* amd64-linux-tdep.c, amd64nbsd-tdep.c, amd64obsd-tdep.c,
[deliverable/binutils-gdb.git] / gdb / i386-linux-tdep.c
index 9592decee1955f7ece8dea0c33a60aa7c2cbd610..2b08e895fefa066d5ecc0689e60791487651dbc6 100644 (file)
@@ -1,6 +1,6 @@
-/* Target-dependent code for GNU/Linux running on i386's, for GDB.
+/* Target-dependent code for GNU/Linux i386.
 
-   Copyright 2000, 2001, 2002 Free Software Foundation, Inc.
+   Copyright 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
 
    This file is part of GDB.
 
 #include "value.h"
 #include "regcache.h"
 #include "inferior.h"
+#include "osabi.h"
+#include "reggroups.h"
 
-/* For i386_linux_skip_solib_resolver.  */
-#include "symtab.h"
-#include "symfile.h"
-#include "objfiles.h"
+#include "gdb_string.h"
 
-#include "solib-svr4.h"                /* For struct link_map_offsets.  */
+#include "i386-tdep.h"
+#include "i386-linux-tdep.h"
+#include "glibc-tdep.h"
+#include "solib-svr4.h"
 
 /* Return the name of register REG.  */
 
-char *
+static const char *
 i386_linux_register_name (int reg)
 {
   /* Deal with the extra "orig_eax" pseudo register.  */
@@ -45,26 +47,19 @@ i386_linux_register_name (int reg)
   return i386_register_name (reg);
 }
 
-int
-i386_linux_register_byte (int reg)
+/* Return non-zero, when the register is in the corresponding register
+   group.  Put the LINUX_ORIG_EAX register in the system group.  */
+static int
+i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
+                               struct reggroup *group)
 {
-  /* Deal with the extra "orig_eax" pseudo register.  */
-  if (reg == I386_LINUX_ORIG_EAX_REGNUM)
-    return (i386_register_byte (I386_LINUX_ORIG_EAX_REGNUM - 1)
-           + i386_register_raw_size (I386_LINUX_ORIG_EAX_REGNUM - 1));
-
-  return i386_register_byte (reg);
+  if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
+    return (group == system_reggroup
+           || group == save_reggroup
+           || group == restore_reggroup);
+  return i386_register_reggroup_p (gdbarch, regnum, group);
 }
 
-int
-i386_linux_register_raw_size (int reg)
-{
-  /* Deal with the extra "orig_eax" pseudo register.  */
-  if (reg == I386_LINUX_ORIG_EAX_REGNUM)
-    return 4;
-
-  return i386_register_raw_size (reg);
-}
 \f
 /* Recognizing signal handler frames.  */
 
@@ -82,19 +77,19 @@ i386_linux_register_raw_size (int reg)
 
    The instruction sequence for normal signals is
        pop    %eax
-       mov    $0x77,%eax
+       mov    $0x77, %eax
        int    $0x80
    or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
 
    Checking for the code sequence should be somewhat reliable, because
    the effect is to call the system call sigreturn.  This is unlikely
-   to occur anywhere other than a signal trampoline.
+   to occur anywhere other than in a signal trampoline.
 
    It kind of sucks that we have to read memory from the process in
    order to identify a signal trampoline, but there doesn't seem to be
-   any other way.  The PC_IN_SIGTRAMP macro in tm-linux.h arranges to
-   only call us if no function name could be identified, which should
-   be the case since the code is on the stack.
+   any other way.  Therefore we only do the memory reads if no
+   function name could be identified, which should be the case since
+   the code is on the stack.
 
    Detection of signal trampolines for handlers that set the
    SA_RESTORER flag is in general not possible.  Unfortunately this is
@@ -104,17 +99,17 @@ i386_linux_register_raw_size (int reg)
    to the ones used by the kernel.  Therefore, these trampolines are
    supported too.  */
 
-#define LINUX_SIGTRAMP_INSN0 (0x58)    /* pop %eax */
-#define LINUX_SIGTRAMP_OFFSET0 (0)
-#define LINUX_SIGTRAMP_INSN1 (0xb8)    /* mov $NNNN,%eax */
-#define LINUX_SIGTRAMP_OFFSET1 (1)
-#define LINUX_SIGTRAMP_INSN2 (0xcd)    /* int */
-#define LINUX_SIGTRAMP_OFFSET2 (6)
+#define LINUX_SIGTRAMP_INSN0   0x58    /* pop %eax */
+#define LINUX_SIGTRAMP_OFFSET0 0
+#define LINUX_SIGTRAMP_INSN1   0xb8    /* mov $NNNN, %eax */
+#define LINUX_SIGTRAMP_OFFSET1 1
+#define LINUX_SIGTRAMP_INSN2   0xcd    /* int */
+#define LINUX_SIGTRAMP_OFFSET2 6
 
 static const unsigned char linux_sigtramp_code[] =
 {
   LINUX_SIGTRAMP_INSN0,                                        /* pop %eax */
-  LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00,                /* mov $0x77,%eax */
+  LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00,                /* mov $0x77, %eax */
   LINUX_SIGTRAMP_INSN2, 0x80                           /* int $0x80 */
 };
 
@@ -168,20 +163,20 @@ i386_linux_sigtramp_start (CORE_ADDR pc)
 
 /* This function does the same for RT signals.  Here the instruction
    sequence is
-       mov    $0xad,%eax
+       mov    $0xad, %eax
        int    $0x80
    or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
 
    The effect is to call the system call rt_sigreturn.  */
 
-#define LINUX_RT_SIGTRAMP_INSN0 (0xb8) /* mov $NNNN,%eax */
-#define LINUX_RT_SIGTRAMP_OFFSET0 (0)
-#define LINUX_RT_SIGTRAMP_INSN1 (0xcd) /* int */
-#define LINUX_RT_SIGTRAMP_OFFSET1 (5)
+#define LINUX_RT_SIGTRAMP_INSN0                0xb8 /* mov $NNNN, %eax */
+#define LINUX_RT_SIGTRAMP_OFFSET0      0
+#define LINUX_RT_SIGTRAMP_INSN1                0xcd /* int */
+#define LINUX_RT_SIGTRAMP_OFFSET1      5
 
 static const unsigned char linux_rt_sigtramp_code[] =
 {
-  LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00,     /* mov $0xad,%eax */
+  LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00,     /* mov $0xad, %eax */
   LINUX_RT_SIGTRAMP_INSN1, 0x80                                /* int $0x80 */
 };
 
@@ -222,167 +217,83 @@ i386_linux_rt_sigtramp_start (CORE_ADDR pc)
   return pc;
 }
 
-/* Return whether PC is in a GNU/Linux sigtramp routine.  */
+/* Return whether the frame preceding NEXT_FRAME corresponds to a
+   GNU/Linux sigtramp routine.  */
 
-int
-i386_linux_in_sigtramp (CORE_ADDR pc, char *name)
+static int
+i386_linux_sigtramp_p (struct frame_info *next_frame)
 {
-  if (name)
-    return STREQ ("__restore", name) || STREQ ("__restore_rt", name);
-  
-  return (i386_linux_sigtramp_start (pc) != 0
-         || i386_linux_rt_sigtramp_start (pc) != 0);
+  CORE_ADDR pc = frame_pc_unwind (next_frame);
+  char *name;
+
+  find_pc_partial_function (pc, &name, NULL, NULL);
+
+  /* If we have NAME, we can optimize the search.  The trampolines are
+     named __restore and __restore_rt.  However, they aren't dynamically
+     exported from the shared C library, so the trampoline may appear to
+     be part of the preceding function.  This should always be sigaction,
+     __sigaction, or __libc_sigaction (all aliases to the same function).  */
+  if (name == NULL || strstr (name, "sigaction") != NULL)
+    return (i386_linux_sigtramp_start (pc) != 0
+           || i386_linux_rt_sigtramp_start (pc) != 0);
+
+  return (strcmp ("__restore", name) == 0
+         || strcmp ("__restore_rt", name) == 0);
 }
 
-/* Assuming FRAME is for a GNU/Linux sigtramp routine, return the
-   address of the associated sigcontext structure.  */
+/* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>.  */
+#define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
+
+/* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
+   routine, return the address of the associated sigcontext structure.  */
 
-CORE_ADDR
-i386_linux_sigcontext_addr (struct frame_info *frame)
+static CORE_ADDR
+i386_linux_sigcontext_addr (struct frame_info *next_frame)
 {
   CORE_ADDR pc;
+  CORE_ADDR sp;
+  char buf[4];
+
+  frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
+  sp = extract_unsigned_integer (buf, 4);
 
-  pc = i386_linux_sigtramp_start (frame->pc);
+  pc = i386_linux_sigtramp_start (frame_pc_unwind (next_frame));
   if (pc)
     {
-      CORE_ADDR sp;
-
-      if (frame->next)
-       /* If this isn't the top frame, the next frame must be for the
-          signal handler itself.  The sigcontext structure lives on
-          the stack, right after the signum argument.  */
-       return frame->next->frame + 12;
-
-      /* This is the top frame.  We'll have to find the address of the
-        sigcontext structure by looking at the stack pointer.  Keep
-        in mind that the first instruction of the sigtramp code is
-        "pop %eax".  If the PC is at this instruction, adjust the
-        returned value accordingly.  */
-      sp = read_register (SP_REGNUM);
-      if (pc == frame->pc)
+      /* The sigcontext structure lives on the stack, right after
+        the signum argument.  We determine the address of the
+        sigcontext structure by looking at the frame's stack
+        pointer.  Keep in mind that the first instruction of the
+        sigtramp code is "pop %eax".  If the PC is after this
+        instruction, adjust the returned value accordingly.  */
+      if (pc == frame_pc_unwind (next_frame))
        return sp + 4;
       return sp;
     }
 
-  pc = i386_linux_rt_sigtramp_start (frame->pc);
+  pc = i386_linux_rt_sigtramp_start (frame_pc_unwind (next_frame));
   if (pc)
     {
-      if (frame->next)
-       /* If this isn't the top frame, the next frame must be for the
-          signal handler itself.  The sigcontext structure is part of
-          the user context.  A pointer to the user context is passed
-          as the third argument to the signal handler.  */
-       return read_memory_integer (frame->next->frame + 16, 4) + 20;
-
-      /* This is the top frame.  Again, use the stack pointer to find
-        the address of the sigcontext structure.  */
-      return read_memory_integer (read_register (SP_REGNUM) + 8, 4) + 20;
+      CORE_ADDR ucontext_addr;
+
+      /* The sigcontext structure is part of the user context.  A
+        pointer to the user context is passed as the third argument
+        to the signal handler.  */
+      read_memory (sp + 8, buf, 4);
+      ucontext_addr = extract_unsigned_integer (buf, 4);
+      return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
     }
 
   error ("Couldn't recognize signal trampoline.");
   return 0;
 }
 
-/* Offset to saved PC in sigcontext, from <asm/sigcontext.h>.  */
-#define LINUX_SIGCONTEXT_PC_OFFSET (56)
-
-/* Assuming FRAME is for a GNU/Linux sigtramp routine, return the
-   saved program counter.  */
-
-static CORE_ADDR
-i386_linux_sigtramp_saved_pc (struct frame_info *frame)
-{
-  CORE_ADDR addr;
-  addr = i386_linux_sigcontext_addr (frame);
-  return read_memory_integer (addr + LINUX_SIGCONTEXT_PC_OFFSET, 4);
-}
-
-/* Offset to saved SP in sigcontext, from <asm/sigcontext.h>.  */
-#define LINUX_SIGCONTEXT_SP_OFFSET (28)
-
-/* Assuming FRAME is for a GNU/Linux sigtramp routine, return the
-   saved stack pointer.  */
-
-static CORE_ADDR
-i386_linux_sigtramp_saved_sp (struct frame_info *frame)
-{
-  CORE_ADDR addr;
-  addr = i386_linux_sigcontext_addr (frame);
-  return read_memory_integer (addr + LINUX_SIGCONTEXT_SP_OFFSET, 4);
-}
-
-/* Signal trampolines don't have a meaningful frame.  As in
-   "i386/tm-i386.h", the frame pointer value we use is actually the
-   frame pointer of the calling frame -- that is, the frame which was
-   in progress when the signal trampoline was entered.  GDB mostly
-   treats this frame pointer value as a magic cookie.  We detect the
-   case of a signal trampoline by looking at the SIGNAL_HANDLER_CALLER
-   field, which is set based on PC_IN_SIGTRAMP.
-
-   When a signal trampoline is invoked from a frameless function, we
-   essentially have two frameless functions in a row.  In this case,
-   we use the same magic cookie for three frames in a row.  We detect
-   this case by seeing whether the next frame has
-   SIGNAL_HANDLER_CALLER set, and, if it does, checking whether the
-   current frame is actually frameless.  In this case, we need to get
-   the PC by looking at the SP register value stored in the signal
-   context.
-
-   This should work in most cases except in horrible situations where
-   a signal occurs just as we enter a function but before the frame
-   has been set up.  */
-
-#define FRAMELESS_SIGNAL(frame)                                        \
-  ((frame)->next != NULL                                       \
-   && (frame)->next->signal_handler_caller                     \
-   && frameless_look_for_prologue (frame))
-
-CORE_ADDR
-i386_linux_frame_chain (struct frame_info *frame)
-{
-  if (frame->signal_handler_caller || FRAMELESS_SIGNAL (frame))
-    return frame->frame;
-
-  if (! inside_entry_file (frame->pc))
-    return read_memory_unsigned_integer (frame->frame, 4);
-
-  return 0;
-}
-
-/* Return the saved program counter for FRAME.  */
-
-CORE_ADDR
-i386_linux_frame_saved_pc (struct frame_info *frame)
-{
-  if (frame->signal_handler_caller)
-    return i386_linux_sigtramp_saved_pc (frame);
-
-  if (FRAMELESS_SIGNAL (frame))
-    {
-      CORE_ADDR sp = i386_linux_sigtramp_saved_sp (frame->next);
-      return read_memory_unsigned_integer (sp, 4);
-    }
-
-  return read_memory_unsigned_integer (frame->frame + 4, 4);
-}
-
-/* Immediately after a function call, return the saved pc.  */
-
-CORE_ADDR
-i386_linux_saved_pc_after_call (struct frame_info *frame)
-{
-  if (frame->signal_handler_caller)
-    return i386_linux_sigtramp_saved_pc (frame);
-
-  return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
-}
-
 /* Set the program counter for process PTID to PC.  */
 
-void
+static void
 i386_linux_write_pc (CORE_ADDR pc, ptid_t ptid)
 {
-  write_register_pid (PC_REGNUM, pc, ptid);
+  write_register_pid (I386_EIP_REGNUM, pc, ptid);
 
   /* We must be careful with modifying the program counter.  If we
      just interrupted a system call, the kernel might try to restart
@@ -401,130 +312,113 @@ i386_linux_write_pc (CORE_ADDR pc, ptid_t ptid)
   write_register_pid (I386_LINUX_ORIG_EAX_REGNUM, -1, ptid);
 }
 \f
-/* Calling functions in shared libraries.  */
-
-/* Find the minimal symbol named NAME, and return both the minsym
-   struct and its objfile.  This probably ought to be in minsym.c, but
-   everything there is trying to deal with things like C++ and
-   SOFUN_ADDRESS_MAYBE_TURQUOISE, ...  Since this is so simple, it may
-   be considered too special-purpose for general consumption.  */
 
-static struct minimal_symbol *
-find_minsym_and_objfile (char *name, struct objfile **objfile_p)
-{
-  struct objfile *objfile;
+/* The register sets used in GNU/Linux ELF core-dumps are identical to
+   the register sets in `struct user' that are used for a.out
+   core-dumps.  These are also used by ptrace(2).  The corresponding
+   types are `elf_gregset_t' for the general-purpose registers (with
+   `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
+   for the floating-point registers.
 
-  ALL_OBJFILES (objfile)
-    {
-      struct minimal_symbol *msym;
+   Those types used to be available under the names `gregset_t' and
+   `fpregset_t' too, and GDB used those names in the past.  But those
+   names are now used for the register sets used in the `mcontext_t'
+   type, which have a different size and layout.  */
 
-      ALL_OBJFILE_MSYMBOLS (objfile, msym)
-       {
-         if (SYMBOL_NAME (msym)
-             && STREQ (SYMBOL_NAME (msym), name))
-           {
-             *objfile_p = objfile;
-             return msym;
-           }
-       }
-    }
+/* Mapping between the general-purpose registers in `struct user'
+   format and GDB's register cache layout.  */
 
-  return 0;
-}
-
-static CORE_ADDR
-skip_hurd_resolver (CORE_ADDR pc)
+/* From <sys/reg.h>.  */
+static int i386_linux_gregset_reg_offset[] =
 {
-  /* The HURD dynamic linker is part of the GNU C library, so many
-     GNU/Linux distributions use it.  (All ELF versions, as far as I
-     know.)  An unresolved PLT entry points to "_dl_runtime_resolve",
-     which calls "fixup" to patch the PLT, and then passes control to
-     the function.
-
-     We look for the symbol `_dl_runtime_resolve', and find `fixup' in
-     the same objfile.  If we are at the entry point of `fixup', then
-     we set a breakpoint at the return address (at the top of the
-     stack), and continue.
-  
-     It's kind of gross to do all these checks every time we're
-     called, since they don't change once the executable has gotten
-     started.  But this is only a temporary hack --- upcoming versions
-     of GNU/Linux will provide a portable, efficient interface for
-     debugging programs that use shared libraries.  */
-
-  struct objfile *objfile;
-  struct minimal_symbol *resolver 
-    = find_minsym_and_objfile ("_dl_runtime_resolve", &objfile);
-
-  if (resolver)
-    {
-      struct minimal_symbol *fixup
-       = lookup_minimal_symbol ("fixup", NULL, objfile);
-
-      if (fixup && SYMBOL_VALUE_ADDRESS (fixup) == pc)
-       return (SAVED_PC_AFTER_CALL (get_current_frame ()));
-    }
-
-  return 0;
-}      
+  6 * 4,                       /* %eax */
+  1 * 4,                       /* %ecx */
+  2 * 4,                       /* %edx */
+  0 * 4,                       /* %ebx */
+  15 * 4,                      /* %esp */
+  5 * 4,                       /* %ebp */
+  3 * 4,                       /* %esi */
+  4 * 4,                       /* %edi */
+  12 * 4,                      /* %eip */
+  14 * 4,                      /* %eflags */
+  13 * 4,                      /* %cs */
+  16 * 4,                      /* %ss */
+  7 * 4,                       /* %ds */
+  8 * 4,                       /* %es */
+  9 * 4,                       /* %fs */
+  10 * 4,                      /* %gs */
+  -1, -1, -1, -1, -1, -1, -1, -1,
+  -1, -1, -1, -1, -1, -1, -1, -1,
+  -1, -1, -1, -1, -1, -1, -1, -1,
+  -1,
+  11 * 4                       /* "orig_eax" */
+};
 
-/* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c.
-   This function:
-   1) decides whether a PLT has sent us into the linker to resolve
-      a function reference, and 
-   2) if so, tells us where to set a temporary breakpoint that will
-      trigger when the dynamic linker is done.  */
+/* Mapping between the general-purpose registers in `struct
+   sigcontext' format and GDB's register cache layout.  */
 
-CORE_ADDR
-i386_linux_skip_solib_resolver (CORE_ADDR pc)
+/* From <asm/sigcontext.h>.  */
+static int i386_linux_sc_reg_offset[] =
 {
-  CORE_ADDR result;
-
-  /* Plug in functions for other kinds of resolvers here.  */
-  result = skip_hurd_resolver (pc);
-  if (result)
-    return result;
+  11 * 4,                      /* %eax */
+  10 * 4,                      /* %ecx */
+  9 * 4,                       /* %edx */
+  8 * 4,                       /* %ebx */
+  7 * 4,                       /* %esp */
+  6 * 4,                       /* %ebp */
+  5 * 4,                       /* %esi */
+  4 * 4,                       /* %edi */
+  14 * 4,                      /* %eip */
+  16 * 4,                      /* %eflags */
+  15 * 4,                      /* %cs */
+  18 * 4,                      /* %ss */
+  3 * 4,                       /* %ds */
+  2 * 4,                       /* %es */
+  1 * 4,                       /* %fs */
+  0 * 4                                /* %gs */
+};
 
-  return 0;
-}
+static void
+i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-/* Fetch (and possibly build) an appropriate link_map_offsets
-   structure for native GNU/Linux x86 targets using the struct offsets
-   defined in link.h (but without actual reference to that file).
+  /* GNU/Linux uses ELF.  */
+  i386_elf_init_abi (info, gdbarch);
 
-   This makes it possible to access GNU/Linux x86 shared libraries
-   from a GDB that was not built on an GNU/Linux x86 host (for cross
-   debugging).  */
+  /* Since we have the extra "orig_eax" register on GNU/Linux, we have
+     to adjust a few things.  */
 
-struct link_map_offsets *
-i386_linux_svr4_fetch_link_map_offsets (void)
-{
-  static struct link_map_offsets lmo;
-  static struct link_map_offsets *lmp = NULL;
+  set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
+  set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
+  set_gdbarch_register_name (gdbarch, i386_linux_register_name);
+  set_gdbarch_register_reggroup_p (gdbarch, i386_linux_register_reggroup_p);
 
-  if (lmp == NULL)
-    {
-      lmp = &lmo;
+  tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
+  tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
+  tdep->sizeof_gregset = 17 * 4;
 
-      lmo.r_debug_size = 8;    /* The actual size is 20 bytes, but
-                                  this is all we need.  */
-      lmo.r_map_offset = 4;
-      lmo.r_map_size   = 4;
+  tdep->jb_pc_offset = 20;     /* From <bits/setjmp.h>.  */
 
-      lmo.link_map_size = 20;  /* The actual size is 552 bytes, but
-                                  this is all we need.  */
-      lmo.l_addr_offset = 0;
-      lmo.l_addr_size   = 4;
+  tdep->sigtramp_p = i386_linux_sigtramp_p;
+  tdep->sigcontext_addr = i386_linux_sigcontext_addr;
+  tdep->sc_reg_offset = i386_linux_sc_reg_offset;
+  tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
 
-      lmo.l_name_offset = 4;
-      lmo.l_name_size   = 4;
+  /* GNU/Linux uses SVR4-style shared libraries.  */
+  set_solib_svr4_fetch_link_map_offsets
+    (gdbarch, svr4_ilp32_fetch_link_map_offsets);
 
-      lmo.l_next_offset = 12;
-      lmo.l_next_size   = 4;
+  /* GNU/Linux uses the dynamic linker included in the GNU C Library.  */
+  set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
+}
 
-      lmo.l_prev_offset = 16;
-      lmo.l_prev_size   = 4;
-    }
+/* Provide a prototype to silence -Wmissing-prototypes.  */
+extern void _initialize_i386_linux_tdep (void);
 
-  return lmp;
+void
+_initialize_i386_linux_tdep (void)
+{
+  gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
+                         i386_linux_init_abi);
 }
This page took 0.053494 seconds and 4 git commands to generate.