where: @var{startflag} (one hex
 digit) is one to indicate the first query and zero to indicate a
 subsequent query; @var{threadcount} (two hex digits) is the maximum
 number of threads the response packet can contain; and @var{nextthread}
 (eight hex digits), for subsequent queries (@var{startflag} is zero), is
 returned in the response as @var{argthread}.
-@item
-@tab
-@tab NOTE: this query is replaced by the @code{q}@code{fThreadInfo}
-query (see above).
-@item
-@tab reply @code{q}@code{M}@var{count}@var{done}@var{argthread}@var{thread...}
-@tab
-@item
-@tab
-@tab
+
+NOTE: this query is replaced by the @code{q}@code{fThreadInfo} query
+(see above).
+
+Reply:
+@table @samp
+@item @code{q}@code{M}@var{count}@var{done}@var{argthread}@var{thread@dots{}}
 Where: @var{count} (two hex digits) is the number of threads being
 returned; @var{done} (one hex digit) is zero to indicate more threads
 and one indicates no further threads; @var{argthreadid} (eight hex
-digits) is @var{nextthread} from the request packet; @var{thread...} is
-a sequence of thread IDs from the target.  @var{threadid} (eight hex
+digits) is @var{nextthread} from the request packet; @var{thread@dots{}}
+is a sequence of thread IDs from the target.  @var{threadid} (eight hex
 digits).  See @code{remote.c:parse_threadlist_response()}.
+@end table
 
-@item compute CRC of memory block
-@tab @code{q}@code{CRC:}@var{addr}@code{,}@var{length}
-@tab
-@item
-@tab reply @code{E}@var{NN}
-@tab An error (such as memory fault)
-@item
-@tab reply @code{C}@var{CRC32}
-@tab A 32 bit cyclic redundancy check of the specified memory region.
+@item @code{q}@code{CRC:}@var{addr}@code{,}@var{length} --- compute CRC of memory block
+
+Reply:
+@table @samp
+@item @code{E}@var{NN}
+An error (such as memory fault)
+@item @code{C}@var{CRC32}
+A 32 bit cyclic redundancy check of the specified memory region.
+@end table
+
+@item @code{q}@code{Offsets} --- query sect offs
 
-@item query sect offs
-@tab @code{q}@code{Offsets}
-@tab
 Get section offsets that the target used when re-locating the downloaded
 image.  @emph{Note: while a @code{Bss} offset is included in the
 response, @value{GDBN} ignores this and instead applies the @code{Data}
 offset to the @code{Bss} section.}
-@item
-@tab reply @code{Text=}@var{xxx}@code{;Data=}@var{yyy}@code{;Bss=}@var{zzz}
 
-@item thread info request
-@tab @code{q}@code{P}@var{mode}@var{threadid}
-@tab
-@item
-@tab
-@tab
+Reply:
+@table @samp
+@item @code{Text=}@var{xxx}@code{;Data=}@var{yyy}@code{;Bss=}@var{zzz}
+@end table
+
+@item @code{q}@code{P}@var{mode}@var{threadid} --- thread info request
+
 Returns information on @var{threadid}.  Where: @var{mode} is a hex
 encoded 32 bit mode; @var{threadid} is a hex encoded 64 bit thread ID.
-@item
-@tab reply *
-@tab
+
+Reply:
+@table @samp
+@item *
+@end table
+
 See @code{remote.c:remote_unpack_thread_info_response()}.
 
-@item remote command
-@tab @code{q}@code{Rcmd,}@var{COMMAND}
-@tab
-@item
-@tab
-@tab
-@var{COMMAND} (hex encoded) is passed to the local interpreter for
+@item @code{q}@code{Rcmd,}@var{command} --- remote command
+
+@var{command} (hex encoded) is passed to the local interpreter for
 execution.  Invalid commands should be reported using the output string.
 Before the final result packet, the target may also respond with a
-number of intermediate @code{O}@var{OUTPUT} console output
-packets.  @emph{Implementors should note that providing access to a
-stubs's interpreter may have security implications}.
-@item
-@tab reply @code{OK}
-@tab
+number of intermediate @code{O}@var{output} console output packets.
+@emph{Implementors should note that providing access to a stubs's
+interpreter may have security implications}.
+
+Reply:
+@table @samp
+@item OK
 A command response with no output.
-@item
-@tab reply @var{OUTPUT}
-@tab
+@item @var{OUTPUT}
 A command response with the hex encoded output string @var{OUTPUT}.
-@item
-@tab reply @code{E}@var{NN}
-@tab
+@item @code{E}@var{NN}
 Indicate a badly formed request.
-
-@item
-@tab reply @samp{}
-@tab
+@item @samp{}
 When @samp{q}@samp{Rcmd} is not recognized.
+@end table
+
+@item @code{qSymbol::} --- symbol lookup
 
-@item symbol lookup
-@tab @code{qSymbol::}
-@tab
 Notify the target that @value{GDBN} is prepared to serve symbol lookup
 requests.  Accept requests from the target for the values of symbols.
-@item
-@tab
-@tab
-@item
-@tab reply @code{OK}
-@tab
+
+Reply:
+@table @samp
+@item @code{OK}
 The target does not need to look up any (more) symbols.
-@item
-@tab reply @code{qSymbol:}@var{sym_name}
-@tab
-@sp 2
-@noindent
-The target requests the value of symbol @var{sym_name} (hex encoded).  
-@value{GDBN} may provide the value by using the 
-@code{qSymbol:}@var{sym_value}:@var{sym_name}
-message, described below.
-
-@item symbol value
-@tab @code{qSymbol:}@var{sym_value}:@var{sym_name}
-@tab
-@sp 1
-@noindent
-Set the value of SYM_NAME to SYM_VALUE.
-@item
-@tab
-@tab
-@var{sym_name} (hex encoded) is the name of a symbol whose value
-the target has previously requested.
-@item
-@tab
-@tab
-@var{sym_value} (hex) is the value for symbol @var{sym_name}.
-If @value{GDBN} cannot supply a value for @var{sym_name}, then this
-field will be empty.
-@item
-@tab reply @code{OK}
-@tab
+@item @code{qSymbol:}@var{sym_name}
+The target requests the value of symbol @var{sym_name} (hex encoded).
+@value{GDBN} may provide the value by using the
+@code{qSymbol:}@var{sym_value}:@var{sym_name} message, described below.
+@end table
+
+@item @code{qSymbol:}@var{sym_value}:@var{sym_name} --- symbol value
+
+Set the value of @var{sym_name} to @var{sym_value}.
+
+@var{sym_name} (hex encoded) is the name of a symbol whose value the
+target has previously requested.
+
+@var{sym_value} (hex) is the value for symbol @var{sym_name}.  If
+@value{GDBN} cannot supply a value for @var{sym_name}, then this field
+will be empty.
+
+Reply:
+@table @samp
+@item @code{OK}
 The target does not need to look up any (more) symbols.
-@item
-@tab reply @code{qSymbol:}@var{sym_name}
-@tab
-@sp 2
-@noindent
-The target requests the value of a new symbol @var{sym_name} (hex encoded).
-@value{GDBN} will continue to supply the values of symbols (if available),
-until the target ceases to request them.
+@item @code{qSymbol:}@var{sym_name}
+The target requests the value of a new symbol @var{sym_name} (hex
+encoded).  @value{GDBN} will continue to supply the values of symbols
+(if available), until the target ceases to request them.
+@end table
+
+@end table
 
-@end multitable
+@node Register Packet Format
+@section Register Packet Format
 
 The following @samp{g}/@samp{G} packets have previously been defined.
-In the below, some thirty-two bit registers are transferred as sixty-four
-bits.  Those registers should be zero/sign extended (which?) to fill the
-space allocated.  Register bytes are transfered in target byte order.
-The two nibbles within a register byte are transfered most-significant -
-least-significant.
+In the below, some thirty-two bit registers are transferred as
+sixty-four bits.  Those registers should be zero/sign extended (which?)
+to fill the space allocated.  Register bytes are transfered in target
+byte order.  The two nibbles within a register byte are transfered
+most-significant - least-significant.
 
-@multitable @columnfractions .5 .5
+@table @r
 
 @item MIPS32
-@tab
+
 All registers are transfered as thirty-two bit quantities in the order:
 32 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
 registers; fsr; fir; fp.
 
 @item MIPS64
-@tab
+
 All registers are transfered as sixty-four bit quantities (including
 thirty-two bit registers such as @code{sr}).  The ordering is the same
 as @code{MIPS32}.
 
-@end multitable
+@end table
+
+@node Examples
+@section Examples
 
 Example sequence of a target being re-started.  Notice how the restart
 does not get any direct output:
 
-@example
-<- @code{R00}
--> @code{+}
+@smallexample
+-> @code{R00}
+<- @code{+}
 @emph{target restarts}
-<- @code{?}
--> @code{+}
--> @code{T001:1234123412341234}
+-> @code{?}
 <- @code{+}
-@end example
+<- @code{T001:1234123412341234}
+-> @code{+}
+@end smallexample
 
 Example sequence of a target being stepped by a single instruction:
 
-@example
-<- @code{G1445...}
--> @code{+}
-<- @code{s}
--> @code{+}
-@emph{time passes}
--> @code{T001:1234123412341234}
+@smallexample
+-> @code{G1445@dots{}}
+<- @code{+}
+-> @code{s}
 <- @code{+}
-<- @code{g}
+@emph{time passes}
+<- @code{T001:1234123412341234}
 -> @code{+}
--> @code{1455...}
+-> @code{g}
 <- @code{+}
-@end example
+<- @code{1455@dots{}}
+-> @code{+}
+@end smallexample
 
+@include gpl.texi
 
 @include fdl.texi
 
This page took 0.105657 seconds and 4 git commands to generate.