* ChangeLog-2007: New ChangeLog rotation.
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
index 595758e8d0af785da3f6478e15daafbc83ab794b..1f4a6d0de2b8aa33d016ddaaccd45d01510acd6a 100644 (file)
@@ -1,13 +1,14 @@
 /* Target-dependent code for GDB, the GNU debugger.
-   Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
-   1998, 1999, 2000, 2001, 2002, 2003
+
+   Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
+   1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
    Free Software Foundation, Inc.
 
    This file is part of GDB.
 
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
-   the Free Software Foundation; either version 2 of the License, or
+   the Free Software Foundation; either version 3 of the License, or
    (at your option) any later version.
 
    This program is distributed in the hope that it will be useful,
@@ -16,9 +17,7 @@
    GNU General Public License for more details.
 
    You should have received a copy of the GNU General Public License
-   along with this program; if not, write to the Free Software
-   Foundation, Inc., 59 Temple Place - Suite 330,
-   Boston, MA 02111-1307, USA.  */
+   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 #include "defs.h"
 #include "frame.h"
 #include "target.h"
 #include "gdbcore.h"
 #include "gdbcmd.h"
-#include "symfile.h"
 #include "objfiles.h"
 #include "arch-utils.h"
 #include "regcache.h"
+#include "regset.h"
 #include "doublest.h"
 #include "value.h"
 #include "parser-defs.h"
 #include "osabi.h"
+#include "infcall.h"
+#include "sim-regno.h"
+#include "gdb/sim-ppc.h"
+#include "reggroups.h"
+#include "dwarf2-frame.h"
+#include "target-descriptions.h"
+#include "user-regs.h"
 
 #include "libbfd.h"            /* for bfd_default_set_arch_mach */
 #include "coff/internal.h"     /* for libcoff.h */
 #include "libxcoff.h"
 
 #include "elf-bfd.h"
+#include "elf/ppc.h"
 
 #include "solib-svr4.h"
 #include "ppc-tdep.h"
 
 #include "gdb_assert.h"
+#include "dis-asm.h"
+
+#include "trad-frame.h"
+#include "frame-unwind.h"
+#include "frame-base.h"
+
+#include "rs6000-tdep.h"
+
+#include "features/rs6000/powerpc-32.c"
+#include "features/rs6000/powerpc-403.c"
+#include "features/rs6000/powerpc-403gc.c"
+#include "features/rs6000/powerpc-505.c"
+#include "features/rs6000/powerpc-601.c"
+#include "features/rs6000/powerpc-602.c"
+#include "features/rs6000/powerpc-603.c"
+#include "features/rs6000/powerpc-604.c"
+#include "features/rs6000/powerpc-64.c"
+#include "features/rs6000/powerpc-7400.c"
+#include "features/rs6000/powerpc-750.c"
+#include "features/rs6000/powerpc-860.c"
+#include "features/rs6000/powerpc-e500.c"
+#include "features/rs6000/rs6000.c"
+
+/* The list of available "set powerpc ..." and "show powerpc ..."
+   commands.  */
+static struct cmd_list_element *setpowerpccmdlist = NULL;
+static struct cmd_list_element *showpowerpccmdlist = NULL;
+
+static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
+
+/* The vector ABI to use.  Keep this in sync with powerpc_vector_abi.  */
+static const char *powerpc_vector_strings[] =
+{
+  "auto",
+  "generic",
+  "altivec",
+  "spe",
+  NULL
+};
+
+/* A variable that can be configured by the user.  */
+static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
+static const char *powerpc_vector_abi_string = "auto";
 
 /* If the kernel has to deliver a signal, it pushes a sigcontext
    structure on the stack and then calls the signal handler, passing
@@ -88,43 +138,27 @@ struct rs6000_framedata
 struct reg
   {
     char *name;                        /* name of register */
-    unsigned char sz32;                /* size on 32-bit arch, 0 if nonextant */
-    unsigned char sz64;                /* size on 64-bit arch, 0 if nonextant */
+    unsigned char sz32;                /* size on 32-bit arch, 0 if nonexistent */
+    unsigned char sz64;                /* size on 64-bit arch, 0 if nonexistent */
     unsigned char fpr;         /* whether register is floating-point */
     unsigned char pseudo;       /* whether register is pseudo */
+    int spr_num;                /* PowerPC SPR number, or -1 if not an SPR.
+                                   This is an ISA SPR number, not a GDB
+                                   register number.  */
   };
 
-/* Breakpoint shadows for the single step instructions will be kept here. */
-
-static struct sstep_breaks
-  {
-    /* Address, or 0 if this is not in use.  */
-    CORE_ADDR address;
-    /* Shadow contents.  */
-    char data[4];
-  }
-stepBreaks[2];
-
 /* Hook for determining the TOC address when calling functions in the
    inferior under AIX. The initialization code in rs6000-nat.c sets
    this hook to point to find_toc_address.  */
 
 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
 
-/* Hook to set the current architecture when starting a child process. 
-   rs6000-nat.c sets this. */
-
-void (*rs6000_set_host_arch_hook) (int) = NULL;
-
 /* Static function prototypes */
 
-static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
-                             CORE_ADDR safety);
+static CORE_ADDR branch_dest (struct frame_info *frame, int opcode,
+                             int instr, CORE_ADDR pc, CORE_ADDR safety);
 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
                                 struct rs6000_framedata *);
-static void frame_get_saved_regs (struct frame_info * fi,
-                                 struct rs6000_framedata * fdatap);
-static CORE_ADDR frame_initial_stack_address (struct frame_info *);
 
 /* Is REGNO an AltiVec register?  Return 1 if so, 0 otherwise.  */
 int
@@ -137,97 +171,718 @@ altivec_register_p (int regno)
     return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
 }
 
-/* Use the architectures FP registers?  */
+
+/* Return true if REGNO is an SPE register, false otherwise.  */
 int
-ppc_floating_point_unit_p (struct gdbarch *gdbarch)
+spe_register_p (int regno)
 {
-  const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
-  if (info->arch == bfd_arch_powerpc)
-    return (info->mach != bfd_mach_ppc_e500);
-  if (info->arch == bfd_arch_rs6000)
+  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+  
+  /* Is it a reference to EV0 -- EV31, and do we have those?  */
+  if (tdep->ppc_ev0_regnum >= 0
+      && tdep->ppc_ev31_regnum >= 0
+      && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
+    return 1;
+
+  /* Is it a reference to one of the raw upper GPR halves?  */
+  if (tdep->ppc_ev0_upper_regnum >= 0
+      && tdep->ppc_ev0_upper_regnum <= regno
+      && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
+    return 1;
+
+  /* Is it a reference to the 64-bit accumulator, and do we have that?  */
+  if (tdep->ppc_acc_regnum >= 0
+      && tdep->ppc_acc_regnum == regno)
+    return 1;
+
+  /* Is it a reference to the SPE floating-point status and control register,
+     and do we have that?  */
+  if (tdep->ppc_spefscr_regnum >= 0
+      && tdep->ppc_spefscr_regnum == regno)
     return 1;
+
   return 0;
 }
 
-/* Read a LEN-byte address from debugged memory address MEMADDR. */
 
-static CORE_ADDR
-read_memory_addr (CORE_ADDR memaddr, int len)
+/* Return non-zero if the architecture described by GDBARCH has
+   floating-point registers (f0 --- f31 and fpscr).  */
+int
+ppc_floating_point_unit_p (struct gdbarch *gdbarch)
 {
-  return read_memory_unsigned_integer (memaddr, len);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  return (tdep->ppc_fp0_regnum >= 0
+          && tdep->ppc_fpscr_regnum >= 0);
 }
 
-static CORE_ADDR
-rs6000_skip_prologue (CORE_ADDR pc)
+/* Return non-zero if the architecture described by GDBARCH has
+   Altivec registers (vr0 --- vr31, vrsave and vscr).  */
+int
+ppc_altivec_support_p (struct gdbarch *gdbarch)
 {
-  struct rs6000_framedata frame;
-  pc = skip_prologue (pc, 0, &frame);
-  return pc;
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  return (tdep->ppc_vr0_regnum >= 0
+          && tdep->ppc_vrsave_regnum >= 0);
 }
 
+/* Check that TABLE[GDB_REGNO] is not already initialized, and then
+   set it to SIM_REGNO.
+
+   This is a helper function for init_sim_regno_table, constructing
+   the table mapping GDB register numbers to sim register numbers; we
+   initialize every element in that table to -1 before we start
+   filling it in.  */
+static void
+set_sim_regno (int *table, int gdb_regno, int sim_regno)
+{
+  /* Make sure we don't try to assign any given GDB register a sim
+     register number more than once.  */
+  gdb_assert (table[gdb_regno] == -1);
+  table[gdb_regno] = sim_regno;
+}
 
-/* Fill in fi->saved_regs */
 
-struct frame_extra_info
+/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
+   numbers to simulator register numbers, based on the values placed
+   in the ARCH->tdep->ppc_foo_regnum members.  */
+static void
+init_sim_regno_table (struct gdbarch *arch)
 {
-  /* Functions calling alloca() change the value of the stack
-     pointer. We need to use initial stack pointer (which is saved in
-     r31 by gcc) in such cases. If a compiler emits traceback table,
-     then we should use the alloca register specified in traceback
-     table. FIXME. */
-  CORE_ADDR initial_sp;                /* initial stack pointer. */
-};
+  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
+  int total_regs = gdbarch_num_regs (arch);
+  int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
+  int i;
+  static const char *const segment_regs[] = {
+    "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
+    "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
+  };
+
+  /* Presume that all registers not explicitly mentioned below are
+     unavailable from the sim.  */
+  for (i = 0; i < total_regs; i++)
+    sim_regno[i] = -1;
+
+  /* General-purpose registers.  */
+  for (i = 0; i < ppc_num_gprs; i++)
+    set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
+  
+  /* Floating-point registers.  */
+  if (tdep->ppc_fp0_regnum >= 0)
+    for (i = 0; i < ppc_num_fprs; i++)
+      set_sim_regno (sim_regno,
+                     tdep->ppc_fp0_regnum + i,
+                     sim_ppc_f0_regnum + i);
+  if (tdep->ppc_fpscr_regnum >= 0)
+    set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
+
+  set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
+  set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
+  set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
+
+  /* Segment registers.  */
+  for (i = 0; i < ppc_num_srs; i++)
+    {
+      int gdb_regno;
+
+      gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
+      if (gdb_regno >= 0)
+       set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
+    }
+
+  /* Altivec registers.  */
+  if (tdep->ppc_vr0_regnum >= 0)
+    {
+      for (i = 0; i < ppc_num_vrs; i++)
+        set_sim_regno (sim_regno,
+                       tdep->ppc_vr0_regnum + i,
+                       sim_ppc_vr0_regnum + i);
+
+      /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
+         we can treat this more like the other cases.  */
+      set_sim_regno (sim_regno,
+                     tdep->ppc_vr0_regnum + ppc_num_vrs,
+                     sim_ppc_vscr_regnum);
+    }
+  /* vsave is a special-purpose register, so the code below handles it.  */
+
+  /* SPE APU (E500) registers.  */
+  if (tdep->ppc_ev0_upper_regnum >= 0)
+    for (i = 0; i < ppc_num_gprs; i++)
+      set_sim_regno (sim_regno,
+                     tdep->ppc_ev0_upper_regnum + i,
+                     sim_ppc_rh0_regnum + i);
+  if (tdep->ppc_acc_regnum >= 0)
+    set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
+  /* spefscr is a special-purpose register, so the code below handles it.  */
+
+#ifdef WITH_SIM
+  /* Now handle all special-purpose registers.  Verify that they
+     haven't mistakenly been assigned numbers by any of the above
+     code.  */
+  for (i = 0; i < sim_ppc_num_sprs; i++)
+    {
+      const char *spr_name = sim_spr_register_name (i);
+      int gdb_regno = -1;
+
+      if (spr_name != NULL)
+       gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
+
+      if (gdb_regno != -1)
+       set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
+    }
+#endif
+
+  /* Drop the initialized array into place.  */
+  tdep->sim_regno = sim_regno;
+}
+
+
+/* Given a GDB register number REG, return the corresponding SIM
+   register number.  */
+static int
+rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  int sim_regno;
+
+  if (tdep->sim_regno == NULL)
+    init_sim_regno_table (gdbarch);
+
+  gdb_assert (0 <= reg 
+             && reg <= gdbarch_num_regs (gdbarch)
+                       + gdbarch_num_pseudo_regs (gdbarch));
+  sim_regno = tdep->sim_regno[reg];
+
+  if (sim_regno >= 0)
+    return sim_regno;
+  else
+    return LEGACY_SIM_REGNO_IGNORE;
+}
+
+\f
+
+/* Register set support functions.  */
+
+/* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
+   Write the register to REGCACHE.  */
+
+static void
+ppc_supply_reg (struct regcache *regcache, int regnum, 
+               const gdb_byte *regs, size_t offset, int regsize)
+{
+  if (regnum != -1 && offset != -1)
+    {
+      if (regsize > 4)
+       {
+         struct gdbarch *gdbarch = get_regcache_arch (regcache);
+         int gdb_regsize = register_size (gdbarch, regnum);
+         if (gdb_regsize < regsize
+             && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
+           offset += regsize - gdb_regsize;
+       }
+      regcache_raw_supply (regcache, regnum, regs + offset);
+    }
+}
+
+/* Read register REGNUM from REGCACHE and store to REGS + OFFSET
+   in a field REGSIZE wide.  Zero pad as necessary.  */
+
+static void
+ppc_collect_reg (const struct regcache *regcache, int regnum,
+                gdb_byte *regs, size_t offset, int regsize)
+{
+  if (regnum != -1 && offset != -1)
+    {
+      if (regsize > 4)
+       {
+         struct gdbarch *gdbarch = get_regcache_arch (regcache);
+         int gdb_regsize = register_size (gdbarch, regnum);
+         if (gdb_regsize < regsize)
+           {
+             if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
+               {
+                 memset (regs + offset, 0, regsize - gdb_regsize);
+                 offset += regsize - gdb_regsize;
+               }
+             else
+               memset (regs + offset + regsize - gdb_regsize, 0,
+                       regsize - gdb_regsize);
+           }
+       }
+      regcache_raw_collect (regcache, regnum, regs + offset);
+    }
+}
+    
+static int
+ppc_greg_offset (struct gdbarch *gdbarch,
+                struct gdbarch_tdep *tdep,
+                const struct ppc_reg_offsets *offsets,
+                int regnum,
+                int *regsize)
+{
+  *regsize = offsets->gpr_size;
+  if (regnum >= tdep->ppc_gp0_regnum
+      && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
+    return (offsets->r0_offset
+           + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
+
+  if (regnum == gdbarch_pc_regnum (gdbarch))
+    return offsets->pc_offset;
+
+  if (regnum == tdep->ppc_ps_regnum)
+    return offsets->ps_offset;
+
+  if (regnum == tdep->ppc_lr_regnum)
+    return offsets->lr_offset;
+
+  if (regnum == tdep->ppc_ctr_regnum)
+    return offsets->ctr_offset;
+
+  *regsize = offsets->xr_size;
+  if (regnum == tdep->ppc_cr_regnum)
+    return offsets->cr_offset;
+
+  if (regnum == tdep->ppc_xer_regnum)
+    return offsets->xer_offset;
+
+  if (regnum == tdep->ppc_mq_regnum)
+    return offsets->mq_offset;
+
+  return -1;
+}
+
+static int
+ppc_fpreg_offset (struct gdbarch_tdep *tdep,
+                 const struct ppc_reg_offsets *offsets,
+                 int regnum)
+{
+  if (regnum >= tdep->ppc_fp0_regnum
+      && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
+    return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
+
+  if (regnum == tdep->ppc_fpscr_regnum)
+    return offsets->fpscr_offset;
+
+  return -1;
+}
+
+static int
+ppc_vrreg_offset (struct gdbarch_tdep *tdep,
+                 const struct ppc_reg_offsets *offsets,
+                 int regnum)
+{
+  if (regnum >= tdep->ppc_vr0_regnum
+      && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
+    return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
+
+  if (regnum == tdep->ppc_vrsave_regnum - 1)
+    return offsets->vscr_offset;
+
+  if (regnum == tdep->ppc_vrsave_regnum)
+    return offsets->vrsave_offset;
+
+  return -1;
+}
+
+/* Supply register REGNUM in the general-purpose register set REGSET
+   from the buffer specified by GREGS and LEN to register cache
+   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
+
+void
+ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
+                   int regnum, const void *gregs, size_t len)
+{
+  struct gdbarch *gdbarch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  const struct ppc_reg_offsets *offsets = regset->descr;
+  size_t offset;
+  int regsize;
+
+  if (regnum == -1)
+    {
+      int i;
+      int gpr_size = offsets->gpr_size;
+
+      for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
+          i < tdep->ppc_gp0_regnum + ppc_num_gprs;
+          i++, offset += gpr_size)
+       ppc_supply_reg (regcache, i, gregs, offset, gpr_size);
+
+      ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
+                     gregs, offsets->pc_offset, gpr_size);
+      ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
+                     gregs, offsets->ps_offset, gpr_size);
+      ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
+                     gregs, offsets->lr_offset, gpr_size);
+      ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
+                     gregs, offsets->ctr_offset, gpr_size);
+      ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
+                     gregs, offsets->cr_offset, offsets->xr_size);
+      ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
+                     gregs, offsets->xer_offset, offsets->xr_size);
+      ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
+                     gregs, offsets->mq_offset, offsets->xr_size);
+      return;
+    }
+
+  offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
+  ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
+}
+
+/* Supply register REGNUM in the floating-point register set REGSET
+   from the buffer specified by FPREGS and LEN to register cache
+   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
+
+void
+ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
+                    int regnum, const void *fpregs, size_t len)
+{
+  struct gdbarch *gdbarch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep;
+  const struct ppc_reg_offsets *offsets;
+  size_t offset;
+
+  if (!ppc_floating_point_unit_p (gdbarch))
+    return;
+
+  tdep = gdbarch_tdep (gdbarch);
+  offsets = regset->descr;
+  if (regnum == -1)
+    {
+      int i;
+
+      for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
+          i < tdep->ppc_fp0_regnum + ppc_num_fprs;
+          i++, offset += 8)
+       ppc_supply_reg (regcache, i, fpregs, offset, 8);
+
+      ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
+                     fpregs, offsets->fpscr_offset, offsets->fpscr_size);
+      return;
+    }
+
+  offset = ppc_fpreg_offset (tdep, offsets, regnum);
+  ppc_supply_reg (regcache, regnum, fpregs, offset,
+                 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
+}
+
+/* Supply register REGNUM in the Altivec register set REGSET
+   from the buffer specified by VRREGS and LEN to register cache
+   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
+
+void
+ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
+                    int regnum, const void *vrregs, size_t len)
+{
+  struct gdbarch *gdbarch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep;
+  const struct ppc_reg_offsets *offsets;
+  size_t offset;
+
+  if (!ppc_altivec_support_p (gdbarch))
+    return;
+
+  tdep = gdbarch_tdep (gdbarch);
+  offsets = regset->descr;
+  if (regnum == -1)
+    {
+      int i;
+
+      for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
+          i < tdep->ppc_vr0_regnum + ppc_num_vrs;
+          i++, offset += 16)
+        ppc_supply_reg (regcache, i, vrregs, offset, 16);
+
+      ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
+                     vrregs, offsets->vscr_offset, 4);
+
+      ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
+                     vrregs, offsets->vrsave_offset, 4);
+      return;
+    }
+
+  offset = ppc_vrreg_offset (tdep, offsets, regnum);
+  if (regnum != tdep->ppc_vrsave_regnum
+      && regnum != tdep->ppc_vrsave_regnum - 1)
+    ppc_supply_reg (regcache, regnum, vrregs, offset, 16);
+  else
+    ppc_supply_reg (regcache, regnum,
+                   vrregs, offset, 4);
+}
+
+/* Collect register REGNUM in the general-purpose register set
+   REGSET from register cache REGCACHE into the buffer specified by
+   GREGS and LEN.  If REGNUM is -1, do this for all registers in
+   REGSET.  */
 
 void
-rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
-{
-  struct frame_extra_info *extra_info =
-    frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
-  extra_info->initial_sp = 0;
-  if (get_next_frame (fi) != NULL
-      && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
-    /* We're in get_prev_frame */
-    /* and this is a special signal frame.  */
-    /* (fi->pc will be some low address in the kernel, */
-    /*  to which the signal handler returns).  */
-    deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
-}
-
-/* Put here the code to store, into a struct frame_saved_regs,
-   the addresses of the saved registers of frame described by FRAME_INFO.
-   This includes special registers such as pc and fp saved in special
-   ways in the stack frame.  sp is even more special:
-   the address we return for it IS the sp for the next frame.  */
-
-/* In this implementation for RS/6000, we do *not* save sp. I am
-   not sure if it will be needed. The following function takes care of gpr's
-   and fpr's only. */
+ppc_collect_gregset (const struct regset *regset,
+                    const struct regcache *regcache,
+                    int regnum, void *gregs, size_t len)
+{
+  struct gdbarch *gdbarch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  const struct ppc_reg_offsets *offsets = regset->descr;
+  size_t offset;
+  int regsize;
+
+  if (regnum == -1)
+    {
+      int i;
+      int gpr_size = offsets->gpr_size;
+
+      for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
+          i < tdep->ppc_gp0_regnum + ppc_num_gprs;
+          i++, offset += gpr_size)
+       ppc_collect_reg (regcache, i, gregs, offset, gpr_size);
+
+      ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
+                      gregs, offsets->pc_offset, gpr_size);
+      ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
+                      gregs, offsets->ps_offset, gpr_size);
+      ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
+                      gregs, offsets->lr_offset, gpr_size);
+      ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
+                      gregs, offsets->ctr_offset, gpr_size);
+      ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
+                      gregs, offsets->cr_offset, offsets->xr_size);
+      ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
+                      gregs, offsets->xer_offset, offsets->xr_size);
+      ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
+                      gregs, offsets->mq_offset, offsets->xr_size);
+      return;
+    }
+
+  offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
+  ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
+}
+
+/* Collect register REGNUM in the floating-point register set
+   REGSET from register cache REGCACHE into the buffer specified by
+   FPREGS and LEN.  If REGNUM is -1, do this for all registers in
+   REGSET.  */
 
 void
-rs6000_frame_init_saved_regs (struct frame_info *fi)
+ppc_collect_fpregset (const struct regset *regset,
+                     const struct regcache *regcache,
+                     int regnum, void *fpregs, size_t len)
 {
-  frame_get_saved_regs (fi, NULL);
+  struct gdbarch *gdbarch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep;
+  const struct ppc_reg_offsets *offsets;
+  size_t offset;
+
+  if (!ppc_floating_point_unit_p (gdbarch))
+    return;
+
+  tdep = gdbarch_tdep (gdbarch);
+  offsets = regset->descr;
+  if (regnum == -1)
+    {
+      int i;
+
+      for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
+          i < tdep->ppc_fp0_regnum + ppc_num_fprs;
+          i++, offset += 8)
+       ppc_collect_reg (regcache, i, fpregs, offset, 8);
+
+      ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
+                      fpregs, offsets->fpscr_offset, offsets->fpscr_size);
+      return;
+    }
+
+  offset = ppc_fpreg_offset (tdep, offsets, regnum);
+  ppc_collect_reg (regcache, regnum, fpregs, offset,
+                  regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
 }
 
-static CORE_ADDR
-rs6000_frame_args_address (struct frame_info *fi)
+/* Collect register REGNUM in the Altivec register set
+   REGSET from register cache REGCACHE into the buffer specified by
+   VRREGS and LEN.  If REGNUM is -1, do this for all registers in
+   REGSET.  */
+
+void
+ppc_collect_vrregset (const struct regset *regset,
+                     const struct regcache *regcache,
+                     int regnum, void *vrregs, size_t len)
 {
-  struct frame_extra_info *extra_info = get_frame_extra_info (fi);
-  if (extra_info->initial_sp != 0)
-    return extra_info->initial_sp;
+  struct gdbarch *gdbarch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep;
+  const struct ppc_reg_offsets *offsets;
+  size_t offset;
+
+  if (!ppc_altivec_support_p (gdbarch))
+    return;
+
+  tdep = gdbarch_tdep (gdbarch);
+  offsets = regset->descr;
+  if (regnum == -1)
+    {
+      int i;
+
+      for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
+          i < tdep->ppc_vr0_regnum + ppc_num_vrs;
+          i++, offset += 16)
+       ppc_collect_reg (regcache, i, vrregs, offset, 16);
+
+      ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
+                      vrregs, offsets->vscr_offset, 4);
+
+      ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
+                      vrregs, offsets->vrsave_offset, 4);
+      return;
+    }
+
+  offset = ppc_vrreg_offset (tdep, offsets, regnum);
+  if (regnum != tdep->ppc_vrsave_regnum
+      && regnum != tdep->ppc_vrsave_regnum - 1)
+    ppc_collect_reg (regcache, regnum, vrregs, offset, 16);
   else
-    return frame_initial_stack_address (fi);
+    ppc_collect_reg (regcache, regnum,
+                   vrregs, offset, 4);
 }
+\f
 
-/* Immediately after a function call, return the saved pc.
-   Can't go through the frames for this because on some machines
-   the new frame is not set up until the new function executes
-   some instructions.  */
+/* Read a LEN-byte address from debugged memory address MEMADDR. */
+
+static CORE_ADDR
+read_memory_addr (CORE_ADDR memaddr, int len)
+{
+  return read_memory_unsigned_integer (memaddr, len);
+}
 
 static CORE_ADDR
-rs6000_saved_pc_after_call (struct frame_info *fi)
+rs6000_skip_prologue (CORE_ADDR pc)
+{
+  struct rs6000_framedata frame;
+  CORE_ADDR limit_pc, func_addr;
+
+  /* See if we can determine the end of the prologue via the symbol table.
+     If so, then return either PC, or the PC after the prologue, whichever
+     is greater.  */
+  if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
+    {
+      CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
+      if (post_prologue_pc != 0)
+       return max (pc, post_prologue_pc);
+    }
+
+  /* Can't determine prologue from the symbol table, need to examine
+     instructions.  */
+
+  /* Find an upper limit on the function prologue using the debug
+     information.  If the debug information could not be used to provide
+     that bound, then use an arbitrary large number as the upper bound.  */
+  limit_pc = skip_prologue_using_sal (pc);
+  if (limit_pc == 0)
+    limit_pc = pc + 100;          /* Magic.  */
+
+  pc = skip_prologue (pc, limit_pc, &frame);
+  return pc;
+}
+
+static int
+insn_changes_sp_or_jumps (unsigned long insn)
+{
+  int opcode = (insn >> 26) & 0x03f;
+  int sd = (insn >> 21) & 0x01f;
+  int a = (insn >> 16) & 0x01f;
+  int subcode = (insn >> 1) & 0x3ff;
+
+  /* Changes the stack pointer.  */
+
+  /* NOTE: There are many ways to change the value of a given register.
+           The ways below are those used when the register is R1, the SP,
+           in a funtion's epilogue.  */
+
+  if (opcode == 31 && subcode == 444 && a == 1)
+    return 1;  /* mr R1,Rn */
+  if (opcode == 14 && sd == 1)
+    return 1;  /* addi R1,Rn,simm */
+  if (opcode == 58 && sd == 1)
+    return 1;  /* ld R1,ds(Rn) */
+
+  /* Transfers control.  */
+
+  if (opcode == 18)
+    return 1;  /* b */
+  if (opcode == 16)
+    return 1;  /* bc */
+  if (opcode == 19 && subcode == 16)
+    return 1;  /* bclr */
+  if (opcode == 19 && subcode == 528)
+    return 1;  /* bcctr */
+
+  return 0;
+}
+
+/* Return true if we are in the function's epilogue, i.e. after the
+   instruction that destroyed the function's stack frame.
+
+   1) scan forward from the point of execution:
+       a) If you find an instruction that modifies the stack pointer
+          or transfers control (except a return), execution is not in
+          an epilogue, return.
+       b) Stop scanning if you find a return instruction or reach the
+          end of the function or reach the hard limit for the size of
+          an epilogue.
+   2) scan backward from the point of execution:
+        a) If you find an instruction that modifies the stack pointer,
+            execution *is* in an epilogue, return.
+        b) Stop scanning if you reach an instruction that transfers
+           control or the beginning of the function or reach the hard
+           limit for the size of an epilogue.  */
+
+static int
+rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
 {
-  return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
+  bfd_byte insn_buf[PPC_INSN_SIZE];
+  CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
+  unsigned long insn;
+  struct frame_info *curfrm;
+
+  /* Find the search limits based on function boundaries and hard limit.  */
+
+  if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
+    return 0;
+
+  epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
+  if (epilogue_start < func_start) epilogue_start = func_start;
+
+  epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
+  if (epilogue_end > func_end) epilogue_end = func_end;
+
+  curfrm = get_current_frame ();
+
+  /* Scan forward until next 'blr'.  */
+
+  for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
+    {
+      if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
+        return 0;
+      insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
+      if (insn == 0x4e800020)
+        break;
+      if (insn_changes_sp_or_jumps (insn))
+        return 0;
+    }
+
+  /* Scan backward until adjustment to stack pointer (R1).  */
+
+  for (scan_pc = pc - PPC_INSN_SIZE;
+       scan_pc >= epilogue_start;
+       scan_pc -= PPC_INSN_SIZE)
+    {
+      if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
+        return 0;
+      insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
+      if (insn_changes_sp_or_jumps (insn))
+        return 1;
+    }
+
+  return 0;
 }
 
 /* Get the ith function argument for the current function.  */
@@ -235,16 +890,16 @@ static CORE_ADDR
 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi, 
                               struct type *type)
 {
-  CORE_ADDR addr;
-  frame_read_register (frame, 3 + argi, &addr);
-  return addr;
+  return get_frame_register_unsigned (frame, 3 + argi);
 }
 
 /* Calculate the destination of a branch/jump.  Return -1 if not a branch.  */
 
 static CORE_ADDR
-branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
+branch_dest (struct frame_info *frame, int opcode, int instr,
+            CORE_ADDR pc, CORE_ADDR safety)
 {
+  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
   CORE_ADDR dest;
   int immediate;
   int absolute;
@@ -275,32 +930,26 @@ branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
 
       if (ext_op == 16)                /* br conditional register */
        {
-          dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
+          dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
 
          /* If we are about to return from a signal handler, dest is
             something like 0x3c90.  The current frame is a signal handler
             caller frame, upon completion of the sigreturn system call
             execution will return to the saved PC in the frame.  */
-         if (dest < TEXT_SEGMENT_BASE)
-           {
-             struct frame_info *fi;
-
-             fi = get_current_frame ();
-             if (fi != NULL)
-               dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
-                                        gdbarch_tdep (current_gdbarch)->wordsize);
-           }
+         if (dest < tdep->text_segment_base)
+           dest = read_memory_addr (get_frame_base (frame) + SIG_FRAME_PC_OFFSET,
+                                    tdep->wordsize);
        }
 
       else if (ext_op == 528)  /* br cond to count reg */
        {
-          dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
+          dest = get_frame_register_unsigned (frame, tdep->ppc_ctr_regnum) & ~3;
 
          /* If we are about to execute a system call, dest is something
             like 0x22fc or 0x3b00.  Upon completion the system call
             will return to the address in the link register.  */
-         if (dest < TEXT_SEGMENT_BASE)
-            dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
+         if (dest < tdep->text_segment_base)
+            dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
        }
       else
        return -1;
@@ -309,80 +958,274 @@ branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
     default:
       return -1;
     }
-  return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
+  return (dest < tdep->text_segment_base) ? safety : dest;
 }
 
 
 /* Sequence of bytes for breakpoint instruction.  */
 
 const static unsigned char *
-rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
+rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
+                          int *bp_size)
 {
   static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
   static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
   *bp_size = 4;
-  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
     return big_breakpoint;
   else
     return little_breakpoint;
 }
 
 
-/* AIX does not support PT_STEP. Simulate it. */
+/* Instruction masks used during single-stepping of atomic sequences.  */
+#define LWARX_MASK 0xfc0007fe
+#define LWARX_INSTRUCTION 0x7c000028
+#define LDARX_INSTRUCTION 0x7c0000A8
+#define STWCX_MASK 0xfc0007ff
+#define STWCX_INSTRUCTION 0x7c00012d
+#define STDCX_INSTRUCTION 0x7c0001ad
+#define BC_MASK 0xfc000000
+#define BC_INSTRUCTION 0x40000000
+
+/* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
+   instruction and ending with a STWCX/STDCX instruction.  If such a sequence
+   is found, attempt to step through it.  A breakpoint is placed at the end of 
+   the sequence.  */
+
+static int 
+deal_with_atomic_sequence (struct frame_info *frame)
+{
+  CORE_ADDR pc = get_frame_pc (frame);
+  CORE_ADDR breaks[2] = {-1, -1};
+  CORE_ADDR loc = pc;
+  CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination.  */
+  CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence.  */
+  int insn = read_memory_integer (loc, PPC_INSN_SIZE);
+  int insn_count;
+  int index;
+  int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed).  */  
+  const int atomic_sequence_length = 16; /* Instruction sequence length.  */
+  int opcode; /* Branch instruction's OPcode.  */
+  int bc_insn_count = 0; /* Conditional branch instruction count.  */
+
+  /* Assume all atomic sequences start with a lwarx/ldarx instruction.  */
+  if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
+      && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
+    return 0;
 
-void
-rs6000_software_single_step (enum target_signal signal,
-                            int insert_breakpoints_p)
-{
-  CORE_ADDR dummy;
-  int breakp_sz;
-  const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
-  int ii, insn;
-  CORE_ADDR loc;
-  CORE_ADDR breaks[2];
-  int opcode;
+  /* Assume that no atomic sequence is longer than "atomic_sequence_length" 
+     instructions.  */
+  for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
+    {
+      loc += PPC_INSN_SIZE;
+      insn = read_memory_integer (loc, PPC_INSN_SIZE);
+
+      /* Assume that there is at most one conditional branch in the atomic
+         sequence.  If a conditional branch is found, put a breakpoint in 
+         its destination address.  */
+      if ((insn & BC_MASK) == BC_INSTRUCTION)
+        {
+          if (bc_insn_count >= 1)
+            return 0; /* More than one conditional branch found, fallback 
+                         to the standard single-step code.  */
+          
+          opcode = insn >> 26;
+          branch_bp = branch_dest (frame, opcode, insn, pc, breaks[0]);
+          
+          if (branch_bp != -1)
+            {
+              breaks[1] = branch_bp;
+              bc_insn_count++;
+              last_breakpoint++;
+            }
+        }
+
+      if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
+          || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
+        break;
+    }
+
+  /* Assume that the atomic sequence ends with a stwcx/stdcx instruction.  */
+  if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
+      && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
+    return 0;
+
+  closing_insn = loc;
+  loc += PPC_INSN_SIZE;
+  insn = read_memory_integer (loc, PPC_INSN_SIZE);
+
+  /* Insert a breakpoint right after the end of the atomic sequence.  */
+  breaks[0] = loc;
+
+  /* Check for duplicated breakpoints.  Check also for a breakpoint
+     placed (branch instruction's destination) at the stwcx/stdcx 
+     instruction, this resets the reservation and take us back to the 
+     lwarx/ldarx instruction at the beginning of the atomic sequence.  */
+  if (last_breakpoint && ((breaks[1] == breaks[0]) 
+      || (breaks[1] == closing_insn)))
+    last_breakpoint = 0;
+
+  /* Effectively inserts the breakpoints.  */
+  for (index = 0; index <= last_breakpoint; index++)
+    insert_single_step_breakpoint (breaks[index]);
+
+  return 1;
+}
+
+/* AIX does not support PT_STEP.  Simulate it.  */
+
+int
+rs6000_software_single_step (struct frame_info *frame)
+{
+  CORE_ADDR dummy;
+  int breakp_sz;
+  const gdb_byte *breakp
+    = rs6000_breakpoint_from_pc (get_frame_arch (frame), &dummy, &breakp_sz);
+  int ii, insn;
+  CORE_ADDR loc;
+  CORE_ADDR breaks[2];
+  int opcode;
+
+  loc = get_frame_pc (frame);
+
+  insn = read_memory_integer (loc, 4);
+
+  if (deal_with_atomic_sequence (frame))
+    return 1;
+  
+  breaks[0] = loc + breakp_sz;
+  opcode = insn >> 26;
+  breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]);
+
+  /* Don't put two breakpoints on the same address. */
+  if (breaks[1] == breaks[0])
+    breaks[1] = -1;
 
-  if (insert_breakpoints_p)
+  for (ii = 0; ii < 2; ++ii)
     {
+      /* ignore invalid breakpoint. */
+      if (breaks[ii] == -1)
+       continue;
+      insert_single_step_breakpoint (breaks[ii]);
+    }
 
-      loc = read_pc ();
+  errno = 0;                   /* FIXME, don't ignore errors! */
+  /* What errors?  {read,write}_memory call error().  */
+  return 1;
+}
 
-      insn = read_memory_integer (loc, 4);
 
-      breaks[0] = loc + breakp_sz;
-      opcode = insn >> 26;
-      breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
+#define SIGNED_SHORT(x)                                                \
+  ((sizeof (short) == 2)                                               \
+   ? ((int)(short)(x))                                                 \
+   : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
 
-      /* Don't put two breakpoints on the same address. */
-      if (breaks[1] == breaks[0])
-       breaks[1] = -1;
+#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
 
-      stepBreaks[1].address = 0;
+/* Limit the number of skipped non-prologue instructions, as the examining
+   of the prologue is expensive.  */
+static int max_skip_non_prologue_insns = 10;
 
-      for (ii = 0; ii < 2; ++ii)
-       {
+/* Return nonzero if the given instruction OP can be part of the prologue
+   of a function and saves a parameter on the stack.  FRAMEP should be
+   set if one of the previous instructions in the function has set the
+   Frame Pointer.  */
 
-         /* ignore invalid breakpoint. */
-         if (breaks[ii] == -1)
-           continue;
-         target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
-         stepBreaks[ii].address = breaks[ii];
-       }
+static int
+store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
+{
+  /* Move parameters from argument registers to temporary register.  */
+  if ((op & 0xfc0007fe) == 0x7c000378)         /* mr(.)  Rx,Ry */
+    {
+      /* Rx must be scratch register r0.  */
+      const int rx_regno = (op >> 16) & 31;
+      /* Ry: Only r3 - r10 are used for parameter passing.  */
+      const int ry_regno = GET_SRC_REG (op);
 
+      if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
+        {
+          *r0_contains_arg = 1;
+          return 1;
+        }
+      else
+        return 0;
     }
-  else
+
+  /* Save a General Purpose Register on stack.  */
+
+  if ((op & 0xfc1f0003) == 0xf8010000 ||       /* std  Rx,NUM(r1) */
+      (op & 0xfc1f0000) == 0xd8010000)         /* stfd Rx,NUM(r1) */
     {
+      /* Rx: Only r3 - r10 are used for parameter passing.  */
+      const int rx_regno = GET_SRC_REG (op);
 
-      /* remove step breakpoints. */
-      for (ii = 0; ii < 2; ++ii)
-       if (stepBreaks[ii].address != 0)
-         target_remove_breakpoint (stepBreaks[ii].address,
-                                   stepBreaks[ii].data);
+      return (rx_regno >= 3 && rx_regno <= 10);
     }
-  errno = 0;                   /* FIXME, don't ignore errors! */
-  /* What errors?  {read,write}_memory call error().  */
+           
+  /* Save a General Purpose Register on stack via the Frame Pointer.  */
+
+  if (framep &&
+      ((op & 0xfc1f0000) == 0x901f0000 ||     /* st rx,NUM(r31) */
+       (op & 0xfc1f0000) == 0x981f0000 ||     /* stb Rx,NUM(r31) */
+       (op & 0xfc1f0000) == 0xd81f0000))      /* stfd Rx,NUM(r31) */
+    {
+      /* Rx: Usually, only r3 - r10 are used for parameter passing.
+         However, the compiler sometimes uses r0 to hold an argument.  */
+      const int rx_regno = GET_SRC_REG (op);
+
+      return ((rx_regno >= 3 && rx_regno <= 10)
+              || (rx_regno == 0 && *r0_contains_arg));
+    }
+
+  if ((op & 0xfc1f0000) == 0xfc010000)         /* frsp, fp?,NUM(r1) */
+    {
+      /* Only f2 - f8 are used for parameter passing.  */
+      const int src_regno = GET_SRC_REG (op);
+
+      return (src_regno >= 2 && src_regno <= 8);
+    }
+
+  if (framep && ((op & 0xfc1f0000) == 0xfc1f0000))  /* frsp, fp?,NUM(r31) */
+    {
+      /* Only f2 - f8 are used for parameter passing.  */
+      const int src_regno = GET_SRC_REG (op);
+
+      return (src_regno >= 2 && src_regno <= 8);
+    }
+
+  /* Not an insn that saves a parameter on stack.  */
+  return 0;
 }
 
+/* Assuming that INSN is a "bl" instruction located at PC, return
+   nonzero if the destination of the branch is a "blrl" instruction.
+   
+   This sequence is sometimes found in certain function prologues.
+   It allows the function to load the LR register with a value that
+   they can use to access PIC data using PC-relative offsets.  */
+
+static int
+bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
+{
+  CORE_ADDR dest;
+  int immediate;
+  int absolute;
+  int dest_insn;
+
+  absolute = (int) ((insn >> 1) & 1);
+  immediate = ((insn & ~3) << 6) >> 6;
+  if (absolute)
+    dest = immediate;
+  else
+    dest = pc + immediate;
+
+  dest_insn = read_memory_integer (dest, 4);
+  if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
+    return 1;
+
+  return 0;
+}
 
 /* return pc value after skipping a function prologue and also return
    information about a function frame.
@@ -407,72 +1250,13 @@ rs6000_software_single_step (enum target_signal signal,
    - vrsave_offset is the offset of the saved vrsave register
  */
 
-#define SIGNED_SHORT(x)                                                \
-  ((sizeof (short) == 2)                                               \
-   ? ((int)(short)(x))                                                 \
-   : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
-
-#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
-
-/* Limit the number of skipped non-prologue instructions, as the examining
-   of the prologue is expensive.  */
-static int max_skip_non_prologue_insns = 10;
-
-/* Given PC representing the starting address of a function, and
-   LIM_PC which is the (sloppy) limit to which to scan when looking
-   for a prologue, attempt to further refine this limit by using
-   the line data in the symbol table.  If successful, a better guess
-   on where the prologue ends is returned, otherwise the previous
-   value of lim_pc is returned.  */
-static CORE_ADDR
-refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
-{
-  struct symtab_and_line prologue_sal;
-
-  prologue_sal = find_pc_line (pc, 0);
-  if (prologue_sal.line != 0)
-    {
-      int i;
-      CORE_ADDR addr = prologue_sal.end;
-
-      /* Handle the case in which compiler's optimizer/scheduler
-         has moved instructions into the prologue.  We scan ahead
-        in the function looking for address ranges whose corresponding
-        line number is less than or equal to the first one that we
-        found for the function.  (It can be less than when the
-        scheduler puts a body instruction before the first prologue
-        instruction.)  */
-      for (i = 2 * max_skip_non_prologue_insns; 
-           i > 0 && (lim_pc == 0 || addr < lim_pc);
-          i--)
-        {
-         struct symtab_and_line sal;
-
-         sal = find_pc_line (addr, 0);
-         if (sal.line == 0)
-           break;
-         if (sal.line <= prologue_sal.line 
-             && sal.symtab == prologue_sal.symtab)
-           {
-             prologue_sal = sal;
-           }
-         addr = sal.end;
-       }
-
-      if (lim_pc == 0 || prologue_sal.end < lim_pc)
-       lim_pc = prologue_sal.end;
-    }
-  return lim_pc;
-}
-
-
 static CORE_ADDR
 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
 {
   CORE_ADDR orig_pc = pc;
   CORE_ADDR last_prologue_pc = pc;
   CORE_ADDR li_found_pc = 0;
-  char buf[4];
+  gdb_byte buf[4];
   unsigned long op;
   long offset = 0;
   long vr_saved_offset = 0;
@@ -487,23 +1271,9 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
   int minimal_toc_loaded = 0;
   int prev_insn_was_prologue_insn = 1;
   int num_skip_non_prologue_insns = 0;
+  int r0_contains_arg = 0;
   const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
-  
-  /* Attempt to find the end of the prologue when no limit is specified.
-     Note that refine_prologue_limit() has been written so that it may
-     be used to "refine" the limits of non-zero PC values too, but this
-     is only safe if we 1) trust the line information provided by the
-     compiler and 2) iterate enough to actually find the end of the
-     prologue.  
-     
-     It may become a good idea at some point (for both performance and
-     accuracy) to unconditionally call refine_prologue_limit().  But,
-     until we can make a clear determination that this is beneficial,
-     we'll play it safe and only use it to obtain a limit when none
-     has been specified.  */
-  if (lim_pc == 0)
-    lim_pc = refine_prologue_limit (pc, lim_pc);
 
   memset (fdata, 0, sizeof (struct rs6000_framedata));
   fdata->saved_gpr = -1;
@@ -524,7 +1294,7 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
        last_prologue_pc = pc;
 
       /* Stop scanning if we've hit the limit.  */
-      if (lim_pc != 0 && pc >= lim_pc)
+      if (pc >= lim_pc)
        break;
 
       prev_insn_was_prologue_insn = 1;
@@ -532,17 +1302,38 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
       /* Fetch the instruction and convert it to an integer.  */
       if (target_read_memory (pc, buf, 4))
        break;
-      op = extract_signed_integer (buf, 4);
+      op = extract_unsigned_integer (buf, 4);
 
       if ((op & 0xfc1fffff) == 0x7c0802a6)
        {                       /* mflr Rx */
-         lr_reg = (op & 0x03e00000);
+         /* Since shared library / PIC code, which needs to get its
+            address at runtime, can appear to save more than one link
+            register vis:
+
+            *INDENT-OFF*
+            stwu r1,-304(r1)
+            mflr r3
+            bl 0xff570d0 (blrl)
+            stw r30,296(r1)
+            mflr r30
+            stw r31,300(r1)
+            stw r3,308(r1);
+            ...
+            *INDENT-ON*
+
+            remember just the first one, but skip over additional
+            ones.  */
+         if (lr_reg == -1)
+           lr_reg = (op & 0x03e00000);
+          if (lr_reg == 0)
+            r0_contains_arg = 0;
          continue;
-
        }
       else if ((op & 0xfc1fffff) == 0x7c000026)
        {                       /* mfcr Rx */
          cr_reg = (op & 0x03e00000);
+          if (cr_reg == 0)
+            r0_contains_arg = 0;
          continue;
 
        }
@@ -589,6 +1380,7 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
                                   for >= 32k frames */
          fdata->offset = (op & 0x0000ffff) << 16;
          fdata->frameless = 0;
+          r0_contains_arg = 0;
          continue;
 
        }
@@ -597,10 +1389,11 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
                                   lf of >= 32k frames */
          fdata->offset |= (op & 0x0000ffff);
          fdata->frameless = 0;
+          r0_contains_arg = 0;
          continue;
 
        }
-      else if (lr_reg != -1 &&
+      else if (lr_reg >= 0 &&
               /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
               (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
                /* stw Rx, NUM(r1) */
@@ -610,7 +1403,9 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
        {       /* where Rx == lr */
          fdata->lr_offset = offset;
          fdata->nosavedpc = 0;
-         lr_reg = 0;
+         /* Invalidate lr_reg, but don't set it to -1.
+            That would mean that it had never been set.  */
+         lr_reg = -2;
          if ((op & 0xfc000003) == 0xf8000000 ||        /* std */
              (op & 0xfc000000) == 0x90000000)          /* stw */
            {
@@ -620,7 +1415,7 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
          continue;
 
        }
-      else if (cr_reg != -1 &&
+      else if (cr_reg >= 0 &&
               /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
               (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
                /* stw Rx, NUM(r1) */
@@ -629,7 +1424,9 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
                ((op & 0xffff0000) == (cr_reg | 0x94010000))))
        {       /* where Rx == cr */
          fdata->cr_offset = offset;
-         cr_reg = 0;
+         /* Invalidate cr_reg, but don't set it to -1.
+            That would mean that it had never been set.  */
+         cr_reg = -2;
          if ((op & 0xfc000003) == 0xf8000000 ||
              (op & 0xfc000000) == 0x90000000)
            {
@@ -639,6 +1436,13 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
          continue;
 
        }
+      else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
+       {
+         /* bcl 20,xx,.+4 is used to get the current PC, with or without
+            prediction bits.  If the LR has already been saved, we can
+            skip it.  */
+         continue;
+       }
       else if (op == 0x48000005)
        {                       /* bl .+4 used in 
                                   -mrelocatable */
@@ -662,10 +1466,25 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
                                   to save fprs??? */
 
          fdata->frameless = 0;
+
+         /* If the return address has already been saved, we can skip
+            calls to blrl (for PIC).  */
+          if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
+           continue;
+
          /* Don't skip over the subroutine call if it is not within
-            the first three instructions of the prologue.  */
+            the first three instructions of the prologue and either
+            we have no line table information or the line info tells
+            us that the subroutine call is not part of the line
+            associated with the prologue.  */
          if ((pc - orig_pc) > 8)
-           break;
+           {
+             struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
+             struct symtab_and_line this_sal = find_pc_line (pc, 0);
+
+             if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
+               break;
+           }
 
          op = read_memory_integer (pc + 4, 4);
 
@@ -709,9 +1528,18 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
          offset = fdata->offset;
          continue;
        }
-      /* Load up minimal toc pointer */
+      else if ((op & 0xffff0000) == 0x38210000)
+       {                       /* addi r1,r1,SIMM */
+         fdata->frameless = 0;
+         fdata->offset += SIGNED_SHORT (op);
+         offset = fdata->offset;
+         continue;
+       }
+      /* Load up minimal toc pointer.  Do not treat an epilogue restore
+        of r31 as a minimal TOC load.  */
       else if (((op >> 22) == 0x20f    ||      /* l r31,... or l r30,... */
               (op >> 22) == 0x3af)             /* ld r31,... or ld r30,... */
+              && !framep
               && !minimal_toc_loaded)
        {
          minimal_toc_loaded = 1;
@@ -729,19 +1557,9 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
 
          /* store parameters in stack */
        }
-      else if ((op & 0xfc1f0003) == 0xf8010000 ||      /* std rx,NUM(r1) */
-              (op & 0xfc1f0000) == 0xd8010000 ||       /* stfd Rx,NUM(r1) */
-              (op & 0xfc1f0000) == 0xfc010000)         /* frsp, fp?,NUM(r1) */
-       {
-         continue;
-
-         /* store parameters in stack via frame pointer */
-       }
-      else if (framep &&
-              ((op & 0xfc1f0000) == 0x901f0000 ||      /* st rx,NUM(r1) */
-               (op & 0xfc1f0000) == 0xd81f0000 ||      /* stfd Rx,NUM(r1) */
-               (op & 0xfc1f0000) == 0xfc1f0000))
-       {                       /* frsp, fp?,NUM(r1) */
+      /* Move parameters from argument registers to temporary register.  */
+      else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
+        {
          continue;
 
          /* Set up frame pointer */
@@ -809,8 +1627,15 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
       else if ((op & 0xffff0000) == 0x38000000         /* li r0, SIMM */
                || (op & 0xffff0000) == 0x39c00000)     /* li r14, SIMM */
        {
+          if ((op & 0xffff0000) == 0x38000000)
+            r0_contains_arg = 0;
          li_found_pc = pc;
          vr_saved_offset = SIGNED_SHORT (op);
+
+          /* This insn by itself is not part of the prologue, unless
+             if part of the pair of insns mentioned above. So do not
+             record this insn as part of the prologue yet.  */
+          prev_insn_was_prologue_insn = 0;
        }
       /* Store vector register S at (r31+r0) aligned to 16 bytes.  */      
       /* 011111 sssss 11111 00000 00111001110 */
@@ -937,8 +1762,7 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
             Handle optimizer code motions into the prologue by continuing
             the search if we have no valid frame yet or if the return
             address is not yet saved in the frame.  */
-         if (fdata->frameless == 0
-             && (lr_reg == -1 || fdata->nosavedpc == 0))
+         if (fdata->frameless == 0 && fdata->nosavedpc == 0)
            break;
 
          if (op == 0x4e800020          /* blr */
@@ -984,7 +1808,8 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
             initializer function as well.  */
 
          tmp = find_pc_misc_function (pc);
-         if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
+         if (tmp >= 0
+             && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
            return pc + 8;
        }
     }
@@ -1001,98 +1826,6 @@ skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
 *************************************************************************/
 
 
-/* Pop the innermost frame, go back to the caller.  */
-
-static void
-rs6000_pop_frame (void)
-{
-  CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
-  struct rs6000_framedata fdata;
-  struct frame_info *frame = get_current_frame ();
-  int ii, wordsize;
-
-  pc = read_pc ();
-  sp = get_frame_base (frame);
-
-  if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
-                                  get_frame_base (frame),
-                                  get_frame_base (frame)))
-    {
-      generic_pop_dummy_frame ();
-      flush_cached_frames ();
-      return;
-    }
-
-  /* Make sure that all registers are valid.  */
-  deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
-
-  /* Figure out previous %pc value.  If the function is frameless, it is 
-     still in the link register, otherwise walk the frames and retrieve the
-     saved %pc value in the previous frame.  */
-
-  addr = get_frame_func (frame);
-  (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
-
-  wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
-  if (fdata.frameless)
-    prev_sp = sp;
-  else
-    prev_sp = read_memory_addr (sp, wordsize);
-  if (fdata.lr_offset == 0)
-     lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
-  else
-    lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
-
-  /* reset %pc value. */
-  write_register (PC_REGNUM, lr);
-
-  /* reset register values if any was saved earlier.  */
-
-  if (fdata.saved_gpr != -1)
-    {
-      addr = prev_sp + fdata.gpr_offset;
-      for (ii = fdata.saved_gpr; ii <= 31; ++ii)
-       {
-         read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)],
-                      wordsize);
-         addr += wordsize;
-       }
-    }
-
-  if (fdata.saved_fpr != -1)
-    {
-      addr = prev_sp + fdata.fpr_offset;
-      for (ii = fdata.saved_fpr; ii <= 31; ++ii)
-       {
-         read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
-         addr += 8;
-       }
-    }
-
-  write_register (SP_REGNUM, prev_sp);
-  target_store_registers (-1);
-  flush_cached_frames ();
-}
-
-/* Fixup the call sequence of a dummy function, with the real function
-   address.  Its arguments will be passed by gdb.  */
-
-static void
-rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
-                      int nargs, struct value **args, struct type *type,
-                      int gcc_p)
-{
-  int ii;
-  CORE_ADDR target_addr;
-
-  if (rs6000_find_toc_address_hook != NULL)
-    {
-      CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
-      write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
-                     tocvalue);
-    }
-}
-
 /* All the ABI's require 16 byte alignment.  */
 static CORE_ADDR
 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
@@ -1117,31 +1850,45 @@ rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
    starting from r4.  */
 
 static CORE_ADDR
-rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
-                      int struct_return, CORE_ADDR struct_addr)
+rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
+                       struct regcache *regcache, CORE_ADDR bp_addr,
+                       int nargs, struct value **args, CORE_ADDR sp,
+                       int struct_return, CORE_ADDR struct_addr)
 {
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
   int ii;
   int len = 0;
   int argno;                   /* current argument number */
   int argbytes;                        /* current argument byte */
-  char tmp_buffer[50];
+  gdb_byte tmp_buffer[50];
   int f_argno = 0;             /* current floating point argno */
-  int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
+  int wordsize = gdbarch_tdep (gdbarch)->wordsize;
+  CORE_ADDR func_addr = find_function_addr (function, NULL);
 
   struct value *arg = 0;
   struct type *type;
 
-  CORE_ADDR saved_sp;
+  ULONGEST saved_sp;
 
-  /* The first eight words of ther arguments are passed in registers.
-     Copy them appropriately.
-
-     If the function is returning a `struct', then the first word (which 
-     will be passed in r3) is used for struct return address.  In that
-     case we should advance one word and start from r4 register to copy 
-     parameters.  */
+  /* The calling convention this function implements assumes the
+     processor has floating-point registers.  We shouldn't be using it
+     on PPC variants that lack them.  */
+  gdb_assert (ppc_floating_point_unit_p (gdbarch));
 
-  ii = struct_return ? 1 : 0;
+  /* The first eight words of ther arguments are passed in registers.
+     Copy them appropriately.  */
+  ii = 0;
+
+  /* If the function is returning a `struct', then the first word
+     (which will be passed in r3) is used for struct return address.
+     In that case we should advance one word and start from r4
+     register to copy parameters.  */
+  if (struct_return)
+    {
+      regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
+                                  struct_addr);
+      ii++;
+    }
 
 /* 
    effectively indirect call... gcc does...
@@ -1164,10 +1911,10 @@ rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
 
   for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
     {
-      int reg_size = REGISTER_RAW_SIZE (ii + 3);
+      int reg_size = register_size (gdbarch, ii + 3);
 
       arg = args[argno];
-      type = check_typedef (VALUE_TYPE (arg));
+      type = check_typedef (value_type (arg));
       len = TYPE_LENGTH (type);
 
       if (TYPE_CODE (type) == TYPE_CODE_FLT)
@@ -1177,13 +1924,11 @@ rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
             There are 13 fpr's reserved for passing parameters. At this point
             there is no way we would run out of them.  */
 
-         if (len > 8)
-           printf_unfiltered (
-                               "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
+         gdb_assert (len <= 8);
 
-         memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
-                 VALUE_CONTENTS (arg),
-                 len);
+         regcache_cooked_write (regcache,
+                                tdep->ppc_fp0_regnum + 1 + f_argno,
+                                value_contents (arg));
          ++f_argno;
        }
 
@@ -1193,12 +1938,15 @@ rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
          /* Argument takes more than one register.  */
          while (argbytes < len)
            {
-             memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0,
-                     reg_size);
-             memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)],
-                     ((char *) VALUE_CONTENTS (arg)) + argbytes,
+             gdb_byte word[MAX_REGISTER_SIZE];
+             memset (word, 0, reg_size);
+             memcpy (word,
+                     ((char *) value_contents (arg)) + argbytes,
                      (len - argbytes) > reg_size
                        ? reg_size : len - argbytes);
+             regcache_cooked_write (regcache,
+                                   tdep->ppc_gp0_regnum + 3 + ii,
+                                   word);
              ++ii, argbytes += reg_size;
 
              if (ii >= 8)
@@ -1210,17 +1958,22 @@ rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
       else
        {
          /* Argument can fit in one register.  No problem.  */
-         int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
-         memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
-         memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj, 
-                 VALUE_CONTENTS (arg), len);
+         int adj = gdbarch_byte_order (gdbarch)
+                   == BFD_ENDIAN_BIG ? reg_size - len : 0;
+         gdb_byte word[MAX_REGISTER_SIZE];
+
+         memset (word, 0, reg_size);
+         memcpy (word, value_contents (arg), len);
+         regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
        }
       ++argno;
     }
 
 ran_out_of_registers_for_arguments:
 
-  saved_sp = read_sp ();
+  regcache_cooked_read_unsigned (regcache,
+                                gdbarch_sp_regnum (gdbarch),
+                                &saved_sp);
 
   /* Location for 8 parameters are always reserved.  */
   sp -= wordsize * 8;
@@ -1249,7 +2002,7 @@ ran_out_of_registers_for_arguments:
       for (; jj < nargs; ++jj)
        {
          struct value *val = args[jj];
-         space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
+         space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
        }
 
       /* Add location required for the rest of the parameters.  */
@@ -1259,10 +2012,11 @@ ran_out_of_registers_for_arguments:
       /* This is another instance we need to be concerned about
          securing our stack space. If we write anything underneath %sp
          (r1), we might conflict with the kernel who thinks he is free
-         to use this area. So, update %sp first before doing anything
+         to use this area.  So, update %sp first before doing anything
          else.  */
 
-      write_register (SP_REGNUM, sp);
+      regcache_raw_write_signed (regcache,
+                                gdbarch_sp_regnum (gdbarch), sp);
 
       /* If the last argument copied into the registers didn't fit there 
          completely, push the rest of it into stack.  */
@@ -1270,7 +2024,7 @@ ran_out_of_registers_for_arguments:
       if (argbytes)
        {
          write_memory (sp + 24 + (ii * 4),
-                       ((char *) VALUE_CONTENTS (arg)) + argbytes,
+                       value_contents (arg) + argbytes,
                        len - argbytes);
          ++argno;
          ii += ((len - argbytes + 3) & -4) / 4;
@@ -1281,7 +2035,7 @@ ran_out_of_registers_for_arguments:
        {
 
          arg = args[argno];
-         type = check_typedef (VALUE_TYPE (arg));
+         type = check_typedef (value_type (arg));
          len = TYPE_LENGTH (type);
 
 
@@ -1290,146 +2044,165 @@ ran_out_of_registers_for_arguments:
          if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
            {
 
-             if (len > 8)
-               printf_unfiltered (
-                                   "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
+             gdb_assert (len <= 8);
 
-             memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
-                     VALUE_CONTENTS (arg),
-                     len);
+             regcache_cooked_write (regcache,
+                                    tdep->ppc_fp0_regnum + 1 + f_argno,
+                                    value_contents (arg));
              ++f_argno;
            }
 
-         write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
+         write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
          ii += ((len + 3) & -4) / 4;
        }
     }
-  else
-    /* Secure stack areas first, before doing anything else.  */
-    write_register (SP_REGNUM, sp);
 
-  /* set back chain properly */
-  store_unsigned_integer (tmp_buffer, 4, saved_sp);
-  write_memory (sp, tmp_buffer, 4);
+  /* Set the stack pointer.  According to the ABI, the SP is meant to
+     be set _before_ the corresponding stack space is used.  On AIX,
+     this even applies when the target has been completely stopped!
+     Not doing this can lead to conflicts with the kernel which thinks
+     that it still has control over this not-yet-allocated stack
+     region.  */
+  regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
 
-  target_store_registers (-1);
-  return sp;
-}
+  /* Set back chain properly.  */
+  store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
+  write_memory (sp, tmp_buffer, wordsize);
 
-/* Function: ppc_push_return_address (pc, sp)
-   Set up the return address for the inferior function call.  */
+  /* Point the inferior function call's return address at the dummy's
+     breakpoint.  */
+  regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
 
-static CORE_ADDR
-ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
-{
-  write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
-                 CALL_DUMMY_ADDRESS ());
+  /* Set the TOC register, get the value from the objfile reader
+     which, in turn, gets it from the VMAP table.  */
+  if (rs6000_find_toc_address_hook != NULL)
+    {
+      CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
+      regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
+    }
+
+  target_store_registers (regcache, -1);
   return sp;
 }
 
-/* Extract a function return value of type TYPE from raw register array
-   REGBUF, and copy that return value into VALBUF in virtual format.  */
-static void
-e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
+static enum return_value_convention
+rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype,
+                    struct regcache *regcache, gdb_byte *readbuf,
+                    const gdb_byte *writebuf)
 {
-  int offset = 0;
-  int vallen = TYPE_LENGTH (valtype);
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  gdb_byte buf[8];
+
+  /* The calling convention this function implements assumes the
+     processor has floating-point registers.  We shouldn't be using it
+     on PowerPC variants that lack them.  */
+  gdb_assert (ppc_floating_point_unit_p (gdbarch));
 
-  if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
-      && vallen == 8
-      && TYPE_VECTOR (valtype))
+  /* AltiVec extension: Functions that declare a vector data type as a
+     return value place that return value in VR2.  */
+  if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
+      && TYPE_LENGTH (valtype) == 16)
     {
-      regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
+      if (readbuf)
+       regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
+      if (writebuf)
+       regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
+
+      return RETURN_VALUE_REGISTER_CONVENTION;
     }
-  else
+
+  /* If the called subprogram returns an aggregate, there exists an
+     implicit first argument, whose value is the address of a caller-
+     allocated buffer into which the callee is assumed to store its
+     return value. All explicit parameters are appropriately
+     relabeled.  */
+  if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
+      || TYPE_CODE (valtype) == TYPE_CODE_UNION
+      || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
+    return RETURN_VALUE_STRUCT_CONVENTION;
+
+  /* Scalar floating-point values are returned in FPR1 for float or
+     double, and in FPR1:FPR2 for quadword precision.  Fortran
+     complex*8 and complex*16 are returned in FPR1:FPR2, and
+     complex*32 is returned in FPR1:FPR4.  */
+  if (TYPE_CODE (valtype) == TYPE_CODE_FLT
+      && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
     {
-      /* Return value is copied starting from r3.  Note that r3 for us
-         is a pseudo register.  */
-      int offset = 0;
-      int return_regnum = tdep->ppc_gp0_regnum + 3;
-      int reg_size = REGISTER_RAW_SIZE (return_regnum);
-      int reg_part_size;
-      char *val_buffer;
-      int copied = 0;
-      int i = 0;
-
-      /* Compute where we will start storing the value from.  */ 
-      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
-        {
-         if (vallen <= reg_size)
-           offset = reg_size - vallen;
-         else
-           offset = reg_size + (reg_size - vallen);
-        }
+      struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
+      gdb_byte regval[8];
 
-      /* How big does the local buffer need to be?  */
-      if (vallen <= reg_size)
-       val_buffer = alloca (reg_size);
-      else
-       val_buffer = alloca (vallen);
+      /* FIXME: kettenis/2007-01-01: Add support for quadword
+        precision and complex.  */
 
-      /* Read all we need into our private buffer.  We copy it in
-         chunks that are as long as one register, never shorter, even
-         if the value is smaller than the register.  */
-      while (copied < vallen)
-        {
-          reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
-         /* It is a pseudo/cooked register.  */
-          regcache_cooked_read (regbuf, return_regnum + i,
-                               val_buffer + copied);
-          copied += reg_part_size;
-          i++;
-        }
-      /* Put the stuff in the return buffer.  */
-      memcpy (valbuf, val_buffer + offset, vallen);
-    }
-}
+      if (readbuf)
+       {
+         regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
+         convert_typed_floating (regval, regtype, readbuf, valtype);
+       }
+      if (writebuf)
+       {
+         convert_typed_floating (writebuf, valtype, regval, regtype);
+         regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
+       }
 
-static void
-rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
-{
-  int offset = 0;
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+      return RETURN_VALUE_REGISTER_CONVENTION;
+  }
 
-  if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
+  /* Values of the types int, long, short, pointer, and char (length
+     is less than or equal to four bytes), as well as bit values of
+     lengths less than or equal to 32 bits, must be returned right
+     justified in GPR3 with signed values sign extended and unsigned
+     values zero extended, as necessary.  */
+  if (TYPE_LENGTH (valtype) <= tdep->wordsize)
     {
+      if (readbuf)
+       {
+         ULONGEST regval;
 
-      double dd;
-      float ff;
-      /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
-         We need to truncate the return value into float size (4 byte) if
-         necessary.  */
-
-      if (TYPE_LENGTH (valtype) > 4)   /* this is a double */
-       memcpy (valbuf,
-               &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
-               TYPE_LENGTH (valtype));
-      else
-       {                       /* float */
-         memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
-         ff = (float) dd;
-         memcpy (valbuf, &ff, sizeof (float));
+         /* For reading we don't have to worry about sign extension.  */
+         regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
+                                        &regval);
+         store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
        }
+      if (writebuf)
+       {
+         /* For writing, use unpack_long since that should handle any
+            required sign extension.  */
+         regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
+                                         unpack_long (valtype, writebuf));
+       }
+
+      return RETURN_VALUE_REGISTER_CONVENTION;
     }
-  else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
-           && TYPE_LENGTH (valtype) == 16
-           && TYPE_VECTOR (valtype))
-    {
-      memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
-             TYPE_LENGTH (valtype));
-    }
-  else
+
+  /* Eight-byte non-floating-point scalar values must be returned in
+     GPR3:GPR4.  */
+
+  if (TYPE_LENGTH (valtype) == 8)
     {
-      /* return value is copied starting from r3. */
-      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
-         && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
-       offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
-
-      memcpy (valbuf,
-             regbuf + REGISTER_BYTE (3) + offset,
-             TYPE_LENGTH (valtype));
+      gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
+      gdb_assert (tdep->wordsize == 4);
+
+      if (readbuf)
+       {
+         gdb_byte regval[8];
+
+         regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
+         regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
+                               regval + 4);
+         memcpy (readbuf, regval, 8);
+       }
+      if (writebuf)
+       {
+         regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
+         regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
+                                writebuf + 4);
+       }
+
+      return RETURN_VALUE_REGISTER_CONVENTION;
     }
+
+  return RETURN_VALUE_STRUCT_CONVENTION;
 }
 
 /* Return whether handle_inferior_event() should proceed through code
@@ -1447,12 +2220,13 @@ rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
    back to where execution should continue.
 
    GDB should silently step over @FIX code, just like AIX dbx does.
-   Unfortunately, the linker uses the "b" instruction for the branches,
-   meaning that the link register doesn't get set.  Therefore, GDB's usual
-   step_over_function() mechanism won't work.
+   Unfortunately, the linker uses the "b" instruction for the
+   branches, meaning that the link register doesn't get set.
+   Therefore, GDB's usual step_over_function () mechanism won't work.
 
-   Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
-   in handle_inferior_event() to skip past @FIX code.  */
+   Instead, use the gdbarch_skip_trampoline_code and
+   gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
+   @FIX code.  */
 
 int
 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
@@ -1475,9 +2249,9 @@ rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
    code that should be skipped.  */
 
 CORE_ADDR
-rs6000_skip_trampoline_code (CORE_ADDR pc)
+rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
 {
-  register unsigned int ii, op;
+  unsigned int ii, op;
   int rel;
   CORE_ADDR solib_target_pc;
   struct minimal_symbol *msymbol;
@@ -1496,7 +2270,9 @@ rs6000_skip_trampoline_code (CORE_ADDR pc)
 
   /* Check for bigtoc fixup code.  */
   msymbol = lookup_minimal_symbol_by_pc (pc);
-  if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
+  if (msymbol 
+      && rs6000_in_solib_return_trampoline (pc, 
+                                           DEPRECATED_SYMBOL_NAME (msymbol)))
     {
       /* Double-check that the third instruction from PC is relative "b".  */
       op = read_memory_integer (pc + 8, 4);
@@ -1510,7 +2286,7 @@ rs6000_skip_trampoline_code (CORE_ADDR pc)
     }
 
   /* If pc is in a shared library trampoline, return its target.  */
-  solib_target_pc = find_solib_trampoline_target (pc);
+  solib_target_pc = find_solib_trampoline_target (frame, pc);
   if (solib_target_pc)
     return solib_target_pc;
 
@@ -1520,642 +2296,425 @@ rs6000_skip_trampoline_code (CORE_ADDR pc)
       if (op != trampoline_code[ii])
        return 0;
     }
-  ii = read_register (11);     /* r11 holds destination addr   */
-  pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
+  ii = get_frame_register_unsigned (frame, 11);        /* r11 holds destination addr   */
+  pc = read_memory_addr (ii,
+                        gdbarch_tdep (get_frame_arch (frame))->wordsize); /* (r11) value */
   return pc;
 }
 
-/* Determines whether the function FI has a frame on the stack or not.  */
+/* ISA-specific vector types.  */
 
-int
-rs6000_frameless_function_invocation (struct frame_info *fi)
+static struct type *
+rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
 {
-  CORE_ADDR func_start;
-  struct rs6000_framedata fdata;
-
-  /* Don't even think about framelessness except on the innermost frame
-     or if the function was interrupted by a signal.  */
-  if (get_next_frame (fi) != NULL
-      && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
-    return 0;
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-  func_start = get_frame_func (fi);
-
-  /* If we failed to find the start of the function, it is a mistake
-     to inspect the instructions.  */
-
-  if (!func_start)
+  if (!tdep->ppc_builtin_type_vec64)
     {
-      /* A frame with a zero PC is usually created by dereferencing a NULL
-         function pointer, normally causing an immediate core dump of the
-         inferior.  Mark function as frameless, as the inferior has no chance
-         of setting up a stack frame.  */
-      if (get_frame_pc (fi) == 0)
-       return 1;
-      else
-       return 0;
+      /* The type we're building is this: */
+#if 0
+      union __gdb_builtin_type_vec64
+       {
+         int64_t uint64;
+         float v2_float[2];
+         int32_t v2_int32[2];
+         int16_t v4_int16[4];
+         int8_t v8_int8[8];
+       };
+#endif
+
+      struct type *t;
+
+      t = init_composite_type ("__ppc_builtin_type_vec64", TYPE_CODE_UNION);
+      append_composite_type_field (t, "uint64", builtin_type_int64);
+      append_composite_type_field (t, "v2_float",
+                                  init_vector_type (builtin_type_float, 2));
+      append_composite_type_field (t, "v2_int32",
+                                  init_vector_type (builtin_type_int32, 2));
+      append_composite_type_field (t, "v4_int16",
+                                  init_vector_type (builtin_type_int16, 4));
+      append_composite_type_field (t, "v8_int8",
+                                  init_vector_type (builtin_type_int8, 8));
+
+      TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
+      TYPE_NAME (t) = "ppc_builtin_type_vec64";
+      tdep->ppc_builtin_type_vec64 = t;
     }
 
-  (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
-  return fdata.frameless;
+  return tdep->ppc_builtin_type_vec64;
 }
 
-/* Return the PC saved in a frame.  */
+/* Return the size of register REG when words are WORDSIZE bytes long.  If REG
+   isn't available with that word size, return 0.  */
 
-CORE_ADDR
-rs6000_frame_saved_pc (struct frame_info *fi)
+static int
+regsize (const struct reg *reg, int wordsize)
 {
-  CORE_ADDR func_start;
-  struct rs6000_framedata fdata;
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
-  int wordsize = tdep->wordsize;
+  return wordsize == 8 ? reg->sz64 : reg->sz32;
+}
 
-  if ((get_frame_type (fi) == SIGTRAMP_FRAME))
-    return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
-                            wordsize);
+/* Return the name of register number REGNO, or the empty string if it
+   is an anonymous register.  */
 
-  if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
-                                  get_frame_base (fi),
-                                  get_frame_base (fi)))
-    return deprecated_read_register_dummy (get_frame_pc (fi),
-                                          get_frame_base (fi), PC_REGNUM);
+static const char *
+rs6000_register_name (struct gdbarch *gdbarch, int regno)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  /* The upper half "registers" have names in the XML description,
+     but we present only the low GPRs and the full 64-bit registers
+     to the user.  */
+  if (tdep->ppc_ev0_upper_regnum >= 0
+      && tdep->ppc_ev0_upper_regnum <= regno
+      && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
+    return "";
+
+  /* Check if the SPE pseudo registers are available.  */
+  if (tdep->ppc_ev0_regnum >= 0
+      && tdep->ppc_ev0_regnum <= regno
+      && regno < tdep->ppc_ev0_regnum + ppc_num_gprs)
+    {
+      static const char *const spe_regnames[] = {
+       "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
+       "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
+       "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
+       "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
+      };
+      return spe_regnames[regno - tdep->ppc_ev0_regnum];
+    }
 
-  func_start = get_frame_func (fi);
+  return tdesc_register_name (gdbarch, regno);
+}
 
-  /* If we failed to find the start of the function, it is a mistake
-     to inspect the instructions.  */
-  if (!func_start)
-    return 0;
+/* Return the GDB type object for the "standard" data type of data in
+   register N.  */
 
-  (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
+static struct type *
+rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-  if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
-    {
-      if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
-       return read_memory_addr ((get_frame_base (get_next_frame (fi))
-                                 + SIG_FRAME_LR_OFFSET),
-                                wordsize);
-      else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
-       /* The link register wasn't saved by this frame and the next
-           (inner, newer) frame is a dummy.  Get the link register
-           value by unwinding it from that [dummy] frame.  */
-       {
-         ULONGEST lr;
-         frame_unwind_unsigned_register (get_next_frame (fi),
-                                         tdep->ppc_lr_regnum, &lr);
-         return lr;
-       }
-      else
-       return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
-                                + tdep->lr_frame_offset,
-                                wordsize);
-    }
+  /* These are the only pseudo-registers we support.  */
+  gdb_assert (tdep->ppc_ev0_regnum >= 0
+             && regnum >= tdep->ppc_ev0_regnum
+             && regnum < tdep->ppc_ev0_regnum + 32);
 
-  if (fdata.lr_offset == 0)
-    return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
-
-  return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
-                          wordsize);
+  return rs6000_builtin_type_vec64 (gdbarch);
 }
 
-/* If saved registers of frame FI are not known yet, read and cache them.
-   &FDATAP contains rs6000_framedata; TDATAP can be NULL,
-   in which case the framedata are read.  */
-
-static void
-frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
+/* Is REGNUM a member of REGGROUP?  */
+static int
+rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
+                                  struct reggroup *group)
 {
-  CORE_ADDR frame_addr;
-  struct rs6000_framedata work_fdata;
-  struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
-  int wordsize = tdep->wordsize;
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-  if (get_frame_saved_regs (fi))
-    return;
+  /* These are the only pseudo-registers we support.  */
+  gdb_assert (tdep->ppc_ev0_regnum >= 0
+             && regnum >= tdep->ppc_ev0_regnum
+             && regnum < tdep->ppc_ev0_regnum + 32);
 
-  if (fdatap == NULL)
-    {
-      fdatap = &work_fdata;
-      (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
-    }
-
-  frame_saved_regs_zalloc (fi);
-
-  /* If there were any saved registers, figure out parent's stack
-     pointer.  */
-  /* The following is true only if the frame doesn't have a call to
-     alloca(), FIXME.  */
-
-  if (fdatap->saved_fpr == 0
-      && fdatap->saved_gpr == 0
-      && fdatap->saved_vr == 0
-      && fdatap->saved_ev == 0
-      && fdatap->lr_offset == 0
-      && fdatap->cr_offset == 0
-      && fdatap->vr_offset == 0
-      && fdatap->ev_offset == 0)
-    frame_addr = 0;
+  if (group == all_reggroup || group == vector_reggroup)
+    return 1;
   else
-    /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
-       address of the current frame.  Things might be easier if the
-       ->frame pointed to the outer-most address of the frame.  In the
-       mean time, the address of the prev frame is used as the base
-       address of this frame.  */
-    frame_addr = DEPRECATED_FRAME_CHAIN (fi);
-
-  /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
-     All fpr's from saved_fpr to fp31 are saved.  */
-
-  if (fdatap->saved_fpr >= 0)
-    {
-      int i;
-      CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
-      for (i = fdatap->saved_fpr; i < 32; i++)
-       {
-         get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
-         fpr_addr += 8;
-       }
-    }
-
-  /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
-     All gpr's from saved_gpr to gpr31 are saved.  */
-
-  if (fdatap->saved_gpr >= 0)
-    {
-      int i;
-      CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
-      for (i = fdatap->saved_gpr; i < 32; i++)
-       {
-         get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
-         gpr_addr += wordsize;
-       }
-    }
-
-  /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
-     All vr's from saved_vr to vr31 are saved.  */
-  if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
-    {
-      if (fdatap->saved_vr >= 0)
-       {
-         int i;
-         CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
-         for (i = fdatap->saved_vr; i < 32; i++)
-           {
-             get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
-             vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
-           }
-       }
-    }
-
-  /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
-       All vr's from saved_ev to ev31 are saved. ????? */
-  if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
-    {
-      if (fdatap->saved_ev >= 0)
-       {
-         int i;
-         CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
-         for (i = fdatap->saved_ev; i < 32; i++)
-           {
-             get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
-              get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
-             ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
-            }
-       }
-    }
-
-  /* If != 0, fdatap->cr_offset is the offset from the frame that holds
-     the CR.  */
-  if (fdatap->cr_offset != 0)
-    get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
-
-  /* If != 0, fdatap->lr_offset is the offset from the frame that holds
-     the LR.  */
-  if (fdatap->lr_offset != 0)
-    get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
-
-  /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
-     the VRSAVE.  */
-  if (fdatap->vrsave_offset != 0)
-    get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
-}
-
-/* Return the address of a frame. This is the inital %sp value when the frame
-   was first allocated.  For functions calling alloca(), it might be saved in
-   an alloca register.  */
-
-static CORE_ADDR
-frame_initial_stack_address (struct frame_info *fi)
-{
-  CORE_ADDR tmpaddr;
-  struct rs6000_framedata fdata;
-  struct frame_info *callee_fi;
-
-  /* If the initial stack pointer (frame address) of this frame is known,
-     just return it.  */
-
-  if (get_frame_extra_info (fi)->initial_sp)
-    return get_frame_extra_info (fi)->initial_sp;
-
-  /* Find out if this function is using an alloca register.  */
-
-  (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
-
-  /* If saved registers of this frame are not known yet, read and
-     cache them.  */
-
-  if (!get_frame_saved_regs (fi))
-    frame_get_saved_regs (fi, &fdata);
-
-  /* If no alloca register used, then fi->frame is the value of the %sp for
-     this frame, and it is good enough.  */
-
-  if (fdata.alloca_reg < 0)
-    {
-      get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
-      return get_frame_extra_info (fi)->initial_sp;
-    }
-
-  /* There is an alloca register, use its value, in the current frame,
-     as the initial stack pointer.  */
-  {
-    char tmpbuf[MAX_REGISTER_SIZE];
-    if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
-      {
-       get_frame_extra_info (fi)->initial_sp
-         = extract_unsigned_integer (tmpbuf,
-                                     REGISTER_RAW_SIZE (fdata.alloca_reg));
-      }
-    else
-      /* NOTE: cagney/2002-04-17: At present the only time
-         frame_register_read will fail is when the register isn't
-         available.  If that does happen, use the frame.  */
-      get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
-  }
-  return get_frame_extra_info (fi)->initial_sp;
-}
-
-/* Describe the pointer in each stack frame to the previous stack frame
-   (its caller).  */
-
-/* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
-   the frame's chain-pointer.  */
-
-/* In the case of the RS/6000, the frame's nominal address
-   is the address of a 4-byte word containing the calling frame's address.  */
-
-CORE_ADDR
-rs6000_frame_chain (struct frame_info *thisframe)
-{
-  CORE_ADDR fp, fpp, lr;
-  int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
-
-  if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
-                                  get_frame_base (thisframe),
-                                  get_frame_base (thisframe)))
-    /* A dummy frame always correctly chains back to the previous
-       frame.  */
-    return read_memory_addr (get_frame_base (thisframe), wordsize);
-
-  if (inside_entry_file (get_frame_pc (thisframe))
-      || get_frame_pc (thisframe) == entry_point_address ())
     return 0;
-
-  if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
-    fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
-                          wordsize);
-  else if (get_next_frame (thisframe) != NULL
-          && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
-          && FRAMELESS_FUNCTION_INVOCATION (thisframe))
-    /* A frameless function interrupted by a signal did not change the
-       frame pointer.  */
-    fp = get_frame_base (thisframe);
-  else
-    fp = read_memory_addr (get_frame_base (thisframe), wordsize);
-  return fp;
 }
 
-/* Return the size of register REG when words are WORDSIZE bytes long.  If REG
-   isn't available with that word size, return 0.  */
+/* The register format for RS/6000 floating point registers is always
+   double, we need a conversion if the memory format is float.  */
 
 static int
-regsize (const struct reg *reg, int wordsize)
+rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
+                          struct type *type)
 {
-  return wordsize == 8 ? reg->sz64 : reg->sz32;
-}
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-/* Return the name of register number N, or null if no such register exists
-   in the current architecture.  */
+  return (tdep->ppc_fp0_regnum >= 0
+         && regnum >= tdep->ppc_fp0_regnum
+         && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
+         && TYPE_CODE (type) == TYPE_CODE_FLT
+         && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
+}
 
-static const char *
-rs6000_register_name (int n)
+static void
+rs6000_register_to_value (struct frame_info *frame,
+                          int regnum,
+                          struct type *type,
+                          gdb_byte *to)
 {
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
-  const struct reg *reg = tdep->regs + n;
+  gdb_byte from[MAX_REGISTER_SIZE];
+  
+  gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
 
-  if (!regsize (reg, tdep->wordsize))
-    return NULL;
-  return reg->name;
+  get_frame_register (frame, regnum, from);
+  convert_typed_floating (from, builtin_type_double, to, type);
 }
 
-/* Index within `registers' of the first byte of the space for
-   register N.  */
-
-static int
-rs6000_register_byte (int n)
+static void
+rs6000_value_to_register (struct frame_info *frame,
+                          int regnum,
+                          struct type *type,
+                          const gdb_byte *from)
 {
-  return gdbarch_tdep (current_gdbarch)->regoff[n];
-}
+  gdb_byte to[MAX_REGISTER_SIZE];
 
-/* Return the number of bytes of storage in the actual machine representation
-   for register N if that register is available, else return 0.  */
+  gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
 
-static int
-rs6000_register_raw_size (int n)
-{
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
-  const struct reg *reg = tdep->regs + n;
-  return regsize (reg, tdep->wordsize);
+  convert_typed_floating (from, type, to, builtin_type_double);
+  put_frame_register (frame, regnum, to);
 }
 
-/* Return the GDB type object for the "standard" data type
-   of data in register N.  */
-
-static struct type *
-rs6000_register_virtual_type (int n)
+/* Move SPE vector register values between a 64-bit buffer and the two
+   32-bit raw register halves in a regcache.  This function handles
+   both splitting a 64-bit value into two 32-bit halves, and joining
+   two halves into a whole 64-bit value, depending on the function
+   passed as the MOVE argument.
+
+   EV_REG must be the number of an SPE evN vector register --- a
+   pseudoregister.  REGCACHE must be a regcache, and BUFFER must be a
+   64-bit buffer.
+
+   Call MOVE once for each 32-bit half of that register, passing
+   REGCACHE, the number of the raw register corresponding to that
+   half, and the address of the appropriate half of BUFFER.
+
+   For example, passing 'regcache_raw_read' as the MOVE function will
+   fill BUFFER with the full 64-bit contents of EV_REG.  Or, passing
+   'regcache_raw_supply' will supply the contents of BUFFER to the
+   appropriate pair of raw registers in REGCACHE.
+
+   You may need to cast away some 'const' qualifiers when passing
+   MOVE, since this function can't tell at compile-time which of
+   REGCACHE or BUFFER is acting as the source of the data.  If C had
+   co-variant type qualifiers, ...  */
+static void
+e500_move_ev_register (void (*move) (struct regcache *regcache,
+                                     int regnum, gdb_byte *buf),
+                       struct regcache *regcache, int ev_reg,
+                       gdb_byte *buffer)
 {
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
-  const struct reg *reg = tdep->regs + n;
+  struct gdbarch *arch = get_regcache_arch (regcache);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (arch); 
+  int reg_index;
+  gdb_byte *byte_buffer = buffer;
 
-  if (reg->fpr)
-    return builtin_type_double;
-  else
-    {
-      int size = regsize (reg, tdep->wordsize);
-      switch (size)
-       {
-       case 8:
-         if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
-           return builtin_type_vec64;
-         else
-           return builtin_type_int64;
-         break;
-       case 16:
-         return builtin_type_vec128;
-         break;
-       default:
-         return builtin_type_int32;
-         break;
-       }
-    }
-}
-
-/* Return whether register N requires conversion when moving from raw format
-   to virtual format.
-
-   The register format for RS/6000 floating point registers is always
-   double, we need a conversion if the memory format is float.  */
+  gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
+              && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
 
-static int
-rs6000_register_convertible (int n)
-{
-  const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
-  return reg->fpr;
-}
+  reg_index = ev_reg - tdep->ppc_ev0_regnum;
 
-/* Convert data from raw format for register N in buffer FROM
-   to virtual format with type TYPE in buffer TO.  */
-
-static void
-rs6000_register_convert_to_virtual (int n, struct type *type,
-                                   char *from, char *to)
-{
-  if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
+  if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
     {
-      double val = deprecated_extract_floating (from, REGISTER_RAW_SIZE (n));
-      deprecated_store_floating (to, TYPE_LENGTH (type), val);
+      move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
+      move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
     }
   else
-    memcpy (to, from, REGISTER_RAW_SIZE (n));
-}
-
-/* Convert data from virtual format with type TYPE in buffer FROM
-   to raw format for register N in buffer TO.  */
-
-static void
-rs6000_register_convert_to_raw (struct type *type, int n,
-                               const char *from, char *to)
-{
-  if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
     {
-      double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
-      deprecated_store_floating (to, REGISTER_RAW_SIZE (n), val);
+      move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
+      move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
     }
-  else
-    memcpy (to, from, REGISTER_RAW_SIZE (n));
 }
 
 static void
 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
-                          int reg_nr, void *buffer)
+                          int reg_nr, gdb_byte *buffer)
 {
-  int base_regnum;
-  int offset = 0;
-  char temp_buffer[MAX_REGISTER_SIZE];
+  struct gdbarch *regcache_arch = get_regcache_arch (regcache);
   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 
 
-  if (reg_nr >= tdep->ppc_gp0_regnum 
-      && reg_nr <= tdep->ppc_gplast_regnum)
-    {
-      base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
-
-      /* Build the value in the provided buffer.  */ 
-      /* Read the raw register of which this one is the lower portion.  */
-      regcache_raw_read (regcache, base_regnum, temp_buffer);
-      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
-       offset = 4;
-      memcpy ((char *) buffer, temp_buffer + offset, 4);
-    }
+  gdb_assert (regcache_arch == gdbarch);
+  if (tdep->ppc_ev0_regnum <= reg_nr
+      && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
+    e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
+  else
+    internal_error (__FILE__, __LINE__,
+                    _("e500_pseudo_register_read: "
+                    "called on unexpected register '%s' (%d)"),
+                    gdbarch_register_name (gdbarch, reg_nr), reg_nr);
 }
 
 static void
 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
-                           int reg_nr, const void *buffer)
+                           int reg_nr, const gdb_byte *buffer)
 {
-  int base_regnum;
-  int offset = 0;
-  char temp_buffer[MAX_REGISTER_SIZE];
+  struct gdbarch *regcache_arch = get_regcache_arch (regcache);
   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 
 
-  if (reg_nr >= tdep->ppc_gp0_regnum 
-      && reg_nr <= tdep->ppc_gplast_regnum)
-    {
-      base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
-      /* reg_nr is 32 bit here, and base_regnum is 64 bits.  */
-      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
-       offset = 4;
-
-      /* Let's read the value of the base register into a temporary
-        buffer, so that overwriting the last four bytes with the new
-        value of the pseudo will leave the upper 4 bytes unchanged.  */
-      regcache_raw_read (regcache, base_regnum, temp_buffer);
-
-      /* Write as an 8 byte quantity.  */
-      memcpy (temp_buffer + offset, (char *) buffer, 4);
-      regcache_raw_write (regcache, base_regnum, temp_buffer);
-    }
+  gdb_assert (regcache_arch == gdbarch);
+  if (tdep->ppc_ev0_regnum <= reg_nr
+      && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
+    e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
+                           regcache_raw_write,
+                           regcache, reg_nr, (gdb_byte *) buffer);
+  else
+    internal_error (__FILE__, __LINE__,
+                    _("e500_pseudo_register_read: "
+                    "called on unexpected register '%s' (%d)"),
+                    gdbarch_register_name (gdbarch, reg_nr), reg_nr);
 }
 
-/* Convert a dwarf2 register number to a gdb REGNUM.  */
+/* Convert a DBX STABS register number to a GDB register number.  */
 static int
-e500_dwarf2_reg_to_regnum (int num)
+rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
 {
-  int regnum;
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
   if (0 <= num && num <= 31)
-    return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
-  else 
-    return num;
+    return tdep->ppc_gp0_regnum + num;
+  else if (32 <= num && num <= 63)
+    /* FIXME: jimb/2004-05-05: What should we do when the debug info
+       specifies registers the architecture doesn't have?  Our
+       callers don't check the value we return.  */
+    return tdep->ppc_fp0_regnum + (num - 32);
+  else if (77 <= num && num <= 108)
+    return tdep->ppc_vr0_regnum + (num - 77);
+  else if (1200 <= num && num < 1200 + 32)
+    return tdep->ppc_ev0_regnum + (num - 1200);
+  else
+    switch (num)
+      {
+      case 64: 
+        return tdep->ppc_mq_regnum;
+      case 65:
+        return tdep->ppc_lr_regnum;
+      case 66: 
+        return tdep->ppc_ctr_regnum;
+      case 76: 
+        return tdep->ppc_xer_regnum;
+      case 109:
+        return tdep->ppc_vrsave_regnum;
+      case 110:
+        return tdep->ppc_vrsave_regnum - 1; /* vscr */
+      case 111:
+        return tdep->ppc_acc_regnum;
+      case 112:
+        return tdep->ppc_spefscr_regnum;
+      default: 
+        return num;
+      }
 }
 
-/* Convert a dbx stab register number (from `r' declaration) to a gdb
-   REGNUM.  */
+
+/* Convert a Dwarf 2 register number to a GDB register number.  */
 static int
-rs6000_stab_reg_to_regnum (int num)
+rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
 {
-  int regnum;
-  switch (num)
-    {
-    case 64: 
-      regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
-      break;
-    case 65: 
-      regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
-      break;
-    case 66: 
-      regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
-      break;
-    case 76: 
-      regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
-      break;
-    default: 
-      regnum = num;
-      break;
-    }
-  return regnum;
-}
-
-/* Store the address of the place in which to copy the structure the
-   subroutine will return.  */
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-static void
-rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
-{
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
-  write_register (tdep->ppc_gp0_regnum + 3, addr);
+  if (0 <= num && num <= 31)
+    return tdep->ppc_gp0_regnum + num;
+  else if (32 <= num && num <= 63)
+    /* FIXME: jimb/2004-05-05: What should we do when the debug info
+       specifies registers the architecture doesn't have?  Our
+       callers don't check the value we return.  */
+    return tdep->ppc_fp0_regnum + (num - 32);
+  else if (1124 <= num && num < 1124 + 32)
+    return tdep->ppc_vr0_regnum + (num - 1124);
+  else if (1200 <= num && num < 1200 + 32)
+    return tdep->ppc_ev0_regnum + (num - 1200);
+  else
+    switch (num)
+      {
+      case 64:
+       return tdep->ppc_cr_regnum;
+      case 67:
+        return tdep->ppc_vrsave_regnum - 1; /* vscr */
+      case 99:
+        return tdep->ppc_acc_regnum;
+      case 100:
+        return tdep->ppc_mq_regnum;
+      case 101:
+        return tdep->ppc_xer_regnum;
+      case 108:
+        return tdep->ppc_lr_regnum;
+      case 109:
+        return tdep->ppc_ctr_regnum;
+      case 356:
+        return tdep->ppc_vrsave_regnum;
+      case 612:
+        return tdep->ppc_spefscr_regnum;
+      default:
+        return num;
+      }
 }
 
-/* Write into appropriate registers a function return value
-   of type TYPE, given in virtual format.  */
-static void
-e500_store_return_value (struct type *type, char *valbuf)
-{
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+/* Translate a .eh_frame register to DWARF register, or adjust a
+   .debug_frame register.  */
 
-  /* Everything is returned in GPR3 and up.  */
-  int copied = 0;
-  int i = 0;
-  int len = TYPE_LENGTH (type);
-  while (copied < len)
+static int
+rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
+{
+  /* GCC releases before 3.4 use GCC internal register numbering in
+     .debug_frame (and .debug_info, et cetera).  The numbering is
+     different from the standard SysV numbering for everything except
+     for GPRs and FPRs.  We can not detect this problem in most cases
+     - to get accurate debug info for variables living in lr, ctr, v0,
+     et cetera, use a newer version of GCC.  But we must detect
+     one important case - lr is in column 65 in .debug_frame output,
+     instead of 108.
+
+     GCC 3.4, and the "hammer" branch, have a related problem.  They
+     record lr register saves in .debug_frame as 108, but still record
+     the return column as 65.  We fix that up too.
+
+     We can do this because 65 is assigned to fpsr, and GCC never
+     generates debug info referring to it.  To add support for
+     handwritten debug info that restores fpsr, we would need to add a
+     producer version check to this.  */
+  if (!eh_frame_p)
     {
-      int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
-      int reg_size = REGISTER_RAW_SIZE (regnum);
-      char *reg_val_buf = alloca (reg_size);
-
-      memcpy (reg_val_buf, valbuf + copied, reg_size);
-      copied += reg_size;
-      deprecated_write_register_gen (regnum, reg_val_buf);
-      i++;
+      if (num == 65)
+       return 108;
+      else
+       return num;
     }
-}
-
-static void
-rs6000_store_return_value (struct type *type, char *valbuf)
-{
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
-
-  if (TYPE_CODE (type) == TYPE_CODE_FLT)
-
-    /* Floating point values are returned starting from FPR1 and up.
-       Say a double_double_double type could be returned in
-       FPR1/FPR2/FPR3 triple.  */
 
-    deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
-                                    TYPE_LENGTH (type));
-  else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
-    {
-      if (TYPE_LENGTH (type) == 16
-          && TYPE_VECTOR (type))
-       deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
-                                        valbuf, TYPE_LENGTH (type));
-    }
+  /* .eh_frame is GCC specific.  For binary compatibility, it uses GCC
+     internal register numbering; translate that to the standard DWARF2
+     register numbering.  */
+  if (0 <= num && num <= 63)   /* r0-r31,fp0-fp31 */
+    return num;
+  else if (68 <= num && num <= 75) /* cr0-cr8 */
+    return num - 68 + 86;
+  else if (77 <= num && num <= 108) /* vr0-vr31 */
+    return num - 77 + 1124;
   else
-    /* Everything else is returned in GPR3 and up.  */
-    deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
-                                    valbuf, TYPE_LENGTH (type));
-}
-
-/* Extract from an array REGBUF containing the (raw) register state
-   the address in which a function should return its structure value,
-   as a CORE_ADDR (or an expression that can be used as one).  */
-
-static CORE_ADDR
-rs6000_extract_struct_value_address (struct regcache *regcache)
-{
-  /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
-     function call GDB knows the address of the struct return value
-     and hence, should not need to call this function.  Unfortunately,
-     the current call_function_by_hand() code only saves the most
-     recent struct address leading to occasional calls.  The code
-     should instead maintain a stack of such addresses (in the dummy
-     frame object).  */
-  /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
-     really got no idea where the return value is being stored.  While
-     r3, on function entry, contained the address it will have since
-     been reused (scratch) and hence wouldn't be valid */
-  return 0;
-}
-
-/* Return whether PC is in a dummy function call.
-
-   FIXME: This just checks for the end of the stack, which is broken
-   for things like stepping through gcc nested function stubs.  */
-
-static int
-rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
-{
-  return sp < pc && pc < fp;
-}
-
-/* Hook called when a new child process is started.  */
-
-void
-rs6000_create_inferior (int pid)
-{
-  if (rs6000_set_host_arch_hook)
-    rs6000_set_host_arch_hook (pid);
+    switch (num)
+      {
+      case 64: /* mq */
+       return 100;
+      case 65: /* lr */
+       return 108;
+      case 66: /* ctr */
+       return 109;
+      case 76: /* xer */
+       return 101;
+      case 109: /* vrsave */
+       return 356;
+      case 110: /* vscr */
+       return 67;
+      case 111: /* spe_acc */
+       return 99;
+      case 112: /* spefscr */
+       return 612;
+      default:
+       return num;
+      }
 }
 \f
-/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
+/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
 
    Usually a function pointer's representation is simply the address
    of the function. On the RS/6000 however, a function pointer is
-   represented by a pointer to a TOC entry. This TOC entry contains
+   represented by a pointer to an OPD entry. This OPD entry contains
    three words, the first word is the address of the function, the
    second word is the TOC pointer (r2), and the third word is the
    static chain value.  Throughout GDB it is currently assumed that a
    function pointer contains the address of the function, which is not
    easy to fix.  In addition, the conversion of a function address to
-   a function pointer would require allocation of a TOC entry in the
+   a function pointer would require allocation of an OPD entry in the
    inferior's memory space, with all its drawbacks.  To be able to
    call C++ virtual methods in the inferior (which are called via
    function pointers), find_function_addr uses this function to get the
@@ -2165,7 +2724,9 @@ rs6000_create_inferior (int pid)
    space and is therefore a special function pointer.  */
 
 static CORE_ADDR
-rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
+rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
+                                  CORE_ADDR addr,
+                                  struct target_ops *targ)
 {
   struct obj_section *s;
 
@@ -2174,528 +2735,423 @@ rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
     return addr;
 
   /* ADDR is in the data space, so it's a special function pointer. */
-  return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
+  return read_memory_addr (addr, gdbarch_tdep (gdbarch)->wordsize);
 }
 \f
 
 /* Handling the various POWER/PowerPC variants.  */
 
+/* Information about a particular processor variant.  */
 
-/* The arrays here called registers_MUMBLE hold information about available
-   registers.
-
-   For each family of PPC variants, I've tried to isolate out the
-   common registers and put them up front, so that as long as you get
-   the general family right, GDB will correctly identify the registers
-   common to that family.  The common register sets are:
+struct variant
+  {
+    /* Name of this variant.  */
+    char *name;
 
-   For the 60x family: hid0 hid1 iabr dabr pir
+    /* English description of the variant.  */
+    char *description;
 
-   For the 505 and 860 family: eie eid nri
+    /* bfd_arch_info.arch corresponding to variant.  */
+    enum bfd_architecture arch;
 
-   For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
-   tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
-   pbu1 pbl2 pbu2
+    /* bfd_arch_info.mach corresponding to variant.  */
+    unsigned long mach;
 
-   Most of these register groups aren't anything formal.  I arrived at
-   them by looking at the registers that occurred in more than one
-   processor.
-   
-   Note: kevinb/2002-04-30: Support for the fpscr register was added
-   during April, 2002.  Slot 70 is being used for PowerPC and slot 71
-   for Power.  For PowerPC, slot 70 was unused and was already in the
-   PPC_UISA_SPRS which is ideally where fpscr should go.  For Power,
-   slot 70 was being used for "mq", so the next available slot (71)
-   was chosen.  It would have been nice to be able to make the
-   register numbers the same across processor cores, but this wasn't
-   possible without either 1) renumbering some registers for some
-   processors or 2) assigning fpscr to a really high slot that's
-   larger than any current register number.  Doing (1) is bad because
-   existing stubs would break.  Doing (2) is undesirable because it
-   would introduce a really large gap between fpscr and the rest of
-   the registers for most processors.  */
-
-/* Convenience macros for populating register arrays.  */
-
-/* Within another macro, convert S to a string.  */
-
-#define STR(s) #s
-
-/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
-   and 64 bits on 64-bit systems.  */
-#define R(name)                { STR(name), 4, 8, 0, 0 }
-
-/* Return a struct reg defining register NAME that's 32 bits on all
-   systems.  */
-#define R4(name)       { STR(name), 4, 4, 0, 0 }
-
-/* Return a struct reg defining register NAME that's 64 bits on all
-   systems.  */
-#define R8(name)       { STR(name), 8, 8, 0, 0 }
-
-/* Return a struct reg defining register NAME that's 128 bits on all
-   systems.  */
-#define R16(name)       { STR(name), 16, 16, 0, 0 }
-
-/* Return a struct reg defining floating-point register NAME.  */
-#define F(name)                { STR(name), 8, 8, 1, 0 }
-
-/* Return a struct reg defining a pseudo register NAME.  */
-#define P(name)                { STR(name), 4, 8, 0, 1}
-
-/* Return a struct reg defining register NAME that's 32 bits on 32-bit
-   systems and that doesn't exist on 64-bit systems.  */
-#define R32(name)      { STR(name), 4, 0, 0, 0 }
-
-/* Return a struct reg defining register NAME that's 64 bits on 64-bit
-   systems and that doesn't exist on 32-bit systems.  */
-#define R64(name)      { STR(name), 0, 8, 0, 0 }
-
-/* Return a struct reg placeholder for a register that doesn't exist.  */
-#define R0             { 0, 0, 0, 0, 0 }
-
-/* UISA registers common across all architectures, including POWER.  */
-
-#define COMMON_UISA_REGS \
-  /*  0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7),  \
-  /*  8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
-  /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
-  /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
-  /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7),  \
-  /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
-  /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
-  /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
-  /* 64 */ R(pc), R(ps)
-
-#define COMMON_UISA_NOFP_REGS \
-  /*  0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7),  \
-  /*  8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
-  /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
-  /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
-  /* 32 */ R0,    R0,    R0,    R0,    R0,    R0,    R0,    R0,     \
-  /* 40 */ R0,    R0,    R0,    R0,    R0,    R0,    R0,    R0,     \
-  /* 48 */ R0,    R0,    R0,    R0,    R0,    R0,    R0,    R0,     \
-  /* 56 */ R0,    R0,    R0,    R0,    R0,    R0,    R0,    R0,     \
-  /* 64 */ R(pc), R(ps)
-
-/* UISA-level SPRs for PowerPC.  */
-#define PPC_UISA_SPRS \
-  /* 66 */ R4(cr),  R(lr), R(ctr), R4(xer), R4(fpscr)
-
-/* UISA-level SPRs for PowerPC without floating point support.  */
-#define PPC_UISA_NOFP_SPRS \
-  /* 66 */ R4(cr),  R(lr), R(ctr), R4(xer), R0
-
-/* Segment registers, for PowerPC.  */
-#define PPC_SEGMENT_REGS \
-  /* 71 */ R32(sr0),  R32(sr1),  R32(sr2),  R32(sr3),  \
-  /* 75 */ R32(sr4),  R32(sr5),  R32(sr6),  R32(sr7),  \
-  /* 79 */ R32(sr8),  R32(sr9),  R32(sr10), R32(sr11), \
-  /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
-
-/* OEA SPRs for PowerPC.  */
-#define PPC_OEA_SPRS \
-  /*  87 */ R4(pvr), \
-  /*  88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
-  /*  92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
-  /*  96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
-  /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
-  /* 104 */ R(sdr1),   R64(asr),  R(dar),    R4(dsisr), \
-  /* 108 */ R(sprg0),  R(sprg1),  R(sprg2),  R(sprg3),  \
-  /* 112 */ R(srr0),   R(srr1),   R(tbl),    R(tbu),    \
-  /* 116 */ R4(dec),   R(dabr),   R4(ear)
-
-/* AltiVec registers.  */
-#define PPC_ALTIVEC_REGS \
-  /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7),  \
-  /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
-  /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
-  /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
-  /*151*/R4(vscr), R4(vrsave)
-
-/* Vectors of hi-lo general purpose registers.  */
-#define PPC_EV_REGS \
-  /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7),  \
-  /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
-  /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
-  /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
-
-/* Lower half of the EV registers.  */
-#define PPC_GPRS_PSEUDO_REGS \
-  /*  0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7),  \
-  /*  8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
-  /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
-  /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
-
-/* IBM POWER (pre-PowerPC) architecture, user-level view.  We only cover
-   user-level SPR's.  */
-static const struct reg registers_power[] =
-{
-  COMMON_UISA_REGS,
-  /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
-  /* 71 */ R4(fpscr)
-};
+    /* Target description for this variant.  */
+    struct target_desc **tdesc;
+  };
 
-/* PowerPC UISA - a PPC processor as viewed by user-level code.  A UISA-only
-   view of the PowerPC.  */
-static const struct reg registers_powerpc[] =
+static struct variant variants[] =
 {
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_ALTIVEC_REGS
-};
+  {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
+   bfd_mach_ppc, &tdesc_powerpc_32},
+  {"power", "POWER user-level", bfd_arch_rs6000,
+   bfd_mach_rs6k, &tdesc_rs6000},
+  {"403", "IBM PowerPC 403", bfd_arch_powerpc,
+   bfd_mach_ppc_403, &tdesc_powerpc_403},
+  {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
+   bfd_mach_ppc_601, &tdesc_powerpc_601},
+  {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
+   bfd_mach_ppc_602, &tdesc_powerpc_602},
+  {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
+   bfd_mach_ppc_603, &tdesc_powerpc_603},
+  {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
+   604, &tdesc_powerpc_604},
+  {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
+   bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
+  {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
+   bfd_mach_ppc_505, &tdesc_powerpc_505},
+  {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
+   bfd_mach_ppc_860, &tdesc_powerpc_860},
+  {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
+   bfd_mach_ppc_750, &tdesc_powerpc_750},
+  {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
+   bfd_mach_ppc_7400, &tdesc_powerpc_7400},
+  {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
+   bfd_mach_ppc_e500, &tdesc_powerpc_e500},
 
-/* PowerPC UISA - a PPC processor as viewed by user-level
-   code, but without floating point registers.  */
-static const struct reg registers_powerpc_nofp[] =
-{
-  COMMON_UISA_NOFP_REGS,
-  PPC_UISA_SPRS
-};
+  /* 64-bit */
+  {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
+   bfd_mach_ppc64, &tdesc_powerpc_64},
+  {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
+   bfd_mach_ppc_620, &tdesc_powerpc_64},
+  {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
+   bfd_mach_ppc_630, &tdesc_powerpc_64},
+  {"a35", "PowerPC A35", bfd_arch_powerpc,
+   bfd_mach_ppc_a35, &tdesc_powerpc_64},
+  {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
+   bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
+  {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
+   bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
 
-/* IBM PowerPC 403.  */
-static const struct reg registers_403[] =
-{
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(icdbdr), R(esr),  R(dear), R(evpr),
-  /* 123 */ R(cdbcr),  R(tsr),  R(tcr),  R(pit),
-  /* 127 */ R(tbhi),   R(tblo), R(srr2), R(srr3),
-  /* 131 */ R(dbsr),   R(dbcr), R(iac1), R(iac2),
-  /* 135 */ R(dac1),   R(dac2), R(dccr), R(iccr),
-  /* 139 */ R(pbl1),   R(pbu1), R(pbl2), R(pbu2)
-};
+  /* FIXME: I haven't checked the register sets of the following.  */
+  {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
+   bfd_mach_rs6k_rs1, &tdesc_rs6000},
+  {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
+   bfd_mach_rs6k_rsc, &tdesc_rs6000},
+  {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
+   bfd_mach_rs6k_rs2, &tdesc_rs6000},
 
-/* IBM PowerPC 403GC.  */
-static const struct reg registers_403GC[] =
-{
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(icdbdr), R(esr),  R(dear), R(evpr),
-  /* 123 */ R(cdbcr),  R(tsr),  R(tcr),  R(pit),
-  /* 127 */ R(tbhi),   R(tblo), R(srr2), R(srr3),
-  /* 131 */ R(dbsr),   R(dbcr), R(iac1), R(iac2),
-  /* 135 */ R(dac1),   R(dac2), R(dccr), R(iccr),
-  /* 139 */ R(pbl1),   R(pbu1), R(pbl2), R(pbu2),
-  /* 143 */ R(zpr),    R(pid),  R(sgr),  R(dcwr),
-  /* 147 */ R(tbhu),   R(tblu)
+  {0, 0, 0, 0, 0}
 };
 
-/* Motorola PowerPC 505.  */
-static const struct reg registers_505[] =
+/* Return the variant corresponding to architecture ARCH and machine number
+   MACH.  If no such variant exists, return null.  */
+
+static const struct variant *
+find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
 {
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(eie), R(eid), R(nri)
-};
+  const struct variant *v;
 
-/* Motorola PowerPC 860 or 850.  */
-static const struct reg registers_860[] =
-{
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
-  /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
-  /* 127 */ R(der), R(counta), R(countb), R(cmpe),
-  /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
-  /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
-  /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
-  /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
-  /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
-  /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
-  /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
-  /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
-  /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
-};
+  for (v = variants; v->name; v++)
+    if (arch == v->arch && mach == v->mach)
+      return v;
 
-/* Motorola PowerPC 601.  Note that the 601 has different register numbers
-   for reading and writing RTCU and RTCL.  However, how one reads and writes a
-   register is the stub's problem.  */
-static const struct reg registers_601[] =
-{
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
-  /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
-};
+  return NULL;
+}
 
-/* Motorola PowerPC 602.  */
-static const struct reg registers_602[] =
+static int
+gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
 {
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(hid0), R(hid1), R(iabr), R0,
-  /* 123 */ R0, R(tcr), R(ibr), R(esassr),
-  /* 127 */ R(sebr), R(ser), R(sp), R(lt)
-};
+  if (!info->disassembler_options)
+    info->disassembler_options = "any";
 
-/* Motorola/IBM PowerPC 603 or 603e.  */
-static const struct reg registers_603[] =
+  if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
+    return print_insn_big_powerpc (memaddr, info);
+  else
+    return print_insn_little_powerpc (memaddr, info);
+}
+\f
+static CORE_ADDR
+rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
 {
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(hid0), R(hid1), R(iabr), R0,
-  /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
-  /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
-};
+  return frame_unwind_register_unsigned (next_frame,
+                                        gdbarch_pc_regnum (gdbarch));
+}
 
-/* Motorola PowerPC 604 or 604e.  */
-static const struct reg registers_604[] =
+static struct frame_id
+rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
 {
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
-  /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
-  /* 127 */ R(sia), R(sda)
-};
+  return frame_id_build (frame_unwind_register_unsigned
+                        (next_frame, gdbarch_sp_regnum (gdbarch)),
+                       frame_pc_unwind (next_frame));
+}
 
-/* Motorola/IBM PowerPC 750 or 740.  */
-static const struct reg registers_750[] =
-{
-  COMMON_UISA_REGS,
-  PPC_UISA_SPRS,
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
-  /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
-  /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
-  /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
-  /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
-  /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
+struct rs6000_frame_cache
+{
+  CORE_ADDR base;
+  CORE_ADDR initial_sp;
+  struct trad_frame_saved_reg *saved_regs;
 };
 
-
-/* Motorola PowerPC 7400.  */
-static const struct reg registers_7400[] =
+static struct rs6000_frame_cache *
+rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
 {
-  /* gpr0-gpr31, fpr0-fpr31 */
-  COMMON_UISA_REGS,
-  /* ctr, xre, lr, cr */
-  PPC_UISA_SPRS,
-  /* sr0-sr15 */
-  PPC_SEGMENT_REGS,
-  PPC_OEA_SPRS,
-  /* vr0-vr31, vrsave, vscr */
-  PPC_ALTIVEC_REGS
-  /* FIXME? Add more registers? */
-};
+  struct rs6000_frame_cache *cache;
+  struct gdbarch *gdbarch = get_frame_arch (next_frame);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  struct rs6000_framedata fdata;
+  int wordsize = tdep->wordsize;
+  CORE_ADDR func, pc;
+
+  if ((*this_cache) != NULL)
+    return (*this_cache);
+  cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
+  (*this_cache) = cache;
+  cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
+
+  func = frame_func_unwind (next_frame, NORMAL_FRAME);
+  pc = frame_pc_unwind (next_frame);
+  skip_prologue (func, pc, &fdata);
+
+  /* Figure out the parent's stack pointer.  */
+
+  /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
+     address of the current frame.  Things might be easier if the
+     ->frame pointed to the outer-most address of the frame.  In
+     the mean time, the address of the prev frame is used as the
+     base address of this frame.  */
+  cache->base = frame_unwind_register_unsigned
+               (next_frame, gdbarch_sp_regnum (gdbarch));
+
+  /* If the function appears to be frameless, check a couple of likely
+     indicators that we have simply failed to find the frame setup.
+     Two common cases of this are missing symbols (i.e.
+     frame_func_unwind returns the wrong address or 0), and assembly
+     stubs which have a fast exit path but set up a frame on the slow
+     path.
+
+     If the LR appears to return to this function, then presume that
+     we have an ABI compliant frame that we failed to find.  */
+  if (fdata.frameless && fdata.lr_offset == 0)
+    {
+      CORE_ADDR saved_lr;
+      int make_frame = 0;
+
+      saved_lr = frame_unwind_register_unsigned (next_frame,
+                                                tdep->ppc_lr_regnum);
+      if (func == 0 && saved_lr == pc)
+       make_frame = 1;
+      else if (func != 0)
+       {
+         CORE_ADDR saved_func = get_pc_function_start (saved_lr);
+         if (func == saved_func)
+           make_frame = 1;
+       }
 
-/* Motorola e500.  */
-static const struct reg registers_e500[] =
-{
-  R(pc), R(ps),
-  /* cr, lr, ctr, xer, "" */
-  PPC_UISA_NOFP_SPRS,
-  /* 7...38 */
-  PPC_EV_REGS,
-  R8(acc), R(spefscr),
-  /* NOTE: Add new registers here the end of the raw register
-     list and just before the first pseudo register.  */
-  /* 39...70 */
-  PPC_GPRS_PSEUDO_REGS
-};
+      if (make_frame)
+       {
+         fdata.frameless = 0;
+         fdata.lr_offset = tdep->lr_frame_offset;
+       }
+    }
 
-/* Information about a particular processor variant.  */
+  if (!fdata.frameless)
+    /* Frameless really means stackless.  */
+    cache->base = read_memory_addr (cache->base, wordsize);
 
-struct variant
-  {
-    /* Name of this variant.  */
-    char *name;
+  trad_frame_set_value (cache->saved_regs,
+                       gdbarch_sp_regnum (gdbarch), cache->base);
 
-    /* English description of the variant.  */
-    char *description;
+  /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
+     All fpr's from saved_fpr to fp31 are saved.  */
 
-    /* bfd_arch_info.arch corresponding to variant.  */
-    enum bfd_architecture arch;
+  if (fdata.saved_fpr >= 0)
+    {
+      int i;
+      CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
+
+      /* If skip_prologue says floating-point registers were saved,
+         but the current architecture has no floating-point registers,
+         then that's strange.  But we have no indices to even record
+         the addresses under, so we just ignore it.  */
+      if (ppc_floating_point_unit_p (gdbarch))
+        for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
+          {
+            cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
+            fpr_addr += 8;
+          }
+    }
+
+  /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
+     All gpr's from saved_gpr to gpr31 are saved.  */
+
+  if (fdata.saved_gpr >= 0)
+    {
+      int i;
+      CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
+      for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
+       {
+         cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
+         gpr_addr += wordsize;
+       }
+    }
+
+  /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
+     All vr's from saved_vr to vr31 are saved.  */
+  if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
+    {
+      if (fdata.saved_vr >= 0)
+       {
+         int i;
+         CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
+         for (i = fdata.saved_vr; i < 32; i++)
+           {
+             cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
+             vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
+           }
+       }
+    }
 
-    /* bfd_arch_info.mach corresponding to variant.  */
-    unsigned long mach;
+  /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
+     All vr's from saved_ev to ev31 are saved. ????? */
+  if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
+    {
+      if (fdata.saved_ev >= 0)
+       {
+         int i;
+         CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
+         for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
+           {
+             cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
+              cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
+             ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
+            }
+       }
+    }
 
-    /* Number of real registers.  */
-    int nregs;
+  /* If != 0, fdata.cr_offset is the offset from the frame that
+     holds the CR.  */
+  if (fdata.cr_offset != 0)
+    cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
 
-    /* Number of pseudo registers.  */
-    int npregs;
+  /* If != 0, fdata.lr_offset is the offset from the frame that
+     holds the LR.  */
+  if (fdata.lr_offset != 0)
+    cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
+  /* The PC is found in the link register.  */
+  cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
+    cache->saved_regs[tdep->ppc_lr_regnum];
 
-    /* Number of total registers (the sum of nregs and npregs).  */
-    int num_tot_regs;
+  /* If != 0, fdata.vrsave_offset is the offset from the frame that
+     holds the VRSAVE.  */
+  if (fdata.vrsave_offset != 0)
+    cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
 
-    /* Table of register names; registers[R] is the name of the register
-       number R.  */
-    const struct reg *regs;
-  };
+  if (fdata.alloca_reg < 0)
+    /* If no alloca register used, then fi->frame is the value of the
+       %sp for this frame, and it is good enough.  */
+    cache->initial_sp = frame_unwind_register_unsigned
+                       (next_frame, gdbarch_sp_regnum (gdbarch));
+  else
+    cache->initial_sp = frame_unwind_register_unsigned (next_frame,
+                                                       fdata.alloca_reg);
 
-#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
+  return cache;
+}
 
-static int
-num_registers (const struct reg *reg_list, int num_tot_regs)
+static void
+rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
+                     struct frame_id *this_id)
 {
-  int i;
-  int nregs = 0;
+  struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
+                                                       this_cache);
+  (*this_id) = frame_id_build (info->base,
+                              frame_func_unwind (next_frame, NORMAL_FRAME));
+}
 
-  for (i = 0; i < num_tot_regs; i++)
-    if (!reg_list[i].pseudo)
-      nregs++;
-       
-  return nregs;
+static void
+rs6000_frame_prev_register (struct frame_info *next_frame,
+                                void **this_cache,
+                                int regnum, int *optimizedp,
+                                enum lval_type *lvalp, CORE_ADDR *addrp,
+                                int *realnump, gdb_byte *valuep)
+{
+  struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
+                                                       this_cache);
+  trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
+                               optimizedp, lvalp, addrp, realnump, valuep);
 }
 
-static int
-num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
+static const struct frame_unwind rs6000_frame_unwind =
 {
-  int i;
-  int npregs = 0;
-
-  for (i = 0; i < num_tot_regs; i++)
-    if (reg_list[i].pseudo)
-      npregs ++; 
+  NORMAL_FRAME,
+  rs6000_frame_this_id,
+  rs6000_frame_prev_register
+};
 
-  return npregs;
+static const struct frame_unwind *
+rs6000_frame_sniffer (struct frame_info *next_frame)
+{
+  return &rs6000_frame_unwind;
 }
 
-/* Information in this table comes from the following web sites:
-   IBM:       http://www.chips.ibm.com:80/products/embedded/
-   Motorola:  http://www.mot.com/SPS/PowerPC/
-
-   I'm sure I've got some of the variant descriptions not quite right.
-   Please report any inaccuracies you find to GDB's maintainer.
-
-   If you add entries to this table, please be sure to allow the new
-   value as an argument to the --with-cpu flag, in configure.in.  */
+\f
 
-static struct variant variants[] =
+static CORE_ADDR
+rs6000_frame_base_address (struct frame_info *next_frame,
+                               void **this_cache)
 {
+  struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
+                                                       this_cache);
+  return info->initial_sp;
+}
 
-  {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
-   bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
-   registers_powerpc},
-  {"power", "POWER user-level", bfd_arch_rs6000,
-   bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
-   registers_power},
-  {"403", "IBM PowerPC 403", bfd_arch_powerpc,
-   bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
-   registers_403},
-  {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
-   bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
-   registers_601},
-  {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
-   bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
-   registers_602},
-  {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
-   bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
-   registers_603},
-  {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
-   604, -1, -1, tot_num_registers (registers_604),
-   registers_604},
-  {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
-   bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
-   registers_403GC},
-  {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
-   bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
-   registers_505},
-  {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
-   bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
-   registers_860},
-  {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
-   bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
-   registers_750},
-  {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
-   bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
-   registers_7400},
-  {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
-   bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
-   registers_e500},
-
-  /* 64-bit */
-  {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
-   bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
-   registers_powerpc},
-  {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
-   bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
-   registers_powerpc},
-  {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
-   bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
-   registers_powerpc},
-  {"a35", "PowerPC A35", bfd_arch_powerpc,
-   bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
-   registers_powerpc},
-  {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
-   bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
-   registers_powerpc},
-  {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
-   bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
-   registers_powerpc},
-
-  /* FIXME: I haven't checked the register sets of the following.  */
-  {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
-   bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
-   registers_power},
-  {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
-   bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
-   registers_power},
-  {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
-   bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
-   registers_power},
-
-  {0, 0, 0, 0, 0, 0, 0, 0}
+static const struct frame_base rs6000_frame_base = {
+  &rs6000_frame_unwind,
+  rs6000_frame_base_address,
+  rs6000_frame_base_address,
+  rs6000_frame_base_address
 };
 
-/* Initialize the number of registers and pseudo registers in each variant.  */
+static const struct frame_base *
+rs6000_frame_base_sniffer (struct frame_info *next_frame)
+{
+  return &rs6000_frame_base;
+}
+
+/* DWARF-2 frame support.  Used to handle the detection of
+  clobbered registers during function calls.  */
 
 static void
-init_variants (void)
+ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
+                           struct dwarf2_frame_state_reg *reg,
+                           struct frame_info *next_frame)
 {
-  struct variant *v;
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-  for (v = variants; v->name; v++)
-    {
-      if (v->nregs == -1)
-        v->nregs = num_registers (v->regs, v->num_tot_regs);
-      if (v->npregs == -1)
-        v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
-    }  
-}
+  /* PPC32 and PPC64 ABI's are the same regarding volatile and
+     non-volatile registers.  We will use the same code for both.  */
 
-/* Return the variant corresponding to architecture ARCH and machine number
-   MACH.  If no such variant exists, return null.  */
+  /* Call-saved GP registers.  */
+  if ((regnum >= tdep->ppc_gp0_regnum + 14
+      && regnum <= tdep->ppc_gp0_regnum + 31)
+      || (regnum == tdep->ppc_gp0_regnum + 1))
+    reg->how = DWARF2_FRAME_REG_SAME_VALUE;
 
-static const struct variant *
-find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
-{
-  const struct variant *v;
+  /* Call-clobbered GP registers.  */
+  if ((regnum >= tdep->ppc_gp0_regnum + 3
+      && regnum <= tdep->ppc_gp0_regnum + 12)
+      || (regnum == tdep->ppc_gp0_regnum))
+    reg->how = DWARF2_FRAME_REG_UNDEFINED;
 
-  for (v = variants; v->name; v++)
-    if (arch == v->arch && mach == v->mach)
-      return v;
+  /* Deal with FP registers, if supported.  */
+  if (tdep->ppc_fp0_regnum >= 0)
+    {
+      /* Call-saved FP registers.  */
+      if ((regnum >= tdep->ppc_fp0_regnum + 14
+         && regnum <= tdep->ppc_fp0_regnum + 31))
+       reg->how = DWARF2_FRAME_REG_SAME_VALUE;
+
+      /* Call-clobbered FP registers.  */
+      if ((regnum >= tdep->ppc_fp0_regnum
+         && regnum <= tdep->ppc_fp0_regnum + 13))
+       reg->how = DWARF2_FRAME_REG_UNDEFINED;
+    }
 
-  return NULL;
-}
+  /* Deal with ALTIVEC registers, if supported.  */
+  if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
+    {
+      /* Call-saved Altivec registers.  */
+      if ((regnum >= tdep->ppc_vr0_regnum + 20
+         && regnum <= tdep->ppc_vr0_regnum + 31)
+         || regnum == tdep->ppc_vrsave_regnum)
+       reg->how = DWARF2_FRAME_REG_SAME_VALUE;
+
+      /* Call-clobbered Altivec registers.  */
+      if ((regnum >= tdep->ppc_vr0_regnum
+         && regnum <= tdep->ppc_vr0_regnum + 19))
+       reg->how = DWARF2_FRAME_REG_UNDEFINED;
+    }
 
-static int
-gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
-{
-  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
-    return print_insn_big_powerpc (memaddr, info);
-  else
-    return print_insn_little_powerpc (memaddr, info);
+  /* Handle PC register and Stack Pointer correctly.  */
+  if (regnum == gdbarch_pc_regnum (gdbarch))
+    reg->how = DWARF2_FRAME_REG_RA;
+  else if (regnum == gdbarch_sp_regnum (gdbarch))
+    reg->how = DWARF2_FRAME_REG_CFA;
 }
-\f
+
+
 /* Initialize the current architecture based on INFO.  If possible, re-use an
    architecture from ARCHES, which is a list of architectures already created
    during this debugging session.
@@ -2708,14 +3164,20 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
 {
   struct gdbarch *gdbarch;
   struct gdbarch_tdep *tdep;
-  int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
-  struct reg *regs;
-  const struct variant *v;
+  int wordsize, from_xcoff_exec, from_elf_exec;
   enum bfd_architecture arch;
   unsigned long mach;
   bfd abfd;
   int sysv_abi;
   asection *sect;
+  enum auto_boolean soft_float_flag = powerpc_soft_float_global;
+  int soft_float;
+  enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
+  int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0;
+  int tdesc_wordsize = -1;
+  const struct target_desc *tdesc = info.target_desc;
+  struct tdesc_arch_data *tdesc_data = NULL;
+  int num_sprs = 0;
 
   from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
     bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
@@ -2741,6 +3203,8 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
       else
        wordsize = 4;
     }
+  else if (tdesc_has_registers (tdesc))
+    wordsize = -1;
   else
     {
       if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
@@ -2750,27 +3214,6 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
        wordsize = 4;
     }
 
-  /* Find a candidate among extant architectures.  */
-  for (arches = gdbarch_list_lookup_by_info (arches, &info);
-       arches != NULL;
-       arches = gdbarch_list_lookup_by_info (arches->next, &info))
-    {
-      /* Word size in the various PowerPC bfd_arch_info structs isn't
-         meaningful, because 64-bit CPUs can run in 32-bit mode.  So, perform
-         separate word size check.  */
-      tdep = gdbarch_tdep (arches->gdbarch);
-      if (tdep && tdep->wordsize == wordsize)
-       return arches->gdbarch;
-    }
-
-  /* None found, create a new architecture from INFO, whose bfd_arch_info
-     validity depends on the source:
-       - executable            useless
-       - rs6000_host_arch()    good
-       - core file             good
-       - "set arch"            trust blindly
-       - GDB startup           useless but harmless */
-
   if (!from_xcoff_exec)
     {
       arch = info.bfd_arch_info->arch;
@@ -2783,8 +3226,6 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
       info.bfd_arch_info = bfd_get_arch_info (&abfd);
       mach = info.bfd_arch_info->mach;
     }
-  tdep = xmalloc (sizeof (struct gdbarch_tdep));
-  tdep->wordsize = wordsize;
 
   /* For e500 executables, the apuinfo section is of help here.  Such
      section contains the identifier and revision number of each
@@ -2806,87 +3247,344 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
        }
     }
 
-  gdbarch = gdbarch_alloc (&info, tdep);
-  power = arch == bfd_arch_rs6000;
-
-  /* Initialize the number of real and pseudo registers in each variant.  */
-  init_variants ();
-
-  /* Choose variant.  */
-  v = find_variant_by_arch (arch, mach);
-  if (!v)
-    return NULL;
-
-  tdep->regs = v->regs;
-
-  tdep->ppc_gp0_regnum = 0;
-  tdep->ppc_gplast_regnum = 31;
-  tdep->ppc_toc_regnum = 2;
-  tdep->ppc_ps_regnum = 65;
-  tdep->ppc_cr_regnum = 66;
-  tdep->ppc_lr_regnum = 67;
-  tdep->ppc_ctr_regnum = 68;
-  tdep->ppc_xer_regnum = 69;
-  if (v->mach == bfd_mach_ppc_601)
-    tdep->ppc_mq_regnum = 124;
-  else if (power)
-    tdep->ppc_mq_regnum = 70;
+  /* Find a default target description which describes our register
+     layout, if we do not already have one.  */
+  if (! tdesc_has_registers (tdesc))
+    {
+      const struct variant *v;
+
+      /* Choose variant.  */
+      v = find_variant_by_arch (arch, mach);
+      if (!v)
+       return NULL;
+
+      tdesc = *v->tdesc;
+    }
+
+  gdb_assert (tdesc_has_registers (tdesc));
+
+  /* Check any target description for validity.  */
+  if (tdesc_has_registers (tdesc))
+    {
+      static const char *const gprs[] = {
+       "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+       "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
+       "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
+       "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
+      };
+      static const char *const segment_regs[] = {
+       "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
+       "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
+      };
+      const struct tdesc_feature *feature;
+      int i, valid_p;
+      static const char *const msr_names[] = { "msr", "ps" };
+      static const char *const cr_names[] = { "cr", "cnd" };
+      static const char *const ctr_names[] = { "ctr", "cnt" };
+
+      feature = tdesc_find_feature (tdesc,
+                                   "org.gnu.gdb.power.core");
+      if (feature == NULL)
+       return NULL;
+
+      tdesc_data = tdesc_data_alloc ();
+
+      valid_p = 1;
+      for (i = 0; i < ppc_num_gprs; i++)
+       valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
+      valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
+                                         "pc");
+      valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
+                                         "lr");
+      valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
+                                         "xer");
+
+      /* Allow alternate names for these registers, to accomodate GDB's
+        historic naming.  */
+      valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
+                                                 PPC_MSR_REGNUM, msr_names);
+      valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
+                                                 PPC_CR_REGNUM, cr_names);
+      valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
+                                                 PPC_CTR_REGNUM, ctr_names);
+
+      if (!valid_p)
+       {
+         tdesc_data_cleanup (tdesc_data);
+         return NULL;
+       }
+
+      have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
+                                        "mq");
+
+      tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
+      if (wordsize == -1)
+       wordsize = tdesc_wordsize;
+
+      feature = tdesc_find_feature (tdesc,
+                                   "org.gnu.gdb.power.fpu");
+      if (feature != NULL)
+       {
+         static const char *const fprs[] = {
+           "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
+           "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
+           "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
+           "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
+         };
+         valid_p = 1;
+         for (i = 0; i < ppc_num_fprs; i++)
+           valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                               PPC_F0_REGNUM + i, fprs[i]);
+         valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                             PPC_FPSCR_REGNUM, "fpscr");
+
+         if (!valid_p)
+           {
+             tdesc_data_cleanup (tdesc_data);
+             return NULL;
+           }
+         have_fpu = 1;
+       }
+      else
+       have_fpu = 0;
+
+      feature = tdesc_find_feature (tdesc,
+                                   "org.gnu.gdb.power.altivec");
+      if (feature != NULL)
+       {
+         static const char *const vector_regs[] = {
+           "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
+           "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
+           "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
+           "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
+         };
+
+         valid_p = 1;
+         for (i = 0; i < ppc_num_gprs; i++)
+           valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                               PPC_VR0_REGNUM + i,
+                                               vector_regs[i]);
+         valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                             PPC_VSCR_REGNUM, "vscr");
+         valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                             PPC_VRSAVE_REGNUM, "vrsave");
+
+         if (have_spe || !valid_p)
+           {
+             tdesc_data_cleanup (tdesc_data);
+             return NULL;
+           }
+         have_altivec = 1;
+       }
+      else
+       have_altivec = 0;
+
+      /* On machines supporting the SPE APU, the general-purpose registers
+        are 64 bits long.  There are SIMD vector instructions to treat them
+        as pairs of floats, but the rest of the instruction set treats them
+        as 32-bit registers, and only operates on their lower halves.
+
+        In the GDB regcache, we treat their high and low halves as separate
+        registers.  The low halves we present as the general-purpose
+        registers, and then we have pseudo-registers that stitch together
+        the upper and lower halves and present them as pseudo-registers.
+
+        Thus, the target description is expected to supply the upper
+        halves separately.  */
+
+      feature = tdesc_find_feature (tdesc,
+                                   "org.gnu.gdb.power.spe");
+      if (feature != NULL)
+       {
+         static const char *const upper_spe[] = {
+           "ev0h", "ev1h", "ev2h", "ev3h",
+           "ev4h", "ev5h", "ev6h", "ev7h",
+           "ev8h", "ev9h", "ev10h", "ev11h",
+           "ev12h", "ev13h", "ev14h", "ev15h",
+           "ev16h", "ev17h", "ev18h", "ev19h",
+           "ev20h", "ev21h", "ev22h", "ev23h",
+           "ev24h", "ev25h", "ev26h", "ev27h",
+           "ev28h", "ev29h", "ev30h", "ev31h"
+         };
+
+         valid_p = 1;
+         for (i = 0; i < ppc_num_gprs; i++)
+           valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                               PPC_SPE_UPPER_GP0_REGNUM + i,
+                                               upper_spe[i]);
+         valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                             PPC_SPE_ACC_REGNUM, "acc");
+         valid_p &= tdesc_numbered_register (feature, tdesc_data,
+                                             PPC_SPE_FSCR_REGNUM, "spefscr");
+
+         if (have_mq || have_fpu || !valid_p)
+           {
+             tdesc_data_cleanup (tdesc_data);
+             return NULL;
+           }
+         have_spe = 1;
+       }
+      else
+       have_spe = 0;
+    }
+
+  /* If we have a 64-bit binary on a 32-bit target, complain.  Also
+     complain for a 32-bit binary on a 64-bit target; we do not yet
+     support that.  For instance, the 32-bit ABI routines expect
+     32-bit GPRs.
+
+     As long as there isn't an explicit target description, we'll
+     choose one based on the BFD architecture and get a word size
+     matching the binary (probably powerpc:common or
+     powerpc:common64).  So there is only trouble if a 64-bit target
+     supplies a 64-bit description while debugging a 32-bit
+     binary.  */
+  if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
+    {
+      tdesc_data_cleanup (tdesc_data);
+      return NULL;
+    }
+
+#ifdef HAVE_ELF
+  if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
+    {
+      switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
+                                       Tag_GNU_Power_ABI_FP))
+       {
+       case 1:
+         soft_float_flag = AUTO_BOOLEAN_FALSE;
+         break;
+       case 2:
+         soft_float_flag = AUTO_BOOLEAN_TRUE;
+         break;
+       default:
+         break;
+       }
+    }
+
+  if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
+    {
+      switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
+                                       Tag_GNU_Power_ABI_Vector))
+       {
+       case 1:
+         vector_abi = POWERPC_VEC_GENERIC;
+         break;
+       case 2:
+         vector_abi = POWERPC_VEC_ALTIVEC;
+         break;
+       case 3:
+         vector_abi = POWERPC_VEC_SPE;
+         break;
+       default:
+         break;
+       }
+    }
+#endif
+
+  if (soft_float_flag == AUTO_BOOLEAN_TRUE)
+    soft_float = 1;
+  else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
+    soft_float = 0;
   else
-    tdep->ppc_mq_regnum = -1;
-  tdep->ppc_fpscr_regnum = power ? 71 : 70;
-
-  set_gdbarch_pc_regnum (gdbarch, 64);
-  set_gdbarch_sp_regnum (gdbarch, 1);
-  set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
-  set_gdbarch_deprecated_extract_return_value (gdbarch,
-                                              rs6000_extract_return_value);
-  set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
-
-  if (v->arch == bfd_arch_powerpc)
-    switch (v->mach)
-      {
-      case bfd_mach_ppc: 
-       tdep->ppc_vr0_regnum = 71;
-       tdep->ppc_vrsave_regnum = 104;
-       tdep->ppc_ev0_regnum = -1;
-       tdep->ppc_ev31_regnum = -1;
-       break;
-      case bfd_mach_ppc_7400:
-       tdep->ppc_vr0_regnum = 119;
-       tdep->ppc_vrsave_regnum = 152;
-       tdep->ppc_ev0_regnum = -1;
-       tdep->ppc_ev31_regnum = -1;
-       break;
-      case bfd_mach_ppc_e500:
-        tdep->ppc_gp0_regnum = 41;
-        tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
-        tdep->ppc_toc_regnum = -1;
-        tdep->ppc_ps_regnum = 1;
-        tdep->ppc_cr_regnum = 2;
-        tdep->ppc_lr_regnum = 3;
-        tdep->ppc_ctr_regnum = 4;
-        tdep->ppc_xer_regnum = 5;
-       tdep->ppc_ev0_regnum = 7;
-       tdep->ppc_ev31_regnum = 38;
-        set_gdbarch_pc_regnum (gdbarch, 0);
-        set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
-        set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
-        set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
-        set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
-        set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
-        set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
-        set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
-       break;
-      default:
-       tdep->ppc_vr0_regnum = -1;
-       tdep->ppc_vrsave_regnum = -1;
-       tdep->ppc_ev0_regnum = -1;
-       tdep->ppc_ev31_regnum = -1;
-       break;
-      }   
+    soft_float = !have_fpu;
+
+  /* If we have a hard float binary or setting but no floating point
+     registers, downgrade to soft float anyway.  We're still somewhat
+     useful in this scenario.  */
+  if (!soft_float && !have_fpu)
+    soft_float = 1;
+
+  /* Similarly for vector registers.  */
+  if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
+    vector_abi = POWERPC_VEC_GENERIC;
+
+  if (vector_abi == POWERPC_VEC_SPE && !have_spe)
+    vector_abi = POWERPC_VEC_GENERIC;
+
+  if (vector_abi == POWERPC_VEC_AUTO)
+    {
+      if (have_altivec)
+       vector_abi = POWERPC_VEC_ALTIVEC;
+      else if (have_spe)
+       vector_abi = POWERPC_VEC_SPE;
+      else
+       vector_abi = POWERPC_VEC_GENERIC;
+    }
+
+  /* Do not limit the vector ABI based on available hardware, since we
+     do not yet know what hardware we'll decide we have.  Yuck!  FIXME!  */
+
+  /* Find a candidate among extant architectures.  */
+  for (arches = gdbarch_list_lookup_by_info (arches, &info);
+       arches != NULL;
+       arches = gdbarch_list_lookup_by_info (arches->next, &info))
+    {
+      /* Word size in the various PowerPC bfd_arch_info structs isn't
+         meaningful, because 64-bit CPUs can run in 32-bit mode.  So, perform
+         separate word size check.  */
+      tdep = gdbarch_tdep (arches->gdbarch);
+      if (tdep && tdep->soft_float != soft_float)
+       continue;
+      if (tdep && tdep->vector_abi != vector_abi)
+       continue;
+      if (tdep && tdep->wordsize == wordsize)
+       {
+         if (tdesc_data != NULL)
+           tdesc_data_cleanup (tdesc_data);
+         return arches->gdbarch;
+       }
+    }
+
+  /* None found, create a new architecture from INFO, whose bfd_arch_info
+     validity depends on the source:
+       - executable            useless
+       - rs6000_host_arch()    good
+       - core file             good
+       - "set arch"            trust blindly
+       - GDB startup           useless but harmless */
+
+  tdep = XCALLOC (1, struct gdbarch_tdep);
+  tdep->wordsize = wordsize;
+  tdep->soft_float = soft_float;
+  tdep->vector_abi = vector_abi;
+
+  gdbarch = gdbarch_alloc (&info, tdep);
 
-  /* Sanity check on registers.  */
-  gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
+  tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
+  tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
+  tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
+  tdep->ppc_cr_regnum = PPC_CR_REGNUM;
+  tdep->ppc_lr_regnum = PPC_LR_REGNUM;
+  tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
+  tdep->ppc_xer_regnum = PPC_XER_REGNUM;
+  tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
+
+  tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
+  tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
+  tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
+  tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
+  tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
+  tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
+  tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
+
+  set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
+  set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
+  set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
+  set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
+  set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
+
+  /* The XML specification for PowerPC sensibly calls the MSR "msr".
+     GDB traditionally called it "ps", though, so let GDB add an
+     alias.  */
+  set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
+
+  if (sysv_abi && wordsize == 8)
+    set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
+  else if (sysv_abi && wordsize == 4)
+    set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
+  else
+    set_gdbarch_return_value (gdbarch, rs6000_return_value);
 
   /* Set lr_frame_offset.  */
   if (wordsize == 8)
@@ -2896,34 +3594,22 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
   else
     tdep->lr_frame_offset = 8;
 
-  /* Calculate byte offsets in raw register array.  */
-  tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
-  for (i = off = 0; i < v->num_tot_regs; i++)
+  if (have_spe)
     {
-      tdep->regoff[i] = off;
-      off += regsize (v->regs + i, wordsize);
+      set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
+      set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
     }
 
+  set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
+
   /* Select instruction printer.  */
-  if (arch == power)
+  if (arch == bfd_arch_rs6000)
     set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
   else
     set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
 
-  set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
-  set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
-
-  set_gdbarch_num_regs (gdbarch, v->nregs);
-  set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
-  set_gdbarch_register_name (gdbarch, rs6000_register_name);
-  set_gdbarch_deprecated_register_size (gdbarch, wordsize);
-  set_gdbarch_deprecated_register_bytes (gdbarch, off);
-  set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
-  set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
-  set_gdbarch_deprecated_max_register_raw_size (gdbarch, 16);
-  set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
-  set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 16);
-  set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
+  set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS + num_sprs);
+  set_gdbarch_num_pseudo_regs (gdbarch, have_spe ? 32 : 0);
 
   set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
   set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
@@ -2938,55 +3624,55 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
     set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
   set_gdbarch_char_signed (gdbarch, 0);
 
-  set_gdbarch_deprecated_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
   set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
-  set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
-  set_gdbarch_deprecated_push_return_address (gdbarch, ppc_push_return_address);
-  set_gdbarch_believe_pcc_promotion (gdbarch, 1);
+  if (sysv_abi && wordsize == 8)
+    /* PPC64 SYSV.  */
+    set_gdbarch_frame_red_zone_size (gdbarch, 288);
+  else if (!sysv_abi && wordsize == 4)
+    /* PowerOpen / AIX 32 bit.  The saved area or red zone consists of
+       19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
+       Problem is, 220 isn't frame (16 byte) aligned.  Round it up to
+       224.  */
+    set_gdbarch_frame_red_zone_size (gdbarch, 224);
+
+  set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
+  set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
+  set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
 
-  set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
-  set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
-  set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
   set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
-  /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
-     is correct for the SysV ABI when the wordsize is 8, but I'm also
-     fairly certain that ppc_sysv_abi_push_arguments() will give even
-     worse results since it only works for 32-bit code.  So, for the moment,
-     we're better off calling rs6000_push_arguments() since it works for
-     64-bit code.  At some point in the future, this matter needs to be
-     revisited.  */
+  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
+
   if (sysv_abi && wordsize == 4)
-    set_gdbarch_deprecated_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
+    set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
+  else if (sysv_abi && wordsize == 8)
+    set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
   else
-    set_gdbarch_deprecated_push_arguments (gdbarch, rs6000_push_arguments);
-
-  set_gdbarch_deprecated_store_struct_return (gdbarch, rs6000_store_struct_return);
-  set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
-  set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
+    set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
 
   set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
+  set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
+
   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
-  set_gdbarch_decr_pc_after_break (gdbarch, 0);
-  set_gdbarch_function_start_offset (gdbarch, 0);
   set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
 
-  /* Not sure on this. FIXMEmgo */
-  set_gdbarch_frame_args_skip (gdbarch, 8);
-
-  if (sysv_abi)
-    set_gdbarch_use_struct_convention (gdbarch,
-                                      ppc_sysv_abi_use_struct_convention);
-  else
-    set_gdbarch_use_struct_convention (gdbarch,
-                                      generic_use_struct_convention);
+  /* The value of symbols of type N_SO and N_FUN maybe null when
+     it shouldn't be. */
+  set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
 
-  set_gdbarch_frameless_function_invocation (gdbarch,
-                                         rs6000_frameless_function_invocation);
-  set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
-  set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
+  /* Handles single stepping of atomic sequences.  */
+  set_gdbarch_software_single_step (gdbarch, deal_with_atomic_sequence);
+  
+  /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
+     for the descriptor and ".FN" for the entry-point -- a user
+     specifying "break FN" will unexpectedly end up with a breakpoint
+     on the descriptor and not the function.  This architecture method
+     transforms any breakpoints on descriptors into breakpoints on the
+     corresponding entry point.  */
+  if (sysv_abi && wordsize == 8)
+    set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
 
-  set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
-  set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
+  /* Not sure on this. FIXMEmgo */
+  set_gdbarch_frame_args_skip (gdbarch, 8);
 
   if (!sysv_abi)
     {
@@ -2995,23 +3681,65 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
       set_gdbarch_convert_from_func_ptr_addr (gdbarch,
        rs6000_convert_from_func_ptr_addr);
     }
-  set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
-  set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
-  set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
 
   /* Helpers for function argument information.  */
   set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
 
+  /* Trampoline.  */
+  set_gdbarch_in_solib_return_trampoline
+    (gdbarch, rs6000_in_solib_return_trampoline);
+  set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
+
+  /* Hook in the DWARF CFI frame unwinder.  */
+  frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
+  dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
+
+  /* Frame handling.  */
+  dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
+
   /* Hook in ABI-specific overrides, if they have been registered.  */
   gdbarch_init_osabi (info, gdbarch);
 
+  switch (info.osabi)
+    {
+    case GDB_OSABI_LINUX:
+    case GDB_OSABI_NETBSD_AOUT:
+    case GDB_OSABI_NETBSD_ELF:
+    case GDB_OSABI_UNKNOWN:
+      set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
+      frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
+      set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
+      frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
+      break;
+    default:
+      set_gdbarch_believe_pcc_promotion (gdbarch, 1);
+
+      set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
+      frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
+      set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
+      frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
+    }
+
+  set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
+  set_tdesc_pseudo_register_reggroup_p (gdbarch,
+                                       rs6000_pseudo_register_reggroup_p);
+  tdesc_use_registers (gdbarch, tdesc, tdesc_data);
+
+  /* Override the normal target description method to make the SPE upper
+     halves anonymous.  */
+  set_gdbarch_register_name (gdbarch, rs6000_register_name);
+
+  /* Recording the numbering of pseudo registers.  */
+  tdep->ppc_ev0_regnum = have_spe ? gdbarch_num_regs (gdbarch) : -1;
+  tdep->ppc_ev31_regnum = have_spe ? tdep->ppc_ev0_regnum + 31 : -1;
+
   return gdbarch;
 }
 
 static void
-rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
+rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
 {
-  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
   if (tdep == NULL)
     return;
@@ -3019,12 +3747,59 @@ rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
   /* FIXME: Dump gdbarch_tdep.  */
 }
 
-static struct cmd_list_element *info_powerpc_cmdlist = NULL;
+/* PowerPC-specific commands.  */
+
+static void
+set_powerpc_command (char *args, int from_tty)
+{
+  printf_unfiltered (_("\
+\"set powerpc\" must be followed by an appropriate subcommand.\n"));
+  help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
+}
+
+static void
+show_powerpc_command (char *args, int from_tty)
+{
+  cmd_show_list (showpowerpccmdlist, from_tty, "");
+}
+
+static void
+powerpc_set_soft_float (char *args, int from_tty,
+                       struct cmd_list_element *c)
+{
+  struct gdbarch_info info;
+
+  /* Update the architecture.  */
+  gdbarch_info_init (&info);
+  if (!gdbarch_update_p (info))
+    internal_error (__FILE__, __LINE__, "could not update architecture");
+}
 
 static void
-rs6000_info_powerpc_command (char *args, int from_tty)
+powerpc_set_vector_abi (char *args, int from_tty,
+                       struct cmd_list_element *c)
 {
-  help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
+  struct gdbarch_info info;
+  enum powerpc_vector_abi vector_abi;
+
+  for (vector_abi = POWERPC_VEC_AUTO;
+       vector_abi != POWERPC_VEC_LAST;
+       vector_abi++)
+    if (strcmp (powerpc_vector_abi_string,
+               powerpc_vector_strings[vector_abi]) == 0)
+      {
+       powerpc_vector_abi_global = vector_abi;
+       break;
+      }
+
+  if (vector_abi == POWERPC_VEC_LAST)
+    internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
+                   powerpc_vector_abi_string);
+
+  /* Update the architecture.  */
+  gdbarch_info_init (&info);
+  if (!gdbarch_update_p (info))
+    internal_error (__FILE__, __LINE__, "could not update architecture");
 }
 
 /* Initialization code.  */
@@ -3037,8 +3812,45 @@ _initialize_rs6000_tdep (void)
   gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
   gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
 
-  /* Add root prefix command for "info powerpc" commands */
-  add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
-                 "Various POWERPC info specific commands.",
-                 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
+  /* Initialize the standard target descriptions.  */
+  initialize_tdesc_powerpc_32 ();
+  initialize_tdesc_powerpc_403 ();
+  initialize_tdesc_powerpc_403gc ();
+  initialize_tdesc_powerpc_505 ();
+  initialize_tdesc_powerpc_601 ();
+  initialize_tdesc_powerpc_602 ();
+  initialize_tdesc_powerpc_603 ();
+  initialize_tdesc_powerpc_604 ();
+  initialize_tdesc_powerpc_64 ();
+  initialize_tdesc_powerpc_7400 ();
+  initialize_tdesc_powerpc_750 ();
+  initialize_tdesc_powerpc_860 ();
+  initialize_tdesc_powerpc_e500 ();
+  initialize_tdesc_rs6000 ();
+
+  /* Add root prefix command for all "set powerpc"/"show powerpc"
+     commands.  */
+  add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
+                 _("Various PowerPC-specific commands."),
+                 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
+
+  add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
+                 _("Various PowerPC-specific commands."),
+                 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
+
+  /* Add a command to allow the user to force the ABI.  */
+  add_setshow_auto_boolean_cmd ("soft-float", class_support,
+                               &powerpc_soft_float_global,
+                               _("Set whether to use a soft-float ABI."),
+                               _("Show whether to use a soft-float ABI."),
+                               NULL,
+                               powerpc_set_soft_float, NULL,
+                               &setpowerpccmdlist, &showpowerpccmdlist);
+
+  add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
+                       &powerpc_vector_abi_string,
+                       _("Set the vector ABI."),
+                       _("Show the vector ABI."),
+                       NULL, powerpc_set_vector_abi, NULL,
+                       &setpowerpccmdlist, &showpowerpccmdlist);
 }
This page took 0.071077 seconds and 4 git commands to generate.