Introduce metadata style
[deliverable/binutils-gdb.git] / gdb / value.c
index 58067e8700d0485a9984b4c8f0237fe4c76dd5a9..67fe2f17c051a95a0cab640446a011fabba6c540 100644 (file)
@@ -1,8 +1,6 @@
 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
 
-   Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
-   1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
-   2009, 2010, 2011 Free Software Foundation, Inc.
+   Copyright (C) 1986-2019 Free Software Foundation, Inc.
 
    This file is part of GDB.
 
@@ -21,7 +19,6 @@
 
 #include "defs.h"
 #include "arch-utils.h"
-#include "gdb_string.h"
 #include "symtab.h"
 #include "gdbtypes.h"
 #include "value.h"
 #include "target.h"
 #include "language.h"
 #include "demangle.h"
-#include "doublest.h"
-#include "gdb_assert.h"
 #include "regcache.h"
 #include "block.h"
-#include "dfp.h"
+#include "target-float.h"
 #include "objfiles.h"
 #include "valprint.h"
 #include "cli/cli-decode.h"
-
-#include "python/python.h"
-
+#include "extension.h"
+#include <ctype.h>
 #include "tracepoint.h"
-
-/* Prototypes for exported functions. */
-
-void _initialize_values (void);
+#include "cp-abi.h"
+#include "user-regs.h"
+#include <algorithm>
+#include "completer.h"
+#include "gdbsupport/selftest.h"
+#include "gdbsupport/array-view.h"
+#include "cli/cli-style.h"
 
 /* Definition of a user function.  */
 struct internal_function
@@ -63,61 +60,234 @@ struct internal_function
   void *cookie;
 };
 
+/* Defines an [OFFSET, OFFSET + LENGTH) range.  */
+
+struct range
+{
+  /* Lowest offset in the range.  */
+  LONGEST offset;
+
+  /* Length of the range.  */
+  LONGEST length;
+
+  /* Returns true if THIS is strictly less than OTHER, useful for
+     searching.  We keep ranges sorted by offset and coalesce
+     overlapping and contiguous ranges, so this just compares the
+     starting offset.  */
+
+  bool operator< (const range &other) const
+  {
+    return offset < other.offset;
+  }
+
+  /* Returns true if THIS is equal to OTHER.  */
+  bool operator== (const range &other) const
+  {
+    return offset == other.offset && length == other.length;
+  }
+};
+
+/* Returns true if the ranges defined by [offset1, offset1+len1) and
+   [offset2, offset2+len2) overlap.  */
+
+static int
+ranges_overlap (LONGEST offset1, LONGEST len1,
+               LONGEST offset2, LONGEST len2)
+{
+  ULONGEST h, l;
+
+  l = std::max (offset1, offset2);
+  h = std::min (offset1 + len1, offset2 + len2);
+  return (l < h);
+}
+
+/* Returns true if RANGES contains any range that overlaps [OFFSET,
+   OFFSET+LENGTH).  */
+
+static int
+ranges_contain (const std::vector<range> &ranges, LONGEST offset,
+               LONGEST length)
+{
+  range what;
+
+  what.offset = offset;
+  what.length = length;
+
+  /* We keep ranges sorted by offset and coalesce overlapping and
+     contiguous ranges, so to check if a range list contains a given
+     range, we can do a binary search for the position the given range
+     would be inserted if we only considered the starting OFFSET of
+     ranges.  We call that position I.  Since we also have LENGTH to
+     care for (this is a range afterall), we need to check if the
+     _previous_ range overlaps the I range.  E.g.,
+
+         R
+         |---|
+       |---|    |---|  |------| ... |--|
+       0        1      2            N
+
+       I=1
+
+     In the case above, the binary search would return `I=1', meaning,
+     this OFFSET should be inserted at position 1, and the current
+     position 1 should be pushed further (and before 2).  But, `0'
+     overlaps with R.
+
+     Then we need to check if the I range overlaps the I range itself.
+     E.g.,
+
+              R
+              |---|
+       |---|    |---|  |-------| ... |--|
+       0        1      2             N
+
+       I=1
+  */
+
+
+  auto i = std::lower_bound (ranges.begin (), ranges.end (), what);
+
+  if (i > ranges.begin ())
+    {
+      const struct range &bef = *(i - 1);
+
+      if (ranges_overlap (bef.offset, bef.length, offset, length))
+       return 1;
+    }
+
+  if (i < ranges.end ())
+    {
+      const struct range &r = *i;
+
+      if (ranges_overlap (r.offset, r.length, offset, length))
+       return 1;
+    }
+
+  return 0;
+}
+
 static struct cmd_list_element *functionlist;
 
+/* Note that the fields in this structure are arranged to save a bit
+   of memory.  */
+
 struct value
 {
+  explicit value (struct type *type_)
+    : modifiable (1),
+      lazy (1),
+      initialized (1),
+      stack (0),
+      type (type_),
+      enclosing_type (type_)
+  {
+  }
+
+  ~value ()
+  {
+    if (VALUE_LVAL (this) == lval_computed)
+      {
+       const struct lval_funcs *funcs = location.computed.funcs;
+
+       if (funcs->free_closure)
+         funcs->free_closure (this);
+      }
+    else if (VALUE_LVAL (this) == lval_xcallable)
+      delete location.xm_worker;
+  }
+
+  DISABLE_COPY_AND_ASSIGN (value);
+
   /* Type of value; either not an lval, or one of the various
      different possible kinds of lval.  */
-  enum lval_type lval;
+  enum lval_type lval = not_lval;
 
   /* Is it modifiable?  Only relevant if lval != not_lval.  */
-  int modifiable;
+  unsigned int modifiable : 1;
+
+  /* If zero, contents of this value are in the contents field.  If
+     nonzero, contents are in inferior.  If the lval field is lval_memory,
+     the contents are in inferior memory at location.address plus offset.
+     The lval field may also be lval_register.
+
+     WARNING: This field is used by the code which handles watchpoints
+     (see breakpoint.c) to decide whether a particular value can be
+     watched by hardware watchpoints.  If the lazy flag is set for
+     some member of a value chain, it is assumed that this member of
+     the chain doesn't need to be watched as part of watching the
+     value itself.  This is how GDB avoids watching the entire struct
+     or array when the user wants to watch a single struct member or
+     array element.  If you ever change the way lazy flag is set and
+     reset, be sure to consider this use as well!  */
+  unsigned int lazy : 1;
+
+  /* If value is a variable, is it initialized or not.  */
+  unsigned int initialized : 1;
+
+  /* If value is from the stack.  If this is set, read_stack will be
+     used instead of read_memory to enable extra caching.  */
+  unsigned int stack : 1;
 
   /* Location of value (if lval).  */
   union
   {
-    /* If lval == lval_memory, this is the address in the inferior.
-       If lval == lval_register, this is the byte offset into the
-       registers structure.  */
+    /* If lval == lval_memory, this is the address in the inferior  */
     CORE_ADDR address;
 
+    /*If lval == lval_register, the value is from a register.  */
+    struct
+    {
+      /* Register number.  */
+      int regnum;
+      /* Frame ID of "next" frame to which a register value is relative.
+        If the register value is found relative to frame F, then the
+        frame id of F->next will be stored in next_frame_id.  */
+      struct frame_id next_frame_id;
+    } reg;
+
     /* Pointer to internal variable.  */
     struct internalvar *internalvar;
 
+    /* Pointer to xmethod worker.  */
+    struct xmethod_worker *xm_worker;
+
     /* If lval == lval_computed, this is a set of function pointers
        to use to access and describe the value, and a closure pointer
        for them to use.  */
     struct
     {
-      struct lval_funcs *funcs; /* Functions to call.  */
-      void *closure;            /* Closure for those functions to use.  */
+      /* Functions to call.  */
+      const struct lval_funcs *funcs;
+
+      /* Closure for those functions to use.  */
+      void *closure;
     } computed;
-  } location;
+  } location {};
 
-  /* Describes offset of a value within lval of a structure in bytes.
-     If lval == lval_memory, this is an offset to the address.  If
-     lval == lval_register, this is a further offset from
-     location.address within the registers structure.  Note also the
-     member embedded_offset below.  */
-  int offset;
+  /* Describes offset of a value within lval of a structure in target
+     addressable memory units.  Note also the member embedded_offset
+     below.  */
+  LONGEST offset = 0;
 
   /* Only used for bitfields; number of bits contained in them.  */
-  int bitsize;
+  LONGEST bitsize = 0;
 
   /* Only used for bitfields; position of start of field.  For
      gdbarch_bits_big_endian=0 targets, it is the position of the LSB.  For
-     gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
-  int bitpos;
+     gdbarch_bits_big_endian=1 targets, it is the position of the MSB.  */
+  LONGEST bitpos = 0;
+
+  /* The number of references to this value.  When a value is created,
+     the value chain holds a reference, so REFERENCE_COUNT is 1.  If
+     release_value is called, this value is removed from the chain but
+     the caller of release_value now has a reference to this value.
+     The caller must arrange for a call to value_free later.  */
+  int reference_count = 1;
 
   /* Only used for bitfields; the containing value.  This allows a
      single read from the target when displaying multiple
      bitfields.  */
-  struct value *parent;
-
-  /* Frame register value is relative to.  This will be described in
-     the lval enum above as "lval_register".  */
-  struct frame_id frame_id;
+  value_ref_ptr parent;
 
   /* Type of the value.  */
   struct type *type;
@@ -145,108 +315,606 @@ struct value
 
      When we store the entire object, `enclosing_type' is the run-time
      type -- the complete object -- and `embedded_offset' is the
-     offset of `type' within that larger type, in bytes.  The
-     value_contents() macro takes `embedded_offset' into account, so
-     most GDB code continues to see the `type' portion of the value,
-     just as the inferior would.
+     offset of `type' within that larger type, in target addressable memory
+     units.  The value_contents() macro takes `embedded_offset' into account,
+     so most GDB code continues to see the `type' portion of the value, just
+     as the inferior would.
 
      If `type' is a pointer to an object, then `enclosing_type' is a
      pointer to the object's run-time type, and `pointed_to_offset' is
-     the offset in bytes from the full object to the pointed-to object
-     -- that is, the value `embedded_offset' would have if we followed
-     the pointer and fetched the complete object.  (I don't really see
-     the point.  Why not just determine the run-time type when you
-     indirect, and avoid the special case?  The contents don't matter
-     until you indirect anyway.)
+     the offset in target addressable memory units from the full object
+     to the pointed-to object -- that is, the value `embedded_offset' would
+     have if we followed the pointer and fetched the complete object.
+     (I don't really see the point.  Why not just determine the
+     run-time type when you indirect, and avoid the special case?  The
+     contents don't matter until you indirect anyway.)
 
      If we're not doing anything fancy, `enclosing_type' is equal to
      `type', and `embedded_offset' is zero, so everything works
      normally.  */
   struct type *enclosing_type;
-  int embedded_offset;
-  int pointed_to_offset;
+  LONGEST embedded_offset = 0;
+  LONGEST pointed_to_offset = 0;
 
-  /* Values are stored in a chain, so that they can be deleted easily
-     over calls to the inferior.  Values assigned to internal
-     variables, put into the value history or exposed to Python are
-     taken off this list.  */
-  struct value *next;
+  /* Actual contents of the value.  Target byte-order.  NULL or not
+     valid if lazy is nonzero.  */
+  gdb::unique_xmalloc_ptr<gdb_byte> contents;
+
+  /* Unavailable ranges in CONTENTS.  We mark unavailable ranges,
+     rather than available, since the common and default case is for a
+     value to be available.  This is filled in at value read time.
+     The unavailable ranges are tracked in bits.  Note that a contents
+     bit that has been optimized out doesn't really exist in the
+     program, so it can't be marked unavailable either.  */
+  std::vector<range> unavailable;
+
+  /* Likewise, but for optimized out contents (a chunk of the value of
+     a variable that does not actually exist in the program).  If LVAL
+     is lval_register, this is a register ($pc, $sp, etc., never a
+     program variable) that has not been saved in the frame.  Not
+     saved registers and optimized-out program variables values are
+     treated pretty much the same, except not-saved registers have a
+     different string representation and related error strings.  */
+  std::vector<range> optimized_out;
+};
 
-  /* Register number if the value is from a register.  */
-  short regnum;
+/* See value.h.  */
 
-  /* If zero, contents of this value are in the contents field.  If
-     nonzero, contents are in inferior.  If the lval field is lval_memory,
-     the contents are in inferior memory at location.address plus offset.
-     The lval field may also be lval_register.
+struct gdbarch *
+get_value_arch (const struct value *value)
+{
+  return get_type_arch (value_type (value));
+}
 
-     WARNING: This field is used by the code which handles watchpoints
-     (see breakpoint.c) to decide whether a particular value can be
-     watched by hardware watchpoints.  If the lazy flag is set for
-     some member of a value chain, it is assumed that this member of
-     the chain doesn't need to be watched as part of watching the
-     value itself.  This is how GDB avoids watching the entire struct
-     or array when the user wants to watch a single struct member or
-     array element.  If you ever change the way lazy flag is set and
-     reset, be sure to consider this use as well!  */
-  char lazy;
+int
+value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
+{
+  gdb_assert (!value->lazy);
 
-  /* If nonzero, this is the value of a variable which does not
-     actually exist in the program.  */
-  char optimized_out;
+  return !ranges_contain (value->unavailable, offset, length);
+}
 
-  /* If value is a variable, is it initialized or not.  */
-  int initialized;
+int
+value_bytes_available (const struct value *value,
+                      LONGEST offset, LONGEST length)
+{
+  return value_bits_available (value,
+                              offset * TARGET_CHAR_BIT,
+                              length * TARGET_CHAR_BIT);
+}
 
-  /* If value is from the stack.  If this is set, read_stack will be
-     used instead of read_memory to enable extra caching.  */
-  int stack;
+int
+value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
+{
+  gdb_assert (!value->lazy);
 
-  /* Actual contents of the value.  Target byte-order.  NULL or not
-     valid if lazy is nonzero.  */
-  gdb_byte *contents;
+  return ranges_contain (value->optimized_out, bit_offset, bit_length);
+}
 
-  /* The number of references to this value.  When a value is created,
-     the value chain holds a reference, so REFERENCE_COUNT is 1.  If
-     release_value is called, this value is removed from the chain but
-     the caller of release_value now has a reference to this value.
-     The caller must arrange for a call to value_free later.  */
-  int reference_count;
+int
+value_entirely_available (struct value *value)
+{
+  /* We can only tell whether the whole value is available when we try
+     to read it.  */
+  if (value->lazy)
+    value_fetch_lazy (value);
+
+  if (value->unavailable.empty ())
+    return 1;
+  return 0;
+}
+
+/* Returns true if VALUE is entirely covered by RANGES.  If the value
+   is lazy, it'll be read now.  Note that RANGE is a pointer to
+   pointer because reading the value might change *RANGE.  */
+
+static int
+value_entirely_covered_by_range_vector (struct value *value,
+                                       const std::vector<range> &ranges)
+{
+  /* We can only tell whether the whole value is optimized out /
+     unavailable when we try to read it.  */
+  if (value->lazy)
+    value_fetch_lazy (value);
+
+  if (ranges.size () == 1)
+    {
+      const struct range &t = ranges[0];
+
+      if (t.offset == 0
+         && t.length == (TARGET_CHAR_BIT
+                         * TYPE_LENGTH (value_enclosing_type (value))))
+       return 1;
+    }
+
+  return 0;
+}
+
+int
+value_entirely_unavailable (struct value *value)
+{
+  return value_entirely_covered_by_range_vector (value, value->unavailable);
+}
+
+int
+value_entirely_optimized_out (struct value *value)
+{
+  return value_entirely_covered_by_range_vector (value, value->optimized_out);
+}
+
+/* Insert into the vector pointed to by VECTORP the bit range starting of
+   OFFSET bits, and extending for the next LENGTH bits.  */
+
+static void
+insert_into_bit_range_vector (std::vector<range> *vectorp,
+                             LONGEST offset, LONGEST length)
+{
+  range newr;
+
+  /* Insert the range sorted.  If there's overlap or the new range
+     would be contiguous with an existing range, merge.  */
+
+  newr.offset = offset;
+  newr.length = length;
+
+  /* Do a binary search for the position the given range would be
+     inserted if we only considered the starting OFFSET of ranges.
+     Call that position I.  Since we also have LENGTH to care for
+     (this is a range afterall), we need to check if the _previous_
+     range overlaps the I range.  E.g., calling R the new range:
+
+       #1 - overlaps with previous
+
+          R
+          |-...-|
+        |---|     |---|  |------| ... |--|
+        0         1      2            N
+
+        I=1
+
+     In the case #1 above, the binary search would return `I=1',
+     meaning, this OFFSET should be inserted at position 1, and the
+     current position 1 should be pushed further (and become 2).  But,
+     note that `0' overlaps with R, so we want to merge them.
+
+     A similar consideration needs to be taken if the new range would
+     be contiguous with the previous range:
+
+       #2 - contiguous with previous
+
+           R
+           |-...-|
+        |--|       |---|  |------| ... |--|
+        0          1      2            N
+
+        I=1
+
+     If there's no overlap with the previous range, as in:
+
+       #3 - not overlapping and not contiguous
+
+              R
+              |-...-|
+         |--|         |---|  |------| ... |--|
+         0            1      2            N
+
+        I=1
+
+     or if I is 0:
+
+       #4 - R is the range with lowest offset
+
+         R
+        |-...-|
+                |--|       |---|  |------| ... |--|
+                0          1      2            N
+
+        I=0
+
+     ... we just push the new range to I.
+
+     All the 4 cases above need to consider that the new range may
+     also overlap several of the ranges that follow, or that R may be
+     contiguous with the following range, and merge.  E.g.,
+
+       #5 - overlapping following ranges
+
+         R
+        |------------------------|
+                |--|       |---|  |------| ... |--|
+                0          1      2            N
+
+        I=0
+
+       or:
+
+           R
+           |-------|
+        |--|       |---|  |------| ... |--|
+        0          1      2            N
+
+        I=1
+
+  */
+
+  auto i = std::lower_bound (vectorp->begin (), vectorp->end (), newr);
+  if (i > vectorp->begin ())
+    {
+      struct range &bef = *(i - 1);
+
+      if (ranges_overlap (bef.offset, bef.length, offset, length))
+       {
+         /* #1 */
+         ULONGEST l = std::min (bef.offset, offset);
+         ULONGEST h = std::max (bef.offset + bef.length, offset + length);
+
+         bef.offset = l;
+         bef.length = h - l;
+         i--;
+       }
+      else if (offset == bef.offset + bef.length)
+       {
+         /* #2 */
+         bef.length += length;
+         i--;
+       }
+      else
+       {
+         /* #3 */
+         i = vectorp->insert (i, newr);
+       }
+    }
+  else
+    {
+      /* #4 */
+      i = vectorp->insert (i, newr);
+    }
+
+  /* Check whether the ranges following the one we've just added or
+     touched can be folded in (#5 above).  */
+  if (i != vectorp->end () && i + 1 < vectorp->end ())
+    {
+      int removed = 0;
+      auto next = i + 1;
+
+      /* Get the range we just touched.  */
+      struct range &t = *i;
+      removed = 0;
+
+      i = next;
+      for (; i < vectorp->end (); i++)
+       {
+         struct range &r = *i;
+         if (r.offset <= t.offset + t.length)
+           {
+             ULONGEST l, h;
+
+             l = std::min (t.offset, r.offset);
+             h = std::max (t.offset + t.length, r.offset + r.length);
+
+             t.offset = l;
+             t.length = h - l;
+
+             removed++;
+           }
+         else
+           {
+             /* If we couldn't merge this one, we won't be able to
+                merge following ones either, since the ranges are
+                always sorted by OFFSET.  */
+             break;
+           }
+       }
+
+      if (removed != 0)
+       vectorp->erase (next, next + removed);
+    }
+}
+
+void
+mark_value_bits_unavailable (struct value *value,
+                            LONGEST offset, LONGEST length)
+{
+  insert_into_bit_range_vector (&value->unavailable, offset, length);
+}
+
+void
+mark_value_bytes_unavailable (struct value *value,
+                             LONGEST offset, LONGEST length)
+{
+  mark_value_bits_unavailable (value,
+                              offset * TARGET_CHAR_BIT,
+                              length * TARGET_CHAR_BIT);
+}
+
+/* Find the first range in RANGES that overlaps the range defined by
+   OFFSET and LENGTH, starting at element POS in the RANGES vector,
+   Returns the index into RANGES where such overlapping range was
+   found, or -1 if none was found.  */
+
+static int
+find_first_range_overlap (const std::vector<range> *ranges, int pos,
+                         LONGEST offset, LONGEST length)
+{
+  int i;
+
+  for (i = pos; i < ranges->size (); i++)
+    {
+      const range &r = (*ranges)[i];
+      if (ranges_overlap (r.offset, r.length, offset, length))
+       return i;
+    }
+
+  return -1;
+}
+
+/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
+   PTR2 + OFFSET2_BITS.  Return 0 if the memory is the same, otherwise
+   return non-zero.
+
+   It must always be the case that:
+     OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
+
+   It is assumed that memory can be accessed from:
+     PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
+   to:
+     PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
+            / TARGET_CHAR_BIT)  */
+static int
+memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
+                        const gdb_byte *ptr2, size_t offset2_bits,
+                        size_t length_bits)
+{
+  gdb_assert (offset1_bits % TARGET_CHAR_BIT
+             == offset2_bits % TARGET_CHAR_BIT);
+
+  if (offset1_bits % TARGET_CHAR_BIT != 0)
+    {
+      size_t bits;
+      gdb_byte mask, b1, b2;
+
+      /* The offset from the base pointers PTR1 and PTR2 is not a complete
+        number of bytes.  A number of bits up to either the next exact
+        byte boundary, or LENGTH_BITS (which ever is sooner) will be
+        compared.  */
+      bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
+      gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
+      mask = (1 << bits) - 1;
+
+      if (length_bits < bits)
+       {
+         mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
+         bits = length_bits;
+       }
+
+      /* Now load the two bytes and mask off the bits we care about.  */
+      b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
+      b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
+
+      if (b1 != b2)
+       return 1;
+
+      /* Now update the length and offsets to take account of the bits
+        we've just compared.  */
+      length_bits -= bits;
+      offset1_bits += bits;
+      offset2_bits += bits;
+    }
+
+  if (length_bits % TARGET_CHAR_BIT != 0)
+    {
+      size_t bits;
+      size_t o1, o2;
+      gdb_byte mask, b1, b2;
+
+      /* The length is not an exact number of bytes.  After the previous
+        IF.. block then the offsets are byte aligned, or the
+        length is zero (in which case this code is not reached).  Compare
+        a number of bits at the end of the region, starting from an exact
+        byte boundary.  */
+      bits = length_bits % TARGET_CHAR_BIT;
+      o1 = offset1_bits + length_bits - bits;
+      o2 = offset2_bits + length_bits - bits;
+
+      gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
+      mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
+
+      gdb_assert (o1 % TARGET_CHAR_BIT == 0);
+      gdb_assert (o2 % TARGET_CHAR_BIT == 0);
+
+      b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
+      b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
+
+      if (b1 != b2)
+       return 1;
+
+      length_bits -= bits;
+    }
+
+  if (length_bits > 0)
+    {
+      /* We've now taken care of any stray "bits" at the start, or end of
+        the region to compare, the remainder can be covered with a simple
+        memcmp.  */
+      gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
+      gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
+      gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
+
+      return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
+                    ptr2 + offset2_bits / TARGET_CHAR_BIT,
+                    length_bits / TARGET_CHAR_BIT);
+    }
+
+  /* Length is zero, regions match.  */
+  return 0;
+}
+
+/* Helper struct for find_first_range_overlap_and_match and
+   value_contents_bits_eq.  Keep track of which slot of a given ranges
+   vector have we last looked at.  */
+
+struct ranges_and_idx
+{
+  /* The ranges.  */
+  const std::vector<range> *ranges;
+
+  /* The range we've last found in RANGES.  Given ranges are sorted,
+     we can start the next lookup here.  */
+  int idx;
 };
 
-/* Prototypes for local functions. */
+/* Helper function for value_contents_bits_eq.  Compare LENGTH bits of
+   RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
+   ranges starting at OFFSET2 bits.  Return true if the ranges match
+   and fill in *L and *H with the overlapping window relative to
+   (both) OFFSET1 or OFFSET2.  */
 
-static void show_values (char *, int);
+static int
+find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
+                                   struct ranges_and_idx *rp2,
+                                   LONGEST offset1, LONGEST offset2,
+                                   LONGEST length, ULONGEST *l, ULONGEST *h)
+{
+  rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
+                                      offset1, length);
+  rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
+                                      offset2, length);
 
-static void show_convenience (char *, int);
+  if (rp1->idx == -1 && rp2->idx == -1)
+    {
+      *l = length;
+      *h = length;
+      return 1;
+    }
+  else if (rp1->idx == -1 || rp2->idx == -1)
+    return 0;
+  else
+    {
+      const range *r1, *r2;
+      ULONGEST l1, h1;
+      ULONGEST l2, h2;
 
+      r1 = &(*rp1->ranges)[rp1->idx];
+      r2 = &(*rp2->ranges)[rp2->idx];
 
-/* The value-history records all the values printed
-   by print commands during this session.  Each chunk
-   records 60 consecutive values.  The first chunk on
-   the chain records the most recent values.
-   The total number of values is in value_history_count.  */
+      /* Get the unavailable windows intersected by the incoming
+        ranges.  The first and last ranges that overlap the argument
+        range may be wider than said incoming arguments ranges.  */
+      l1 = std::max (offset1, r1->offset);
+      h1 = std::min (offset1 + length, r1->offset + r1->length);
 
-#define VALUE_HISTORY_CHUNK 60
+      l2 = std::max (offset2, r2->offset);
+      h2 = std::min (offset2 + length, offset2 + r2->length);
 
-struct value_history_chunk
-  {
-    struct value_history_chunk *next;
-    struct value *values[VALUE_HISTORY_CHUNK];
-  };
+      /* Make them relative to the respective start offsets, so we can
+        compare them for equality.  */
+      l1 -= offset1;
+      h1 -= offset1;
+
+      l2 -= offset2;
+      h2 -= offset2;
 
-/* Chain of chunks now in use.  */
+      /* Different ranges, no match.  */
+      if (l1 != l2 || h1 != h2)
+       return 0;
 
-static struct value_history_chunk *value_history_chain;
+      *h = h1;
+      *l = l1;
+      return 1;
+    }
+}
+
+/* Helper function for value_contents_eq.  The only difference is that
+   this function is bit rather than byte based.
 
-static int value_history_count;        /* Abs number of last entry stored */
+   Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
+   with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
+   Return true if the available bits match.  */
+
+static bool
+value_contents_bits_eq (const struct value *val1, int offset1,
+                       const struct value *val2, int offset2,
+                       int length)
+{
+  /* Each array element corresponds to a ranges source (unavailable,
+     optimized out).  '1' is for VAL1, '2' for VAL2.  */
+  struct ranges_and_idx rp1[2], rp2[2];
+
+  /* See function description in value.h.  */
+  gdb_assert (!val1->lazy && !val2->lazy);
+
+  /* We shouldn't be trying to compare past the end of the values.  */
+  gdb_assert (offset1 + length
+             <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
+  gdb_assert (offset2 + length
+             <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
+
+  memset (&rp1, 0, sizeof (rp1));
+  memset (&rp2, 0, sizeof (rp2));
+  rp1[0].ranges = &val1->unavailable;
+  rp2[0].ranges = &val2->unavailable;
+  rp1[1].ranges = &val1->optimized_out;
+  rp2[1].ranges = &val2->optimized_out;
+
+  while (length > 0)
+    {
+      ULONGEST l = 0, h = 0; /* init for gcc -Wall */
+      int i;
+
+      for (i = 0; i < 2; i++)
+       {
+         ULONGEST l_tmp, h_tmp;
+
+         /* The contents only match equal if the invalid/unavailable
+            contents ranges match as well.  */
+         if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
+                                                  offset1, offset2, length,
+                                                  &l_tmp, &h_tmp))
+           return false;
+
+         /* We're interested in the lowest/first range found.  */
+         if (i == 0 || l_tmp < l)
+           {
+             l = l_tmp;
+             h = h_tmp;
+           }
+       }
+
+      /* Compare the available/valid contents.  */
+      if (memcmp_with_bit_offsets (val1->contents.get (), offset1,
+                                  val2->contents.get (), offset2, l) != 0)
+       return false;
+
+      length -= h;
+      offset1 += h;
+      offset2 += h;
+    }
+
+  return true;
+}
+
+bool
+value_contents_eq (const struct value *val1, LONGEST offset1,
+                  const struct value *val2, LONGEST offset2,
+                  LONGEST length)
+{
+  return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
+                                val2, offset2 * TARGET_CHAR_BIT,
+                                length * TARGET_CHAR_BIT);
+}
+
+
+/* The value-history records all the values printed by print commands
+   during this session.  */
+
+static std::vector<value_ref_ptr> value_history;
 
 \f
 /* List of all value objects currently allocated
    (except for those released by calls to release_value)
    This is so they can be freed after each command.  */
 
-static struct value *all_values;
+static std::vector<value_ref_ptr> all_values;
 
 /* Allocate a lazy value for type TYPE.  Its actual content is
    "lazily" allocated too: the content field of the return value is
@@ -265,39 +933,94 @@ allocate_value_lazy (struct type *type)
      description correctly.  */
   check_typedef (type);
 
-  val = (struct value *) xzalloc (sizeof (struct value));
-  val->contents = NULL;
-  val->next = all_values;
-  all_values = val;
-  val->type = type;
-  val->enclosing_type = type;
-  VALUE_LVAL (val) = not_lval;
-  val->location.address = 0;
-  VALUE_FRAME_ID (val) = null_frame_id;
-  val->offset = 0;
-  val->bitpos = 0;
-  val->bitsize = 0;
-  VALUE_REGNUM (val) = -1;
-  val->lazy = 1;
-  val->optimized_out = 0;
-  val->embedded_offset = 0;
-  val->pointed_to_offset = 0;
-  val->modifiable = 1;
-  val->initialized = 1;  /* Default to initialized.  */
+  val = new struct value (type);
 
   /* Values start out on the all_values chain.  */
-  val->reference_count = 1;
+  all_values.emplace_back (val);
 
   return val;
 }
 
+/* The maximum size, in bytes, that GDB will try to allocate for a value.
+   The initial value of 64k was not selected for any specific reason, it is
+   just a reasonable starting point.  */
+
+static int max_value_size = 65536; /* 64k bytes */
+
+/* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
+   LONGEST, otherwise GDB will not be able to parse integer values from the
+   CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
+   be unable to parse "set max-value-size 2".
+
+   As we want a consistent GDB experience across hosts with different sizes
+   of LONGEST, this arbitrary minimum value was selected, so long as this
+   is bigger than LONGEST on all GDB supported hosts we're fine.  */
+
+#define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
+gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
+
+/* Implement the "set max-value-size" command.  */
+
+static void
+set_max_value_size (const char *args, int from_tty,
+                   struct cmd_list_element *c)
+{
+  gdb_assert (max_value_size == -1 || max_value_size >= 0);
+
+  if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
+    {
+      max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
+      error (_("max-value-size set too low, increasing to %d bytes"),
+            max_value_size);
+    }
+}
+
+/* Implement the "show max-value-size" command.  */
+
+static void
+show_max_value_size (struct ui_file *file, int from_tty,
+                    struct cmd_list_element *c, const char *value)
+{
+  if (max_value_size == -1)
+    fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
+  else
+    fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
+                     max_value_size);
+}
+
+/* Called before we attempt to allocate or reallocate a buffer for the
+   contents of a value.  TYPE is the type of the value for which we are
+   allocating the buffer.  If the buffer is too large (based on the user
+   controllable setting) then throw an error.  If this function returns
+   then we should attempt to allocate the buffer.  */
+
+static void
+check_type_length_before_alloc (const struct type *type)
+{
+  unsigned int length = TYPE_LENGTH (type);
+
+  if (max_value_size > -1 && length > max_value_size)
+    {
+      if (TYPE_NAME (type) != NULL)
+       error (_("value of type `%s' requires %u bytes, which is more "
+                "than max-value-size"), TYPE_NAME (type), length);
+      else
+       error (_("value requires %u bytes, which is more than "
+                "max-value-size"), length);
+    }
+}
+
 /* Allocate the contents of VAL if it has not been allocated yet.  */
 
-void
+static void
 allocate_value_contents (struct value *val)
 {
   if (!val->contents)
-    val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
+    {
+      check_type_length_before_alloc (val->enclosing_type);
+      val->contents.reset
+       ((gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)));
+    }
 }
 
 /* Allocate a  value  and its contents for type TYPE.  */
@@ -329,27 +1052,32 @@ allocate_repeat_value (struct type *type, int count)
 
 struct value *
 allocate_computed_value (struct type *type,
-                         struct lval_funcs *funcs,
+                         const struct lval_funcs *funcs,
                          void *closure)
 {
-  struct value *v = allocate_value (type);
+  struct value *v = allocate_value_lazy (type);
 
   VALUE_LVAL (v) = lval_computed;
   v->location.computed.funcs = funcs;
   v->location.computed.closure = closure;
-  set_value_lazy (v, 1);
 
   return v;
 }
 
-/* Accessor methods.  */
+/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT.  */
 
 struct value *
-value_next (struct value *value)
+allocate_optimized_out_value (struct type *type)
 {
-  return value->next;
+  struct value *retval = allocate_value_lazy (type);
+
+  mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
+  set_value_lazy (retval, 0);
+  return retval;
 }
 
+/* Accessor methods.  */
+
 struct type *
 value_type (const struct value *value)
 {
@@ -361,70 +1089,143 @@ deprecated_set_value_type (struct value *value, struct type *type)
   value->type = type;
 }
 
-int
+LONGEST
 value_offset (const struct value *value)
 {
   return value->offset;
 }
 void
-set_value_offset (struct value *value, int offset)
+set_value_offset (struct value *value, LONGEST offset)
 {
   value->offset = offset;
 }
 
-int
+LONGEST
 value_bitpos (const struct value *value)
 {
   return value->bitpos;
 }
 void
-set_value_bitpos (struct value *value, int bit)
+set_value_bitpos (struct value *value, LONGEST bit)
 {
   value->bitpos = bit;
 }
 
-int
+LONGEST
 value_bitsize (const struct value *value)
 {
   return value->bitsize;
 }
 void
-set_value_bitsize (struct value *value, int bit)
+set_value_bitsize (struct value *value, LONGEST bit)
 {
   value->bitsize = bit;
 }
 
 struct value *
-value_parent (struct value *value)
+value_parent (const struct value *value)
 {
-  return value->parent;
+  return value->parent.get ();
+}
+
+/* See value.h.  */
+
+void
+set_value_parent (struct value *value, struct value *parent)
+{
+  value->parent = value_ref_ptr::new_reference (parent);
 }
 
 gdb_byte *
 value_contents_raw (struct value *value)
 {
+  struct gdbarch *arch = get_value_arch (value);
+  int unit_size = gdbarch_addressable_memory_unit_size (arch);
+
   allocate_value_contents (value);
-  return value->contents + value->embedded_offset;
+  return value->contents.get () + value->embedded_offset * unit_size;
 }
 
 gdb_byte *
 value_contents_all_raw (struct value *value)
 {
   allocate_value_contents (value);
-  return value->contents;
+  return value->contents.get ();
 }
 
 struct type *
-value_enclosing_type (struct value *value)
+value_enclosing_type (const struct value *value)
 {
   return value->enclosing_type;
 }
 
+/* Look at value.h for description.  */
+
+struct type *
+value_actual_type (struct value *value, int resolve_simple_types,
+                  int *real_type_found)
+{
+  struct value_print_options opts;
+  struct type *result;
+
+  get_user_print_options (&opts);
+
+  if (real_type_found)
+    *real_type_found = 0;
+  result = value_type (value);
+  if (opts.objectprint)
+    {
+      /* If result's target type is TYPE_CODE_STRUCT, proceed to
+        fetch its rtti type.  */
+      if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
+         && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
+            == TYPE_CODE_STRUCT
+         && !value_optimized_out (value))
+        {
+          struct type *real_type;
+
+          real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
+          if (real_type)
+            {
+              if (real_type_found)
+                *real_type_found = 1;
+              result = real_type;
+            }
+        }
+      else if (resolve_simple_types)
+        {
+          if (real_type_found)
+            *real_type_found = 1;
+          result = value_enclosing_type (value);
+        }
+    }
+
+  return result;
+}
+
+void
+error_value_optimized_out (void)
+{
+  error (_("value has been optimized out"));
+}
+
 static void
-require_not_optimized_out (struct value *value)
+require_not_optimized_out (const struct value *value)
 {
-  if (value->optimized_out)
-    error (_("value has been optimized out"));
+  if (!value->optimized_out.empty ())
+    {
+      if (value->lval == lval_register)
+       error (_("register has not been saved in frame"));
+      else
+       error_value_optimized_out ();
+    }
+}
+
+static void
+require_available (const struct value *value)
+{
+  if (!value->unavailable.empty ())
+    throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
 }
 
 const gdb_byte *
@@ -432,7 +1233,14 @@ value_contents_for_printing (struct value *value)
 {
   if (value->lazy)
     value_fetch_lazy (value);
-  return value->contents;
+  return value->contents.get ();
+}
+
+const gdb_byte *
+value_contents_for_printing_const (const struct value *value)
+{
+  gdb_assert (!value->lazy);
+  return value->contents.get ();
 }
 
 const gdb_byte *
@@ -440,11 +1248,118 @@ value_contents_all (struct value *value)
 {
   const gdb_byte *result = value_contents_for_printing (value);
   require_not_optimized_out (value);
+  require_available (value);
   return result;
 }
 
+/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
+   SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted.  */
+
+static void
+ranges_copy_adjusted (std::vector<range> *dst_range, int dst_bit_offset,
+                     const std::vector<range> &src_range, int src_bit_offset,
+                     int bit_length)
+{
+  for (const range &r : src_range)
+    {
+      ULONGEST h, l;
+
+      l = std::max (r.offset, (LONGEST) src_bit_offset);
+      h = std::min (r.offset + r.length,
+                   (LONGEST) src_bit_offset + bit_length);
+
+      if (l < h)
+       insert_into_bit_range_vector (dst_range,
+                                     dst_bit_offset + (l - src_bit_offset),
+                                     h - l);
+    }
+}
+
+/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
+   SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted.  */
+
+static void
+value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
+                           const struct value *src, int src_bit_offset,
+                           int bit_length)
+{
+  ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
+                       src->unavailable, src_bit_offset,
+                       bit_length);
+  ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
+                       src->optimized_out, src_bit_offset,
+                       bit_length);
+}
+
+/* Copy LENGTH target addressable memory units of SRC value's (all) contents
+   (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
+   contents, starting at DST_OFFSET.  If unavailable contents are
+   being copied from SRC, the corresponding DST contents are marked
+   unavailable accordingly.  Neither DST nor SRC may be lazy
+   values.
+
+   It is assumed the contents of DST in the [DST_OFFSET,
+   DST_OFFSET+LENGTH) range are wholly available.  */
+
+void
+value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
+                        struct value *src, LONGEST src_offset, LONGEST length)
+{
+  LONGEST src_bit_offset, dst_bit_offset, bit_length;
+  struct gdbarch *arch = get_value_arch (src);
+  int unit_size = gdbarch_addressable_memory_unit_size (arch);
+
+  /* A lazy DST would make that this copy operation useless, since as
+     soon as DST's contents were un-lazied (by a later value_contents
+     call, say), the contents would be overwritten.  A lazy SRC would
+     mean we'd be copying garbage.  */
+  gdb_assert (!dst->lazy && !src->lazy);
+
+  /* The overwritten DST range gets unavailability ORed in, not
+     replaced.  Make sure to remember to implement replacing if it
+     turns out actually necessary.  */
+  gdb_assert (value_bytes_available (dst, dst_offset, length));
+  gdb_assert (!value_bits_any_optimized_out (dst,
+                                            TARGET_CHAR_BIT * dst_offset,
+                                            TARGET_CHAR_BIT * length));
+
+  /* Copy the data.  */
+  memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
+         value_contents_all_raw (src) + src_offset * unit_size,
+         length * unit_size);
+
+  /* Copy the meta-data, adjusted.  */
+  src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
+  dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
+  bit_length = length * unit_size * HOST_CHAR_BIT;
+
+  value_ranges_copy_adjusted (dst, dst_bit_offset,
+                             src, src_bit_offset,
+                             bit_length);
+}
+
+/* Copy LENGTH bytes of SRC value's (all) contents
+   (value_contents_all) starting at SRC_OFFSET byte, into DST value's
+   (all) contents, starting at DST_OFFSET.  If unavailable contents
+   are being copied from SRC, the corresponding DST contents are
+   marked unavailable accordingly.  DST must not be lazy.  If SRC is
+   lazy, it will be fetched now.
+
+   It is assumed the contents of DST in the [DST_OFFSET,
+   DST_OFFSET+LENGTH) range are wholly available.  */
+
+void
+value_contents_copy (struct value *dst, LONGEST dst_offset,
+                    struct value *src, LONGEST src_offset, LONGEST length)
+{
+  if (src->lazy)
+    value_fetch_lazy (src);
+
+  value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
+}
+
 int
-value_lazy (struct value *value)
+value_lazy (const struct value *value)
 {
   return value->lazy;
 }
@@ -456,7 +1371,7 @@ set_value_lazy (struct value *value, int val)
 }
 
 int
-value_stack (struct value *value)
+value_stack (const struct value *value)
 {
   return value->stack;
 }
@@ -472,6 +1387,7 @@ value_contents (struct value *value)
 {
   const gdb_byte *result = value_contents_writeable (value);
   require_not_optimized_out (value);
+  require_available (value);
   return result;
 }
 
@@ -483,66 +1399,51 @@ value_contents_writeable (struct value *value)
   return value_contents_raw (value);
 }
 
-/* Return non-zero if VAL1 and VAL2 have the same contents.  Note that
-   this function is different from value_equal; in C the operator ==
-   can return 0 even if the two values being compared are equal.  */
-
 int
-value_contents_equal (struct value *val1, struct value *val2)
+value_optimized_out (struct value *value)
 {
-  struct type *type1;
-  struct type *type2;
-  int len;
-
-  type1 = check_typedef (value_type (val1));
-  type2 = check_typedef (value_type (val2));
-  len = TYPE_LENGTH (type1);
-  if (len != TYPE_LENGTH (type2))
-    return 0;
+  /* We can only know if a value is optimized out once we have tried to
+     fetch it.  */
+  if (value->optimized_out.empty () && value->lazy)
+    {
+      try
+       {
+         value_fetch_lazy (value);
+       }
+      catch (const gdb_exception_error &ex)
+       {
+         /* Fall back to checking value->optimized_out.  */
+       }
+    }
 
-  return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
+  return !value->optimized_out.empty ();
 }
 
-int
-value_optimized_out (struct value *value)
-{
-  return value->optimized_out;
-}
+/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
+   the following LENGTH bytes.  */
 
 void
-set_value_optimized_out (struct value *value, int val)
+mark_value_bytes_optimized_out (struct value *value, int offset, int length)
 {
-  value->optimized_out = val;
+  mark_value_bits_optimized_out (value,
+                                offset * TARGET_CHAR_BIT,
+                                length * TARGET_CHAR_BIT);
 }
 
-int
-value_entirely_optimized_out (const struct value *value)
-{
-  if (!value->optimized_out)
-    return 0;
-  if (value->lval != lval_computed
-      || !value->location.computed.funcs->check_any_valid)
-    return 1;
-  return !value->location.computed.funcs->check_any_valid (value);
-}
+/* See value.h.  */
 
-int
-value_bits_valid (const struct value *value, int offset, int length)
+void
+mark_value_bits_optimized_out (struct value *value,
+                              LONGEST offset, LONGEST length)
 {
-  if (value == NULL || !value->optimized_out)
-    return 1;
-  if (value->lval != lval_computed
-      || !value->location.computed.funcs->check_validity)
-    return 0;
-  return value->location.computed.funcs->check_validity (value, offset,
-                                                        length);
+  insert_into_bit_range_vector (&value->optimized_out, offset, length);
 }
 
 int
 value_bits_synthetic_pointer (const struct value *value,
-                             int offset, int length)
+                             LONGEST offset, LONGEST length)
 {
-  if (value == NULL || value->lval != lval_computed
+  if (value->lval != lval_computed
       || !value->location.computed.funcs->check_synthetic_pointer)
     return 0;
   return value->location.computed.funcs->check_synthetic_pointer (value,
@@ -550,34 +1451,34 @@ value_bits_synthetic_pointer (const struct value *value,
                                                                  length);
 }
 
-int
-value_embedded_offset (struct value *value)
+LONGEST
+value_embedded_offset (const struct value *value)
 {
   return value->embedded_offset;
 }
 
 void
-set_value_embedded_offset (struct value *value, int val)
+set_value_embedded_offset (struct value *value, LONGEST val)
 {
   value->embedded_offset = val;
 }
 
-int
-value_pointed_to_offset (struct value *value)
+LONGEST
+value_pointed_to_offset (const struct value *value)
 {
   return value->pointed_to_offset;
 }
 
 void
-set_value_pointed_to_offset (struct value *value, int val)
+set_value_pointed_to_offset (struct value *value, LONGEST val)
 {
   value->pointed_to_offset = val;
 }
 
-struct lval_funcs *
-value_computed_funcs (struct value *v)
+const struct lval_funcs *
+value_computed_funcs (const struct value *v)
 {
-  gdb_assert (VALUE_LVAL (v) == lval_computed);
+  gdb_assert (value_lval_const (v) == lval_computed);
 
   return v->location.computed.funcs;
 }
@@ -596,20 +1497,32 @@ deprecated_value_lval_hack (struct value *value)
   return &value->lval;
 }
 
+enum lval_type
+value_lval_const (const struct value *value)
+{
+  return value->lval;
+}
+
 CORE_ADDR
-value_address (struct value *value)
+value_address (const struct value *value)
 {
-  if (value->lval == lval_internalvar
-      || value->lval == lval_internalvar_component)
+  if (value->lval != lval_memory)
     return 0;
+  if (value->parent != NULL)
+    return value_address (value->parent.get ()) + value->offset;
+  if (NULL != TYPE_DATA_LOCATION (value_type (value)))
+    {
+      gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
+      return TYPE_DATA_LOCATION_ADDR (value_type (value));
+    }
+
   return value->location.address + value->offset;
 }
 
 CORE_ADDR
-value_raw_address (struct value *value)
+value_raw_address (const struct value *value)
 {
-  if (value->lval == lval_internalvar
-      || value->lval == lval_internalvar_component)
+  if (value->lval != lval_memory)
     return 0;
   return value->location.address;
 }
@@ -617,8 +1530,7 @@ value_raw_address (struct value *value)
 void
 set_value_address (struct value *value, CORE_ADDR addr)
 {
-  gdb_assert (value->lval != lval_internalvar
-             && value->lval != lval_internalvar_component);
+  gdb_assert (value->lval == lval_memory);
   value->location.address = addr;
 }
 
@@ -629,27 +1541,24 @@ deprecated_value_internalvar_hack (struct value *value)
 }
 
 struct frame_id *
-deprecated_value_frame_id_hack (struct value *value)
+deprecated_value_next_frame_id_hack (struct value *value)
 {
-  return &value->frame_id;
+  gdb_assert (value->lval == lval_register);
+  return &value->location.reg.next_frame_id;
 }
 
-short *
+int *
 deprecated_value_regnum_hack (struct value *value)
 {
-  return &value->regnum;
+  gdb_assert (value->lval == lval_register);
+  return &value->location.reg.regnum;
 }
 
 int
-deprecated_value_modifiable (struct value *value)
+deprecated_value_modifiable (const struct value *value)
 {
   return value->modifiable;
 }
-void
-deprecated_set_value_modifiable (struct value *value, int modifiable)
-{
-  value->modifiable = modifiable;
-}
 \f
 /* Return a mark in the value chain.  All values allocated after the
    mark is obtained (except for those released) are subject to being freed
@@ -657,11 +1566,12 @@ deprecated_set_value_modifiable (struct value *value, int modifiable)
 struct value *
 value_mark (void)
 {
-  return all_values;
+  if (all_values.empty ())
+    return nullptr;
+  return all_values.back ().get ();
 }
 
-/* Take a reference to VAL.  VAL will not be deallocated until all
-   references are released.  */
+/* See value.h.  */
 
 void
 value_incref (struct value *val)
@@ -674,124 +1584,72 @@ value_incref (struct value *val)
    chain.  */
 
 void
-value_free (struct value *val)
+value_decref (struct value *val)
 {
-  if (val)
+  if (val != nullptr)
     {
       gdb_assert (val->reference_count > 0);
       val->reference_count--;
-      if (val->reference_count > 0)
-       return;
-
-      /* If there's an associated parent value, drop our reference to
-        it.  */
-      if (val->parent != NULL)
-       value_free (val->parent);
-
-      if (VALUE_LVAL (val) == lval_computed)
-       {
-         struct lval_funcs *funcs = val->location.computed.funcs;
-
-         if (funcs->free_closure)
-           funcs->free_closure (val);
-       }
-
-      xfree (val->contents);
+      if (val->reference_count == 0)
+       delete val;
     }
-  xfree (val);
 }
 
 /* Free all values allocated since MARK was obtained by value_mark
    (except for those released).  */
 void
-value_free_to_mark (struct value *mark)
-{
-  struct value *val;
-  struct value *next;
-
-  for (val = all_values; val && val != mark; val = next)
-    {
-      next = val->next;
-      value_free (val);
-    }
-  all_values = val;
-}
-
-/* Free all the values that have been allocated (except for those released).
-   Call after each command, successful or not.
-   In practice this is called before each command, which is sufficient.  */
-
-void
-free_all_values (void)
-{
-  struct value *val;
-  struct value *next;
-
-  for (val = all_values; val; val = next)
-    {
-      next = val->next;
-      value_free (val);
-    }
-
-  all_values = 0;
-}
-
-/* Frees all the elements in a chain of values.  */
-
-void
-free_value_chain (struct value *v)
+value_free_to_mark (const struct value *mark)
 {
-  struct value *next;
-
-  for (; v; v = next)
-    {
-      next = value_next (v);
-      value_free (v);
-    }
+  auto iter = std::find (all_values.begin (), all_values.end (), mark);
+  if (iter == all_values.end ())
+    all_values.clear ();
+  else
+    all_values.erase (iter + 1, all_values.end ());
 }
 
 /* Remove VAL from the chain all_values
    so it will not be freed automatically.  */
 
-void
+value_ref_ptr
 release_value (struct value *val)
 {
-  struct value *v;
-
-  if (all_values == val)
-    {
-      all_values = val->next;
-      val->next = NULL;
-      return;
-    }
+  if (val == nullptr)
+    return value_ref_ptr ();
 
-  for (v = all_values; v; v = v->next)
+  std::vector<value_ref_ptr>::reverse_iterator iter;
+  for (iter = all_values.rbegin (); iter != all_values.rend (); ++iter)
     {
-      if (v->next == val)
+      if (*iter == val)
        {
-         v->next = val->next;
-         val->next = NULL;
-         break;
+         value_ref_ptr result = *iter;
+         all_values.erase (iter.base () - 1);
+         return result;
        }
     }
+
+  /* We must always return an owned reference.  Normally this happens
+     because we transfer the reference from the value chain, but in
+     this case the value was not on the chain.  */
+  return value_ref_ptr::new_reference (val);
 }
 
-/* Release all values up to mark  */
-struct value *
-value_release_to_mark (struct value *mark)
+/* See value.h.  */
+
+std::vector<value_ref_ptr>
+value_release_to_mark (const struct value *mark)
 {
-  struct value *val;
-  struct value *next;
+  std::vector<value_ref_ptr> result;
 
-  for (val = next = all_values; next; next = next->next)
-    if (next->next == mark)
-      {
-       all_values = next->next;
-       next->next = NULL;
-       return val;
-      }
-  all_values = 0;
-  return val;
+  auto iter = std::find (all_values.begin (), all_values.end (), mark);
+  if (iter == all_values.end ())
+    std::swap (result, all_values);
+  else
+    {
+      std::move (iter + 1, all_values.end (), std::back_inserter (result));
+      all_values.erase (iter + 1, all_values.end ());
+    }
+  std::reverse (result.begin (), result.end ());
+  return result;
 }
 
 /* Return a copy of the value ARG.
@@ -814,10 +1672,7 @@ value_copy (struct value *arg)
   val->offset = arg->offset;
   val->bitpos = arg->bitpos;
   val->bitsize = arg->bitsize;
-  VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
-  VALUE_REGNUM (val) = VALUE_REGNUM (arg);
   val->lazy = arg->lazy;
-  val->optimized_out = arg->optimized_out;
   val->embedded_offset = value_embedded_offset (arg);
   val->pointed_to_offset = arg->pointed_to_offset;
   val->modifiable = arg->modifiable;
@@ -827,12 +1682,12 @@ value_copy (struct value *arg)
              TYPE_LENGTH (value_enclosing_type (arg)));
 
     }
+  val->unavailable = arg->unavailable;
+  val->optimized_out = arg->optimized_out;
   val->parent = arg->parent;
-  if (val->parent)
-    value_incref (val->parent);
   if (VALUE_LVAL (val) == lval_computed)
     {
-      struct lval_funcs *funcs = val->location.computed.funcs;
+      const struct lval_funcs *funcs = val->location.computed.funcs;
 
       if (funcs->copy_closure)
         val->location.computed.closure = funcs->copy_closure (val);
@@ -840,6 +1695,27 @@ value_copy (struct value *arg)
   return val;
 }
 
+/* Return a "const" and/or "volatile" qualified version of the value V.
+   If CNST is true, then the returned value will be qualified with
+   "const".
+   if VOLTL is true, then the returned value will be qualified with
+   "volatile".  */
+
+struct value *
+make_cv_value (int cnst, int voltl, struct value *v)
+{
+  struct type *val_type = value_type (v);
+  struct type *enclosing_type = value_enclosing_type (v);
+  struct value *cv_val = value_copy (v);
+
+  deprecated_set_value_type (cv_val,
+                            make_cv_type (cnst, voltl, val_type, NULL));
+  set_value_enclosing_type (cv_val,
+                           make_cv_type (cnst, voltl, enclosing_type, NULL));
+
+  return cv_val;
+}
+
 /* Return a version of ARG that is non-lvalue.  */
 
 struct value *
@@ -860,10 +1736,26 @@ value_non_lval (struct value *arg)
    return arg;
 }
 
+/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY.  */
+
+void
+value_force_lval (struct value *v, CORE_ADDR addr)
+{
+  gdb_assert (VALUE_LVAL (v) == not_lval);
+
+  write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
+  v->lval = lval_memory;
+  v->location.address = addr;
+}
+
 void
 set_value_component_location (struct value *component,
                              const struct value *whole)
 {
+  struct type *type;
+
+  gdb_assert (whole->lval != lval_xcallable);
+
   if (whole->lval == lval_internalvar)
     VALUE_LVAL (component) = lval_internalvar_component;
   else
@@ -872,26 +1764,28 @@ set_value_component_location (struct value *component,
   component->location = whole->location;
   if (whole->lval == lval_computed)
     {
-      struct lval_funcs *funcs = whole->location.computed.funcs;
+      const struct lval_funcs *funcs = whole->location.computed.funcs;
 
       if (funcs->copy_closure)
         component->location.computed.closure = funcs->copy_closure (whole);
     }
+
+  /* If type has a dynamic resolved location property
+     update it's value address.  */
+  type = value_type (whole);
+  if (NULL != TYPE_DATA_LOCATION (type)
+      && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
+    set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
 }
 
-\f
 /* Access to the value history.  */
 
 /* Record a new value in the value history.
-   Returns the absolute history index of the entry.
-   Result of -1 indicates the value was not saved; otherwise it is the
-   value history index of this new item.  */
+   Returns the absolute history index of the entry.  */
 
 int
 record_latest_value (struct value *val)
 {
-  int i;
-
   /* We don't want this value to have anything to do with the inferior anymore.
      In particular, "set $1 = 50" should not affect the variable from which
      the value was taken, and fast watchpoints should be able to assume that
@@ -902,29 +1796,10 @@ record_latest_value (struct value *val)
      from.  This is a bit dubious, because then *&$1 does not just return $1
      but the current contents of that location.  c'est la vie...  */
   val->modifiable = 0;
-  release_value (val);
-
-  /* Here we treat value_history_count as origin-zero
-     and applying to the value being stored now.  */
-
-  i = value_history_count % VALUE_HISTORY_CHUNK;
-  if (i == 0)
-    {
-      struct value_history_chunk *new
-       = (struct value_history_chunk *)
 
-      xmalloc (sizeof (struct value_history_chunk));
-      memset (new->values, 0, sizeof new->values);
-      new->next = value_history_chain;
-      value_history_chain = new;
-    }
-
-  value_history_chain->values[i] = val;
+  value_history.push_back (release_value (val));
 
-  /* Now we regard value_history_count as origin-one
-     and applying to the value just stored.  */
-
-  return ++value_history_count;
+  return value_history.size ();
 }
 
 /* Return a copy of the value in the history with sequence number NUM.  */
@@ -932,12 +1807,10 @@ record_latest_value (struct value *val)
 struct value *
 access_value_history (int num)
 {
-  struct value_history_chunk *chunk;
-  int i;
   int absnum = num;
 
   if (absnum <= 0)
-    absnum += value_history_count;
+    absnum += value_history.size ();
 
   if (absnum <= 0)
     {
@@ -948,23 +1821,16 @@ access_value_history (int num)
       else
        error (_("History does not go back to $$%d."), -num);
     }
-  if (absnum > value_history_count)
+  if (absnum > value_history.size ())
     error (_("History has not yet reached $%d."), absnum);
 
   absnum--;
 
-  /* Now absnum is always absolute and origin zero.  */
-
-  chunk = value_history_chain;
-  for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
-       i > 0; i--)
-    chunk = chunk->next;
-
-  return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
+  return value_copy (value_history[absnum].get ());
 }
 
 static void
-show_values (char *num_exp, int from_tty)
+show_values (const char *num_exp, int from_tty)
 {
   int i;
   struct value *val;
@@ -980,13 +1846,13 @@ show_values (char *num_exp, int from_tty)
   else
     {
       /* "show values" means print the last 10 values.  */
-      num = value_history_count - 9;
+      num = value_history.size () - 9;
     }
 
   if (num <= 0)
     num = 1;
 
-  for (i = num; i < num + 10 && i <= value_history_count; i++)
+  for (i = num; i < num + 10 && i <= value_history.size (); i++)
     {
       struct value_print_options opts;
 
@@ -1004,104 +1870,99 @@ show_values (char *num_exp, int from_tty)
      "show values +".  If num_exp is null, this is unnecessary, since
      "show values +" is not useful after "show values".  */
   if (from_tty && num_exp)
-    {
-      num_exp[0] = '+';
-      num_exp[1] = '\0';
-    }
+    set_repeat_arguments ("+");
 }
 \f
-/* Internal variables.  These are variables within the debugger
-   that hold values assigned by debugger commands.
-   The user refers to them with a '$' prefix
-   that does not appear in the variable names stored internally.  */
-
-struct internalvar
+enum internalvar_kind
 {
-  struct internalvar *next;
-  char *name;
+  /* The internal variable is empty.  */
+  INTERNALVAR_VOID,
 
-  /* We support various different kinds of content of an internal variable.
-     enum internalvar_kind specifies the kind, and union internalvar_data
-     provides the data associated with this particular kind.  */
+  /* The value of the internal variable is provided directly as
+     a GDB value object.  */
+  INTERNALVAR_VALUE,
 
-  enum internalvar_kind
-    {
-      /* The internal variable is empty.  */
-      INTERNALVAR_VOID,
+  /* A fresh value is computed via a call-back routine on every
+     access to the internal variable.  */
+  INTERNALVAR_MAKE_VALUE,
 
-      /* The value of the internal variable is provided directly as
-        a GDB value object.  */
-      INTERNALVAR_VALUE,
+  /* The internal variable holds a GDB internal convenience function.  */
+  INTERNALVAR_FUNCTION,
 
-      /* A fresh value is computed via a call-back routine on every
-        access to the internal variable.  */
-      INTERNALVAR_MAKE_VALUE,
+  /* The variable holds an integer value.  */
+  INTERNALVAR_INTEGER,
 
-      /* The internal variable holds a GDB internal convenience function.  */
-      INTERNALVAR_FUNCTION,
+  /* The variable holds a GDB-provided string.  */
+  INTERNALVAR_STRING,
+};
+
+union internalvar_data
+{
+  /* A value object used with INTERNALVAR_VALUE.  */
+  struct value *value;
 
-      /* The variable holds an integer value.  */
-      INTERNALVAR_INTEGER,
+  /* The call-back routine used with INTERNALVAR_MAKE_VALUE.  */
+  struct
+  {
+    /* The functions to call.  */
+    const struct internalvar_funcs *functions;
 
-      /* The variable holds a pointer value.  */
-      INTERNALVAR_POINTER,
+    /* The function's user-data.  */
+    void *data;
+  } make_value;
 
-      /* The variable holds a GDB-provided string.  */
-      INTERNALVAR_STRING,
+  /* The internal function used with INTERNALVAR_FUNCTION.  */
+  struct
+  {
+    struct internal_function *function;
+    /* True if this is the canonical name for the function.  */
+    int canonical;
+  } fn;
 
-    } kind;
+  /* An integer value used with INTERNALVAR_INTEGER.  */
+  struct
+  {
+    /* If type is non-NULL, it will be used as the type to generate
+       a value for this internal variable.  If type is NULL, a default
+       integer type for the architecture is used.  */
+    struct type *type;
+    LONGEST val;
+  } integer;
+
+  /* A string value used with INTERNALVAR_STRING.  */
+  char *string;
+};
 
-  union internalvar_data
-    {
-      /* A value object used with INTERNALVAR_VALUE.  */
-      struct value *value;
+/* Internal variables.  These are variables within the debugger
+   that hold values assigned by debugger commands.
+   The user refers to them with a '$' prefix
+   that does not appear in the variable names stored internally.  */
 
-      /* The call-back routine used with INTERNALVAR_MAKE_VALUE.  */
-      internalvar_make_value make_value;
+struct internalvar
+{
+  struct internalvar *next;
+  char *name;
 
-      /* The internal function used with INTERNALVAR_FUNCTION.  */
-      struct
-       {
-         struct internal_function *function;
-         /* True if this is the canonical name for the function.  */
-         int canonical;
-       } fn;
+  /* We support various different kinds of content of an internal variable.
+     enum internalvar_kind specifies the kind, and union internalvar_data
+     provides the data associated with this particular kind.  */
 
-      /* An integer value used with INTERNALVAR_INTEGER.  */
-      struct
-        {
-         /* If type is non-NULL, it will be used as the type to generate
-            a value for this internal variable.  If type is NULL, a default
-            integer type for the architecture is used.  */
-         struct type *type;
-         LONGEST val;
-        } integer;
-
-      /* A pointer value used with INTERNALVAR_POINTER.  */
-      struct
-        {
-         struct type *type;
-         CORE_ADDR val;
-        } pointer;
+  enum internalvar_kind kind;
 
-      /* A string value used with INTERNALVAR_STRING.  */
-      char *string;
-    } u;
+  union internalvar_data u;
 };
 
 static struct internalvar *internalvars;
 
-/* If the variable does not already exist create it and give it the value given.
-   If no value is given then the default is zero.  */
+/* If the variable does not already exist create it and give it the
+   value given.  If no value is given then the default is zero.  */
 static void
-init_if_undefined_command (char* args, int from_tty)
+init_if_undefined_command (const char* args, int from_tty)
 {
   struct internalvar* intvar;
 
   /* Parse the expression - this is taken from set_command().  */
-  struct expression *expr = parse_expression (args);
-  register struct cleanup *old_chain =
-    make_cleanup (free_current_contents, &expr);
+  expression_up expr = parse_expression (args);
 
   /* Validate the expression.
      Was the expression an assignment?
@@ -1112,15 +1973,14 @@ init_if_undefined_command (char* args, int from_tty)
   /* Extract the variable from the parsed expression.
      In the case of an assign the lvalue will be in elts[1] and elts[2].  */
   if (expr->elts[1].opcode != OP_INTERNALVAR)
-    error (_("The first parameter to init-if-undefined should be a GDB variable."));
+    error (_("The first parameter to init-if-undefined "
+            "should be a GDB variable."));
   intvar = expr->elts[2].internalvar;
 
   /* Only evaluate the expression if the lvalue is void.
      This may still fail if the expresssion is invalid.  */
   if (intvar->kind == INTERNALVAR_VOID)
-    evaluate_expression (expr);
-
-  do_cleanups (old_chain);
+    evaluate_expression (expr.get ());
 }
 
 
@@ -1142,6 +2002,21 @@ lookup_only_internalvar (const char *name)
   return NULL;
 }
 
+/* Complete NAME by comparing it to the names of internal
+   variables.  */
+
+void
+complete_internalvar (completion_tracker &tracker, const char *name)
+{
+  struct internalvar *var;
+  int len;
+
+  len = strlen (name);
+
+  for (var = internalvars; var; var = var->next)
+    if (strncmp (var->name, name, len) == 0)
+      tracker.add_completion (make_unique_xstrdup (var->name));
+}
 
 /* Create an internal variable with name NAME and with a void value.
    NAME should not normally include a dollar sign.  */
@@ -1149,10 +2024,9 @@ lookup_only_internalvar (const char *name)
 struct internalvar *
 create_internalvar (const char *name)
 {
-  struct internalvar *var;
+  struct internalvar *var = XNEW (struct internalvar);
 
-  var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
-  var->name = concat (name, (char *)NULL);
+  var->name = xstrdup (name);
   var->kind = INTERNALVAR_VOID;
   var->next = internalvars;
   internalvars = var;
@@ -1162,18 +2036,39 @@ create_internalvar (const char *name)
 /* Create an internal variable with name NAME and register FUN as the
    function that value_of_internalvar uses to create a value whenever
    this variable is referenced.  NAME should not normally include a
-   dollar sign.  */
+   dollar sign.  DATA is passed uninterpreted to FUN when it is
+   called.  CLEANUP, if not NULL, is called when the internal variable
+   is destroyed.  It is passed DATA as its only argument.  */
 
 struct internalvar *
-create_internalvar_type_lazy (char *name, internalvar_make_value fun)
+create_internalvar_type_lazy (const char *name,
+                             const struct internalvar_funcs *funcs,
+                             void *data)
 {
   struct internalvar *var = create_internalvar (name);
 
   var->kind = INTERNALVAR_MAKE_VALUE;
-  var->u.make_value = fun;
+  var->u.make_value.functions = funcs;
+  var->u.make_value.data = data;
   return var;
 }
 
+/* See documentation in value.h.  */
+
+int
+compile_internalvar_to_ax (struct internalvar *var,
+                          struct agent_expr *expr,
+                          struct axs_value *value)
+{
+  if (var->kind != INTERNALVAR_MAKE_VALUE
+      || var->u.make_value.functions->compile_to_ax == NULL)
+    return 0;
+
+  var->u.make_value.functions->compile_to_ax (var, expr, value,
+                                             var->u.make_value.data);
+  return 1;
+}
+
 /* Look up an internal variable with name NAME.  NAME should not
    normally include a dollar sign.
 
@@ -1234,10 +2129,6 @@ value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
        val = value_from_longest (var->u.integer.type, var->u.integer.val);
       break;
 
-    case INTERNALVAR_POINTER:
-      val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
-      break;
-
     case INTERNALVAR_STRING:
       val = value_cstring (var->u.string, strlen (var->u.string),
                           builtin_type (gdbarch)->builtin_char);
@@ -1250,11 +2141,12 @@ value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
       break;
 
     case INTERNALVAR_MAKE_VALUE:
-      val = (*var->u.make_value) (gdbarch, var);
+      val = (*var->u.make_value.functions->make_value) (gdbarch, var,
+                                                       var->u.make_value.data);
       break;
 
     default:
-      internal_error (__FILE__, __LINE__, "bad kind");
+      internal_error (__FILE__, __LINE__, _("bad kind"));
     }
 
   /* Change the VALUE_LVAL to lval_internalvar so that future operations
@@ -1287,15 +2179,24 @@ value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
 int
 get_internalvar_integer (struct internalvar *var, LONGEST *result)
 {
-  switch (var->kind)
+  if (var->kind == INTERNALVAR_INTEGER)
     {
-    case INTERNALVAR_INTEGER:
       *result = var->u.integer.val;
       return 1;
+    }
 
-    default:
-      return 0;
+  if (var->kind == INTERNALVAR_VALUE)
+    {
+      struct type *type = check_typedef (value_type (var->u.value));
+
+      if (TYPE_CODE (type) == TYPE_CODE_INT)
+       {
+         *result = value_as_long (var->u.value);
+         return 1;
+       }
     }
+
+  return 0;
 }
 
 static int
@@ -1314,27 +2215,32 @@ get_internalvar_function (struct internalvar *var,
 }
 
 void
-set_internalvar_component (struct internalvar *var, int offset, int bitpos,
-                          int bitsize, struct value *newval)
+set_internalvar_component (struct internalvar *var,
+                          LONGEST offset, LONGEST bitpos,
+                          LONGEST bitsize, struct value *newval)
 {
   gdb_byte *addr;
+  struct gdbarch *arch;
+  int unit_size;
 
   switch (var->kind)
     {
     case INTERNALVAR_VALUE:
       addr = value_contents_writeable (var->u.value);
+      arch = get_value_arch (var->u.value);
+      unit_size = gdbarch_addressable_memory_unit_size (arch);
 
       if (bitsize)
        modify_field (value_type (var->u.value), addr + offset,
                      value_as_long (newval), bitpos, bitsize);
       else
-       memcpy (addr + offset, value_contents (newval),
+       memcpy (addr + offset * unit_size, value_contents (newval),
                TYPE_LENGTH (value_type (newval)));
       break;
 
     default:
       /* We can never get a component of any other kind.  */
-      internal_error (__FILE__, __LINE__, "set_internalvar_component");
+      internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
     }
 }
 
@@ -1362,34 +2268,31 @@ set_internalvar (struct internalvar *var, struct value *val)
       /* Copies created here are never canonical.  */
       break;
 
-    case TYPE_CODE_INT:
-      new_kind = INTERNALVAR_INTEGER;
-      new_data.integer.type = value_type (val);
-      new_data.integer.val = value_as_long (val);
-      break;
-
-    case TYPE_CODE_PTR:
-      new_kind = INTERNALVAR_POINTER;
-      new_data.pointer.type = value_type (val);
-      new_data.pointer.val = value_as_address (val);
-      break;
-
     default:
       new_kind = INTERNALVAR_VALUE;
-      new_data.value = value_copy (val);
-      new_data.value->modifiable = 1;
+      struct value *copy = value_copy (val);
+      copy->modifiable = 1;
 
       /* Force the value to be fetched from the target now, to avoid problems
         later when this internalvar is referenced and the target is gone or
         has changed.  */
-      if (value_lazy (new_data.value))
-       value_fetch_lazy (new_data.value);
+      if (value_lazy (copy))
+       value_fetch_lazy (copy);
 
       /* Release the value from the value chain to prevent it from being
         deleted by free_all_values.  From here on this function should not
         call error () until new_data is installed into the var->u to avoid
         leaking memory.  */
-      release_value (new_data.value);
+      new_data.value = release_value (copy).release ();
+
+      /* Internal variables which are created from values with a dynamic
+         location don't need the location property of the origin anymore.
+         The resolved dynamic location is used prior then any other address
+         when accessing the value.
+         If we keep it, we would still refer to the origin value.
+         Remove the location property in case it exist.  */
+      remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
+
       break;
     }
 
@@ -1442,13 +2345,18 @@ clear_internalvar (struct internalvar *var)
   switch (var->kind)
     {
     case INTERNALVAR_VALUE:
-      value_free (var->u.value);
+      value_decref (var->u.value);
       break;
 
     case INTERNALVAR_STRING:
       xfree (var->u.string);
       break;
 
+    case INTERNALVAR_MAKE_VALUE:
+      if (var->u.make_value.functions->destroy != NULL)
+       var->u.make_value.functions->destroy (var->u.make_value.data);
+      break;
+
     default:
       break;
     }
@@ -1458,7 +2366,7 @@ clear_internalvar (struct internalvar *var)
 }
 
 char *
-internalvar_name (struct internalvar *var)
+internalvar_name (const struct internalvar *var)
 {
   return var->name;
 }
@@ -1508,7 +2416,7 @@ call_internal_function (struct gdbarch *gdbarch,
    the implementation of the sub-command that is created when
    registering an internal function.  */
 static void
-function_command (char *command, int from_tty)
+function_command (const char *command, int from_tty)
 {
   /* Do nothing.  */
 }
@@ -1517,8 +2425,8 @@ function_command (char *command, int from_tty)
 static void
 function_destroyer (struct cmd_list_element *self, void *ignore)
 {
-  xfree (self->name);
-  xfree (self->doc);
+  xfree ((char *) self->name);
+  xfree ((char *) self->doc);
 }
 
 /* Add a new internal function.  NAME is the name of the function; DOC
@@ -1572,12 +2480,6 @@ preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
          = copy_type_recursive (objfile, var->u.integer.type, copied_types);
       break;
 
-    case INTERNALVAR_POINTER:
-      if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
-       var->u.pointer.type
-         = copy_type_recursive (objfile, var->u.pointer.type, copied_types);
-      break;
-
     case INTERNALVAR_VALUE:
       preserve_one_value (var->u.value, objfile, copied_types);
       break;
@@ -1594,29 +2496,25 @@ void
 preserve_values (struct objfile *objfile)
 {
   htab_t copied_types;
-  struct value_history_chunk *cur;
   struct internalvar *var;
-  int i;
 
   /* Create the hash table.  We allocate on the objfile's obstack, since
      it is soon to be deleted.  */
   copied_types = create_copied_types_hash (objfile);
 
-  for (cur = value_history_chain; cur; cur = cur->next)
-    for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
-      if (cur->values[i])
-       preserve_one_value (cur->values[i], objfile, copied_types);
+  for (const value_ref_ptr &item : value_history)
+    preserve_one_value (item.get (), objfile, copied_types);
 
   for (var = internalvars; var; var = var->next)
     preserve_one_internalvar (var, objfile, copied_types);
 
-  preserve_python_values (objfile, copied_types);
+  preserve_ext_lang_values (objfile, copied_types);
 
   htab_delete (copied_types);
 }
 
 static void
-show_convenience (char *ignore, int from_tty)
+show_convenience (const char *ignore, int from_tty)
 {
   struct gdbarch *gdbarch = get_current_arch ();
   struct internalvar *var;
@@ -1626,20 +2524,78 @@ show_convenience (char *ignore, int from_tty)
   get_user_print_options (&opts);
   for (var = internalvars; var; var = var->next)
     {
+
       if (!varseen)
        {
          varseen = 1;
        }
       printf_filtered (("$%s = "), var->name);
-      value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
-                  &opts);
+
+      try
+       {
+         struct value *val;
+
+         val = value_of_internalvar (gdbarch, var);
+         value_print (val, gdb_stdout, &opts);
+       }
+      catch (const gdb_exception_error &ex)
+       {
+         fprintf_styled (gdb_stdout, metadata_style.style (),
+                         _("<error: %s>"), ex.what ());
+       }
+
       printf_filtered (("\n"));
     }
   if (!varseen)
-    printf_unfiltered (_("\
-No debugger convenience variables now defined.\n\
-Convenience variables have names starting with \"$\";\n\
-use \"set\" as in \"set $foo = 5\" to define them.\n"));
+    {
+      /* This text does not mention convenience functions on purpose.
+        The user can't create them except via Python, and if Python support
+        is installed this message will never be printed ($_streq will
+        exist).  */
+      printf_unfiltered (_("No debugger convenience variables now defined.\n"
+                          "Convenience variables have "
+                          "names starting with \"$\";\n"
+                          "use \"set\" as in \"set "
+                          "$foo = 5\" to define them.\n"));
+    }
+}
+\f
+
+/* See value.h.  */
+
+struct value *
+value_from_xmethod (xmethod_worker_up &&worker)
+{
+  struct value *v;
+
+  v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
+  v->lval = lval_xcallable;
+  v->location.xm_worker = worker.release ();
+  v->modifiable = 0;
+
+  return v;
+}
+
+/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD.  */
+
+struct type *
+result_type_of_xmethod (struct value *method, gdb::array_view<value *> argv)
+{
+  gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
+             && method->lval == lval_xcallable && !argv.empty ());
+
+  return method->location.xm_worker->get_result_type (argv[0], argv.slice (1));
+}
+
+/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD.  */
+
+struct value *
+call_xmethod (struct value *method, gdb::array_view<value *> argv)
+{
+  gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
+             && method->lval == lval_xcallable && !argv.empty ());
+
+  return method->location.xm_worker->invoke (argv[0], argv.slice (1));
 }
 \f
 /* Extract a value as a C number (either long or double).
@@ -1657,19 +2613,7 @@ value_as_long (struct value *val)
   return unpack_long (value_type (val), value_contents (val));
 }
 
-DOUBLEST
-value_as_double (struct value *val)
-{
-  DOUBLEST foo;
-  int inv;
-
-  foo = unpack_double (value_type (val), value_contents (val), &inv);
-  if (inv)
-    error (_("Invalid floating value found in program."));
-  return foo;
-}
-
-/* Extract a value as a C pointer. Does not deallocate the value.  
+/* Extract a value as a C pointer.  Does not deallocate the value.
    Note that val's type may not actually be a pointer; value_as_long
    handles all the cases.  */
 CORE_ADDR
@@ -1767,7 +2711,7 @@ value_as_address (struct value *val)
      ABI-specific code is a more reasonable place to handle it.  */
 
   if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
-      && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
+      && !TYPE_IS_REFERENCE (value_type (val))
       && gdbarch_integer_to_address_p (gdbarch))
     return gdbarch_integer_to_address (gdbarch, value_type (val),
                                       value_contents (val));
@@ -1809,21 +2753,24 @@ unpack_long (struct type *type, const gdb_byte *valaddr)
     case TYPE_CODE_CHAR:
     case TYPE_CODE_RANGE:
     case TYPE_CODE_MEMBERPTR:
-      if (nosign)
-       return extract_unsigned_integer (valaddr, len, byte_order);
-      else
-       return extract_signed_integer (valaddr, len, byte_order);
+      {
+       LONGEST result;
+       if (nosign)
+         result = extract_unsigned_integer (valaddr, len, byte_order);
+       else
+         result = extract_signed_integer (valaddr, len, byte_order);
+       if (code == TYPE_CODE_RANGE)
+         result += TYPE_RANGE_DATA (type)->bias;
+       return result;
+      }
 
     case TYPE_CODE_FLT:
-      return extract_typed_floating (valaddr, type);
-
     case TYPE_CODE_DECFLOAT:
-      /* libdecnumber has a function to convert from decimal to integer, but
-        it doesn't work when the decimal number has a fractional part.  */
-      return decimal_to_doublest (valaddr, len, byte_order);
+      return target_float_to_longest (valaddr, type);
 
     case TYPE_CODE_PTR:
     case TYPE_CODE_REF:
+    case TYPE_CODE_RVALUE_REF:
       /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
          whether we want this to be true eventually.  */
       return extract_typed_address (valaddr, type);
@@ -1831,67 +2778,6 @@ unpack_long (struct type *type, const gdb_byte *valaddr)
     default:
       error (_("Value can't be converted to integer."));
     }
-  return 0;                    /* Placate lint.  */
-}
-
-/* Return a double value from the specified type and address.
-   INVP points to an int which is set to 0 for valid value,
-   1 for invalid value (bad float format).  In either case,
-   the returned double is OK to use.  Argument is in target
-   format, result is in host format.  */
-
-DOUBLEST
-unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
-{
-  enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
-  enum type_code code;
-  int len;
-  int nosign;
-
-  *invp = 0;                   /* Assume valid.   */
-  CHECK_TYPEDEF (type);
-  code = TYPE_CODE (type);
-  len = TYPE_LENGTH (type);
-  nosign = TYPE_UNSIGNED (type);
-  if (code == TYPE_CODE_FLT)
-    {
-      /* NOTE: cagney/2002-02-19: There was a test here to see if the
-        floating-point value was valid (using the macro
-        INVALID_FLOAT).  That test/macro have been removed.
-
-        It turns out that only the VAX defined this macro and then
-        only in a non-portable way.  Fixing the portability problem
-        wouldn't help since the VAX floating-point code is also badly
-        bit-rotten.  The target needs to add definitions for the
-        methods gdbarch_float_format and gdbarch_double_format - these
-        exactly describe the target floating-point format.  The
-        problem here is that the corresponding floatformat_vax_f and
-        floatformat_vax_d values these methods should be set to are
-        also not defined either.  Oops!
-
-         Hopefully someone will add both the missing floatformat
-         definitions and the new cases for floatformat_is_valid ().  */
-
-      if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
-       {
-         *invp = 1;
-         return 0.0;
-       }
-
-      return extract_typed_floating (valaddr, type);
-    }
-  else if (code == TYPE_CODE_DECFLOAT)
-    return decimal_to_doublest (valaddr, len, byte_order);
-  else if (nosign)
-    {
-      /* Unsigned -- be sure we compensate for signed LONGEST.  */
-      return (ULONGEST) unpack_long (type, valaddr);
-    }
-  else
-    {
-      /* Signed -- we are OK with unpack_long.  */
-      return unpack_long (type, valaddr);
-    }
 }
 
 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
@@ -1915,10 +2801,24 @@ unpack_pointer (struct type *type, const gdb_byte *valaddr)
   return unpack_long (type, valaddr);
 }
 
+bool
+is_floating_value (struct value *val)
+{
+  struct type *type = check_typedef (value_type (val));
+
+  if (is_floating_type (type))
+    {
+      if (!target_float_is_valid (value_contents (val), type))
+       error (_("Invalid floating value found in program."));
+      return true;
+    }
+
+  return false;
+}
+
 \f
 /* Get the value of the FIELDNO'th field (which must be static) of
-   TYPE.  Return NULL if the field doesn't exist or has been
-   optimized out. */
+   TYPE.  */
 
 struct value *
 value_static_field (struct type *type, int fieldno)
@@ -1933,27 +2833,25 @@ value_static_field (struct type *type, int fieldno)
       break;
     case FIELD_LOC_KIND_PHYSNAME:
     {
-      char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
-      /*TYPE_FIELD_NAME (type, fieldno);*/
-      struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
+      const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
+      /* TYPE_FIELD_NAME (type, fieldno); */
+      struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
 
-      if (sym == NULL)
+      if (sym.symbol == NULL)
        {
          /* With some compilers, e.g. HP aCC, static data members are
-            reported as non-debuggable symbols */
-         struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
-                                                              NULL, NULL);
+            reported as non-debuggable symbols.  */
+         struct bound_minimal_symbol msym
+           = lookup_minimal_symbol (phys_name, NULL, NULL);
+         struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
 
-         if (!msym)
-           return NULL;
+         if (!msym.minsym)
+           retval = allocate_optimized_out_value (field_type);
          else
-           {
-             retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
-                                     SYMBOL_VALUE_ADDRESS (msym));
-           }
+           retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
        }
       else
-       retval = value_of_variable (sym, NULL);
+       retval = value_of_variable (sym.symbol, sym.block);
       break;
     }
     default:
@@ -1972,9 +2870,13 @@ value_static_field (struct type *type, int fieldno)
 void
 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
 {
-  if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val))) 
-    val->contents =
-      (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
+  if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
+    {
+      check_type_length_before_alloc (new_encl_type);
+      val->contents
+       .reset ((gdb_byte *) xrealloc (val->contents.release (),
+                                      TYPE_LENGTH (new_encl_type)));
+    }
 
   val->enclosing_type = new_encl_type;
 }
@@ -1982,16 +2884,18 @@ set_value_enclosing_type (struct value *val, struct type *new_encl_type)
 /* Given a value ARG1 (offset by OFFSET bytes)
    of a struct or union type ARG_TYPE,
    extract and return the value of one of its (non-static) fields.
-   FIELDNO says which field. */
+   FIELDNO says which field.  */
 
 struct value *
-value_primitive_field (struct value *arg1, int offset,
+value_primitive_field (struct value *arg1, LONGEST offset,
                       int fieldno, struct type *arg_type)
 {
   struct value *v;
   struct type *type;
+  struct gdbarch *arch = get_value_arch (arg1);
+  int unit_size = gdbarch_addressable_memory_unit_size (arch);
 
-  CHECK_TYPEDEF (arg_type);
+  arg_type = check_typedef (arg_type);
   type = TYPE_FIELD_TYPE (arg_type, fieldno);
 
   /* Call check_typedef on our type to make sure that, if TYPE
@@ -2002,18 +2906,19 @@ value_primitive_field (struct value *arg1, int offset,
      description correctly.  */
   check_typedef (type);
 
-  /* Handle packed fields */
-
   if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
     {
-      /* Create a new value for the bitfield, with bitpos and bitsize
+      /* Handle packed fields.
+
+        Create a new value for the bitfield, with bitpos and bitsize
         set.  If possible, arrange offset and bitpos so that we can
         do a single aligned read of the size of the containing type.
         Otherwise, adjust offset to the byte containing the first
         bit.  Assume that the address, offset, and embedded offset
         are sufficiently aligned.  */
-      int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
-      int container_bitsize = TYPE_LENGTH (type) * 8;
+
+      LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
+      LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
 
       v = allocate_value_lazy (type);
       v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
@@ -2025,38 +2930,61 @@ value_primitive_field (struct value *arg1, int offset,
       v->offset = (value_embedded_offset (arg1)
                   + offset
                   + (bitpos - v->bitpos) / 8);
-      v->parent = arg1;
-      value_incref (v->parent);
+      set_value_parent (v, arg1);
       if (!value_lazy (arg1))
        value_fetch_lazy (v);
     }
   else if (fieldno < TYPE_N_BASECLASSES (arg_type))
     {
       /* This field is actually a base subobject, so preserve the
-         entire object's contents for later references to virtual
-         bases, etc.  */
+        entire object's contents for later references to virtual
+        bases, etc.  */
+      LONGEST boffset;
 
       /* Lazy register values with offsets are not supported.  */
       if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
        value_fetch_lazy (arg1);
 
+      /* We special case virtual inheritance here because this
+        requires access to the contents, which we would rather avoid
+        for references to ordinary fields of unavailable values.  */
+      if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
+       boffset = baseclass_offset (arg_type, fieldno,
+                                   value_contents (arg1),
+                                   value_embedded_offset (arg1),
+                                   value_address (arg1),
+                                   arg1);
+      else
+       boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
+
       if (value_lazy (arg1))
        v = allocate_value_lazy (value_enclosing_type (arg1));
       else
        {
          v = allocate_value (value_enclosing_type (arg1));
-         memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
-                 TYPE_LENGTH (value_enclosing_type (arg1)));
+         value_contents_copy_raw (v, 0, arg1, 0,
+                                  TYPE_LENGTH (value_enclosing_type (arg1)));
        }
       v->type = type;
       v->offset = value_offset (arg1);
-      v->embedded_offset = (offset + value_embedded_offset (arg1)
-                           + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
+      v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
+    }
+  else if (NULL != TYPE_DATA_LOCATION (type))
+    {
+      /* Field is a dynamic data member.  */
+
+      gdb_assert (0 == offset);
+      /* We expect an already resolved data location.  */
+      gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
+      /* For dynamic data types defer memory allocation
+         until we actual access the value.  */
+      v = allocate_value_lazy (type);
     }
   else
     {
       /* Plain old data member */
-      offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
+      offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
+                / (HOST_CHAR_BIT * unit_size));
 
       /* Lazy register values with offsets are not supported.  */
       if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
@@ -2067,22 +2995,20 @@ value_primitive_field (struct value *arg1, int offset,
       else
        {
          v = allocate_value (type);
-         memcpy (value_contents_raw (v),
-                 value_contents_raw (arg1) + offset,
-                 TYPE_LENGTH (type));
+         value_contents_copy_raw (v, value_embedded_offset (v),
+                                  arg1, value_embedded_offset (arg1) + offset,
+                                  type_length_units (type));
        }
       v->offset = (value_offset (arg1) + offset
                   + value_embedded_offset (arg1));
     }
   set_value_component_location (v, arg1);
-  VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
-  VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
   return v;
 }
 
 /* Given a value ARG1 of a struct or union type,
    extract and return the value of one of its (non-static) fields.
-   FIELDNO says which field. */
+   FIELDNO says which field.  */
 
 struct value *
 value_field (struct value *arg1, int fieldno)
@@ -2095,47 +3021,48 @@ value_field (struct value *arg1, int fieldno)
    J is an index into F which provides the desired method.
 
    We only use the symbol for its address, so be happy with either a
-   full symbol or a minimal symbol.
- */
+   full symbol or a minimal symbol.  */
 
 struct value *
-value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
-               int offset)
+value_fn_field (struct value **arg1p, struct fn_field *f,
+               int j, struct type *type,
+               LONGEST offset)
 {
   struct value *v;
   struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
-  char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
+  const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
   struct symbol *sym;
-  struct minimal_symbol *msym;
+  struct bound_minimal_symbol msym;
 
-  sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
+  sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
   if (sym != NULL)
     {
-      msym = NULL;
+      memset (&msym, 0, sizeof (msym));
     }
   else
     {
       gdb_assert (sym == NULL);
-      msym = lookup_minimal_symbol (physname, NULL, NULL);
-      if (msym == NULL)
+      msym = lookup_bound_minimal_symbol (physname);
+      if (msym.minsym == NULL)
        return NULL;
     }
 
   v = allocate_value (ftype);
+  VALUE_LVAL (v) = lval_memory;
   if (sym)
     {
-      set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
+      set_value_address (v, BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)));
     }
   else
     {
       /* The minimal symbol might point to a function descriptor;
         resolve it to the actual code address instead.  */
-      struct objfile *objfile = msymbol_objfile (msym);
+      struct objfile *objfile = msym.objfile;
       struct gdbarch *gdbarch = get_objfile_arch (objfile);
 
       set_value_address (v,
        gdbarch_convert_from_func_ptr_addr
-          (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
+          (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), current_top_target ()));
     }
 
   if (arg1p)
@@ -2145,17 +3072,18 @@ value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *ty
                                        value_addr (*arg1p)));
 
       /* Move the `this' pointer according to the offset.
-         VALUE_OFFSET (*arg1p) += offset;
-       */
+         VALUE_OFFSET (*arg1p) += offset; */
     }
 
   return v;
 }
 
 \f
-/* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
-   object at VALADDR.  The bitfield starts at BITPOS bits and contains
-   BITSIZE bits.
+
+/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
+   VALADDR, and store the result in *RESULT.
+   The bitfield starts at BITPOS bits and contains BITSIZE bits; if
+   BITSIZE is zero, then the length is taken from FIELD_TYPE.
 
    Extracting bits depends on endianness of the machine.  Compute the
    number of least significant bits to discard.  For big endian machines,
@@ -2166,30 +3094,36 @@ value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *ty
    number of bits from the LSB of the anonymous object to the LSB of the
    bitfield.
 
-   If the field is signed, we also do sign extension. */
+   If the field is signed, we also do sign extension.  */
 
-LONGEST
+static LONGEST
 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
-                    int bitpos, int bitsize)
+                    LONGEST bitpos, LONGEST bitsize)
 {
   enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
   ULONGEST val;
   ULONGEST valmask;
   int lsbcount;
-  int bytes_read;
+  LONGEST bytes_read;
+  LONGEST read_offset;
 
   /* Read the minimum number of bytes required; there may not be
      enough bytes to read an entire ULONGEST.  */
-  CHECK_TYPEDEF (field_type);
+  field_type = check_typedef (field_type);
   if (bitsize)
     bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
   else
-    bytes_read = TYPE_LENGTH (field_type);
+    {
+      bytes_read = TYPE_LENGTH (field_type);
+      bitsize = 8 * bytes_read;
+    }
+
+  read_offset = bitpos / 8;
 
-  val = extract_unsigned_integer (valaddr + bitpos / 8,
+  val = extract_unsigned_integer (valaddr + read_offset,
                                  bytes_read, byte_order);
 
-  /* Extract bits.  See comment above. */
+  /* Extract bits.  See comment above.  */
 
   if (gdbarch_bits_big_endian (get_type_arch (field_type)))
     lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
@@ -2198,9 +3132,9 @@ unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
   val >>= lsbcount;
 
   /* If the field does not entirely fill a LONGEST, then zero the sign bits.
-     If the field is signed, and is negative, then sign extend. */
+     If the field is signed, and is negative, then sign extend.  */
 
-  if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
+  if (bitsize < 8 * (int) sizeof (val))
     {
       valmask = (((ULONGEST) 1) << bitsize) - 1;
       val &= valmask;
@@ -2212,11 +3146,39 @@ unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
            }
        }
     }
-  return (val);
+
+  return val;
 }
 
-/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
-   VALADDR.  See unpack_bits_as_long for more details.  */
+/* Unpack a field FIELDNO of the specified TYPE, from the object at
+   VALADDR + EMBEDDED_OFFSET.  VALADDR points to the contents of
+   ORIGINAL_VALUE, which must not be NULL.  See
+   unpack_value_bits_as_long for more details.  */
+
+int
+unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
+                           LONGEST embedded_offset, int fieldno,
+                           const struct value *val, LONGEST *result)
+{
+  int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
+  int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
+  struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
+  int bit_offset;
+
+  gdb_assert (val != NULL);
+
+  bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
+  if (value_bits_any_optimized_out (val, bit_offset, bitsize)
+      || !value_bits_available (val, bit_offset, bitsize))
+    return 0;
+
+  *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
+                                bitpos, bitsize);
+  return 1;
+}
+
+/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
+   object at VALADDR.  See unpack_bits_as_long for more details.  */
 
 LONGEST
 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
@@ -2228,21 +3190,89 @@ unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
   return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
 }
 
+/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
+   VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
+   the contents in DEST_VAL, zero or sign extending if the type of
+   DEST_VAL is wider than BITSIZE.  VALADDR points to the contents of
+   VAL.  If the VAL's contents required to extract the bitfield from
+   are unavailable/optimized out, DEST_VAL is correspondingly
+   marked unavailable/optimized out.  */
+
+void
+unpack_value_bitfield (struct value *dest_val,
+                      LONGEST bitpos, LONGEST bitsize,
+                      const gdb_byte *valaddr, LONGEST embedded_offset,
+                      const struct value *val)
+{
+  enum bfd_endian byte_order;
+  int src_bit_offset;
+  int dst_bit_offset;
+  struct type *field_type = value_type (dest_val);
+
+  byte_order = gdbarch_byte_order (get_type_arch (field_type));
+
+  /* First, unpack and sign extend the bitfield as if it was wholly
+     valid.  Optimized out/unavailable bits are read as zero, but
+     that's OK, as they'll end up marked below.  If the VAL is
+     wholly-invalid we may have skipped allocating its contents,
+     though.  See allocate_optimized_out_value.  */
+  if (valaddr != NULL)
+    {
+      LONGEST num;
+
+      num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
+                                bitpos, bitsize);
+      store_signed_integer (value_contents_raw (dest_val),
+                           TYPE_LENGTH (field_type), byte_order, num);
+    }
+
+  /* Now copy the optimized out / unavailability ranges to the right
+     bits.  */
+  src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
+  if (byte_order == BFD_ENDIAN_BIG)
+    dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
+  else
+    dst_bit_offset = 0;
+  value_ranges_copy_adjusted (dest_val, dst_bit_offset,
+                             val, src_bit_offset, bitsize);
+}
+
+/* Return a new value with type TYPE, which is FIELDNO field of the
+   object at VALADDR + EMBEDDEDOFFSET.  VALADDR points to the contents
+   of VAL.  If the VAL's contents required to extract the bitfield
+   from are unavailable/optimized out, the new value is
+   correspondingly marked unavailable/optimized out.  */
+
+struct value *
+value_field_bitfield (struct type *type, int fieldno,
+                     const gdb_byte *valaddr,
+                     LONGEST embedded_offset, const struct value *val)
+{
+  int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
+  int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
+  struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
+
+  unpack_value_bitfield (res_val, bitpos, bitsize,
+                        valaddr, embedded_offset, val);
+
+  return res_val;
+}
+
 /* Modify the value of a bitfield.  ADDR points to a block of memory in
    target byte order; the bitfield starts in the byte pointed to.  FIELDVAL
    is the desired value of the field, in host byte order.  BITPOS and BITSIZE
-   indicate which bits (in target bit order) comprise the bitfield.  
+   indicate which bits (in target bit order) comprise the bitfield.
    Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
    0 <= BITPOS, where lbits is the size of a LONGEST in bits.  */
 
 void
 modify_field (struct type *type, gdb_byte *addr,
-             LONGEST fieldval, int bitpos, int bitsize)
+             LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
 {
   enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
   ULONGEST oword;
   ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
-  int bytesize;
+  LONGEST bytesize;
 
   /* Normalize BITPOS.  */
   addr += bitpos / 8;
@@ -2258,7 +3288,7 @@ modify_field (struct type *type, gdb_byte *addr,
     {
       /* FIXME: would like to include fieldval in the message, but
          we don't have a sprintf_longest.  */
-      warning (_("Value does not fit in %d bits."), bitsize);
+      warning (_("Value does not fit in %s bits."), plongest (bitsize));
 
       /* Truncate it, otherwise adjoining fields may be corrupted.  */
       fieldval &= mask;
@@ -2286,28 +3316,36 @@ void
 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
 {
   enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
-  int len;
+  LONGEST len;
 
   type = check_typedef (type);
   len = TYPE_LENGTH (type);
 
   switch (TYPE_CODE (type))
     {
+    case TYPE_CODE_RANGE:
+      num -= TYPE_RANGE_DATA (type)->bias;
+      /* Fall through.  */
     case TYPE_CODE_INT:
     case TYPE_CODE_CHAR:
     case TYPE_CODE_ENUM:
     case TYPE_CODE_FLAGS:
     case TYPE_CODE_BOOL:
-    case TYPE_CODE_RANGE:
     case TYPE_CODE_MEMBERPTR:
       store_signed_integer (buf, len, byte_order, num);
       break;
 
     case TYPE_CODE_REF:
+    case TYPE_CODE_RVALUE_REF:
     case TYPE_CODE_PTR:
       store_typed_address (buf, type, (CORE_ADDR) num);
       break;
 
+    case TYPE_CODE_FLT:
+    case TYPE_CODE_DECFLOAT:
+      target_float_from_longest (buf, type, num);
+      break;
+
     default:
       error (_("Unexpected type (%d) encountered for integer constant."),
             TYPE_CODE (type));
@@ -2317,10 +3355,10 @@ pack_long (gdb_byte *buf, struct type *type, LONGEST num)
 
 /* Pack NUM into BUF using a target format of TYPE.  */
 
-void
+static void
 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
 {
-  int len;
+  LONGEST len;
   enum bfd_endian byte_order;
 
   type = check_typedef (type);
@@ -2340,13 +3378,19 @@ pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
       break;
 
     case TYPE_CODE_REF:
+    case TYPE_CODE_RVALUE_REF:
     case TYPE_CODE_PTR:
       store_typed_address (buf, type, (CORE_ADDR) num);
       break;
 
+    case TYPE_CODE_FLT:
+    case TYPE_CODE_DECFLOAT:
+      target_float_from_ulongest (buf, type, num);
+      break;
+
     default:
-      error (_("\
-Unexpected type (%d) encountered for unsigned integer constant."),
+      error (_("Unexpected type (%d) encountered "
+              "for unsigned integer constant."),
             TYPE_CODE (type));
     }
 }
@@ -2379,72 +3423,238 @@ value_from_ulongest (struct type *type, ULONGEST num)
 
 /* Create a value representing a pointer of type TYPE to the address
    ADDR.  */
+
 struct value *
 value_from_pointer (struct type *type, CORE_ADDR addr)
 {
   struct value *val = allocate_value (type);
 
-  store_typed_address (value_contents_raw (val), check_typedef (type), addr);
+  store_typed_address (value_contents_raw (val),
+                      check_typedef (type), addr);
   return val;
 }
 
+/* Create and return a value object of TYPE containing the value D.  The
+   TYPE must be of TYPE_CODE_FLT, and must be large enough to hold D once
+   it is converted to target format.  */
+
+struct value *
+value_from_host_double (struct type *type, double d)
+{
+  struct value *value = allocate_value (type);
+  gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
+  target_float_from_host_double (value_contents_raw (value),
+                                value_type (value), d);
+  return value;
+}
+
+/* Create a value of type TYPE whose contents come from VALADDR, if it
+   is non-null, and whose memory address (in the inferior) is
+   ADDRESS.  The type of the created value may differ from the passed
+   type TYPE.  Make sure to retrieve values new type after this call.
+   Note that TYPE is not passed through resolve_dynamic_type; this is
+   a special API intended for use only by Ada.  */
+
+struct value *
+value_from_contents_and_address_unresolved (struct type *type,
+                                           const gdb_byte *valaddr,
+                                           CORE_ADDR address)
+{
+  struct value *v;
+
+  if (valaddr == NULL)
+    v = allocate_value_lazy (type);
+  else
+    v = value_from_contents (type, valaddr);
+  VALUE_LVAL (v) = lval_memory;
+  set_value_address (v, address);
+  return v;
+}
 
 /* Create a value of type TYPE whose contents come from VALADDR, if it
    is non-null, and whose memory address (in the inferior) is
-   ADDRESS.  */
+   ADDRESS.  The type of the created value may differ from the passed
+   type TYPE.  Make sure to retrieve values new type after this call.  */
 
 struct value *
 value_from_contents_and_address (struct type *type,
                                 const gdb_byte *valaddr,
                                 CORE_ADDR address)
 {
-  struct value *v = allocate_value (type);
+  struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
+  struct type *resolved_type_no_typedef = check_typedef (resolved_type);
+  struct value *v;
 
   if (valaddr == NULL)
-    set_value_lazy (v, 1);
+    v = allocate_value_lazy (resolved_type);
   else
-    memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
-  set_value_address (v, address);
+    v = value_from_contents (resolved_type, valaddr);
+  if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
+      && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
+    address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
   VALUE_LVAL (v) = lval_memory;
+  set_value_address (v, address);
   return v;
 }
 
+/* Create a value of type TYPE holding the contents CONTENTS.
+   The new value is `not_lval'.  */
+
 struct value *
-value_from_double (struct type *type, DOUBLEST num)
+value_from_contents (struct type *type, const gdb_byte *contents)
 {
-  struct value *val = allocate_value (type);
-  struct type *base_type = check_typedef (type);
-  enum type_code code = TYPE_CODE (base_type);
+  struct value *result;
+
+  result = allocate_value (type);
+  memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
+  return result;
+}
+
+/* Extract a value from the history file.  Input will be of the form
+   $digits or $$digits.  See block comment above 'write_dollar_variable'
+   for details.  */
+
+struct value *
+value_from_history_ref (const char *h, const char **endp)
+{
+  int index, len;
+
+  if (h[0] == '$')
+    len = 1;
+  else
+    return NULL;
+
+  if (h[1] == '$')
+    len = 2;
 
-  if (code == TYPE_CODE_FLT)
+  /* Find length of numeral string.  */
+  for (; isdigit (h[len]); len++)
+    ;
+
+  /* Make sure numeral string is not part of an identifier.  */
+  if (h[len] == '_' || isalpha (h[len]))
+    return NULL;
+
+  /* Now collect the index value.  */
+  if (h[1] == '$')
     {
-      store_typed_floating (value_contents_raw (val), base_type, num);
+      if (len == 2)
+       {
+         /* For some bizarre reason, "$$" is equivalent to "$$1", 
+            rather than to "$$0" as it ought to be!  */
+         index = -1;
+         *endp += len;
+       }
+      else
+       {
+         char *local_end;
+
+         index = -strtol (&h[2], &local_end, 10);
+         *endp = local_end;
+       }
     }
   else
-    error (_("Unexpected type encountered for floating constant."));
+    {
+      if (len == 1)
+       {
+         /* "$" is equivalent to "$0".  */
+         index = 0;
+         *endp += len;
+       }
+      else
+       {
+         char *local_end;
 
-  return val;
+         index = strtol (&h[1], &local_end, 10);
+         *endp = local_end;
+       }
+    }
+
+  return access_value_history (index);
 }
 
+/* Get the component value (offset by OFFSET bytes) of a struct or
+   union WHOLE.  Component's type is TYPE.  */
+
 struct value *
-value_from_decfloat (struct type *type, const gdb_byte *dec)
+value_from_component (struct value *whole, struct type *type, LONGEST offset)
 {
-  struct value *val = allocate_value (type);
+  struct value *v;
 
-  memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
-  return val;
+  if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
+    v = allocate_value_lazy (type);
+  else
+    {
+      v = allocate_value (type);
+      value_contents_copy (v, value_embedded_offset (v),
+                          whole, value_embedded_offset (whole) + offset,
+                          type_length_units (type));
+    }
+  v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
+  set_value_component_location (v, whole);
+
+  return v;
+}
+
+struct value *
+coerce_ref_if_computed (const struct value *arg)
+{
+  const struct lval_funcs *funcs;
+
+  if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
+    return NULL;
+
+  if (value_lval_const (arg) != lval_computed)
+    return NULL;
+
+  funcs = value_computed_funcs (arg);
+  if (funcs->coerce_ref == NULL)
+    return NULL;
+
+  return funcs->coerce_ref (arg);
+}
+
+/* Look at value.h for description.  */
+
+struct value *
+readjust_indirect_value_type (struct value *value, struct type *enc_type,
+                             const struct type *original_type,
+                             const struct value *original_value)
+{
+  /* Re-adjust type.  */
+  deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
+
+  /* Add embedding info.  */
+  set_value_enclosing_type (value, enc_type);
+  set_value_embedded_offset (value, value_pointed_to_offset (original_value));
+
+  /* We may be pointing to an object of some derived type.  */
+  return value_full_object (value, NULL, 0, 0, 0);
 }
 
 struct value *
 coerce_ref (struct value *arg)
 {
   struct type *value_type_arg_tmp = check_typedef (value_type (arg));
+  struct value *retval;
+  struct type *enc_type;
 
-  if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
-    arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
-                        unpack_pointer (value_type (arg),              
-                                        value_contents (arg)));
-  return arg;
+  retval = coerce_ref_if_computed (arg);
+  if (retval)
+    return retval;
+
+  if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
+    return arg;
+
+  enc_type = check_typedef (value_enclosing_type (arg));
+  enc_type = TYPE_TARGET_TYPE (enc_type);
+
+  retval = value_at_lazy (enc_type,
+                          unpack_pointer (value_type (arg),
+                                          value_contents (arg)));
+  enc_type = value_type (retval);
+  return readjust_indirect_value_type (retval, enc_type,
+                                       value_type_arg_tmp, arg);
 }
 
 struct value *
@@ -2469,27 +3679,37 @@ coerce_array (struct value *arg)
 }
 \f
 
-/* Return true if the function returning the specified type is using
-   the convention of returning structures in memory (passing in the
-   address as a hidden first parameter).  */
+/* Return the return value convention that will be used for the
+   specified type.  */
 
-int
-using_struct_return (struct gdbarch *gdbarch,
-                    struct type *func_type, struct type *value_type)
+enum return_value_convention
+struct_return_convention (struct gdbarch *gdbarch,
+                         struct value *function, struct type *value_type)
 {
   enum type_code code = TYPE_CODE (value_type);
 
   if (code == TYPE_CODE_ERROR)
     error (_("Function return type unknown."));
 
-  if (code == TYPE_CODE_VOID)
+  /* Probe the architecture for the return-value convention.  */
+  return gdbarch_return_value (gdbarch, function, value_type,
+                              NULL, NULL, NULL);
+}
+
+/* Return true if the function returning the specified type is using
+   the convention of returning structures in memory (passing in the
+   address as a hidden first parameter).  */
+
+int
+using_struct_return (struct gdbarch *gdbarch,
+                    struct value *function, struct type *value_type)
+{
+  if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
     /* A void return value is never in memory.  See also corresponding
        code in "print_return_value".  */
     return 0;
 
-  /* Probe the architecture for the return-value convention.  */
-  return (gdbarch_return_value (gdbarch, func_type, value_type,
-                               NULL, NULL, NULL)
+  return (struct_return_convention (gdbarch, function, value_type)
          != RETURN_VALUE_REGISTER_CONVENTION);
 }
 
@@ -2504,26 +3724,419 @@ set_value_initialized (struct value *val, int status)
 /* Return the initialized field in a value struct.  */
 
 int
-value_initialized (struct value *val)
+value_initialized (const struct value *val)
 {
   return val->initialized;
 }
 
+/* Helper for value_fetch_lazy when the value is a bitfield.  */
+
+static void
+value_fetch_lazy_bitfield (struct value *val)
+{
+  gdb_assert (value_bitsize (val) != 0);
+
+  /* To read a lazy bitfield, read the entire enclosing value.  This
+     prevents reading the same block of (possibly volatile) memory once
+     per bitfield.  It would be even better to read only the containing
+     word, but we have no way to record that just specific bits of a
+     value have been fetched.  */
+  struct value *parent = value_parent (val);
+
+  if (value_lazy (parent))
+    value_fetch_lazy (parent);
+
+  unpack_value_bitfield (val, value_bitpos (val), value_bitsize (val),
+                        value_contents_for_printing (parent),
+                        value_offset (val), parent);
+}
+
+/* Helper for value_fetch_lazy when the value is in memory.  */
+
+static void
+value_fetch_lazy_memory (struct value *val)
+{
+  gdb_assert (VALUE_LVAL (val) == lval_memory);
+
+  CORE_ADDR addr = value_address (val);
+  struct type *type = check_typedef (value_enclosing_type (val));
+
+  if (TYPE_LENGTH (type))
+      read_value_memory (val, 0, value_stack (val),
+                        addr, value_contents_all_raw (val),
+                        type_length_units (type));
+}
+
+/* Helper for value_fetch_lazy when the value is in a register.  */
+
+static void
+value_fetch_lazy_register (struct value *val)
+{
+  struct frame_info *next_frame;
+  int regnum;
+  struct type *type = check_typedef (value_type (val));
+  struct value *new_val = val, *mark = value_mark ();
+
+  /* Offsets are not supported here; lazy register values must
+     refer to the entire register.  */
+  gdb_assert (value_offset (val) == 0);
+
+  while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
+    {
+      struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
+
+      next_frame = frame_find_by_id (next_frame_id);
+      regnum = VALUE_REGNUM (new_val);
+
+      gdb_assert (next_frame != NULL);
+
+      /* Convertible register routines are used for multi-register
+        values and for interpretation in different types
+        (e.g. float or int from a double register).  Lazy
+        register values should have the register's natural type,
+        so they do not apply.  */
+      gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
+                                              regnum, type));
+
+      /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
+        Since a "->next" operation was performed when setting
+        this field, we do not need to perform a "next" operation
+        again when unwinding the register.  That's why
+        frame_unwind_register_value() is called here instead of
+        get_frame_register_value().  */
+      new_val = frame_unwind_register_value (next_frame, regnum);
+
+      /* If we get another lazy lval_register value, it means the
+        register is found by reading it from NEXT_FRAME's next frame.
+        frame_unwind_register_value should never return a value with
+        the frame id pointing to NEXT_FRAME.  If it does, it means we
+        either have two consecutive frames with the same frame id
+        in the frame chain, or some code is trying to unwind
+        behind get_prev_frame's back (e.g., a frame unwind
+        sniffer trying to unwind), bypassing its validations.  In
+        any case, it should always be an internal error to end up
+        in this situation.  */
+      if (VALUE_LVAL (new_val) == lval_register
+         && value_lazy (new_val)
+         && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
+       internal_error (__FILE__, __LINE__,
+                       _("infinite loop while fetching a register"));
+    }
+
+  /* If it's still lazy (for instance, a saved register on the
+     stack), fetch it.  */
+  if (value_lazy (new_val))
+    value_fetch_lazy (new_val);
+
+  /* Copy the contents and the unavailability/optimized-out
+     meta-data from NEW_VAL to VAL.  */
+  set_value_lazy (val, 0);
+  value_contents_copy (val, value_embedded_offset (val),
+                      new_val, value_embedded_offset (new_val),
+                      type_length_units (type));
+
+  if (frame_debug)
+    {
+      struct gdbarch *gdbarch;
+      struct frame_info *frame;
+      /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
+        so that the frame level will be shown correctly.  */
+      frame = frame_find_by_id (VALUE_FRAME_ID (val));
+      regnum = VALUE_REGNUM (val);
+      gdbarch = get_frame_arch (frame);
+
+      fprintf_unfiltered (gdb_stdlog,
+                         "{ value_fetch_lazy "
+                         "(frame=%d,regnum=%d(%s),...) ",
+                         frame_relative_level (frame), regnum,
+                         user_reg_map_regnum_to_name (gdbarch, regnum));
+
+      fprintf_unfiltered (gdb_stdlog, "->");
+      if (value_optimized_out (new_val))
+       {
+         fprintf_unfiltered (gdb_stdlog, " ");
+         val_print_optimized_out (new_val, gdb_stdlog);
+       }
+      else
+       {
+         int i;
+         const gdb_byte *buf = value_contents (new_val);
+
+         if (VALUE_LVAL (new_val) == lval_register)
+           fprintf_unfiltered (gdb_stdlog, " register=%d",
+                               VALUE_REGNUM (new_val));
+         else if (VALUE_LVAL (new_val) == lval_memory)
+           fprintf_unfiltered (gdb_stdlog, " address=%s",
+                               paddress (gdbarch,
+                                         value_address (new_val)));
+         else
+           fprintf_unfiltered (gdb_stdlog, " computed");
+
+         fprintf_unfiltered (gdb_stdlog, " bytes=");
+         fprintf_unfiltered (gdb_stdlog, "[");
+         for (i = 0; i < register_size (gdbarch, regnum); i++)
+           fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
+         fprintf_unfiltered (gdb_stdlog, "]");
+       }
+
+      fprintf_unfiltered (gdb_stdlog, " }\n");
+    }
+
+  /* Dispose of the intermediate values.  This prevents
+     watchpoints from trying to watch the saved frame pointer.  */
+  value_free_to_mark (mark);
+}
+
+/* Load the actual content of a lazy value.  Fetch the data from the
+   user's process and clear the lazy flag to indicate that the data in
+   the buffer is valid.
+
+   If the value is zero-length, we avoid calling read_memory, which
+   would abort.  We mark the value as fetched anyway -- all 0 bytes of
+   it.  */
+
+void
+value_fetch_lazy (struct value *val)
+{
+  gdb_assert (value_lazy (val));
+  allocate_value_contents (val);
+  /* A value is either lazy, or fully fetched.  The
+     availability/validity is only established as we try to fetch a
+     value.  */
+  gdb_assert (val->optimized_out.empty ());
+  gdb_assert (val->unavailable.empty ());
+  if (value_bitsize (val))
+    value_fetch_lazy_bitfield (val);
+  else if (VALUE_LVAL (val) == lval_memory)
+    value_fetch_lazy_memory (val);
+  else if (VALUE_LVAL (val) == lval_register)
+    value_fetch_lazy_register (val);
+  else if (VALUE_LVAL (val) == lval_computed
+          && value_computed_funcs (val)->read != NULL)
+    value_computed_funcs (val)->read (val);
+  else
+    internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
+
+  set_value_lazy (val, 0);
+}
+
+/* Implementation of the convenience function $_isvoid.  */
+
+static struct value *
+isvoid_internal_fn (struct gdbarch *gdbarch,
+                   const struct language_defn *language,
+                   void *cookie, int argc, struct value **argv)
+{
+  int ret;
+
+  if (argc != 1)
+    error (_("You must provide one argument for $_isvoid."));
+
+  ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
+
+  return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
+}
+
+/* Implementation of the convenience function $_cimag.  Extracts the
+   real part from a complex number.  */
+
+static struct value *
+creal_internal_fn (struct gdbarch *gdbarch,
+                  const struct language_defn *language,
+                  void *cookie, int argc, struct value **argv)
+{
+  if (argc != 1)
+    error (_("You must provide one argument for $_creal."));
+
+  value *cval = argv[0];
+  type *ctype = check_typedef (value_type (cval));
+  if (TYPE_CODE (ctype) != TYPE_CODE_COMPLEX)
+    error (_("expected a complex number"));
+  return value_from_component (cval, TYPE_TARGET_TYPE (ctype), 0);
+}
+
+/* Implementation of the convenience function $_cimag.  Extracts the
+   imaginary part from a complex number.  */
+
+static struct value *
+cimag_internal_fn (struct gdbarch *gdbarch,
+                  const struct language_defn *language,
+                  void *cookie, int argc,
+                  struct value **argv)
+{
+  if (argc != 1)
+    error (_("You must provide one argument for $_cimag."));
+
+  value *cval = argv[0];
+  type *ctype = check_typedef (value_type (cval));
+  if (TYPE_CODE (ctype) != TYPE_CODE_COMPLEX)
+    error (_("expected a complex number"));
+  return value_from_component (cval, TYPE_TARGET_TYPE (ctype),
+                              TYPE_LENGTH (TYPE_TARGET_TYPE (ctype)));
+}
+
+#if GDB_SELF_TEST
+namespace selftests
+{
+
+/* Test the ranges_contain function.  */
+
+static void
+test_ranges_contain ()
+{
+  std::vector<range> ranges;
+  range r;
+
+  /* [10, 14] */
+  r.offset = 10;
+  r.length = 5;
+  ranges.push_back (r);
+
+  /* [20, 24] */
+  r.offset = 20;
+  r.length = 5;
+  ranges.push_back (r);
+
+  /* [2, 6] */
+  SELF_CHECK (!ranges_contain (ranges, 2, 5));
+  /* [9, 13] */
+  SELF_CHECK (ranges_contain (ranges, 9, 5));
+  /* [10, 11] */
+  SELF_CHECK (ranges_contain (ranges, 10, 2));
+  /* [10, 14] */
+  SELF_CHECK (ranges_contain (ranges, 10, 5));
+  /* [13, 18] */
+  SELF_CHECK (ranges_contain (ranges, 13, 6));
+  /* [14, 18] */
+  SELF_CHECK (ranges_contain (ranges, 14, 5));
+  /* [15, 18] */
+  SELF_CHECK (!ranges_contain (ranges, 15, 4));
+  /* [16, 19] */
+  SELF_CHECK (!ranges_contain (ranges, 16, 4));
+  /* [16, 21] */
+  SELF_CHECK (ranges_contain (ranges, 16, 6));
+  /* [21, 21] */
+  SELF_CHECK (ranges_contain (ranges, 21, 1));
+  /* [21, 25] */
+  SELF_CHECK (ranges_contain (ranges, 21, 5));
+  /* [26, 28] */
+  SELF_CHECK (!ranges_contain (ranges, 26, 3));
+}
+
+/* Check that RANGES contains the same ranges as EXPECTED.  */
+
+static bool
+check_ranges_vector (gdb::array_view<const range> ranges,
+                    gdb::array_view<const range> expected)
+{
+  return ranges == expected;
+}
+
+/* Test the insert_into_bit_range_vector function.  */
+
+static void
+test_insert_into_bit_range_vector ()
+{
+  std::vector<range> ranges;
+
+  /* [10, 14] */
+  {
+    insert_into_bit_range_vector (&ranges, 10, 5);
+    static const range expected[] = {
+      {10, 5}
+    };
+    SELF_CHECK (check_ranges_vector (ranges, expected));
+  }
+
+  /* [10, 14] */
+  {
+    insert_into_bit_range_vector (&ranges, 11, 4);
+    static const range expected = {10, 5};
+    SELF_CHECK (check_ranges_vector (ranges, expected));
+  }
+
+  /* [10, 14] [20, 24] */
+  {
+    insert_into_bit_range_vector (&ranges, 20, 5);
+    static const range expected[] = {
+      {10, 5},
+      {20, 5},
+    };
+    SELF_CHECK (check_ranges_vector (ranges, expected));
+  }
+
+  /* [10, 14] [17, 24] */
+  {
+    insert_into_bit_range_vector (&ranges, 17, 5);
+    static const range expected[] = {
+      {10, 5},
+      {17, 8},
+    };
+    SELF_CHECK (check_ranges_vector (ranges, expected));
+  }
+
+  /* [2, 8] [10, 14] [17, 24] */
+  {
+    insert_into_bit_range_vector (&ranges, 2, 7);
+    static const range expected[] = {
+      {2, 7},
+      {10, 5},
+      {17, 8},
+    };
+    SELF_CHECK (check_ranges_vector (ranges, expected));
+  }
+
+  /* [2, 14] [17, 24] */
+  {
+    insert_into_bit_range_vector (&ranges, 9, 1);
+    static const range expected[] = {
+      {2, 13},
+      {17, 8},
+    };
+    SELF_CHECK (check_ranges_vector (ranges, expected));
+  }
+
+  /* [2, 14] [17, 24] */
+  {
+    insert_into_bit_range_vector (&ranges, 9, 1);
+    static const range expected[] = {
+      {2, 13},
+      {17, 8},
+    };
+    SELF_CHECK (check_ranges_vector (ranges, expected));
+  }
+
+  /* [2, 33] */
+  {
+    insert_into_bit_range_vector (&ranges, 4, 30);
+    static const range expected = {2, 32};
+    SELF_CHECK (check_ranges_vector (ranges, expected));
+  }
+}
+
+} /* namespace selftests */
+#endif /* GDB_SELF_TEST */
+
 void
 _initialize_values (void)
 {
   add_cmd ("convenience", no_class, show_convenience, _("\
-Debugger convenience (\"$foo\") variables.\n\
-These variables are created when you assign them values;\n\
-thus, \"print $foo=1\" gives \"$foo\" the value 1.  Values may be any type.\n\
+Debugger convenience (\"$foo\") variables and functions.\n\
+Convenience variables are created when you assign them values;\n\
+thus, \"set $foo=1\" gives \"$foo\" the value 1.  Values may be any type.\n\
 \n\
 A few convenience variables are given values automatically:\n\
 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
-\"$__\" holds the contents of the last address examined with \"x\"."),
-          &showlist);
+\"$__\" holds the contents of the last address examined with \"x\"."
+#ifdef HAVE_PYTHON
+"\n\n\
+Convenience functions are defined via the Python API."
+#endif
+          ), &showlist);
+  add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
 
-  add_cmd ("values", no_class, show_values,
-          _("Elements of value history around item number IDX (or last ten)."),
+  add_cmd ("values", no_set_class, show_values, _("\
+Elements of value history around item number IDX (or last ten)."),
           &showlist);
 
   add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
@@ -2536,4 +4149,50 @@ VARIABLE is already initialized."));
   add_prefix_cmd ("function", no_class, function_command, _("\
 Placeholder command for showing help on convenience functions."),
                  &functionlist, "function ", 0, &cmdlist);
+
+  add_internal_function ("_isvoid", _("\
+Check whether an expression is void.\n\
+Usage: $_isvoid (expression)\n\
+Return 1 if the expression is void, zero otherwise."),
+                        isvoid_internal_fn, NULL);
+
+  add_internal_function ("_creal", _("\
+Extract the real part of a complex number.\n\
+Usage: $_creal (expression)\n\
+Return the real part of a complex number, the type depends on the\n\
+type of a complex number."),
+                        creal_internal_fn, NULL);
+
+  add_internal_function ("_cimag", _("\
+Extract the imaginary part of a complex number.\n\
+Usage: $_cimag (expression)\n\
+Return the imaginary part of a complex number, the type depends on the\n\
+type of a complex number."),
+                        cimag_internal_fn, NULL);
+
+  add_setshow_zuinteger_unlimited_cmd ("max-value-size",
+                                      class_support, &max_value_size, _("\
+Set maximum sized value gdb will load from the inferior."), _("\
+Show maximum sized value gdb will load from the inferior."), _("\
+Use this to control the maximum size, in bytes, of a value that gdb\n\
+will load from the inferior.  Setting this value to 'unlimited'\n\
+disables checking.\n\
+Setting this does not invalidate already allocated values, it only\n\
+prevents future values, larger than this size, from being allocated."),
+                           set_max_value_size,
+                           show_max_value_size,
+                           &setlist, &showlist);
+#if GDB_SELF_TEST
+  selftests::register_test ("ranges_contain", selftests::test_ranges_contain);
+  selftests::register_test ("insert_into_bit_range_vector",
+                           selftests::test_insert_into_bit_range_vector);
+#endif
+}
+
+/* See value.h.  */
+
+void
+finalize_values ()
+{
+  all_values.clear ();
 }
This page took 0.069269 seconds and 4 git commands to generate.