PR c++/15176:
[deliverable/binutils-gdb.git] / gdb / value.c
index f0c8463dc545933ca5ad7025e7dbb6b4096b5e82..90bc41535d897b3f0817c2a83980efc0b2d02e40 100644 (file)
@@ -1,8 +1,6 @@
 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
 
-   Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
-   1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
-   2009 Free Software Foundation, Inc.
+   Copyright (C) 1986-2013 Free Software Foundation, Inc.
 
    This file is part of GDB.
 
@@ -20,6 +18,7 @@
    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 #include "defs.h"
+#include "arch-utils.h"
 #include "gdb_string.h"
 #include "symtab.h"
 #include "gdbtypes.h"
 #include "dfp.h"
 #include "objfiles.h"
 #include "valprint.h"
-
+#include "cli/cli-decode.h"
+#include "exceptions.h"
 #include "python/python.h"
+#include <ctype.h>
+#include "tracepoint.h"
+#include "cp-abi.h"
 
-/* Prototypes for exported functions. */
+/* Prototypes for exported functions.  */
 
 void _initialize_values (void);
 
+/* Definition of a user function.  */
+struct internal_function
+{
+  /* The name of the function.  It is a bit odd to have this in the
+     function itself -- the user might use a differently-named
+     convenience variable to hold the function.  */
+  char *name;
+
+  /* The handler.  */
+  internal_function_fn handler;
+
+  /* User data for the handler.  */
+  void *cookie;
+};
+
+/* Defines an [OFFSET, OFFSET + LENGTH) range.  */
+
+struct range
+{
+  /* Lowest offset in the range.  */
+  int offset;
+
+  /* Length of the range.  */
+  int length;
+};
+
+typedef struct range range_s;
+
+DEF_VEC_O(range_s);
+
+/* Returns true if the ranges defined by [offset1, offset1+len1) and
+   [offset2, offset2+len2) overlap.  */
+
+static int
+ranges_overlap (int offset1, int len1,
+               int offset2, int len2)
+{
+  ULONGEST h, l;
+
+  l = max (offset1, offset2);
+  h = min (offset1 + len1, offset2 + len2);
+  return (l < h);
+}
+
+/* Returns true if the first argument is strictly less than the
+   second, useful for VEC_lower_bound.  We keep ranges sorted by
+   offset and coalesce overlapping and contiguous ranges, so this just
+   compares the starting offset.  */
+
+static int
+range_lessthan (const range_s *r1, const range_s *r2)
+{
+  return r1->offset < r2->offset;
+}
+
+/* Returns true if RANGES contains any range that overlaps [OFFSET,
+   OFFSET+LENGTH).  */
+
+static int
+ranges_contain (VEC(range_s) *ranges, int offset, int length)
+{
+  range_s what;
+  int i;
+
+  what.offset = offset;
+  what.length = length;
+
+  /* We keep ranges sorted by offset and coalesce overlapping and
+     contiguous ranges, so to check if a range list contains a given
+     range, we can do a binary search for the position the given range
+     would be inserted if we only considered the starting OFFSET of
+     ranges.  We call that position I.  Since we also have LENGTH to
+     care for (this is a range afterall), we need to check if the
+     _previous_ range overlaps the I range.  E.g.,
+
+         R
+         |---|
+       |---|    |---|  |------| ... |--|
+       0        1      2            N
+
+       I=1
+
+     In the case above, the binary search would return `I=1', meaning,
+     this OFFSET should be inserted at position 1, and the current
+     position 1 should be pushed further (and before 2).  But, `0'
+     overlaps with R.
+
+     Then we need to check if the I range overlaps the I range itself.
+     E.g.,
+
+              R
+              |---|
+       |---|    |---|  |-------| ... |--|
+       0        1      2             N
+
+       I=1
+  */
+
+  i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
+
+  if (i > 0)
+    {
+      struct range *bef = VEC_index (range_s, ranges, i - 1);
+
+      if (ranges_overlap (bef->offset, bef->length, offset, length))
+       return 1;
+    }
+
+  if (i < VEC_length (range_s, ranges))
+    {
+      struct range *r = VEC_index (range_s, ranges, i);
+
+      if (ranges_overlap (r->offset, r->length, offset, length))
+       return 1;
+    }
+
+  return 0;
+}
+
+static struct cmd_list_element *functionlist;
+
+/* Note that the fields in this structure are arranged to save a bit
+   of memory.  */
+
 struct value
 {
   /* Type of value; either not an lval, or one of the various
@@ -51,7 +178,37 @@ struct value
   enum lval_type lval;
 
   /* Is it modifiable?  Only relevant if lval != not_lval.  */
-  int modifiable;
+  unsigned int modifiable : 1;
+
+  /* If zero, contents of this value are in the contents field.  If
+     nonzero, contents are in inferior.  If the lval field is lval_memory,
+     the contents are in inferior memory at location.address plus offset.
+     The lval field may also be lval_register.
+
+     WARNING: This field is used by the code which handles watchpoints
+     (see breakpoint.c) to decide whether a particular value can be
+     watched by hardware watchpoints.  If the lazy flag is set for
+     some member of a value chain, it is assumed that this member of
+     the chain doesn't need to be watched as part of watching the
+     value itself.  This is how GDB avoids watching the entire struct
+     or array when the user wants to watch a single struct member or
+     array element.  If you ever change the way lazy flag is set and
+     reset, be sure to consider this use as well!  */
+  unsigned int lazy : 1;
+
+  /* If nonzero, this is the value of a variable which does not
+     actually exist in the program.  */
+  unsigned int optimized_out : 1;
+
+  /* If value is a variable, is it initialized or not.  */
+  unsigned int initialized : 1;
+
+  /* If value is from the stack.  If this is set, read_stack will be
+     used instead of read_memory to enable extra caching.  */
+  unsigned int stack : 1;
+
+  /* If the value has been released.  */
+  unsigned int released : 1;
 
   /* Location of value (if lval).  */
   union
@@ -63,6 +220,18 @@ struct value
 
     /* Pointer to internal variable.  */
     struct internalvar *internalvar;
+
+    /* If lval == lval_computed, this is a set of function pointers
+       to use to access and describe the value, and a closure pointer
+       for them to use.  */
+    struct
+    {
+      /* Functions to call.  */
+      const struct lval_funcs *funcs;
+
+      /* Closure for those functions to use.  */
+      void *closure;
+    } computed;
   } location;
 
   /* Describes offset of a value within lval of a structure in bytes.
@@ -77,9 +246,21 @@ struct value
 
   /* Only used for bitfields; position of start of field.  For
      gdbarch_bits_big_endian=0 targets, it is the position of the LSB.  For
-     gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
+     gdbarch_bits_big_endian=1 targets, it is the position of the MSB.  */
   int bitpos;
 
+  /* The number of references to this value.  When a value is created,
+     the value chain holds a reference, so REFERENCE_COUNT is 1.  If
+     release_value is called, this value is removed from the chain but
+     the caller of release_value now has a reference to this value.
+     The caller must arrange for a call to value_free later.  */
+  int reference_count;
+
+  /* Only used for bitfields; the containing value.  This allows a
+     single read from the target when displaying multiple
+     bitfields.  */
+  struct value *parent;
+
   /* Frame register value is relative to.  This will be described in
      the lval enum above as "lval_register".  */
   struct frame_id frame_id;
@@ -140,35 +321,295 @@ struct value
   /* Register number if the value is from a register.  */
   short regnum;
 
-  /* If zero, contents of this value are in the contents field.  If
-     nonzero, contents are in inferior.  If the lval field is lval_memory,
-     the contents are in inferior memory at location.address plus offset.
-     The lval field may also be lval_register.
-
-     WARNING: This field is used by the code which handles watchpoints
-     (see breakpoint.c) to decide whether a particular value can be
-     watched by hardware watchpoints.  If the lazy flag is set for
-     some member of a value chain, it is assumed that this member of
-     the chain doesn't need to be watched as part of watching the
-     value itself.  This is how GDB avoids watching the entire struct
-     or array when the user wants to watch a single struct member or
-     array element.  If you ever change the way lazy flag is set and
-     reset, be sure to consider this use as well!  */
-  char lazy;
-
-  /* If nonzero, this is the value of a variable which does not
-     actually exist in the program.  */
-  char optimized_out;
-
-  /* If value is a variable, is it initialized or not.  */
-  int initialized;
-
   /* Actual contents of the value.  Target byte-order.  NULL or not
      valid if lazy is nonzero.  */
   gdb_byte *contents;
+
+  /* Unavailable ranges in CONTENTS.  We mark unavailable ranges,
+     rather than available, since the common and default case is for a
+     value to be available.  This is filled in at value read time.  */
+  VEC(range_s) *unavailable;
 };
 
-/* Prototypes for local functions. */
+int
+value_bytes_available (const struct value *value, int offset, int length)
+{
+  gdb_assert (!value->lazy);
+
+  return !ranges_contain (value->unavailable, offset, length);
+}
+
+int
+value_entirely_available (struct value *value)
+{
+  /* We can only tell whether the whole value is available when we try
+     to read it.  */
+  if (value->lazy)
+    value_fetch_lazy (value);
+
+  if (VEC_empty (range_s, value->unavailable))
+    return 1;
+  return 0;
+}
+
+void
+mark_value_bytes_unavailable (struct value *value, int offset, int length)
+{
+  range_s newr;
+  int i;
+
+  /* Insert the range sorted.  If there's overlap or the new range
+     would be contiguous with an existing range, merge.  */
+
+  newr.offset = offset;
+  newr.length = length;
+
+  /* Do a binary search for the position the given range would be
+     inserted if we only considered the starting OFFSET of ranges.
+     Call that position I.  Since we also have LENGTH to care for
+     (this is a range afterall), we need to check if the _previous_
+     range overlaps the I range.  E.g., calling R the new range:
+
+       #1 - overlaps with previous
+
+          R
+          |-...-|
+        |---|     |---|  |------| ... |--|
+        0         1      2            N
+
+        I=1
+
+     In the case #1 above, the binary search would return `I=1',
+     meaning, this OFFSET should be inserted at position 1, and the
+     current position 1 should be pushed further (and become 2).  But,
+     note that `0' overlaps with R, so we want to merge them.
+
+     A similar consideration needs to be taken if the new range would
+     be contiguous with the previous range:
+
+       #2 - contiguous with previous
+
+           R
+           |-...-|
+        |--|       |---|  |------| ... |--|
+        0          1      2            N
+
+        I=1
+
+     If there's no overlap with the previous range, as in:
+
+       #3 - not overlapping and not contiguous
+
+              R
+              |-...-|
+         |--|         |---|  |------| ... |--|
+         0            1      2            N
+
+        I=1
+
+     or if I is 0:
+
+       #4 - R is the range with lowest offset
+
+         R
+        |-...-|
+                |--|       |---|  |------| ... |--|
+                0          1      2            N
+
+        I=0
+
+     ... we just push the new range to I.
+
+     All the 4 cases above need to consider that the new range may
+     also overlap several of the ranges that follow, or that R may be
+     contiguous with the following range, and merge.  E.g.,
+
+       #5 - overlapping following ranges
+
+         R
+        |------------------------|
+                |--|       |---|  |------| ... |--|
+                0          1      2            N
+
+        I=0
+
+       or:
+
+           R
+           |-------|
+        |--|       |---|  |------| ... |--|
+        0          1      2            N
+
+        I=1
+
+  */
+
+  i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
+  if (i > 0)
+    {
+      struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
+
+      if (ranges_overlap (bef->offset, bef->length, offset, length))
+       {
+         /* #1 */
+         ULONGEST l = min (bef->offset, offset);
+         ULONGEST h = max (bef->offset + bef->length, offset + length);
+
+         bef->offset = l;
+         bef->length = h - l;
+         i--;
+       }
+      else if (offset == bef->offset + bef->length)
+       {
+         /* #2 */
+         bef->length += length;
+         i--;
+       }
+      else
+       {
+         /* #3 */
+         VEC_safe_insert (range_s, value->unavailable, i, &newr);
+       }
+    }
+  else
+    {
+      /* #4 */
+      VEC_safe_insert (range_s, value->unavailable, i, &newr);
+    }
+
+  /* Check whether the ranges following the one we've just added or
+     touched can be folded in (#5 above).  */
+  if (i + 1 < VEC_length (range_s, value->unavailable))
+    {
+      struct range *t;
+      struct range *r;
+      int removed = 0;
+      int next = i + 1;
+
+      /* Get the range we just touched.  */
+      t = VEC_index (range_s, value->unavailable, i);
+      removed = 0;
+
+      i = next;
+      for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
+       if (r->offset <= t->offset + t->length)
+         {
+           ULONGEST l, h;
+
+           l = min (t->offset, r->offset);
+           h = max (t->offset + t->length, r->offset + r->length);
+
+           t->offset = l;
+           t->length = h - l;
+
+           removed++;
+         }
+       else
+         {
+           /* If we couldn't merge this one, we won't be able to
+              merge following ones either, since the ranges are
+              always sorted by OFFSET.  */
+           break;
+         }
+
+      if (removed != 0)
+       VEC_block_remove (range_s, value->unavailable, next, removed);
+    }
+}
+
+/* Find the first range in RANGES that overlaps the range defined by
+   OFFSET and LENGTH, starting at element POS in the RANGES vector,
+   Returns the index into RANGES where such overlapping range was
+   found, or -1 if none was found.  */
+
+static int
+find_first_range_overlap (VEC(range_s) *ranges, int pos,
+                         int offset, int length)
+{
+  range_s *r;
+  int i;
+
+  for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
+    if (ranges_overlap (r->offset, r->length, offset, length))
+      return i;
+
+  return -1;
+}
+
+int
+value_available_contents_eq (const struct value *val1, int offset1,
+                            const struct value *val2, int offset2,
+                            int length)
+{
+  int idx1 = 0, idx2 = 0;
+
+  /* This routine is used by printing routines, where we should
+     already have read the value.  Note that we only know whether a
+     value chunk is available if we've tried to read it.  */
+  gdb_assert (!val1->lazy && !val2->lazy);
+
+  while (length > 0)
+    {
+      range_s *r1, *r2;
+      ULONGEST l1, h1;
+      ULONGEST l2, h2;
+
+      idx1 = find_first_range_overlap (val1->unavailable, idx1,
+                                      offset1, length);
+      idx2 = find_first_range_overlap (val2->unavailable, idx2,
+                                      offset2, length);
+
+      /* The usual case is for both values to be completely available.  */
+      if (idx1 == -1 && idx2 == -1)
+       return (memcmp (val1->contents + offset1,
+                       val2->contents + offset2,
+                       length) == 0);
+      /* The contents only match equal if the available set matches as
+        well.  */
+      else if (idx1 == -1 || idx2 == -1)
+       return 0;
+
+      gdb_assert (idx1 != -1 && idx2 != -1);
+
+      r1 = VEC_index (range_s, val1->unavailable, idx1);
+      r2 = VEC_index (range_s, val2->unavailable, idx2);
+
+      /* Get the unavailable windows intersected by the incoming
+        ranges.  The first and last ranges that overlap the argument
+        range may be wider than said incoming arguments ranges.  */
+      l1 = max (offset1, r1->offset);
+      h1 = min (offset1 + length, r1->offset + r1->length);
+
+      l2 = max (offset2, r2->offset);
+      h2 = min (offset2 + length, r2->offset + r2->length);
+
+      /* Make them relative to the respective start offsets, so we can
+        compare them for equality.  */
+      l1 -= offset1;
+      h1 -= offset1;
+
+      l2 -= offset2;
+      h2 -= offset2;
+
+      /* Different availability, no match.  */
+      if (l1 != l2 || h1 != h2)
+       return 0;
+
+      /* Compare the _available_ contents.  */
+      if (memcmp (val1->contents + offset1,
+                 val2->contents + offset2,
+                 l1) != 0)
+       return 0;
+
+      length -= h1;
+      offset1 += h1;
+      offset2 += h1;
+    }
+
+  return 1;
+}
+
+/* Prototypes for local functions.  */
 
 static void show_values (char *, int);
 
@@ -193,7 +634,8 @@ struct value_history_chunk
 
 static struct value_history_chunk *value_history_chain;
 
-static int value_history_count;        /* Abs number of last entry stored */
+static int value_history_count;        /* Abs number of last entry stored.  */
+
 \f
 /* List of all value objects currently allocated
    (except for those released by calls to release_value)
@@ -209,7 +651,14 @@ struct value *
 allocate_value_lazy (struct type *type)
 {
   struct value *val;
-  struct type *atype = check_typedef (type);
+
+  /* Call check_typedef on our type to make sure that, if TYPE
+     is a TYPE_CODE_TYPEDEF, its length is set to the length
+     of the target type instead of zero.  However, we do not
+     replace the typedef type by the target type, because we want
+     to keep the typedef in order to be able to set the VAL's type
+     description correctly.  */
+  check_typedef (type);
 
   val = (struct value *) xzalloc (sizeof (struct value));
   val->contents = NULL;
@@ -218,7 +667,7 @@ allocate_value_lazy (struct type *type)
   val->type = type;
   val->enclosing_type = type;
   VALUE_LVAL (val) = not_lval;
-  VALUE_ADDRESS (val) = 0;
+  val->location.address = 0;
   VALUE_FRAME_ID (val) = null_frame_id;
   val->offset = 0;
   val->bitpos = 0;
@@ -230,6 +679,10 @@ allocate_value_lazy (struct type *type)
   val->pointed_to_offset = 0;
   val->modifiable = 1;
   val->initialized = 1;  /* Default to initialized.  */
+
+  /* Values start out on the all_values chain.  */
+  val->reference_count = 1;
+
   return val;
 }
 
@@ -248,6 +701,7 @@ struct value *
 allocate_value (struct type *type)
 {
   struct value *val = allocate_value_lazy (type);
+
   allocate_value_contents (val);
   val->lazy = 0;
   return val;
@@ -262,38 +716,36 @@ allocate_repeat_value (struct type *type, int count)
   int low_bound = current_language->string_lower_bound;                /* ??? */
   /* FIXME-type-allocation: need a way to free this type when we are
      done with it.  */
-  struct type *range_type
-  = create_range_type ((struct type *) NULL, builtin_type_int32,
-                      low_bound, count + low_bound - 1);
-  /* FIXME-type-allocation: need a way to free this type when we are
-     done with it.  */
-  return allocate_value (create_array_type ((struct type *) NULL,
-                                           type, range_type));
+  struct type *array_type
+    = lookup_array_range_type (type, low_bound, count + low_bound - 1);
+
+  return allocate_value (array_type);
 }
 
-/* Needed if another module needs to maintain its on list of values.  */
-void
-value_prepend_to_list (struct value **head, struct value *val)
+struct value *
+allocate_computed_value (struct type *type,
+                         const struct lval_funcs *funcs,
+                         void *closure)
 {
-  val->next = *head;
-  *head = val;
+  struct value *v = allocate_value_lazy (type);
+
+  VALUE_LVAL (v) = lval_computed;
+  v->location.computed.funcs = funcs;
+  v->location.computed.closure = closure;
+
+  return v;
 }
 
-/* Needed if another module needs to maintain its on list of values.  */
-void
-value_remove_from_list (struct value **head, struct value *val)
+/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT.  */
+
+struct value *
+allocate_optimized_out_value (struct type *type)
 {
-  struct value *prev;
+  struct value *retval = allocate_value_lazy (type);
 
-  if (*head == val)
-    *head = (*head)->next;
-  else
-    for (prev = *head; prev->next; prev = prev->next)
-      if (prev->next == val)
-      {
-       prev->next = val->next;
-       break;
-      }
+  set_value_optimized_out (retval, 1);
+
+  return retval;
 }
 
 /* Accessor methods.  */
@@ -305,7 +757,7 @@ value_next (struct value *value)
 }
 
 struct type *
-value_type (struct value *value)
+value_type (const struct value *value)
 {
   return value->type;
 }
@@ -316,7 +768,7 @@ deprecated_set_value_type (struct value *value, struct type *type)
 }
 
 int
-value_offset (struct value *value)
+value_offset (const struct value *value)
 {
   return value->offset;
 }
@@ -327,7 +779,7 @@ set_value_offset (struct value *value, int offset)
 }
 
 int
-value_bitpos (struct value *value)
+value_bitpos (const struct value *value)
 {
   return value->bitpos;
 }
@@ -338,7 +790,7 @@ set_value_bitpos (struct value *value, int bit)
 }
 
 int
-value_bitsize (struct value *value)
+value_bitsize (const struct value *value)
 {
   return value->bitsize;
 }
@@ -348,6 +800,20 @@ set_value_bitsize (struct value *value, int bit)
   value->bitsize = bit;
 }
 
+struct value *
+value_parent (struct value *value)
+{
+  return value->parent;
+}
+
+/* See value.h.  */
+
+void
+set_value_parent (struct value *value, struct value *parent)
+{
+  value->parent = parent;
+}
+
 gdb_byte *
 value_contents_raw (struct value *value)
 {
@@ -368,14 +834,159 @@ value_enclosing_type (struct value *value)
   return value->enclosing_type;
 }
 
+/* Look at value.h for description.  */
+
+struct type *
+value_actual_type (struct value *value, int resolve_simple_types,
+                  int *real_type_found)
+{
+  struct value_print_options opts;
+  struct type *result;
+
+  get_user_print_options (&opts);
+
+  if (real_type_found)
+    *real_type_found = 0;
+  result = value_type (value);
+  if (opts.objectprint)
+    {
+      /* If result's target type is TYPE_CODE_STRUCT, proceed to
+        fetch its rtti type.  */
+      if ((TYPE_CODE (result) == TYPE_CODE_PTR
+         || TYPE_CODE (result) == TYPE_CODE_REF)
+         && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
+            == TYPE_CODE_STRUCT)
+        {
+          struct type *real_type;
+
+          real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
+          if (real_type)
+            {
+              if (real_type_found)
+                *real_type_found = 1;
+              result = real_type;
+            }
+        }
+      else if (resolve_simple_types)
+        {
+          if (real_type_found)
+            *real_type_found = 1;
+          result = value_enclosing_type (value);
+        }
+    }
+
+  return result;
+}
+
+static void
+require_not_optimized_out (const struct value *value)
+{
+  if (value->optimized_out)
+    error (_("value has been optimized out"));
+}
+
+static void
+require_available (const struct value *value)
+{
+  if (!VEC_empty (range_s, value->unavailable))
+    throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
+}
+
 const gdb_byte *
-value_contents_all (struct value *value)
+value_contents_for_printing (struct value *value)
 {
   if (value->lazy)
     value_fetch_lazy (value);
   return value->contents;
 }
 
+const gdb_byte *
+value_contents_for_printing_const (const struct value *value)
+{
+  gdb_assert (!value->lazy);
+  return value->contents;
+}
+
+const gdb_byte *
+value_contents_all (struct value *value)
+{
+  const gdb_byte *result = value_contents_for_printing (value);
+  require_not_optimized_out (value);
+  require_available (value);
+  return result;
+}
+
+/* Copy LENGTH bytes of SRC value's (all) contents
+   (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
+   contents, starting at DST_OFFSET.  If unavailable contents are
+   being copied from SRC, the corresponding DST contents are marked
+   unavailable accordingly.  Neither DST nor SRC may be lazy
+   values.
+
+   It is assumed the contents of DST in the [DST_OFFSET,
+   DST_OFFSET+LENGTH) range are wholly available.  */
+
+void
+value_contents_copy_raw (struct value *dst, int dst_offset,
+                        struct value *src, int src_offset, int length)
+{
+  range_s *r;
+  int i;
+
+  /* A lazy DST would make that this copy operation useless, since as
+     soon as DST's contents were un-lazied (by a later value_contents
+     call, say), the contents would be overwritten.  A lazy SRC would
+     mean we'd be copying garbage.  */
+  gdb_assert (!dst->lazy && !src->lazy);
+
+  /* The overwritten DST range gets unavailability ORed in, not
+     replaced.  Make sure to remember to implement replacing if it
+     turns out actually necessary.  */
+  gdb_assert (value_bytes_available (dst, dst_offset, length));
+
+  /* Copy the data.  */
+  memcpy (value_contents_all_raw (dst) + dst_offset,
+         value_contents_all_raw (src) + src_offset,
+         length);
+
+  /* Copy the meta-data, adjusted.  */
+  for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
+    {
+      ULONGEST h, l;
+
+      l = max (r->offset, src_offset);
+      h = min (r->offset + r->length, src_offset + length);
+
+      if (l < h)
+       mark_value_bytes_unavailable (dst,
+                                     dst_offset + (l - src_offset),
+                                     h - l);
+    }
+}
+
+/* Copy LENGTH bytes of SRC value's (all) contents
+   (value_contents_all) starting at SRC_OFFSET byte, into DST value's
+   (all) contents, starting at DST_OFFSET.  If unavailable contents
+   are being copied from SRC, the corresponding DST contents are
+   marked unavailable accordingly.  DST must not be lazy.  If SRC is
+   lazy, it will be fetched now.  If SRC is not valid (is optimized
+   out), an error is thrown.
+
+   It is assumed the contents of DST in the [DST_OFFSET,
+   DST_OFFSET+LENGTH) range are wholly available.  */
+
+void
+value_contents_copy (struct value *dst, int dst_offset,
+                    struct value *src, int src_offset, int length)
+{
+  require_not_optimized_out (src);
+
+  if (src->lazy)
+    value_fetch_lazy (src);
+
+  value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
+}
+
 int
 value_lazy (struct value *value)
 {
@@ -388,10 +999,25 @@ set_value_lazy (struct value *value, int val)
   value->lazy = val;
 }
 
+int
+value_stack (struct value *value)
+{
+  return value->stack;
+}
+
+void
+set_value_stack (struct value *value, int val)
+{
+  value->stack = val;
+}
+
 const gdb_byte *
 value_contents (struct value *value)
 {
-  return value_contents_writeable (value);
+  const gdb_byte *result = value_contents_writeable (value);
+  require_not_optimized_out (value);
+  require_available (value);
+  return result;
 }
 
 gdb_byte *
@@ -411,15 +1037,14 @@ value_contents_equal (struct value *val1, struct value *val2)
 {
   struct type *type1;
   struct type *type2;
-  int len;
 
   type1 = check_typedef (value_type (val1));
   type2 = check_typedef (value_type (val2));
-  len = TYPE_LENGTH (type1);
-  if (len != TYPE_LENGTH (type2))
+  if (TYPE_LENGTH (type1) != TYPE_LENGTH (type2))
     return 0;
 
-  return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
+  return (memcmp (value_contents (val1), value_contents (val2),
+                 TYPE_LENGTH (type1)) == 0);
 }
 
 int
@@ -434,6 +1059,41 @@ set_value_optimized_out (struct value *value, int val)
   value->optimized_out = val;
 }
 
+int
+value_entirely_optimized_out (const struct value *value)
+{
+  if (!value->optimized_out)
+    return 0;
+  if (value->lval != lval_computed
+      || !value->location.computed.funcs->check_any_valid)
+    return 1;
+  return !value->location.computed.funcs->check_any_valid (value);
+}
+
+int
+value_bits_valid (const struct value *value, int offset, int length)
+{
+  if (!value->optimized_out)
+    return 1;
+  if (value->lval != lval_computed
+      || !value->location.computed.funcs->check_validity)
+    return 0;
+  return value->location.computed.funcs->check_validity (value, offset,
+                                                        length);
+}
+
+int
+value_bits_synthetic_pointer (const struct value *value,
+                             int offset, int length)
+{
+  if (value->lval != lval_computed
+      || !value->location.computed.funcs->check_synthetic_pointer)
+    return 0;
+  return value->location.computed.funcs->check_synthetic_pointer (value,
+                                                                 offset,
+                                                                 length);
+}
+
 int
 value_embedded_offset (struct value *value)
 {
@@ -458,16 +1118,61 @@ set_value_pointed_to_offset (struct value *value, int val)
   value->pointed_to_offset = val;
 }
 
+const struct lval_funcs *
+value_computed_funcs (const struct value *v)
+{
+  gdb_assert (value_lval_const (v) == lval_computed);
+
+  return v->location.computed.funcs;
+}
+
+void *
+value_computed_closure (const struct value *v)
+{
+  gdb_assert (v->lval == lval_computed);
+
+  return v->location.computed.closure;
+}
+
 enum lval_type *
 deprecated_value_lval_hack (struct value *value)
 {
   return &value->lval;
 }
 
-CORE_ADDR *
-deprecated_value_address_hack (struct value *value)
+enum lval_type
+value_lval_const (const struct value *value)
+{
+  return value->lval;
+}
+
+CORE_ADDR
+value_address (const struct value *value)
+{
+  if (value->lval == lval_internalvar
+      || value->lval == lval_internalvar_component)
+    return 0;
+  if (value->parent != NULL)
+    return value_address (value->parent) + value->offset;
+  else
+    return value->location.address + value->offset;
+}
+
+CORE_ADDR
+value_raw_address (struct value *value)
+{
+  if (value->lval == lval_internalvar
+      || value->lval == lval_internalvar_component)
+    return 0;
+  return value->location.address;
+}
+
+void
+set_value_address (struct value *value, CORE_ADDR addr)
 {
-  return &value->location.address;
+  gdb_assert (value->lval != lval_internalvar
+             && value->lval != lval_internalvar_component);
+  value->location.address = addr;
 }
 
 struct internalvar **
@@ -493,11 +1198,6 @@ deprecated_value_modifiable (struct value *value)
 {
   return value->modifiable;
 }
-void
-deprecated_set_value_modifiable (struct value *value, int modifiable)
-{
-  value->modifiable = modifiable;
-}
 \f
 /* Return a mark in the value chain.  All values allocated after the
    mark is obtained (except for those released) are subject to being freed
@@ -508,11 +1208,45 @@ value_mark (void)
   return all_values;
 }
 
+/* Take a reference to VAL.  VAL will not be deallocated until all
+   references are released.  */
+
+void
+value_incref (struct value *val)
+{
+  val->reference_count++;
+}
+
+/* Release a reference to VAL, which was acquired with value_incref.
+   This function is also called to deallocate values from the value
+   chain.  */
+
 void
 value_free (struct value *val)
 {
   if (val)
-    xfree (val->contents);
+    {
+      gdb_assert (val->reference_count > 0);
+      val->reference_count--;
+      if (val->reference_count > 0)
+       return;
+
+      /* If there's an associated parent value, drop our reference to
+        it.  */
+      if (val->parent != NULL)
+       value_free (val->parent);
+
+      if (VALUE_LVAL (val) == lval_computed)
+       {
+         const struct lval_funcs *funcs = val->location.computed.funcs;
+
+         if (funcs->free_closure)
+           funcs->free_closure (val);
+       }
+
+      xfree (val->contents);
+      VEC_free (range_s, val->unavailable);
+    }
   xfree (val);
 }
 
@@ -527,13 +1261,15 @@ value_free_to_mark (struct value *mark)
   for (val = all_values; val && val != mark; val = next)
     {
       next = val->next;
+      val->released = 1;
       value_free (val);
     }
   all_values = val;
 }
 
 /* Free all the values that have been allocated (except for those released).
-   Called after each command, successful or not.  */
+   Call after each command, successful or not.
+   In practice this is called before each command, which is sufficient.  */
 
 void
 free_all_values (void)
@@ -544,12 +1280,27 @@ free_all_values (void)
   for (val = all_values; val; val = next)
     {
       next = val->next;
+      val->released = 1;
       value_free (val);
     }
 
   all_values = 0;
 }
 
+/* Frees all the elements in a chain of values.  */
+
+void
+free_value_chain (struct value *v)
+{
+  struct value *next;
+
+  for (; v; v = next)
+    {
+      next = value_next (v);
+      value_free (v);
+    }
+}
+
 /* Remove VAL from the chain all_values
    so it will not be freed automatically.  */
 
@@ -561,6 +1312,8 @@ release_value (struct value *val)
   if (all_values == val)
     {
       all_values = val->next;
+      val->next = NULL;
+      val->released = 1;
       return;
     }
 
@@ -569,11 +1322,27 @@ release_value (struct value *val)
       if (v->next == val)
        {
          v->next = val->next;
+         val->next = NULL;
+         val->released = 1;
          break;
        }
     }
 }
 
+/* If the value is not already released, release it.
+   If the value is already released, increment its reference count.
+   That is, this function ensures that the value is released from the
+   value chain and that the caller owns a reference to it.  */
+
+void
+release_value_or_incref (struct value *val)
+{
+  if (val->released)
+    value_incref (val);
+  else
+    release_value (val);
+}
+
 /* Release all values up to mark  */
 struct value *
 value_release_to_mark (struct value *mark)
@@ -582,12 +1351,15 @@ value_release_to_mark (struct value *mark)
   struct value *next;
 
   for (val = next = all_values; next; next = next->next)
-    if (next->next == mark)
-      {
-       all_values = next->next;
-       next->next = NULL;
-       return val;
-      }
+    {
+      if (next->next == mark)
+       {
+         all_values = next->next;
+         next->next = NULL;
+         return val;
+       }
+      next->released = 1;
+    }
   all_values = 0;
   return val;
 }
@@ -625,17 +1397,57 @@ value_copy (struct value *arg)
              TYPE_LENGTH (value_enclosing_type (arg)));
 
     }
+  val->unavailable = VEC_copy (range_s, arg->unavailable);
+  val->parent = arg->parent;
+  if (val->parent)
+    value_incref (val->parent);
+  if (VALUE_LVAL (val) == lval_computed)
+    {
+      const struct lval_funcs *funcs = val->location.computed.funcs;
+
+      if (funcs->copy_closure)
+        val->location.computed.closure = funcs->copy_closure (val);
+    }
   return val;
 }
 
+/* Return a version of ARG that is non-lvalue.  */
+
+struct value *
+value_non_lval (struct value *arg)
+{
+  if (VALUE_LVAL (arg) != not_lval)
+    {
+      struct type *enc_type = value_enclosing_type (arg);
+      struct value *val = allocate_value (enc_type);
+
+      memcpy (value_contents_all_raw (val), value_contents_all (arg),
+             TYPE_LENGTH (enc_type));
+      val->type = arg->type;
+      set_value_embedded_offset (val, value_embedded_offset (arg));
+      set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
+      return val;
+    }
+   return arg;
+}
+
 void
-set_value_component_location (struct value *component, struct value *whole)
+set_value_component_location (struct value *component,
+                             const struct value *whole)
 {
-  if (VALUE_LVAL (whole) == lval_internalvar)
+  if (whole->lval == lval_internalvar)
     VALUE_LVAL (component) = lval_internalvar_component;
   else
-    VALUE_LVAL (component) = VALUE_LVAL (whole);
+    VALUE_LVAL (component) = whole->lval;
+
   component->location = whole->location;
+  if (whole->lval == lval_computed)
+    {
+      const struct lval_funcs *funcs = whole->location.computed.funcs;
+
+      if (funcs->copy_closure)
+        component->location.computed.closure = funcs->copy_closure (whole);
+    }
 }
 
 \f
@@ -670,7 +1482,8 @@ record_latest_value (struct value *val)
   if (i == 0)
     {
       struct value_history_chunk *new
-      = (struct value_history_chunk *)
+       = (struct value_history_chunk *)
+
       xmalloc (sizeof (struct value_history_chunk));
       memset (new->values, 0, sizeof new->values);
       new->next = value_history_chain;
@@ -714,7 +1527,8 @@ access_value_history (int num)
   /* Now absnum is always absolute and origin zero.  */
 
   chunk = value_history_chain;
-  for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
+  for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
+        - absnum / VALUE_HISTORY_CHUNK;
        i > 0; i--)
     chunk = chunk->next;
 
@@ -747,6 +1561,7 @@ show_values (char *num_exp, int from_tty)
   for (i = num; i < num + 10 && i <= value_history_count; i++)
     {
       struct value_print_options opts;
+
       val = access_value_history (i);
       printf_filtered (("$%d = "), i);
       get_user_print_options (&opts);
@@ -772,10 +1587,81 @@ show_values (char *num_exp, int from_tty)
    The user refers to them with a '$' prefix
    that does not appear in the variable names stored internally.  */
 
+struct internalvar
+{
+  struct internalvar *next;
+  char *name;
+
+  /* We support various different kinds of content of an internal variable.
+     enum internalvar_kind specifies the kind, and union internalvar_data
+     provides the data associated with this particular kind.  */
+
+  enum internalvar_kind
+    {
+      /* The internal variable is empty.  */
+      INTERNALVAR_VOID,
+
+      /* The value of the internal variable is provided directly as
+        a GDB value object.  */
+      INTERNALVAR_VALUE,
+
+      /* A fresh value is computed via a call-back routine on every
+        access to the internal variable.  */
+      INTERNALVAR_MAKE_VALUE,
+
+      /* The internal variable holds a GDB internal convenience function.  */
+      INTERNALVAR_FUNCTION,
+
+      /* The variable holds an integer value.  */
+      INTERNALVAR_INTEGER,
+
+      /* The variable holds a GDB-provided string.  */
+      INTERNALVAR_STRING,
+
+    } kind;
+
+  union internalvar_data
+    {
+      /* A value object used with INTERNALVAR_VALUE.  */
+      struct value *value;
+
+      /* The call-back routine used with INTERNALVAR_MAKE_VALUE.  */
+      struct
+        {
+         /* The functions to call.  */
+         const struct internalvar_funcs *functions;
+
+         /* The function's user-data.  */
+         void *data;
+        } make_value;
+
+      /* The internal function used with INTERNALVAR_FUNCTION.  */
+      struct
+       {
+         struct internal_function *function;
+         /* True if this is the canonical name for the function.  */
+         int canonical;
+       } fn;
+
+      /* An integer value used with INTERNALVAR_INTEGER.  */
+      struct
+        {
+         /* If type is non-NULL, it will be used as the type to generate
+            a value for this internal variable.  If type is NULL, a default
+            integer type for the architecture is used.  */
+         struct type *type;
+         LONGEST val;
+        } integer;
+
+      /* A string value used with INTERNALVAR_STRING.  */
+      char *string;
+    } u;
+};
+
 static struct internalvar *internalvars;
 
-/* If the variable does not already exist create it and give it the value given.
-   If no value is given then the default is zero.  */
+/* If the variable does not already exist create it and give it the
+   value given.  If no value is given then the default is zero.  */
 static void
 init_if_undefined_command (char* args, int from_tty)
 {
@@ -795,12 +1681,13 @@ init_if_undefined_command (char* args, int from_tty)
   /* Extract the variable from the parsed expression.
      In the case of an assign the lvalue will be in elts[1] and elts[2].  */
   if (expr->elts[1].opcode != OP_INTERNALVAR)
-    error (_("The first parameter to init-if-undefined should be a GDB variable."));
+    error (_("The first parameter to init-if-undefined "
+            "should be a GDB variable."));
   intvar = expr->elts[2].internalvar;
 
   /* Only evaluate the expression if the lvalue is void.
      This may still fail if the expresssion is invalid.  */
-  if (TYPE_CODE (value_type (intvar->value)) == TYPE_CODE_VOID)
+  if (intvar->kind == INTERNALVAR_VOID)
     evaluate_expression (expr);
 
   do_cleanups (old_chain);
@@ -814,7 +1701,7 @@ init_if_undefined_command (char* args, int from_tty)
    the return value is NULL.  */
 
 struct internalvar *
-lookup_only_internalvar (char *name)
+lookup_only_internalvar (const char *name)
 {
   struct internalvar *var;
 
@@ -825,24 +1712,81 @@ lookup_only_internalvar (char *name)
   return NULL;
 }
 
+/* Complete NAME by comparing it to the names of internal variables.
+   Returns a vector of newly allocated strings, or NULL if no matches
+   were found.  */
+
+VEC (char_ptr) *
+complete_internalvar (const char *name)
+{
+  VEC (char_ptr) *result = NULL;
+  struct internalvar *var;
+  int len;
+
+  len = strlen (name);
+
+  for (var = internalvars; var; var = var->next)
+    if (strncmp (var->name, name, len) == 0)
+      {
+       char *r = xstrdup (var->name);
+
+       VEC_safe_push (char_ptr, result, r);
+      }
+
+  return result;
+}
 
 /* Create an internal variable with name NAME and with a void value.
    NAME should not normally include a dollar sign.  */
 
 struct internalvar *
-create_internalvar (char *name)
+create_internalvar (const char *name)
 {
   struct internalvar *var;
+
   var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
   var->name = concat (name, (char *)NULL);
-  var->value = allocate_value (builtin_type_void);
-  var->endian = gdbarch_byte_order (current_gdbarch);
-  release_value (var->value);
+  var->kind = INTERNALVAR_VOID;
   var->next = internalvars;
   internalvars = var;
   return var;
 }
 
+/* Create an internal variable with name NAME and register FUN as the
+   function that value_of_internalvar uses to create a value whenever
+   this variable is referenced.  NAME should not normally include a
+   dollar sign.  DATA is passed uninterpreted to FUN when it is
+   called.  CLEANUP, if not NULL, is called when the internal variable
+   is destroyed.  It is passed DATA as its only argument.  */
+
+struct internalvar *
+create_internalvar_type_lazy (const char *name,
+                             const struct internalvar_funcs *funcs,
+                             void *data)
+{
+  struct internalvar *var = create_internalvar (name);
+
+  var->kind = INTERNALVAR_MAKE_VALUE;
+  var->u.make_value.functions = funcs;
+  var->u.make_value.data = data;
+  return var;
+}
+
+/* See documentation in value.h.  */
+
+int
+compile_internalvar_to_ax (struct internalvar *var,
+                          struct agent_expr *expr,
+                          struct axs_value *value)
+{
+  if (var->kind != INTERNALVAR_MAKE_VALUE
+      || var->u.make_value.functions->compile_to_ax == NULL)
+    return 0;
+
+  var->u.make_value.functions->compile_to_ax (var, expr, value,
+                                             var->u.make_value.data);
+  return 1;
+}
 
 /* Look up an internal variable with name NAME.  NAME should not
    normally include a dollar sign.
@@ -851,7 +1795,7 @@ create_internalvar (char *name)
    one is created, with a void value.  */
 
 struct internalvar *
-lookup_internalvar (char *name)
+lookup_internalvar (const char *name)
 {
   struct internalvar *var;
 
@@ -862,103 +1806,359 @@ lookup_internalvar (char *name)
   return create_internalvar (name);
 }
 
+/* Return current value of internal variable VAR.  For variables that
+   are not inherently typed, use a value type appropriate for GDBARCH.  */
+
 struct value *
-value_of_internalvar (struct internalvar *var)
+value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
 {
   struct value *val;
-  int i, j;
-  gdb_byte temp;
+  struct trace_state_variable *tsv;
 
-  val = value_copy (var->value);
-  if (value_lazy (val))
-    value_fetch_lazy (val);
-  VALUE_LVAL (val) = lval_internalvar;
-  VALUE_INTERNALVAR (val) = var;
+  /* If there is a trace state variable of the same name, assume that
+     is what we really want to see.  */
+  tsv = find_trace_state_variable (var->name);
+  if (tsv)
+    {
+      tsv->value_known = target_get_trace_state_variable_value (tsv->number,
+                                                               &(tsv->value));
+      if (tsv->value_known)
+       val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
+                                 tsv->value);
+      else
+       val = allocate_value (builtin_type (gdbarch)->builtin_void);
+      return val;
+    }
+
+  switch (var->kind)
+    {
+    case INTERNALVAR_VOID:
+      val = allocate_value (builtin_type (gdbarch)->builtin_void);
+      break;
+
+    case INTERNALVAR_FUNCTION:
+      val = allocate_value (builtin_type (gdbarch)->internal_fn);
+      break;
+
+    case INTERNALVAR_INTEGER:
+      if (!var->u.integer.type)
+       val = value_from_longest (builtin_type (gdbarch)->builtin_int,
+                                 var->u.integer.val);
+      else
+       val = value_from_longest (var->u.integer.type, var->u.integer.val);
+      break;
+
+    case INTERNALVAR_STRING:
+      val = value_cstring (var->u.string, strlen (var->u.string),
+                          builtin_type (gdbarch)->builtin_char);
+      break;
+
+    case INTERNALVAR_VALUE:
+      val = value_copy (var->u.value);
+      if (value_lazy (val))
+       value_fetch_lazy (val);
+      break;
+
+    case INTERNALVAR_MAKE_VALUE:
+      val = (*var->u.make_value.functions->make_value) (gdbarch, var,
+                                                       var->u.make_value.data);
+      break;
+
+    default:
+      internal_error (__FILE__, __LINE__, _("bad kind"));
+    }
+
+  /* Change the VALUE_LVAL to lval_internalvar so that future operations
+     on this value go back to affect the original internal variable.
 
-  /* Values are always stored in the target's byte order.  When connected to a
-     target this will most likely always be correct, so there's normally no
-     need to worry about it.
+     Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
+     no underlying modifyable state in the internal variable.
 
-     However, internal variables can be set up before the target endian is
-     known and so may become out of date.  Fix it up before anybody sees.
+     Likewise, if the variable's value is a computed lvalue, we want
+     references to it to produce another computed lvalue, where
+     references and assignments actually operate through the
+     computed value's functions.
 
-     Internal variables usually hold simple scalar values, and we can
-     correct those.  More complex values (e.g. structures and floating
-     point types) are left alone, because they would be too complicated
-     to correct.  */
+     This means that internal variables with computed values
+     behave a little differently from other internal variables:
+     assignments to them don't just replace the previous value
+     altogether.  At the moment, this seems like the behavior we
+     want.  */
 
-  if (var->endian != gdbarch_byte_order (current_gdbarch))
+  if (var->kind != INTERNALVAR_MAKE_VALUE
+      && val->lval != lval_computed)
     {
-      gdb_byte *array = value_contents_raw (val);
-      struct type *type = check_typedef (value_enclosing_type (val));
-      switch (TYPE_CODE (type))
+      VALUE_LVAL (val) = lval_internalvar;
+      VALUE_INTERNALVAR (val) = var;
+    }
+
+  return val;
+}
+
+int
+get_internalvar_integer (struct internalvar *var, LONGEST *result)
+{
+  if (var->kind == INTERNALVAR_INTEGER)
+    {
+      *result = var->u.integer.val;
+      return 1;
+    }
+
+  if (var->kind == INTERNALVAR_VALUE)
+    {
+      struct type *type = check_typedef (value_type (var->u.value));
+
+      if (TYPE_CODE (type) == TYPE_CODE_INT)
        {
-       case TYPE_CODE_INT:
-       case TYPE_CODE_PTR:
-         /* Reverse the bytes.  */
-         for (i = 0, j = TYPE_LENGTH (type) - 1; i < j; i++, j--)
-           {
-             temp = array[j];
-             array[j] = array[i];
-             array[i] = temp;
-           }
-         break;
+         *result = value_as_long (var->u.value);
+         return 1;
        }
     }
 
-  return val;
+  return 0;
+}
+
+static int
+get_internalvar_function (struct internalvar *var,
+                         struct internal_function **result)
+{
+  switch (var->kind)
+    {
+    case INTERNALVAR_FUNCTION:
+      *result = var->u.fn.function;
+      return 1;
+
+    default:
+      return 0;
+    }
+}
+
+void
+set_internalvar_component (struct internalvar *var, int offset, int bitpos,
+                          int bitsize, struct value *newval)
+{
+  gdb_byte *addr;
+
+  switch (var->kind)
+    {
+    case INTERNALVAR_VALUE:
+      addr = value_contents_writeable (var->u.value);
+
+      if (bitsize)
+       modify_field (value_type (var->u.value), addr + offset,
+                     value_as_long (newval), bitpos, bitsize);
+      else
+       memcpy (addr + offset, value_contents (newval),
+               TYPE_LENGTH (value_type (newval)));
+      break;
+
+    default:
+      /* We can never get a component of any other kind.  */
+      internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
+    }
+}
+
+void
+set_internalvar (struct internalvar *var, struct value *val)
+{
+  enum internalvar_kind new_kind;
+  union internalvar_data new_data = { 0 };
+
+  if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
+    error (_("Cannot overwrite convenience function %s"), var->name);
+
+  /* Prepare new contents.  */
+  switch (TYPE_CODE (check_typedef (value_type (val))))
+    {
+    case TYPE_CODE_VOID:
+      new_kind = INTERNALVAR_VOID;
+      break;
+
+    case TYPE_CODE_INTERNAL_FUNCTION:
+      gdb_assert (VALUE_LVAL (val) == lval_internalvar);
+      new_kind = INTERNALVAR_FUNCTION;
+      get_internalvar_function (VALUE_INTERNALVAR (val),
+                               &new_data.fn.function);
+      /* Copies created here are never canonical.  */
+      break;
+
+    default:
+      new_kind = INTERNALVAR_VALUE;
+      new_data.value = value_copy (val);
+      new_data.value->modifiable = 1;
+
+      /* Force the value to be fetched from the target now, to avoid problems
+        later when this internalvar is referenced and the target is gone or
+        has changed.  */
+      if (value_lazy (new_data.value))
+       value_fetch_lazy (new_data.value);
+
+      /* Release the value from the value chain to prevent it from being
+        deleted by free_all_values.  From here on this function should not
+        call error () until new_data is installed into the var->u to avoid
+        leaking memory.  */
+      release_value (new_data.value);
+      break;
+    }
+
+  /* Clean up old contents.  */
+  clear_internalvar (var);
+
+  /* Switch over.  */
+  var->kind = new_kind;
+  var->u = new_data;
+  /* End code which must not call error().  */
+}
+
+void
+set_internalvar_integer (struct internalvar *var, LONGEST l)
+{
+  /* Clean up old contents.  */
+  clear_internalvar (var);
+
+  var->kind = INTERNALVAR_INTEGER;
+  var->u.integer.type = NULL;
+  var->u.integer.val = l;
+}
+
+void
+set_internalvar_string (struct internalvar *var, const char *string)
+{
+  /* Clean up old contents.  */
+  clear_internalvar (var);
+
+  var->kind = INTERNALVAR_STRING;
+  var->u.string = xstrdup (string);
+}
+
+static void
+set_internalvar_function (struct internalvar *var, struct internal_function *f)
+{
+  /* Clean up old contents.  */
+  clear_internalvar (var);
+
+  var->kind = INTERNALVAR_FUNCTION;
+  var->u.fn.function = f;
+  var->u.fn.canonical = 1;
+  /* Variables installed here are always the canonical version.  */
+}
+
+void
+clear_internalvar (struct internalvar *var)
+{
+  /* Clean up old contents.  */
+  switch (var->kind)
+    {
+    case INTERNALVAR_VALUE:
+      value_free (var->u.value);
+      break;
+
+    case INTERNALVAR_STRING:
+      xfree (var->u.string);
+      break;
+
+    case INTERNALVAR_MAKE_VALUE:
+      if (var->u.make_value.functions->destroy != NULL)
+       var->u.make_value.functions->destroy (var->u.make_value.data);
+      break;
+
+    default:
+      break;
+    }
+
+  /* Reset to void kind.  */
+  var->kind = INTERNALVAR_VOID;
+}
+
+char *
+internalvar_name (struct internalvar *var)
+{
+  return var->name;
+}
+
+static struct internal_function *
+create_internal_function (const char *name,
+                         internal_function_fn handler, void *cookie)
+{
+  struct internal_function *ifn = XNEW (struct internal_function);
+
+  ifn->name = xstrdup (name);
+  ifn->handler = handler;
+  ifn->cookie = cookie;
+  return ifn;
+}
+
+char *
+value_internal_function_name (struct value *val)
+{
+  struct internal_function *ifn;
+  int result;
+
+  gdb_assert (VALUE_LVAL (val) == lval_internalvar);
+  result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
+  gdb_assert (result);
+
+  return ifn->name;
 }
 
-void
-set_internalvar_component (struct internalvar *var, int offset, int bitpos,
-                          int bitsize, struct value *newval)
+struct value *
+call_internal_function (struct gdbarch *gdbarch,
+                       const struct language_defn *language,
+                       struct value *func, int argc, struct value **argv)
 {
-  gdb_byte *addr = value_contents_writeable (var->value) + offset;
+  struct internal_function *ifn;
+  int result;
 
-  if (bitsize)
-    modify_field (addr, value_as_long (newval),
-                 bitpos, bitsize);
-  else
-    memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
+  gdb_assert (VALUE_LVAL (func) == lval_internalvar);
+  result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
+  gdb_assert (result);
+
+  return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
 }
 
-void
-set_internalvar (struct internalvar *var, struct value *val)
+/* The 'function' command.  This does nothing -- it is just a
+   placeholder to let "help function NAME" work.  This is also used as
+   the implementation of the sub-command that is created when
+   registering an internal function.  */
+static void
+function_command (char *command, int from_tty)
 {
-  struct value *newval;
-
-  newval = value_copy (val);
-  newval->modifiable = 1;
-
-  /* Force the value to be fetched from the target now, to avoid problems
-     later when this internalvar is referenced and the target is gone or
-     has changed.  */
-  if (value_lazy (newval))
-    value_fetch_lazy (newval);
-
-  /* Begin code which must not call error().  If var->value points to
-     something free'd, an error() obviously leaves a dangling pointer.
-     But we also get a danling pointer if var->value points to
-     something in the value chain (i.e., before release_value is
-     called), because after the error free_all_values will get called before
-     long.  */
-  value_free (var->value);
-  var->value = newval;
-  var->endian = gdbarch_byte_order (current_gdbarch);
-  release_value (newval);
-  /* End code which must not call error().  */
+  /* Do nothing.  */
 }
 
-char *
-internalvar_name (struct internalvar *var)
+/* Clean up if an internal function's command is destroyed.  */
+static void
+function_destroyer (struct cmd_list_element *self, void *ignore)
 {
-  return var->name;
+  xfree ((char *) self->name);
+  xfree (self->doc);
+}
+
+/* Add a new internal function.  NAME is the name of the function; DOC
+   is a documentation string describing the function.  HANDLER is
+   called when the function is invoked.  COOKIE is an arbitrary
+   pointer which is passed to HANDLER and is intended for "user
+   data".  */
+void
+add_internal_function (const char *name, const char *doc,
+                      internal_function_fn handler, void *cookie)
+{
+  struct cmd_list_element *cmd;
+  struct internal_function *ifn;
+  struct internalvar *var = lookup_internalvar (name);
+
+  ifn = create_internal_function (name, handler, cookie);
+  set_internalvar_function (var, ifn);
+
+  cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
+                &functionlist);
+  cmd->destroyer = function_destroyer;
 }
 
 /* Update VALUE before discarding OBJFILE.  COPIED_TYPES is used to
    prevent cycles / duplicates.  */
 
-static void
+void
 preserve_one_value (struct value *value, struct objfile *objfile,
                    htab_t copied_types)
 {
@@ -971,6 +2171,26 @@ preserve_one_value (struct value *value, struct objfile *objfile,
                                                 copied_types);
 }
 
+/* Likewise for internal variable VAR.  */
+
+static void
+preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
+                         htab_t copied_types)
+{
+  switch (var->kind)
+    {
+    case INTERNALVAR_INTEGER:
+      if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
+       var->u.integer.type
+         = copy_type_recursive (objfile, var->u.integer.type, copied_types);
+      break;
+
+    case INTERNALVAR_VALUE:
+      preserve_one_value (var->u.value, objfile, copied_types);
+      break;
+    }
+}
+
 /* Update the internal variables and value history when OBJFILE is
    discarded; we must copy the types out of the objfile.  New global types
    will be created for every convenience variable which currently points to
@@ -983,7 +2203,6 @@ preserve_values (struct objfile *objfile)
   htab_t copied_types;
   struct value_history_chunk *cur;
   struct internalvar *var;
-  struct value *val;
   int i;
 
   /* Create the hash table.  We allocate on the objfile's obstack, since
@@ -996,10 +2215,9 @@ preserve_values (struct objfile *objfile)
        preserve_one_value (cur->values[i], objfile, copied_types);
 
   for (var = internalvars; var; var = var->next)
-    preserve_one_value (var->value, objfile, copied_types);
+    preserve_one_internalvar (var, objfile, copied_types);
 
-  for (val = values_in_python; val; val = val->next)
-    preserve_one_value (val, objfile, copied_types);
+  preserve_python_values (objfile, copied_types);
 
   htab_delete (copied_types);
 }
@@ -1007,6 +2225,7 @@ preserve_values (struct objfile *objfile)
 static void
 show_convenience (char *ignore, int from_tty)
 {
+  struct gdbarch *gdbarch = get_current_arch ();
   struct internalvar *var;
   int varseen = 0;
   struct value_print_options opts;
@@ -1014,20 +2233,37 @@ show_convenience (char *ignore, int from_tty)
   get_user_print_options (&opts);
   for (var = internalvars; var; var = var->next)
     {
+      volatile struct gdb_exception ex;
+
       if (!varseen)
        {
          varseen = 1;
        }
       printf_filtered (("$%s = "), var->name);
-      value_print (value_of_internalvar (var), gdb_stdout,
-                  &opts);
+
+      TRY_CATCH (ex, RETURN_MASK_ERROR)
+       {
+         struct value *val;
+
+         val = value_of_internalvar (gdbarch, var);
+         value_print (val, gdb_stdout, &opts);
+       }
+      if (ex.reason < 0)
+       fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
       printf_filtered (("\n"));
     }
   if (!varseen)
-    printf_unfiltered (_("\
-No debugger convenience variables now defined.\n\
-Convenience variables have names starting with \"$\";\n\
-use \"set\" as in \"set $foo = 5\" to define them.\n"));
+    {
+      /* This text does not mention convenience functions on purpose.
+        The user can't create them except via Python, and if Python support
+        is installed this message will never be printed ($_streq will
+        exist).  */
+      printf_unfiltered (_("No debugger convenience variables now defined.\n"
+                          "Convenience variables have "
+                          "names starting with \"$\";\n"
+                          "use \"set\" as in \"set "
+                          "$foo = 5\" to define them.\n"));
+    }
 }
 \f
 /* Extract a value as a C number (either long or double).
@@ -1057,19 +2293,21 @@ value_as_double (struct value *val)
   return foo;
 }
 
-/* Extract a value as a C pointer. Does not deallocate the value.  
+/* Extract a value as a C pointer.  Does not deallocate the value.
    Note that val's type may not actually be a pointer; value_as_long
    handles all the cases.  */
 CORE_ADDR
 value_as_address (struct value *val)
 {
+  struct gdbarch *gdbarch = get_type_arch (value_type (val));
+
   /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
      whether we want this to be true eventually.  */
 #if 0
   /* gdbarch_addr_bits_remove is wrong if we are being called for a
      non-address (e.g. argument to "signal", "info break", etc.), or
      for pointers to char, in which the low bits *are* significant.  */
-  return gdbarch_addr_bits_remove (current_gdbarch, value_as_long (val));
+  return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
 #else
 
   /* There are several targets (IA-64, PowerPC, and others) which
@@ -1091,7 +2329,7 @@ value_as_address (struct value *val)
 
      Upon entry to this function, if VAL is a value of type `function'
      (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
-     VALUE_ADDRESS (val) is the address of the function.  This is what
+     value_address (val) is the address of the function.  This is what
      you'll get if you evaluate an expression like `main'.  The call
      to COERCE_ARRAY below actually does all the usual unary
      conversions, which includes converting values of type `function'
@@ -1111,7 +2349,7 @@ value_as_address (struct value *val)
      function, just return its address directly.  */
   if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
       || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
-    return VALUE_ADDRESS (val);
+    return value_address (val);
 
   val = coerce_array (val);
 
@@ -1154,8 +2392,8 @@ value_as_address (struct value *val)
 
   if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
       && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
-      && gdbarch_integer_to_address_p (current_gdbarch))
-    return gdbarch_integer_to_address (current_gdbarch, value_type (val),
+      && gdbarch_integer_to_address_p (gdbarch))
+    return gdbarch_integer_to_address (gdbarch, value_type (val),
                                       value_contents (val));
 
   return unpack_long (value_type (val), value_contents (val));
@@ -1179,6 +2417,7 @@ value_as_address (struct value *val)
 LONGEST
 unpack_long (struct type *type, const gdb_byte *valaddr)
 {
+  enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
   enum type_code code = TYPE_CODE (type);
   int len = TYPE_LENGTH (type);
   int nosign = TYPE_UNSIGNED (type);
@@ -1195,9 +2434,9 @@ unpack_long (struct type *type, const gdb_byte *valaddr)
     case TYPE_CODE_RANGE:
     case TYPE_CODE_MEMBERPTR:
       if (nosign)
-       return extract_unsigned_integer (valaddr, len);
+       return extract_unsigned_integer (valaddr, len, byte_order);
       else
-       return extract_signed_integer (valaddr, len);
+       return extract_signed_integer (valaddr, len, byte_order);
 
     case TYPE_CODE_FLT:
       return extract_typed_floating (valaddr, type);
@@ -1205,7 +2444,7 @@ unpack_long (struct type *type, const gdb_byte *valaddr)
     case TYPE_CODE_DECFLOAT:
       /* libdecnumber has a function to convert from decimal to integer, but
         it doesn't work when the decimal number has a fractional part.  */
-      return decimal_to_doublest (valaddr, len);
+      return decimal_to_doublest (valaddr, len, byte_order);
 
     case TYPE_CODE_PTR:
     case TYPE_CODE_REF:
@@ -1228,11 +2467,12 @@ unpack_long (struct type *type, const gdb_byte *valaddr)
 DOUBLEST
 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
 {
+  enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
   enum type_code code;
   int len;
   int nosign;
 
-  *invp = 0;                   /* Assume valid.   */
+  *invp = 0;                   /* Assume valid.  */
   CHECK_TYPEDEF (type);
   code = TYPE_CODE (type);
   len = TYPE_LENGTH (type);
@@ -1265,7 +2505,7 @@ unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
       return extract_typed_floating (valaddr, type);
     }
   else if (code == TYPE_CODE_DECFLOAT)
-    return decimal_to_doublest (valaddr, len);
+    return decimal_to_doublest (valaddr, len, byte_order);
   else if (nosign)
     {
       /* Unsigned -- be sure we compensate for signed LONGEST.  */
@@ -1300,74 +2540,73 @@ unpack_pointer (struct type *type, const gdb_byte *valaddr)
 }
 
 \f
-/* Get the value of the FIELDN'th field (which must be static) of
+/* Get the value of the FIELDNO'th field (which must be static) of
    TYPE.  Return NULL if the field doesn't exist or has been
-   optimized out. */
+   optimized out.  */
 
 struct value *
 value_static_field (struct type *type, int fieldno)
 {
   struct value *retval;
 
-  if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
+  switch (TYPE_FIELD_LOC_KIND (type, fieldno))
     {
-      retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
-                        TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
-    }
-  else
+    case FIELD_LOC_KIND_PHYSADDR:
+      retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
+                             TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
+      break;
+    case FIELD_LOC_KIND_PHYSNAME:
     {
-      char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
+      const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
+      /* TYPE_FIELD_NAME (type, fieldno); */
       struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
+
       if (sym == NULL)
        {
-         /* With some compilers, e.g. HP aCC, static data members are reported
-            as non-debuggable symbols */
-         struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
+         /* With some compilers, e.g. HP aCC, static data members are
+            reported as non-debuggable symbols.  */
+         struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
+                                                              NULL, NULL);
+
          if (!msym)
            return NULL;
          else
            {
-             retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
-                                SYMBOL_VALUE_ADDRESS (msym));
+             retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
+                                     SYMBOL_VALUE_ADDRESS (msym));
            }
        }
       else
-       {
-         /* SYM should never have a SYMBOL_CLASS which will require
-            read_var_value to use the FRAME parameter.  */
-         if (symbol_read_needs_frame (sym))
-           warning (_("static field's value depends on the current "
-                    "frame - bad debug info?"));
-         retval = read_var_value (sym, NULL);
-       }
-      if (retval && VALUE_LVAL (retval) == lval_memory)
-       SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
-                           VALUE_ADDRESS (retval));
+       retval = value_of_variable (sym, NULL);
+      break;
+    }
+    default:
+      gdb_assert_not_reached ("unexpected field location kind");
     }
+
   return retval;
 }
 
-/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.  
-   You have to be careful here, since the size of the data area for the value 
-   is set by the length of the enclosing type.  So if NEW_ENCL_TYPE is bigger 
-   than the old enclosing type, you have to allocate more space for the data.  
-   The return value is a pointer to the new version of this value structure. */
+/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
+   You have to be careful here, since the size of the data area for the value
+   is set by the length of the enclosing type.  So if NEW_ENCL_TYPE is bigger
+   than the old enclosing type, you have to allocate more space for the
+   data.  */
 
-struct value *
-value_change_enclosing_type (struct value *val, struct type *new_encl_type)
+void
+set_value_enclosing_type (struct value *val, struct type *new_encl_type)
 {
   if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val))) 
     val->contents =
       (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
 
   val->enclosing_type = new_encl_type;
-  return val;
 }
 
 /* Given a value ARG1 (offset by OFFSET bytes)
    of a struct or union type ARG_TYPE,
    extract and return the value of one of its (non-static) fields.
-   FIELDNO says which field. */
+   FIELDNO says which field.  */
 
 struct value *
 value_primitive_field (struct value *arg1, int offset,
@@ -1379,42 +2618,79 @@ value_primitive_field (struct value *arg1, int offset,
   CHECK_TYPEDEF (arg_type);
   type = TYPE_FIELD_TYPE (arg_type, fieldno);
 
-  /* Handle packed fields */
-
-  if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
+  /* Call check_typedef on our type to make sure that, if TYPE
+     is a TYPE_CODE_TYPEDEF, its length is set to the length
+     of the target type instead of zero.  However, we do not
+     replace the typedef type by the target type, because we want
+     to keep the typedef in order to be able to print the type
+     description correctly.  */
+  check_typedef (type);
+
+  if (value_optimized_out (arg1))
+    v = allocate_optimized_out_value (type);
+  else if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
     {
-      v = value_from_longest (type,
-                             unpack_field_as_long (arg_type,
-                                                   value_contents (arg1)
-                                                   + offset,
-                                                   fieldno));
-      v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
+      /* Handle packed fields.
+
+        Create a new value for the bitfield, with bitpos and bitsize
+        set.  If possible, arrange offset and bitpos so that we can
+        do a single aligned read of the size of the containing type.
+        Otherwise, adjust offset to the byte containing the first
+        bit.  Assume that the address, offset, and embedded offset
+        are sufficiently aligned.  */
+
+      int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
+      int container_bitsize = TYPE_LENGTH (type) * 8;
+
+      v = allocate_value_lazy (type);
       v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
-      v->offset = value_offset (arg1) + offset
-       + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
+      if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
+         && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
+       v->bitpos = bitpos % container_bitsize;
+      else
+       v->bitpos = bitpos % 8;
+      v->offset = (value_embedded_offset (arg1)
+                  + offset
+                  + (bitpos - v->bitpos) / 8);
+      v->parent = arg1;
+      value_incref (v->parent);
+      if (!value_lazy (arg1))
+       value_fetch_lazy (v);
     }
   else if (fieldno < TYPE_N_BASECLASSES (arg_type))
     {
       /* This field is actually a base subobject, so preserve the
-         entire object's contents for later references to virtual
-         bases, etc.  */
+        entire object's contents for later references to virtual
+        bases, etc.  */
+      int boffset;
 
       /* Lazy register values with offsets are not supported.  */
       if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
        value_fetch_lazy (arg1);
 
+      /* We special case virtual inheritance here because this
+        requires access to the contents, which we would rather avoid
+        for references to ordinary fields of unavailable values.  */
+      if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
+       boffset = baseclass_offset (arg_type, fieldno,
+                                   value_contents (arg1),
+                                   value_embedded_offset (arg1),
+                                   value_address (arg1),
+                                   arg1);
+      else
+       boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
+
       if (value_lazy (arg1))
        v = allocate_value_lazy (value_enclosing_type (arg1));
       else
        {
          v = allocate_value (value_enclosing_type (arg1));
-         memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
-                 TYPE_LENGTH (value_enclosing_type (arg1)));
+         value_contents_copy_raw (v, 0, arg1, 0,
+                                  TYPE_LENGTH (value_enclosing_type (arg1)));
        }
       v->type = type;
       v->offset = value_offset (arg1);
-      v->embedded_offset = (offset + value_embedded_offset (arg1)
-                           + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
+      v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
     }
   else
     {
@@ -1430,9 +2706,9 @@ value_primitive_field (struct value *arg1, int offset,
       else
        {
          v = allocate_value (type);
-         memcpy (value_contents_raw (v),
-                 value_contents_raw (arg1) + offset,
-                 TYPE_LENGTH (type));
+         value_contents_copy_raw (v, value_embedded_offset (v),
+                                  arg1, value_embedded_offset (arg1) + offset,
+                                  TYPE_LENGTH (type));
        }
       v->offset = (value_offset (arg1) + offset
                   + value_embedded_offset (arg1));
@@ -1445,7 +2721,7 @@ value_primitive_field (struct value *arg1, int offset,
 
 /* Given a value ARG1 of a struct or union type,
    extract and return the value of one of its (non-static) fields.
-   FIELDNO says which field. */
+   FIELDNO says which field.  */
 
 struct value *
 value_field (struct value *arg1, int fieldno)
@@ -1458,16 +2734,16 @@ value_field (struct value *arg1, int fieldno)
    J is an index into F which provides the desired method.
 
    We only use the symbol for its address, so be happy with either a
-   full symbol or a minimal symbol.
- */
+   full symbol or a minimal symbol.  */
 
 struct value *
-value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
+value_fn_field (struct value **arg1p, struct fn_field *f,
+               int j, struct type *type,
                int offset)
 {
   struct value *v;
   struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
-  char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
+  const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
   struct symbol *sym;
   struct minimal_symbol *msym;
 
@@ -1487,7 +2763,7 @@ value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *ty
   v = allocate_value (ftype);
   if (sym)
     {
-      VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
+      set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
     }
   else
     {
@@ -1496,9 +2772,9 @@ value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *ty
       struct objfile *objfile = msymbol_objfile (msym);
       struct gdbarch *gdbarch = get_objfile_arch (objfile);
 
-      VALUE_ADDRESS (v)
-       gdbarch_convert_from_func_ptr_addr
-          (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target);
+      set_value_address (v,
+       gdbarch_convert_from_func_ptr_addr
+          (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
     }
 
   if (arg1p)
@@ -1508,52 +2784,60 @@ value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *ty
                                        value_addr (*arg1p)));
 
       /* Move the `this' pointer according to the offset.
-         VALUE_OFFSET (*arg1p) += offset;
-       */
+         VALUE_OFFSET (*arg1p) += offset; */
     }
 
   return v;
 }
 
 \f
-/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
-   VALADDR.
-
-   Extracting bits depends on endianness of the machine.  Compute the
-   number of least significant bits to discard.  For big endian machines,
-   we compute the total number of bits in the anonymous object, subtract
-   off the bit count from the MSB of the object to the MSB of the
-   bitfield, then the size of the bitfield, which leaves the LSB discard
-   count.  For little endian machines, the discard count is simply the
-   number of bits from the LSB of the anonymous object to the LSB of the
-   bitfield.
 
-   If the field is signed, we also do sign extension. */
+/* Helper function for both unpack_value_bits_as_long and
+   unpack_bits_as_long.  See those functions for more details on the
+   interface; the only difference is that this function accepts either
+   a NULL or a non-NULL ORIGINAL_VALUE.  */
 
-LONGEST
-unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
+static int
+unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
+                            int embedded_offset, int bitpos, int bitsize,
+                            const struct value *original_value,
+                            LONGEST *result)
 {
+  enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
   ULONGEST val;
   ULONGEST valmask;
-  int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
-  int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
   int lsbcount;
-  struct type *field_type;
+  int bytes_read;
+  int read_offset;
 
-  val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
-  field_type = TYPE_FIELD_TYPE (type, fieldno);
+  /* Read the minimum number of bytes required; there may not be
+     enough bytes to read an entire ULONGEST.  */
   CHECK_TYPEDEF (field_type);
+  if (bitsize)
+    bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
+  else
+    bytes_read = TYPE_LENGTH (field_type);
+
+  read_offset = bitpos / 8;
+
+  if (original_value != NULL
+      && !value_bytes_available (original_value, embedded_offset + read_offset,
+                                bytes_read))
+    return 0;
+
+  val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
+                                 bytes_read, byte_order);
 
-  /* Extract bits.  See comment above. */
+  /* Extract bits.  See comment above.  */
 
-  if (gdbarch_bits_big_endian (current_gdbarch))
-    lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
+  if (gdbarch_bits_big_endian (get_type_arch (field_type)))
+    lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
   else
     lsbcount = (bitpos % 8);
   val >>= lsbcount;
 
   /* If the field does not entirely fill a LONGEST, then zero the sign bits.
-     If the field is signed, and is negative, then sign extend. */
+     If the field is signed, and is negative, then sign extend.  */
 
   if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
     {
@@ -1567,21 +2851,139 @@ unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
            }
        }
     }
-  return (val);
+
+  *result = val;
+  return 1;
+}
+
+/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
+   VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
+   VALADDR points to the contents of ORIGINAL_VALUE, which must not be
+   NULL.  The bitfield starts at BITPOS bits and contains BITSIZE
+   bits.
+
+   Returns false if the value contents are unavailable, otherwise
+   returns true, indicating a valid value has been stored in *RESULT.
+
+   Extracting bits depends on endianness of the machine.  Compute the
+   number of least significant bits to discard.  For big endian machines,
+   we compute the total number of bits in the anonymous object, subtract
+   off the bit count from the MSB of the object to the MSB of the
+   bitfield, then the size of the bitfield, which leaves the LSB discard
+   count.  For little endian machines, the discard count is simply the
+   number of bits from the LSB of the anonymous object to the LSB of the
+   bitfield.
+
+   If the field is signed, we also do sign extension.  */
+
+int
+unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
+                          int embedded_offset, int bitpos, int bitsize,
+                          const struct value *original_value,
+                          LONGEST *result)
+{
+  gdb_assert (original_value != NULL);
+
+  return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
+                                     bitpos, bitsize, original_value, result);
+
+}
+
+/* Unpack a field FIELDNO of the specified TYPE, from the object at
+   VALADDR + EMBEDDED_OFFSET.  VALADDR points to the contents of
+   ORIGINAL_VALUE.  See unpack_value_bits_as_long for more
+   details.  */
+
+static int
+unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
+                             int embedded_offset, int fieldno,
+                             const struct value *val, LONGEST *result)
+{
+  int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
+  int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
+  struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
+
+  return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
+                                     bitpos, bitsize, val,
+                                     result);
+}
+
+/* Unpack a field FIELDNO of the specified TYPE, from the object at
+   VALADDR + EMBEDDED_OFFSET.  VALADDR points to the contents of
+   ORIGINAL_VALUE, which must not be NULL.  See
+   unpack_value_bits_as_long for more details.  */
+
+int
+unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
+                           int embedded_offset, int fieldno,
+                           const struct value *val, LONGEST *result)
+{
+  gdb_assert (val != NULL);
+
+  return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
+                                      fieldno, val, result);
+}
+
+/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
+   object at VALADDR.  See unpack_value_bits_as_long for more details.
+   This function differs from unpack_value_field_as_long in that it
+   operates without a struct value object.  */
+
+LONGEST
+unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
+{
+  LONGEST result;
+
+  unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
+  return result;
+}
+
+/* Return a new value with type TYPE, which is FIELDNO field of the
+   object at VALADDR + EMBEDDEDOFFSET.  VALADDR points to the contents
+   of VAL.  If the VAL's contents required to extract the bitfield
+   from are unavailable, the new value is correspondingly marked as
+   unavailable.  */
+
+struct value *
+value_field_bitfield (struct type *type, int fieldno,
+                     const gdb_byte *valaddr,
+                     int embedded_offset, const struct value *val)
+{
+  LONGEST l;
+
+  if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
+                                  val, &l))
+    {
+      struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
+      struct value *retval = allocate_value (field_type);
+      mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
+      return retval;
+    }
+  else
+    {
+      return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
+    }
 }
 
 /* Modify the value of a bitfield.  ADDR points to a block of memory in
    target byte order; the bitfield starts in the byte pointed to.  FIELDVAL
    is the desired value of the field, in host byte order.  BITPOS and BITSIZE
-   indicate which bits (in target bit order) comprise the bitfield.  
-   Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
+   indicate which bits (in target bit order) comprise the bitfield.
+   Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
    0 <= BITPOS, where lbits is the size of a LONGEST in bits.  */
 
 void
-modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize)
+modify_field (struct type *type, gdb_byte *addr,
+             LONGEST fieldval, int bitpos, int bitsize)
 {
+  enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
   ULONGEST oword;
   ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
+  int bytesize;
+
+  /* Normalize BITPOS.  */
+  addr += bitpos / 8;
+  bitpos %= 8;
 
   /* If a negative fieldval fits in the field in question, chop
      off the sign extension bits.  */
@@ -1599,16 +3001,20 @@ modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize)
       fieldval &= mask;
     }
 
-  oword = extract_unsigned_integer (addr, sizeof oword);
+  /* Ensure no bytes outside of the modified ones get accessed as it may cause
+     false valgrind reports.  */
+
+  bytesize = (bitpos + bitsize + 7) / 8;
+  oword = extract_unsigned_integer (addr, bytesize, byte_order);
 
   /* Shifting for bit field depends on endianness of the target machine.  */
-  if (gdbarch_bits_big_endian (current_gdbarch))
-    bitpos = sizeof (oword) * 8 - bitpos - bitsize;
+  if (gdbarch_bits_big_endian (get_type_arch (type)))
+    bitpos = bytesize * 8 - bitpos - bitsize;
 
   oword &= ~(mask << bitpos);
   oword |= fieldval << bitpos;
 
-  store_unsigned_integer (addr, sizeof oword, oword);
+  store_unsigned_integer (addr, bytesize, byte_order, oword);
 }
 \f
 /* Pack NUM into BUF using a target format of TYPE.  */
@@ -1616,6 +3022,7 @@ modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize)
 void
 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
 {
+  enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
   int len;
 
   type = check_typedef (type);
@@ -1630,7 +3037,7 @@ pack_long (gdb_byte *buf, struct type *type, LONGEST num)
     case TYPE_CODE_BOOL:
     case TYPE_CODE_RANGE:
     case TYPE_CODE_MEMBERPTR:
-      store_signed_integer (buf, len, num);
+      store_signed_integer (buf, len, byte_order, num);
       break;
 
     case TYPE_CODE_REF:
@@ -1645,6 +3052,43 @@ pack_long (gdb_byte *buf, struct type *type, LONGEST num)
 }
 
 
+/* Pack NUM into BUF using a target format of TYPE.  */
+
+static void
+pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
+{
+  int len;
+  enum bfd_endian byte_order;
+
+  type = check_typedef (type);
+  len = TYPE_LENGTH (type);
+  byte_order = gdbarch_byte_order (get_type_arch (type));
+
+  switch (TYPE_CODE (type))
+    {
+    case TYPE_CODE_INT:
+    case TYPE_CODE_CHAR:
+    case TYPE_CODE_ENUM:
+    case TYPE_CODE_FLAGS:
+    case TYPE_CODE_BOOL:
+    case TYPE_CODE_RANGE:
+    case TYPE_CODE_MEMBERPTR:
+      store_unsigned_integer (buf, len, byte_order, num);
+      break;
+
+    case TYPE_CODE_REF:
+    case TYPE_CODE_PTR:
+      store_typed_address (buf, type, (CORE_ADDR) num);
+      break;
+
+    default:
+      error (_("Unexpected type (%d) encountered "
+              "for unsigned integer constant."),
+            TYPE_CODE (type));
+    }
+}
+
+
 /* Convert C numbers into newly allocated values.  */
 
 struct value *
@@ -1653,50 +3097,35 @@ value_from_longest (struct type *type, LONGEST num)
   struct value *val = allocate_value (type);
 
   pack_long (value_contents_raw (val), type, num);
-
   return val;
 }
 
 
-/* Create a value representing a pointer of type TYPE to the address
-   ADDR.  */
+/* Convert C unsigned numbers into newly allocated values.  */
+
 struct value *
-value_from_pointer (struct type *type, CORE_ADDR addr)
+value_from_ulongest (struct type *type, ULONGEST num)
 {
   struct value *val = allocate_value (type);
-  store_typed_address (value_contents_raw (val), type, addr);
+
+  pack_unsigned_long (value_contents_raw (val), type, num);
+
   return val;
 }
 
 
-/* Create a value for a string constant to be stored locally
-   (not in the inferior's memory space, but in GDB memory).
-   This is analogous to value_from_longest, which also does not
-   use inferior memory.  String shall NOT contain embedded nulls.  */
-
+/* Create a value representing a pointer of type TYPE to the address
+   ADDR.  */
 struct value *
-value_from_string (char *ptr)
+value_from_pointer (struct type *type, CORE_ADDR addr)
 {
-  struct value *val;
-  int len = strlen (ptr);
-  int lowbound = current_language->string_lower_bound;
-  struct type *string_char_type;
-  struct type *rangetype;
-  struct type *stringtype;
-
-  rangetype = create_range_type ((struct type *) NULL,
-                                builtin_type_int32,
-                                lowbound, len + lowbound - 1);
-  string_char_type = language_string_char_type (current_language,
-                                               current_gdbarch);
-  stringtype = create_array_type ((struct type *) NULL,
-                                 string_char_type,
-                                 rangetype);
-  val = allocate_value (stringtype);
-  memcpy (value_contents_raw (val), ptr, len);
+  struct value *val = allocate_value (type);
+
+  store_typed_address (value_contents_raw (val), check_typedef (type), addr);
   return val;
 }
 
+
 /* Create a value of type TYPE whose contents come from VALADDR, if it
    is non-null, and whose memory address (in the inferior) is
    ADDRESS.  */
@@ -1706,24 +3135,39 @@ value_from_contents_and_address (struct type *type,
                                 const gdb_byte *valaddr,
                                 CORE_ADDR address)
 {
-  struct value *v = allocate_value (type);
+  struct value *v;
+
   if (valaddr == NULL)
-    set_value_lazy (v, 1);
+    v = allocate_value_lazy (type);
   else
-    memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
-  VALUE_ADDRESS (v) = address;
-  if (address != 0)
-    VALUE_LVAL (v) = lval_memory;
+    {
+      v = allocate_value (type);
+      memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
+    }
+  set_value_address (v, address);
+  VALUE_LVAL (v) = lval_memory;
   return v;
 }
 
+/* Create a value of type TYPE holding the contents CONTENTS.
+   The new value is `not_lval'.  */
+
+struct value *
+value_from_contents (struct type *type, const gdb_byte *contents)
+{
+  struct value *result;
+
+  result = allocate_value (type);
+  memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
+  return result;
+}
+
 struct value *
 value_from_double (struct type *type, DOUBLEST num)
 {
   struct value *val = allocate_value (type);
   struct type *base_type = check_typedef (type);
   enum type_code code = TYPE_CODE (base_type);
-  int len = TYPE_LENGTH (base_type);
 
   if (code == TYPE_CODE_FLT)
     {
@@ -1741,19 +3185,120 @@ value_from_decfloat (struct type *type, const gdb_byte *dec)
   struct value *val = allocate_value (type);
 
   memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
-
   return val;
 }
 
+/* Extract a value from the history file.  Input will be of the form
+   $digits or $$digits.  See block comment above 'write_dollar_variable'
+   for details.  */
+
+struct value *
+value_from_history_ref (char *h, char **endp)
+{
+  int index, len;
+
+  if (h[0] == '$')
+    len = 1;
+  else
+    return NULL;
+
+  if (h[1] == '$')
+    len = 2;
+
+  /* Find length of numeral string.  */
+  for (; isdigit (h[len]); len++)
+    ;
+
+  /* Make sure numeral string is not part of an identifier.  */
+  if (h[len] == '_' || isalpha (h[len]))
+    return NULL;
+
+  /* Now collect the index value.  */
+  if (h[1] == '$')
+    {
+      if (len == 2)
+       {
+         /* For some bizarre reason, "$$" is equivalent to "$$1", 
+            rather than to "$$0" as it ought to be!  */
+         index = -1;
+         *endp += len;
+       }
+      else
+       index = -strtol (&h[2], endp, 10);
+    }
+  else
+    {
+      if (len == 1)
+       {
+         /* "$" is equivalent to "$0".  */
+         index = 0;
+         *endp += len;
+       }
+      else
+       index = strtol (&h[1], endp, 10);
+    }
+
+  return access_value_history (index);
+}
+
+struct value *
+coerce_ref_if_computed (const struct value *arg)
+{
+  const struct lval_funcs *funcs;
+
+  if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
+    return NULL;
+
+  if (value_lval_const (arg) != lval_computed)
+    return NULL;
+
+  funcs = value_computed_funcs (arg);
+  if (funcs->coerce_ref == NULL)
+    return NULL;
+
+  return funcs->coerce_ref (arg);
+}
+
+/* Look at value.h for description.  */
+
+struct value *
+readjust_indirect_value_type (struct value *value, struct type *enc_type,
+                             struct type *original_type,
+                             struct value *original_value)
+{
+  /* Re-adjust type.  */
+  deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
+
+  /* Add embedding info.  */
+  set_value_enclosing_type (value, enc_type);
+  set_value_embedded_offset (value, value_pointed_to_offset (original_value));
+
+  /* We may be pointing to an object of some derived type.  */
+  return value_full_object (value, NULL, 0, 0, 0);
+}
+
 struct value *
 coerce_ref (struct value *arg)
 {
   struct type *value_type_arg_tmp = check_typedef (value_type (arg));
-  if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
-    arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
-                        unpack_pointer (value_type (arg),              
-                                        value_contents (arg)));
-  return arg;
+  struct value *retval;
+  struct type *enc_type;
+
+  retval = coerce_ref_if_computed (arg);
+  if (retval)
+    return retval;
+
+  if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
+    return arg;
+
+  enc_type = check_typedef (value_enclosing_type (arg));
+  enc_type = TYPE_TARGET_TYPE (enc_type);
+
+  retval = value_at_lazy (enc_type,
+                          unpack_pointer (value_type (arg),
+                                          value_contents (arg)));
+  return readjust_indirect_value_type (retval, enc_type,
+                                       value_type_arg_tmp, arg);
 }
 
 struct value *
@@ -1767,7 +3312,7 @@ coerce_array (struct value *arg)
   switch (TYPE_CODE (type))
     {
     case TYPE_CODE_ARRAY:
-      if (current_language->c_style_arrays)
+      if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
        arg = value_coerce_array (arg);
       break;
     case TYPE_CODE_FUNC:
@@ -1778,26 +3323,37 @@ coerce_array (struct value *arg)
 }
 \f
 
-/* Return true if the function returning the specified type is using
-   the convention of returning structures in memory (passing in the
-   address as a hidden first parameter).  */
+/* Return the return value convention that will be used for the
+   specified type.  */
 
-int
-using_struct_return (struct type *func_type, struct type *value_type)
+enum return_value_convention
+struct_return_convention (struct gdbarch *gdbarch,
+                         struct value *function, struct type *value_type)
 {
   enum type_code code = TYPE_CODE (value_type);
 
   if (code == TYPE_CODE_ERROR)
     error (_("Function return type unknown."));
 
-  if (code == TYPE_CODE_VOID)
+  /* Probe the architecture for the return-value convention.  */
+  return gdbarch_return_value (gdbarch, function, value_type,
+                              NULL, NULL, NULL);
+}
+
+/* Return true if the function returning the specified type is using
+   the convention of returning structures in memory (passing in the
+   address as a hidden first parameter).  */
+
+int
+using_struct_return (struct gdbarch *gdbarch,
+                    struct value *function, struct type *value_type)
+{
+  if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
     /* A void return value is never in memory.  See also corresponding
        code in "print_return_value".  */
     return 0;
 
-  /* Probe the architecture for the return-value convention.  */
-  return (gdbarch_return_value (current_gdbarch, func_type, value_type,
-                               NULL, NULL, NULL)
+  return (struct_return_convention (gdbarch, function, value_type)
          != RETURN_VALUE_REGISTER_CONVENTION);
 }
 
@@ -1821,17 +3377,22 @@ void
 _initialize_values (void)
 {
   add_cmd ("convenience", no_class, show_convenience, _("\
-Debugger convenience (\"$foo\") variables.\n\
-These variables are created when you assign them values;\n\
-thus, \"print $foo=1\" gives \"$foo\" the value 1.  Values may be any type.\n\
+Debugger convenience (\"$foo\") variables and functions.\n\
+Convenience variables are created when you assign them values;\n\
+thus, \"set $foo=1\" gives \"$foo\" the value 1.  Values may be any type.\n\
 \n\
 A few convenience variables are given values automatically:\n\
 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
-\"$__\" holds the contents of the last address examined with \"x\"."),
-          &showlist);
+\"$__\" holds the contents of the last address examined with \"x\"."
+#ifdef HAVE_PYTHON
+"\n\n\
+Convenience functions are defined via the Python API."
+#endif
+          ), &showlist);
+  add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
 
-  add_cmd ("values", no_class, show_values,
-          _("Elements of value history around item number IDX (or last ten)."),
+  add_cmd ("values", no_set_class, show_values, _("\
+Elements of value history around item number IDX (or last ten)."),
           &showlist);
 
   add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
@@ -1840,4 +3401,8 @@ init-if-undefined VARIABLE = EXPRESSION\n\
 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
 exist or does not contain a value.  The EXPRESSION is not evaluated if the\n\
 VARIABLE is already initialized."));
+
+  add_prefix_cmd ("function", no_class, function_command, _("\
+Placeholder command for showing help on convenience functions."),
+                 &functionlist, "function ", 0, &cmdlist);
 }
This page took 0.055813 seconds and 4 git commands to generate.