* acinclude.m4: Include ../config/tcl.m4 to pick up
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
index 43fb7997855416c0ecd6df53a3c464ac4f6c060f..08f926e91f637a0eeccbb08415e7ce37162957aa 100644 (file)
@@ -1,13 +1,14 @@
 /* Target-dependent code for GDB, the GNU debugger.
-   Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
-   1998, 1999, 2000, 2001, 2002, 2003
+
+   Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
+   1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
    Free Software Foundation, Inc.
 
    This file is part of GDB.
 
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
-   the Free Software Foundation; either version 2 of the License, or
+   the Free Software Foundation; either version 3 of the License, or
    (at your option) any later version.
 
    This program is distributed in the hope that it will be useful,
@@ -16,9 +17,7 @@
    GNU General Public License for more details.
 
    You should have received a copy of the GNU General Public License
-   along with this program; if not, write to the Free Software
-   Foundation, Inc., 59 Temple Place - Suite 330,
-   Boston, MA 02111-1307, USA.  */
+   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 #include "defs.h"
 #include "frame.h"
 #include "target.h"
 #include "gdbcore.h"
 #include "gdbcmd.h"
-#include "symfile.h"
 #include "objfiles.h"
 #include "arch-utils.h"
 #include "regcache.h"
+#include "regset.h"
 #include "doublest.h"
 #include "value.h"
 #include "parser-defs.h"
 #include "osabi.h"
+#include "infcall.h"
+#include "sim-regno.h"
+#include "gdb/sim-ppc.h"
+#include "reggroups.h"
+#include "dwarf2-frame.h"
+#include "target-descriptions.h"
+#include "user-regs.h"
 
 #include "libbfd.h"            /* for bfd_default_set_arch_mach */
 #include "coff/internal.h"     /* for libcoff.h */
@@ -43,6 +49,7 @@
 #include "libxcoff.h"
 
 #include "elf-bfd.h"
+#include "elf/ppc.h"
 
 #include "solib-svr4.h"
 #include "ppc-tdep.h"
 #include "gdb_assert.h"
 #include "dis-asm.h"
 
-/* If the kernel has to deliver a signal, it pushes a sigcontext
-   structure on the stack and then calls the signal handler, passing
-   the address of the sigcontext in an argument register. Usually
-   the signal handler doesn't save this register, so we have to
-   access the sigcontext structure via an offset from the signal handler
-   frame.
-   The following constants were determined by experimentation on AIX 3.2.  */
-#define SIG_FRAME_PC_OFFSET 96
-#define SIG_FRAME_LR_OFFSET 108
-#define SIG_FRAME_FP_OFFSET 284
+#include "trad-frame.h"
+#include "frame-unwind.h"
+#include "frame-base.h"
+
+#include "features/rs6000/powerpc-32.c"
+#include "features/rs6000/powerpc-altivec32.c"
+#include "features/rs6000/powerpc-403.c"
+#include "features/rs6000/powerpc-403gc.c"
+#include "features/rs6000/powerpc-505.c"
+#include "features/rs6000/powerpc-601.c"
+#include "features/rs6000/powerpc-602.c"
+#include "features/rs6000/powerpc-603.c"
+#include "features/rs6000/powerpc-604.c"
+#include "features/rs6000/powerpc-64.c"
+#include "features/rs6000/powerpc-altivec64.c"
+#include "features/rs6000/powerpc-7400.c"
+#include "features/rs6000/powerpc-750.c"
+#include "features/rs6000/powerpc-860.c"
+#include "features/rs6000/powerpc-e500.c"
+#include "features/rs6000/rs6000.c"
+
+/* Determine if regnum is an SPE pseudo-register.  */
+#define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
+    && (regnum) >= (tdep)->ppc_ev0_regnum \
+    && (regnum) < (tdep)->ppc_ev0_regnum + 32)
+
+/* Determine if regnum is a decimal float pseudo-register.  */
+#define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
+    && (regnum) >= (tdep)->ppc_dl0_regnum \
+    && (regnum) < (tdep)->ppc_dl0_regnum + 16)
+
+/* The list of available "set powerpc ..." and "show powerpc ..."
+   commands.  */
+static struct cmd_list_element *setpowerpccmdlist = NULL;
+static struct cmd_list_element *showpowerpccmdlist = NULL;
+
+static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
+
+/* The vector ABI to use.  Keep this in sync with powerpc_vector_abi.  */
+static const char *powerpc_vector_strings[] =
+{
+  "auto",
+  "generic",
+  "altivec",
+  "spe",
+  NULL
+};
+
+/* A variable that can be configured by the user.  */
+static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
+static const char *powerpc_vector_abi_string = "auto";
 
 /* To be used by skip_prologue. */
 
@@ -84,466 +132,1128 @@ struct rs6000_framedata
     int vrsave_offset;          /* offset of saved vrsave register */
   };
 
-/* Description of a single register. */
-
-struct reg
-  {
-    char *name;                        /* name of register */
-    unsigned char sz32;                /* size on 32-bit arch, 0 if nonextant */
-    unsigned char sz64;                /* size on 64-bit arch, 0 if nonextant */
-    unsigned char fpr;         /* whether register is floating-point */
-    unsigned char pseudo;       /* whether register is pseudo */
-  };
-
-/* Breakpoint shadows for the single step instructions will be kept here. */
-
-static struct sstep_breaks
-  {
-    /* Address, or 0 if this is not in use.  */
-    CORE_ADDR address;
-    /* Shadow contents.  */
-    char data[4];
-  }
-stepBreaks[2];
-
-/* Hook for determining the TOC address when calling functions in the
-   inferior under AIX. The initialization code in rs6000-nat.c sets
-   this hook to point to find_toc_address.  */
-
-CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
-
-/* Hook to set the current architecture when starting a child process. 
-   rs6000-nat.c sets this. */
-
-void (*rs6000_set_host_arch_hook) (int) = NULL;
-
-/* Static function prototypes */
-
-static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
-                             CORE_ADDR safety);
-static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
-                                struct rs6000_framedata *);
-static void frame_get_saved_regs (struct frame_info * fi,
-                                 struct rs6000_framedata * fdatap);
-static CORE_ADDR frame_initial_stack_address (struct frame_info *);
 
 /* Is REGNO an AltiVec register?  Return 1 if so, 0 otherwise.  */
 int
-altivec_register_p (int regno)
+altivec_register_p (struct gdbarch *gdbarch, int regno)
 {
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
   if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
     return 0;
   else
     return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
 }
 
-/* Use the architectures FP registers?  */
+
+/* Return true if REGNO is an SPE register, false otherwise.  */
 int
-ppc_floating_point_unit_p (struct gdbarch *gdbarch)
+spe_register_p (struct gdbarch *gdbarch, int regno)
 {
-  const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
-  if (info->arch == bfd_arch_powerpc)
-    return (info->mach != bfd_mach_ppc_e500);
-  if (info->arch == bfd_arch_rs6000)
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  
+  /* Is it a reference to EV0 -- EV31, and do we have those?  */
+  if (IS_SPE_PSEUDOREG (tdep, regno))
+    return 1;
+
+  /* Is it a reference to one of the raw upper GPR halves?  */
+  if (tdep->ppc_ev0_upper_regnum >= 0
+      && tdep->ppc_ev0_upper_regnum <= regno
+      && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
+    return 1;
+
+  /* Is it a reference to the 64-bit accumulator, and do we have that?  */
+  if (tdep->ppc_acc_regnum >= 0
+      && tdep->ppc_acc_regnum == regno)
+    return 1;
+
+  /* Is it a reference to the SPE floating-point status and control register,
+     and do we have that?  */
+  if (tdep->ppc_spefscr_regnum >= 0
+      && tdep->ppc_spefscr_regnum == regno)
     return 1;
+
   return 0;
 }
 
-/* Read a LEN-byte address from debugged memory address MEMADDR. */
 
-static CORE_ADDR
-read_memory_addr (CORE_ADDR memaddr, int len)
+/* Return non-zero if the architecture described by GDBARCH has
+   floating-point registers (f0 --- f31 and fpscr).  */
+int
+ppc_floating_point_unit_p (struct gdbarch *gdbarch)
 {
-  return read_memory_unsigned_integer (memaddr, len);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  return (tdep->ppc_fp0_regnum >= 0
+          && tdep->ppc_fpscr_regnum >= 0);
 }
 
-static CORE_ADDR
-rs6000_skip_prologue (CORE_ADDR pc)
+/* Return non-zero if the architecture described by GDBARCH has
+   Altivec registers (vr0 --- vr31, vrsave and vscr).  */
+int
+ppc_altivec_support_p (struct gdbarch *gdbarch)
 {
-  struct rs6000_framedata frame;
-  pc = skip_prologue (pc, 0, &frame);
-  return pc;
-}
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
+  return (tdep->ppc_vr0_regnum >= 0
+          && tdep->ppc_vrsave_regnum >= 0);
+}
 
-/* Fill in fi->saved_regs */
+/* Check that TABLE[GDB_REGNO] is not already initialized, and then
+   set it to SIM_REGNO.
 
-struct frame_extra_info
+   This is a helper function for init_sim_regno_table, constructing
+   the table mapping GDB register numbers to sim register numbers; we
+   initialize every element in that table to -1 before we start
+   filling it in.  */
+static void
+set_sim_regno (int *table, int gdb_regno, int sim_regno)
 {
-  /* Functions calling alloca() change the value of the stack
-     pointer. We need to use initial stack pointer (which is saved in
-     r31 by gcc) in such cases. If a compiler emits traceback table,
-     then we should use the alloca register specified in traceback
-     table. FIXME. */
-  CORE_ADDR initial_sp;                /* initial stack pointer. */
-};
+  /* Make sure we don't try to assign any given GDB register a sim
+     register number more than once.  */
+  gdb_assert (table[gdb_regno] == -1);
+  table[gdb_regno] = sim_regno;
+}
 
-void
-rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
-{
-  struct frame_extra_info *extra_info =
-    frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
-  extra_info->initial_sp = 0;
-  if (get_next_frame (fi) != NULL
-      && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
-    /* We're in get_prev_frame */
-    /* and this is a special signal frame.  */
-    /* (fi->pc will be some low address in the kernel, */
-    /*  to which the signal handler returns).  */
-    deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
-}
-
-/* Put here the code to store, into a struct frame_saved_regs,
-   the addresses of the saved registers of frame described by FRAME_INFO.
-   This includes special registers such as pc and fp saved in special
-   ways in the stack frame.  sp is even more special:
-   the address we return for it IS the sp for the next frame.  */
-
-/* In this implementation for RS/6000, we do *not* save sp. I am
-   not sure if it will be needed. The following function takes care of gpr's
-   and fpr's only. */
 
-void
-rs6000_frame_init_saved_regs (struct frame_info *fi)
+/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
+   numbers to simulator register numbers, based on the values placed
+   in the ARCH->tdep->ppc_foo_regnum members.  */
+static void
+init_sim_regno_table (struct gdbarch *arch)
 {
-  frame_get_saved_regs (fi, NULL);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
+  int total_regs = gdbarch_num_regs (arch);
+  int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
+  int i;
+  static const char *const segment_regs[] = {
+    "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
+    "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
+  };
+
+  /* Presume that all registers not explicitly mentioned below are
+     unavailable from the sim.  */
+  for (i = 0; i < total_regs; i++)
+    sim_regno[i] = -1;
+
+  /* General-purpose registers.  */
+  for (i = 0; i < ppc_num_gprs; i++)
+    set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
+  
+  /* Floating-point registers.  */
+  if (tdep->ppc_fp0_regnum >= 0)
+    for (i = 0; i < ppc_num_fprs; i++)
+      set_sim_regno (sim_regno,
+                     tdep->ppc_fp0_regnum + i,
+                     sim_ppc_f0_regnum + i);
+  if (tdep->ppc_fpscr_regnum >= 0)
+    set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
+
+  set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
+  set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
+  set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
+
+  /* Segment registers.  */
+  for (i = 0; i < ppc_num_srs; i++)
+    {
+      int gdb_regno;
+
+      gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
+      if (gdb_regno >= 0)
+       set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
+    }
+
+  /* Altivec registers.  */
+  if (tdep->ppc_vr0_regnum >= 0)
+    {
+      for (i = 0; i < ppc_num_vrs; i++)
+        set_sim_regno (sim_regno,
+                       tdep->ppc_vr0_regnum + i,
+                       sim_ppc_vr0_regnum + i);
+
+      /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
+         we can treat this more like the other cases.  */
+      set_sim_regno (sim_regno,
+                     tdep->ppc_vr0_regnum + ppc_num_vrs,
+                     sim_ppc_vscr_regnum);
+    }
+  /* vsave is a special-purpose register, so the code below handles it.  */
+
+  /* SPE APU (E500) registers.  */
+  if (tdep->ppc_ev0_upper_regnum >= 0)
+    for (i = 0; i < ppc_num_gprs; i++)
+      set_sim_regno (sim_regno,
+                     tdep->ppc_ev0_upper_regnum + i,
+                     sim_ppc_rh0_regnum + i);
+  if (tdep->ppc_acc_regnum >= 0)
+    set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
+  /* spefscr is a special-purpose register, so the code below handles it.  */
+
+#ifdef WITH_SIM
+  /* Now handle all special-purpose registers.  Verify that they
+     haven't mistakenly been assigned numbers by any of the above
+     code.  */
+  for (i = 0; i < sim_ppc_num_sprs; i++)
+    {
+      const char *spr_name = sim_spr_register_name (i);
+      int gdb_regno = -1;
+
+      if (spr_name != NULL)
+       gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
+
+      if (gdb_regno != -1)
+       set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
+    }
+#endif
+
+  /* Drop the initialized array into place.  */
+  tdep->sim_regno = sim_regno;
 }
 
-static CORE_ADDR
-rs6000_frame_args_address (struct frame_info *fi)
+
+/* Given a GDB register number REG, return the corresponding SIM
+   register number.  */
+static int
+rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
 {
-  struct frame_extra_info *extra_info = get_frame_extra_info (fi);
-  if (extra_info->initial_sp != 0)
-    return extra_info->initial_sp;
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  int sim_regno;
+
+  if (tdep->sim_regno == NULL)
+    init_sim_regno_table (gdbarch);
+
+  gdb_assert (0 <= reg 
+             && reg <= gdbarch_num_regs (gdbarch)
+                       + gdbarch_num_pseudo_regs (gdbarch));
+  sim_regno = tdep->sim_regno[reg];
+
+  if (sim_regno >= 0)
+    return sim_regno;
   else
-    return frame_initial_stack_address (fi);
+    return LEGACY_SIM_REGNO_IGNORE;
 }
 
-/* Immediately after a function call, return the saved pc.
-   Can't go through the frames for this because on some machines
-   the new frame is not set up until the new function executes
-   some instructions.  */
+\f
+
+/* Register set support functions.  */
 
-static CORE_ADDR
-rs6000_saved_pc_after_call (struct frame_info *fi)
-{
-  return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
-}
+/* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
+   Write the register to REGCACHE.  */
 
-/* Get the ith function argument for the current function.  */
-static CORE_ADDR
-rs6000_fetch_pointer_argument (struct frame_info *frame, int argi, 
-                              struct type *type)
+void
+ppc_supply_reg (struct regcache *regcache, int regnum, 
+               const gdb_byte *regs, size_t offset, int regsize)
 {
-  CORE_ADDR addr;
-  frame_read_register (frame, 3 + argi, &addr);
-  return addr;
+  if (regnum != -1 && offset != -1)
+    {
+      if (regsize > 4)
+       {
+         struct gdbarch *gdbarch = get_regcache_arch (regcache);
+         int gdb_regsize = register_size (gdbarch, regnum);
+         if (gdb_regsize < regsize
+             && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
+           offset += regsize - gdb_regsize;
+       }
+      regcache_raw_supply (regcache, regnum, regs + offset);
+    }
 }
 
-/* Calculate the destination of a branch/jump.  Return -1 if not a branch.  */
+/* Read register REGNUM from REGCACHE and store to REGS + OFFSET
+   in a field REGSIZE wide.  Zero pad as necessary.  */
 
-static CORE_ADDR
-branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
+void
+ppc_collect_reg (const struct regcache *regcache, int regnum,
+                gdb_byte *regs, size_t offset, int regsize)
 {
-  CORE_ADDR dest;
-  int immediate;
-  int absolute;
-  int ext_op;
-
-  absolute = (int) ((instr >> 1) & 1);
-
-  switch (opcode)
+  if (regnum != -1 && offset != -1)
     {
-    case 18:
-      immediate = ((instr & ~3) << 6) >> 6;    /* br unconditional */
-      if (absolute)
-       dest = immediate;
-      else
-       dest = pc + immediate;
-      break;
+      if (regsize > 4)
+       {
+         struct gdbarch *gdbarch = get_regcache_arch (regcache);
+         int gdb_regsize = register_size (gdbarch, regnum);
+         if (gdb_regsize < regsize)
+           {
+             if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
+               {
+                 memset (regs + offset, 0, regsize - gdb_regsize);
+                 offset += regsize - gdb_regsize;
+               }
+             else
+               memset (regs + offset + regsize - gdb_regsize, 0,
+                       regsize - gdb_regsize);
+           }
+       }
+      regcache_raw_collect (regcache, regnum, regs + offset);
+    }
+}
+    
+static int
+ppc_greg_offset (struct gdbarch *gdbarch,
+                struct gdbarch_tdep *tdep,
+                const struct ppc_reg_offsets *offsets,
+                int regnum,
+                int *regsize)
+{
+  *regsize = offsets->gpr_size;
+  if (regnum >= tdep->ppc_gp0_regnum
+      && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
+    return (offsets->r0_offset
+           + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
 
-    case 16:
-      immediate = ((instr & ~3) << 16) >> 16;  /* br conditional */
-      if (absolute)
-       dest = immediate;
-      else
-       dest = pc + immediate;
-      break;
+  if (regnum == gdbarch_pc_regnum (gdbarch))
+    return offsets->pc_offset;
 
-    case 19:
-      ext_op = (instr >> 1) & 0x3ff;
+  if (regnum == tdep->ppc_ps_regnum)
+    return offsets->ps_offset;
 
-      if (ext_op == 16)                /* br conditional register */
-       {
-          dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
+  if (regnum == tdep->ppc_lr_regnum)
+    return offsets->lr_offset;
 
-         /* If we are about to return from a signal handler, dest is
-            something like 0x3c90.  The current frame is a signal handler
-            caller frame, upon completion of the sigreturn system call
-            execution will return to the saved PC in the frame.  */
-         if (dest < TEXT_SEGMENT_BASE)
-           {
-             struct frame_info *fi;
+  if (regnum == tdep->ppc_ctr_regnum)
+    return offsets->ctr_offset;
 
-             fi = get_current_frame ();
-             if (fi != NULL)
-               dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
-                                        gdbarch_tdep (current_gdbarch)->wordsize);
-           }
-       }
+  *regsize = offsets->xr_size;
+  if (regnum == tdep->ppc_cr_regnum)
+    return offsets->cr_offset;
 
-      else if (ext_op == 528)  /* br cond to count reg */
-       {
-          dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
+  if (regnum == tdep->ppc_xer_regnum)
+    return offsets->xer_offset;
 
-         /* If we are about to execute a system call, dest is something
-            like 0x22fc or 0x3b00.  Upon completion the system call
-            will return to the address in the link register.  */
-         if (dest < TEXT_SEGMENT_BASE)
-            dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
-       }
-      else
-       return -1;
-      break;
+  if (regnum == tdep->ppc_mq_regnum)
+    return offsets->mq_offset;
 
-    default:
-      return -1;
-    }
-  return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
+  return -1;
 }
 
+static int
+ppc_fpreg_offset (struct gdbarch_tdep *tdep,
+                 const struct ppc_reg_offsets *offsets,
+                 int regnum)
+{
+  if (regnum >= tdep->ppc_fp0_regnum
+      && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
+    return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
 
-/* Sequence of bytes for breakpoint instruction.  */
+  if (regnum == tdep->ppc_fpscr_regnum)
+    return offsets->fpscr_offset;
 
-const static unsigned char *
-rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
-{
-  static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
-  static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
-  *bp_size = 4;
-  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
-    return big_breakpoint;
-  else
-    return little_breakpoint;
+  return -1;
 }
 
+static int
+ppc_vrreg_offset (struct gdbarch_tdep *tdep,
+                 const struct ppc_reg_offsets *offsets,
+                 int regnum)
+{
+  if (regnum >= tdep->ppc_vr0_regnum
+      && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
+    return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
+
+  if (regnum == tdep->ppc_vrsave_regnum - 1)
+    return offsets->vscr_offset;
+
+  if (regnum == tdep->ppc_vrsave_regnum)
+    return offsets->vrsave_offset;
+
+  return -1;
+}
 
-/* AIX does not support PT_STEP. Simulate it. */
+/* Supply register REGNUM in the general-purpose register set REGSET
+   from the buffer specified by GREGS and LEN to register cache
+   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
 
 void
-rs6000_software_single_step (enum target_signal signal,
-                            int insert_breakpoints_p)
-{
-  CORE_ADDR dummy;
-  int breakp_sz;
-  const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
-  int ii, insn;
-  CORE_ADDR loc;
-  CORE_ADDR breaks[2];
-  int opcode;
-
-  if (insert_breakpoints_p)
-    {
+ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
+                   int regnum, const void *gregs, size_t len)
+{
+  struct gdbarch *gdbarch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  const struct ppc_reg_offsets *offsets = regset->descr;
+  size_t offset;
+  int regsize;
 
-      loc = read_pc ();
+  if (regnum == -1)
+    {
+      int i;
+      int gpr_size = offsets->gpr_size;
+
+      for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
+          i < tdep->ppc_gp0_regnum + ppc_num_gprs;
+          i++, offset += gpr_size)
+       ppc_supply_reg (regcache, i, gregs, offset, gpr_size);
+
+      ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
+                     gregs, offsets->pc_offset, gpr_size);
+      ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
+                     gregs, offsets->ps_offset, gpr_size);
+      ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
+                     gregs, offsets->lr_offset, gpr_size);
+      ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
+                     gregs, offsets->ctr_offset, gpr_size);
+      ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
+                     gregs, offsets->cr_offset, offsets->xr_size);
+      ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
+                     gregs, offsets->xer_offset, offsets->xr_size);
+      ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
+                     gregs, offsets->mq_offset, offsets->xr_size);
+      return;
+    }
 
-      insn = read_memory_integer (loc, 4);
+  offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
+  ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
+}
 
-      breaks[0] = loc + breakp_sz;
-      opcode = insn >> 26;
-      breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
+/* Supply register REGNUM in the floating-point register set REGSET
+   from the buffer specified by FPREGS and LEN to register cache
+   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
 
-      /* Don't put two breakpoints on the same address. */
-      if (breaks[1] == breaks[0])
-       breaks[1] = -1;
+void
+ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
+                    int regnum, const void *fpregs, size_t len)
+{
+  struct gdbarch *gdbarch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep;
+  const struct ppc_reg_offsets *offsets;
+  size_t offset;
 
-      stepBreaks[1].address = 0;
+  if (!ppc_floating_point_unit_p (gdbarch))
+    return;
 
-      for (ii = 0; ii < 2; ++ii)
-       {
+  tdep = gdbarch_tdep (gdbarch);
+  offsets = regset->descr;
+  if (regnum == -1)
+    {
+      int i;
 
-         /* ignore invalid breakpoint. */
-         if (breaks[ii] == -1)
-           continue;
-         target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
-         stepBreaks[ii].address = breaks[ii];
-       }
+      for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
+          i < tdep->ppc_fp0_regnum + ppc_num_fprs;
+          i++, offset += 8)
+       ppc_supply_reg (regcache, i, fpregs, offset, 8);
 
+      ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
+                     fpregs, offsets->fpscr_offset, offsets->fpscr_size);
+      return;
     }
-  else
+
+  offset = ppc_fpreg_offset (tdep, offsets, regnum);
+  ppc_supply_reg (regcache, regnum, fpregs, offset,
+                 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
+}
+
+/* Supply register REGNUM in the Altivec register set REGSET
+   from the buffer specified by VRREGS and LEN to register cache
+   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
+
+void
+ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
+                    int regnum, const void *vrregs, size_t len)
+{
+  struct gdbarch *gdbarch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep;
+  const struct ppc_reg_offsets *offsets;
+  size_t offset;
+
+  if (!ppc_altivec_support_p (gdbarch))
+    return;
+
+  tdep = gdbarch_tdep (gdbarch);
+  offsets = regset->descr;
+  if (regnum == -1)
     {
+      int i;
+
+      for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
+          i < tdep->ppc_vr0_regnum + ppc_num_vrs;
+          i++, offset += 16)
+        ppc_supply_reg (regcache, i, vrregs, offset, 16);
+
+      ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
+                     vrregs, offsets->vscr_offset, 4);
 
-      /* remove step breakpoints. */
-      for (ii = 0; ii < 2; ++ii)
-       if (stepBreaks[ii].address != 0)
-         target_remove_breakpoint (stepBreaks[ii].address,
-                                   stepBreaks[ii].data);
+      ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
+                     vrregs, offsets->vrsave_offset, 4);
+      return;
     }
-  errno = 0;                   /* FIXME, don't ignore errors! */
-  /* What errors?  {read,write}_memory call error().  */
-}
 
+  offset = ppc_vrreg_offset (tdep, offsets, regnum);
+  if (regnum != tdep->ppc_vrsave_regnum
+      && regnum != tdep->ppc_vrsave_regnum - 1)
+    ppc_supply_reg (regcache, regnum, vrregs, offset, 16);
+  else
+    ppc_supply_reg (regcache, regnum,
+                   vrregs, offset, 4);
+}
 
-/* return pc value after skipping a function prologue and also return
-   information about a function frame.
+/* Collect register REGNUM in the general-purpose register set
+   REGSET from register cache REGCACHE into the buffer specified by
+   GREGS and LEN.  If REGNUM is -1, do this for all registers in
+   REGSET.  */
 
-   in struct rs6000_framedata fdata:
-   - frameless is TRUE, if function does not have a frame.
-   - nosavedpc is TRUE, if function does not save %pc value in its frame.
-   - offset is the initial size of this stack frame --- the amount by
-   which we decrement the sp to allocate the frame.
-   - saved_gpr is the number of the first saved gpr.
-   - saved_fpr is the number of the first saved fpr.
-   - saved_vr is the number of the first saved vr.
-   - saved_ev is the number of the first saved ev.
-   - alloca_reg is the number of the register used for alloca() handling.
-   Otherwise -1.
-   - gpr_offset is the offset of the first saved gpr from the previous frame.
-   - fpr_offset is the offset of the first saved fpr from the previous frame.
-   - vr_offset is the offset of the first saved vr from the previous frame.
-   - ev_offset is the offset of the first saved ev from the previous frame.
-   - lr_offset is the offset of the saved lr
-   - cr_offset is the offset of the saved cr
-   - vrsave_offset is the offset of the saved vrsave register
- */
+void
+ppc_collect_gregset (const struct regset *regset,
+                    const struct regcache *regcache,
+                    int regnum, void *gregs, size_t len)
+{
+  struct gdbarch *gdbarch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  const struct ppc_reg_offsets *offsets = regset->descr;
+  size_t offset;
+  int regsize;
 
-#define SIGNED_SHORT(x)                                                \
-  ((sizeof (short) == 2)                                               \
-   ? ((int)(short)(x))                                                 \
-   : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
+  if (regnum == -1)
+    {
+      int i;
+      int gpr_size = offsets->gpr_size;
+
+      for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
+          i < tdep->ppc_gp0_regnum + ppc_num_gprs;
+          i++, offset += gpr_size)
+       ppc_collect_reg (regcache, i, gregs, offset, gpr_size);
+
+      ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
+                      gregs, offsets->pc_offset, gpr_size);
+      ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
+                      gregs, offsets->ps_offset, gpr_size);
+      ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
+                      gregs, offsets->lr_offset, gpr_size);
+      ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
+                      gregs, offsets->ctr_offset, gpr_size);
+      ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
+                      gregs, offsets->cr_offset, offsets->xr_size);
+      ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
+                      gregs, offsets->xer_offset, offsets->xr_size);
+      ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
+                      gregs, offsets->mq_offset, offsets->xr_size);
+      return;
+    }
 
-#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
+  offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
+  ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
+}
 
-/* Limit the number of skipped non-prologue instructions, as the examining
-   of the prologue is expensive.  */
-static int max_skip_non_prologue_insns = 10;
+/* Collect register REGNUM in the floating-point register set
+   REGSET from register cache REGCACHE into the buffer specified by
+   FPREGS and LEN.  If REGNUM is -1, do this for all registers in
+   REGSET.  */
 
-/* Given PC representing the starting address of a function, and
-   LIM_PC which is the (sloppy) limit to which to scan when looking
-   for a prologue, attempt to further refine this limit by using
-   the line data in the symbol table.  If successful, a better guess
-   on where the prologue ends is returned, otherwise the previous
-   value of lim_pc is returned.  */
-static CORE_ADDR
-refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
+void
+ppc_collect_fpregset (const struct regset *regset,
+                     const struct regcache *regcache,
+                     int regnum, void *fpregs, size_t len)
 {
-  struct symtab_and_line prologue_sal;
+  struct gdbarch *gdbarch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep;
+  const struct ppc_reg_offsets *offsets;
+  size_t offset;
+
+  if (!ppc_floating_point_unit_p (gdbarch))
+    return;
 
-  prologue_sal = find_pc_line (pc, 0);
-  if (prologue_sal.line != 0)
+  tdep = gdbarch_tdep (gdbarch);
+  offsets = regset->descr;
+  if (regnum == -1)
     {
       int i;
-      CORE_ADDR addr = prologue_sal.end;
-
-      /* Handle the case in which compiler's optimizer/scheduler
-         has moved instructions into the prologue.  We scan ahead
-        in the function looking for address ranges whose corresponding
-        line number is less than or equal to the first one that we
-        found for the function.  (It can be less than when the
-        scheduler puts a body instruction before the first prologue
-        instruction.)  */
-      for (i = 2 * max_skip_non_prologue_insns; 
-           i > 0 && (lim_pc == 0 || addr < lim_pc);
-          i--)
-        {
-         struct symtab_and_line sal;
 
-         sal = find_pc_line (addr, 0);
-         if (sal.line == 0)
-           break;
-         if (sal.line <= prologue_sal.line 
-             && sal.symtab == prologue_sal.symtab)
-           {
-             prologue_sal = sal;
-           }
-         addr = sal.end;
-       }
+      for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
+          i < tdep->ppc_fp0_regnum + ppc_num_fprs;
+          i++, offset += 8)
+       ppc_collect_reg (regcache, i, fpregs, offset, 8);
 
-      if (lim_pc == 0 || prologue_sal.end < lim_pc)
-       lim_pc = prologue_sal.end;
+      ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
+                      fpregs, offsets->fpscr_offset, offsets->fpscr_size);
+      return;
     }
-  return lim_pc;
+
+  offset = ppc_fpreg_offset (tdep, offsets, regnum);
+  ppc_collect_reg (regcache, regnum, fpregs, offset,
+                  regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
 }
 
+/* Collect register REGNUM in the Altivec register set
+   REGSET from register cache REGCACHE into the buffer specified by
+   VRREGS and LEN.  If REGNUM is -1, do this for all registers in
+   REGSET.  */
 
-static CORE_ADDR
-skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
+void
+ppc_collect_vrregset (const struct regset *regset,
+                     const struct regcache *regcache,
+                     int regnum, void *vrregs, size_t len)
 {
-  CORE_ADDR orig_pc = pc;
-  CORE_ADDR last_prologue_pc = pc;
-  CORE_ADDR li_found_pc = 0;
-  char buf[4];
-  unsigned long op;
-  long offset = 0;
-  long vr_saved_offset = 0;
-  int lr_reg = -1;
-  int cr_reg = -1;
-  int vr_reg = -1;
-  int ev_reg = -1;
-  long ev_offset = 0;
-  int vrsave_reg = -1;
-  int reg;
-  int framep = 0;
-  int minimal_toc_loaded = 0;
-  int prev_insn_was_prologue_insn = 1;
-  int num_skip_non_prologue_insns = 0;
-  const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
-  
-  /* Attempt to find the end of the prologue when no limit is specified.
-     Note that refine_prologue_limit() has been written so that it may
-     be used to "refine" the limits of non-zero PC values too, but this
-     is only safe if we 1) trust the line information provided by the
-     compiler and 2) iterate enough to actually find the end of the
-     prologue.  
-     
-     It may become a good idea at some point (for both performance and
-     accuracy) to unconditionally call refine_prologue_limit().  But,
-     until we can make a clear determination that this is beneficial,
-     we'll play it safe and only use it to obtain a limit when none
-     has been specified.  */
-  if (lim_pc == 0)
-    lim_pc = refine_prologue_limit (pc, lim_pc);
+  struct gdbarch *gdbarch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep;
+  const struct ppc_reg_offsets *offsets;
+  size_t offset;
 
-  memset (fdata, 0, sizeof (struct rs6000_framedata));
-  fdata->saved_gpr = -1;
-  fdata->saved_fpr = -1;
-  fdata->saved_vr = -1;
-  fdata->saved_ev = -1;
-  fdata->alloca_reg = -1;
-  fdata->frameless = 1;
-  fdata->nosavedpc = 1;
+  if (!ppc_altivec_support_p (gdbarch))
+    return;
 
-  for (;; pc += 4)
+  tdep = gdbarch_tdep (gdbarch);
+  offsets = regset->descr;
+  if (regnum == -1)
     {
-      /* Sometimes it isn't clear if an instruction is a prologue
-         instruction or not.  When we encounter one of these ambiguous
-        cases, we'll set prev_insn_was_prologue_insn to 0 (false).
-        Otherwise, we'll assume that it really is a prologue instruction. */
-      if (prev_insn_was_prologue_insn)
-       last_prologue_pc = pc;
+      int i;
 
-      /* Stop scanning if we've hit the limit.  */
-      if (lim_pc != 0 && pc >= lim_pc)
-       break;
+      for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
+          i < tdep->ppc_vr0_regnum + ppc_num_vrs;
+          i++, offset += 16)
+       ppc_collect_reg (regcache, i, vrregs, offset, 16);
 
-      prev_insn_was_prologue_insn = 1;
+      ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
+                      vrregs, offsets->vscr_offset, 4);
 
-      /* Fetch the instruction and convert it to an integer.  */
-      if (target_read_memory (pc, buf, 4))
-       break;
-      op = extract_signed_integer (buf, 4);
+      ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
+                      vrregs, offsets->vrsave_offset, 4);
+      return;
+    }
 
-      if ((op & 0xfc1fffff) == 0x7c0802a6)
-       {                       /* mflr Rx */
-         lr_reg = (op & 0x03e00000);
-         continue;
+  offset = ppc_vrreg_offset (tdep, offsets, regnum);
+  if (regnum != tdep->ppc_vrsave_regnum
+      && regnum != tdep->ppc_vrsave_regnum - 1)
+    ppc_collect_reg (regcache, regnum, vrregs, offset, 16);
+  else
+    ppc_collect_reg (regcache, regnum,
+                   vrregs, offset, 4);
+}
+\f
+
+static int
+insn_changes_sp_or_jumps (unsigned long insn)
+{
+  int opcode = (insn >> 26) & 0x03f;
+  int sd = (insn >> 21) & 0x01f;
+  int a = (insn >> 16) & 0x01f;
+  int subcode = (insn >> 1) & 0x3ff;
+
+  /* Changes the stack pointer.  */
+
+  /* NOTE: There are many ways to change the value of a given register.
+           The ways below are those used when the register is R1, the SP,
+           in a funtion's epilogue.  */
+
+  if (opcode == 31 && subcode == 444 && a == 1)
+    return 1;  /* mr R1,Rn */
+  if (opcode == 14 && sd == 1)
+    return 1;  /* addi R1,Rn,simm */
+  if (opcode == 58 && sd == 1)
+    return 1;  /* ld R1,ds(Rn) */
+
+  /* Transfers control.  */
+
+  if (opcode == 18)
+    return 1;  /* b */
+  if (opcode == 16)
+    return 1;  /* bc */
+  if (opcode == 19 && subcode == 16)
+    return 1;  /* bclr */
+  if (opcode == 19 && subcode == 528)
+    return 1;  /* bcctr */
+
+  return 0;
+}
+
+/* Return true if we are in the function's epilogue, i.e. after the
+   instruction that destroyed the function's stack frame.
+
+   1) scan forward from the point of execution:
+       a) If you find an instruction that modifies the stack pointer
+          or transfers control (except a return), execution is not in
+          an epilogue, return.
+       b) Stop scanning if you find a return instruction or reach the
+          end of the function or reach the hard limit for the size of
+          an epilogue.
+   2) scan backward from the point of execution:
+        a) If you find an instruction that modifies the stack pointer,
+            execution *is* in an epilogue, return.
+        b) Stop scanning if you reach an instruction that transfers
+           control or the beginning of the function or reach the hard
+           limit for the size of an epilogue.  */
+
+static int
+rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
+{
+  bfd_byte insn_buf[PPC_INSN_SIZE];
+  CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
+  unsigned long insn;
+  struct frame_info *curfrm;
+
+  /* Find the search limits based on function boundaries and hard limit.  */
+
+  if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
+    return 0;
+
+  epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
+  if (epilogue_start < func_start) epilogue_start = func_start;
+
+  epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
+  if (epilogue_end > func_end) epilogue_end = func_end;
+
+  curfrm = get_current_frame ();
+
+  /* Scan forward until next 'blr'.  */
+
+  for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
+    {
+      if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
+        return 0;
+      insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
+      if (insn == 0x4e800020)
+        break;
+      if (insn_changes_sp_or_jumps (insn))
+        return 0;
+    }
+
+  /* Scan backward until adjustment to stack pointer (R1).  */
+
+  for (scan_pc = pc - PPC_INSN_SIZE;
+       scan_pc >= epilogue_start;
+       scan_pc -= PPC_INSN_SIZE)
+    {
+      if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
+        return 0;
+      insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
+      if (insn_changes_sp_or_jumps (insn))
+        return 1;
+    }
+
+  return 0;
+}
+
+/* Get the ith function argument for the current function.  */
+static CORE_ADDR
+rs6000_fetch_pointer_argument (struct frame_info *frame, int argi, 
+                              struct type *type)
+{
+  return get_frame_register_unsigned (frame, 3 + argi);
+}
+
+/* Sequence of bytes for breakpoint instruction.  */
+
+const static unsigned char *
+rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
+                          int *bp_size)
+{
+  static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
+  static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
+  *bp_size = 4;
+  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
+    return big_breakpoint;
+  else
+    return little_breakpoint;
+}
+
+/* Instruction masks for displaced stepping.  */
+#define BRANCH_MASK 0xfc000000
+#define BP_MASK 0xFC0007FE
+#define B_INSN 0x48000000
+#define BC_INSN 0x40000000
+#define BXL_INSN 0x4c000000
+#define BP_INSN 0x7C000008
+
+/* Fix up the state of registers and memory after having single-stepped
+   a displaced instruction.  */
+void
+ppc_displaced_step_fixup (struct gdbarch *gdbarch,
+                          struct displaced_step_closure *closure,
+                          CORE_ADDR from, CORE_ADDR to,
+                          struct regcache *regs)
+{
+  /* Since we use simple_displaced_step_copy_insn, our closure is a
+     copy of the instruction.  */
+  ULONGEST insn  = extract_unsigned_integer ((gdb_byte *) closure,
+                                             PPC_INSN_SIZE);
+  ULONGEST opcode = 0;
+  /* Offset for non PC-relative instructions.  */
+  LONGEST offset = PPC_INSN_SIZE;
+
+  opcode = insn & BRANCH_MASK;
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog,
+                       "displaced: (ppc) fixup (0x%s, 0x%s)\n",
+                       paddr_nz (from), paddr_nz (to));
+
+
+  /* Handle PC-relative branch instructions.  */
+  if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
+    {
+      ULONGEST current_pc;
+
+      /* Read the current PC value after the instruction has been executed
+        in a displaced location.  Calculate the offset to be applied to the
+        original PC value before the displaced stepping.  */
+      regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
+                                     &current_pc);
+      offset = current_pc - to;
+
+      if (opcode != BXL_INSN)
+       {
+         /* Check for AA bit indicating whether this is an absolute
+            addressing or PC-relative (1: absolute, 0: relative).  */
+         if (!(insn & 0x2))
+           {
+             /* PC-relative addressing is being used in the branch.  */
+             if (debug_displaced)
+               fprintf_unfiltered
+                 (gdb_stdlog,
+                  "displaced: (ppc) branch instruction: 0x%s\n"
+                  "displaced: (ppc) adjusted PC from 0x%s to 0x%s\n",
+                  paddr_nz (insn), paddr_nz (current_pc),
+                  paddr_nz (from + offset));
+
+             regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
+                                             from + offset);
+           }
+       }
+      else
+       {
+         /* If we're here, it means we have a branch to LR or CTR.  If the
+            branch was taken, the offset is probably greater than 4 (the next
+            instruction), so it's safe to assume that an offset of 4 means we
+            did not take the branch.  */
+         if (offset == PPC_INSN_SIZE)
+           regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
+                                           from + PPC_INSN_SIZE);
+       }
+
+      /* Check for LK bit indicating whether we should set the link
+        register to point to the next instruction
+        (1: Set, 0: Don't set).  */
+      if (insn & 0x1)
+       {
+         /* Link register needs to be set to the next instruction's PC.  */
+         regcache_cooked_write_unsigned (regs,
+                                         gdbarch_tdep (gdbarch)->ppc_lr_regnum,
+                                         from + PPC_INSN_SIZE);
+         if (debug_displaced)
+               fprintf_unfiltered (gdb_stdlog,
+                                   "displaced: (ppc) adjusted LR to 0x%s\n",
+                                   paddr_nz (from + PPC_INSN_SIZE));
+
+       }
+    }
+  /* Check for breakpoints in the inferior.  If we've found one, place the PC
+     right at the breakpoint instruction.  */
+  else if ((insn & BP_MASK) == BP_INSN)
+    regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
+  else
+  /* Handle any other instructions that do not fit in the categories above.  */
+    regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
+                                   from + offset);
+}
+
+/* Instruction masks used during single-stepping of atomic sequences.  */
+#define LWARX_MASK 0xfc0007fe
+#define LWARX_INSTRUCTION 0x7c000028
+#define LDARX_INSTRUCTION 0x7c0000A8
+#define STWCX_MASK 0xfc0007ff
+#define STWCX_INSTRUCTION 0x7c00012d
+#define STDCX_INSTRUCTION 0x7c0001ad
+
+/* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
+   instruction and ending with a STWCX/STDCX instruction.  If such a sequence
+   is found, attempt to step through it.  A breakpoint is placed at the end of 
+   the sequence.  */
+
+int 
+ppc_deal_with_atomic_sequence (struct frame_info *frame)
+{
+  CORE_ADDR pc = get_frame_pc (frame);
+  CORE_ADDR breaks[2] = {-1, -1};
+  CORE_ADDR loc = pc;
+  CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence.  */
+  int insn = read_memory_integer (loc, PPC_INSN_SIZE);
+  int insn_count;
+  int index;
+  int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed).  */  
+  const int atomic_sequence_length = 16; /* Instruction sequence length.  */
+  int opcode; /* Branch instruction's OPcode.  */
+  int bc_insn_count = 0; /* Conditional branch instruction count.  */
+
+  /* Assume all atomic sequences start with a lwarx/ldarx instruction.  */
+  if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
+      && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
+    return 0;
+
+  /* Assume that no atomic sequence is longer than "atomic_sequence_length" 
+     instructions.  */
+  for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
+    {
+      loc += PPC_INSN_SIZE;
+      insn = read_memory_integer (loc, PPC_INSN_SIZE);
+
+      /* Assume that there is at most one conditional branch in the atomic
+         sequence.  If a conditional branch is found, put a breakpoint in 
+         its destination address.  */
+      if ((insn & BRANCH_MASK) == BC_INSN)
+        {
+          int immediate = ((insn & ~3) << 16) >> 16;
+          int absolute = ((insn >> 1) & 1);
+
+          if (bc_insn_count >= 1)
+            return 0; /* More than one conditional branch found, fallback 
+                         to the standard single-step code.  */
+         if (absolute)
+           breaks[1] = immediate;
+         else
+           breaks[1] = pc + immediate;
+
+         bc_insn_count++;
+         last_breakpoint++;
+        }
+
+      if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
+          || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
+        break;
+    }
+
+  /* Assume that the atomic sequence ends with a stwcx/stdcx instruction.  */
+  if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
+      && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
+    return 0;
+
+  closing_insn = loc;
+  loc += PPC_INSN_SIZE;
+  insn = read_memory_integer (loc, PPC_INSN_SIZE);
+
+  /* Insert a breakpoint right after the end of the atomic sequence.  */
+  breaks[0] = loc;
+
+  /* Check for duplicated breakpoints.  Check also for a breakpoint
+     placed (branch instruction's destination) at the stwcx/stdcx 
+     instruction, this resets the reservation and take us back to the 
+     lwarx/ldarx instruction at the beginning of the atomic sequence.  */
+  if (last_breakpoint && ((breaks[1] == breaks[0]) 
+      || (breaks[1] == closing_insn)))
+    last_breakpoint = 0;
+
+  /* Effectively inserts the breakpoints.  */
+  for (index = 0; index <= last_breakpoint; index++)
+    insert_single_step_breakpoint (breaks[index]);
+
+  return 1;
+}
+
+
+#define SIGNED_SHORT(x)                                                \
+  ((sizeof (short) == 2)                                               \
+   ? ((int)(short)(x))                                                 \
+   : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
+
+#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
+
+/* Limit the number of skipped non-prologue instructions, as the examining
+   of the prologue is expensive.  */
+static int max_skip_non_prologue_insns = 10;
+
+/* Return nonzero if the given instruction OP can be part of the prologue
+   of a function and saves a parameter on the stack.  FRAMEP should be
+   set if one of the previous instructions in the function has set the
+   Frame Pointer.  */
+
+static int
+store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
+{
+  /* Move parameters from argument registers to temporary register.  */
+  if ((op & 0xfc0007fe) == 0x7c000378)         /* mr(.)  Rx,Ry */
+    {
+      /* Rx must be scratch register r0.  */
+      const int rx_regno = (op >> 16) & 31;
+      /* Ry: Only r3 - r10 are used for parameter passing.  */
+      const int ry_regno = GET_SRC_REG (op);
+
+      if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
+        {
+          *r0_contains_arg = 1;
+          return 1;
+        }
+      else
+        return 0;
+    }
+
+  /* Save a General Purpose Register on stack.  */
+
+  if ((op & 0xfc1f0003) == 0xf8010000 ||       /* std  Rx,NUM(r1) */
+      (op & 0xfc1f0000) == 0xd8010000)         /* stfd Rx,NUM(r1) */
+    {
+      /* Rx: Only r3 - r10 are used for parameter passing.  */
+      const int rx_regno = GET_SRC_REG (op);
+
+      return (rx_regno >= 3 && rx_regno <= 10);
+    }
+           
+  /* Save a General Purpose Register on stack via the Frame Pointer.  */
+
+  if (framep &&
+      ((op & 0xfc1f0000) == 0x901f0000 ||     /* st rx,NUM(r31) */
+       (op & 0xfc1f0000) == 0x981f0000 ||     /* stb Rx,NUM(r31) */
+       (op & 0xfc1f0000) == 0xd81f0000))      /* stfd Rx,NUM(r31) */
+    {
+      /* Rx: Usually, only r3 - r10 are used for parameter passing.
+         However, the compiler sometimes uses r0 to hold an argument.  */
+      const int rx_regno = GET_SRC_REG (op);
+
+      return ((rx_regno >= 3 && rx_regno <= 10)
+              || (rx_regno == 0 && *r0_contains_arg));
+    }
+
+  if ((op & 0xfc1f0000) == 0xfc010000)         /* frsp, fp?,NUM(r1) */
+    {
+      /* Only f2 - f8 are used for parameter passing.  */
+      const int src_regno = GET_SRC_REG (op);
+
+      return (src_regno >= 2 && src_regno <= 8);
+    }
+
+  if (framep && ((op & 0xfc1f0000) == 0xfc1f0000))  /* frsp, fp?,NUM(r31) */
+    {
+      /* Only f2 - f8 are used for parameter passing.  */
+      const int src_regno = GET_SRC_REG (op);
+
+      return (src_regno >= 2 && src_regno <= 8);
+    }
+
+  /* Not an insn that saves a parameter on stack.  */
+  return 0;
+}
+
+/* Assuming that INSN is a "bl" instruction located at PC, return
+   nonzero if the destination of the branch is a "blrl" instruction.
+   
+   This sequence is sometimes found in certain function prologues.
+   It allows the function to load the LR register with a value that
+   they can use to access PIC data using PC-relative offsets.  */
+
+static int
+bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
+{
+  CORE_ADDR dest;
+  int immediate;
+  int absolute;
+  int dest_insn;
+
+  absolute = (int) ((insn >> 1) & 1);
+  immediate = ((insn & ~3) << 6) >> 6;
+  if (absolute)
+    dest = immediate;
+  else
+    dest = pc + immediate;
+
+  dest_insn = read_memory_integer (dest, 4);
+  if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
+    return 1;
+
+  return 0;
+}
+
+/* return pc value after skipping a function prologue and also return
+   information about a function frame.
+
+   in struct rs6000_framedata fdata:
+   - frameless is TRUE, if function does not have a frame.
+   - nosavedpc is TRUE, if function does not save %pc value in its frame.
+   - offset is the initial size of this stack frame --- the amount by
+   which we decrement the sp to allocate the frame.
+   - saved_gpr is the number of the first saved gpr.
+   - saved_fpr is the number of the first saved fpr.
+   - saved_vr is the number of the first saved vr.
+   - saved_ev is the number of the first saved ev.
+   - alloca_reg is the number of the register used for alloca() handling.
+   Otherwise -1.
+   - gpr_offset is the offset of the first saved gpr from the previous frame.
+   - fpr_offset is the offset of the first saved fpr from the previous frame.
+   - vr_offset is the offset of the first saved vr from the previous frame.
+   - ev_offset is the offset of the first saved ev from the previous frame.
+   - lr_offset is the offset of the saved lr
+   - cr_offset is the offset of the saved cr
+   - vrsave_offset is the offset of the saved vrsave register
+ */
+
+static CORE_ADDR
+skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
+              struct rs6000_framedata *fdata)
+{
+  CORE_ADDR orig_pc = pc;
+  CORE_ADDR last_prologue_pc = pc;
+  CORE_ADDR li_found_pc = 0;
+  gdb_byte buf[4];
+  unsigned long op;
+  long offset = 0;
+  long vr_saved_offset = 0;
+  int lr_reg = -1;
+  int cr_reg = -1;
+  int vr_reg = -1;
+  int ev_reg = -1;
+  long ev_offset = 0;
+  int vrsave_reg = -1;
+  int reg;
+  int framep = 0;
+  int minimal_toc_loaded = 0;
+  int prev_insn_was_prologue_insn = 1;
+  int num_skip_non_prologue_insns = 0;
+  int r0_contains_arg = 0;
+  const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  memset (fdata, 0, sizeof (struct rs6000_framedata));
+  fdata->saved_gpr = -1;
+  fdata->saved_fpr = -1;
+  fdata->saved_vr = -1;
+  fdata->saved_ev = -1;
+  fdata->alloca_reg = -1;
+  fdata->frameless = 1;
+  fdata->nosavedpc = 1;
+
+  for (;; pc += 4)
+    {
+      /* Sometimes it isn't clear if an instruction is a prologue
+         instruction or not.  When we encounter one of these ambiguous
+        cases, we'll set prev_insn_was_prologue_insn to 0 (false).
+        Otherwise, we'll assume that it really is a prologue instruction. */
+      if (prev_insn_was_prologue_insn)
+       last_prologue_pc = pc;
+
+      /* Stop scanning if we've hit the limit.  */
+      if (pc >= lim_pc)
+       break;
+
+      prev_insn_was_prologue_insn = 1;
+
+      /* Fetch the instruction and convert it to an integer.  */
+      if (target_read_memory (pc, buf, 4))
+       break;
+      op = extract_unsigned_integer (buf, 4);
 
+      if ((op & 0xfc1fffff) == 0x7c0802a6)
+       {                       /* mflr Rx */
+         /* Since shared library / PIC code, which needs to get its
+            address at runtime, can appear to save more than one link
+            register vis:
+
+            *INDENT-OFF*
+            stwu r1,-304(r1)
+            mflr r3
+            bl 0xff570d0 (blrl)
+            stw r30,296(r1)
+            mflr r30
+            stw r31,300(r1)
+            stw r3,308(r1);
+            ...
+            *INDENT-ON*
+
+            remember just the first one, but skip over additional
+            ones.  */
+         if (lr_reg == -1)
+           lr_reg = (op & 0x03e00000);
+          if (lr_reg == 0)
+            r0_contains_arg = 0;
+         continue;
        }
       else if ((op & 0xfc1fffff) == 0x7c000026)
        {                       /* mfcr Rx */
          cr_reg = (op & 0x03e00000);
+          if (cr_reg == 0)
+            r0_contains_arg = 0;
          continue;
 
        }
@@ -590,6 +1300,7 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
                                   for >= 32k frames */
          fdata->offset = (op & 0x0000ffff) << 16;
          fdata->frameless = 0;
+          r0_contains_arg = 0;
          continue;
 
        }
@@ -598,10 +1309,11 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
                                   lf of >= 32k frames */
          fdata->offset |= (op & 0x0000ffff);
          fdata->frameless = 0;
+          r0_contains_arg = 0;
          continue;
 
        }
-      else if (lr_reg != -1 &&
+      else if (lr_reg >= 0 &&
               /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
               (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
                /* stw Rx, NUM(r1) */
@@ -611,7 +1323,9 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
        {       /* where Rx == lr */
          fdata->lr_offset = offset;
          fdata->nosavedpc = 0;
-         lr_reg = 0;
+         /* Invalidate lr_reg, but don't set it to -1.
+            That would mean that it had never been set.  */
+         lr_reg = -2;
          if ((op & 0xfc000003) == 0xf8000000 ||        /* std */
              (op & 0xfc000000) == 0x90000000)          /* stw */
            {
@@ -621,7 +1335,7 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
          continue;
 
        }
-      else if (cr_reg != -1 &&
+      else if (cr_reg >= 0 &&
               /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
               (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
                /* stw Rx, NUM(r1) */
@@ -630,7 +1344,9 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
                ((op & 0xffff0000) == (cr_reg | 0x94010000))))
        {       /* where Rx == cr */
          fdata->cr_offset = offset;
-         cr_reg = 0;
+         /* Invalidate cr_reg, but don't set it to -1.
+            That would mean that it had never been set.  */
+         cr_reg = -2;
          if ((op & 0xfc000003) == 0xf8000000 ||
              (op & 0xfc000000) == 0x90000000)
            {
@@ -640,6 +1356,13 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
          continue;
 
        }
+      else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
+       {
+         /* bcl 20,xx,.+4 is used to get the current PC, with or without
+            prediction bits.  If the LR has already been saved, we can
+            skip it.  */
+         continue;
+       }
       else if (op == 0x48000005)
        {                       /* bl .+4 used in 
                                   -mrelocatable */
@@ -663,10 +1386,25 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
                                   to save fprs??? */
 
          fdata->frameless = 0;
+
+         /* If the return address has already been saved, we can skip
+            calls to blrl (for PIC).  */
+          if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
+           continue;
+
          /* Don't skip over the subroutine call if it is not within
-            the first three instructions of the prologue.  */
+            the first three instructions of the prologue and either
+            we have no line table information or the line info tells
+            us that the subroutine call is not part of the line
+            associated with the prologue.  */
          if ((pc - orig_pc) > 8)
-           break;
+           {
+             struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
+             struct symtab_and_line this_sal = find_pc_line (pc, 0);
+
+             if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
+               break;
+           }
 
          op = read_memory_integer (pc + 4, 4);
 
@@ -710,9 +1448,18 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
          offset = fdata->offset;
          continue;
        }
-      /* Load up minimal toc pointer */
+      else if ((op & 0xffff0000) == 0x38210000)
+       {                       /* addi r1,r1,SIMM */
+         fdata->frameless = 0;
+         fdata->offset += SIGNED_SHORT (op);
+         offset = fdata->offset;
+         continue;
+       }
+      /* Load up minimal toc pointer.  Do not treat an epilogue restore
+        of r31 as a minimal TOC load.  */
       else if (((op >> 22) == 0x20f    ||      /* l r31,... or l r30,... */
               (op >> 22) == 0x3af)             /* ld r31,... or ld r30,... */
+              && !framep
               && !minimal_toc_loaded)
        {
          minimal_toc_loaded = 1;
@@ -730,19 +1477,9 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
 
          /* store parameters in stack */
        }
-      else if ((op & 0xfc1f0003) == 0xf8010000 ||      /* std rx,NUM(r1) */
-              (op & 0xfc1f0000) == 0xd8010000 ||       /* stfd Rx,NUM(r1) */
-              (op & 0xfc1f0000) == 0xfc010000)         /* frsp, fp?,NUM(r1) */
-       {
-         continue;
-
-         /* store parameters in stack via frame pointer */
-       }
-      else if (framep &&
-              ((op & 0xfc1f0000) == 0x901f0000 ||      /* st rx,NUM(r1) */
-               (op & 0xfc1f0000) == 0xd81f0000 ||      /* stfd Rx,NUM(r1) */
-               (op & 0xfc1f0000) == 0xfc1f0000))
-       {                       /* frsp, fp?,NUM(r1) */
+      /* Move parameters from argument registers to temporary register.  */
+      else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
+        {
          continue;
 
          /* Set up frame pointer */
@@ -810,8 +1547,15 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
       else if ((op & 0xffff0000) == 0x38000000         /* li r0, SIMM */
                || (op & 0xffff0000) == 0x39c00000)     /* li r14, SIMM */
        {
+          if ((op & 0xffff0000) == 0x38000000)
+            r0_contains_arg = 0;
          li_found_pc = pc;
          vr_saved_offset = SIGNED_SHORT (op);
+
+          /* This insn by itself is not part of the prologue, unless
+             if part of the pair of insns mentioned above. So do not
+             record this insn as part of the prologue yet.  */
+          prev_insn_was_prologue_insn = 0;
        }
       /* Store vector register S at (r31+r0) aligned to 16 bytes.  */      
       /* 011111 sssss 11111 00000 00111001110 */
@@ -938,8 +1682,7 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
             Handle optimizer code motions into the prologue by continuing
             the search if we have no valid frame yet or if the return
             address is not yet saved in the frame.  */
-         if (fdata->frameless == 0
-             && (lr_reg == -1 || fdata->nosavedpc == 0))
+         if (fdata->frameless == 0 && fdata->nosavedpc == 0)
            break;
 
          if (op == 0x4e800020          /* blr */
@@ -985,7 +1728,8 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
             initializer function as well.  */
 
          tmp = find_pc_misc_function (pc);
-         if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
+         if (tmp >= 0
+             && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
            return pc + 8;
        }
     }
@@ -995,86 +1739,37 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
   return last_prologue_pc;
 }
 
+static CORE_ADDR
+rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
+{
+  struct rs6000_framedata frame;
+  CORE_ADDR limit_pc, func_addr;
 
-/*************************************************************************
-  Support for creating pushing a dummy frame into the stack, and popping
-  frames, etc. 
-*************************************************************************/
-
+  /* See if we can determine the end of the prologue via the symbol table.
+     If so, then return either PC, or the PC after the prologue, whichever
+     is greater.  */
+  if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
+    {
+      CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
+      if (post_prologue_pc != 0)
+       return max (pc, post_prologue_pc);
+    }
 
-/* Pop the innermost frame, go back to the caller.  */
+  /* Can't determine prologue from the symbol table, need to examine
+     instructions.  */
 
-static void
-rs6000_pop_frame (void)
-{
-  CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
-  struct rs6000_framedata fdata;
-  struct frame_info *frame = get_current_frame ();
-  int ii, wordsize;
+  /* Find an upper limit on the function prologue using the debug
+     information.  If the debug information could not be used to provide
+     that bound, then use an arbitrary large number as the upper bound.  */
+  limit_pc = skip_prologue_using_sal (pc);
+  if (limit_pc == 0)
+    limit_pc = pc + 100;          /* Magic.  */
 
-  pc = read_pc ();
-  sp = get_frame_base (frame);
-
-  if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
-                                  get_frame_base (frame),
-                                  get_frame_base (frame)))
-    {
-      generic_pop_dummy_frame ();
-      flush_cached_frames ();
-      return;
-    }
-
-  /* Make sure that all registers are valid.  */
-  deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
-
-  /* Figure out previous %pc value.  If the function is frameless, it is 
-     still in the link register, otherwise walk the frames and retrieve the
-     saved %pc value in the previous frame.  */
-
-  addr = get_frame_func (frame);
-  (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
-
-  wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
-  if (fdata.frameless)
-    prev_sp = sp;
-  else
-    prev_sp = read_memory_addr (sp, wordsize);
-  if (fdata.lr_offset == 0)
-     lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
-  else
-    lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
-
-  /* reset %pc value. */
-  write_register (PC_REGNUM, lr);
-
-  /* reset register values if any was saved earlier.  */
-
-  if (fdata.saved_gpr != -1)
-    {
-      addr = prev_sp + fdata.gpr_offset;
-      for (ii = fdata.saved_gpr; ii <= 31; ++ii)
-       {
-         read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)],
-                      wordsize);
-         addr += wordsize;
-       }
-    }
-
-  if (fdata.saved_fpr != -1)
-    {
-      addr = prev_sp + fdata.fpr_offset;
-      for (ii = fdata.saved_fpr; ii <= 31; ++ii)
-       {
-         read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
-         addr += 8;
-       }
-    }
-
-  write_register (SP_REGNUM, prev_sp);
-  target_store_registers (-1);
-  flush_cached_frames ();
+  pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
+  return pc;
 }
 
+
 /* All the ABI's require 16 byte alignment.  */
 static CORE_ADDR
 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
@@ -1082,354 +1777,6 @@ rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
   return (addr & -16);
 }
 
-/* Pass the arguments in either registers, or in the stack. In RS/6000,
-   the first eight words of the argument list (that might be less than
-   eight parameters if some parameters occupy more than one word) are
-   passed in r3..r10 registers.  float and double parameters are
-   passed in fpr's, in addition to that.  Rest of the parameters if any
-   are passed in user stack.  There might be cases in which half of the
-   parameter is copied into registers, the other half is pushed into
-   stack.
-
-   Stack must be aligned on 64-bit boundaries when synthesizing
-   function calls.
-
-   If the function is returning a structure, then the return address is passed
-   in r3, then the first 7 words of the parameters can be passed in registers,
-   starting from r4.  */
-
-static CORE_ADDR
-rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
-                       struct regcache *regcache, CORE_ADDR bp_addr,
-                       int nargs, struct value **args, CORE_ADDR sp,
-                       int struct_return, CORE_ADDR struct_addr)
-{
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
-  int ii;
-  int len = 0;
-  int argno;                   /* current argument number */
-  int argbytes;                        /* current argument byte */
-  char tmp_buffer[50];
-  int f_argno = 0;             /* current floating point argno */
-  int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
-
-  struct value *arg = 0;
-  struct type *type;
-
-  CORE_ADDR saved_sp;
-
-  /* The first eight words of ther arguments are passed in registers.
-     Copy them appropriately.  */
-  ii = 0;
-
-  /* If the function is returning a `struct', then the first word
-     (which will be passed in r3) is used for struct return address.
-     In that case we should advance one word and start from r4
-     register to copy parameters.  */
-  if (struct_return)
-    {
-      regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
-                                  struct_addr);
-      ii++;
-    }
-
-/* 
-   effectively indirect call... gcc does...
-
-   return_val example( float, int);
-
-   eabi: 
-   float in fp0, int in r3
-   offset of stack on overflow 8/16
-   for varargs, must go by type.
-   power open:
-   float in r3&r4, int in r5
-   offset of stack on overflow different 
-   both: 
-   return in r3 or f0.  If no float, must study how gcc emulates floats;
-   pay attention to arg promotion.  
-   User may have to cast\args to handle promotion correctly 
-   since gdb won't know if prototype supplied or not.
- */
-
-  for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
-    {
-      int reg_size = REGISTER_RAW_SIZE (ii + 3);
-
-      arg = args[argno];
-      type = check_typedef (VALUE_TYPE (arg));
-      len = TYPE_LENGTH (type);
-
-      if (TYPE_CODE (type) == TYPE_CODE_FLT)
-       {
-
-         /* Floating point arguments are passed in fpr's, as well as gpr's.
-            There are 13 fpr's reserved for passing parameters. At this point
-            there is no way we would run out of them.  */
-
-         if (len > 8)
-           printf_unfiltered (
-                               "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
-
-         memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
-                 VALUE_CONTENTS (arg),
-                 len);
-         ++f_argno;
-       }
-
-      if (len > reg_size)
-       {
-
-         /* Argument takes more than one register.  */
-         while (argbytes < len)
-           {
-             memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0,
-                     reg_size);
-             memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)],
-                     ((char *) VALUE_CONTENTS (arg)) + argbytes,
-                     (len - argbytes) > reg_size
-                       ? reg_size : len - argbytes);
-             ++ii, argbytes += reg_size;
-
-             if (ii >= 8)
-               goto ran_out_of_registers_for_arguments;
-           }
-         argbytes = 0;
-         --ii;
-       }
-      else
-       {
-         /* Argument can fit in one register.  No problem.  */
-         int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
-         memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
-         memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj, 
-                 VALUE_CONTENTS (arg), len);
-       }
-      ++argno;
-    }
-
-ran_out_of_registers_for_arguments:
-
-  saved_sp = read_sp ();
-
-  /* Location for 8 parameters are always reserved.  */
-  sp -= wordsize * 8;
-
-  /* Another six words for back chain, TOC register, link register, etc.  */
-  sp -= wordsize * 6;
-
-  /* Stack pointer must be quadword aligned.  */
-  sp &= -16;
-
-  /* If there are more arguments, allocate space for them in 
-     the stack, then push them starting from the ninth one.  */
-
-  if ((argno < nargs) || argbytes)
-    {
-      int space = 0, jj;
-
-      if (argbytes)
-       {
-         space += ((len - argbytes + 3) & -4);
-         jj = argno + 1;
-       }
-      else
-       jj = argno;
-
-      for (; jj < nargs; ++jj)
-       {
-         struct value *val = args[jj];
-         space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
-       }
-
-      /* Add location required for the rest of the parameters.  */
-      space = (space + 15) & -16;
-      sp -= space;
-
-      /* If the last argument copied into the registers didn't fit there 
-         completely, push the rest of it into stack.  */
-
-      if (argbytes)
-       {
-         write_memory (sp + 24 + (ii * 4),
-                       ((char *) VALUE_CONTENTS (arg)) + argbytes,
-                       len - argbytes);
-         ++argno;
-         ii += ((len - argbytes + 3) & -4) / 4;
-       }
-
-      /* Push the rest of the arguments into stack.  */
-      for (; argno < nargs; ++argno)
-       {
-
-         arg = args[argno];
-         type = check_typedef (VALUE_TYPE (arg));
-         len = TYPE_LENGTH (type);
-
-
-         /* Float types should be passed in fpr's, as well as in the
-             stack.  */
-         if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
-           {
-
-             if (len > 8)
-               printf_unfiltered (
-                                   "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
-
-             memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
-                     VALUE_CONTENTS (arg),
-                     len);
-             ++f_argno;
-           }
-
-         write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
-         ii += ((len + 3) & -4) / 4;
-       }
-    }
-
-  /* set back chain properly */
-  store_unsigned_integer (tmp_buffer, 4, saved_sp);
-  write_memory (sp, tmp_buffer, 4);
-
-  /* Set the stack pointer.  According to the ABI, the SP is meant to
-     be set _before_ the corresponding stack space is used.  No need
-     for that here though - the target has been completely stopped -
-     it isn't possible for an exception handler to stomp on the stack.  */
-  regcache_raw_write_signed (regcache, SP_REGNUM, sp);
-
-  /* Point the inferior function call's return address at the dummy's
-     breakpoint.  */
-  regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
-
-  /* Set the TOC register, get the value from the objfile reader
-     which, in turn, gets it from the VMAP table.  */
-  if (rs6000_find_toc_address_hook != NULL)
-    {
-      CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
-      regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
-    }
-
-  target_store_registers (-1);
-  return sp;
-}
-
-/* Extract a function return value of type TYPE from raw register array
-   REGBUF, and copy that return value into VALBUF in virtual format.  */
-static void
-e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
-{
-  int offset = 0;
-  int vallen = TYPE_LENGTH (valtype);
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
-
-  if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
-      && vallen == 8
-      && TYPE_VECTOR (valtype))
-    {
-      regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
-    }
-  else
-    {
-      /* Return value is copied starting from r3.  Note that r3 for us
-         is a pseudo register.  */
-      int offset = 0;
-      int return_regnum = tdep->ppc_gp0_regnum + 3;
-      int reg_size = REGISTER_RAW_SIZE (return_regnum);
-      int reg_part_size;
-      char *val_buffer;
-      int copied = 0;
-      int i = 0;
-
-      /* Compute where we will start storing the value from.  */ 
-      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
-        {
-         if (vallen <= reg_size)
-           offset = reg_size - vallen;
-         else
-           offset = reg_size + (reg_size - vallen);
-        }
-
-      /* How big does the local buffer need to be?  */
-      if (vallen <= reg_size)
-       val_buffer = alloca (reg_size);
-      else
-       val_buffer = alloca (vallen);
-
-      /* Read all we need into our private buffer.  We copy it in
-         chunks that are as long as one register, never shorter, even
-         if the value is smaller than the register.  */
-      while (copied < vallen)
-        {
-          reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
-         /* It is a pseudo/cooked register.  */
-          regcache_cooked_read (regbuf, return_regnum + i,
-                               val_buffer + copied);
-          copied += reg_part_size;
-          i++;
-        }
-      /* Put the stuff in the return buffer.  */
-      memcpy (valbuf, val_buffer + offset, vallen);
-    }
-}
-
-/* PowerOpen always puts structures in memory.  Vectors, which were
-   added later, do get returned in a register though.  */
-
-static int     
-rs6000_use_struct_convention (int gcc_p, struct type *value_type)
-{  
-  if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
-      && TYPE_VECTOR (value_type))
-    return 0;                            
-  return 1;
-}
-
-static void
-rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
-{
-  int offset = 0;
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
-
-  if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
-    {
-
-      double dd;
-      float ff;
-      /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
-         We need to truncate the return value into float size (4 byte) if
-         necessary.  */
-
-      if (TYPE_LENGTH (valtype) > 4)   /* this is a double */
-       memcpy (valbuf,
-               &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
-               TYPE_LENGTH (valtype));
-      else
-       {                       /* float */
-         memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
-         ff = (float) dd;
-         memcpy (valbuf, &ff, sizeof (float));
-       }
-    }
-  else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
-           && TYPE_LENGTH (valtype) == 16
-           && TYPE_VECTOR (valtype))
-    {
-      memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
-             TYPE_LENGTH (valtype));
-    }
-  else
-    {
-      /* return value is copied starting from r3. */
-      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
-         && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
-       offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
-
-      memcpy (valbuf,
-             regbuf + REGISTER_BYTE (3) + offset,
-             TYPE_LENGTH (valtype));
-    }
-}
-
 /* Return whether handle_inferior_event() should proceed through code
    starting at PC in function NAME when stepping.
 
@@ -1445,12 +1792,13 @@ rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
    back to where execution should continue.
 
    GDB should silently step over @FIX code, just like AIX dbx does.
-   Unfortunately, the linker uses the "b" instruction for the branches,
-   meaning that the link register doesn't get set.  Therefore, GDB's usual
-   step_over_function() mechanism won't work.
+   Unfortunately, the linker uses the "b" instruction for the
+   branches, meaning that the link register doesn't get set.
+   Therefore, GDB's usual step_over_function () mechanism won't work.
 
-   Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
-   in handle_inferior_event() to skip past @FIX code.  */
+   Instead, use the gdbarch_skip_trampoline_code and
+   gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
+   @FIX code.  */
 
 int
 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
@@ -1473,8 +1821,9 @@ rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
    code that should be skipped.  */
 
 CORE_ADDR
-rs6000_skip_trampoline_code (CORE_ADDR pc)
+rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
 {
+  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
   unsigned int ii, op;
   int rel;
   CORE_ADDR solib_target_pc;
@@ -1494,7 +1843,8 @@ rs6000_skip_trampoline_code (CORE_ADDR pc)
 
   /* Check for bigtoc fixup code.  */
   msymbol = lookup_minimal_symbol_by_pc (pc);
-  if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
+  if (msymbol 
+      && rs6000_in_solib_return_trampoline (pc, SYMBOL_LINKAGE_NAME (msymbol)))
     {
       /* Double-check that the third instruction from PC is relative "b".  */
       op = read_memory_integer (pc + 8, 4);
@@ -1508,7 +1858,7 @@ rs6000_skip_trampoline_code (CORE_ADDR pc)
     }
 
   /* If pc is in a shared library trampoline, return its target.  */
-  solib_target_pc = find_solib_trampoline_target (pc);
+  solib_target_pc = find_solib_trampoline_target (frame, pc);
   if (solib_target_pc)
     return solib_target_pc;
 
@@ -1518,1176 +1868,894 @@ rs6000_skip_trampoline_code (CORE_ADDR pc)
       if (op != trampoline_code[ii])
        return 0;
     }
-  ii = read_register (11);     /* r11 holds destination addr   */
-  pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
+  ii = get_frame_register_unsigned (frame, 11);        /* r11 holds destination addr   */
+  pc = read_memory_unsigned_integer (ii, tdep->wordsize); /* (r11) value */
   return pc;
 }
 
-/* Determines whether the function FI has a frame on the stack or not.  */
-
-int
-rs6000_frameless_function_invocation (struct frame_info *fi)
-{
-  CORE_ADDR func_start;
-  struct rs6000_framedata fdata;
-
-  /* Don't even think about framelessness except on the innermost frame
-     or if the function was interrupted by a signal.  */
-  if (get_next_frame (fi) != NULL
-      && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
-    return 0;
-
-  func_start = get_frame_func (fi);
+/* ISA-specific vector types.  */
 
-  /* If we failed to find the start of the function, it is a mistake
-     to inspect the instructions.  */
-
-  if (!func_start)
-    {
-      /* A frame with a zero PC is usually created by dereferencing a NULL
-         function pointer, normally causing an immediate core dump of the
-         inferior.  Mark function as frameless, as the inferior has no chance
-         of setting up a stack frame.  */
-      if (get_frame_pc (fi) == 0)
-       return 1;
-      else
-       return 0;
-    }
-
-  (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
-  return fdata.frameless;
-}
-
-/* Return the PC saved in a frame.  */
-
-CORE_ADDR
-rs6000_frame_saved_pc (struct frame_info *fi)
+static struct type *
+rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
 {
-  CORE_ADDR func_start;
-  struct rs6000_framedata fdata;
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
-  int wordsize = tdep->wordsize;
-
-  if ((get_frame_type (fi) == SIGTRAMP_FRAME))
-    return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
-                            wordsize);
-
-  if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
-                                  get_frame_base (fi),
-                                  get_frame_base (fi)))
-    return deprecated_read_register_dummy (get_frame_pc (fi),
-                                          get_frame_base (fi), PC_REGNUM);
-
-  func_start = get_frame_func (fi);
-
-  /* If we failed to find the start of the function, it is a mistake
-     to inspect the instructions.  */
-  if (!func_start)
-    return 0;
-
-  (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-  if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
+  if (!tdep->ppc_builtin_type_vec64)
     {
-      if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
-       return read_memory_addr ((get_frame_base (get_next_frame (fi))
-                                 + SIG_FRAME_LR_OFFSET),
-                                wordsize);
-      else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
-       /* The link register wasn't saved by this frame and the next
-           (inner, newer) frame is a dummy.  Get the link register
-           value by unwinding it from that [dummy] frame.  */
+      /* The type we're building is this: */
+#if 0
+      union __gdb_builtin_type_vec64
        {
-         ULONGEST lr;
-         frame_unwind_unsigned_register (get_next_frame (fi),
-                                         tdep->ppc_lr_regnum, &lr);
-         return lr;
-       }
-      else
-       return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
-                                + tdep->lr_frame_offset,
-                                wordsize);
+         int64_t uint64;
+         float v2_float[2];
+         int32_t v2_int32[2];
+         int16_t v4_int16[4];
+         int8_t v8_int8[8];
+       };
+#endif
+
+      struct type *t;
+
+      t = init_composite_type ("__ppc_builtin_type_vec64", TYPE_CODE_UNION);
+      append_composite_type_field (t, "uint64", builtin_type_int64);
+      append_composite_type_field (t, "v2_float",
+                                  init_vector_type (builtin_type_float, 2));
+      append_composite_type_field (t, "v2_int32",
+                                  init_vector_type (builtin_type_int32, 2));
+      append_composite_type_field (t, "v4_int16",
+                                  init_vector_type (builtin_type_int16, 4));
+      append_composite_type_field (t, "v8_int8",
+                                  init_vector_type (builtin_type_int8, 8));
+
+      TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
+      TYPE_NAME (t) = "ppc_builtin_type_vec64";
+      tdep->ppc_builtin_type_vec64 = t;
     }
 
-  if (fdata.lr_offset == 0)
-    return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
-
-  return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
-                          wordsize);
+  return tdep->ppc_builtin_type_vec64;
 }
 
-/* If saved registers of frame FI are not known yet, read and cache them.
-   &FDATAP contains rs6000_framedata; TDATAP can be NULL,
-   in which case the framedata are read.  */
+/* Return the name of register number REGNO, or the empty string if it
+   is an anonymous register.  */
 
-static void
-frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
+static const char *
+rs6000_register_name (struct gdbarch *gdbarch, int regno)
 {
-  CORE_ADDR frame_addr;
-  struct rs6000_framedata work_fdata;
-  struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
-  int wordsize = tdep->wordsize;
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-  if (get_frame_saved_regs (fi))
-    return;
+  /* The upper half "registers" have names in the XML description,
+     but we present only the low GPRs and the full 64-bit registers
+     to the user.  */
+  if (tdep->ppc_ev0_upper_regnum >= 0
+      && tdep->ppc_ev0_upper_regnum <= regno
+      && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
+    return "";
 
-  if (fdatap == NULL)
+  /* Check if the SPE pseudo registers are available.  */
+  if (IS_SPE_PSEUDOREG (tdep, regno))
     {
-      fdatap = &work_fdata;
-      (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
+      static const char *const spe_regnames[] = {
+       "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
+       "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
+       "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
+       "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
+      };
+      return spe_regnames[regno - tdep->ppc_ev0_regnum];
     }
 
-  frame_saved_regs_zalloc (fi);
-
-  /* If there were any saved registers, figure out parent's stack
-     pointer.  */
-  /* The following is true only if the frame doesn't have a call to
-     alloca(), FIXME.  */
-
-  if (fdatap->saved_fpr == 0
-      && fdatap->saved_gpr == 0
-      && fdatap->saved_vr == 0
-      && fdatap->saved_ev == 0
-      && fdatap->lr_offset == 0
-      && fdatap->cr_offset == 0
-      && fdatap->vr_offset == 0
-      && fdatap->ev_offset == 0)
-    frame_addr = 0;
-  else
-    /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
-       address of the current frame.  Things might be easier if the
-       ->frame pointed to the outer-most address of the frame.  In the
-       mean time, the address of the prev frame is used as the base
-       address of this frame.  */
-    frame_addr = DEPRECATED_FRAME_CHAIN (fi);
-
-  /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
-     All fpr's from saved_fpr to fp31 are saved.  */
-
-  if (fdatap->saved_fpr >= 0)
+  /* Check if the decimal128 pseudo-registers are available.  */
+  if (IS_DFP_PSEUDOREG (tdep, regno))
     {
-      int i;
-      CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
-      for (i = fdatap->saved_fpr; i < 32; i++)
-       {
-         get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
-         fpr_addr += 8;
-       }
+      static const char *const dfp128_regnames[] = {
+       "dl0", "dl1", "dl2", "dl3",
+       "dl4", "dl5", "dl6", "dl7",
+       "dl8", "dl9", "dl10", "dl11",
+       "dl12", "dl13", "dl14", "dl15"
+      };
+      return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
     }
 
-  /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
-     All gpr's from saved_gpr to gpr31 are saved.  */
-
-  if (fdatap->saved_gpr >= 0)
-    {
-      int i;
-      CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
-      for (i = fdatap->saved_gpr; i < 32; i++)
-       {
-         get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
-         gpr_addr += wordsize;
-       }
-    }
-
-  /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
-     All vr's from saved_vr to vr31 are saved.  */
-  if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
-    {
-      if (fdatap->saved_vr >= 0)
-       {
-         int i;
-         CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
-         for (i = fdatap->saved_vr; i < 32; i++)
-           {
-             get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
-             vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
-           }
-       }
-    }
-
-  /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
-       All vr's from saved_ev to ev31 are saved. ????? */
-  if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
-    {
-      if (fdatap->saved_ev >= 0)
-       {
-         int i;
-         CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
-         for (i = fdatap->saved_ev; i < 32; i++)
-           {
-             get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
-              get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
-             ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
-            }
-       }
-    }
-
-  /* If != 0, fdatap->cr_offset is the offset from the frame that holds
-     the CR.  */
-  if (fdatap->cr_offset != 0)
-    get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
-
-  /* If != 0, fdatap->lr_offset is the offset from the frame that holds
-     the LR.  */
-  if (fdatap->lr_offset != 0)
-    get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
-
-  /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
-     the VRSAVE.  */
-  if (fdatap->vrsave_offset != 0)
-    get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
+  return tdesc_register_name (gdbarch, regno);
 }
 
-/* Return the address of a frame. This is the inital %sp value when the frame
-   was first allocated.  For functions calling alloca(), it might be saved in
-   an alloca register.  */
+/* Return the GDB type object for the "standard" data type of data in
+   register N.  */
 
-static CORE_ADDR
-frame_initial_stack_address (struct frame_info *fi)
+static struct type *
+rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
 {
-  CORE_ADDR tmpaddr;
-  struct rs6000_framedata fdata;
-  struct frame_info *callee_fi;
-
-  /* If the initial stack pointer (frame address) of this frame is known,
-     just return it.  */
-
-  if (get_frame_extra_info (fi)->initial_sp)
-    return get_frame_extra_info (fi)->initial_sp;
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-  /* Find out if this function is using an alloca register.  */
-
-  (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
-
-  /* If saved registers of this frame are not known yet, read and
-     cache them.  */
-
-  if (!get_frame_saved_regs (fi))
-    frame_get_saved_regs (fi, &fdata);
-
-  /* If no alloca register used, then fi->frame is the value of the %sp for
-     this frame, and it is good enough.  */
-
-  if (fdata.alloca_reg < 0)
-    {
-      get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
-      return get_frame_extra_info (fi)->initial_sp;
-    }
+  /* These are the only pseudo-registers we support.  */
+  gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
+             || IS_DFP_PSEUDOREG (tdep, regnum));
 
-  /* There is an alloca register, use its value, in the current frame,
-     as the initial stack pointer.  */
-  {
-    char tmpbuf[MAX_REGISTER_SIZE];
-    if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
-      {
-       get_frame_extra_info (fi)->initial_sp
-         = extract_unsigned_integer (tmpbuf,
-                                     REGISTER_RAW_SIZE (fdata.alloca_reg));
-      }
-    else
-      /* NOTE: cagney/2002-04-17: At present the only time
-         frame_register_read will fail is when the register isn't
-         available.  If that does happen, use the frame.  */
-      get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
-  }
-  return get_frame_extra_info (fi)->initial_sp;
+  /* These are the e500 pseudo-registers.  */
+  if (IS_SPE_PSEUDOREG (tdep, regnum))
+    return rs6000_builtin_type_vec64 (gdbarch);
+  else
+    /* Could only be the ppc decimal128 pseudo-registers.  */
+    return builtin_type (gdbarch)->builtin_declong;
 }
 
-/* Describe the pointer in each stack frame to the previous stack frame
-   (its caller).  */
-
-/* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
-   the frame's chain-pointer.  */
-
-/* In the case of the RS/6000, the frame's nominal address
-   is the address of a 4-byte word containing the calling frame's address.  */
-
-CORE_ADDR
-rs6000_frame_chain (struct frame_info *thisframe)
+/* Is REGNUM a member of REGGROUP?  */
+static int
+rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
+                                  struct reggroup *group)
 {
-  CORE_ADDR fp, fpp, lr;
-  int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-  if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
-                                  get_frame_base (thisframe),
-                                  get_frame_base (thisframe)))
-    /* A dummy frame always correctly chains back to the previous
-       frame.  */
-    return read_memory_addr (get_frame_base (thisframe), wordsize);
+  /* These are the only pseudo-registers we support.  */
+  gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
+             || IS_DFP_PSEUDOREG (tdep, regnum));
 
-  if (deprecated_inside_entry_file (get_frame_pc (thisframe))
-      || get_frame_pc (thisframe) == entry_point_address ())
-    return 0;
-
-  if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
-    fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
-                          wordsize);
-  else if (get_next_frame (thisframe) != NULL
-          && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
-          && FRAMELESS_FUNCTION_INVOCATION (thisframe))
-    /* A frameless function interrupted by a signal did not change the
-       frame pointer.  */
-    fp = get_frame_base (thisframe);
+  /* These are the e500 pseudo-registers.  */
+  if (IS_SPE_PSEUDOREG (tdep, regnum))
+    return group == all_reggroup || group == vector_reggroup;
   else
-    fp = read_memory_addr (get_frame_base (thisframe), wordsize);
-  return fp;
+    /* Could only be the ppc decimal128 pseudo-registers.  */
+    return group == all_reggroup || group == float_reggroup;
 }
 
-/* Return the size of register REG when words are WORDSIZE bytes long.  If REG
-   isn't available with that word size, return 0.  */
+/* The register format for RS/6000 floating point registers is always
+   double, we need a conversion if the memory format is float.  */
 
 static int
-regsize (const struct reg *reg, int wordsize)
+rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
+                          struct type *type)
 {
-  return wordsize == 8 ? reg->sz64 : reg->sz32;
-}
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-/* Return the name of register number N, or null if no such register exists
-   in the current architecture.  */
+  return (tdep->ppc_fp0_regnum >= 0
+         && regnum >= tdep->ppc_fp0_regnum
+         && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
+         && TYPE_CODE (type) == TYPE_CODE_FLT
+         && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
+}
 
-static const char *
-rs6000_register_name (int n)
+static void
+rs6000_register_to_value (struct frame_info *frame,
+                          int regnum,
+                          struct type *type,
+                          gdb_byte *to)
 {
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
-  const struct reg *reg = tdep->regs + n;
+  gdb_byte from[MAX_REGISTER_SIZE];
+  
+  gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
 
-  if (!regsize (reg, tdep->wordsize))
-    return NULL;
-  return reg->name;
+  get_frame_register (frame, regnum, from);
+  convert_typed_floating (from, builtin_type_double, to, type);
 }
 
-/* Index within `registers' of the first byte of the space for
-   register N.  */
-
-static int
-rs6000_register_byte (int n)
+static void
+rs6000_value_to_register (struct frame_info *frame,
+                          int regnum,
+                          struct type *type,
+                          const gdb_byte *from)
 {
-  return gdbarch_tdep (current_gdbarch)->regoff[n];
-}
+  gdb_byte to[MAX_REGISTER_SIZE];
 
-/* Return the number of bytes of storage in the actual machine representation
-   for register N if that register is available, else return 0.  */
+  gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
 
-static int
-rs6000_register_raw_size (int n)
-{
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
-  const struct reg *reg = tdep->regs + n;
-  return regsize (reg, tdep->wordsize);
+  convert_typed_floating (from, type, to, builtin_type_double);
+  put_frame_register (frame, regnum, to);
 }
 
-/* Return the GDB type object for the "standard" data type
-   of data in register N.  */
-
-static struct type *
-rs6000_register_virtual_type (int n)
+/* Move SPE vector register values between a 64-bit buffer and the two
+   32-bit raw register halves in a regcache.  This function handles
+   both splitting a 64-bit value into two 32-bit halves, and joining
+   two halves into a whole 64-bit value, depending on the function
+   passed as the MOVE argument.
+
+   EV_REG must be the number of an SPE evN vector register --- a
+   pseudoregister.  REGCACHE must be a regcache, and BUFFER must be a
+   64-bit buffer.
+
+   Call MOVE once for each 32-bit half of that register, passing
+   REGCACHE, the number of the raw register corresponding to that
+   half, and the address of the appropriate half of BUFFER.
+
+   For example, passing 'regcache_raw_read' as the MOVE function will
+   fill BUFFER with the full 64-bit contents of EV_REG.  Or, passing
+   'regcache_raw_supply' will supply the contents of BUFFER to the
+   appropriate pair of raw registers in REGCACHE.
+
+   You may need to cast away some 'const' qualifiers when passing
+   MOVE, since this function can't tell at compile-time which of
+   REGCACHE or BUFFER is acting as the source of the data.  If C had
+   co-variant type qualifiers, ...  */
+static void
+e500_move_ev_register (void (*move) (struct regcache *regcache,
+                                     int regnum, gdb_byte *buf),
+                       struct regcache *regcache, int ev_reg,
+                       gdb_byte *buffer)
 {
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
-  const struct reg *reg = tdep->regs + n;
+  struct gdbarch *arch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (arch); 
+  int reg_index;
+  gdb_byte *byte_buffer = buffer;
+
+  gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
 
-  if (reg->fpr)
-    return builtin_type_double;
+  reg_index = ev_reg - tdep->ppc_ev0_regnum;
+
+  if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
+    {
+      move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
+      move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
+    }
   else
     {
-      int size = regsize (reg, tdep->wordsize);
-      switch (size)
-       {
-       case 0:
-         return builtin_type_int0;
-       case 4:
-         return builtin_type_int32;
-       case 8:
-         if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
-           return builtin_type_vec64;
-         else
-           return builtin_type_int64;
-         break;
-       case 16:
-         return builtin_type_vec128;
-         break;
-       default:
-         internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
-                         n, size);
-       }
+      move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
+      move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
     }
 }
 
-/* Return whether register N requires conversion when moving from raw format
-   to virtual format.
-
-   The register format for RS/6000 floating point registers is always
-   double, we need a conversion if the memory format is float.  */
-
-static int
-rs6000_register_convertible (int n)
+static void
+e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
+                          int reg_nr, gdb_byte *buffer)
 {
-  const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
-  return reg->fpr;
+  e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
 }
 
-/* Convert data from raw format for register N in buffer FROM
-   to virtual format with type TYPE in buffer TO.  */
-
 static void
-rs6000_register_convert_to_virtual (int n, struct type *type,
-                                   char *from, char *to)
+e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
+                           int reg_nr, const gdb_byte *buffer)
 {
-  if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
-    {
-      double val = deprecated_extract_floating (from, REGISTER_RAW_SIZE (n));
-      deprecated_store_floating (to, TYPE_LENGTH (type), val);
-    }
-  else
-    memcpy (to, from, REGISTER_RAW_SIZE (n));
+  e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
+                        regcache_raw_write,
+                        regcache, reg_nr, (gdb_byte *) buffer);
 }
 
-/* Convert data from virtual format with type TYPE in buffer FROM
-   to raw format for register N in buffer TO.  */
-
+/* Read method for PPC pseudo-registers. Currently this is handling the
+   16 decimal128 registers that map into 16 pairs of FP registers.  */
 static void
-rs6000_register_convert_to_raw (struct type *type, int n,
-                               const char *from, char *to)
+ppc_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
+                          int reg_nr, gdb_byte *buffer)
 {
-  if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  int reg_index = reg_nr - tdep->ppc_dl0_regnum;
+
+  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
     {
-      double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
-      deprecated_store_floating (to, REGISTER_RAW_SIZE (n), val);
+      /* Read two FP registers to form a whole dl register.  */
+      regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
+                        2 * reg_index, buffer);
+      regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
+                        2 * reg_index + 1, buffer + 8);
     }
   else
-    memcpy (to, from, REGISTER_RAW_SIZE (n));
-}
-
-static void
-e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
-                          int reg_nr, void *buffer)
-{
-  int base_regnum;
-  int offset = 0;
-  char temp_buffer[MAX_REGISTER_SIZE];
-  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 
-
-  if (reg_nr >= tdep->ppc_gp0_regnum 
-      && reg_nr <= tdep->ppc_gplast_regnum)
     {
-      base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
-
-      /* Build the value in the provided buffer.  */ 
-      /* Read the raw register of which this one is the lower portion.  */
-      regcache_raw_read (regcache, base_regnum, temp_buffer);
-      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
-       offset = 4;
-      memcpy ((char *) buffer, temp_buffer + offset, 4);
+      regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
+                        2 * reg_index + 1, buffer + 8);
+      regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
+                        2 * reg_index, buffer);
     }
 }
 
+/* Write method for PPC pseudo-registers. Currently this is handling the
+   16 decimal128 registers that map into 16 pairs of FP registers.  */
 static void
-e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
-                           int reg_nr, const void *buffer)
+ppc_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
+                           int reg_nr, const gdb_byte *buffer)
 {
-  int base_regnum;
-  int offset = 0;
-  char temp_buffer[MAX_REGISTER_SIZE];
-  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  int reg_index = reg_nr - tdep->ppc_dl0_regnum;
 
-  if (reg_nr >= tdep->ppc_gp0_regnum 
-      && reg_nr <= tdep->ppc_gplast_regnum)
+  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
     {
-      base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
-      /* reg_nr is 32 bit here, and base_regnum is 64 bits.  */
-      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
-       offset = 4;
-
-      /* Let's read the value of the base register into a temporary
-        buffer, so that overwriting the last four bytes with the new
-        value of the pseudo will leave the upper 4 bytes unchanged.  */
-      regcache_raw_read (regcache, base_regnum, temp_buffer);
-
-      /* Write as an 8 byte quantity.  */
-      memcpy (temp_buffer + offset, (char *) buffer, 4);
-      regcache_raw_write (regcache, base_regnum, temp_buffer);
+      /* Write each half of the dl register into a separate
+      FP register.  */
+      regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
+                         2 * reg_index, buffer);
+      regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
+                         2 * reg_index + 1, buffer + 8);
     }
-}
-
-/* Convert a dwarf2 register number to a gdb REGNUM.  */
-static int
-e500_dwarf2_reg_to_regnum (int num)
-{
-  int regnum;
-  if (0 <= num && num <= 31)
-    return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
-  else 
-    return num;
-}
-
-/* Convert a dbx stab register number (from `r' declaration) to a gdb
-   REGNUM.  */
-static int
-rs6000_stab_reg_to_regnum (int num)
-{
-  int regnum;
-  switch (num)
+  else
     {
-    case 64: 
-      regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
-      break;
-    case 65: 
-      regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
-      break;
-    case 66: 
-      regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
-      break;
-    case 76: 
-      regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
-      break;
-    default: 
-      regnum = num;
-      break;
+      regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
+                         2 * reg_index + 1, buffer + 8);
+      regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
+                         2 * reg_index, buffer);
     }
-  return regnum;
 }
 
-/* Write into appropriate registers a function return value
-   of type TYPE, given in virtual format.  */
 static void
-e500_store_return_value (struct type *type, char *valbuf)
+rs6000_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
+                            int reg_nr, gdb_byte *buffer)
 {
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+  struct gdbarch *regcache_arch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 
 
-  /* Everything is returned in GPR3 and up.  */
-  int copied = 0;
-  int i = 0;
-  int len = TYPE_LENGTH (type);
-  while (copied < len)
-    {
-      int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
-      int reg_size = REGISTER_RAW_SIZE (regnum);
-      char *reg_val_buf = alloca (reg_size);
-
-      memcpy (reg_val_buf, valbuf + copied, reg_size);
-      copied += reg_size;
-      deprecated_write_register_gen (regnum, reg_val_buf);
-      i++;
-    }
+  gdb_assert (regcache_arch == gdbarch);
+
+  if (IS_SPE_PSEUDOREG (tdep, reg_nr))
+    e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
+  else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
+    ppc_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
+  else
+    internal_error (__FILE__, __LINE__,
+                   _("rs6000_pseudo_register_read: "
+                   "called on unexpected register '%s' (%d)"),
+                   gdbarch_register_name (gdbarch, reg_nr), reg_nr);
 }
 
 static void
-rs6000_store_return_value (struct type *type, char *valbuf)
+rs6000_pseudo_register_write (struct gdbarch *gdbarch,
+                             struct regcache *regcache,
+                             int reg_nr, const gdb_byte *buffer)
 {
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
-
-  if (TYPE_CODE (type) == TYPE_CODE_FLT)
+  struct gdbarch *regcache_arch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 
 
-    /* Floating point values are returned starting from FPR1 and up.
-       Say a double_double_double type could be returned in
-       FPR1/FPR2/FPR3 triple.  */
+  gdb_assert (regcache_arch == gdbarch);
 
-    deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
-                                    TYPE_LENGTH (type));
-  else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
-    {
-      if (TYPE_LENGTH (type) == 16
-          && TYPE_VECTOR (type))
-       deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
-                                        valbuf, TYPE_LENGTH (type));
-    }
+  if (IS_SPE_PSEUDOREG (tdep, reg_nr))
+    e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
+  else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
+    ppc_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
   else
-    /* Everything else is returned in GPR3 and up.  */
-    deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
-                                    valbuf, TYPE_LENGTH (type));
+    internal_error (__FILE__, __LINE__,
+                   _("rs6000_pseudo_register_write: "
+                   "called on unexpected register '%s' (%d)"),
+                   gdbarch_register_name (gdbarch, reg_nr), reg_nr);
 }
 
-/* Extract from an array REGBUF containing the (raw) register state
-   the address in which a function should return its structure value,
-   as a CORE_ADDR (or an expression that can be used as one).  */
+/* Convert a DBX STABS register number to a GDB register number.  */
+static int
+rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-static CORE_ADDR
-rs6000_extract_struct_value_address (struct regcache *regcache)
-{
-  /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
-     function call GDB knows the address of the struct return value
-     and hence, should not need to call this function.  Unfortunately,
-     the current call_function_by_hand() code only saves the most
-     recent struct address leading to occasional calls.  The code
-     should instead maintain a stack of such addresses (in the dummy
-     frame object).  */
-  /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
-     really got no idea where the return value is being stored.  While
-     r3, on function entry, contained the address it will have since
-     been reused (scratch) and hence wouldn't be valid */
-  return 0;
+  if (0 <= num && num <= 31)
+    return tdep->ppc_gp0_regnum + num;
+  else if (32 <= num && num <= 63)
+    /* FIXME: jimb/2004-05-05: What should we do when the debug info
+       specifies registers the architecture doesn't have?  Our
+       callers don't check the value we return.  */
+    return tdep->ppc_fp0_regnum + (num - 32);
+  else if (77 <= num && num <= 108)
+    return tdep->ppc_vr0_regnum + (num - 77);
+  else if (1200 <= num && num < 1200 + 32)
+    return tdep->ppc_ev0_regnum + (num - 1200);
+  else
+    switch (num)
+      {
+      case 64: 
+        return tdep->ppc_mq_regnum;
+      case 65:
+        return tdep->ppc_lr_regnum;
+      case 66: 
+        return tdep->ppc_ctr_regnum;
+      case 76: 
+        return tdep->ppc_xer_regnum;
+      case 109:
+        return tdep->ppc_vrsave_regnum;
+      case 110:
+        return tdep->ppc_vrsave_regnum - 1; /* vscr */
+      case 111:
+        return tdep->ppc_acc_regnum;
+      case 112:
+        return tdep->ppc_spefscr_regnum;
+      default: 
+        return num;
+      }
 }
 
-/* Return whether PC is in a dummy function call.
-
-   FIXME: This just checks for the end of the stack, which is broken
-   for things like stepping through gcc nested function stubs.  */
 
+/* Convert a Dwarf 2 register number to a GDB register number.  */
 static int
-rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
+rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
 {
-  return sp < pc && pc < fp;
-}
-
-/* Hook called when a new child process is started.  */
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-void
-rs6000_create_inferior (int pid)
-{
-  if (rs6000_set_host_arch_hook)
-    rs6000_set_host_arch_hook (pid);
+  if (0 <= num && num <= 31)
+    return tdep->ppc_gp0_regnum + num;
+  else if (32 <= num && num <= 63)
+    /* FIXME: jimb/2004-05-05: What should we do when the debug info
+       specifies registers the architecture doesn't have?  Our
+       callers don't check the value we return.  */
+    return tdep->ppc_fp0_regnum + (num - 32);
+  else if (1124 <= num && num < 1124 + 32)
+    return tdep->ppc_vr0_regnum + (num - 1124);
+  else if (1200 <= num && num < 1200 + 32)
+    return tdep->ppc_ev0_regnum + (num - 1200);
+  else
+    switch (num)
+      {
+      case 64:
+       return tdep->ppc_cr_regnum;
+      case 67:
+        return tdep->ppc_vrsave_regnum - 1; /* vscr */
+      case 99:
+        return tdep->ppc_acc_regnum;
+      case 100:
+        return tdep->ppc_mq_regnum;
+      case 101:
+        return tdep->ppc_xer_regnum;
+      case 108:
+        return tdep->ppc_lr_regnum;
+      case 109:
+        return tdep->ppc_ctr_regnum;
+      case 356:
+        return tdep->ppc_vrsave_regnum;
+      case 612:
+        return tdep->ppc_spefscr_regnum;
+      default:
+        return num;
+      }
 }
-\f
-/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
-
-   Usually a function pointer's representation is simply the address
-   of the function. On the RS/6000 however, a function pointer is
-   represented by a pointer to a TOC entry. This TOC entry contains
-   three words, the first word is the address of the function, the
-   second word is the TOC pointer (r2), and the third word is the
-   static chain value.  Throughout GDB it is currently assumed that a
-   function pointer contains the address of the function, which is not
-   easy to fix.  In addition, the conversion of a function address to
-   a function pointer would require allocation of a TOC entry in the
-   inferior's memory space, with all its drawbacks.  To be able to
-   call C++ virtual methods in the inferior (which are called via
-   function pointers), find_function_addr uses this function to get the
-   function address from a function pointer.  */
-
-/* Return real function address if ADDR (a function pointer) is in the data
-   space and is therefore a special function pointer.  */
 
-static CORE_ADDR
-rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
-{
-  struct obj_section *s;
+/* Translate a .eh_frame register to DWARF register, or adjust a
+   .debug_frame register.  */
 
-  s = find_pc_section (addr);
-  if (s && s->the_bfd_section->flags & SEC_CODE)
-    return addr;
+static int
+rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
+{
+  /* GCC releases before 3.4 use GCC internal register numbering in
+     .debug_frame (and .debug_info, et cetera).  The numbering is
+     different from the standard SysV numbering for everything except
+     for GPRs and FPRs.  We can not detect this problem in most cases
+     - to get accurate debug info for variables living in lr, ctr, v0,
+     et cetera, use a newer version of GCC.  But we must detect
+     one important case - lr is in column 65 in .debug_frame output,
+     instead of 108.
+
+     GCC 3.4, and the "hammer" branch, have a related problem.  They
+     record lr register saves in .debug_frame as 108, but still record
+     the return column as 65.  We fix that up too.
+
+     We can do this because 65 is assigned to fpsr, and GCC never
+     generates debug info referring to it.  To add support for
+     handwritten debug info that restores fpsr, we would need to add a
+     producer version check to this.  */
+  if (!eh_frame_p)
+    {
+      if (num == 65)
+       return 108;
+      else
+       return num;
+    }
 
-  /* ADDR is in the data space, so it's a special function pointer. */
-  return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
+  /* .eh_frame is GCC specific.  For binary compatibility, it uses GCC
+     internal register numbering; translate that to the standard DWARF2
+     register numbering.  */
+  if (0 <= num && num <= 63)   /* r0-r31,fp0-fp31 */
+    return num;
+  else if (68 <= num && num <= 75) /* cr0-cr8 */
+    return num - 68 + 86;
+  else if (77 <= num && num <= 108) /* vr0-vr31 */
+    return num - 77 + 1124;
+  else
+    switch (num)
+      {
+      case 64: /* mq */
+       return 100;
+      case 65: /* lr */
+       return 108;
+      case 66: /* ctr */
+       return 109;
+      case 76: /* xer */
+       return 101;
+      case 109: /* vrsave */
+       return 356;
+      case 110: /* vscr */
+       return 67;
+      case 111: /* spe_acc */
+       return 99;
+      case 112: /* spefscr */
+       return 612;
+      default:
+       return num;
+      }
 }
 \f
 
 /* Handling the various POWER/PowerPC variants.  */
 
+/* Information about a particular processor variant.  */
 
-/* The arrays here called registers_MUMBLE hold information about available
-   registers.
-
-   For each family of PPC variants, I've tried to isolate out the
-   common registers and put them up front, so that as long as you get
-   the general family right, GDB will correctly identify the registers
-   common to that family.  The common register sets are:
+struct variant
+  {
+    /* Name of this variant.  */
+    char *name;
 
-   For the 60x family: hid0 hid1 iabr dabr pir
+    /* English description of the variant.  */
+    char *description;
 
-   For the 505 and 860 family: eie eid nri
+    /* bfd_arch_info.arch corresponding to variant.  */
+    enum bfd_architecture arch;
 
-   For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
-   tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
-   pbu1 pbl2 pbu2
+    /* bfd_arch_info.mach corresponding to variant.  */
+    unsigned long mach;
 
-   Most of these register groups aren't anything formal.  I arrived at
-   them by looking at the registers that occurred in more than one
-   processor.
-   
-   Note: kevinb/2002-04-30: Support for the fpscr register was added
-   during April, 2002.  Slot 70 is being used for PowerPC and slot 71
-   for Power.  For PowerPC, slot 70 was unused and was already in the
-   PPC_UISA_SPRS which is ideally where fpscr should go.  For Power,
-   slot 70 was being used for "mq", so the next available slot (71)
-   was chosen.  It would have been nice to be able to make the
-   register numbers the same across processor cores, but this wasn't
-   possible without either 1) renumbering some registers for some
-   processors or 2) assigning fpscr to a really high slot that's
-   larger than any current register number.  Doing (1) is bad because
-   existing stubs would break.  Doing (2) is undesirable because it
-   would introduce a really large gap between fpscr and the rest of
-   the registers for most processors.  */
-
-/* Convenience macros for populating register arrays.  */
-
-/* Within another macro, convert S to a string.  */
-
-#define STR(s) #s
-
-/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
-   and 64 bits on 64-bit systems.  */
-#define R(name)                { STR(name), 4, 8, 0, 0 }
-
-/* Return a struct reg defining register NAME that's 32 bits on all
-   systems.  */
-#define R4(name)       { STR(name), 4, 4, 0, 0 }
-
-/* Return a struct reg defining register NAME that's 64 bits on all
-   systems.  */
-#define R8(name)       { STR(name), 8, 8, 0, 0 }
-
-/* Return a struct reg defining register NAME that's 128 bits on all
-   systems.  */
-#define R16(name)       { STR(name), 16, 16, 0, 0 }
-
-/* Return a struct reg defining floating-point register NAME.  */
-#define F(name)                { STR(name), 8, 8, 1, 0 }
-
-/* Return a struct reg defining a pseudo register NAME.  */
-#define P(name)                { STR(name), 4, 8, 0, 1}
-
-/* Return a struct reg defining register NAME that's 32 bits on 32-bit
-   systems and that doesn't exist on 64-bit systems.  */
-#define R32(name)      { STR(name), 4, 0, 0, 0 }
-
-/* Return a struct reg defining register NAME that's 64 bits on 64-bit
-   systems and that doesn't exist on 32-bit systems.  */
-#define R64(name)      { STR(name), 0, 8, 0, 0 }
-
-/* Return a struct reg placeholder for a register that doesn't exist.  */
-#define R0             { 0, 0, 0, 0, 0 }
-
-/* UISA registers common across all architectures, including POWER.  */
-
-#define COMMON_UISA_REGS \
-  /*  0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7),  \
-  /*  8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
-  /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
-  /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
-  /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7),  \
-  /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
-  /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
-  /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
-  /* 64 */ R(pc), R(ps)
-
-#define COMMON_UISA_NOFP_REGS \
-  /*  0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7),  \
-  /*  8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
-  /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
-  /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
-  /* 32 */ R0,    R0,    R0,    R0,    R0,    R0,    R0,    R0,     \
-  /* 40 */ R0,    R0,    R0,    R0,    R0,    R0,    R0,    R0,     \
-  /* 48 */ R0,    R0,    R0,    R0,    R0,    R0,    R0,    R0,     \
-  /* 56 */ R0,    R0,    R0,    R0,    R0,    R0,    R0,    R0,     \
-  /* 64 */ R(pc), R(ps)
-
-/* UISA-level SPRs for PowerPC.  */
-#define PPC_UISA_SPRS \
-  /* 66 */ R4(cr),  R(lr), R(ctr), R4(xer), R4(fpscr)
-
-/* UISA-level SPRs for PowerPC without floating point support.  */
-#define PPC_UISA_NOFP_SPRS \
-  /* 66 */ R4(cr),  R(lr), R(ctr), R4(xer), R0
-
-/* Segment registers, for PowerPC.  */
-#define PPC_SEGMENT_REGS \
-  /* 71 */ R32(sr0),  R32(sr1),  R32(sr2),  R32(sr3),  \
-  /* 75 */ R32(sr4),  R32(sr5),  R32(sr6),  R32(sr7),  \
-  /* 79 */ R32(sr8),  R32(sr9),  R32(sr10), R32(sr11), \
-  /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
-
-/* OEA SPRs for PowerPC.  */
-#define PPC_OEA_SPRS \
-  /*  87 */ R4(pvr), \
-  /*  88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
-  /*  92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
-  /*  96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
-  /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
-  /* 104 */ R(sdr1),   R64(asr),  R(dar),    R4(dsisr), \
-  /* 108 */ R(sprg0),  R(sprg1),  R(sprg2),  R(sprg3),  \
-  /* 112 */ R(srr0),   R(srr1),   R(tbl),    R(tbu),    \
-  /* 116 */ R4(dec),   R(dabr),   R4(ear)
-
-/* AltiVec registers.  */
-#define PPC_ALTIVEC_REGS \
-  /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7),  \
-  /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
-  /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
-  /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
-  /*151*/R4(vscr), R4(vrsave)
-
-/* Vectors of hi-lo general purpose registers.  */
-#define PPC_EV_REGS \
-  /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7),  \
-  /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
-  /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
-  /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
-
-/* Lower half of the EV registers.  */
-#define PPC_GPRS_PSEUDO_REGS \
-  /*  0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7),  \
-  /*  8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
-  /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
-  /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
-
-/* IBM POWER (pre-PowerPC) architecture, user-level view.  We only cover
-   user-level SPR's.  */
-static const struct reg registers_power[] =
-{
-  COMMON_UISA_REGS,
-  /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
-  /* 71 */ R4(fpscr)
-};
+    /* Target description for this variant.  */
+    struct target_desc **tdesc;
+  };
 
-/* PowerPC UISA - a PPC processor as viewed by user-level code.  A UISA-only
-   view of the PowerPC.  */
-static const struct reg registers_powerpc[] =
+static struct variant variants[] =
 {
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_ALTIVEC_REGS
-};
+  {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
+   bfd_mach_ppc, &tdesc_powerpc_altivec32},
+  {"power", "POWER user-level", bfd_arch_rs6000,
+   bfd_mach_rs6k, &tdesc_rs6000},
+  {"403", "IBM PowerPC 403", bfd_arch_powerpc,
+   bfd_mach_ppc_403, &tdesc_powerpc_403},
+  {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
+   bfd_mach_ppc_601, &tdesc_powerpc_601},
+  {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
+   bfd_mach_ppc_602, &tdesc_powerpc_602},
+  {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
+   bfd_mach_ppc_603, &tdesc_powerpc_603},
+  {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
+   604, &tdesc_powerpc_604},
+  {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
+   bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
+  {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
+   bfd_mach_ppc_505, &tdesc_powerpc_505},
+  {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
+   bfd_mach_ppc_860, &tdesc_powerpc_860},
+  {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
+   bfd_mach_ppc_750, &tdesc_powerpc_750},
+  {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
+   bfd_mach_ppc_7400, &tdesc_powerpc_7400},
+  {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
+   bfd_mach_ppc_e500, &tdesc_powerpc_e500},
 
-/* PowerPC UISA - a PPC processor as viewed by user-level
-   code, but without floating point registers.  */
-static const struct reg registers_powerpc_nofp[] =
-{
-  COMMON_UISA_NOFP_REGS,
-  PPC_UISA_SPRS
-};
+  /* 64-bit */
+  {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
+   bfd_mach_ppc64, &tdesc_powerpc_altivec64},
+  {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
+   bfd_mach_ppc_620, &tdesc_powerpc_64},
+  {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
+   bfd_mach_ppc_630, &tdesc_powerpc_64},
+  {"a35", "PowerPC A35", bfd_arch_powerpc,
+   bfd_mach_ppc_a35, &tdesc_powerpc_64},
+  {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
+   bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
+  {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
+   bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
 
-/* IBM PowerPC 403.  */
-static const struct reg registers_403[] =
-{
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(icdbdr), R(esr),  R(dear), R(evpr),
-  /* 123 */ R(cdbcr),  R(tsr),  R(tcr),  R(pit),
-  /* 127 */ R(tbhi),   R(tblo), R(srr2), R(srr3),
-  /* 131 */ R(dbsr),   R(dbcr), R(iac1), R(iac2),
-  /* 135 */ R(dac1),   R(dac2), R(dccr), R(iccr),
-  /* 139 */ R(pbl1),   R(pbu1), R(pbl2), R(pbu2)
-};
+  /* FIXME: I haven't checked the register sets of the following.  */
+  {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
+   bfd_mach_rs6k_rs1, &tdesc_rs6000},
+  {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
+   bfd_mach_rs6k_rsc, &tdesc_rs6000},
+  {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
+   bfd_mach_rs6k_rs2, &tdesc_rs6000},
 
-/* IBM PowerPC 403GC.  */
-static const struct reg registers_403GC[] =
-{
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(icdbdr), R(esr),  R(dear), R(evpr),
-  /* 123 */ R(cdbcr),  R(tsr),  R(tcr),  R(pit),
-  /* 127 */ R(tbhi),   R(tblo), R(srr2), R(srr3),
-  /* 131 */ R(dbsr),   R(dbcr), R(iac1), R(iac2),
-  /* 135 */ R(dac1),   R(dac2), R(dccr), R(iccr),
-  /* 139 */ R(pbl1),   R(pbu1), R(pbl2), R(pbu2),
-  /* 143 */ R(zpr),    R(pid),  R(sgr),  R(dcwr),
-  /* 147 */ R(tbhu),   R(tblu)
+  {0, 0, 0, 0, 0}
 };
 
-/* Motorola PowerPC 505.  */
-static const struct reg registers_505[] =
+/* Return the variant corresponding to architecture ARCH and machine number
+   MACH.  If no such variant exists, return null.  */
+
+static const struct variant *
+find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
 {
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(eie), R(eid), R(nri)
-};
+  const struct variant *v;
 
-/* Motorola PowerPC 860 or 850.  */
-static const struct reg registers_860[] =
-{
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
-  /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
-  /* 127 */ R(der), R(counta), R(countb), R(cmpe),
-  /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
-  /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
-  /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
-  /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
-  /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
-  /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
-  /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
-  /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
-  /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
-};
+  for (v = variants; v->name; v++)
+    if (arch == v->arch && mach == v->mach)
+      return v;
 
-/* Motorola PowerPC 601.  Note that the 601 has different register numbers
-   for reading and writing RTCU and RTCL.  However, how one reads and writes a
-   register is the stub's problem.  */
-static const struct reg registers_601[] =
-{
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
-  /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
-};
+  return NULL;
+}
 
-/* Motorola PowerPC 602.  */
-static const struct reg registers_602[] =
+static int
+gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
 {
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(hid0), R(hid1), R(iabr), R0,
-  /* 123 */ R0, R(tcr), R(ibr), R(esassr),
-  /* 127 */ R(sebr), R(ser), R(sp), R(lt)
-};
+  if (!info->disassembler_options)
+    info->disassembler_options = "any";
 
-/* Motorola/IBM PowerPC 603 or 603e.  */
-static const struct reg registers_603[] =
+  if (info->endian == BFD_ENDIAN_BIG)
+    return print_insn_big_powerpc (memaddr, info);
+  else
+    return print_insn_little_powerpc (memaddr, info);
+}
+\f
+static CORE_ADDR
+rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
 {
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(hid0), R(hid1), R(iabr), R0,
-  /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
-  /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
-};
+  return frame_unwind_register_unsigned (next_frame,
+                                        gdbarch_pc_regnum (gdbarch));
+}
 
-/* Motorola PowerPC 604 or 604e.  */
-static const struct reg registers_604[] =
+static struct frame_id
+rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
 {
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
-  /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
-  /* 127 */ R(sia), R(sda)
-};
+  return frame_id_build (get_frame_register_unsigned
+                         (this_frame, gdbarch_sp_regnum (gdbarch)),
+                        get_frame_pc (this_frame));
+}
 
-/* Motorola/IBM PowerPC 750 or 740.  */
-static const struct reg registers_750[] =
-{
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
-  /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
-  /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
-  /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
-  /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
-  /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
+struct rs6000_frame_cache
+{
+  CORE_ADDR base;
+  CORE_ADDR initial_sp;
+  struct trad_frame_saved_reg *saved_regs;
 };
 
-
-/* Motorola PowerPC 7400.  */
-static const struct reg registers_7400[] =
+static struct rs6000_frame_cache *
+rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
 {
-  /* gpr0-gpr31, fpr0-fpr31 */
-  COMMON_UISA_REGS,
-  /* ctr, xre, lr, cr */
-  PPC_UISA_SPRS,
-  /* sr0-sr15 */
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* vr0-vr31, vrsave, vscr */
-  PPC_ALTIVEC_REGS
-  /* FIXME? Add more registers? */
-};
+  struct rs6000_frame_cache *cache;
+  struct gdbarch *gdbarch = get_frame_arch (this_frame);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  struct rs6000_framedata fdata;
+  int wordsize = tdep->wordsize;
+  CORE_ADDR func, pc;
+
+  if ((*this_cache) != NULL)
+    return (*this_cache);
+  cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
+  (*this_cache) = cache;
+  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
+
+  func = get_frame_func (this_frame);
+  pc = get_frame_pc (this_frame);
+  skip_prologue (gdbarch, func, pc, &fdata);
+
+  /* Figure out the parent's stack pointer.  */
+
+  /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
+     address of the current frame.  Things might be easier if the
+     ->frame pointed to the outer-most address of the frame.  In
+     the mean time, the address of the prev frame is used as the
+     base address of this frame.  */
+  cache->base = get_frame_register_unsigned
+               (this_frame, gdbarch_sp_regnum (gdbarch));
+
+  /* If the function appears to be frameless, check a couple of likely
+     indicators that we have simply failed to find the frame setup.
+     Two common cases of this are missing symbols (i.e.
+     get_frame_func returns the wrong address or 0), and assembly
+     stubs which have a fast exit path but set up a frame on the slow
+     path.
+
+     If the LR appears to return to this function, then presume that
+     we have an ABI compliant frame that we failed to find.  */
+  if (fdata.frameless && fdata.lr_offset == 0)
+    {
+      CORE_ADDR saved_lr;
+      int make_frame = 0;
 
-/* Motorola e500.  */
-static const struct reg registers_e500[] =
-{
-  R(pc), R(ps),
-  /* cr, lr, ctr, xer, "" */
-  PPC_UISA_NOFP_SPRS,
-  /* 7...38 */
-  PPC_EV_REGS,
-  R8(acc), R(spefscr),
-  /* NOTE: Add new registers here the end of the raw register
-     list and just before the first pseudo register.  */
-  /* 39...70 */
-  PPC_GPRS_PSEUDO_REGS
-};
+      saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
+      if (func == 0 && saved_lr == pc)
+       make_frame = 1;
+      else if (func != 0)
+       {
+         CORE_ADDR saved_func = get_pc_function_start (saved_lr);
+         if (func == saved_func)
+           make_frame = 1;
+       }
 
-/* Information about a particular processor variant.  */
+      if (make_frame)
+       {
+         fdata.frameless = 0;
+         fdata.lr_offset = tdep->lr_frame_offset;
+       }
+    }
 
-struct variant
-  {
-    /* Name of this variant.  */
-    char *name;
+  if (!fdata.frameless)
+    /* Frameless really means stackless.  */
+    cache->base = read_memory_unsigned_integer (cache->base, wordsize);
 
-    /* English description of the variant.  */
-    char *description;
+  trad_frame_set_value (cache->saved_regs,
+                       gdbarch_sp_regnum (gdbarch), cache->base);
 
-    /* bfd_arch_info.arch corresponding to variant.  */
-    enum bfd_architecture arch;
+  /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
+     All fpr's from saved_fpr to fp31 are saved.  */
 
-    /* bfd_arch_info.mach corresponding to variant.  */
-    unsigned long mach;
+  if (fdata.saved_fpr >= 0)
+    {
+      int i;
+      CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
+
+      /* If skip_prologue says floating-point registers were saved,
+         but the current architecture has no floating-point registers,
+         then that's strange.  But we have no indices to even record
+         the addresses under, so we just ignore it.  */
+      if (ppc_floating_point_unit_p (gdbarch))
+        for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
+          {
+            cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
+            fpr_addr += 8;
+          }
+    }
+
+  /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
+     All gpr's from saved_gpr to gpr31 are saved.  */
+
+  if (fdata.saved_gpr >= 0)
+    {
+      int i;
+      CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
+      for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
+       {
+         cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
+         gpr_addr += wordsize;
+       }
+    }
+
+  /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
+     All vr's from saved_vr to vr31 are saved.  */
+  if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
+    {
+      if (fdata.saved_vr >= 0)
+       {
+         int i;
+         CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
+         for (i = fdata.saved_vr; i < 32; i++)
+           {
+             cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
+             vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
+           }
+       }
+    }
+
+  /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
+     All vr's from saved_ev to ev31 are saved. ????? */
+  if (tdep->ppc_ev0_regnum != -1)
+    {
+      if (fdata.saved_ev >= 0)
+       {
+         int i;
+         CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
+         for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
+           {
+             cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
+              cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
+             ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
+            }
+       }
+    }
 
-    /* Number of real registers.  */
-    int nregs;
+  /* If != 0, fdata.cr_offset is the offset from the frame that
+     holds the CR.  */
+  if (fdata.cr_offset != 0)
+    cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
 
-    /* Number of pseudo registers.  */
-    int npregs;
+  /* If != 0, fdata.lr_offset is the offset from the frame that
+     holds the LR.  */
+  if (fdata.lr_offset != 0)
+    cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
+  /* The PC is found in the link register.  */
+  cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
+    cache->saved_regs[tdep->ppc_lr_regnum];
 
-    /* Number of total registers (the sum of nregs and npregs).  */
-    int num_tot_regs;
+  /* If != 0, fdata.vrsave_offset is the offset from the frame that
+     holds the VRSAVE.  */
+  if (fdata.vrsave_offset != 0)
+    cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
 
-    /* Table of register names; registers[R] is the name of the register
-       number R.  */
-    const struct reg *regs;
-  };
+  if (fdata.alloca_reg < 0)
+    /* If no alloca register used, then fi->frame is the value of the
+       %sp for this frame, and it is good enough.  */
+    cache->initial_sp
+      = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
+  else
+    cache->initial_sp
+      = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
 
-#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
+  return cache;
+}
 
-static int
-num_registers (const struct reg *reg_list, int num_tot_regs)
+static void
+rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
+                     struct frame_id *this_id)
 {
-  int i;
-  int nregs = 0;
+  struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
+                                                       this_cache);
+  /* This marks the outermost frame.  */
+  if (info->base == 0)
+    return;
 
-  for (i = 0; i < num_tot_regs; i++)
-    if (!reg_list[i].pseudo)
-      nregs++;
-       
-  return nregs;
+  (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
 }
 
-static int
-num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
+static struct value *
+rs6000_frame_prev_register (struct frame_info *this_frame,
+                           void **this_cache, int regnum)
 {
-  int i;
-  int npregs = 0;
-
-  for (i = 0; i < num_tot_regs; i++)
-    if (reg_list[i].pseudo)
-      npregs ++; 
-
-  return npregs;
+  struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
+                                                       this_cache);
+  return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
 }
 
-/* Information in this table comes from the following web sites:
-   IBM:       http://www.chips.ibm.com:80/products/embedded/
-   Motorola:  http://www.mot.com/SPS/PowerPC/
-
-   I'm sure I've got some of the variant descriptions not quite right.
-   Please report any inaccuracies you find to GDB's maintainer.
-
-   If you add entries to this table, please be sure to allow the new
-   value as an argument to the --with-cpu flag, in configure.in.  */
-
-static struct variant variants[] =
+static const struct frame_unwind rs6000_frame_unwind =
 {
+  NORMAL_FRAME,
+  rs6000_frame_this_id,
+  rs6000_frame_prev_register,
+  NULL,
+  default_frame_sniffer
+};
+\f
 
-  {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
-   bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
-   registers_powerpc},
-  {"power", "POWER user-level", bfd_arch_rs6000,
-   bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
-   registers_power},
-  {"403", "IBM PowerPC 403", bfd_arch_powerpc,
-   bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
-   registers_403},
-  {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
-   bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
-   registers_601},
-  {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
-   bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
-   registers_602},
-  {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
-   bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
-   registers_603},
-  {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
-   604, -1, -1, tot_num_registers (registers_604),
-   registers_604},
-  {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
-   bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
-   registers_403GC},
-  {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
-   bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
-   registers_505},
-  {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
-   bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
-   registers_860},
-  {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
-   bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
-   registers_750},
-  {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
-   bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
-   registers_7400},
-  {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
-   bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
-   registers_e500},
-
-  /* 64-bit */
-  {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
-   bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
-   registers_powerpc},
-  {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
-   bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
-   registers_powerpc},
-  {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
-   bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
-   registers_powerpc},
-  {"a35", "PowerPC A35", bfd_arch_powerpc,
-   bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
-   registers_powerpc},
-  {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
-   bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
-   registers_powerpc},
-  {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
-   bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
-   registers_powerpc},
-
-  /* FIXME: I haven't checked the register sets of the following.  */
-  {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
-   bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
-   registers_power},
-  {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
-   bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
-   registers_power},
-  {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
-   bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
-   registers_power},
+static CORE_ADDR
+rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
+{
+  struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
+                                                       this_cache);
+  return info->initial_sp;
+}
 
-  {0, 0, 0, 0, 0, 0, 0, 0}
+static const struct frame_base rs6000_frame_base = {
+  &rs6000_frame_unwind,
+  rs6000_frame_base_address,
+  rs6000_frame_base_address,
+  rs6000_frame_base_address
 };
 
-/* Initialize the number of registers and pseudo registers in each variant.  */
+static const struct frame_base *
+rs6000_frame_base_sniffer (struct frame_info *this_frame)
+{
+  return &rs6000_frame_base;
+}
+
+/* DWARF-2 frame support.  Used to handle the detection of
+  clobbered registers during function calls.  */
 
 static void
-init_variants (void)
+ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
+                           struct dwarf2_frame_state_reg *reg,
+                           struct frame_info *this_frame)
 {
-  struct variant *v;
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-  for (v = variants; v->name; v++)
-    {
-      if (v->nregs == -1)
-        v->nregs = num_registers (v->regs, v->num_tot_regs);
-      if (v->npregs == -1)
-        v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
-    }  
-}
+  /* PPC32 and PPC64 ABI's are the same regarding volatile and
+     non-volatile registers.  We will use the same code for both.  */
 
-/* Return the variant corresponding to architecture ARCH and machine number
-   MACH.  If no such variant exists, return null.  */
+  /* Call-saved GP registers.  */
+  if ((regnum >= tdep->ppc_gp0_regnum + 14
+      && regnum <= tdep->ppc_gp0_regnum + 31)
+      || (regnum == tdep->ppc_gp0_regnum + 1))
+    reg->how = DWARF2_FRAME_REG_SAME_VALUE;
 
-static const struct variant *
-find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
-{
-  const struct variant *v;
+  /* Call-clobbered GP registers.  */
+  if ((regnum >= tdep->ppc_gp0_regnum + 3
+      && regnum <= tdep->ppc_gp0_regnum + 12)
+      || (regnum == tdep->ppc_gp0_regnum))
+    reg->how = DWARF2_FRAME_REG_UNDEFINED;
 
-  for (v = variants; v->name; v++)
-    if (arch == v->arch && mach == v->mach)
-      return v;
+  /* Deal with FP registers, if supported.  */
+  if (tdep->ppc_fp0_regnum >= 0)
+    {
+      /* Call-saved FP registers.  */
+      if ((regnum >= tdep->ppc_fp0_regnum + 14
+         && regnum <= tdep->ppc_fp0_regnum + 31))
+       reg->how = DWARF2_FRAME_REG_SAME_VALUE;
+
+      /* Call-clobbered FP registers.  */
+      if ((regnum >= tdep->ppc_fp0_regnum
+         && regnum <= tdep->ppc_fp0_regnum + 13))
+       reg->how = DWARF2_FRAME_REG_UNDEFINED;
+    }
 
-  return NULL;
-}
+  /* Deal with ALTIVEC registers, if supported.  */
+  if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
+    {
+      /* Call-saved Altivec registers.  */
+      if ((regnum >= tdep->ppc_vr0_regnum + 20
+         && regnum <= tdep->ppc_vr0_regnum + 31)
+         || regnum == tdep->ppc_vrsave_regnum)
+       reg->how = DWARF2_FRAME_REG_SAME_VALUE;
+
+      /* Call-clobbered Altivec registers.  */
+      if ((regnum >= tdep->ppc_vr0_regnum
+         && regnum <= tdep->ppc_vr0_regnum + 19))
+       reg->how = DWARF2_FRAME_REG_UNDEFINED;
+    }
 
-static int
-gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
-{
-  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
-    return print_insn_big_powerpc (memaddr, info);
-  else
-    return print_insn_little_powerpc (memaddr, info);
+  /* Handle PC register and Stack Pointer correctly.  */
+  if (regnum == gdbarch_pc_regnum (gdbarch))
+    reg->how = DWARF2_FRAME_REG_RA;
+  else if (regnum == gdbarch_sp_regnum (gdbarch))
+    reg->how = DWARF2_FRAME_REG_CFA;
 }
-\f
+
+
 /* Initialize the current architecture based on INFO.  If possible, re-use an
    architecture from ARCHES, which is a list of architectures already created
    during this debugging session.
@@ -2700,14 +2768,19 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
 {
   struct gdbarch *gdbarch;
   struct gdbarch_tdep *tdep;
-  int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
-  struct reg *regs;
-  const struct variant *v;
+  int wordsize, from_xcoff_exec, from_elf_exec;
   enum bfd_architecture arch;
   unsigned long mach;
   bfd abfd;
-  int sysv_abi;
   asection *sect;
+  enum auto_boolean soft_float_flag = powerpc_soft_float_global;
+  int soft_float;
+  enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
+  int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0;
+  int tdesc_wordsize = -1;
+  const struct target_desc *tdesc = info.target_desc;
+  struct tdesc_arch_data *tdesc_data = NULL;
+  int num_pseudoregs = 0;
 
   from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
     bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
@@ -2715,8 +2788,6 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
   from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
     bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
 
-  sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
-
   /* Check word size.  If INFO is from a binary file, infer it from
      that, else choose a likely default.  */
   if (from_xcoff_exec)
@@ -2733,6 +2804,8 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
       else
        wordsize = 4;
     }
+  else if (tdesc_has_registers (tdesc))
+    wordsize = -1;
   else
     {
       if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
@@ -2742,6 +2815,302 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
        wordsize = 4;
     }
 
+  /* Get the architecture and machine from the BFD.  */
+  arch = info.bfd_arch_info->arch;
+  mach = info.bfd_arch_info->mach;
+
+  /* For e500 executables, the apuinfo section is of help here.  Such
+     section contains the identifier and revision number of each
+     Application-specific Processing Unit that is present on the
+     chip.  The content of the section is determined by the assembler
+     which looks at each instruction and determines which unit (and
+     which version of it) can execute it. In our case we just look for
+     the existance of the section.  */
+
+  if (info.abfd)
+    {
+      sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
+      if (sect)
+       {
+         arch = info.bfd_arch_info->arch;
+         mach = bfd_mach_ppc_e500;
+         bfd_default_set_arch_mach (&abfd, arch, mach);
+         info.bfd_arch_info = bfd_get_arch_info (&abfd);
+       }
+    }
+
+  /* Find a default target description which describes our register
+     layout, if we do not already have one.  */
+  if (! tdesc_has_registers (tdesc))
+    {
+      const struct variant *v;
+
+      /* Choose variant.  */
+      v = find_variant_by_arch (arch, mach);
+      if (!v)
+       return NULL;
+
+      tdesc = *v->tdesc;
+    }
+
+  gdb_assert (tdesc_has_registers (tdesc));
+
+  /* Check any target description for validity.  */
+  if (tdesc_has_registers (tdesc))
+    {
+      static const char *const gprs[] = {
+       "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+       "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
+       "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
+       "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
+      };
+      static const char *const segment_regs[] = {
+       "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
+       "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
+      };
+      const struct tdesc_feature *feature;
+      int i, valid_p;
+      static const char *const msr_names[] = { "msr", "ps" };
+      static const char *const cr_names[] = { "cr", "cnd" };
+      static const char *const ctr_names[] = { "ctr", "cnt" };
+
+      feature = tdesc_find_feature (tdesc,
+                                   "org.gnu.gdb.power.core");
+      if (feature == NULL)
+       return NULL;
+
+      tdesc_data = tdesc_data_alloc ();
+
+      valid_p = 1;
+      for (i = 0; i < ppc_num_gprs; i++)
+       valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
+      valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
+                                         "pc");
+      valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
+                                         "lr");
+      valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
+                                         "xer");
+
+      /* Allow alternate names for these registers, to accomodate GDB's
+        historic naming.  */
+      valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
+                                                 PPC_MSR_REGNUM, msr_names);
+      valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
+                                                 PPC_CR_REGNUM, cr_names);
+      valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
+                                                 PPC_CTR_REGNUM, ctr_names);
+
+      if (!valid_p)
+       {
+         tdesc_data_cleanup (tdesc_data);
+         return NULL;
+       }
+
+      have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
+                                        "mq");
+
+      tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
+      if (wordsize == -1)
+       wordsize = tdesc_wordsize;
+
+      feature = tdesc_find_feature (tdesc,
+                                   "org.gnu.gdb.power.fpu");
+      if (feature != NULL)
+       {
+         static const char *const fprs[] = {
+           "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
+           "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
+           "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
+           "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
+         };
+         valid_p = 1;
+         for (i = 0; i < ppc_num_fprs; i++)
+           valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                               PPC_F0_REGNUM + i, fprs[i]);
+         valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                             PPC_FPSCR_REGNUM, "fpscr");
+
+         if (!valid_p)
+           {
+             tdesc_data_cleanup (tdesc_data);
+             return NULL;
+           }
+         have_fpu = 1;
+       }
+      else
+       have_fpu = 0;
+
+      /* The DFP pseudo-registers will be available when there are floating
+         point registers.  */
+      have_dfp = have_fpu;
+
+      feature = tdesc_find_feature (tdesc,
+                                   "org.gnu.gdb.power.altivec");
+      if (feature != NULL)
+       {
+         static const char *const vector_regs[] = {
+           "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
+           "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
+           "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
+           "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
+         };
+
+         valid_p = 1;
+         for (i = 0; i < ppc_num_gprs; i++)
+           valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                               PPC_VR0_REGNUM + i,
+                                               vector_regs[i]);
+         valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                             PPC_VSCR_REGNUM, "vscr");
+         valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                             PPC_VRSAVE_REGNUM, "vrsave");
+
+         if (have_spe || !valid_p)
+           {
+             tdesc_data_cleanup (tdesc_data);
+             return NULL;
+           }
+         have_altivec = 1;
+       }
+      else
+       have_altivec = 0;
+
+      /* On machines supporting the SPE APU, the general-purpose registers
+        are 64 bits long.  There are SIMD vector instructions to treat them
+        as pairs of floats, but the rest of the instruction set treats them
+        as 32-bit registers, and only operates on their lower halves.
+
+        In the GDB regcache, we treat their high and low halves as separate
+        registers.  The low halves we present as the general-purpose
+        registers, and then we have pseudo-registers that stitch together
+        the upper and lower halves and present them as pseudo-registers.
+
+        Thus, the target description is expected to supply the upper
+        halves separately.  */
+
+      feature = tdesc_find_feature (tdesc,
+                                   "org.gnu.gdb.power.spe");
+      if (feature != NULL)
+       {
+         static const char *const upper_spe[] = {
+           "ev0h", "ev1h", "ev2h", "ev3h",
+           "ev4h", "ev5h", "ev6h", "ev7h",
+           "ev8h", "ev9h", "ev10h", "ev11h",
+           "ev12h", "ev13h", "ev14h", "ev15h",
+           "ev16h", "ev17h", "ev18h", "ev19h",
+           "ev20h", "ev21h", "ev22h", "ev23h",
+           "ev24h", "ev25h", "ev26h", "ev27h",
+           "ev28h", "ev29h", "ev30h", "ev31h"
+         };
+
+         valid_p = 1;
+         for (i = 0; i < ppc_num_gprs; i++)
+           valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                               PPC_SPE_UPPER_GP0_REGNUM + i,
+                                               upper_spe[i]);
+         valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                             PPC_SPE_ACC_REGNUM, "acc");
+         valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                             PPC_SPE_FSCR_REGNUM, "spefscr");
+
+         if (have_mq || have_fpu || !valid_p)
+           {
+             tdesc_data_cleanup (tdesc_data);
+             return NULL;
+           }
+         have_spe = 1;
+       }
+      else
+       have_spe = 0;
+    }
+
+  /* If we have a 64-bit binary on a 32-bit target, complain.  Also
+     complain for a 32-bit binary on a 64-bit target; we do not yet
+     support that.  For instance, the 32-bit ABI routines expect
+     32-bit GPRs.
+
+     As long as there isn't an explicit target description, we'll
+     choose one based on the BFD architecture and get a word size
+     matching the binary (probably powerpc:common or
+     powerpc:common64).  So there is only trouble if a 64-bit target
+     supplies a 64-bit description while debugging a 32-bit
+     binary.  */
+  if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
+    {
+      tdesc_data_cleanup (tdesc_data);
+      return NULL;
+    }
+
+#ifdef HAVE_ELF
+  if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
+    {
+      switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
+                                       Tag_GNU_Power_ABI_FP))
+       {
+       case 1:
+         soft_float_flag = AUTO_BOOLEAN_FALSE;
+         break;
+       case 2:
+         soft_float_flag = AUTO_BOOLEAN_TRUE;
+         break;
+       default:
+         break;
+       }
+    }
+
+  if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
+    {
+      switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
+                                       Tag_GNU_Power_ABI_Vector))
+       {
+       case 1:
+         vector_abi = POWERPC_VEC_GENERIC;
+         break;
+       case 2:
+         vector_abi = POWERPC_VEC_ALTIVEC;
+         break;
+       case 3:
+         vector_abi = POWERPC_VEC_SPE;
+         break;
+       default:
+         break;
+       }
+    }
+#endif
+
+  if (soft_float_flag == AUTO_BOOLEAN_TRUE)
+    soft_float = 1;
+  else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
+    soft_float = 0;
+  else
+    soft_float = !have_fpu;
+
+  /* If we have a hard float binary or setting but no floating point
+     registers, downgrade to soft float anyway.  We're still somewhat
+     useful in this scenario.  */
+  if (!soft_float && !have_fpu)
+    soft_float = 1;
+
+  /* Similarly for vector registers.  */
+  if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
+    vector_abi = POWERPC_VEC_GENERIC;
+
+  if (vector_abi == POWERPC_VEC_SPE && !have_spe)
+    vector_abi = POWERPC_VEC_GENERIC;
+
+  if (vector_abi == POWERPC_VEC_AUTO)
+    {
+      if (have_altivec)
+       vector_abi = POWERPC_VEC_ALTIVEC;
+      else if (have_spe)
+       vector_abi = POWERPC_VEC_SPE;
+      else
+       vector_abi = POWERPC_VEC_GENERIC;
+    }
+
+  /* Do not limit the vector ABI based on available hardware, since we
+     do not yet know what hardware we'll decide we have.  Yuck!  FIXME!  */
+
   /* Find a candidate among extant architectures.  */
   for (arches = gdbarch_list_lookup_by_info (arches, &info);
        arches != NULL;
@@ -2751,8 +3120,16 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
          meaningful, because 64-bit CPUs can run in 32-bit mode.  So, perform
          separate word size check.  */
       tdep = gdbarch_tdep (arches->gdbarch);
+      if (tdep && tdep->soft_float != soft_float)
+       continue;
+      if (tdep && tdep->vector_abi != vector_abi)
+       continue;
       if (tdep && tdep->wordsize == wordsize)
-       return arches->gdbarch;
+       {
+         if (tdesc_data != NULL)
+           tdesc_data_cleanup (tdesc_data);
+         return arches->gdbarch;
+       }
     }
 
   /* None found, create a new architecture from INFO, whose bfd_arch_info
@@ -2763,155 +3140,74 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
        - "set arch"            trust blindly
        - GDB startup           useless but harmless */
 
-  if (!from_xcoff_exec)
-    {
-      arch = info.bfd_arch_info->arch;
-      mach = info.bfd_arch_info->mach;
-    }
-  else
-    {
-      arch = bfd_arch_powerpc;
-      bfd_default_set_arch_mach (&abfd, arch, 0);
-      info.bfd_arch_info = bfd_get_arch_info (&abfd);
-      mach = info.bfd_arch_info->mach;
-    }
-  tdep = xmalloc (sizeof (struct gdbarch_tdep));
+  tdep = XCALLOC (1, struct gdbarch_tdep);
   tdep->wordsize = wordsize;
+  tdep->soft_float = soft_float;
+  tdep->vector_abi = vector_abi;
 
-  /* For e500 executables, the apuinfo section is of help here.  Such
-     section contains the identifier and revision number of each
-     Application-specific Processing Unit that is present on the
-     chip.  The content of the section is determined by the assembler
-     which looks at each instruction and determines which unit (and
-     which version of it) can execute it. In our case we just look for
-     the existance of the section.  */
+  gdbarch = gdbarch_alloc (&info, tdep);
 
-  if (info.abfd)
-    {
-      sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
-      if (sect)
-       {
-         arch = info.bfd_arch_info->arch;
-         mach = bfd_mach_ppc_e500;
-         bfd_default_set_arch_mach (&abfd, arch, mach);
-         info.bfd_arch_info = bfd_get_arch_info (&abfd);
-       }
-    }
+  tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
+  tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
+  tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
+  tdep->ppc_cr_regnum = PPC_CR_REGNUM;
+  tdep->ppc_lr_regnum = PPC_LR_REGNUM;
+  tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
+  tdep->ppc_xer_regnum = PPC_XER_REGNUM;
+  tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
+
+  tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
+  tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
+  tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
+  tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
+  tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
+  tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
+  tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
+
+  set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
+  set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
+  set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
+  set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
+  set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
+
+  /* The XML specification for PowerPC sensibly calls the MSR "msr".
+     GDB traditionally called it "ps", though, so let GDB add an
+     alias.  */
+  set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
 
-  gdbarch = gdbarch_alloc (&info, tdep);
-  power = arch == bfd_arch_rs6000;
-
-  /* Initialize the number of real and pseudo registers in each variant.  */
-  init_variants ();
-
-  /* Choose variant.  */
-  v = find_variant_by_arch (arch, mach);
-  if (!v)
-    return NULL;
-
-  tdep->regs = v->regs;
-
-  tdep->ppc_gp0_regnum = 0;
-  tdep->ppc_gplast_regnum = 31;
-  tdep->ppc_toc_regnum = 2;
-  tdep->ppc_ps_regnum = 65;
-  tdep->ppc_cr_regnum = 66;
-  tdep->ppc_lr_regnum = 67;
-  tdep->ppc_ctr_regnum = 68;
-  tdep->ppc_xer_regnum = 69;
-  if (v->mach == bfd_mach_ppc_601)
-    tdep->ppc_mq_regnum = 124;
-  else if (power)
-    tdep->ppc_mq_regnum = 70;
+  if (wordsize == 8)
+    set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
   else
-    tdep->ppc_mq_regnum = -1;
-  tdep->ppc_fpscr_regnum = power ? 71 : 70;
-
-  set_gdbarch_pc_regnum (gdbarch, 64);
-  set_gdbarch_sp_regnum (gdbarch, 1);
-  set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
-  set_gdbarch_deprecated_extract_return_value (gdbarch,
-                                              rs6000_extract_return_value);
-  set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
-
-  if (v->arch == bfd_arch_powerpc)
-    switch (v->mach)
-      {
-      case bfd_mach_ppc: 
-       tdep->ppc_vr0_regnum = 71;
-       tdep->ppc_vrsave_regnum = 104;
-       tdep->ppc_ev0_regnum = -1;
-       tdep->ppc_ev31_regnum = -1;
-       break;
-      case bfd_mach_ppc_7400:
-       tdep->ppc_vr0_regnum = 119;
-       tdep->ppc_vrsave_regnum = 152;
-       tdep->ppc_ev0_regnum = -1;
-       tdep->ppc_ev31_regnum = -1;
-       break;
-      case bfd_mach_ppc_e500:
-        tdep->ppc_gp0_regnum = 41;
-        tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
-        tdep->ppc_toc_regnum = -1;
-        tdep->ppc_ps_regnum = 1;
-        tdep->ppc_cr_regnum = 2;
-        tdep->ppc_lr_regnum = 3;
-        tdep->ppc_ctr_regnum = 4;
-        tdep->ppc_xer_regnum = 5;
-       tdep->ppc_ev0_regnum = 7;
-       tdep->ppc_ev31_regnum = 38;
-        set_gdbarch_pc_regnum (gdbarch, 0);
-        set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
-        set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
-        set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
-        set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
-        set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
-        set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
-        set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
-       break;
-      default:
-       tdep->ppc_vr0_regnum = -1;
-       tdep->ppc_vrsave_regnum = -1;
-       tdep->ppc_ev0_regnum = -1;
-       tdep->ppc_ev31_regnum = -1;
-       break;
-      }   
-
-  /* Sanity check on registers.  */
-  gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
+    set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
 
   /* Set lr_frame_offset.  */
   if (wordsize == 8)
     tdep->lr_frame_offset = 16;
-  else if (sysv_abi)
-    tdep->lr_frame_offset = 4;
   else
-    tdep->lr_frame_offset = 8;
+    tdep->lr_frame_offset = 4;
 
-  /* Calculate byte offsets in raw register array.  */
-  tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
-  for (i = off = 0; i < v->num_tot_regs; i++)
+  if (have_spe || have_dfp)
     {
-      tdep->regoff[i] = off;
-      off += regsize (v->regs + i, wordsize);
+      set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
+      set_gdbarch_pseudo_register_write (gdbarch, rs6000_pseudo_register_write);
     }
 
+  set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
+
   /* Select instruction printer.  */
-  if (arch == power)
+  if (arch == bfd_arch_rs6000)
     set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
   else
     set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
 
-  set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
+  set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
 
-  set_gdbarch_num_regs (gdbarch, v->nregs);
-  set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
-  set_gdbarch_register_name (gdbarch, rs6000_register_name);
-  set_gdbarch_deprecated_register_size (gdbarch, wordsize);
-  set_gdbarch_deprecated_register_bytes (gdbarch, off);
-  set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
-  set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
-  set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
+  if (have_spe)
+    num_pseudoregs += 32;
+  if (have_dfp)
+    num_pseudoregs += 16;
+
+  set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
 
   set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
   set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
@@ -2920,89 +3216,119 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
   set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
   set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
   set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
-  if (sysv_abi)
-    set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
-  else
-    set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
+  set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
   set_gdbarch_char_signed (gdbarch, 0);
 
   set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
-  if (sysv_abi && wordsize == 8)
+  if (wordsize == 8)
     /* PPC64 SYSV.  */
     set_gdbarch_frame_red_zone_size (gdbarch, 288);
-  else if (!sysv_abi && wordsize == 4)
-    /* PowerOpen / AIX 32 bit.  */
-    set_gdbarch_frame_red_zone_size (gdbarch, 220);
-  set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
-  set_gdbarch_believe_pcc_promotion (gdbarch, 1);
-
-  set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
-  set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
-  set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
+
+  set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
+  set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
+  set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
+
   set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
-  /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
-     is correct for the SysV ABI when the wordsize is 8, but I'm also
-     fairly certain that ppc_sysv_abi_push_arguments() will give even
-     worse results since it only works for 32-bit code.  So, for the moment,
-     we're better off calling rs6000_push_arguments() since it works for
-     64-bit code.  At some point in the future, this matter needs to be
-     revisited.  */
-  if (sysv_abi && wordsize == 4)
-    set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
-  else
-    set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
+  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
 
-  set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
-  set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
+  if (wordsize == 4)
+    set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
+  else if (wordsize == 8)
+    set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
 
   set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
+  set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
+
   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
-  set_gdbarch_decr_pc_after_break (gdbarch, 0);
-  set_gdbarch_function_start_offset (gdbarch, 0);
   set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
 
+  /* The value of symbols of type N_SO and N_FUN maybe null when
+     it shouldn't be. */
+  set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
+
+  /* Handles single stepping of atomic sequences.  */
+  set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
+  
   /* Not sure on this. FIXMEmgo */
   set_gdbarch_frame_args_skip (gdbarch, 8);
 
-  if (sysv_abi)
-    set_gdbarch_use_struct_convention (gdbarch,
-                                      ppc_sysv_abi_use_struct_convention);
-  else
-    set_gdbarch_use_struct_convention (gdbarch,
-                                      rs6000_use_struct_convention);
+  /* Helpers for function argument information.  */
+  set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
 
-  set_gdbarch_frameless_function_invocation (gdbarch,
-                                         rs6000_frameless_function_invocation);
-  set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
-  set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
+  /* Trampoline.  */
+  set_gdbarch_in_solib_return_trampoline
+    (gdbarch, rs6000_in_solib_return_trampoline);
+  set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
 
-  set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
-  set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
+  /* Hook in the DWARF CFI frame unwinder.  */
+  dwarf2_append_unwinders (gdbarch);
+  dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
+
+  /* Frame handling.  */
+  dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
+
+  /* Hook in ABI-specific overrides, if they have been registered.  */
+  info.target_desc = tdesc;
+  info.tdep_info = (void *) tdesc_data;
+  gdbarch_init_osabi (info, gdbarch);
 
-  if (!sysv_abi)
+  switch (info.osabi)
     {
-      /* Handle RS/6000 function pointers (which are really function
-         descriptors).  */
-      set_gdbarch_convert_from_func_ptr_addr (gdbarch,
-       rs6000_convert_from_func_ptr_addr);
+    case GDB_OSABI_LINUX:
+    case GDB_OSABI_NETBSD_AOUT:
+    case GDB_OSABI_NETBSD_ELF:
+    case GDB_OSABI_UNKNOWN:
+      set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
+      frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
+      set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
+      frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
+      break;
+    default:
+      set_gdbarch_believe_pcc_promotion (gdbarch, 1);
+
+      set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
+      frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
+      set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
+      frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
     }
-  set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
-  set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
-  set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
 
-  /* Helpers for function argument information.  */
-  set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
+  set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
+  set_tdesc_pseudo_register_reggroup_p (gdbarch,
+                                       rs6000_pseudo_register_reggroup_p);
+  tdesc_use_registers (gdbarch, tdesc, tdesc_data);
 
-  /* Hook in ABI-specific overrides, if they have been registered.  */
-  gdbarch_init_osabi (info, gdbarch);
+  /* Override the normal target description method to make the SPE upper
+     halves anonymous.  */
+  set_gdbarch_register_name (gdbarch, rs6000_register_name);
+
+  /* Recording the numbering of pseudo registers.  */
+  tdep->ppc_ev0_regnum = have_spe ? gdbarch_num_regs (gdbarch) : -1;
+
+  /* Set the register number for _Decimal128 pseudo-registers.  */
+  tdep->ppc_dl0_regnum = have_dfp? gdbarch_num_regs (gdbarch) : -1;
+
+  if (have_dfp && have_spe)
+    /* Put the _Decimal128 pseudo-registers after the SPE registers.  */
+    tdep->ppc_dl0_regnum += 32;
+
+  /* Setup displaced stepping.  */
+  set_gdbarch_displaced_step_copy_insn (gdbarch,
+                                       simple_displaced_step_copy_insn);
+  set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
+  set_gdbarch_displaced_step_free_closure (gdbarch,
+                                          simple_displaced_step_free_closure);
+  set_gdbarch_displaced_step_location (gdbarch,
+                                      displaced_step_at_entry_point);
+
+  set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
 
   return gdbarch;
 }
 
 static void
-rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
+rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
 {
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
   if (tdep == NULL)
     return;
@@ -3010,12 +3336,59 @@ rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
   /* FIXME: Dump gdbarch_tdep.  */
 }
 
-static struct cmd_list_element *info_powerpc_cmdlist = NULL;
+/* PowerPC-specific commands.  */
+
+static void
+set_powerpc_command (char *args, int from_tty)
+{
+  printf_unfiltered (_("\
+\"set powerpc\" must be followed by an appropriate subcommand.\n"));
+  help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
+}
+
+static void
+show_powerpc_command (char *args, int from_tty)
+{
+  cmd_show_list (showpowerpccmdlist, from_tty, "");
+}
+
+static void
+powerpc_set_soft_float (char *args, int from_tty,
+                       struct cmd_list_element *c)
+{
+  struct gdbarch_info info;
+
+  /* Update the architecture.  */
+  gdbarch_info_init (&info);
+  if (!gdbarch_update_p (info))
+    internal_error (__FILE__, __LINE__, "could not update architecture");
+}
 
 static void
-rs6000_info_powerpc_command (char *args, int from_tty)
+powerpc_set_vector_abi (char *args, int from_tty,
+                       struct cmd_list_element *c)
 {
-  help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
+  struct gdbarch_info info;
+  enum powerpc_vector_abi vector_abi;
+
+  for (vector_abi = POWERPC_VEC_AUTO;
+       vector_abi != POWERPC_VEC_LAST;
+       vector_abi++)
+    if (strcmp (powerpc_vector_abi_string,
+               powerpc_vector_strings[vector_abi]) == 0)
+      {
+       powerpc_vector_abi_global = vector_abi;
+       break;
+      }
+
+  if (vector_abi == POWERPC_VEC_LAST)
+    internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
+                   powerpc_vector_abi_string);
+
+  /* Update the architecture.  */
+  gdbarch_info_init (&info);
+  if (!gdbarch_update_p (info))
+    internal_error (__FILE__, __LINE__, "could not update architecture");
 }
 
 /* Initialization code.  */
@@ -3028,8 +3401,47 @@ _initialize_rs6000_tdep (void)
   gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
   gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
 
-  /* Add root prefix command for "info powerpc" commands */
-  add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
-                 "Various POWERPC info specific commands.",
-                 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
+  /* Initialize the standard target descriptions.  */
+  initialize_tdesc_powerpc_32 ();
+  initialize_tdesc_powerpc_altivec32 ();
+  initialize_tdesc_powerpc_403 ();
+  initialize_tdesc_powerpc_403gc ();
+  initialize_tdesc_powerpc_505 ();
+  initialize_tdesc_powerpc_601 ();
+  initialize_tdesc_powerpc_602 ();
+  initialize_tdesc_powerpc_603 ();
+  initialize_tdesc_powerpc_604 ();
+  initialize_tdesc_powerpc_64 ();
+  initialize_tdesc_powerpc_altivec64 ();
+  initialize_tdesc_powerpc_7400 ();
+  initialize_tdesc_powerpc_750 ();
+  initialize_tdesc_powerpc_860 ();
+  initialize_tdesc_powerpc_e500 ();
+  initialize_tdesc_rs6000 ();
+
+  /* Add root prefix command for all "set powerpc"/"show powerpc"
+     commands.  */
+  add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
+                 _("Various PowerPC-specific commands."),
+                 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
+
+  add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
+                 _("Various PowerPC-specific commands."),
+                 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
+
+  /* Add a command to allow the user to force the ABI.  */
+  add_setshow_auto_boolean_cmd ("soft-float", class_support,
+                               &powerpc_soft_float_global,
+                               _("Set whether to use a soft-float ABI."),
+                               _("Show whether to use a soft-float ABI."),
+                               NULL,
+                               powerpc_set_soft_float, NULL,
+                               &setpowerpccmdlist, &showpowerpccmdlist);
+
+  add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
+                       &powerpc_vector_abi_string,
+                       _("Set the vector ABI."),
+                       _("Show the vector ABI."),
+                       NULL, powerpc_set_vector_abi, NULL,
+                       &setpowerpccmdlist, &showpowerpccmdlist);
 }
This page took 0.104138 seconds and 4 git commands to generate.