* gdbarch.sh (make_corefile_notes): New architecture callback.
[deliverable/binutils-gdb.git] / gdb / m32c-tdep.c
index 9fa672bffa4a825a4514d931ff798e82f1404011..17bfd6aabb6cc9bbae8101e09e9d10240ba849bf 100644 (file)
@@ -1,6 +1,6 @@
 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
 
-   Copyright 2004, 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
+   Copyright 2004-2005, 2007-2012 Free Software Foundation, Inc.
 
    This file is part of GDB.
 
@@ -53,9 +53,9 @@ struct m32c_reg;
 
 /* The type of a function that moves the value of REG between CACHE or
    BUF --- in either direction.  */
-typedef void (m32c_move_reg_t) (struct m32c_reg *reg,
-                               struct regcache *cache,
-                               void *buf);
+typedef enum register_status (m32c_move_reg_t) (struct m32c_reg *reg,
+                                               struct regcache *cache,
+                                               void *buf);
 
 struct m32c_reg
 {
@@ -187,39 +187,41 @@ make_types (struct gdbarch *arch)
       break;
 
     default:
-      gdb_assert (0);
+      gdb_assert_not_reached ("unexpected mach");
     }
 
   /* The builtin_type_mumble variables are sometimes uninitialized when
      this is called, so we avoid using them.  */
-  tdep->voyd = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
-  tdep->ptr_voyd = init_type (TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / 8,
-                             TYPE_FLAG_UNSIGNED, NULL, NULL);
+  tdep->voyd = arch_type (arch, TYPE_CODE_VOID, 1, "void");
+  tdep->ptr_voyd
+    = arch_type (arch, TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / TARGET_CHAR_BIT,
+                 NULL);
   TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
+  TYPE_UNSIGNED (tdep->ptr_voyd) = 1;
   tdep->func_voyd = lookup_function_type (tdep->voyd);
 
   sprintf (type_name, "%s_data_addr_t",
           gdbarch_bfd_arch_info (arch)->printable_name);
   tdep->data_addr_reg_type
-    = init_type (TYPE_CODE_PTR, data_addr_reg_bits / 8,
-                TYPE_FLAG_UNSIGNED, xstrdup (type_name), NULL);
+    = arch_type (arch, TYPE_CODE_PTR, data_addr_reg_bits / TARGET_CHAR_BIT,
+                 xstrdup (type_name));
   TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
+  TYPE_UNSIGNED (tdep->data_addr_reg_type) = 1;
 
   sprintf (type_name, "%s_code_addr_t",
           gdbarch_bfd_arch_info (arch)->printable_name);
   tdep->code_addr_reg_type
-    = init_type (TYPE_CODE_PTR, code_addr_reg_bits / 8,
-                TYPE_FLAG_UNSIGNED, xstrdup (type_name), NULL);
+    = arch_type (arch, TYPE_CODE_PTR, code_addr_reg_bits / TARGET_CHAR_BIT,
+                 xstrdup (type_name));
   TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
+  TYPE_UNSIGNED (tdep->code_addr_reg_type) = 1;
 
-  tdep->uint8  = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
-                           "uint8_t", NULL);
-  tdep->uint16 = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
-                           "uint16_t", NULL);
-  tdep->int8   = init_type (TYPE_CODE_INT, 1, 0, "int8_t", NULL);
-  tdep->int16  = init_type (TYPE_CODE_INT, 2, 0, "int16_t", NULL);
-  tdep->int32  = init_type (TYPE_CODE_INT, 4, 0, "int32_t", NULL);
-  tdep->int64  = init_type (TYPE_CODE_INT, 8, 0, "int64_t", NULL);
+  tdep->uint8  = arch_integer_type (arch,  8, 1, "uint8_t");
+  tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
+  tdep->int8   = arch_integer_type (arch,  8, 0, "int8_t");
+  tdep->int16  = arch_integer_type (arch, 16, 0, "int16_t");
+  tdep->int32  = arch_integer_type (arch, 32, 0, "int32_t");
+  tdep->int64  = arch_integer_type (arch, 64, 0, "int64_t");
 }
 
 
@@ -312,18 +314,20 @@ static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;
 
 
 /* Copy the value of the raw register REG from CACHE to BUF.  */
-static void
+static enum register_status
 m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
 {
-  regcache_raw_read (cache, reg->num, buf);
+  return regcache_raw_read (cache, reg->num, buf);
 }
 
 
 /* Copy the value of the raw register REG from BUF to CACHE.  */
-static void
+static enum register_status
 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
 {
   regcache_raw_write (cache, reg->num, (const void *) buf);
+
+  return REG_VALID;
 }
 
 
@@ -350,11 +354,11 @@ m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
    If the value of the 'flg' register in CACHE has any of the bits
    masked in REG->n set, then read REG->ry.  Otherwise, read
    REG->rx.  */
-static void
+static enum register_status
 m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
 {
   struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
-  regcache_raw_read (cache, bank_reg->num, buf);
+  return regcache_raw_read (cache, bank_reg->num, buf);
 }
 
 
@@ -362,35 +366,39 @@ m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
    If the value of the 'flg' register in CACHE has any of the bits
    masked in REG->n set, then write REG->ry.  Otherwise, write
    REG->rx.  */
-static void
+static enum register_status
 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
 {
   struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
   regcache_raw_write (cache, bank_reg->num, (const void *) buf);
+
+  return REG_VALID;
 }
 
 
 /* Move the value of SB from CACHE to BUF.  On bfd_mach_m32c, SB is a
    banked register; on bfd_mach_m16c, it's not.  */
-static void
+static enum register_status
 m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
 {
   if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
-    m32c_raw_read (reg->rx, cache, buf);
+    return m32c_raw_read (reg->rx, cache, buf);
   else
-    m32c_banked_read (reg, cache, buf);
+    return m32c_banked_read (reg, cache, buf);
 }
 
 
 /* Move the value of SB from BUF to CACHE.  On bfd_mach_m32c, SB is a
    banked register; on bfd_mach_m16c, it's not.  */
-static void
+static enum register_status
 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
 {
   if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
     m32c_raw_write (reg->rx, cache, buf);
   else
     m32c_banked_write (reg, cache, buf);
+
+  return REG_VALID;
 }
 
 
@@ -435,13 +443,14 @@ m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
    to BUF.  Treating the value of the register REG->rx as an array of
    REG->type values, where higher indices refer to more significant
    bits, read the value of the REG->n'th element.  */
-static void
+static enum register_status
 m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
 {
   int offset, len;
+
   memset (buf, 0, TYPE_LENGTH (reg->type));
   m32c_find_part (reg, &offset, &len);
-  regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
+  return regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
 }
 
 
@@ -449,45 +458,53 @@ m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
    Treating the value of the register REG->rx as an array of REG->type
    values, where higher indices refer to more significant bits, write
    the value of the REG->n'th element.  */
-static void
+static enum register_status
 m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
 {
   int offset, len;
+
   m32c_find_part (reg, &offset, &len);
   regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
+
+  return REG_VALID;
 }
 
 
 /* Move the value of REG from CACHE to BUF.  REG's value is the
    concatenation of the values of the registers REG->rx and REG->ry,
    with REG->rx contributing the more significant bits.  */
-static void
+static enum register_status
 m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
 {
   int high_bytes = TYPE_LENGTH (reg->rx->type);
   int low_bytes  = TYPE_LENGTH (reg->ry->type);
   /* For address arithmetic.  */
   unsigned char *cbuf = buf;
+  enum register_status status;
 
   gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
 
   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
     {
-      regcache_cooked_read (cache, reg->rx->num, cbuf);
-      regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
+      status = regcache_cooked_read (cache, reg->rx->num, cbuf);
+      if (status == REG_VALID)
+       status = regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
     }
   else
     {
-      regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
-      regcache_cooked_read (cache, reg->ry->num, cbuf);
+      status = regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
+      if (status == REG_VALID)
+       status = regcache_cooked_read (cache, reg->ry->num, cbuf);
     }
+
+  return status;
 }
 
 
 /* Move the value of REG from CACHE to BUF.  REG's value is the
    concatenation of the values of the registers REG->rx and REG->ry,
    with REG->rx contributing the more significant bits.  */
-static void
+static enum register_status
 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
 {
   int high_bytes = TYPE_LENGTH (reg->rx->type);
@@ -507,42 +524,53 @@ m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
       regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
       regcache_cooked_write (cache, reg->ry->num, cbuf);
     }
+
+  return REG_VALID;
 }
 
 
 /* Copy the value of the raw register REG from CACHE to BUF.  REG is
    the concatenation (from most significant to least) of r3, r2, r1,
    and r0.  */
-static void
+static enum register_status
 m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
 {
   struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
   int len = TYPE_LENGTH (tdep->r0->type);
+  enum register_status status;
 
   /* For address arithmetic.  */
   unsigned char *cbuf = buf;
 
   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
     {
-      regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
-      regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
-      regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
-      regcache_cooked_read (cache, tdep->r3->num, cbuf);
+      status = regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
+      if (status == REG_VALID)
+       status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
+      if (status == REG_VALID)
+       status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
+      if (status == REG_VALID)
+       status = regcache_cooked_read (cache, tdep->r3->num, cbuf);
     }
   else
     {
-      regcache_cooked_read (cache, tdep->r0->num, cbuf);
-      regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
-      regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
-      regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
+      status = regcache_cooked_read (cache, tdep->r0->num, cbuf);
+      if (status == REG_VALID)
+       status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
+      if (status == REG_VALID)
+       status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
+      if (status == REG_VALID)
+       status = regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
     }
+
+  return status;
 }
 
 
 /* Copy the value of the raw register REG from BUF to CACHE.  REG is
    the concatenation (from most significant to least) of r3, r2, r1,
    and r0.  */
-static void
+static enum register_status
 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
 {
   struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
@@ -565,10 +593,12 @@ m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
       regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
       regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
     }
+
+  return REG_VALID;
 }
 
 
-static void
+static enum register_status
 m32c_pseudo_register_read (struct gdbarch *arch,
                           struct regcache *cache,
                           int cookednum,
@@ -582,7 +612,7 @@ m32c_pseudo_register_read (struct gdbarch *arch,
   gdb_assert (arch == tdep->regs[cookednum].arch);
   reg = &tdep->regs[cookednum];
 
-  reg->read (reg, cache, buf);
+  return reg->read (reg, cache, buf);
 }
 
 
@@ -1240,7 +1270,7 @@ m32c_decode_srcdest4 (struct m32c_pv_state *st,
     case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
 
     default:
-      gdb_assert (0);
+      gdb_assert_not_reached ("unexpected srcdest4");
     }
 
   return sd;
@@ -1299,7 +1329,7 @@ m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
     case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
     case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
     default:
-      gdb_assert (0);
+      gdb_assert_not_reached ("unexpected sd23");
     }
 
   if (ind)
@@ -1541,7 +1571,7 @@ m32c_analyze_prologue (struct gdbarch *arch,
   st.fb = pv_register (tdep->fb->num, 0);
   st.sp = pv_register (tdep->sp->num, 0);
   st.pc = pv_register (tdep->pc->num, 0);
-  st.stack = make_pv_area (tdep->sp->num);
+  st.stack = make_pv_area (tdep->sp->num, gdbarch_addr_bit (arch));
   back_to = make_cleanup_free_pv_area (st.stack);
 
   /* Record that the call instruction has saved the return address on
@@ -1815,7 +1845,7 @@ m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
   /* Find end by prologue analysis.  */
   m32c_analyze_prologue (gdbarch, ip, func_end, &p);
   /* Find end by line info.  */
-  sal_end = skip_prologue_using_sal (ip);
+  sal_end = skip_prologue_using_sal (gdbarch, ip);
   /* Return whichever is lower.  */
   if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
     return sal_end;
@@ -1884,7 +1914,7 @@ m32c_frame_base (struct frame_info *this_frame,
       return 0;
 
     default:
-      gdb_assert (0);
+      gdb_assert_not_reached ("unexpected prologue kind");
     }
 }
 
@@ -1929,6 +1959,7 @@ m32c_prev_register (struct frame_info *this_frame,
 
 static const struct frame_unwind m32c_unwind = {
   NORMAL_FRAME,
+  default_frame_unwind_stop_reason,
   m32c_this_id,
   m32c_prev_register,
   NULL,
@@ -2004,6 +2035,7 @@ m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
                      CORE_ADDR struct_addr)
 {
   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
   unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
   CORE_ADDR cfa;
   int i;
@@ -2041,7 +2073,7 @@ m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
     {
       int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
       sp -= ptr_len;
-      write_memory_unsigned_integer (sp, ptr_len, struct_addr);
+      write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
     }
 
   /* Push the arguments.  */
@@ -2062,7 +2094,8 @@ m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
             sure it ends up in the least significant end of r1.  (GDB
             should avoid assuming endianness, even on uni-endian
             processors.)  */
-         ULONGEST u = extract_unsigned_integer (arg_bits, arg_size);
+         ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
+                                                byte_order);
          struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
          regcache_cooked_write_unsigned (regcache, reg->num, u);
        }
@@ -2093,7 +2126,8 @@ m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
 
   /* Push the return address.  */
   sp -= tdep->ret_addr_bytes;
-  write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, bp_addr);
+  write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
+                                bp_addr);
 
   /* Update the stack pointer.  */
   regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
@@ -2179,6 +2213,7 @@ m32c_return_value (struct gdbarch *gdbarch,
                   const gdb_byte *writebuf)
 {
   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
   enum return_value_convention conv;
   ULONGEST valtype_len = TYPE_LENGTH (valtype);
 
@@ -2201,7 +2236,7 @@ m32c_return_value (struct gdbarch *gdbarch,
        {
          ULONGEST u;
          regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
-         store_unsigned_integer (readbuf, valtype_len, u);
+         store_unsigned_integer (readbuf, valtype_len, byte_order, u);
        }
       else
        {
@@ -2212,9 +2247,9 @@ m32c_return_value (struct gdbarch *gdbarch,
            = lookup_minimal_symbol ("mem0", NULL, NULL);
 
          if (! mem0)
-           error ("The return value is stored in memory at 'mem0', "
-                  "but GDB cannot find\n"
-                  "its address.");
+           error (_("The return value is stored in memory at 'mem0', "
+                    "but GDB cannot find\n"
+                    "its address."));
          read_memory (SYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
        }
     }
@@ -2231,7 +2266,8 @@ m32c_return_value (struct gdbarch *gdbarch,
       /* Anything that fits in r0 is returned there.  */
       if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
        {
-         ULONGEST u = extract_unsigned_integer (writebuf, valtype_len);
+         ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
+                                                byte_order);
          regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
        }
       else
@@ -2243,9 +2279,9 @@ m32c_return_value (struct gdbarch *gdbarch,
            = lookup_minimal_symbol ("mem0", NULL, NULL);
 
          if (! mem0)
-           error ("The return value is stored in memory at 'mem0', "
-                  "but GDB cannot find\n"
-                  " its address.");
+           error (_("The return value is stored in memory at 'mem0', "
+                    "but GDB cannot find\n"
+                    " its address."));
          write_memory (SYMBOL_VALUE_ADDRESS (mem0),
                         (char *) writebuf, valtype_len);
        }
@@ -2307,7 +2343,9 @@ m32c_return_value (struct gdbarch *gdbarch,
 static CORE_ADDR
 m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
 {
-  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
+  struct gdbarch *gdbarch = get_frame_arch (frame);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
 
   /* It would be nicer to simply look up the addresses of known
      trampolines once, and then compare stop_pc with them.  However,
@@ -2330,13 +2368,14 @@ m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
             m32c_jsri*16*.  */
          CORE_ADDR sp = get_frame_sp (get_current_frame ());
          CORE_ADDR target
-           = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes, 2);
+           = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
+                                           2, byte_order);
 
          /* What we have now is the address of a jump instruction.
             What we need is the destination of that jump.
-            The opcode is 1 byte, and the destination is the next 3 bytes.
-         */
-         target = read_memory_unsigned_integer (target + 1, 3);
+            The opcode is 1 byte, and the destination is the next 3 bytes.  */
+
+         target = read_memory_unsigned_integer (target + 1, 3, byte_order);
          return target;
        }
     }
@@ -2401,8 +2440,10 @@ m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
    programmer!  :)  */
 
 static void
-m32c_m16c_address_to_pointer (struct type *type, gdb_byte *buf, CORE_ADDR addr)
+m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
+                             struct type *type, gdb_byte *buf, CORE_ADDR addr)
 {
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
   enum type_code target_code;
   gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
              TYPE_CODE (type) == TYPE_CODE_REF);
@@ -2419,9 +2460,9 @@ m32c_m16c_address_to_pointer (struct type *type, gdb_byte *buf, CORE_ADDR addr)
       struct minimal_symbol *func_msym = lookup_minimal_symbol_by_pc (addr);
 
       if (! func_msym)
-        error ("Cannot convert code address %s to function pointer:\n"
-               "couldn't find a symbol at that address, to find trampoline.",
-               paddr_nz (addr));
+        error (_("Cannot convert code address %s to function pointer:\n"
+               "couldn't find a symbol at that address, to find trampoline."),
+               paddress (gdbarch, addr));
 
       func_name = SYMBOL_LINKAGE_NAME (func_msym);
       tramp_name = xmalloc (strlen (func_name) + 5);
@@ -2436,28 +2477,57 @@ m32c_m16c_address_to_pointer (struct type *type, gdb_byte *buf, CORE_ADDR addr)
       xfree (tramp_name);
 
       if (! tramp_msym)
-        error ("Cannot convert code address %s to function pointer:\n"
-               "couldn't find trampoline named '%s.plt'.",
-               paddr_nz (addr), func_name);
+       {
+         CORE_ADDR ptrval;
+
+         /* No PLT entry found.  Mask off the upper bits of the address
+            to make a pointer.  As noted in the warning to the user
+            below, this value might be useful if converted back into
+            an address by GDB, but will otherwise, almost certainly,
+            be garbage.
+            
+            Using this masked result does seem to be useful
+            in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
+            PASSes.  These results appear to be correct as well.
+            
+            We print a warning here so that the user can make a
+            determination about whether the result is useful or not.  */
+         ptrval = addr & 0xffff;
+
+         warning (_("Cannot convert code address %s to function pointer:\n"
+                  "couldn't find trampoline named '%s.plt'.\n"
+                  "Returning pointer value %s instead; this may produce\n"
+                  "a useful result if converted back into an address by GDB,\n"
+                  "but will most likely not be useful otherwise.\n"),
+                  paddress (gdbarch, addr), func_name,
+                  paddress (gdbarch, ptrval));
+
+         addr = ptrval;
 
-      /* The trampoline's address is our pointer.  */
-      addr = SYMBOL_VALUE_ADDRESS (tramp_msym);
+       }
+      else
+       {
+         /* The trampoline's address is our pointer.  */
+         addr = SYMBOL_VALUE_ADDRESS (tramp_msym);
+       }
     }
 
-  store_unsigned_integer (buf, TYPE_LENGTH (type), addr);
+  store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
 }
 
 
 static CORE_ADDR
-m32c_m16c_pointer_to_address (struct type *type, const gdb_byte *buf)
+m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
+                             struct type *type, const gdb_byte *buf)
 {
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
   CORE_ADDR ptr;
   enum type_code target_code;
 
   gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
              TYPE_CODE (type) == TYPE_CODE_REF);
 
-  ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
+  ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
 
   target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
 
@@ -2494,6 +2564,18 @@ m32c_m16c_pointer_to_address (struct type *type, const gdb_byte *buf)
                 ptr = SYMBOL_VALUE_ADDRESS (func_msym);
             }
         }
+      else
+       {
+         int aspace;
+
+         for (aspace = 1; aspace <= 15; aspace++)
+           {
+             ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
+             
+             if (ptr_msym)
+               ptr |= aspace << 16;
+           }
+       }
     }
 
   return ptr;
@@ -2512,7 +2594,8 @@ m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
   
   if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
-    internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
+    internal_error (__FILE__, __LINE__,
+                   _("No virtual frame pointer available"));
 
   m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
   switch (p.kind)
@@ -2532,7 +2615,8 @@ m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
     }
   /* Sanity check */
   if (*frame_regnum > gdbarch_num_regs (gdbarch))
-    internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
+    internal_error (__FILE__, __LINE__,
+                   _("No virtual frame pointer available"));
 }
 
 \f
@@ -2584,8 +2668,7 @@ m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
      They may be in the dwarf2 cfi code in GDB, or they may be in
      the debug info emitted by the upstream toolchain.  I don't 
      know which, but I do know that the prologue analyzer works better.
-     MVS 04/13/06
-  */
+     MVS 04/13/06  */
   dwarf2_append_sniffers (arch);
 #endif
   frame_unwind_append_unwinder (arch, &m32c_unwind);
@@ -2603,7 +2686,7 @@ m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
   /* m32c function boundary addresses are not necessarily even.
      Therefore, the `vbit', which indicates a pointer to a virtual
      member function, is stored in the delta field, rather than as
-     the low bit of a function pointer address.  
+     the low bit of a function pointer address.
 
      In order to verify this, see the definition of
      TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
This page took 0.032604 seconds and 4 git commands to generate.