Add -Wshadow to the gcc command line options used when compiling the binutils.
[deliverable/binutils-gdb.git] / gold / arm.cc
index 8f4da126f28aee28ba04af562bc8da8bbc72c789..f69593e6c7e4eab605694dc57423c92ae1e67a95 100644 (file)
@@ -3,6 +3,8 @@
 // Copyright 2009 Free Software Foundation, Inc.
 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
 // by Ian Lance Taylor <iant@google.com>.
+// This file also contains borrowed and adapted code from
+// bfd/elf32-arm.c.
 
 // This file is part of gold.
 
@@ -27,6 +29,7 @@
 #include <limits>
 #include <cstdio>
 #include <string>
+#include <algorithm>
 
 #include "elfcpp.h"
 #include "parameters.h"
@@ -42,6 +45,8 @@
 #include "target-select.h"
 #include "tls.h"
 #include "defstd.h"
+#include "gc.h"
+#include "attributes.h"
 
 namespace
 {
@@ -51,6 +56,32 @@ using namespace gold;
 template<bool big_endian>
 class Output_data_plt_arm;
 
+template<bool big_endian>
+class Stub_table;
+
+template<bool big_endian>
+class Arm_input_section;
+
+template<bool big_endian>
+class Arm_output_section;
+
+template<bool big_endian>
+class Arm_relobj;
+
+template<bool big_endian>
+class Target_arm;
+
+// For convenience.
+typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
+
+// Maximum branch offsets for ARM, THUMB and THUMB2.
+const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
+const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
+const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
+const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
+const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
+const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
+
 // The arm target class.
 //
 // This is a very simple port of gold for ARM-EABI.  It is intended for
@@ -59,6 +90,12 @@ class Output_data_plt_arm;
 //
 // R_ARM_NONE
 // R_ARM_ABS32
+// R_ARM_ABS32_NOI
+// R_ARM_ABS16
+// R_ARM_ABS12
+// R_ARM_ABS8
+// R_ARM_THM_ABS5
+// R_ARM_BASE_ABS
 // R_ARM_REL32
 // R_ARM_THM_CALL
 // R_ARM_COPY
@@ -68,1348 +105,6893 @@ class Output_data_plt_arm;
 // R_ARM_RELATIVE
 // R_ARM_GOTOFF32
 // R_ARM_GOT_BREL
+// R_ARM_GOT_PREL
 // R_ARM_PLT32
 // R_ARM_CALL
 // R_ARM_JUMP24
 // R_ARM_TARGET1
 // R_ARM_PREL31
+// R_ARM_ABS8
+// R_ARM_MOVW_ABS_NC
+// R_ARM_MOVT_ABS
+// R_ARM_THM_MOVW_ABS_NC
+// R_ARM_THM_MOVT_ABS
+// R_ARM_MOVW_PREL_NC
+// R_ARM_MOVT_PREL
+// R_ARM_THM_MOVW_PREL_NC
+// R_ARM_THM_MOVT_PREL
 // 
-// Coming soon (pending patches):
-// - Relocation
-// - Defining section symbols __exidx_start and __exidx_stop.
-// - Support interworking.
-// - Mergeing all .ARM.xxx.yyy sections into .ARM.xxx.  Currently, they
-//   are incorrectly merged into an .ARM section.
-//
 // TODOs:
-// - Create a PT_ARM_EXIDX program header for a shared object that
-//   might throw an exception.
 // - Support more relocation types as needed. 
 // - Make PLTs more flexible for different architecture features like
 //   Thumb-2 and BE8.
+// There are probably a lot more.
 
-template<bool big_endian>
-class Target_arm : public Sized_target<32, big_endian>
+// Instruction template class.  This class is similar to the insn_sequence
+// struct in bfd/elf32-arm.c.
+
+class Insn_template
 {
  public:
-  typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
-    Reloc_section;
+  // Types of instruction templates.
+  enum Type
+    {
+      THUMB16_TYPE = 1,
+      THUMB32_TYPE,
+      ARM_TYPE,
+      DATA_TYPE
+    };
+
+  // Factory methods to create instrunction templates in different formats.
+
+  static const Insn_template
+  thumb16_insn(uint32_t data)
+  { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); } 
+
+  // A bit of a hack.  A Thumb conditional branch, in which the proper
+  // condition is inserted when we build the stub.
+  static const Insn_template
+  thumb16_bcond_insn(uint32_t data)
+  { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 1); } 
+
+  static const Insn_template
+  thumb32_insn(uint32_t data)
+  { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); } 
+
+  static const Insn_template
+  thumb32_b_insn(uint32_t data, int reloc_addend)
+  {
+    return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
+                        reloc_addend);
+  } 
 
-  Target_arm()
-    : Sized_target<32, big_endian>(&arm_info),
-      got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
-      copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL)
-  { }
+  static const Insn_template
+  arm_insn(uint32_t data)
+  { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
 
-  // Process the relocations to determine unreferenced sections for 
-  // garbage collection.
-  void
-  gc_process_relocs(const General_options& options,
-                   Symbol_table* symtab,
-                   Layout* layout,
-                   Sized_relobj<32, big_endian>* object,
-                   unsigned int data_shndx,
-                   unsigned int sh_type,
-                   const unsigned char* prelocs,
-                   size_t reloc_count,
-                   Output_section* output_section,
-                   bool needs_special_offset_handling,
-                   size_t local_symbol_count,
-                   const unsigned char* plocal_symbols);
+  static const Insn_template
+  arm_rel_insn(unsigned data, int reloc_addend)
+  { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
 
-  // Scan the relocations to look for symbol adjustments.
-  void
-  scan_relocs(const General_options& options,
-             Symbol_table* symtab,
-             Layout* layout,
-             Sized_relobj<32, big_endian>* object,
-             unsigned int data_shndx,
-             unsigned int sh_type,
-             const unsigned char* prelocs,
-             size_t reloc_count,
-             Output_section* output_section,
-             bool needs_special_offset_handling,
-             size_t local_symbol_count,
-             const unsigned char* plocal_symbols);
+  static const Insn_template
+  data_word(unsigned data, unsigned int r_type, int reloc_addend)
+  { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); } 
 
-  // Finalize the sections.
-  void
-  do_finalize_sections(Layout*);
+  // Accessors.  This class is used for read-only objects so no modifiers
+  // are provided.
 
-  // Return the value to use for a dynamic symbol which requires special
-  // treatment.
-  uint64_t
-  do_dynsym_value(const Symbol*) const;
+  uint32_t
+  data() const
+  { return this->data_; }
 
-  // Relocate a section.
-  void
-  relocate_section(const Relocate_info<32, big_endian>*,
-                  unsigned int sh_type,
-                  const unsigned char* prelocs,
-                  size_t reloc_count,
-                  Output_section* output_section,
-                  bool needs_special_offset_handling,
-                  unsigned char* view,
-                  elfcpp::Elf_types<32>::Elf_Addr view_address,
-                  section_size_type view_size);
+  // Return the instruction sequence type of this.
+  Type
+  type() const
+  { return this->type_; }
 
-  // Scan the relocs during a relocatable link.
-  void
-  scan_relocatable_relocs(const General_options& options,
-                         Symbol_table* symtab,
-                         Layout* layout,
-                         Sized_relobj<32, big_endian>* object,
-                         unsigned int data_shndx,
-                         unsigned int sh_type,
-                         const unsigned char* prelocs,
-                         size_t reloc_count,
-                         Output_section* output_section,
-                         bool needs_special_offset_handling,
-                         size_t local_symbol_count,
-                         const unsigned char* plocal_symbols,
-                         Relocatable_relocs*);
+  // Return the ARM relocation type of this.
+  unsigned int
+  r_type() const
+  { return this->r_type_; }
 
-  // Relocate a section during a relocatable link.
-  void
-  relocate_for_relocatable(const Relocate_info<32, big_endian>*,
-                          unsigned int sh_type,
-                          const unsigned char* prelocs,
-                          size_t reloc_count,
-                          Output_section* output_section,
-                          off_t offset_in_output_section,
-                          const Relocatable_relocs*,
-                          unsigned char* view,
-                          elfcpp::Elf_types<32>::Elf_Addr view_address,
-                          section_size_type view_size,
-                          unsigned char* reloc_view,
-                          section_size_type reloc_view_size);
+  int32_t
+  reloc_addend() const
+  { return this->reloc_addend_; }
 
-  // Return whether SYM is defined by the ABI.
+  // Return size of instrunction template in bytes.
+  size_t
+  size() const;
+
+  // Return byte-alignment of instrunction template.
+  unsigned
+  alignment() const;
+
+ private:
+  // We make the constructor private to ensure that only the factory
+  // methods are used.
+  inline
+  Insn_template(unsigned adata, Type atype, unsigned int rtype, int relocaddend)
+    : data_(adata), type_(atype), r_type_(rtype), reloc_addend_(relocaddend)
+  { }
+
+  // Instruction specific data.  This is used to store information like
+  // some of the instruction bits.
+  uint32_t data_;
+  // Instruction template type.
+  Type type_;
+  // Relocation type if there is a relocation or R_ARM_NONE otherwise.
+  unsigned int r_type_;
+  // Relocation addend.
+  int32_t reloc_addend_;
+};
+
+// Macro for generating code to stub types. One entry per long/short
+// branch stub
+
+#define DEF_STUBS \
+  DEF_STUB(long_branch_any_any) \
+  DEF_STUB(long_branch_v4t_arm_thumb) \
+  DEF_STUB(long_branch_thumb_only) \
+  DEF_STUB(long_branch_v4t_thumb_thumb) \
+  DEF_STUB(long_branch_v4t_thumb_arm) \
+  DEF_STUB(short_branch_v4t_thumb_arm) \
+  DEF_STUB(long_branch_any_arm_pic) \
+  DEF_STUB(long_branch_any_thumb_pic) \
+  DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
+  DEF_STUB(long_branch_v4t_arm_thumb_pic) \
+  DEF_STUB(long_branch_v4t_thumb_arm_pic) \
+  DEF_STUB(long_branch_thumb_only_pic) \
+  DEF_STUB(a8_veneer_b_cond) \
+  DEF_STUB(a8_veneer_b) \
+  DEF_STUB(a8_veneer_bl) \
+  DEF_STUB(a8_veneer_blx)
+
+// Stub types.
+
+#define DEF_STUB(x) arm_stub_##x,
+typedef enum
+  {
+    arm_stub_none,
+    DEF_STUBS
+
+    // First reloc stub type.
+    arm_stub_reloc_first = arm_stub_long_branch_any_any,
+    // Last  reloc stub type.
+    arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
+
+    // First Cortex-A8 stub type.
+    arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
+    // Last Cortex-A8 stub type.
+    arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
+    
+    // Last stub type.
+    arm_stub_type_last = arm_stub_a8_veneer_blx
+  } Stub_type;
+#undef DEF_STUB
+
+// Stub template class.  Templates are meant to be read-only objects.
+// A stub template for a stub type contains all read-only attributes
+// common to all stubs of the same type.
+
+class Stub_template
+{
+ public:
+  Stub_template(Stub_type, const Insn_template*, size_t);
+
+  ~Stub_template()
+  { }
+
+  // Return stub type.
+  Stub_type
+  type() const
+  { return this->type_; }
+
+  // Return an array of instruction templates.
+  const Insn_template*
+  insns() const
+  { return this->insns_; }
+
+  // Return size of template in number of instructions.
+  size_t
+  insn_count() const
+  { return this->insn_count_; }
+
+  // Return size of template in bytes.
+  size_t
+  size() const
+  { return this->size_; }
+
+  // Return alignment of the stub template.
+  unsigned
+  alignment() const
+  { return this->alignment_; }
+  
+  // Return whether entry point is in thumb mode.
   bool
-  do_is_defined_by_abi(Symbol* sym) const
-  { return strcmp(sym->name(), "__tls_get_addr") == 0; }
+  entry_in_thumb_mode() const
+  { return this->entry_in_thumb_mode_; }
 
-  // Return the size of the GOT section.
+  // Return number of relocations in this template.
+  size_t
+  reloc_count() const
+  { return this->relocs_.size(); }
+
+  // Return index of the I-th instruction with relocation.
+  size_t
+  reloc_insn_index(size_t i) const
+  {
+    gold_assert(i < this->relocs_.size());
+    return this->relocs_[i].first;
+  }
+
+  // Return the offset of the I-th instruction with relocation from the
+  // beginning of the stub.
   section_size_type
-  got_size()
+  reloc_offset(size_t i) const
   {
-    gold_assert(this->got_ != NULL);
-    return this->got_->data_size();
+    gold_assert(i < this->relocs_.size());
+    return this->relocs_[i].second;
   }
 
-  // Map platform-specific reloc types
-  static unsigned int
-  get_real_reloc_type (unsigned int r_type);
+ private:
+  // This contains information about an instruction template with a relocation
+  // and its offset from start of stub.
+  typedef std::pair<size_t, section_size_type> Reloc;
+
+  // A Stub_template may not be copied.  We want to share templates as much
+  // as possible.
+  Stub_template(const Stub_template&);
+  Stub_template& operator=(const Stub_template&);
+  
+  // Stub type.
+  Stub_type type_;
+  // Points to an array of Insn_templates.
+  const Insn_template* insns_;
+  // Number of Insn_templates in insns_[].
+  size_t insn_count_;
+  // Size of templated instructions in bytes.
+  size_t size_;
+  // Alignment of templated instructions.
+  unsigned alignment_;
+  // Flag to indicate if entry is in thumb mode.
+  bool entry_in_thumb_mode_;
+  // A table of reloc instruction indices and offsets.  We can find these by
+  // looking at the instruction templates but we pre-compute and then stash
+  // them here for speed. 
+  std::vector<Reloc> relocs_;
+};
+
+//
+// A class for code stubs.  This is a base class for different type of
+// stubs used in the ARM target.
+//
 
+class Stub
+{
  private:
-  // The class which scans relocations.
-  class Scan
-  {
-   public:
-    Scan()
-      : issued_non_pic_error_(false)
-    { }
+  static const section_offset_type invalid_offset =
+    static_cast<section_offset_type>(-1);
 
-    inline void
-    local(const General_options& options, Symbol_table* symtab,
-         Layout* layout, Target_arm* target,
-         Sized_relobj<32, big_endian>* object,
-         unsigned int data_shndx,
-         Output_section* output_section,
-         const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
-         const elfcpp::Sym<32, big_endian>& lsym);
+ public:
+  Stub(const Stub_template* stubtemplate)
+    : stub_template_(stubtemplate), offset_(invalid_offset)
+  { }
 
-    inline void
-    global(const General_options& options, Symbol_table* symtab,
-          Layout* layout, Target_arm* target,
-          Sized_relobj<32, big_endian>* object,
-          unsigned int data_shndx,
-          Output_section* output_section,
-          const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
-          Symbol* gsym);
+  virtual
+   ~Stub()
+  { }
 
-   private:
-    static void
-    unsupported_reloc_local(Sized_relobj<32, big_endian>*,
-                           unsigned int r_type);
+  // Return the stub template.
+  const Stub_template*
+  stub_template() const
+  { return this->stub_template_; }
 
-    static void
-    unsupported_reloc_global(Sized_relobj<32, big_endian>*,
-                            unsigned int r_type, Symbol*);
+  // Return offset of code stub from beginning of its containing stub table.
+  section_offset_type
+  offset() const
+  {
+    gold_assert(this->offset_ != invalid_offset);
+    return this->offset_;
+  }
 
-    void
-    check_non_pic(Relobj*, unsigned int r_type);
+  // Set offset of code stub from beginning of its containing stub table.
+  void
+  set_offset(section_offset_type off)
+  { this->offset_ = off; }
+  
+  // Return the relocation target address of the i-th relocation in the
+  // stub.  This must be defined in a child class.
+  Arm_address
+  reloc_target(size_t i)
+  { return this->do_reloc_target(i); }
+
+  // Write a stub at output VIEW.  BIG_ENDIAN select how a stub is written.
+  void
+  write(unsigned char* view, section_size_type view_size, bool big_endian)
+  { this->do_write(view, view_size, big_endian); }
 
-    // Almost identical to Symbol::needs_plt_entry except that it also
-    // handles STT_ARM_TFUNC.
-    static bool
-    symbol_needs_plt_entry(const Symbol* sym)
-    {
-      // An undefined symbol from an executable does not need a PLT entry.
-      if (sym->is_undefined() && !parameters->options().shared())
-       return false;
+ protected:
+  // This must be defined in the child class.
+  virtual Arm_address
+  do_reloc_target(size_t) = 0;
+
+  // This must be defined in the child class.
+  virtual void
+  do_write(unsigned char*, section_size_type, bool) = 0;
+  
+ private:
+  // Its template.
+  const Stub_template* stub_template_;
+  // Offset within the section of containing this stub.
+  section_offset_type offset_;
+};
 
-      return (!parameters->doing_static_link()
-             && (sym->type() == elfcpp::STT_FUNC
-                 || sym->type() == elfcpp::STT_ARM_TFUNC)
-             && (sym->is_from_dynobj()
-                 || sym->is_undefined()
-                 || sym->is_preemptible()));
-    }
+// Reloc stub class.  These are stubs we use to fix up relocation because
+// of limited branch ranges.
 
-    // Whether we have issued an error about a non-PIC compilation.
-    bool issued_non_pic_error_;
-  };
+class Reloc_stub : public Stub
+{
+ public:
+  static const unsigned int invalid_index = static_cast<unsigned int>(-1);
+  // We assume we never jump to this address.
+  static const Arm_address invalid_address = static_cast<Arm_address>(-1);
 
-  // The class which implements relocation.
-  class Relocate
+  // Return destination address.
+  Arm_address
+  destination_address() const
+  {
+    gold_assert(this->destination_address_ != this->invalid_address);
+    return this->destination_address_;
+  }
+
+  // Set destination address.
+  void
+  set_destination_address(Arm_address address)
+  {
+    gold_assert(address != this->invalid_address);
+    this->destination_address_ = address;
+  }
+
+  // Reset destination address.
+  void
+  reset_destination_address()
+  { this->destination_address_ = this->invalid_address; }
+
+  // Determine stub type for a branch of a relocation of R_TYPE going
+  // from BRANCH_ADDRESS to BRANCH_TARGET.  If TARGET_IS_THUMB is set,
+  // the branch target is a thumb instruction.  TARGET is used for look
+  // up ARM-specific linker settings.
+  static Stub_type
+  stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
+                     Arm_address branch_target, bool target_is_thumb);
+
+  // Reloc_stub key.  A key is logically a triplet of a stub type, a symbol
+  // and an addend.  Since we treat global and local symbol differently, we
+  // use a Symbol object for a global symbol and a object-index pair for
+  // a local symbol.
+  class Key
   {
    public:
-    Relocate()
-    { }
+    // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
+    // R_SYM.  Otherwise, this is a local symbol and RELOBJ must non-NULL
+    // and R_SYM must not be invalid_index.
+    Key(Stub_type stubtype, const Symbol* sym, const Relobj* rel_obj,
+       unsigned int rsym, int32_t addend)
+      : stub_type_(stubtype), addend_(addend)
+    {
+      if (sym != NULL)
+       {
+         this->r_sym_ = Reloc_stub::invalid_index;
+         this->u_.symbol = sym;
+       }
+      else
+       {
+         gold_assert(rel_obj != NULL && rsym != invalid_index);
+         this->r_sym_ = rsym;
+         this->u_.relobj = rel_obj;
+       }
+    }
 
-    ~Relocate()
+    ~Key()
     { }
 
-    // Return whether the static relocation needs to be applied.
-    inline bool
-    should_apply_static_reloc(const Sized_symbol<32>* gsym,
-                             int ref_flags,
-                             bool is_32bit,
-                             Output_section* output_section);
+    // Accessors: Keys are meant to be read-only object so no modifiers are
+    // provided.
 
-    // Do a relocation.  Return false if the caller should not issue
-    // any warnings about this relocation.
-    inline bool
-    relocate(const Relocate_info<32, big_endian>*, Target_arm*,
-            Output_section*,  size_t relnum,
-            const elfcpp::Rel<32, big_endian>&,
-            unsigned int r_type, const Sized_symbol<32>*,
-            const Symbol_value<32>*,
-            unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
-            section_size_type);
-  };
+    // Return stub type.
+    Stub_type
+    stub_type() const
+    { return this->stub_type_; }
 
-  // A class which returns the size required for a relocation type,
-  // used while scanning relocs during a relocatable link.
-  class Relocatable_size_for_reloc
-  {
-   public:
+    // Return the local symbol index or invalid_index.
     unsigned int
-    get_size_for_reloc(unsigned int, Relobj*);
+    r_sym() const
+    { return this->r_sym_; }
+
+    // Return the symbol if there is one.
+    const Symbol*
+    symbol() const
+    { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
+
+    // Return the relobj if there is one.
+    const Relobj*
+    relobj() const
+    { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
+
+    // Whether this equals to another key k.
+    bool
+    eq(const Key& k) const 
+    {
+      return ((this->stub_type_ == k.stub_type_)
+             && (this->r_sym_ == k.r_sym_)
+             && ((this->r_sym_ != Reloc_stub::invalid_index)
+                 ? (this->u_.relobj == k.u_.relobj)
+                 : (this->u_.symbol == k.u_.symbol))
+             && (this->addend_ == k.addend_));
+    }
+
+    // Return a hash value.
+    size_t
+    hash_value() const
+    {
+      return (this->stub_type_
+             ^ this->r_sym_
+             ^ gold::string_hash<char>(
+                   (this->r_sym_ != Reloc_stub::invalid_index)
+                   ? this->u_.relobj->name().c_str()
+                   : this->u_.symbol->name())
+             ^ this->addend_);
+    }
+
+    // Functors for STL associative containers.
+    struct hash
+    {
+      size_t
+      operator()(const Key& k) const
+      { return k.hash_value(); }
+    };
+
+    struct equal_to
+    {
+      bool
+      operator()(const Key& k1, const Key& k2) const
+      { return k1.eq(k2); }
+    };
+
+    // Name of key.  This is mainly for debugging.
+    std::string
+    name() const;
+
+   private:
+    // Stub type.
+    Stub_type stub_type_;
+    // If this is a local symbol, this is the index in the defining object.
+    // Otherwise, it is invalid_index for a global symbol.
+    unsigned int r_sym_;
+    // If r_sym_ is invalid index.  This points to a global symbol.
+    // Otherwise, this points a relobj.  We used the unsized and target
+    // independent Symbol and Relobj classes instead of Sized_symbol<32> and  
+    // Arm_relobj.  This is done to avoid making the stub class a template
+    // as most of the stub machinery is endianity-neutral.  However, it
+    // may require a bit of casting done by users of this class.
+    union
+    {
+      const Symbol* symbol;
+      const Relobj* relobj;
+    } u_;
+    // Addend associated with a reloc.
+    int32_t addend_;
   };
 
-  // Get the GOT section, creating it if necessary.
-  Output_data_got<32, big_endian>*
-  got_section(Symbol_table*, Layout*);
+ protected:
+  // Reloc_stubs are created via a stub factory.  So these are protected.
+  Reloc_stub(const Stub_template* stubtemplate)
+    : Stub(stubtemplate), destination_address_(invalid_address)
+  { }
 
-  // Get the GOT PLT section.
-  Output_data_space*
-  got_plt_section() const
+  ~Reloc_stub()
+  { }
+
+  friend class Stub_factory;
+
+ private:
+  // Return the relocation target address of the i-th relocation in the
+  // stub.
+  Arm_address
+  do_reloc_target(size_t i)
   {
-    gold_assert(this->got_plt_ != NULL);
-    return this->got_plt_;
+    // All reloc stub have only one relocation.
+    gold_assert(i == 0);
+    return this->destination_address_;
   }
 
-  // Create a PLT entry for a global symbol.
+  // A template to implement do_write below.
+  template<bool big_endian>
+  void inline
+  do_fixed_endian_write(unsigned char*, section_size_type);
+
+  // Write a stub.
   void
-  make_plt_entry(Symbol_table*, Layout*, Symbol*);
+  do_write(unsigned char* view, section_size_type view_size, bool big_endian);
 
-  // Get the PLT section.
-  const Output_data_plt_arm<big_endian>*
-  plt_section() const
-  {
-    gold_assert(this->plt_ != NULL);
-    return this->plt_;
-  }
+  // Address of destination.
+  Arm_address destination_address_;
+};
 
-  // Get the dynamic reloc section, creating it if necessary.
-  Reloc_section*
-  rel_dyn_section(Layout*);
+// Stub factory class.
 
-  // Return true if the symbol may need a COPY relocation.
-  // References from an executable object to non-function symbols
-  // defined in a dynamic object may need a COPY relocation.
-  bool
-  may_need_copy_reloc(Symbol* gsym)
+class Stub_factory
+{
+ public:
+  // Return the unique instance of this class.
+  static const Stub_factory&
+  get_instance()
   {
-    return (!parameters->options().shared()
-           && gsym->is_from_dynobj()
-           && gsym->type() != elfcpp::STT_FUNC
-           && gsym->type() != elfcpp::STT_ARM_TFUNC);
+    static Stub_factory singleton;
+    return singleton;
   }
 
-  // Add a potential copy relocation.
-  void
-  copy_reloc(Symbol_table* symtab, Layout* layout,
-            Sized_relobj<32, big_endian>* object,
-            unsigned int shndx, Output_section* output_section,
-            Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
+  // Make a relocation stub.
+  Reloc_stub*
+  make_reloc_stub(Stub_type stub_type) const
   {
-    this->copy_relocs_.copy_reloc(symtab, layout,
-                                 symtab->get_sized_symbol<32>(sym),
-                                 object, shndx, output_section, reloc,
-                                 this->rel_dyn_section(layout));
+    gold_assert(stub_type >= arm_stub_reloc_first
+               && stub_type <= arm_stub_reloc_last);
+    return new Reloc_stub(this->stub_templates_[stub_type]);
   }
 
-  // Information about this specific target which we pass to the
-  // general Target structure.
-  static const Target::Target_info arm_info;
-
-  // The types of GOT entries needed for this platform.
-  enum Got_type
-  {
-    GOT_TYPE_STANDARD = 0      // GOT entry for a regular symbol
-  };
-
-  // The GOT section.
-  Output_data_got<32, big_endian>* got_;
-  // The PLT section.
-  Output_data_plt_arm<big_endian>* plt_;
-  // The GOT PLT section.
-  Output_data_space* got_plt_;
-  // The dynamic reloc section.
-  Reloc_section* rel_dyn_;
-  // Relocs saved to avoid a COPY reloc.
-  Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
-  // Space for variables copied with a COPY reloc.
-  Output_data_space* dynbss_;
+ private:
+  // Constructor and destructor are protected since we only return a single
+  // instance created in Stub_factory::get_instance().
+  
+  Stub_factory();
+
+  // A Stub_factory may not be copied since it is a singleton.
+  Stub_factory(const Stub_factory&);
+  Stub_factory& operator=(Stub_factory&);
+  
+  // Stub templates.  These are initialized in the constructor.
+  const Stub_template* stub_templates_[arm_stub_type_last+1];
 };
 
+// A class to hold stubs for the ARM target.
+
 template<bool big_endian>
-const Target::Target_info Target_arm<big_endian>::arm_info =
+class Stub_table : public Output_data
 {
-  32,                  // size
-  big_endian,          // is_big_endian
-  elfcpp::EM_ARM,      // machine_code
-  false,               // has_make_symbol
-  false,               // has_resolve
-  false,               // has_code_fill
-  true,                        // is_default_stack_executable
-  '\0',                        // wrap_char
-  "/usr/lib/libc.so.1",        // dynamic_linker
-  0x8000,              // default_text_segment_address
-  0x1000,              // abi_pagesize (overridable by -z max-page-size)
-  0x1000               // common_pagesize (overridable by -z common-page-size)
-};
+ public:
+  Stub_table(Arm_input_section<big_endian>* own)
+    : Output_data(), addralign_(1), owner_(own), has_been_changed_(false),
+      reloc_stubs_()
+  { }
 
-// Get the GOT section, creating it if necessary.
+  ~Stub_table()
+  { }
 
-template<bool big_endian>
-Output_data_got<32, big_endian>*
-Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
-{
-  if (this->got_ == NULL)
-    {
-      gold_assert(symtab != NULL && layout != NULL);
+  // Owner of this stub table.
+  Arm_input_section<big_endian>*
+  owner() const
+  { return this->owner_; }
 
-      this->got_ = new Output_data_got<32, big_endian>();
+  // Whether this stub table is empty.
+  bool
+  empty() const
+  { return this->reloc_stubs_.empty(); }
 
-      Output_section* os;
-      os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
-                                          (elfcpp::SHF_ALLOC
-                                           | elfcpp::SHF_WRITE),
-                                          this->got_);
-      os->set_is_relro();
+  // Whether this has been changed.
+  bool
+  has_been_changed() const
+  { return this->has_been_changed_; }
 
-      // The old GNU linker creates a .got.plt section.  We just
-      // create another set of data in the .got section.  Note that we
-      // always create a PLT if we create a GOT, although the PLT
-      // might be empty.
-      this->got_plt_ = new Output_data_space(4, "** GOT PLT");
-      os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
-                                          (elfcpp::SHF_ALLOC
-                                           | elfcpp::SHF_WRITE),
-                                          this->got_plt_);
-      os->set_is_relro();
+  // Set the has-been-changed flag.
+  void
+  set_has_been_changed(bool value)
+  { this->has_been_changed_ = value; }
 
-      // The first three entries are reserved.
-      this->got_plt_->set_current_data_size(3 * 4);
+  // Return the current data size.
+  off_t
+  current_data_size() const
+  { return this->current_data_size_for_child(); }
 
-      // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
-      symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
-                                   this->got_plt_,
-                                   0, 0, elfcpp::STT_OBJECT,
-                                   elfcpp::STB_LOCAL,
-                                   elfcpp::STV_HIDDEN, 0,
-                                   false, false);
-    }
-  return this->got_;
-}
+  // Add a STUB with using KEY.  Caller is reponsible for avoid adding
+  // if already a STUB with the same key has been added. 
+  void
+  add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key);
 
-// Get the dynamic reloc section, creating it if necessary.
+  // Look up a relocation stub using KEY.  Return NULL if there is none.
+  Reloc_stub*
+  find_reloc_stub(const Reloc_stub::Key& key) const
+  {
+    typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
+    return (p != this->reloc_stubs_.end()) ? p->second : NULL;
+  }
 
-template<bool big_endian>
-typename Target_arm<big_endian>::Reloc_section*
-Target_arm<big_endian>::rel_dyn_section(Layout* layout)
-{
-  if (this->rel_dyn_ == NULL)
-    {
-      gold_assert(layout != NULL);
-      this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
-      layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
-                                     elfcpp::SHF_ALLOC, this->rel_dyn_);
-    }
-  return this->rel_dyn_;
-}
+  // Relocate stubs in this stub table.
+  void
+  relocate_stubs(const Relocate_info<32, big_endian>*,
+                Target_arm<big_endian>*, Output_section*,
+                unsigned char*, Arm_address, section_size_type);
 
-// A class to handle the PLT data.
+ protected:
+  // Write out section contents.
+  void
+  do_write(Output_file*);
+  // Return the required alignment.
+  uint64_t
+  do_addralign() const
+  { return this->addralign_; }
+
+  // Finalize data size.
+  void
+  set_final_data_size()
+  { this->set_data_size(this->current_data_size_for_child()); }
+
+  // Reset address and file offset.
+  void
+  do_reset_address_and_file_offset();
+
+ private:
+  // Unordered map of stubs.
+  typedef
+    Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
+                 Reloc_stub::Key::equal_to>
+    Reloc_stub_map;
+
+  // Address alignment
+  uint64_t addralign_;
+  // Owner of this stub table.
+  Arm_input_section<big_endian>* owner_;
+  // This is set to true during relaxiong if the size of the stub table
+  // has been changed.
+  bool has_been_changed_;
+  // The relocation stubs.
+  Reloc_stub_map reloc_stubs_;
+};
+
+// A class to wrap an ordinary input section containing executable code.
 
 template<bool big_endian>
-class Output_data_plt_arm : public Output_section_data
+class Arm_input_section : public Output_relaxed_input_section
 {
  public:
-  typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
-    Reloc_section;
+  Arm_input_section(Relobj* rel_obj, unsigned int sec_shndx)
+    : Output_relaxed_input_section(rel_obj, sec_shndx, 1),
+      original_addralign_(1), original_size_(0), stub_table_(NULL)
+  { }
 
-  Output_data_plt_arm(Layout*, Output_data_space*);
+  ~Arm_input_section()
+  { }
 
-  // Add an entry to the PLT.
+  // Initialize.
   void
-  add_entry(Symbol* gsym);
+  init();
+  
+  // Whether this is a stub table owner.
+  bool
+  is_stub_table_owner() const
+  { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
 
-  // Return the .rel.plt section data.
-  const Reloc_section*
-  rel_plt() const
-  { return this->rel_; }
+  // Return the stub table.
+  Stub_table<big_endian>*
+  stub_table() const
+  { return this->stub_table_; }
 
- protected:
+  // Set the stub_table.
   void
-  do_adjust_output_section(Output_section* os);
+  set_stub_table(Stub_table<big_endian>* stubtable)
+  { this->stub_table_ = stubtable; }
 
-  // Write to a map file.
+  // Downcast a base pointer to an Arm_input_section pointer.  This is
+  // not type-safe but we only use Arm_input_section not the base class.
+  static Arm_input_section<big_endian>*
+  as_arm_input_section(Output_relaxed_input_section* poris)
+  { return static_cast<Arm_input_section<big_endian>*>(poris); }
+
+ protected:
+  // Write data to output file.
   void
-  do_print_to_mapfile(Mapfile* mapfile) const
-  { mapfile->print_output_data(this, _("** PLT")); }
+  do_write(Output_file*);
 
- private:
-  // Template for the first PLT entry.
-  static const uint32_t first_plt_entry[5];
+  // Return required alignment of this.
+  uint64_t
+  do_addralign() const
+  {
+    if (this->is_stub_table_owner())
+      return std::max(this->stub_table_->addralign(),
+                     this->original_addralign_);
+    else
+      return this->original_addralign_;
+  }
 
-  // Template for subsequent PLT entries. 
-  static const uint32_t plt_entry[3];
+  // Finalize data size.
+  void
+  set_final_data_size();
 
-  // Set the final size.
+  // Reset address and file offset.
   void
-  set_final_data_size()
+  do_reset_address_and_file_offset();
+
+  // Output offset.
+  bool
+  do_output_offset(const Relobj* object, unsigned int sec_shndx,
+                  section_offset_type off,
+                   section_offset_type* poutput) const
   {
-    this->set_data_size(sizeof(first_plt_entry)
-                       + this->count_ * sizeof(plt_entry));
+    if ((object == this->relobj())
+       && (sec_shndx == this->shndx())
+       && (off >= 0)
+       && (convert_types<uint64_t, section_offset_type>(off)
+           <= this->original_size_))
+      {
+       *poutput = off;
+       return true;
+      }
+    else
+      return false;
   }
 
-  // Write out the PLT data.
-  void
-  do_write(Output_file*);
-
-  // The reloc section.
-  Reloc_section* rel_;
-  // The .got.plt section.
-  Output_data_space* got_plt_;
-  // The number of PLT entries.
-  unsigned int count_;
+ private:
+  // Copying is not allowed.
+  Arm_input_section(const Arm_input_section&);
+  Arm_input_section& operator=(const Arm_input_section&);
+
+  // Address alignment of the original input section.
+  uint64_t original_addralign_;
+  // Section size of the original input section.
+  uint64_t original_size_;
+  // Stub table.
+  Stub_table<big_endian>* stub_table_;
 };
 
-// Create the PLT section.  The ordinary .got section is an argument,
-// since we need to refer to the start.  We also create our own .got
-// section just for PLT entries.
+// Arm output section class.  This is defined mainly to add a number of
+// stub generation methods.
 
 template<bool big_endian>
-Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
-                                                    Output_data_space* got_plt)
-  : Output_section_data(4), got_plt_(got_plt), count_(0)
+class Arm_output_section : public Output_section
 {
-  this->rel_ = new Reloc_section(false);
-  layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
-                                 elfcpp::SHF_ALLOC, this->rel_);
-}
+ public:
+  Arm_output_section(const char* aname, elfcpp::Elf_Word atype,
+                    elfcpp::Elf_Xword xflags)
+    : Output_section(aname, atype, xflags)
+  { }
 
-template<bool big_endian>
-void
-Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
-{
-  os->set_entsize(0);
-}
+  ~Arm_output_section()
+  { }
+  
+  // Group input sections for stub generation.
+  void
+  group_sections(section_size_type, bool, Target_arm<big_endian>*);
 
-// Add an entry to the PLT.
+  // Downcast a base pointer to an Arm_output_section pointer.  This is
+  // not type-safe but we only use Arm_output_section not the base class.
+  static Arm_output_section<big_endian>*
+  as_arm_output_section(Output_section* os)
+  { return static_cast<Arm_output_section<big_endian>*>(os); }
+
+ private:
+  // For convenience.
+  typedef Output_section::Input_section Input_section;
+  typedef Output_section::Input_section_list Input_section_list;
+
+  // Create a stub group.
+  void create_stub_group(Input_section_list::const_iterator,
+                        Input_section_list::const_iterator,
+                        Input_section_list::const_iterator,
+                        Target_arm<big_endian>*,
+                        std::vector<Output_relaxed_input_section*>*);
+};
+
+// Arm_relobj class.
 
 template<bool big_endian>
-void
-Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
+class Arm_relobj : public Sized_relobj<32, big_endian>
 {
-  gold_assert(!gsym->has_plt_offset());
+ public:
+  static const Arm_address invalid_address = static_cast<Arm_address>(-1);
 
-  // Note that when setting the PLT offset we skip the initial
-  // reserved PLT entry.
-  gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
-                      + sizeof(first_plt_entry));
+  Arm_relobj(const std::string& aname, Input_file* inputfile, off_t off,
+             const typename elfcpp::Ehdr<32, big_endian>& ehdr)
+    : Sized_relobj<32, big_endian>(aname, inputfile, off, ehdr),
+      stub_tables_(), local_symbol_is_thumb_function_(),
+      attributes_section_data_(NULL)
+  { }
 
-  ++this->count_;
+  ~Arm_relobj()
+  { delete this->attributes_section_data_; }
+  // Return the stub table of the SHNDX-th section if there is one.
+  Stub_table<big_endian>*
+  stub_table(unsigned int sec_shndx) const
+  {
+    gold_assert(sec_shndx < this->stub_tables_.size());
+    return this->stub_tables_[sec_shndx];
+  }
 
-  section_offset_type got_offset = this->got_plt_->current_data_size();
+  // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
+  void
+  set_stub_table(unsigned int sec_shndx, Stub_table<big_endian>* stubtable)
+  {
+    gold_assert(sec_shndx < this->stub_tables_.size());
+    this->stub_tables_[sec_shndx] = stubtable;
+  }
 
-  // Every PLT entry needs a GOT entry which points back to the PLT
-  // entry (this will be changed by the dynamic linker, normally
-  // lazily when the function is called).
-  this->got_plt_->set_current_data_size(got_offset + 4);
+  // Whether a local symbol is a THUMB function.  R_SYM is the symbol table
+  // index.  This is only valid after do_count_local_symbol is called.
+  bool
+  local_symbol_is_thumb_function(unsigned int r_sym) const
+  {
+    gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
+    return this->local_symbol_is_thumb_function_[r_sym];
+  }
+  
+  // Scan all relocation sections for stub generation.
+  void
+  scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
+                         const Layout*);
 
-  // Every PLT entry needs a reloc.
-  gsym->set_needs_dynsym_entry();
-  this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
-                        got_offset);
+  // Convert regular input section with index SHNDX to a relaxed section.
+  void
+  convert_input_section_to_relaxed_section(unsigned sec_shndx)
+  {
+    // The stubs have relocations and we need to process them after writing
+    // out the stubs.  So relocation now must follow section write.
+    this->invalidate_section_offset(sec_shndx);
+    this->set_relocs_must_follow_section_writes();
+  }
 
-  // Note that we don't need to save the symbol.  The contents of the
-  // PLT are independent of which symbols are used.  The symbols only
-  // appear in the relocations.
-}
+  // Downcast a base pointer to an Arm_relobj pointer.  This is
+  // not type-safe but we only use Arm_relobj not the base class.
+  static Arm_relobj<big_endian>*
+  as_arm_relobj(Relobj* rel_obj)
+  { return static_cast<Arm_relobj<big_endian>*>(rel_obj); }
 
-// ARM PLTs.
-// FIXME:  This is not very flexible.  Right now this has only been tested
-// on armv5te.  If we are to support additional architecture features like
-// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
+  // Processor-specific flags in ELF file header.  This is valid only after
+  // reading symbols.
+  elfcpp::Elf_Word
+  processor_specific_flags() const
+  { return this->processor_specific_flags_; }
 
-// The first entry in the PLT.
-template<bool big_endian>
-const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
-{
-  0xe52de004,  // str   lr, [sp, #-4]!
-  0xe59fe004,   // ldr   lr, [pc, #4]
-  0xe08fe00e,  // add   lr, pc, lr 
-  0xe5bef008,  // ldr   pc, [lr, #8]!
-  0x00000000,  // &GOT[0] - .
-};
+  // Attribute section data  This is the contents of the .ARM.attribute section
+  // if there is one.
+  const Attributes_section_data*
+  attributes_section_data() const
+  { return this->attributes_section_data_; }
 
-// Subsequent entries in the PLT.
+ protected:
+  // Post constructor setup.
+  void
+  do_setup()
+  {
+    // Call parent's setup method.
+    Sized_relobj<32, big_endian>::do_setup();
 
-template<bool big_endian>
-const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
+    // Initialize look-up tables.
+    Stub_table_list empty_stub_table_list(this->shnum(), NULL);
+    this->stub_tables_.swap(empty_stub_table_list);
+  }
+
+  // Count the local symbols.
+  void
+  do_count_local_symbols(Stringpool_template<char>*,
+                         Stringpool_template<char>*);
+
+  void
+  do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
+                      const unsigned char* pshdrs,
+                      typename Sized_relobj<32, big_endian>::Views* pivews);
+
+  // Read the symbol information.
+  void
+  do_read_symbols(Read_symbols_data* sd);
+
+ private:
+  // List of stub tables.
+  typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
+  Stub_table_list stub_tables_;
+  // Bit vector to tell if a local symbol is a thumb function or not.
+  // This is only valid after do_count_local_symbol is called.
+  std::vector<bool> local_symbol_is_thumb_function_;
+  // processor-specific flags in ELF file header.
+  elfcpp::Elf_Word processor_specific_flags_;
+  // Object attributes if there is an .ARM.attributes section or NULL.
+  Attributes_section_data* attributes_section_data_;
+};
+
+// Arm_dynobj class.
+
+template<bool big_endian>
+class Arm_dynobj : public Sized_dynobj<32, big_endian>
 {
-  0xe28fc600,  // add   ip, pc, #0xNN00000
-  0xe28cca00,  // add   ip, ip, #0xNN000
-  0xe5bcf000,  // ldr   pc, [ip, #0xNNN]!
+ public:
+  Arm_dynobj(const std::string& aname, Input_file* inputfile, off_t off,
+            const elfcpp::Ehdr<32, big_endian>& ehdr)
+    : Sized_dynobj<32, big_endian>(aname, inputfile, off, ehdr),
+      processor_specific_flags_(0)
+  { }
+  ~Arm_dynobj()
+  { delete this->attributes_section_data_; }
+
+  // Downcast a base pointer to an Arm_relobj pointer.  This is
+  // not type-safe but we only use Arm_relobj not the base class.
+  static Arm_dynobj<big_endian>*
+  as_arm_dynobj(Dynobj* dynobj)
+  { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
+
+  // Processor-specific flags in ELF file header.  This is valid only after
+  // reading symbols.
+  elfcpp::Elf_Word
+  processor_specific_flags() const
+  { return this->processor_specific_flags_; }
+
+  // Attributes section data.
+  const Attributes_section_data*
+  attributes_section_data() const
+  { return this->attributes_section_data_; }
+
+ protected:
+  // Read the symbol information.
+  void
+  do_read_symbols(Read_symbols_data* sd);
+
+ private:
+  // processor-specific flags in ELF file header.
+  elfcpp::Elf_Word processor_specific_flags_;
+  // Object attributes if there is an .ARM.attributes section or NULL.
+  Attributes_section_data* attributes_section_data_;
+};
+
+// Functor to read reloc addends during stub generation.
+
+template<int sh_type, bool big_endian>
+struct Stub_addend_reader
+{
+  // Return the addend for a relocation of a particular type.  Depending
+  // on whether this is a REL or RELA relocation, read the addend from a
+  // view or from a Reloc object.
+  elfcpp::Elf_types<32>::Elf_Swxword
+  operator()(
+    unsigned int /* r_type */,
+    const unsigned char* /* view */,
+    const typename Reloc_types<sh_type,
+                              32, big_endian>::Reloc& /* reloc */) const;
+};
+
+// Specialized Stub_addend_reader for SHT_REL type relocation sections.
+
+template<bool big_endian>
+struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
+{
+  elfcpp::Elf_types<32>::Elf_Swxword
+  operator()(
+    unsigned int,
+    const unsigned char*,
+    const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
+};
+
+// Specialized Stub_addend_reader for RELA type relocation sections.
+// We currently do not handle RELA type relocation sections but it is trivial
+// to implement the addend reader.  This is provided for completeness and to
+// make it easier to add support for RELA relocation sections in the future.
+
+template<bool big_endian>
+struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
+{
+  elfcpp::Elf_types<32>::Elf_Swxword
+  operator()(
+    unsigned int,
+    const unsigned char*,
+    const typename Reloc_types<elfcpp::SHT_RELA, 32,
+                              big_endian>::Reloc& reloc) const
+  { return reloc.get_r_addend(); }
+};
+
+// Utilities for manipulating integers of up to 32-bits
+
+namespace utils
+{
+  // Sign extend an n-bit unsigned integer stored in an uint32_t into
+  // an int32_t.  NO_BITS must be between 1 to 32.
+  template<int no_bits>
+  static inline int32_t
+  sign_extend(uint32_t bits)
+  {
+    gold_assert(no_bits >= 0 && no_bits <= 32);
+    if (no_bits == 32)
+      return static_cast<int32_t>(bits);
+    uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
+    bits &= mask;
+    uint32_t top_bit = 1U << (no_bits - 1);
+    int32_t as_signed = static_cast<int32_t>(bits);
+    return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
+  }
+
+  // Detects overflow of an NO_BITS integer stored in a uint32_t.
+  template<int no_bits>
+  static inline bool
+  has_overflow(uint32_t bits)
+  {
+    gold_assert(no_bits >= 0 && no_bits <= 32);
+    if (no_bits == 32)
+      return false;
+    int32_t max = (1 << (no_bits - 1)) - 1;
+    int32_t min = -(1 << (no_bits - 1));
+    int32_t as_signed = static_cast<int32_t>(bits);
+    return as_signed > max || as_signed < min;
+  }
+
+  // Detects overflow of an NO_BITS integer stored in a uint32_t when it
+  // fits in the given number of bits as either a signed or unsigned value.
+  // For example, has_signed_unsigned_overflow<8> would check
+  // -128 <= bits <= 255
+  template<int no_bits>
+  static inline bool
+  has_signed_unsigned_overflow(uint32_t bits)
+  {
+    gold_assert(no_bits >= 2 && no_bits <= 32);
+    if (no_bits == 32)
+      return false;
+    int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
+    int32_t min = -(1 << (no_bits - 1));
+    int32_t as_signed = static_cast<int32_t>(bits);
+    return as_signed > max || as_signed < min;
+  }
+
+  // Select bits from A and B using bits in MASK.  For each n in [0..31],
+  // the n-th bit in the result is chosen from the n-th bits of A and B.
+  // A zero selects A and a one selects B.
+  static inline uint32_t
+  bit_select(uint32_t a, uint32_t b, uint32_t mask)
+  { return (a & ~mask) | (b & mask); }
 };
 
-// Write out the PLT.  This uses the hand-coded instructions above,
-// and adjusts them as needed.  This is all specified by the arm ELF
-// Processor Supplement.
+template<bool big_endian>
+class Target_arm : public Sized_target<32, big_endian>
+{
+ public:
+  typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
+    Reloc_section;
+
+  // When were are relocating a stub, we pass this as the relocation number.
+  static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
+
+  Target_arm()
+    : Sized_target<32, big_endian>(&arm_info),
+      got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
+      copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL), stub_tables_(),
+      stub_factory_(Stub_factory::get_instance()), may_use_blx_(false),
+      should_force_pic_veneer_(false), arm_input_section_map_(),
+      attributes_section_data_(NULL)
+  { }
+
+  // Whether we can use BLX.
+  bool
+  may_use_blx() const
+  { return this->may_use_blx_; }
+
+  // Set use-BLX flag.
+  void
+  set_may_use_blx(bool value)
+  { this->may_use_blx_ = value; }
+  
+  // Whether we force PCI branch veneers.
+  bool
+  should_force_pic_veneer() const
+  { return this->should_force_pic_veneer_; }
+
+  // Set PIC veneer flag.
+  void
+  set_should_force_pic_veneer(bool value)
+  { this->should_force_pic_veneer_ = value; }
+  
+  // Whether we use THUMB-2 instructions.
+  bool
+  using_thumb2() const
+  {
+    Object_attribute* attr =
+      this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
+    int arch = attr->int_value();
+    return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
+  }
+
+  // Whether we use THUMB/THUMB-2 instructions only.
+  bool
+  using_thumb_only() const
+  {
+    Object_attribute* attr =
+      this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
+    if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
+       && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
+      return false;
+    attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
+    return attr->int_value() == 'M';
+  }
+
+  // Whether we have an NOP instruction.  If not, use mov r0, r0 instead.
+  bool
+  may_use_arm_nop() const
+  {
+    Object_attribute* attr =
+      this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
+    int arch = attr->int_value();
+    return (arch == elfcpp::TAG_CPU_ARCH_V6T2
+           || arch == elfcpp::TAG_CPU_ARCH_V6K
+           || arch == elfcpp::TAG_CPU_ARCH_V7
+           || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
+  }
+
+  // Whether we have THUMB-2 NOP.W instruction.
+  bool
+  may_use_thumb2_nop() const
+  {
+    Object_attribute* attr =
+      this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
+    int arch = attr->int_value();
+    return (arch == elfcpp::TAG_CPU_ARCH_V6T2
+           || arch == elfcpp::TAG_CPU_ARCH_V7
+           || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
+  }
+  
+  // Process the relocations to determine unreferenced sections for 
+  // garbage collection.
+  void
+  gc_process_relocs(Symbol_table* symtab,
+                   Layout* layout,
+                   Sized_relobj<32, big_endian>* object,
+                   unsigned int data_shndx,
+                   unsigned int sh_type,
+                   const unsigned char* prelocs,
+                   size_t reloc_count,
+                   Output_section* output_section,
+                   bool needs_special_offset_handling,
+                   size_t local_symbol_count,
+                   const unsigned char* plocal_symbols);
+
+  // Scan the relocations to look for symbol adjustments.
+  void
+  scan_relocs(Symbol_table* symtab,
+             Layout* layout,
+             Sized_relobj<32, big_endian>* object,
+             unsigned int data_shndx,
+             unsigned int sh_type,
+             const unsigned char* prelocs,
+             size_t reloc_count,
+             Output_section* output_section,
+             bool needs_special_offset_handling,
+             size_t local_symbol_count,
+             const unsigned char* plocal_symbols);
+
+  // Finalize the sections.
+  void
+  do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
+
+  // Return the value to use for a dynamic symbol which requires special
+  // treatment.
+  uint64_t
+  do_dynsym_value(const Symbol*) const;
+
+  // Relocate a section.
+  void
+  relocate_section(const Relocate_info<32, big_endian>*,
+                  unsigned int sh_type,
+                  const unsigned char* prelocs,
+                  size_t reloc_count,
+                  Output_section* output_section,
+                  bool needs_special_offset_handling,
+                  unsigned char* view,
+                  Arm_address view_address,
+                  section_size_type view_size,
+                  const Reloc_symbol_changes*);
+
+  // Scan the relocs during a relocatable link.
+  void
+  scan_relocatable_relocs(Symbol_table* symtab,
+                         Layout* layout,
+                         Sized_relobj<32, big_endian>* object,
+                         unsigned int data_shndx,
+                         unsigned int sh_type,
+                         const unsigned char* prelocs,
+                         size_t reloc_count,
+                         Output_section* output_section,
+                         bool needs_special_offset_handling,
+                         size_t local_symbol_count,
+                         const unsigned char* plocal_symbols,
+                         Relocatable_relocs*);
+
+  // Relocate a section during a relocatable link.
+  void
+  relocate_for_relocatable(const Relocate_info<32, big_endian>*,
+                          unsigned int sh_type,
+                          const unsigned char* prelocs,
+                          size_t reloc_count,
+                          Output_section* output_section,
+                          off_t offset_in_output_section,
+                          const Relocatable_relocs*,
+                          unsigned char* view,
+                          Arm_address view_address,
+                          section_size_type view_size,
+                          unsigned char* reloc_view,
+                          section_size_type reloc_view_size);
+
+  // Return whether SYM is defined by the ABI.
+  bool
+  do_is_defined_by_abi(Symbol* sym) const
+  { return strcmp(sym->name(), "__tls_get_addr") == 0; }
+
+  // Return the size of the GOT section.
+  section_size_type
+  got_size()
+  {
+    gold_assert(this->got_ != NULL);
+    return this->got_->data_size();
+  }
+
+  // Map platform-specific reloc types
+  static unsigned int
+  get_real_reloc_type (unsigned int r_type);
+
+  //
+  // Methods to support stub-generations.
+  //
+  
+  // Return the stub factory
+  const Stub_factory&
+  stub_factory() const
+  { return this->stub_factory_; }
+
+  // Make a new Arm_input_section object.
+  Arm_input_section<big_endian>*
+  new_arm_input_section(Relobj*, unsigned int);
+
+  // Find the Arm_input_section object corresponding to the SHNDX-th input
+  // section of RELOBJ.
+  Arm_input_section<big_endian>*
+  find_arm_input_section(Relobj* rel_obj, unsigned int sec_shndx) const;
+
+  // Make a new Stub_table
+  Stub_table<big_endian>*
+  new_stub_table(Arm_input_section<big_endian>*);
+
+  // Scan a section for stub generation.
+  void
+  scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
+                        const unsigned char*, size_t, Output_section*,
+                        bool, const unsigned char*, Arm_address,
+                        section_size_type);
+
+  // Relocate a stub. 
+  void
+  relocate_stub(Reloc_stub*, const Relocate_info<32, big_endian>*,
+               Output_section*, unsigned char*, Arm_address,
+               section_size_type);
+  // Get the default ARM target.
+  static Target_arm<big_endian>*
+  default_target()
+  {
+    gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
+               && parameters->target().is_big_endian() == big_endian);
+    return static_cast<Target_arm<big_endian>*>(
+            parameters->sized_target<32, big_endian>());
+  }
+
+  // Whether relocation type uses LSB to distinguish THUMB addresses.
+  static bool
+  reloc_uses_thumb_bit(unsigned int r_type);
+
+ protected:
+  // Make an ELF object.
+  Object*
+  do_make_elf_object(const std::string&, Input_file*, off_t,
+                    const elfcpp::Ehdr<32, big_endian>& ehdr);
+
+  Object*
+  do_make_elf_object(const std::string&, Input_file*, off_t,
+                    const elfcpp::Ehdr<32, !big_endian>&)
+  { gold_unreachable(); }
+
+  Object*
+  do_make_elf_object(const std::string&, Input_file*, off_t,
+                     const elfcpp::Ehdr<64, false>&)
+  { gold_unreachable(); }
+
+  Object*
+  do_make_elf_object(const std::string&, Input_file*, off_t,
+                    const elfcpp::Ehdr<64, true>&)
+  { gold_unreachable(); }
+
+  // Make an output section.
+  Output_section*
+  do_make_output_section(const char* name, elfcpp::Elf_Word type,
+                        elfcpp::Elf_Xword flags)
+  { return new Arm_output_section<big_endian>(name, type, flags); }
+
+  void
+  do_adjust_elf_header(unsigned char* view, int len) const;
+
+  // We only need to generate stubs, and hence perform relaxation if we are
+  // not doing relocatable linking.
+  bool
+  do_may_relax() const
+  { return !parameters->options().relocatable(); }
+
+  bool
+  do_relax(int, const Input_objects*, Symbol_table*, Layout*);
+
+  // Determine whether an object attribute tag takes an integer, a
+  // string or both.
+  int
+  do_attribute_arg_type(int tag) const;
+
+  // Reorder tags during output.
+  int
+  do_attributes_order(int num) const;
+
+ private:
+  // The class which scans relocations.
+  class Scan
+  {
+   public:
+    Scan()
+      : issued_non_pic_error_(false)
+    { }
+
+    inline void
+    local(Symbol_table* symtab, Layout* layout, Target_arm* target,
+         Sized_relobj<32, big_endian>* object,
+         unsigned int data_shndx,
+         Output_section* output_section,
+         const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
+         const elfcpp::Sym<32, big_endian>& lsym);
+
+    inline void
+    global(Symbol_table* symtab, Layout* layout, Target_arm* target,
+          Sized_relobj<32, big_endian>* object,
+          unsigned int data_shndx,
+          Output_section* output_section,
+          const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
+          Symbol* gsym);
+
+   private:
+    static void
+    unsupported_reloc_local(Sized_relobj<32, big_endian>*,
+                           unsigned int r_type);
+
+    static void
+    unsupported_reloc_global(Sized_relobj<32, big_endian>*,
+                            unsigned int r_type, Symbol*);
+
+    void
+    check_non_pic(Relobj*, unsigned int r_type);
+
+    // Almost identical to Symbol::needs_plt_entry except that it also
+    // handles STT_ARM_TFUNC.
+    static bool
+    symbol_needs_plt_entry(const Symbol* sym)
+    {
+      // An undefined symbol from an executable does not need a PLT entry.
+      if (sym->is_undefined() && !parameters->options().shared())
+       return false;
+
+      return (!parameters->doing_static_link()
+             && (sym->type() == elfcpp::STT_FUNC
+                 || sym->type() == elfcpp::STT_ARM_TFUNC)
+             && (sym->is_from_dynobj()
+                 || sym->is_undefined()
+                 || sym->is_preemptible()));
+    }
+
+    // Whether we have issued an error about a non-PIC compilation.
+    bool issued_non_pic_error_;
+  };
+
+  // The class which implements relocation.
+  class Relocate
+  {
+   public:
+    Relocate()
+    { }
+
+    ~Relocate()
+    { }
+
+    // Return whether the static relocation needs to be applied.
+    inline bool
+    should_apply_static_reloc(const Sized_symbol<32>* gsym,
+                             int ref_flags,
+                             bool is_32bit,
+                             Output_section* output_section);
+
+    // Do a relocation.  Return false if the caller should not issue
+    // any warnings about this relocation.
+    inline bool
+    relocate(const Relocate_info<32, big_endian>*, Target_arm*,
+            Output_section*,  size_t relnum,
+            const elfcpp::Rel<32, big_endian>&,
+            unsigned int r_type, const Sized_symbol<32>*,
+            const Symbol_value<32>*,
+            unsigned char*, Arm_address,
+            section_size_type);
+
+    // Return whether we want to pass flag NON_PIC_REF for this
+    // reloc.  This means the relocation type accesses a symbol not via
+    // GOT or PLT.
+    static inline bool
+    reloc_is_non_pic (unsigned int r_type)
+    {
+      switch (r_type)
+       {
+       // These relocation types reference GOT or PLT entries explicitly.
+       case elfcpp::R_ARM_GOT_BREL:
+       case elfcpp::R_ARM_GOT_ABS:
+       case elfcpp::R_ARM_GOT_PREL:
+       case elfcpp::R_ARM_GOT_BREL12:
+       case elfcpp::R_ARM_PLT32_ABS:
+       case elfcpp::R_ARM_TLS_GD32:
+       case elfcpp::R_ARM_TLS_LDM32:
+       case elfcpp::R_ARM_TLS_IE32:
+       case elfcpp::R_ARM_TLS_IE12GP:
+
+       // These relocate types may use PLT entries.
+       case elfcpp::R_ARM_CALL:
+       case elfcpp::R_ARM_THM_CALL:
+       case elfcpp::R_ARM_JUMP24:
+       case elfcpp::R_ARM_THM_JUMP24:
+       case elfcpp::R_ARM_THM_JUMP19:
+       case elfcpp::R_ARM_PLT32:
+       case elfcpp::R_ARM_THM_XPC22:
+         return false;
+
+       default:
+         return true;
+       }
+    }
+  };
+
+  // A class which returns the size required for a relocation type,
+  // used while scanning relocs during a relocatable link.
+  class Relocatable_size_for_reloc
+  {
+   public:
+    unsigned int
+    get_size_for_reloc(unsigned int, Relobj*);
+  };
+
+  // Get the GOT section, creating it if necessary.
+  Output_data_got<32, big_endian>*
+  got_section(Symbol_table*, Layout*);
+
+  // Get the GOT PLT section.
+  Output_data_space*
+  got_plt_section() const
+  {
+    gold_assert(this->got_plt_ != NULL);
+    return this->got_plt_;
+  }
+
+  // Create a PLT entry for a global symbol.
+  void
+  make_plt_entry(Symbol_table*, Layout*, Symbol*);
+
+  // Get the PLT section.
+  const Output_data_plt_arm<big_endian>*
+  plt_section() const
+  {
+    gold_assert(this->plt_ != NULL);
+    return this->plt_;
+  }
+
+  // Get the dynamic reloc section, creating it if necessary.
+  Reloc_section*
+  rel_dyn_section(Layout*);
+
+  // Return true if the symbol may need a COPY relocation.
+  // References from an executable object to non-function symbols
+  // defined in a dynamic object may need a COPY relocation.
+  bool
+  may_need_copy_reloc(Symbol* gsym)
+  {
+    return (gsym->type() != elfcpp::STT_ARM_TFUNC
+           && gsym->may_need_copy_reloc());
+  }
+
+  // Add a potential copy relocation.
+  void
+  copy_reloc(Symbol_table* symtab, Layout* layout,
+            Sized_relobj<32, big_endian>* object,
+            unsigned int sec_shndx, Output_section* output_section,
+            Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
+  {
+    this->copy_relocs_.copy_reloc(symtab, layout,
+                                 symtab->get_sized_symbol<32>(sym),
+                                 object, sec_shndx, output_section, reloc,
+                                 this->rel_dyn_section(layout));
+  }
+
+  // Whether two EABI versions are compatible.
+  static bool
+  are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
+
+  // Merge processor-specific flags from input object and those in the ELF
+  // header of the output.
+  void
+  merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
+
+  // Get the secondary compatible architecture.
+  static int
+  get_secondary_compatible_arch(const Attributes_section_data*);
+
+  // Set the secondary compatible architecture.
+  static void
+  set_secondary_compatible_arch(Attributes_section_data*, int);
+
+  static int
+  tag_cpu_arch_combine(const char*, int, int*, int, int);
+
+  // Helper to print AEABI enum tag value.
+  static std::string
+  aeabi_enum_name(unsigned int);
+
+  // Return string value for TAG_CPU_name.
+  static std::string
+  tag_cpu_name_value(unsigned int);
+
+  // Merge object attributes from input object and those in the output.
+  void
+  merge_object_attributes(const char*, const Attributes_section_data*);
+
+  // Helper to get an AEABI object attribute
+  Object_attribute*
+  get_aeabi_object_attribute(int tag) const
+  {
+    Attributes_section_data* pasd = this->attributes_section_data_;
+    gold_assert(pasd != NULL);
+    Object_attribute* attr =
+      pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
+    gold_assert(attr != NULL);
+    return attr;
+  }
+
+  //
+  // Methods to support stub-generations.
+  //
+
+  // Group input sections for stub generation.
+  void
+  group_sections(Layout*, section_size_type, bool);
+
+  // Scan a relocation for stub generation.
+  void
+  scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
+                     const Sized_symbol<32>*, unsigned int,
+                     const Symbol_value<32>*,
+                     elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
+
+  // Scan a relocation section for stub.
+  template<int sh_type>
+  void
+  scan_reloc_section_for_stubs(
+      const Relocate_info<32, big_endian>* relinfo,
+      const unsigned char* prelocs,
+      size_t reloc_count,
+      Output_section* output_section,
+      bool needs_special_offset_handling,
+      const unsigned char* view,
+      elfcpp::Elf_types<32>::Elf_Addr view_address,
+      section_size_type);
+
+  // Information about this specific target which we pass to the
+  // general Target structure.
+  static const Target::Target_info arm_info;
+
+  // The types of GOT entries needed for this platform.
+  enum Got_type
+  {
+    GOT_TYPE_STANDARD = 0      // GOT entry for a regular symbol
+  };
+
+  typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
+
+  // Map input section to Arm_input_section.
+  typedef Unordered_map<Input_section_specifier,
+                       Arm_input_section<big_endian>*,
+                       Input_section_specifier::hash,
+                       Input_section_specifier::equal_to>
+         Arm_input_section_map;
+    
+  // The GOT section.
+  Output_data_got<32, big_endian>* got_;
+  // The PLT section.
+  Output_data_plt_arm<big_endian>* plt_;
+  // The GOT PLT section.
+  Output_data_space* got_plt_;
+  // The dynamic reloc section.
+  Reloc_section* rel_dyn_;
+  // Relocs saved to avoid a COPY reloc.
+  Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
+  // Space for variables copied with a COPY reloc.
+  Output_data_space* dynbss_;
+  // Vector of Stub_tables created.
+  Stub_table_list stub_tables_;
+  // Stub factory.
+  const Stub_factory &stub_factory_;
+  // Whether we can use BLX.
+  bool may_use_blx_;
+  // Whether we force PIC branch veneers.
+  bool should_force_pic_veneer_;
+  // Map for locating Arm_input_sections.
+  Arm_input_section_map arm_input_section_map_;
+  // Attributes section data in output.
+  Attributes_section_data* attributes_section_data_;
+};
+
+template<bool big_endian>
+const Target::Target_info Target_arm<big_endian>::arm_info =
+{
+  32,                  // size
+  big_endian,          // is_big_endian
+  elfcpp::EM_ARM,      // machine_code
+  false,               // has_make_symbol
+  false,               // has_resolve
+  false,               // has_code_fill
+  true,                        // is_default_stack_executable
+  '\0',                        // wrap_char
+  "/usr/lib/libc.so.1",        // dynamic_linker
+  0x8000,              // default_text_segment_address
+  0x1000,              // abi_pagesize (overridable by -z max-page-size)
+  0x1000,              // common_pagesize (overridable by -z common-page-size)
+  elfcpp::SHN_UNDEF,   // small_common_shndx
+  elfcpp::SHN_UNDEF,   // large_common_shndx
+  0,                   // small_common_section_flags
+  0,                   // large_common_section_flags
+  ".ARM.attributes",   // attributes_section
+  "aeabi"              // attributes_vendor
+};
+
+// Arm relocate functions class
+//
+
+template<bool big_endian>
+class Arm_relocate_functions : public Relocate_functions<32, big_endian>
+{
+ public:
+  typedef enum
+  {
+    STATUS_OKAY,       // No error during relocation.
+    STATUS_OVERFLOW,   // Relocation oveflow.
+    STATUS_BAD_RELOC   // Relocation cannot be applied.
+  } Status;
+
+ private:
+  typedef Relocate_functions<32, big_endian> Base;
+  typedef Arm_relocate_functions<big_endian> This;
+
+  // Encoding of imm16 argument for movt and movw ARM instructions
+  // from ARM ARM:
+  //     
+  //     imm16 := imm4 | imm12
+  //
+  //  f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0 
+  // +-------+---------------+-------+-------+-----------------------+
+  // |       |               |imm4   |       |imm12                  |
+  // +-------+---------------+-------+-------+-----------------------+
+
+  // Extract the relocation addend from VAL based on the ARM
+  // instruction encoding described above.
+  static inline typename elfcpp::Swap<32, big_endian>::Valtype
+  extract_arm_movw_movt_addend(
+      typename elfcpp::Swap<32, big_endian>::Valtype val)
+  {
+    // According to the Elf ABI for ARM Architecture the immediate
+    // field is sign-extended to form the addend.
+    return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
+  }
+
+  // Insert X into VAL based on the ARM instruction encoding described
+  // above.
+  static inline typename elfcpp::Swap<32, big_endian>::Valtype
+  insert_val_arm_movw_movt(
+      typename elfcpp::Swap<32, big_endian>::Valtype val,
+      typename elfcpp::Swap<32, big_endian>::Valtype x)
+  {
+    val &= 0xfff0f000;
+    val |= x & 0x0fff;
+    val |= (x & 0xf000) << 4;
+    return val;
+  }
+
+  // Encoding of imm16 argument for movt and movw Thumb2 instructions
+  // from ARM ARM:
+  //     
+  //     imm16 := imm4 | i | imm3 | imm8
+  //
+  //  f e d c b a 9 8 7 6 5 4 3 2 1 0  f e d c b a 9 8 7 6 5 4 3 2 1 0 
+  // +---------+-+-----------+-------++-+-----+-------+---------------+
+  // |         |i|           |imm4   || |imm3 |       |imm8           |
+  // +---------+-+-----------+-------++-+-----+-------+---------------+
+
+  // Extract the relocation addend from VAL based on the Thumb2
+  // instruction encoding described above.
+  static inline typename elfcpp::Swap<32, big_endian>::Valtype
+  extract_thumb_movw_movt_addend(
+      typename elfcpp::Swap<32, big_endian>::Valtype val)
+  {
+    // According to the Elf ABI for ARM Architecture the immediate
+    // field is sign-extended to form the addend.
+    return utils::sign_extend<16>(((val >> 4) & 0xf000)
+                                 | ((val >> 15) & 0x0800)
+                                 | ((val >> 4) & 0x0700)
+                                 | (val & 0x00ff));
+  }
+
+  // Insert X into VAL based on the Thumb2 instruction encoding
+  // described above.
+  static inline typename elfcpp::Swap<32, big_endian>::Valtype
+  insert_val_thumb_movw_movt(
+      typename elfcpp::Swap<32, big_endian>::Valtype val,
+      typename elfcpp::Swap<32, big_endian>::Valtype x)
+  {
+    val &= 0xfbf08f00;
+    val |= (x & 0xf000) << 4;
+    val |= (x & 0x0800) << 15;
+    val |= (x & 0x0700) << 4;
+    val |= (x & 0x00ff);
+    return val;
+  }
+
+  // Handle ARM long branches.
+  static typename This::Status
+  arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
+                   unsigned char *, const Sized_symbol<32>*,
+                   const Arm_relobj<big_endian>*, unsigned int,
+                   const Symbol_value<32>*, Arm_address, Arm_address, bool);
+
+  // Handle THUMB long branches.
+  static typename This::Status
+  thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
+                     unsigned char *, const Sized_symbol<32>*,
+                     const Arm_relobj<big_endian>*, unsigned int,
+                     const Symbol_value<32>*, Arm_address, Arm_address, bool);
+
+ public:
+
+  // R_ARM_ABS8: S + A
+  static inline typename This::Status
+  abs8(unsigned char *view,
+       const Sized_relobj<32, big_endian>* object,
+       const Symbol_value<32>* psymval)
+  {
+    typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
+    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
+    Valtype* wv = reinterpret_cast<Valtype*>(view);
+    Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
+    Reltype addend = utils::sign_extend<8>(val);
+    Reltype x = psymval->value(object, addend);
+    val = utils::bit_select(val, x, 0xffU);
+    elfcpp::Swap<8, big_endian>::writeval(wv, val);
+    return (utils::has_signed_unsigned_overflow<8>(x)
+           ? This::STATUS_OVERFLOW
+           : This::STATUS_OKAY);
+  }
+
+  // R_ARM_THM_ABS5: S + A
+  static inline typename This::Status
+  thm_abs5(unsigned char *view,
+       const Sized_relobj<32, big_endian>* object,
+       const Symbol_value<32>* psymval)
+  {
+    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
+    Valtype* wv = reinterpret_cast<Valtype*>(view);
+    Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
+    Reltype addend = (val & 0x7e0U) >> 6;
+    Reltype x = psymval->value(object, addend);
+    val = utils::bit_select(val, x << 6, 0x7e0U);
+    elfcpp::Swap<16, big_endian>::writeval(wv, val);
+    return (utils::has_overflow<5>(x)
+           ? This::STATUS_OVERFLOW
+           : This::STATUS_OKAY);
+  }
+
+  // R_ARM_ABS12: S + A
+  static inline typename This::Status
+  abs12(unsigned char *view,
+       const Sized_relobj<32, big_endian>* object,
+       const Symbol_value<32>* psymval)
+  {
+    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
+    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
+    Valtype* wv = reinterpret_cast<Valtype*>(view);
+    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
+    Reltype addend = val & 0x0fffU;
+    Reltype x = psymval->value(object, addend);
+    val = utils::bit_select(val, x, 0x0fffU);
+    elfcpp::Swap<32, big_endian>::writeval(wv, val);
+    return (utils::has_overflow<12>(x)
+           ? This::STATUS_OVERFLOW
+           : This::STATUS_OKAY);
+  }
+
+  // R_ARM_ABS16: S + A
+  static inline typename This::Status
+  abs16(unsigned char *view,
+       const Sized_relobj<32, big_endian>* object,
+       const Symbol_value<32>* psymval)
+  {
+    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
+    Valtype* wv = reinterpret_cast<Valtype*>(view);
+    Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
+    Reltype addend = utils::sign_extend<16>(val);
+    Reltype x = psymval->value(object, addend);
+    val = utils::bit_select(val, x, 0xffffU);
+    elfcpp::Swap<16, big_endian>::writeval(wv, val);
+    return (utils::has_signed_unsigned_overflow<16>(x)
+           ? This::STATUS_OVERFLOW
+           : This::STATUS_OKAY);
+  }
+
+  // R_ARM_ABS32: (S + A) | T
+  static inline typename This::Status
+  abs32(unsigned char *view,
+       const Sized_relobj<32, big_endian>* object,
+       const Symbol_value<32>* psymval,
+       Arm_address thumb_bit)
+  {
+    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
+    Valtype* wv = reinterpret_cast<Valtype*>(view);
+    Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
+    Valtype x = psymval->value(object, addend) | thumb_bit;
+    elfcpp::Swap<32, big_endian>::writeval(wv, x);
+    return This::STATUS_OKAY;
+  }
+
+  // R_ARM_REL32: (S + A) | T - P
+  static inline typename This::Status
+  rel32(unsigned char *view,
+       const Sized_relobj<32, big_endian>* object,
+       const Symbol_value<32>* psymval,
+       Arm_address address,
+       Arm_address thumb_bit)
+  {
+    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
+    Valtype* wv = reinterpret_cast<Valtype*>(view);
+    Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
+    Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
+    elfcpp::Swap<32, big_endian>::writeval(wv, x);
+    return This::STATUS_OKAY;
+  }
+
+  // R_ARM_THM_CALL: (S + A) | T - P
+  static inline typename This::Status
+  thm_call(const Relocate_info<32, big_endian>* relinfo, unsigned char *view,
+          const Sized_symbol<32>* gsym, const Arm_relobj<big_endian>* object,
+          unsigned int r_sym, const Symbol_value<32>* psymval,
+          Arm_address address, Arm_address thumb_bit,
+          bool is_weakly_undefined_without_plt)
+  {
+    return thumb_branch_common(elfcpp::R_ARM_THM_CALL, relinfo, view, gsym,
+                              object, r_sym, psymval, address, thumb_bit,
+                              is_weakly_undefined_without_plt);
+  }
+
+  // R_ARM_THM_JUMP24: (S + A) | T - P
+  static inline typename This::Status
+  thm_jump24(const Relocate_info<32, big_endian>* relinfo, unsigned char *view,
+            const Sized_symbol<32>* gsym, const Arm_relobj<big_endian>* object,
+            unsigned int r_sym, const Symbol_value<32>* psymval,
+            Arm_address address, Arm_address thumb_bit,
+            bool is_weakly_undefined_without_plt)
+  {
+    return thumb_branch_common(elfcpp::R_ARM_THM_JUMP24, relinfo, view, gsym,
+                              object, r_sym, psymval, address, thumb_bit,
+                              is_weakly_undefined_without_plt);
+  }
+
+  // R_ARM_THM_XPC22: (S + A) | T - P
+  static inline typename This::Status
+  thm_xpc22(const Relocate_info<32, big_endian>* relinfo, unsigned char *view,
+           const Sized_symbol<32>* gsym, const Arm_relobj<big_endian>* object,
+           unsigned int r_sym, const Symbol_value<32>* psymval,
+           Arm_address address, Arm_address thumb_bit,
+           bool is_weakly_undefined_without_plt)
+  {
+    return thumb_branch_common(elfcpp::R_ARM_THM_XPC22, relinfo, view, gsym,
+                              object, r_sym, psymval, address, thumb_bit,
+                              is_weakly_undefined_without_plt);
+  }
+
+  // R_ARM_BASE_PREL: B(S) + A - P
+  static inline typename This::Status
+  base_prel(unsigned char* view,
+           Arm_address origin,
+           Arm_address address)
+  {
+    Base::rel32(view, origin - address);
+    return STATUS_OKAY;
+  }
+
+  // R_ARM_BASE_ABS: B(S) + A
+  static inline typename This::Status
+  base_abs(unsigned char* view,
+          Arm_address origin)
+  {
+    Base::rel32(view, origin);
+    return STATUS_OKAY;
+  }
+
+  // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
+  static inline typename This::Status
+  got_brel(unsigned char* view,
+          typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
+  {
+    Base::rel32(view, got_offset);
+    return This::STATUS_OKAY;
+  }
+
+  // R_ARM_GOT_PREL: GOT(S) + A - P
+  static inline typename This::Status
+  got_prel(unsigned char *view,
+          Arm_address got_entry,
+          Arm_address address)
+  {
+    Base::rel32(view, got_entry - address);
+    return This::STATUS_OKAY;
+  }
+
+  // R_ARM_PLT32: (S + A) | T - P
+  static inline typename This::Status
+  plt32(const Relocate_info<32, big_endian>* relinfo,
+       unsigned char *view,
+       const Sized_symbol<32>* gsym,
+       const Arm_relobj<big_endian>* object,
+       unsigned int r_sym,
+       const Symbol_value<32>* psymval,
+       Arm_address address,
+       Arm_address thumb_bit,
+       bool is_weakly_undefined_without_plt)
+  {
+    return arm_branch_common(elfcpp::R_ARM_PLT32, relinfo, view, gsym,
+                            object, r_sym, psymval, address, thumb_bit,
+                            is_weakly_undefined_without_plt);
+  }
+
+  // R_ARM_XPC25: (S + A) | T - P
+  static inline typename This::Status
+  xpc25(const Relocate_info<32, big_endian>* relinfo,
+       unsigned char *view,
+       const Sized_symbol<32>* gsym,
+       const Arm_relobj<big_endian>* object,
+       unsigned int r_sym,
+       const Symbol_value<32>* psymval,
+       Arm_address address,
+       Arm_address thumb_bit,
+       bool is_weakly_undefined_without_plt)
+  {
+    return arm_branch_common(elfcpp::R_ARM_XPC25, relinfo, view, gsym,
+                            object, r_sym, psymval, address, thumb_bit,
+                            is_weakly_undefined_without_plt);
+  }
+
+  // R_ARM_CALL: (S + A) | T - P
+  static inline typename This::Status
+  call(const Relocate_info<32, big_endian>* relinfo,
+       unsigned char *view,
+       const Sized_symbol<32>* gsym,
+       const Arm_relobj<big_endian>* object,
+       unsigned int r_sym,
+       const Symbol_value<32>* psymval,
+       Arm_address address,
+       Arm_address thumb_bit,
+       bool is_weakly_undefined_without_plt)
+  {
+    return arm_branch_common(elfcpp::R_ARM_CALL, relinfo, view, gsym,
+                            object, r_sym, psymval, address, thumb_bit,
+                            is_weakly_undefined_without_plt);
+  }
+
+  // R_ARM_JUMP24: (S + A) | T - P
+  static inline typename This::Status
+  jump24(const Relocate_info<32, big_endian>* relinfo,
+        unsigned char *view,
+        const Sized_symbol<32>* gsym,
+        const Arm_relobj<big_endian>* object,
+        unsigned int r_sym,
+        const Symbol_value<32>* psymval,
+        Arm_address address,
+        Arm_address thumb_bit,
+        bool is_weakly_undefined_without_plt)
+  {
+    return arm_branch_common(elfcpp::R_ARM_JUMP24, relinfo, view, gsym,
+                            object, r_sym, psymval, address, thumb_bit,
+                            is_weakly_undefined_without_plt);
+  }
+
+  // R_ARM_PREL: (S + A) | T - P
+  static inline typename This::Status
+  prel31(unsigned char *view,
+        const Sized_relobj<32, big_endian>* object,
+        const Symbol_value<32>* psymval,
+        Arm_address address,
+        Arm_address thumb_bit)
+  {
+    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
+    Valtype* wv = reinterpret_cast<Valtype*>(view);
+    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
+    Valtype addend = utils::sign_extend<31>(val);
+    Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
+    val = utils::bit_select(val, x, 0x7fffffffU);
+    elfcpp::Swap<32, big_endian>::writeval(wv, val);
+    return (utils::has_overflow<31>(x) ?
+           This::STATUS_OVERFLOW : This::STATUS_OKAY);
+  }
+
+  // R_ARM_MOVW_ABS_NC: (S + A) | T
+  static inline typename This::Status 
+  movw_abs_nc(unsigned char *view,
+             const Sized_relobj<32, big_endian>* object,
+             const Symbol_value<32>* psymval,
+             Arm_address thumb_bit)
+  {
+    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
+    Valtype* wv = reinterpret_cast<Valtype*>(view);
+    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
+    Valtype addend =  This::extract_arm_movw_movt_addend(val);
+    Valtype x = psymval->value(object, addend) | thumb_bit;
+    val = This::insert_val_arm_movw_movt(val, x);
+    elfcpp::Swap<32, big_endian>::writeval(wv, val);
+    return This::STATUS_OKAY;
+  }
+
+  // R_ARM_MOVT_ABS: S + A
+  static inline typename This::Status
+  movt_abs(unsigned char *view,
+          const Sized_relobj<32, big_endian>* object,
+           const Symbol_value<32>* psymval)
+  {
+    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
+    Valtype* wv = reinterpret_cast<Valtype*>(view);
+    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
+    Valtype addend = This::extract_arm_movw_movt_addend(val);
+    Valtype x = psymval->value(object, addend) >> 16;
+    val = This::insert_val_arm_movw_movt(val, x);
+    elfcpp::Swap<32, big_endian>::writeval(wv, val);
+    return This::STATUS_OKAY;
+  }
+
+  //  R_ARM_THM_MOVW_ABS_NC: S + A | T
+  static inline typename This::Status 
+  thm_movw_abs_nc(unsigned char *view,
+                 const Sized_relobj<32, big_endian>* object,
+                 const Symbol_value<32>* psymval,
+                 Arm_address thumb_bit)
+  {
+    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
+    Valtype* wv = reinterpret_cast<Valtype*>(view);
+    Reltype val = ((elfcpp::Swap<16, big_endian>::readval(wv) << 16)
+                  | elfcpp::Swap<16, big_endian>::readval(wv + 1));
+    Reltype addend = extract_thumb_movw_movt_addend(val);
+    Reltype x = psymval->value(object, addend) | thumb_bit;
+    val = This::insert_val_thumb_movw_movt(val, x);
+    elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
+    elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
+    return This::STATUS_OKAY;
+  }
+
+  //  R_ARM_THM_MOVT_ABS: S + A
+  static inline typename This::Status 
+  thm_movt_abs(unsigned char *view,
+              const Sized_relobj<32, big_endian>* object,
+              const Symbol_value<32>* psymval)
+  {
+    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
+    Valtype* wv = reinterpret_cast<Valtype*>(view);
+    Reltype val = ((elfcpp::Swap<16, big_endian>::readval(wv) << 16)
+                  | elfcpp::Swap<16, big_endian>::readval(wv + 1));
+    Reltype addend = This::extract_thumb_movw_movt_addend(val);
+    Reltype x = psymval->value(object, addend) >> 16;
+    val = This::insert_val_thumb_movw_movt(val, x);
+    elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
+    elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
+    return This::STATUS_OKAY;
+  }
+
+  // R_ARM_MOVW_PREL_NC: (S + A) | T - P
+  static inline typename This::Status
+  movw_prel_nc(unsigned char *view,
+              const Sized_relobj<32, big_endian>* object,
+              const Symbol_value<32>* psymval,
+              Arm_address address,
+              Arm_address thumb_bit)
+  {
+    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
+    Valtype* wv = reinterpret_cast<Valtype*>(view);
+    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
+    Valtype addend = This::extract_arm_movw_movt_addend(val);
+    Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
+    val = This::insert_val_arm_movw_movt(val, x);
+    elfcpp::Swap<32, big_endian>::writeval(wv, val);
+    return This::STATUS_OKAY;
+  }
+
+  // R_ARM_MOVT_PREL: S + A - P
+  static inline typename This::Status
+  movt_prel(unsigned char *view,
+           const Sized_relobj<32, big_endian>* object,
+           const Symbol_value<32>* psymval,
+            Arm_address address)
+  {
+    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
+    Valtype* wv = reinterpret_cast<Valtype*>(view);
+    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
+    Valtype addend = This::extract_arm_movw_movt_addend(val);
+    Valtype x = (psymval->value(object, addend) - address) >> 16;
+    val = This::insert_val_arm_movw_movt(val, x);
+    elfcpp::Swap<32, big_endian>::writeval(wv, val);
+    return This::STATUS_OKAY;
+  }
+
+  // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
+  static inline typename This::Status
+  thm_movw_prel_nc(unsigned char *view,
+                  const Sized_relobj<32, big_endian>* object,
+                  const Symbol_value<32>* psymval,
+                  Arm_address address,
+                  Arm_address thumb_bit)
+  {
+    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
+    Valtype* wv = reinterpret_cast<Valtype*>(view);
+    Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
+                 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
+    Reltype addend = This::extract_thumb_movw_movt_addend(val);
+    Reltype x = (psymval->value(object, addend) | thumb_bit) - address;
+    val = This::insert_val_thumb_movw_movt(val, x);
+    elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
+    elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
+    return This::STATUS_OKAY;
+  }
+
+  // R_ARM_THM_MOVT_PREL: S + A - P
+  static inline typename This::Status
+  thm_movt_prel(unsigned char *view,
+               const Sized_relobj<32, big_endian>* object,
+               const Symbol_value<32>* psymval,
+               Arm_address address)
+  {
+    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
+    Valtype* wv = reinterpret_cast<Valtype*>(view);
+    Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
+                 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
+    Reltype addend = This::extract_thumb_movw_movt_addend(val);
+    Reltype x = (psymval->value(object, addend) - address) >> 16;
+    val = This::insert_val_thumb_movw_movt(val, x);
+    elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
+    elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
+    return This::STATUS_OKAY;
+  }
+};
+
+// Relocate ARM long branches.  This handles relocation types
+// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
+// If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
+// undefined and we do not use PLT in this relocation.  In such a case,
+// the branch is converted into an NOP.
+
+template<bool big_endian>
+typename Arm_relocate_functions<big_endian>::Status
+Arm_relocate_functions<big_endian>::arm_branch_common(
+    unsigned int r_type,
+    const Relocate_info<32, big_endian>* relinfo,
+    unsigned char *view,
+    const Sized_symbol<32>* gsym,
+    const Arm_relobj<big_endian>* object,
+    unsigned int r_sym,
+    const Symbol_value<32>* psymval,
+    Arm_address address,
+    Arm_address thumb_bit,
+    bool is_weakly_undefined_without_plt)
+{
+  typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
+  Valtype* wv = reinterpret_cast<Valtype*>(view);
+  Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
+     
+  bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
+                   && ((val & 0x0f000000UL) == 0x0a000000UL);
+  bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
+  bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
+                         && ((val & 0x0f000000UL) == 0x0b000000UL);
+  bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
+  bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
+
+  // Check that the instruction is valid.
+  if (r_type == elfcpp::R_ARM_CALL)
+    {
+      if (!insn_is_uncond_bl && !insn_is_blx)
+       return This::STATUS_BAD_RELOC;
+    }
+  else if (r_type == elfcpp::R_ARM_JUMP24)
+    {
+      if (!insn_is_b && !insn_is_cond_bl)
+       return This::STATUS_BAD_RELOC;
+    }
+  else if (r_type == elfcpp::R_ARM_PLT32)
+    {
+      if (!insn_is_any_branch)
+       return This::STATUS_BAD_RELOC;
+    }
+  else if (r_type == elfcpp::R_ARM_XPC25)
+    {
+      // FIXME: AAELF document IH0044C does not say much about it other
+      // than it being obsolete.
+      if (!insn_is_any_branch)
+       return This::STATUS_BAD_RELOC;
+    }
+  else
+    gold_unreachable();
+
+  // A branch to an undefined weak symbol is turned into a jump to
+  // the next instruction unless a PLT entry will be created.
+  // Do the same for local undefined symbols.
+  // The jump to the next instruction is optimized as a NOP depending
+  // on the architecture.
+  const Target_arm<big_endian>* arm_target =
+    Target_arm<big_endian>::default_target();
+  if (is_weakly_undefined_without_plt)
+    {
+      Valtype cond = val & 0xf0000000U;
+      if (arm_target->may_use_arm_nop())
+       val = cond | 0x0320f000;
+      else
+       val = cond | 0x01a00000;        // Using pre-UAL nop: mov r0, r0.
+      elfcpp::Swap<32, big_endian>::writeval(wv, val);
+      return This::STATUS_OKAY;
+    }
+  Valtype addend = utils::sign_extend<26>(val << 2);
+  Valtype branch_target = psymval->value(object, addend);
+  int32_t branch_offset = branch_target - address;
+
+  // We need a stub if the branch offset is too large or if we need
+  // to switch mode.
+  bool may_use_blx = arm_target->may_use_blx();
+  Reloc_stub* stub = NULL;
+  if ((branch_offset > ARM_MAX_FWD_BRANCH_OFFSET)
+      || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
+      || ((thumb_bit != 0) && !(may_use_blx && r_type == elfcpp::R_ARM_CALL)))
+    {
+      Stub_type stub_type =
+       Reloc_stub::stub_type_for_reloc(r_type, address, branch_target,
+                                       (thumb_bit != 0));
+      if (stub_type != arm_stub_none)
+       {
+         Stub_table<big_endian>* stubtable =
+           object->stub_table(relinfo->data_shndx);
+         gold_assert(stubtable != NULL);
+
+         Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
+         stub = stubtable->find_reloc_stub(stub_key);
+         gold_assert(stub != NULL);
+         thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
+         branch_target = stubtable->address() + stub->offset() + addend;
+         branch_offset = branch_target - address;
+         gold_assert((branch_offset <= ARM_MAX_FWD_BRANCH_OFFSET)
+                     && (branch_offset >= ARM_MAX_BWD_BRANCH_OFFSET));
+       }
+    }
+
+  // At this point, if we still need to switch mode, the instruction
+  // must either be a BLX or a BL that can be converted to a BLX.
+  if (thumb_bit != 0)
+    {
+      // Turn BL to BLX.
+      gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
+      val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
+    }
+
+  val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
+  elfcpp::Swap<32, big_endian>::writeval(wv, val);
+  return (utils::has_overflow<26>(branch_offset)
+         ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
+}
+
+// Relocate THUMB long branches.  This handles relocation types
+// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
+// If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
+// undefined and we do not use PLT in this relocation.  In such a case,
+// the branch is converted into an NOP.
+
+template<bool big_endian>
+typename Arm_relocate_functions<big_endian>::Status
+Arm_relocate_functions<big_endian>::thumb_branch_common(
+    unsigned int r_type,
+    const Relocate_info<32, big_endian>* relinfo,
+    unsigned char *view,
+    const Sized_symbol<32>* gsym,
+    const Arm_relobj<big_endian>* object,
+    unsigned int r_sym,
+    const Symbol_value<32>* psymval,
+    Arm_address address,
+    Arm_address thumb_bit,
+    bool is_weakly_undefined_without_plt)
+{
+  typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+  Valtype* wv = reinterpret_cast<Valtype*>(view);
+  uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
+  uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
+
+  // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
+  // into account.
+  bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
+  bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
+     
+  // Check that the instruction is valid.
+  if (r_type == elfcpp::R_ARM_THM_CALL)
+    {
+      if (!is_bl_insn && !is_blx_insn)
+       return This::STATUS_BAD_RELOC;
+    }
+  else if (r_type == elfcpp::R_ARM_THM_JUMP24)
+    {
+      // This cannot be a BLX.
+      if (!is_bl_insn)
+       return This::STATUS_BAD_RELOC;
+    }
+  else if (r_type == elfcpp::R_ARM_THM_XPC22)
+    {
+      // Check for Thumb to Thumb call.
+      if (!is_blx_insn)
+       return This::STATUS_BAD_RELOC;
+      if (thumb_bit != 0)
+       {
+         gold_warning(_("%s: Thumb BLX instruction targets "
+                        "thumb function '%s'."),
+                        object->name().c_str(),
+                        (gsym ? gsym->name() : "(local)")); 
+         // Convert BLX to BL.
+         lower_insn |= 0x1000U;
+       }
+    }
+  else
+    gold_unreachable();
+
+  // A branch to an undefined weak symbol is turned into a jump to
+  // the next instruction unless a PLT entry will be created.
+  // The jump to the next instruction is optimized as a NOP.W for
+  // Thumb-2 enabled architectures.
+  const Target_arm<big_endian>* arm_target =
+    Target_arm<big_endian>::default_target();
+  if (is_weakly_undefined_without_plt)
+    {
+      if (arm_target->may_use_thumb2_nop())
+       {
+         elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
+         elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
+       }
+      else
+       {
+         elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
+         elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
+       }
+      return This::STATUS_OKAY;
+    }
+  // Fetch the addend.  We use the Thumb-2 encoding (backwards compatible
+  // with Thumb-1) involving the J1 and J2 bits.
+  uint32_t s = (upper_insn & (1 << 10)) >> 10;
+  uint32_t upper = upper_insn & 0x3ff;
+  uint32_t lower = lower_insn & 0x7ff;
+  uint32_t j1 = (lower_insn & (1 << 13)) >> 13;
+  uint32_t j2 = (lower_insn & (1 << 11)) >> 11;
+  uint32_t i1 = j1 ^ s ? 0 : 1;
+  uint32_t i2 = j2 ^ s ? 0 : 1;
+  int32_t addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
+  // Sign extend.
+  addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
+
+  Arm_address branch_target = psymval->value(object, addend);
+  int32_t branch_offset = branch_target - address;
+
+  // We need a stub if the branch offset is too large or if we need
+  // to switch mode.
+  bool may_use_blx = arm_target->may_use_blx();
+  bool thumb2 = arm_target->using_thumb2();
+  if ((!thumb2
+       && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
+          || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
+      || (thumb2
+         && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
+             || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
+      || ((thumb_bit == 0)
+          && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
+             || r_type == elfcpp::R_ARM_THM_JUMP24)))
+    {
+      Stub_type stub_type =
+       Reloc_stub::stub_type_for_reloc(r_type, address, branch_target,
+                                       (thumb_bit != 0));
+      if (stub_type != arm_stub_none)
+       {
+         Stub_table<big_endian>* stubtable =
+           object->stub_table(relinfo->data_shndx);
+         gold_assert(stubtable != NULL);
+
+         Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
+         Reloc_stub* stub = stubtable->find_reloc_stub(stub_key);
+         gold_assert(stub != NULL);
+         thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
+         branch_target = stubtable->address() + stub->offset() + addend;
+         branch_offset = branch_target - address;
+       }
+    }
+
+  // At this point, if we still need to switch mode, the instruction
+  // must either be a BLX or a BL that can be converted to a BLX.
+  if (thumb_bit == 0)
+    {
+      gold_assert(may_use_blx
+                 && (r_type == elfcpp::R_ARM_THM_CALL
+                     || r_type == elfcpp::R_ARM_THM_XPC22));
+      // Make sure this is a BLX.
+      lower_insn &= ~0x1000U;
+    }
+  else
+    {
+      // Make sure this is a BL.
+      lower_insn |= 0x1000U;
+    }
+
+  uint32_t reloc_sign = (branch_offset < 0) ? 1 : 0;
+  uint32_t relocation = static_cast<uint32_t>(branch_offset);
+
+  if ((lower_insn & 0x5000U) == 0x4000U)
+    // For a BLX instruction, make sure that the relocation is rounded up
+    // to a word boundary.  This follows the semantics of the instruction
+    // which specifies that bit 1 of the target address will come from bit
+    // 1 of the base address.
+    relocation = (relocation + 2U) & ~3U;
+
+  // Put BRANCH_OFFSET back into the insn.  Assumes two's complement.
+  // We use the Thumb-2 encoding, which is safe even if dealing with
+  // a Thumb-1 instruction by virtue of our overflow check above.  */
+  upper_insn = (upper_insn & ~0x7ffU)
+                | ((relocation >> 12) & 0x3ffU)
+                | (reloc_sign << 10);
+  lower_insn = (lower_insn & ~0x2fffU)
+                | (((!((relocation >> 23) & 1U)) ^ reloc_sign) << 13)
+                | (((!((relocation >> 22) & 1U)) ^ reloc_sign) << 11)
+                | ((relocation >> 1) & 0x7ffU);
+
+  elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
+  elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
+
+  return ((thumb2
+          ? utils::has_overflow<25>(relocation)
+          : utils::has_overflow<23>(relocation))
+         ? This::STATUS_OVERFLOW
+         : This::STATUS_OKAY);
+}
+
+// Get the GOT section, creating it if necessary.
+
+template<bool big_endian>
+Output_data_got<32, big_endian>*
+Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
+{
+  if (this->got_ == NULL)
+    {
+      gold_assert(symtab != NULL && layout != NULL);
+
+      this->got_ = new Output_data_got<32, big_endian>();
+
+      Output_section* os;
+      os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
+                                          (elfcpp::SHF_ALLOC
+                                           | elfcpp::SHF_WRITE),
+                                          this->got_, false);
+      os->set_is_relro();
+
+      // The old GNU linker creates a .got.plt section.  We just
+      // create another set of data in the .got section.  Note that we
+      // always create a PLT if we create a GOT, although the PLT
+      // might be empty.
+      this->got_plt_ = new Output_data_space(4, "** GOT PLT");
+      os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
+                                          (elfcpp::SHF_ALLOC
+                                           | elfcpp::SHF_WRITE),
+                                          this->got_plt_, false);
+      os->set_is_relro();
+
+      // The first three entries are reserved.
+      this->got_plt_->set_current_data_size(3 * 4);
+
+      // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
+      symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
+                                   this->got_plt_,
+                                   0, 0, elfcpp::STT_OBJECT,
+                                   elfcpp::STB_LOCAL,
+                                   elfcpp::STV_HIDDEN, 0,
+                                   false, false);
+    }
+  return this->got_;
+}
+
+// Get the dynamic reloc section, creating it if necessary.
+
+template<bool big_endian>
+typename Target_arm<big_endian>::Reloc_section*
+Target_arm<big_endian>::rel_dyn_section(Layout* layout)
+{
+  if (this->rel_dyn_ == NULL)
+    {
+      gold_assert(layout != NULL);
+      this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
+      layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
+                                     elfcpp::SHF_ALLOC, this->rel_dyn_, true);
+    }
+  return this->rel_dyn_;
+}
+
+// Insn_template methods.
+
+// Return byte size of an instruction template.
+
+size_t
+Insn_template::size() const
+{
+  switch (this->type())
+    {
+    case THUMB16_TYPE:
+      return 2;
+    case ARM_TYPE:
+    case THUMB32_TYPE:
+    case DATA_TYPE:
+      return 4;
+    default:
+      gold_unreachable();
+    }
+}
+
+// Return alignment of an instruction template.
+
+unsigned
+Insn_template::alignment() const
+{
+  switch (this->type())
+    {
+    case THUMB16_TYPE:
+    case THUMB32_TYPE:
+      return 2;
+    case ARM_TYPE:
+    case DATA_TYPE:
+      return 4;
+    default:
+      gold_unreachable();
+    }
+}
+
+// Stub_template methods.
+
+Stub_template::Stub_template(
+    Stub_type atype, const Insn_template* iinsns,
+     size_t insncount)
+  : type_(atype), insns_(iinsns), insn_count_(insncount), alignment_(1),
+    entry_in_thumb_mode_(false), relocs_()
+{
+  off_t off = 0;
+
+  // Compute byte size and alignment of stub template.
+  for (size_t i = 0; i < insncount; i++)
+    {
+      unsigned insn_alignment = iinsns[i].alignment();
+      size_t insn_size = iinsns[i].size();
+      gold_assert((off & (insn_alignment - 1)) == 0);
+      this->alignment_ = std::max(this->alignment_, insn_alignment);
+      switch (iinsns[i].type())
+       {
+       case Insn_template::THUMB16_TYPE:
+         if (i == 0)
+           this->entry_in_thumb_mode_ = true;
+         break;
+
+       case Insn_template::THUMB32_TYPE:
+          if (iinsns[i].r_type() != elfcpp::R_ARM_NONE)
+           this->relocs_.push_back(Reloc(i, off));
+         if (i == 0)
+           this->entry_in_thumb_mode_ = true;
+          break;
+
+       case Insn_template::ARM_TYPE:
+         // Handle cases where the target is encoded within the
+         // instruction.
+         if (iinsns[i].r_type() == elfcpp::R_ARM_JUMP24)
+           this->relocs_.push_back(Reloc(i, off));
+         break;
+
+       case Insn_template::DATA_TYPE:
+         // Entry point cannot be data.
+         gold_assert(i != 0);
+         this->relocs_.push_back(Reloc(i, off));
+         break;
+
+       default:
+         gold_unreachable();
+       }
+      off += insn_size; 
+    }
+  this->size_ = off;
+}
+
+// Reloc_stub::Key methods.
+
+// Dump a Key as a string for debugging.
+
+std::string
+Reloc_stub::Key::name() const
+{
+  if (this->r_sym_ == invalid_index)
+    {
+      // Global symbol key name
+      // <stub-type>:<symbol name>:<addend>.
+      const std::string sym_name = this->u_.symbol->name();
+      // We need to print two hex number and two colons.  So just add 100 bytes
+      // to the symbol name size.
+      size_t len = sym_name.size() + 100;
+      char* buffer = new char[len];
+      int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
+                      sym_name.c_str(), this->addend_);
+      gold_assert(c > 0 && c < static_cast<int>(len));
+      delete[] buffer;
+      return std::string(buffer);
+    }
+  else
+    {
+      // local symbol key name
+      // <stub-type>:<object>:<r_sym>:<addend>.
+      const size_t len = 200;
+      char buffer[len];
+      int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
+                      this->u_.relobj, this->r_sym_, this->addend_);
+      gold_assert(c > 0 && c < static_cast<int>(len));
+      return std::string(buffer);
+    }
+}
+
+// Reloc_stub methods.
+
+// Determine the type of stub needed, if any, for a relocation of R_TYPE at
+// LOCATION to DESTINATION.
+// This code is based on the arm_type_of_stub function in
+// bfd/elf32-arm.c.  We have changed the interface a liitle to keep the Stub
+// class simple.
+
+Stub_type
+Reloc_stub::stub_type_for_reloc(
+   unsigned int r_type,
+   Arm_address location,
+   Arm_address destination,
+   bool target_is_thumb)
+{
+  Stub_type stub_type = arm_stub_none;
+
+  // This is a bit ugly but we want to avoid using a templated class for
+  // big and little endianities.
+  bool may_use_blx;
+  bool should_force_pic_veneer;
+  bool thumb2;
+  bool thumb_only;
+  if (parameters->target().is_big_endian())
+    {
+      const Target_arm<true>* big_endian_target =
+       Target_arm<true>::default_target();
+      may_use_blx = big_endian_target->may_use_blx();
+      should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
+      thumb2 = big_endian_target->using_thumb2();
+      thumb_only = big_endian_target->using_thumb_only();
+    }
+  else
+    {
+      const Target_arm<false>* little_endian_target =
+       Target_arm<false>::default_target();
+      may_use_blx = little_endian_target->may_use_blx();
+      should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
+      thumb2 = little_endian_target->using_thumb2();
+      thumb_only = little_endian_target->using_thumb_only();
+    }
+
+  int64_t branch_offset = (int64_t)destination - location;
+
+  if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
+    {
+      // Handle cases where:
+      // - this call goes too far (different Thumb/Thumb2 max
+      //   distance)
+      // - it's a Thumb->Arm call and blx is not available, or it's a
+      //   Thumb->Arm branch (not bl). A stub is needed in this case.
+      if ((!thumb2
+           && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
+               || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
+         || (thumb2
+             && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
+                 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
+         || ((!target_is_thumb)
+             && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
+                 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
+       {
+         if (target_is_thumb)
+           {
+             // Thumb to thumb.
+             if (!thumb_only)
+               {
+                 stub_type = (parameters->options().shared()
+                              || should_force_pic_veneer)
+                   // PIC stubs.
+                   ? ((may_use_blx
+                       && (r_type == elfcpp::R_ARM_THM_CALL))
+                      // V5T and above. Stub starts with ARM code, so
+                      // we must be able to switch mode before
+                      // reaching it, which is only possible for 'bl'
+                      // (ie R_ARM_THM_CALL relocation).
+                      ? arm_stub_long_branch_any_thumb_pic
+                      // On V4T, use Thumb code only.
+                      : arm_stub_long_branch_v4t_thumb_thumb_pic)
+
+                   // non-PIC stubs.
+                   : ((may_use_blx
+                       && (r_type == elfcpp::R_ARM_THM_CALL))
+                      ? arm_stub_long_branch_any_any // V5T and above.
+                      : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
+               }
+             else
+               {
+                 stub_type = (parameters->options().shared()
+                              || should_force_pic_veneer)
+                   ? arm_stub_long_branch_thumb_only_pic       // PIC stub.
+                   : arm_stub_long_branch_thumb_only;  // non-PIC stub.
+               }
+           }
+         else
+           {
+             // Thumb to arm.
+            
+             // FIXME: We should check that the input section is from an
+             // object that has interwork enabled.
+
+             stub_type = (parameters->options().shared()
+                          || should_force_pic_veneer)
+               // PIC stubs.
+               ? ((may_use_blx
+                   && (r_type == elfcpp::R_ARM_THM_CALL))
+                  ? arm_stub_long_branch_any_arm_pic   // V5T and above.
+                  : arm_stub_long_branch_v4t_thumb_arm_pic)    // V4T.
+
+               // non-PIC stubs.
+               : ((may_use_blx
+                   && (r_type == elfcpp::R_ARM_THM_CALL))
+                  ? arm_stub_long_branch_any_any       // V5T and above.
+                  : arm_stub_long_branch_v4t_thumb_arm);       // V4T.
+
+             // Handle v4t short branches.
+             if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
+                 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
+                 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
+               stub_type = arm_stub_short_branch_v4t_thumb_arm;
+           }
+       }
+    }
+  else if (r_type == elfcpp::R_ARM_CALL
+          || r_type == elfcpp::R_ARM_JUMP24
+          || r_type == elfcpp::R_ARM_PLT32)
+    {
+      if (target_is_thumb)
+       {
+         // Arm to thumb.
+
+         // FIXME: We should check that the input section is from an
+         // object that has interwork enabled.
+
+         // We have an extra 2-bytes reach because of
+         // the mode change (bit 24 (H) of BLX encoding).
+         if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
+             || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
+             || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
+             || (r_type == elfcpp::R_ARM_JUMP24)
+             || (r_type == elfcpp::R_ARM_PLT32))
+           {
+             stub_type = (parameters->options().shared()
+                          || should_force_pic_veneer)
+               // PIC stubs.
+               ? (may_use_blx
+                  ? arm_stub_long_branch_any_thumb_pic// V5T and above.
+                  : arm_stub_long_branch_v4t_arm_thumb_pic)    // V4T stub.
+
+               // non-PIC stubs.
+               : (may_use_blx
+                  ? arm_stub_long_branch_any_any       // V5T and above.
+                  : arm_stub_long_branch_v4t_arm_thumb);       // V4T.
+           }
+       }
+      else
+       {
+         // Arm to arm.
+         if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
+             || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
+           {
+             stub_type = (parameters->options().shared()
+                          || should_force_pic_veneer)
+               ? arm_stub_long_branch_any_arm_pic      // PIC stubs.
+               : arm_stub_long_branch_any_any;         /// non-PIC.
+           }
+       }
+    }
+
+  return stub_type;
+}
+
+// Template to implement do_write for a specific target endianity.
+
+template<bool big_endian>
+void inline
+Reloc_stub::do_fixed_endian_write(unsigned char* view,
+                                 section_size_type view_size)
+{
+  const Stub_template* stubtemplate = this->stub_template();
+  const Insn_template* insns = stubtemplate->insns();
+
+  // FIXME:  We do not handle BE8 encoding yet.
+  unsigned char* pov = view;
+  for (size_t i = 0; i < stubtemplate->insn_count(); i++)
+    {
+      switch (insns[i].type())
+       {
+       case Insn_template::THUMB16_TYPE:
+         // Non-zero reloc addends are only used in Cortex-A8 stubs. 
+         gold_assert(insns[i].reloc_addend() == 0);
+         elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
+         break;
+       case Insn_template::THUMB32_TYPE:
+         {
+           uint32_t hi = (insns[i].data() >> 16) & 0xffff;
+           uint32_t lo = insns[i].data() & 0xffff;
+           elfcpp::Swap<16, big_endian>::writeval(pov, hi);
+           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
+         }
+          break;
+       case Insn_template::ARM_TYPE:
+       case Insn_template::DATA_TYPE:
+         elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
+         break;
+       default:
+         gold_unreachable();
+       }
+      pov += insns[i].size();
+    }
+  gold_assert(static_cast<section_size_type>(pov - view) == view_size);
+} 
+
+// Write a reloc stub to VIEW with endianity specified by BIG_ENDIAN.
+
+void
+Reloc_stub::do_write(unsigned char* view, section_size_type view_size,
+                    bool big_endian)
+{
+  if (big_endian)
+    this->do_fixed_endian_write<true>(view, view_size);
+  else
+    this->do_fixed_endian_write<false>(view, view_size);
+}
+
+// Stub_factory methods.
+
+Stub_factory::Stub_factory()
+{
+  // The instruction template sequences are declared as static
+  // objects and initialized first time the constructor runs.
+  // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
+  // to reach the stub if necessary.
+  static const Insn_template elf32_arm_stub_long_branch_any_any[] =
+    {
+      Insn_template::arm_insn(0xe51ff004),     // ldr   pc, [pc, #-4]
+      Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
+                                               // dcd   R_ARM_ABS32(X)
+    };
+  
+  // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
+  // available.
+  static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
+    {
+      Insn_template::arm_insn(0xe59fc000),     // ldr   ip, [pc, #0]
+      Insn_template::arm_insn(0xe12fff1c),     // bx    ip
+      Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
+                                               // dcd   R_ARM_ABS32(X)
+    };
+  
+  // Thumb -> Thumb long branch stub. Used on M-profile architectures.
+  static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
+    {
+      Insn_template::thumb16_insn(0xb401),     // push {r0}
+      Insn_template::thumb16_insn(0x4802),     // ldr  r0, [pc, #8]
+      Insn_template::thumb16_insn(0x4684),     // mov  ip, r0
+      Insn_template::thumb16_insn(0xbc01),     // pop  {r0}
+      Insn_template::thumb16_insn(0x4760),     // bx   ip
+      Insn_template::thumb16_insn(0xbf00),     // nop
+      Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
+                                               // dcd  R_ARM_ABS32(X)
+    };
+  
+  // V4T Thumb -> Thumb long branch stub. Using the stack is not
+  // allowed.
+  static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
+    {
+      Insn_template::thumb16_insn(0x4778),     // bx   pc
+      Insn_template::thumb16_insn(0x46c0),     // nop
+      Insn_template::arm_insn(0xe59fc000),     // ldr  ip, [pc, #0]
+      Insn_template::arm_insn(0xe12fff1c),     // bx   ip
+      Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
+                                               // dcd  R_ARM_ABS32(X)
+    };
+  
+  // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
+  // available.
+  static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
+    {
+      Insn_template::thumb16_insn(0x4778),     // bx   pc
+      Insn_template::thumb16_insn(0x46c0),     // nop
+      Insn_template::arm_insn(0xe51ff004),     // ldr   pc, [pc, #-4]
+      Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
+                                               // dcd   R_ARM_ABS32(X)
+    };
+  
+  // V4T Thumb -> ARM short branch stub. Shorter variant of the above
+  // one, when the destination is close enough.
+  static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
+    {
+      Insn_template::thumb16_insn(0x4778),             // bx   pc
+      Insn_template::thumb16_insn(0x46c0),             // nop
+      Insn_template::arm_rel_insn(0xea000000, -8),     // b    (X-8)
+    };
+  
+  // ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
+  // blx to reach the stub if necessary.
+  static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
+    {
+      Insn_template::arm_insn(0xe59fc000),     // ldr   r12, [pc]
+      Insn_template::arm_insn(0xe08ff00c),     // add   pc, pc, ip
+      Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
+                                               // dcd   R_ARM_REL32(X-4)
+    };
+  
+  // ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
+  // blx to reach the stub if necessary.  We can not add into pc;
+  // it is not guaranteed to mode switch (different in ARMv6 and
+  // ARMv7).
+  static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
+    {
+      Insn_template::arm_insn(0xe59fc004),     // ldr   r12, [pc, #4]
+      Insn_template::arm_insn(0xe08fc00c),     // add   ip, pc, ip
+      Insn_template::arm_insn(0xe12fff1c),     // bx    ip
+      Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
+                                               // dcd   R_ARM_REL32(X)
+    };
+  
+  // V4T ARM -> ARM long branch stub, PIC.
+  static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
+    {
+      Insn_template::arm_insn(0xe59fc004),     // ldr   ip, [pc, #4]
+      Insn_template::arm_insn(0xe08fc00c),     // add   ip, pc, ip
+      Insn_template::arm_insn(0xe12fff1c),     // bx    ip
+      Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
+                                               // dcd   R_ARM_REL32(X)
+    };
+  
+  // V4T Thumb -> ARM long branch stub, PIC.
+  static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
+    {
+      Insn_template::thumb16_insn(0x4778),     // bx   pc
+      Insn_template::thumb16_insn(0x46c0),     // nop
+      Insn_template::arm_insn(0xe59fc000),     // ldr  ip, [pc, #0]
+      Insn_template::arm_insn(0xe08cf00f),     // add  pc, ip, pc
+      Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
+                                               // dcd  R_ARM_REL32(X)
+    };
+  
+  // Thumb -> Thumb long branch stub, PIC. Used on M-profile
+  // architectures.
+  static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
+    {
+      Insn_template::thumb16_insn(0xb401),     // push {r0}
+      Insn_template::thumb16_insn(0x4802),     // ldr  r0, [pc, #8]
+      Insn_template::thumb16_insn(0x46fc),     // mov  ip, pc
+      Insn_template::thumb16_insn(0x4484),     // add  ip, r0
+      Insn_template::thumb16_insn(0xbc01),     // pop  {r0}
+      Insn_template::thumb16_insn(0x4760),     // bx   ip
+      Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
+                                               // dcd  R_ARM_REL32(X)
+    };
+  
+  // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
+  // allowed.
+  static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
+    {
+      Insn_template::thumb16_insn(0x4778),     // bx   pc
+      Insn_template::thumb16_insn(0x46c0),     // nop
+      Insn_template::arm_insn(0xe59fc004),     // ldr  ip, [pc, #4]
+      Insn_template::arm_insn(0xe08fc00c),     // add   ip, pc, ip
+      Insn_template::arm_insn(0xe12fff1c),     // bx   ip
+      Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
+                                               // dcd  R_ARM_REL32(X)
+    };
+  
+  // Cortex-A8 erratum-workaround stubs.
+  
+  // Stub used for conditional branches (which may be beyond +/-1MB away,
+  // so we can't use a conditional branch to reach this stub).
+  
+  // original code:
+  //
+  //   b<cond> X
+  // after:
+  //
+  static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
+    {
+      Insn_template::thumb16_bcond_insn(0xd001),       //      b<cond>.n true
+      Insn_template::thumb32_b_insn(0xf000b800, -4),   //      b.w after
+      Insn_template::thumb32_b_insn(0xf000b800, -4)    // true:
+                                                       //      b.w X
+    };
+  
+  // Stub used for b.w and bl.w instructions.
+  
+  static const Insn_template elf32_arm_stub_a8_veneer_b[] =
+    {
+      Insn_template::thumb32_b_insn(0xf000b800, -4)    // b.w dest
+    };
+  
+  static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
+    {
+      Insn_template::thumb32_b_insn(0xf000b800, -4)    // b.w dest
+    };
+  
+  // Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
+  // instruction (which switches to ARM mode) to point to this stub.  Jump to
+  // the real destination using an ARM-mode branch.
+  const Insn_template elf32_arm_stub_a8_veneer_blx[] =
+    {
+      Insn_template::arm_rel_insn(0xea000000, -8)      // b dest
+    };
+
+  // Fill in the stub template look-up table.  Stub templates are constructed
+  // per instance of Stub_factory for fast look-up without locking
+  // in a thread-enabled environment.
+
+  this->stub_templates_[arm_stub_none] =
+    new Stub_template(arm_stub_none, NULL, 0);
+
+#define DEF_STUB(x)    \
+  do \
+    { \
+      size_t array_size \
+       = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
+      Stub_type type = arm_stub_##x; \
+      this->stub_templates_[type] = \
+       new Stub_template(type, elf32_arm_stub_##x, array_size); \
+    } \
+  while (0);
+
+  DEF_STUBS
+#undef DEF_STUB
+}
+
+// Stub_table methods.
+
+// Add a STUB with using KEY.  Caller is reponsible for avoid adding
+// if already a STUB with the same key has been added. 
+
+template<bool big_endian>
+void
+Stub_table<big_endian>::add_reloc_stub(
+    Reloc_stub* stub,
+    const Reloc_stub::Key& key)
+{
+  const Stub_template* stubtemplate = stub->stub_template();
+  gold_assert(stubtemplate->type() == key.stub_type());
+  this->reloc_stubs_[key] = stub;
+  if (this->addralign_ < stubtemplate->alignment())
+    this->addralign_ = stubtemplate->alignment();
+  this->has_been_changed_ = true;
+}
+
+template<bool big_endian>
+void
+Stub_table<big_endian>::relocate_stubs(
+    const Relocate_info<32, big_endian>* relinfo,
+    Target_arm<big_endian>* arm_target,
+    Output_section* out_section,
+    unsigned char* view,
+    Arm_address addr,
+    section_size_type view_size)
+{
+  // If we are passed a view bigger than the stub table's.  we need to
+  // adjust the view.
+  gold_assert(addr == this->address()
+             && (view_size
+                 == static_cast<section_size_type>(this->data_size())));
+
+  for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
+      p != this->reloc_stubs_.end();
+      ++p)
+    {
+      Reloc_stub* stub = p->second;
+      const Stub_template* stubtemplate = stub->stub_template();
+      if (stubtemplate->reloc_count() != 0)
+       {
+         // Adjust view to cover the stub only.
+         section_size_type off = stub->offset();
+         section_size_type stub_size = stubtemplate->size();
+         gold_assert(off + stub_size <= view_size);
+
+         arm_target->relocate_stub(stub, relinfo, out_section,
+                                   view + off, addr + off,
+                                   stub_size);
+       }
+    }
+}
+
+// Reset address and file offset.
+
+template<bool big_endian>
+void
+Stub_table<big_endian>::do_reset_address_and_file_offset()
+{
+  off_t off = 0;
+  uint64_t max_addralign = 1;
+  for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
+      p != this->reloc_stubs_.end();
+      ++p)
+    {
+      Reloc_stub* stub = p->second;
+      const Stub_template* stubtemplate = stub->stub_template();
+      uint64_t stub_addralign = stubtemplate->alignment();
+      max_addralign = std::max(max_addralign, stub_addralign);
+      off = align_address(off, stub_addralign);
+      stub->set_offset(off);
+      stub->reset_destination_address();
+      off += stubtemplate->size();
+    }
+
+  this->addralign_ = max_addralign;
+  this->set_current_data_size_for_child(off);
+}
+
+// Write out the stubs to file.
+
+template<bool big_endian>
+void
+Stub_table<big_endian>::do_write(Output_file* of)
+{
+  off_t off = this->offset();
+  const section_size_type oview_size =
+    convert_to_section_size_type(this->data_size());
+  unsigned char* const oview = of->get_output_view(off, oview_size);
+
+  for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
+      p != this->reloc_stubs_.end();
+      ++p)
+    {
+      Reloc_stub* stub = p->second;
+      Arm_address addr = this->address() + stub->offset();
+      gold_assert(addr
+                 == align_address(addr,
+                                  stub->stub_template()->alignment()));
+      stub->write(oview + stub->offset(), stub->stub_template()->size(),
+                 big_endian);
+    } 
+  of->write_output_view(this->offset(), oview_size, oview);
+}
+
+// Arm_input_section methods.
+
+// Initialize an Arm_input_section.
+
+template<bool big_endian>
+void
+Arm_input_section<big_endian>::init()
+{
+  Relobj* rel_obj = this->relobj();
+  unsigned int sec_shndx = this->shndx();
+
+  // Cache these to speed up size and alignment queries.  It is too slow
+  // to call section_addraglin and section_size every time.
+  this->original_addralign_ = rel_obj->section_addralign(sec_shndx);
+  this->original_size_ = rel_obj->section_size(sec_shndx);
+
+  // We want to make this look like the original input section after
+  // output sections are finalized.
+  Output_section* os = rel_obj->output_section(sec_shndx);
+  off_t off = rel_obj->output_section_offset(sec_shndx);
+  gold_assert(os != NULL && !rel_obj->is_output_section_offset_invalid(sec_shndx));
+  this->set_address(os->address() + off);
+  this->set_file_offset(os->offset() + off);
+
+  this->set_current_data_size(this->original_size_);
+  this->finalize_data_size();
+}
+
+template<bool big_endian>
+void
+Arm_input_section<big_endian>::do_write(Output_file* of)
+{
+  // We have to write out the original section content.
+  section_size_type section_size;
+  const unsigned char* section_contents =
+    this->relobj()->section_contents(this->shndx(), &section_size, false); 
+  of->write(this->offset(), section_contents, section_size); 
+
+  // If this owns a stub table and it is not empty, write it.
+  if (this->is_stub_table_owner() && !this->stub_table_->empty())
+    this->stub_table_->write(of);
+}
+
+// Finalize data size.
+
+template<bool big_endian>
+void
+Arm_input_section<big_endian>::set_final_data_size()
+{
+  // If this owns a stub table, finalize its data size as well.
+  if (this->is_stub_table_owner())
+    {
+      uint64_t addr = this->address();
+
+      // The stub table comes after the original section contents.
+      addr += this->original_size_;
+      addr = align_address(addr, this->stub_table_->addralign());
+      off_t off = this->offset() + (addr - this->address());
+      this->stub_table_->set_address_and_file_offset(addr, off);
+      addr += this->stub_table_->data_size();
+      gold_assert(addr == this->address() + this->current_data_size());
+    }
+
+  this->set_data_size(this->current_data_size());
+}
+
+// Reset address and file offset.
+
+template<bool big_endian>
+void
+Arm_input_section<big_endian>::do_reset_address_and_file_offset()
+{
+  // Size of the original input section contents.
+  off_t off = convert_types<off_t, uint64_t>(this->original_size_);
+
+  // If this is a stub table owner, account for the stub table size.
+  if (this->is_stub_table_owner())
+    {
+      Stub_table<big_endian>* stubtable = this->stub_table_;
+
+      // Reset the stub table's address and file offset.  The
+      // current data size for child will be updated after that.
+      stub_table_->reset_address_and_file_offset();
+      off = align_address(off, stub_table_->addralign());
+      off += stubtable->current_data_size();
+    }
+
+  this->set_current_data_size(off);
+}
+
+// Arm_output_section methods.
+
+// Create a stub group for input sections from BEGIN to END.  OWNER
+// points to the input section to be the owner a new stub table.
+
+template<bool big_endian>
+void
+Arm_output_section<big_endian>::create_stub_group(
+  Input_section_list::const_iterator begin,
+  Input_section_list::const_iterator end,
+  Input_section_list::const_iterator owner,
+  Target_arm<big_endian>* target,
+  std::vector<Output_relaxed_input_section*>* new_relaxed_sections)
+{
+  // Currently we convert ordinary input sections into relaxed sections only
+  // at this point but we may want to support creating relaxed input section
+  // very early.  So we check here to see if owner is already a relaxed
+  // section.
+  
+  Arm_input_section<big_endian>* arm_input_section;
+  if (owner->is_relaxed_input_section())
+    {
+      arm_input_section =
+       Arm_input_section<big_endian>::as_arm_input_section(
+         owner->relaxed_input_section());
+    }
+  else
+    {
+      gold_assert(owner->is_input_section());
+      // Create a new relaxed input section.
+      arm_input_section =
+       target->new_arm_input_section(owner->relobj(), owner->shndx());
+      new_relaxed_sections->push_back(arm_input_section);
+    }
+
+  // Create a stub table.
+  Stub_table<big_endian>* stubtable =
+    target->new_stub_table(arm_input_section);
+
+  arm_input_section->set_stub_table(stubtable);
+  
+  Input_section_list::const_iterator p = begin;
+  Input_section_list::const_iterator prev_p;
+
+  // Look for input sections or relaxed input sections in [begin ... end].
+  do
+    {
+      if (p->is_input_section() || p->is_relaxed_input_section())
+       {
+         // The stub table information for input sections live
+         // in their objects.
+         Arm_relobj<big_endian>* arm_relobj =
+           Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
+         arm_relobj->set_stub_table(p->shndx(), stubtable);
+       }
+      prev_p = p++;
+    }
+  while (prev_p != end);
+}
+
+// Group input sections for stub generation.  GROUP_SIZE is roughly the limit
+// of stub groups.  We grow a stub group by adding input section until the
+// size is just below GROUP_SIZE.  The last input section will be converted
+// into a stub table.  If STUB_ALWAYS_AFTER_BRANCH is false, we also add
+// input section after the stub table, effectively double the group size.
+// 
+// This is similar to the group_sections() function in elf32-arm.c but is
+// implemented differently.
+
+template<bool big_endian>
+void
+Arm_output_section<big_endian>::group_sections(
+    section_size_type group_size,
+    bool stubs_always_after_branch,
+    Target_arm<big_endian>* target)
+{
+  // We only care about sections containing code.
+  if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
+    return;
+
+  // States for grouping.
+  typedef enum
+  {
+    // No group is being built.
+    NO_GROUP,
+    // A group is being built but the stub table is not found yet.
+    // We keep group a stub group until the size is just under GROUP_SIZE.
+    // The last input section in the group will be used as the stub table.
+    FINDING_STUB_SECTION,
+    // A group is being built and we have already found a stub table.
+    // We enter this state to grow a stub group by adding input section
+    // after the stub table.  This effectively doubles the group size.
+    HAS_STUB_SECTION
+  } State;
+
+  // Any newly created relaxed sections are stored here.
+  std::vector<Output_relaxed_input_section*> new_relaxed_sections;
+
+  State state = NO_GROUP;
+  section_size_type off = 0;
+  section_size_type group_begin_offset = 0;
+  section_size_type group_end_offset = 0;
+  section_size_type stub_table_end_offset = 0;
+  Input_section_list::const_iterator group_begin =
+    this->input_sections().end();
+  Input_section_list::const_iterator stubtable =
+    this->input_sections().end();
+  Input_section_list::const_iterator group_end = this->input_sections().end();
+  for (Input_section_list::const_iterator p = this->input_sections().begin();
+       p != this->input_sections().end();
+       ++p)
+    {
+      section_size_type section_begin_offset =
+       align_address(off, p->addralign());
+      section_size_type section_end_offset =
+       section_begin_offset + p->data_size(); 
+      
+      // Check to see if we should group the previously seens sections.
+      switch (state)
+       {
+       case NO_GROUP:
+         break;
+
+       case FINDING_STUB_SECTION:
+         // Adding this section makes the group larger than GROUP_SIZE.
+         if (section_end_offset - group_begin_offset >= group_size)
+           {
+             if (stubs_always_after_branch)
+               {       
+                 gold_assert(group_end != this->input_sections().end());
+                 this->create_stub_group(group_begin, group_end, group_end,
+                                         target, &new_relaxed_sections);
+                 state = NO_GROUP;
+               }
+             else
+               {
+                 // But wait, there's more!  Input sections up to
+                 // stub_group_size bytes after the stub table can be
+                 // handled by it too.
+                 state = HAS_STUB_SECTION;
+                 stubtable = group_end;
+                 stub_table_end_offset = group_end_offset;
+               }
+           }
+           break;
+
+       case HAS_STUB_SECTION:
+         // Adding this section makes the post stub-section group larger
+         // than GROUP_SIZE.
+         if (section_end_offset - stub_table_end_offset >= group_size)
+          {
+            gold_assert(group_end != this->input_sections().end());
+            this->create_stub_group(group_begin, group_end, stubtable,
+                                    target, &new_relaxed_sections);
+            state = NO_GROUP;
+          }
+          break;
+
+         default:
+           gold_unreachable();
+       }       
+
+      // If we see an input section and currently there is no group, start
+      // a new one.  Skip any empty sections.
+      if ((p->is_input_section() || p->is_relaxed_input_section())
+         && (p->relobj()->section_size(p->shndx()) != 0))
+       {
+         if (state == NO_GROUP)
+           {
+             state = FINDING_STUB_SECTION;
+             group_begin = p;
+             group_begin_offset = section_begin_offset;
+           }
+
+         // Keep track of the last input section seen.
+         group_end = p;
+         group_end_offset = section_end_offset;
+       }
+
+      off = section_end_offset;
+    }
+
+  // Create a stub group for any ungrouped sections.
+  if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
+    {
+      gold_assert(group_end != this->input_sections().end());
+      this->create_stub_group(group_begin, group_end,
+                             (state == FINDING_STUB_SECTION
+                              ? group_end
+                              : stubtable),
+                              target, &new_relaxed_sections);
+    }
+
+  // Convert input section into relaxed input section in a batch.
+  if (!new_relaxed_sections.empty())
+    this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
+
+  // Update the section offsets
+  for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
+    {
+      Arm_relobj<big_endian>* arm_relobj =
+       Arm_relobj<big_endian>::as_arm_relobj(
+         new_relaxed_sections[i]->relobj());
+      unsigned int sec_shndx = new_relaxed_sections[i]->shndx();
+      // Tell Arm_relobj that this input section is converted.
+      arm_relobj->convert_input_section_to_relaxed_section(sec_shndx);
+    }
+}
+
+// Arm_relobj methods.
+
+// Scan relocations for stub generation.
+
+template<bool big_endian>
+void
+Arm_relobj<big_endian>::scan_sections_for_stubs(
+    Target_arm<big_endian>* arm_target,
+    const Symbol_table* symtab,
+    const Layout* alayout)
+{
+  unsigned int sec_shnum = this->shnum();
+  const unsigned int shdrsize = elfcpp::Elf_sizes<32>::shdr_size;
+
+  // Read the section headers.
+  const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
+                                              sec_shnum * shdrsize,
+                                              true, true);
+
+  // To speed up processing, we set up hash tables for fast lookup of
+  // input offsets to output addresses.
+  this->initialize_input_to_output_maps();
+
+  const Relobj::Output_sections& out_sections(this->output_sections());
+
+  Relocate_info<32, big_endian> relinfo;
+  relinfo.symtab = symtab;
+  relinfo.layout = alayout;
+  relinfo.object = this;
+
+  const unsigned char* p = pshdrs + shdrsize;
+  for (unsigned int i = 1; i < sec_shnum; ++i, p += shdrsize)
+    {
+      typename elfcpp::Shdr<32, big_endian> shdr(p);
+
+      unsigned int sh_type = shdr.get_sh_type();
+      if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
+       continue;
+
+      off_t sh_size = shdr.get_sh_size();
+      if (sh_size == 0)
+       continue;
+
+      unsigned int index = this->adjust_shndx(shdr.get_sh_info());
+      if (index >= this->shnum())
+       {
+         // Ignore reloc section with bad info.  This error will be
+         // reported in the final link.
+         continue;
+       }
+
+      Output_section* os = out_sections[index];
+      if (os == NULL)
+       {
+         // This relocation section is against a section which we
+         // discarded.
+         continue;
+       }
+      Arm_address output_offset = this->get_output_section_offset(index);
+
+      if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
+       {
+         // Ignore reloc section with unexpected symbol table.  The
+         // error will be reported in the final link.
+         continue;
+       }
+
+      const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
+                                                   sh_size, true, false);
+
+      unsigned int reloc_size;
+      if (sh_type == elfcpp::SHT_REL)
+       reloc_size = elfcpp::Elf_sizes<32>::rel_size;
+      else
+       reloc_size = elfcpp::Elf_sizes<32>::rela_size;
+
+      if (reloc_size != shdr.get_sh_entsize())
+       {
+         // Ignore reloc section with unexpected entsize.  The error
+         // will be reported in the final link.
+         continue;
+       }
+
+      size_t reloc_count = sh_size / reloc_size;
+      if (static_cast<off_t>(reloc_count * reloc_size) != sh_size)
+       {
+         // Ignore reloc section with uneven size.  The error will be
+         // reported in the final link.
+         continue;
+       }
+
+      gold_assert(output_offset != invalid_address
+                 || this->relocs_must_follow_section_writes());
+
+      // Get the section contents.  This does work for the case in which
+      // we modify the contents of an input section.  We need to pass the
+      // output view under such circumstances.
+      section_size_type input_view_size = 0;
+      const unsigned char* input_view =
+       this->section_contents(index, &input_view_size, false);
+
+      relinfo.reloc_shndx = i;
+      relinfo.data_shndx = index;
+      arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
+                                        reloc_count, os,
+                                        output_offset == invalid_address,
+                                        input_view,
+                                        os->address(),
+                                        input_view_size);
+    }
+
+  // After we've done the relocations, we release the hash tables,
+  // since we no longer need them.
+  this->free_input_to_output_maps();
+}
+
+// Count the local symbols.  The ARM backend needs to know if a symbol
+// is a THUMB function or not.  For global symbols, it is easy because
+// the Symbol object keeps the ELF symbol type.  For local symbol it is
+// harder because we cannot access this information.   So we override the
+// do_count_local_symbol in parent and scan local symbols to mark
+// THUMB functions.  This is not the most efficient way but I do not want to
+// slow down other ports by calling a per symbol targer hook inside
+// Sized_relobj<size, big_endian>::do_count_local_symbols. 
+
+template<bool big_endian>
+void
+Arm_relobj<big_endian>::do_count_local_symbols(
+    Stringpool_template<char>* pool,
+    Stringpool_template<char>* dynpool)
+{
+  // We need to fix-up the values of any local symbols whose type are
+  // STT_ARM_TFUNC.
+  
+  // Ask parent to count the local symbols.
+  Sized_relobj<32, big_endian>::do_count_local_symbols(pool, dynpool);
+  const unsigned int loccount = this->local_symbol_count();
+  if (loccount == 0)
+    return;
+
+  // Intialize the thumb function bit-vector.
+  std::vector<bool> empty_vector(loccount, false);
+  this->local_symbol_is_thumb_function_.swap(empty_vector);
+
+  // Read the symbol table section header.
+  const unsigned int sym_tab_shndx = this->symtab_shndx();
+  elfcpp::Shdr<32, big_endian>
+      symtabshdr(this, this->elf_file()->section_header(sym_tab_shndx));
+  gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
+
+  // Read the local symbols.
+  const int symsize =elfcpp::Elf_sizes<32>::sym_size;
+  gold_assert(loccount == symtabshdr.get_sh_info());
+  off_t locsize = loccount * symsize;
+  const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
+                                             locsize, true, true);
+
+  // Loop over the local symbols and mark any local symbols pointing
+  // to THUMB functions.
+
+  // Skip the first dummy symbol.
+  psyms += symsize;
+  typename Sized_relobj<32, big_endian>::Local_values* plocal_values =
+    this->local_values();
+  for (unsigned int i = 1; i < loccount; ++i, psyms += symsize)
+    {
+      elfcpp::Sym<32, big_endian> sym(psyms);
+      elfcpp::STT st_type = sym.get_st_type();
+      Symbol_value<32>& lv((*plocal_values)[i]);
+      Arm_address input_value = lv.input_value();
+
+      if (st_type == elfcpp::STT_ARM_TFUNC
+         || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
+       {
+         // This is a THUMB function.  Mark this and canonicalize the
+         // symbol value by setting LSB.
+         this->local_symbol_is_thumb_function_[i] = true;
+         if ((input_value & 1) == 0)
+           lv.set_input_value(input_value | 1);
+       }
+    }
+}
+
+// Relocate sections.
+template<bool big_endian>
+void
+Arm_relobj<big_endian>::do_relocate_sections(
+    const Symbol_table* symtab,
+    const Layout* alayout,
+    const unsigned char* pshdrs,
+    typename Sized_relobj<32, big_endian>::Views* pviews)
+{
+  // Call parent to relocate sections.
+  Sized_relobj<32, big_endian>::do_relocate_sections(symtab, alayout, pshdrs,
+                                                    pviews); 
+
+  // We do not generate stubs if doing a relocatable link.
+  if (parameters->options().relocatable())
+    return;
+
+  // Relocate stub tables.
+  unsigned int sec_shnum = this->shnum();
+
+  Target_arm<big_endian>* arm_target =
+    Target_arm<big_endian>::default_target();
+
+  Relocate_info<32, big_endian> relinfo;
+  relinfo.symtab = symtab;
+  relinfo.layout = alayout;
+  relinfo.object = this;
+
+  for (unsigned int i = 1; i < sec_shnum; ++i)
+    {
+      Arm_input_section<big_endian>* arm_input_section =
+       arm_target->find_arm_input_section(this, i);
+
+      if (arm_input_section == NULL
+         || !arm_input_section->is_stub_table_owner()
+         || arm_input_section->stub_table()->empty())
+       continue;
+
+      // We cannot discard a section if it owns a stub table.
+      Output_section* os = this->output_section(i);
+      gold_assert(os != NULL);
+
+      relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
+      relinfo.reloc_shdr = NULL;
+      relinfo.data_shndx = i;
+      relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
+
+      gold_assert((*pviews)[i].view != NULL);
+
+      // We are passed the output section view.  Adjust it to cover the
+      // stub table only.
+      Stub_table<big_endian>* stubtable = arm_input_section->stub_table();
+      gold_assert((stubtable->address() >= (*pviews)[i].address)
+                 && ((stubtable->address() + stubtable->data_size())
+                     <= (*pviews)[i].address + (*pviews)[i].view_size));
+
+      off_t off = stubtable->address() - (*pviews)[i].address;
+      unsigned char* pview = (*pviews)[i].view + off;
+      Arm_address address = stubtable->address();
+      section_size_type view_size = stubtable->data_size();
+      stubtable->relocate_stubs(&relinfo, arm_target, os, pview, address,
+                               view_size);
+    }
+}
+
+// Helper functions for both Arm_relobj and Arm_dynobj to read ARM
+// ABI information.
+
+template<bool big_endian>
+Attributes_section_data*
+read_arm_attributes_section(
+    Object* object,
+    Read_symbols_data *sd)
+{
+  // Read the attributes section if there is one.
+  // We read from the end because gas seems to put it near the end of
+  // the section headers.
+  const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
+  const unsigned char *ps =
+    sd->section_headers->data() + shdr_size * (object->shnum() - 1);
+  for (unsigned int i = object->shnum(); i > 0; --i, ps -= shdr_size)
+    {
+      elfcpp::Shdr<32, big_endian> shdr(ps);
+      if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
+       {
+         section_offset_type section_offset = shdr.get_sh_offset();
+         section_size_type section_size =
+           convert_to_section_size_type(shdr.get_sh_size());
+         File_view* view = object->get_lasting_view(section_offset,
+                                                    section_size, true, false);
+         return new Attributes_section_data(view->data(), section_size);
+       }
+    }
+  return NULL;
+}
+
+// Read the symbol information.
+
+template<bool big_endian>
+void
+Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
+{
+  // Call parent class to read symbol information.
+  Sized_relobj<32, big_endian>::do_read_symbols(sd);
+
+  // Read processor-specific flags in ELF file header.
+  const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
+                                             elfcpp::Elf_sizes<32>::ehdr_size,
+                                             true, false);
+  elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
+  this->processor_specific_flags_ = ehdr.get_e_flags();
+  this->attributes_section_data_ =
+    read_arm_attributes_section<big_endian>(this, sd); 
+}
+
+// Arm_dynobj methods.
+
+// Read the symbol information.
+
+template<bool big_endian>
+void
+Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
+{
+  // Call parent class to read symbol information.
+  Sized_dynobj<32, big_endian>::do_read_symbols(sd);
+
+  // Read processor-specific flags in ELF file header.
+  const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
+                                             elfcpp::Elf_sizes<32>::ehdr_size,
+                                             true, false);
+  elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
+  this->processor_specific_flags_ = ehdr.get_e_flags();
+  this->attributes_section_data_ =
+    read_arm_attributes_section<big_endian>(this, sd); 
+}
+
+// Stub_addend_reader methods.
+
+// Read the addend of a REL relocation of type R_TYPE at VIEW.
+
+template<bool big_endian>
+elfcpp::Elf_types<32>::Elf_Swxword
+Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
+    unsigned int r_type,
+    const unsigned char* view,
+    const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
+{
+  switch (r_type)
+    {
+    case elfcpp::R_ARM_CALL:
+    case elfcpp::R_ARM_JUMP24:
+    case elfcpp::R_ARM_PLT32:
+      {
+       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
+       const Valtype* wv = reinterpret_cast<const Valtype*>(view);
+       Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
+       return utils::sign_extend<26>(val << 2);
+      }
+
+    case elfcpp::R_ARM_THM_CALL:
+    case elfcpp::R_ARM_THM_JUMP24:
+    case elfcpp::R_ARM_THM_XPC22:
+      {
+       // Fetch the addend.  We use the Thumb-2 encoding (backwards
+       // compatible with Thumb-1) involving the J1 and J2 bits.
+       typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+       const Valtype* wv = reinterpret_cast<const Valtype*>(view);
+       Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
+       Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
+
+       uint32_t s = (upper_insn & (1 << 10)) >> 10;
+       uint32_t upper = upper_insn & 0x3ff;
+       uint32_t lower = lower_insn & 0x7ff;
+       uint32_t j1 = (lower_insn & (1 << 13)) >> 13;
+       uint32_t j2 = (lower_insn & (1 << 11)) >> 11;
+       uint32_t i1 = j1 ^ s ? 0 : 1;
+       uint32_t i2 = j2 ^ s ? 0 : 1;
+
+       return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
+                                     | (upper << 12) | (lower << 1));
+      }
+
+    case elfcpp::R_ARM_THM_JUMP19:
+      {
+       typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+       const Valtype* wv = reinterpret_cast<const Valtype*>(view);
+       Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
+       Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
+
+       // Reconstruct the top three bits and squish the two 11 bit pieces
+       // together.
+       uint32_t S = (upper_insn & 0x0400) >> 10;
+       uint32_t J1 = (lower_insn & 0x2000) >> 13;
+       uint32_t J2 = (lower_insn & 0x0800) >> 11;
+       uint32_t upper =
+         (S << 8) | (J2 << 7) | (J1 << 6) | (upper_insn & 0x003f);
+       uint32_t lower = (lower_insn & 0x07ff);
+       return utils::sign_extend<23>((upper << 12) | (lower << 1));
+      }
+
+    default:
+      gold_unreachable();
+    }
+}
+
+// A class to handle the PLT data.
+
+template<bool big_endian>
+class Output_data_plt_arm : public Output_section_data
+{
+ public:
+  typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
+    Reloc_section;
+
+  Output_data_plt_arm(Layout*, Output_data_space*);
+
+  // Add an entry to the PLT.
+  void
+  add_entry(Symbol* gsym);
+
+  // Return the .rel.plt section data.
+  const Reloc_section*
+  rel_plt() const
+  { return this->rel_; }
+
+ protected:
+  void
+  do_adjust_output_section(Output_section* os);
+
+  // Write to a map file.
+  void
+  do_print_to_mapfile(Mapfile* mapfile) const
+  { mapfile->print_output_data(this, _("** PLT")); }
+
+ private:
+  // Template for the first PLT entry.
+  static const uint32_t first_plt_entry[5];
+
+  // Template for subsequent PLT entries. 
+  static const uint32_t plt_entry[3];
+
+  // Set the final size.
+  void
+  set_final_data_size()
+  {
+    this->set_data_size(sizeof(first_plt_entry)
+                       + this->count_ * sizeof(plt_entry));
+  }
+
+  // Write out the PLT data.
+  void
+  do_write(Output_file*);
+
+  // The reloc section.
+  Reloc_section* rel_;
+  // The .got.plt section.
+  Output_data_space* got_plt_;
+  // The number of PLT entries.
+  unsigned int count_;
+};
+
+// Create the PLT section.  The ordinary .got section is an argument,
+// since we need to refer to the start.  We also create our own .got
+// section just for PLT entries.
+
+template<bool big_endian>
+Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* alayout,
+                                                    Output_data_space* got_plt)
+  : Output_section_data(4), got_plt_(got_plt), count_(0)
+{
+  this->rel_ = new Reloc_section(false);
+  alayout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
+                                  elfcpp::SHF_ALLOC, this->rel_, true);
+}
+
+template<bool big_endian>
+void
+Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
+{
+  os->set_entsize(0);
+}
+
+// Add an entry to the PLT.
+
+template<bool big_endian>
+void
+Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
+{
+  gold_assert(!gsym->has_plt_offset());
+
+  // Note that when setting the PLT offset we skip the initial
+  // reserved PLT entry.
+  gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
+                      + sizeof(first_plt_entry));
+
+  ++this->count_;
+
+  section_offset_type got_offset = this->got_plt_->current_data_size();
+
+  // Every PLT entry needs a GOT entry which points back to the PLT
+  // entry (this will be changed by the dynamic linker, normally
+  // lazily when the function is called).
+  this->got_plt_->set_current_data_size(got_offset + 4);
+
+  // Every PLT entry needs a reloc.
+  gsym->set_needs_dynsym_entry();
+  this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
+                        got_offset);
+
+  // Note that we don't need to save the symbol.  The contents of the
+  // PLT are independent of which symbols are used.  The symbols only
+  // appear in the relocations.
+}
+
+// ARM PLTs.
+// FIXME:  This is not very flexible.  Right now this has only been tested
+// on armv5te.  If we are to support additional architecture features like
+// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
+
+// The first entry in the PLT.
+template<bool big_endian>
+const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
+{
+  0xe52de004,  // str   lr, [sp, #-4]!
+  0xe59fe004,   // ldr   lr, [pc, #4]
+  0xe08fe00e,  // add   lr, pc, lr 
+  0xe5bef008,  // ldr   pc, [lr, #8]!
+  0x00000000,  // &GOT[0] - .
+};
+
+// Subsequent entries in the PLT.
+
+template<bool big_endian>
+const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
+{
+  0xe28fc600,  // add   ip, pc, #0xNN00000
+  0xe28cca00,  // add   ip, ip, #0xNN000
+  0xe5bcf000,  // ldr   pc, [ip, #0xNNN]!
+};
+
+// Write out the PLT.  This uses the hand-coded instructions above,
+// and adjusts them as needed.  This is all specified by the arm ELF
+// Processor Supplement.
+
+template<bool big_endian>
+void
+Output_data_plt_arm<big_endian>::do_write(Output_file* of)
+{
+  const off_t off = this->offset();
+  const section_size_type oview_size =
+    convert_to_section_size_type(this->data_size());
+  unsigned char* const oview = of->get_output_view(off, oview_size);
+
+  const off_t got_file_offset = this->got_plt_->offset();
+  const section_size_type got_size =
+    convert_to_section_size_type(this->got_plt_->data_size());
+  unsigned char* const got_view = of->get_output_view(got_file_offset,
+                                                     got_size);
+  unsigned char* pov = oview;
+
+  Arm_address plt_address = this->address();
+  Arm_address got_address = this->got_plt_->address();
+
+  // Write first PLT entry.  All but the last word are constants.
+  const size_t num_first_plt_words = (sizeof(first_plt_entry)
+                                     / sizeof(plt_entry[0]));
+  for (size_t i = 0; i < num_first_plt_words - 1; i++)
+    elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
+  // Last word in first PLT entry is &GOT[0] - .
+  elfcpp::Swap<32, big_endian>::writeval(pov + 16,
+                                        got_address - (plt_address + 16));
+  pov += sizeof(first_plt_entry);
+
+  unsigned char* got_pov = got_view;
+
+  memset(got_pov, 0, 12);
+  got_pov += 12;
+
+  const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
+  unsigned int plt_offset = sizeof(first_plt_entry);
+  unsigned int plt_rel_offset = 0;
+  unsigned int got_offset = 12;
+  const unsigned int count = this->count_;
+  for (unsigned int i = 0;
+       i < count;
+       ++i,
+        pov += sizeof(plt_entry),
+        got_pov += 4,
+        plt_offset += sizeof(plt_entry),
+        plt_rel_offset += rel_size,
+        got_offset += 4)
+    {
+      // Set and adjust the PLT entry itself.
+      int32_t offst = ((got_address + got_offset)
+                      - (plt_address + plt_offset + 8));
+
+      gold_assert(offst >= 0 && offst < 0x0fffffff);
+      uint32_t plt_insn0 = plt_entry[0] | ((offst >> 20) & 0xff);
+      elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
+      uint32_t plt_insn1 = plt_entry[1] | ((offst >> 12) & 0xff);
+      elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
+      uint32_t plt_insn2 = plt_entry[2] | (offst & 0xfff);
+      elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
+
+      // Set the entry in the GOT.
+      elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
+    }
+
+  gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
+  gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
+
+  of->write_output_view(off, oview_size, oview);
+  of->write_output_view(got_file_offset, got_size, got_view);
+}
+
+// Create a PLT entry for a global symbol.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* alayout,
+                                      Symbol* gsym)
+{
+  if (gsym->has_plt_offset())
+    return;
+
+  if (this->plt_ == NULL)
+    {
+      // Create the GOT sections first.
+      this->got_section(symtab, alayout);
+
+      this->plt_ = new Output_data_plt_arm<big_endian>(alayout, this->got_plt_);
+      alayout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
+                                      (elfcpp::SHF_ALLOC
+                                       | elfcpp::SHF_EXECINSTR),
+                                      this->plt_, false);
+    }
+  this->plt_->add_entry(gsym);
+}
+
+// Report an unsupported relocation against a local symbol.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::Scan::unsupported_reloc_local(
+    Sized_relobj<32, big_endian>* object,
+    unsigned int r_type)
+{
+  gold_error(_("%s: unsupported reloc %u against local symbol"),
+            object->name().c_str(), r_type);
+}
+
+// We are about to emit a dynamic relocation of type R_TYPE.  If the
+// dynamic linker does not support it, issue an error.  The GNU linker
+// only issues a non-PIC error for an allocated read-only section.
+// Here we know the section is allocated, but we don't know that it is
+// read-only.  But we check for all the relocation types which the
+// glibc dynamic linker supports, so it seems appropriate to issue an
+// error even if the section is not read-only.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
+                                           unsigned int r_type)
+{
+  switch (r_type)
+    {
+    // These are the relocation types supported by glibc for ARM.
+    case elfcpp::R_ARM_RELATIVE:
+    case elfcpp::R_ARM_COPY:
+    case elfcpp::R_ARM_GLOB_DAT:
+    case elfcpp::R_ARM_JUMP_SLOT:
+    case elfcpp::R_ARM_ABS32:
+    case elfcpp::R_ARM_ABS32_NOI:
+    case elfcpp::R_ARM_PC24:
+    // FIXME: The following 3 types are not supported by Android's dynamic
+    // linker.
+    case elfcpp::R_ARM_TLS_DTPMOD32:
+    case elfcpp::R_ARM_TLS_DTPOFF32:
+    case elfcpp::R_ARM_TLS_TPOFF32:
+      return;
+
+    default:
+      // This prevents us from issuing more than one error per reloc
+      // section.  But we can still wind up issuing more than one
+      // error per object file.
+      if (this->issued_non_pic_error_)
+       return;
+      object->error(_("requires unsupported dynamic reloc; "
+                     "recompile with -fPIC"));
+      this->issued_non_pic_error_ = true;
+      return;
+
+    case elfcpp::R_ARM_NONE:
+      gold_unreachable();
+    }
+}
+
+// Scan a relocation for a local symbol.
+// FIXME: This only handles a subset of relocation types used by Android
+// on ARM v5te devices.
+
+template<bool big_endian>
+inline void
+Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
+                                   Layout* alayout,
+                                   Target_arm* target,
+                                   Sized_relobj<32, big_endian>* object,
+                                   unsigned int data_shndx,
+                                   Output_section* output_section,
+                                   const elfcpp::Rel<32, big_endian>& reloc,
+                                   unsigned int r_type,
+                                   const elfcpp::Sym<32, big_endian>&)
+{
+  r_type = get_real_reloc_type(r_type);
+  switch (r_type)
+    {
+    case elfcpp::R_ARM_NONE:
+      break;
+
+    case elfcpp::R_ARM_ABS32:
+    case elfcpp::R_ARM_ABS32_NOI:
+      // If building a shared library (or a position-independent
+      // executable), we need to create a dynamic relocation for
+      // this location. The relocation applied at link time will
+      // apply the link-time value, so we flag the location with
+      // an R_ARM_RELATIVE relocation so the dynamic loader can
+      // relocate it easily.
+      if (parameters->options().output_is_position_independent())
+       {
+         Reloc_section* rel_dyn = target->rel_dyn_section(alayout);
+         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
+         // If we are to add more other reloc types than R_ARM_ABS32,
+         // we need to add check_non_pic(object, r_type) here.
+         rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
+                                     output_section, data_shndx,
+                                     reloc.get_r_offset());
+       }
+      break;
+
+    case elfcpp::R_ARM_REL32:
+    case elfcpp::R_ARM_THM_CALL:
+    case elfcpp::R_ARM_CALL:
+    case elfcpp::R_ARM_PREL31:
+    case elfcpp::R_ARM_JUMP24:
+    case elfcpp::R_ARM_PLT32:
+    case elfcpp::R_ARM_THM_ABS5:
+    case elfcpp::R_ARM_ABS8:
+    case elfcpp::R_ARM_ABS12:
+    case elfcpp::R_ARM_ABS16:
+    case elfcpp::R_ARM_BASE_ABS:
+    case elfcpp::R_ARM_MOVW_ABS_NC:
+    case elfcpp::R_ARM_MOVT_ABS:
+    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
+    case elfcpp::R_ARM_THM_MOVT_ABS:
+    case elfcpp::R_ARM_MOVW_PREL_NC:
+    case elfcpp::R_ARM_MOVT_PREL:
+    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
+    case elfcpp::R_ARM_THM_MOVT_PREL:
+      break;
+
+    case elfcpp::R_ARM_GOTOFF32:
+      // We need a GOT section:
+      target->got_section(symtab, alayout);
+      break;
+
+    case elfcpp::R_ARM_BASE_PREL:
+      // FIXME: What about this?
+      break;
+
+    case elfcpp::R_ARM_GOT_BREL:
+    case elfcpp::R_ARM_GOT_PREL:
+      {
+       // The symbol requires a GOT entry.
+       Output_data_got<32, big_endian>* got =
+         target->got_section(symtab, alayout);
+       unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
+       if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
+         {
+           // If we are generating a shared object, we need to add a
+           // dynamic RELATIVE relocation for this symbol's GOT entry.
+           if (parameters->options().output_is_position_independent())
+             {
+               Reloc_section* rel_dyn = target->rel_dyn_section(alayout);
+               unsigned int rsym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
+               rel_dyn->add_local_relative(
+                   object, rsym, elfcpp::R_ARM_RELATIVE, got,
+                   object->local_got_offset(rsym, GOT_TYPE_STANDARD));
+             }
+         }
+      }
+      break;
+
+    case elfcpp::R_ARM_TARGET1:
+      // This should have been mapped to another type already.
+      // Fall through.
+    case elfcpp::R_ARM_COPY:
+    case elfcpp::R_ARM_GLOB_DAT:
+    case elfcpp::R_ARM_JUMP_SLOT:
+    case elfcpp::R_ARM_RELATIVE:
+      // These are relocations which should only be seen by the
+      // dynamic linker, and should never be seen here.
+      gold_error(_("%s: unexpected reloc %u in object file"),
+                object->name().c_str(), r_type);
+      break;
+
+    default:
+      unsupported_reloc_local(object, r_type);
+      break;
+    }
+}
+
+// Report an unsupported relocation against a global symbol.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::Scan::unsupported_reloc_global(
+    Sized_relobj<32, big_endian>* object,
+    unsigned int r_type,
+    Symbol* gsym)
+{
+  gold_error(_("%s: unsupported reloc %u against global symbol %s"),
+            object->name().c_str(), r_type, gsym->demangled_name().c_str());
+}
+
+// Scan a relocation for a global symbol.
+// FIXME: This only handles a subset of relocation types used by Android
+// on ARM v5te devices.
+
+template<bool big_endian>
+inline void
+Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
+                                    Layout* alayout,
+                                    Target_arm* target,
+                                    Sized_relobj<32, big_endian>* object,
+                                    unsigned int data_shndx,
+                                    Output_section* output_section,
+                                    const elfcpp::Rel<32, big_endian>& reloc,
+                                    unsigned int r_type,
+                                    Symbol* gsym)
+{
+  r_type = get_real_reloc_type(r_type);
+  switch (r_type)
+    {
+    case elfcpp::R_ARM_NONE:
+      break;
+
+    case elfcpp::R_ARM_ABS32:
+    case elfcpp::R_ARM_ABS32_NOI:
+      {
+       // Make a dynamic relocation if necessary.
+       if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
+         {
+           if (target->may_need_copy_reloc(gsym))
+             {
+               target->copy_reloc(symtab, alayout, object,
+                                  data_shndx, output_section, gsym, reloc);
+             }
+           else if (gsym->can_use_relative_reloc(false))
+             {
+               // If we are to add more other reloc types than R_ARM_ABS32,
+               // we need to add check_non_pic(object, r_type) here.
+               Reloc_section* rel_dyn = target->rel_dyn_section(alayout);
+               rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
+                                            output_section, object,
+                                            data_shndx, reloc.get_r_offset());
+             }
+           else
+             {
+               // If we are to add more other reloc types than R_ARM_ABS32,
+               // we need to add check_non_pic(object, r_type) here.
+               Reloc_section* rel_dyn = target->rel_dyn_section(alayout);
+               rel_dyn->add_global(gsym, r_type, output_section, object,
+                                   data_shndx, reloc.get_r_offset());
+             }
+         }
+      }
+      break;
+
+    case elfcpp::R_ARM_MOVW_ABS_NC:
+    case elfcpp::R_ARM_MOVT_ABS:
+    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
+    case elfcpp::R_ARM_THM_MOVT_ABS:
+    case elfcpp::R_ARM_MOVW_PREL_NC:
+    case elfcpp::R_ARM_MOVT_PREL:
+    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
+    case elfcpp::R_ARM_THM_MOVT_PREL:
+      break;
+
+    case elfcpp::R_ARM_THM_ABS5:
+    case elfcpp::R_ARM_ABS8:
+    case elfcpp::R_ARM_ABS12:
+    case elfcpp::R_ARM_ABS16:
+    case elfcpp::R_ARM_BASE_ABS:
+      {
+       // No dynamic relocs of this kinds.
+       // Report the error in case of PIC.
+       int flags = Symbol::NON_PIC_REF;
+       if (gsym->type() == elfcpp::STT_FUNC
+           || gsym->type() == elfcpp::STT_ARM_TFUNC)
+         flags |= Symbol::FUNCTION_CALL;
+       if (gsym->needs_dynamic_reloc(flags))
+         check_non_pic(object, r_type);
+      }
+      break;
+
+    case elfcpp::R_ARM_REL32:
+    case elfcpp::R_ARM_PREL31:
+      {
+       // Make a dynamic relocation if necessary.
+       int flags = Symbol::NON_PIC_REF;
+       if (gsym->needs_dynamic_reloc(flags))
+         {
+           if (target->may_need_copy_reloc(gsym))
+             {
+               target->copy_reloc(symtab, alayout, object,
+                                  data_shndx, output_section, gsym, reloc);
+             }
+           else
+             {
+               check_non_pic(object, r_type);
+               Reloc_section* rel_dyn = target->rel_dyn_section(alayout);
+               rel_dyn->add_global(gsym, r_type, output_section, object,
+                                   data_shndx, reloc.get_r_offset());
+             }
+         }
+      }
+      break;
+
+    case elfcpp::R_ARM_JUMP24:
+    case elfcpp::R_ARM_THM_JUMP24:
+    case elfcpp::R_ARM_CALL:
+    case elfcpp::R_ARM_THM_CALL:
+
+      if (Target_arm<big_endian>::Scan::symbol_needs_plt_entry(gsym))
+       target->make_plt_entry(symtab, alayout, gsym);
+      else
+       {
+          // Check to see if this is a function that would need a PLT
+          // but does not get one because the function symbol is untyped.
+          // This happens in assembly code missing a proper .type directive.
+         if ((!gsym->is_undefined() || parameters->options().shared())
+             && !parameters->doing_static_link()
+             && gsym->type() == elfcpp::STT_NOTYPE
+             && (gsym->is_from_dynobj()
+                 || gsym->is_undefined()
+                 || gsym->is_preemptible()))
+           gold_error(_("%s is not a function."),
+                      gsym->demangled_name().c_str());
+       }
+      break;
+
+    case elfcpp::R_ARM_PLT32:
+      // If the symbol is fully resolved, this is just a relative
+      // local reloc.  Otherwise we need a PLT entry.
+      if (gsym->final_value_is_known())
+       break;
+      // If building a shared library, we can also skip the PLT entry
+      // if the symbol is defined in the output file and is protected
+      // or hidden.
+      if (gsym->is_defined()
+         && !gsym->is_from_dynobj()
+         && !gsym->is_preemptible())
+       break;
+      target->make_plt_entry(symtab, alayout, gsym);
+      break;
+
+    case elfcpp::R_ARM_GOTOFF32:
+      // We need a GOT section.
+      target->got_section(symtab, alayout);
+      break;
+
+    case elfcpp::R_ARM_BASE_PREL:
+      // FIXME: What about this?
+      break;
+      
+    case elfcpp::R_ARM_GOT_BREL:
+    case elfcpp::R_ARM_GOT_PREL:
+      {
+       // The symbol requires a GOT entry.
+       Output_data_got<32, big_endian>* got =
+         target->got_section(symtab, alayout);
+       if (gsym->final_value_is_known())
+         got->add_global(gsym, GOT_TYPE_STANDARD);
+       else
+         {
+           // If this symbol is not fully resolved, we need to add a
+           // GOT entry with a dynamic relocation.
+           Reloc_section* rel_dyn = target->rel_dyn_section(alayout);
+           if (gsym->is_from_dynobj()
+               || gsym->is_undefined()
+               || gsym->is_preemptible())
+             got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
+                                      rel_dyn, elfcpp::R_ARM_GLOB_DAT);
+           else
+             {
+               if (got->add_global(gsym, GOT_TYPE_STANDARD))
+                 rel_dyn->add_global_relative(
+                     gsym, elfcpp::R_ARM_RELATIVE, got,
+                     gsym->got_offset(GOT_TYPE_STANDARD));
+             }
+         }
+      }
+      break;
+
+    case elfcpp::R_ARM_TARGET1:
+      // This should have been mapped to another type already.
+      // Fall through.
+    case elfcpp::R_ARM_COPY:
+    case elfcpp::R_ARM_GLOB_DAT:
+    case elfcpp::R_ARM_JUMP_SLOT:
+    case elfcpp::R_ARM_RELATIVE:
+      // These are relocations which should only be seen by the
+      // dynamic linker, and should never be seen here.
+      gold_error(_("%s: unexpected reloc %u in object file"),
+                object->name().c_str(), r_type);
+      break;
+
+    default:
+      unsupported_reloc_global(object, r_type, gsym);
+      break;
+    }
+}
+
+// Process relocations for gc.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::gc_process_relocs(Symbol_table* symtab,
+                                         Layout* alayout,
+                                         Sized_relobj<32, big_endian>* object,
+                                         unsigned int data_shndx,
+                                         unsigned int,
+                                         const unsigned char* prelocs,
+                                         size_t reloc_count,
+                                         Output_section* output_section,
+                                         bool needs_special_offset_handling,
+                                         size_t local_symbol_count,
+                                         const unsigned char* plocal_symbols)
+{
+  typedef Target_arm<big_endian> Arm;
+  typedef typename Target_arm<big_endian>::Scan scan;
+
+  gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, scan>(
+    symtab,
+    alayout,
+    this,
+    object,
+    data_shndx,
+    prelocs,
+    reloc_count,
+    output_section,
+    needs_special_offset_handling,
+    local_symbol_count,
+    plocal_symbols);
+}
+
+// Scan relocations for a section.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
+                                   Layout* alayout,
+                                   Sized_relobj<32, big_endian>* object,
+                                   unsigned int data_shndx,
+                                   unsigned int sh_type,
+                                   const unsigned char* prelocs,
+                                   size_t reloc_count,
+                                   Output_section* output_section,
+                                   bool needs_special_offset_handling,
+                                   size_t local_symbol_count,
+                                   const unsigned char* plocal_symbols)
+{
+  typedef typename Target_arm<big_endian>::Scan scan;
+  if (sh_type == elfcpp::SHT_RELA)
+    {
+      gold_error(_("%s: unsupported RELA reloc section"),
+                object->name().c_str());
+      return;
+    }
+
+  gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, scan>(
+    symtab,
+    alayout,
+    this,
+    object,
+    data_shndx,
+    prelocs,
+    reloc_count,
+    output_section,
+    needs_special_offset_handling,
+    local_symbol_count,
+    plocal_symbols);
+}
+
+// Finalize the sections.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::do_finalize_sections(
+    Layout* alayout,
+    const Input_objects* input_objects,
+    Symbol_table* symtab)
+{
+  // Merge processor-specific flags.
+  for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
+       p != input_objects->relobj_end();
+       ++p)
+    {
+      Arm_relobj<big_endian>* arm_relobj =
+       Arm_relobj<big_endian>::as_arm_relobj(*p);
+      this->merge_processor_specific_flags(
+         arm_relobj->name(),
+         arm_relobj->processor_specific_flags());
+      this->merge_object_attributes(arm_relobj->name().c_str(),
+                                   arm_relobj->attributes_section_data());
+
+    } 
+
+  for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
+       p != input_objects->dynobj_end();
+       ++p)
+    {
+      Arm_dynobj<big_endian>* arm_dynobj =
+       Arm_dynobj<big_endian>::as_arm_dynobj(*p);
+      this->merge_processor_specific_flags(
+         arm_dynobj->name(),
+         arm_dynobj->processor_specific_flags());
+      this->merge_object_attributes(arm_dynobj->name().c_str(),
+                                   arm_dynobj->attributes_section_data());
+    }
+
+  // Check BLX use.
+  Object_attribute* attr =
+    this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
+  if (attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
+    this->set_may_use_blx(true);
+  // Fill in some more dynamic tags.
+  Output_data_dynamic* const odyn = alayout->dynamic_data();
+  if (odyn != NULL)
+    {
+      if (this->got_plt_ != NULL
+         && this->got_plt_->output_section() != NULL)
+       odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
+
+      if (this->plt_ != NULL
+         && this->plt_->output_section() != NULL)
+       {
+         const Output_data* od = this->plt_->rel_plt();
+         odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
+         odyn->add_section_address(elfcpp::DT_JMPREL, od);
+         odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
+       }
+
+      if (this->rel_dyn_ != NULL
+         && this->rel_dyn_->output_section() != NULL)
+       {
+         const Output_data* od = this->rel_dyn_;
+         odyn->add_section_address(elfcpp::DT_REL, od);
+         odyn->add_section_size(elfcpp::DT_RELSZ, od);
+         odyn->add_constant(elfcpp::DT_RELENT,
+                            elfcpp::Elf_sizes<32>::rel_size);
+       }
+
+      if (!parameters->options().shared())
+       {
+         // The value of the DT_DEBUG tag is filled in by the dynamic
+         // linker at run time, and used by the debugger.
+         odyn->add_constant(elfcpp::DT_DEBUG, 0);
+       }
+    }
+
+  // Emit any relocs we saved in an attempt to avoid generating COPY
+  // relocs.
+  if (this->copy_relocs_.any_saved_relocs())
+    this->copy_relocs_.emit(this->rel_dyn_section(alayout));
+
+  // Handle the .ARM.exidx section.
+  Output_section* exidx_section = alayout->find_output_section(".ARM.exidx");
+  if (exidx_section != NULL
+      && exidx_section->type() == elfcpp::SHT_ARM_EXIDX
+      && !parameters->options().relocatable())
+    {
+      // Create __exidx_start and __exdix_end symbols.
+      symtab->define_in_output_data("__exidx_start", NULL, exidx_section,
+                                   0, 0, elfcpp::STT_OBJECT,
+                                   elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
+                                   false, false);
+      symtab->define_in_output_data("__exidx_end", NULL, exidx_section,
+                                   0, 0, elfcpp::STT_OBJECT,
+                                   elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
+                                   true, false);
+
+      // For the ARM target, we need to add a PT_ARM_EXIDX segment for
+      // the .ARM.exidx section.
+      if (!alayout->script_options()->saw_phdrs_clause())
+       {
+         gold_assert(alayout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, 0)
+                     == NULL);
+         Output_segment*  exidx_segment =
+           alayout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
+         exidx_segment->add_output_section(exidx_section, elfcpp::PF_R,
+                                           false);
+       }
+    }
+
+  // Create an .ARM.attributes section if there is not one already.
+  Output_attributes_section_data* attributes_section =
+    new Output_attributes_section_data(*this->attributes_section_data_);
+  layout->add_output_section_data(".ARM.attributes",
+                                 elfcpp::SHT_ARM_ATTRIBUTES, 0,
+                                 attributes_section, false);
+}
+
+// Return whether a direct absolute static relocation needs to be applied.
+// In cases where Scan::local() or Scan::global() has created
+// a dynamic relocation other than R_ARM_RELATIVE, the addend
+// of the relocation is carried in the data, and we must not
+// apply the static relocation.
+
+template<bool big_endian>
+inline bool
+Target_arm<big_endian>::Relocate::should_apply_static_reloc(
+    const Sized_symbol<32>* gsym,
+    int ref_flags,
+    bool is_32bit,
+    Output_section* output_section)
+{
+  // If the output section is not allocated, then we didn't call
+  // scan_relocs, we didn't create a dynamic reloc, and we must apply
+  // the reloc here.
+  if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
+      return true;
+
+  // For local symbols, we will have created a non-RELATIVE dynamic
+  // relocation only if (a) the output is position independent,
+  // (b) the relocation is absolute (not pc- or segment-relative), and
+  // (c) the relocation is not 32 bits wide.
+  if (gsym == NULL)
+    return !(parameters->options().output_is_position_independent()
+            && (ref_flags & Symbol::ABSOLUTE_REF)
+            && !is_32bit);
+
+  // For global symbols, we use the same helper routines used in the
+  // scan pass.  If we did not create a dynamic relocation, or if we
+  // created a RELATIVE dynamic relocation, we should apply the static
+  // relocation.
+  bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
+  bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
+                && gsym->can_use_relative_reloc(ref_flags
+                                                & Symbol::FUNCTION_CALL);
+  return !has_dyn || is_rel;
+}
+
+// Perform a relocation.
+
+template<bool big_endian>
+inline bool
+Target_arm<big_endian>::Relocate::relocate(
+    const Relocate_info<32, big_endian>* relinfo,
+    Target_arm* target,
+    Output_section *output_section,
+    size_t relnum,
+    const elfcpp::Rel<32, big_endian>& rel,
+    unsigned int r_type,
+    const Sized_symbol<32>* gsym,
+    const Symbol_value<32>* psymval,
+    unsigned char* view,
+    Arm_address address,
+    section_size_type /* view_size */ )
+{
+  typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
+
+  r_type = get_real_reloc_type(r_type);
+
+  const Arm_relobj<big_endian>* object =
+    Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
+
+  // If the final branch target of a relocation is THUMB instruction, this
+  // is 1.  Otherwise it is 0.
+  Arm_address thumb_bit = 0;
+  Symbol_value<32> symval;
+  bool is_weakly_undefined_without_plt = false;
+  if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
+    {
+      if (gsym != NULL)
+       {
+         // This is a global symbol.  Determine if we use PLT and if the
+         // final target is THUMB.
+         if (gsym->use_plt_offset(reloc_is_non_pic(r_type)))
+           {
+             // This uses a PLT, change the symbol value.
+             symval.set_output_value(target->plt_section()->address()
+                                     + gsym->plt_offset());
+             psymval = &symval;
+           }
+         else if (gsym->is_weak_undefined())
+           {
+             // This is a weakly undefined symbol and we do not use PLT
+             // for this relocation.  A branch targeting this symbol will
+             // be converted into an NOP.
+             is_weakly_undefined_without_plt = true;
+           }
+         else
+           {
+             // Set thumb bit if symbol:
+             // -Has type STT_ARM_TFUNC or
+             // -Has type STT_FUNC, is defined and with LSB in value set.
+             thumb_bit =
+               (((gsym->type() == elfcpp::STT_ARM_TFUNC)
+                || (gsym->type() == elfcpp::STT_FUNC
+                    && !gsym->is_undefined()
+                    && ((psymval->value(object, 0) & 1) != 0)))
+               ? 1
+               : 0);
+           }
+       }
+      else
+       {
+          // This is a local symbol.  Determine if the final target is THUMB.
+          // We saved this information when all the local symbols were read.
+         elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
+         unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
+         thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
+       }
+    }
+  else
+    {
+      // This is a fake relocation synthesized for a stub.  It does not have
+      // a real symbol.  We just look at the LSB of the symbol value to
+      // determine if the target is THUMB or not.
+      thumb_bit = ((psymval->value(object, 0) & 1) != 0);
+    }
+
+  // Strip LSB if this points to a THUMB target.
+  if (thumb_bit != 0
+      && Target_arm<big_endian>::reloc_uses_thumb_bit(r_type) 
+      && ((psymval->value(object, 0) & 1) != 0))
+    {
+      Arm_address stripped_value =
+       psymval->value(object, 0) & ~static_cast<Arm_address>(1);
+      symval.set_output_value(stripped_value);
+      psymval = &symval;
+    } 
+
+  // Get the GOT offset if needed.
+  // The GOT pointer points to the end of the GOT section.
+  // We need to subtract the size of the GOT section to get
+  // the actual offset to use in the relocation.
+  bool have_got_offset = false;
+  unsigned int got_offset = 0;
+  switch (r_type)
+    {
+    case elfcpp::R_ARM_GOT_BREL:
+    case elfcpp::R_ARM_GOT_PREL:
+      if (gsym != NULL)
+       {
+         gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
+         got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
+                       - target->got_size());
+       }
+      else
+       {
+         unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
+         gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
+         got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
+                       - target->got_size());
+       }
+      have_got_offset = true;
+      break;
+
+    default:
+      break;
+    }
+
+  // To look up relocation stubs, we need to pass the symbol table index of
+  // a local symbol.
+  unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
+
+  typename Arm_relocate_functions::Status reloc_status =
+       Arm_relocate_functions::STATUS_OKAY;
+  switch (r_type)
+    {
+    case elfcpp::R_ARM_NONE:
+      break;
+
+    case elfcpp::R_ARM_ABS8:
+      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
+                                   output_section))
+       reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
+      break;
+
+    case elfcpp::R_ARM_ABS12:
+      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
+                                   output_section))
+       reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
+      break;
+
+    case elfcpp::R_ARM_ABS16:
+      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
+                                   output_section))
+       reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
+      break;
+
+    case elfcpp::R_ARM_ABS32:
+      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
+                                   output_section))
+       reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
+                                                    thumb_bit);
+      break;
+
+    case elfcpp::R_ARM_ABS32_NOI:
+      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
+                                   output_section))
+       // No thumb bit for this relocation: (S + A)
+       reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
+                                                    0);
+      break;
+
+    case elfcpp::R_ARM_MOVW_ABS_NC:
+      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
+                                   output_section))
+       reloc_status = Arm_relocate_functions::movw_abs_nc(view, object,
+                                                          psymval,
+                                                                  thumb_bit);
+      else
+       gold_error(_("relocation R_ARM_MOVW_ABS_NC cannot be used when making"
+                    "a shared object; recompile with -fPIC"));
+      break;
+
+    case elfcpp::R_ARM_MOVT_ABS:
+      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
+                                   output_section))
+       reloc_status = Arm_relocate_functions::movt_abs(view, object, psymval);
+      else
+       gold_error(_("relocation R_ARM_MOVT_ABS cannot be used when making"
+                    "a shared object; recompile with -fPIC"));
+      break;
+
+    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
+      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
+                                   output_section))
+       reloc_status = Arm_relocate_functions::thm_movw_abs_nc(view, object,
+                                                              psymval,
+                                                                      thumb_bit);
+      else
+       gold_error(_("relocation R_ARM_THM_MOVW_ABS_NC cannot be used when"
+                    "making a shared object; recompile with -fPIC"));
+      break;
+
+    case elfcpp::R_ARM_THM_MOVT_ABS:
+      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
+                                   output_section))
+       reloc_status = Arm_relocate_functions::thm_movt_abs(view, object,
+                                                           psymval);
+      else
+       gold_error(_("relocation R_ARM_THM_MOVT_ABS cannot be used when"
+                    "making a shared object; recompile with -fPIC"));
+      break;
+
+    case elfcpp::R_ARM_MOVW_PREL_NC:
+      reloc_status = Arm_relocate_functions::movw_prel_nc(view, object,
+                                                         psymval, address,
+                                                         thumb_bit);
+      break;
+
+    case elfcpp::R_ARM_MOVT_PREL:
+      reloc_status = Arm_relocate_functions::movt_prel(view, object,
+                                                       psymval, address);
+      break;
+
+    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
+      reloc_status = Arm_relocate_functions::thm_movw_prel_nc(view, object,
+                                                             psymval, address,
+                                                             thumb_bit);
+      break;
+
+    case elfcpp::R_ARM_THM_MOVT_PREL:
+      reloc_status = Arm_relocate_functions::thm_movt_prel(view, object,
+                                                          psymval, address);
+      break;
+       
+    case elfcpp::R_ARM_REL32:
+      reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
+                                                  address, thumb_bit);
+      break;
+
+    case elfcpp::R_ARM_THM_ABS5:
+      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
+                                   output_section))
+       reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
+      break;
+
+    case elfcpp::R_ARM_THM_CALL:
+      reloc_status =
+       Arm_relocate_functions::thm_call(relinfo, view, gsym, object, r_sym,
+                                        psymval, address, thumb_bit,
+                                        is_weakly_undefined_without_plt);
+      break;
+
+    case elfcpp::R_ARM_XPC25:
+      reloc_status =
+       Arm_relocate_functions::xpc25(relinfo, view, gsym, object, r_sym,
+                                     psymval, address, thumb_bit,
+                                     is_weakly_undefined_without_plt);
+      break;
+
+    case elfcpp::R_ARM_THM_XPC22:
+      reloc_status =
+       Arm_relocate_functions::thm_xpc22(relinfo, view, gsym, object, r_sym,
+                                         psymval, address, thumb_bit,
+                                         is_weakly_undefined_without_plt);
+      break;
+
+    case elfcpp::R_ARM_GOTOFF32:
+      {
+       Arm_address got_origin;
+       got_origin = target->got_plt_section()->address();
+       reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
+                                                    got_origin, thumb_bit);
+      }
+      break;
+
+    case elfcpp::R_ARM_BASE_PREL:
+      {
+       uint32_t origin;
+       // Get the addressing origin of the output segment defining the 
+       // symbol gsym (AAELF 4.6.1.2 Relocation types)
+       gold_assert(gsym != NULL); 
+       if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
+         origin = gsym->output_segment()->vaddr();
+       else if (gsym->source () == Symbol::IN_OUTPUT_DATA)
+         origin = gsym->output_data()->address();
+       else
+         {
+            gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
+                                  _("cannot find origin of R_ARM_BASE_PREL"));
+           return true;
+         }
+       reloc_status = Arm_relocate_functions::base_prel(view, origin, address);
+      }
+      break;
+
+    case elfcpp::R_ARM_BASE_ABS:
+      {
+       if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
+                                     output_section))
+         break;
+
+       uint32_t origin;
+       // Get the addressing origin of the output segment defining
+       // the symbol gsym (AAELF 4.6.1.2 Relocation types).
+       if (gsym == NULL)
+         // R_ARM_BASE_ABS with the NULL symbol will give the
+         // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
+         // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
+         origin = target->got_plt_section()->address();
+       else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
+         origin = gsym->output_segment()->vaddr();
+       else if (gsym->source () == Symbol::IN_OUTPUT_DATA)
+         origin = gsym->output_data()->address();
+       else
+         {
+            gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
+                                  _("cannot find origin of R_ARM_BASE_ABS"));
+           return true;
+         }
+
+       reloc_status = Arm_relocate_functions::base_abs(view, origin);
+      }
+      break;
+
+    case elfcpp::R_ARM_GOT_BREL:
+      gold_assert(have_got_offset);
+      reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
+      break;
+
+    case elfcpp::R_ARM_GOT_PREL:
+      gold_assert(have_got_offset);
+      // Get the address origin for GOT PLT, which is allocated right
+      // after the GOT section, to calculate an absolute address of
+      // the symbol GOT entry (got_origin + got_offset).
+      Arm_address got_origin;
+      got_origin = target->got_plt_section()->address();
+      reloc_status = Arm_relocate_functions::got_prel(view,
+                                                     got_origin + got_offset,
+                                                     address);
+      break;
+
+    case elfcpp::R_ARM_PLT32:
+      gold_assert(gsym == NULL
+                 || gsym->has_plt_offset()
+                 || gsym->final_value_is_known()
+                 || (gsym->is_defined()
+                     && !gsym->is_from_dynobj()
+                     && !gsym->is_preemptible()));
+      reloc_status =
+       Arm_relocate_functions::plt32(relinfo, view, gsym, object, r_sym,
+                                     psymval, address, thumb_bit,
+                                     is_weakly_undefined_without_plt);
+      break;
+
+    case elfcpp::R_ARM_CALL:
+      reloc_status =
+       Arm_relocate_functions::call(relinfo, view, gsym, object, r_sym,
+                                    psymval, address, thumb_bit,
+                                    is_weakly_undefined_without_plt);
+      break;
+
+    case elfcpp::R_ARM_JUMP24:
+      reloc_status =
+       Arm_relocate_functions::jump24(relinfo, view, gsym, object, r_sym,
+                                      psymval, address, thumb_bit,
+                                      is_weakly_undefined_without_plt);
+      break;
+
+    case elfcpp::R_ARM_THM_JUMP24:
+      reloc_status =
+       Arm_relocate_functions::thm_jump24(relinfo, view, gsym, object, r_sym,
+                                          psymval, address, thumb_bit,
+                                          is_weakly_undefined_without_plt);
+      break;
+
+    case elfcpp::R_ARM_PREL31:
+      reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
+                                                   address, thumb_bit);
+      break;
+
+    case elfcpp::R_ARM_TARGET1:
+      // This should have been mapped to another type already.
+      // Fall through.
+    case elfcpp::R_ARM_COPY:
+    case elfcpp::R_ARM_GLOB_DAT:
+    case elfcpp::R_ARM_JUMP_SLOT:
+    case elfcpp::R_ARM_RELATIVE:
+      // These are relocations which should only be seen by the
+      // dynamic linker, and should never be seen here.
+      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
+                            _("unexpected reloc %u in object file"),
+                            r_type);
+      break;
+
+    default:
+      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
+                            _("unsupported reloc %u"),
+                            r_type);
+      break;
+    }
+
+  // Report any errors.
+  switch (reloc_status)
+    {
+    case Arm_relocate_functions::STATUS_OKAY:
+      break;
+    case Arm_relocate_functions::STATUS_OVERFLOW:
+      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
+                            _("relocation overflow in relocation %u"),
+                            r_type);
+      break;
+    case Arm_relocate_functions::STATUS_BAD_RELOC:
+      gold_error_at_location(
+       relinfo,
+       relnum,
+       rel.get_r_offset(),
+       _("unexpected opcode while processing relocation %u"),
+       r_type);
+      break;
+    default:
+      gold_unreachable();
+    }
+
+  return true;
+}
+
+// Relocate section data.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::relocate_section(
+    const Relocate_info<32, big_endian>* relinfo,
+    unsigned int sh_type,
+    const unsigned char* prelocs,
+    size_t reloc_count,
+    Output_section* output_section,
+    bool needs_special_offset_handling,
+    unsigned char* view,
+    Arm_address address,
+    section_size_type view_size,
+    const Reloc_symbol_changes* reloc_symbol_changes)
+{
+  typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
+  gold_assert(sh_type == elfcpp::SHT_REL);
+
+  Arm_input_section<big_endian>* arm_input_section =
+    this->find_arm_input_section(relinfo->object, relinfo->data_shndx);
+
+  // This is an ARM input section and the view covers the whole output
+  // section.
+  if (arm_input_section != NULL)
+    {
+      gold_assert(needs_special_offset_handling);
+      Arm_address section_address = arm_input_section->address();
+      section_size_type section_size = arm_input_section->data_size();
+
+      gold_assert((arm_input_section->address() >= address)
+                 && ((arm_input_section->address()
+                      + arm_input_section->data_size())
+                     <= (address + view_size)));
+
+      off_t off = section_address - address;
+      view += off;
+      address += off;
+      view_size = section_size;
+    }
+
+  gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
+                        Arm_relocate>(
+    relinfo,
+    this,
+    prelocs,
+    reloc_count,
+    output_section,
+    needs_special_offset_handling,
+    view,
+    address,
+    view_size,
+    reloc_symbol_changes);
+}
+
+// Return the size of a relocation while scanning during a relocatable
+// link.
+
+template<bool big_endian>
+unsigned int
+Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
+    unsigned int r_type,
+    Relobj* object)
+{
+  r_type = get_real_reloc_type(r_type);
+  switch (r_type)
+    {
+    case elfcpp::R_ARM_NONE:
+      return 0;
+
+    case elfcpp::R_ARM_ABS8:
+      return 1;
+
+    case elfcpp::R_ARM_ABS16:
+    case elfcpp::R_ARM_THM_ABS5:
+      return 2;
+
+    case elfcpp::R_ARM_ABS32:
+    case elfcpp::R_ARM_ABS32_NOI:
+    case elfcpp::R_ARM_ABS12:
+    case elfcpp::R_ARM_BASE_ABS:
+    case elfcpp::R_ARM_REL32:
+    case elfcpp::R_ARM_THM_CALL:
+    case elfcpp::R_ARM_GOTOFF32:
+    case elfcpp::R_ARM_BASE_PREL:
+    case elfcpp::R_ARM_GOT_BREL:
+    case elfcpp::R_ARM_GOT_PREL:
+    case elfcpp::R_ARM_PLT32:
+    case elfcpp::R_ARM_CALL:
+    case elfcpp::R_ARM_JUMP24:
+    case elfcpp::R_ARM_PREL31:
+    case elfcpp::R_ARM_MOVW_ABS_NC:
+    case elfcpp::R_ARM_MOVT_ABS:
+    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
+    case elfcpp::R_ARM_THM_MOVT_ABS:
+    case elfcpp::R_ARM_MOVW_PREL_NC:
+    case elfcpp::R_ARM_MOVT_PREL:
+    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
+    case elfcpp::R_ARM_THM_MOVT_PREL:
+      return 4;
+
+    case elfcpp::R_ARM_TARGET1:
+      // This should have been mapped to another type already.
+      // Fall through.
+    case elfcpp::R_ARM_COPY:
+    case elfcpp::R_ARM_GLOB_DAT:
+    case elfcpp::R_ARM_JUMP_SLOT:
+    case elfcpp::R_ARM_RELATIVE:
+      // These are relocations which should only be seen by the
+      // dynamic linker, and should never be seen here.
+      gold_error(_("%s: unexpected reloc %u in object file"),
+                object->name().c_str(), r_type);
+      return 0;
+
+    default:
+      object->error(_("unsupported reloc %u in object file"), r_type);
+      return 0;
+    }
+}
+
+// Scan the relocs during a relocatable link.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::scan_relocatable_relocs(
+    Symbol_table* symtab,
+    Layout* alayout,
+    Sized_relobj<32, big_endian>* object,
+    unsigned int data_shndx,
+    unsigned int sh_type,
+    const unsigned char* prelocs,
+    size_t reloc_count,
+    Output_section* output_section,
+    bool needs_special_offset_handling,
+    size_t local_symbol_count,
+    const unsigned char* plocal_symbols,
+    Relocatable_relocs* rr)
+{
+  gold_assert(sh_type == elfcpp::SHT_REL);
+
+  typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
+    Relocatable_size_for_reloc> Scan_relocatable_relocs;
+
+  gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
+      Scan_relocatable_relocs>(
+    symtab,
+    alayout,
+    object,
+    data_shndx,
+    prelocs,
+    reloc_count,
+    output_section,
+    needs_special_offset_handling,
+    local_symbol_count,
+    plocal_symbols,
+    rr);
+}
+
+// Relocate a section during a relocatable link.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::relocate_for_relocatable(
+    const Relocate_info<32, big_endian>* relinfo,
+    unsigned int sh_type,
+    const unsigned char* prelocs,
+    size_t reloc_count,
+    Output_section* output_section,
+    off_t offset_in_output_section,
+    const Relocatable_relocs* rr,
+    unsigned char* view,
+    Arm_address view_address,
+    section_size_type view_size,
+    unsigned char* reloc_view,
+    section_size_type reloc_view_size)
+{
+  gold_assert(sh_type == elfcpp::SHT_REL);
+
+  gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
+    relinfo,
+    prelocs,
+    reloc_count,
+    output_section,
+    offset_in_output_section,
+    rr,
+    view,
+    view_address,
+    view_size,
+    reloc_view,
+    reloc_view_size);
+}
+
+// Return the value to use for a dynamic symbol which requires special
+// treatment.  This is how we support equality comparisons of function
+// pointers across shared library boundaries, as described in the
+// processor specific ABI supplement.
+
+template<bool big_endian>
+uint64_t
+Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
+{
+  gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
+  return this->plt_section()->address() + gsym->plt_offset();
+}
 
+// Map platform-specific relocs to real relocs
+//
 template<bool big_endian>
-void
-Output_data_plt_arm<big_endian>::do_write(Output_file* of)
+unsigned int
+Target_arm<big_endian>::get_real_reloc_type (unsigned int r_type)
 {
-  const off_t offset = this->offset();
-  const section_size_type oview_size =
-    convert_to_section_size_type(this->data_size());
-  unsigned char* const oview = of->get_output_view(offset, oview_size);
+  switch (r_type)
+    {
+    case elfcpp::R_ARM_TARGET1:
+      // This is either R_ARM_ABS32 or R_ARM_REL32;
+      return elfcpp::R_ARM_ABS32;
 
-  const off_t got_file_offset = this->got_plt_->offset();
-  const section_size_type got_size =
-    convert_to_section_size_type(this->got_plt_->data_size());
-  unsigned char* const got_view = of->get_output_view(got_file_offset,
-                                                     got_size);
-  unsigned char* pov = oview;
+    case elfcpp::R_ARM_TARGET2:
+      // This can be any reloc type but ususally is R_ARM_GOT_PREL
+      return elfcpp::R_ARM_GOT_PREL;
 
-  elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
-  elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
+    default:
+      return r_type;
+    }
+}
 
-  // Write first PLT entry.  All but the last word are constants.
-  const size_t num_first_plt_words = (sizeof(first_plt_entry)
-                                     / sizeof(plt_entry[0]));
-  for (size_t i = 0; i < num_first_plt_words - 1; i++)
-    elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
-  // Last word in first PLT entry is &GOT[0] - .
-  elfcpp::Swap<32, big_endian>::writeval(pov + 16,
-                                        got_address - (plt_address + 16));
-  pov += sizeof(first_plt_entry);
+// Whether if two EABI versions V1 and V2 are compatible.
 
-  unsigned char* got_pov = got_view;
+template<bool big_endian>
+bool
+Target_arm<big_endian>::are_eabi_versions_compatible(
+    elfcpp::Elf_Word v1,
+    elfcpp::Elf_Word v2)
+{
+  // v4 and v5 are the same spec before and after it was released,
+  // so allow mixing them.
+  if ((v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
+      || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
+    return true;
 
-  memset(got_pov, 0, 12);
-  got_pov += 12;
+  return v1 == v2;
+}
 
-  const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
-  unsigned int plt_offset = sizeof(first_plt_entry);
-  unsigned int plt_rel_offset = 0;
-  unsigned int got_offset = 12;
-  const unsigned int count = this->count_;
-  for (unsigned int i = 0;
-       i < count;
-       ++i,
-        pov += sizeof(plt_entry),
-        got_pov += 4,
-        plt_offset += sizeof(plt_entry),
-        plt_rel_offset += rel_size,
-        got_offset += 4)
+// Combine FLAGS from an input object called NAME and the processor-specific
+// flags in the ELF header of the output.  Much of this is adapted from the
+// processor-specific flags merging code in elf32_arm_merge_private_bfd_data
+// in bfd/elf32-arm.c.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::merge_processor_specific_flags(
+    const std::string& name,
+    elfcpp::Elf_Word flags)
+{
+  if (this->are_processor_specific_flags_set())
     {
-      // Set and adjust the PLT entry itself.
-      int32_t offset = ((got_address + got_offset)
-                        - (plt_address + plt_offset + 8));
+      elfcpp::Elf_Word out_flags = this->processor_specific_flags();
 
-      gold_assert(offset >= 0 && offset < 0x0fffffff);
-      uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
-      elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
-      uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
-      elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
-      uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
-      elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
+      // Nothing to merge if flags equal to those in output.
+      if (flags == out_flags)
+       return;
 
-      // Set the entry in the GOT.
-      elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
+      // Complain about various flag mismatches.
+      elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
+      elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
+      if (!this->are_eabi_versions_compatible(version1, version2))
+       gold_error(_("Source object %s has EABI version %d but output has "
+                    "EABI version %d."),
+                  name.c_str(),
+                  (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
+                  (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
     }
+  else
+    {
+      // If the input is the default architecture and had the default
+      // flags then do not bother setting the flags for the output
+      // architecture, instead allow future merges to do this.  If no
+      // future merges ever set these flags then they will retain their
+      // uninitialised values, which surprise surprise, correspond
+      // to the default values.
+      if (flags == 0)
+       return;
 
-  gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
-  gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
-
-  of->write_output_view(offset, oview_size, oview);
-  of->write_output_view(got_file_offset, got_size, got_view);
+      // This is the first time, just copy the flags.
+      // We only copy the EABI version for now.
+      this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
+    }
 }
 
-// Create a PLT entry for a global symbol.
-
+// Adjust ELF file header.
 template<bool big_endian>
 void
-Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
-                                      Symbol* gsym)
+Target_arm<big_endian>::do_adjust_elf_header(
+    unsigned char* view,
+    int len) const
 {
-  if (gsym->has_plt_offset())
-    return;
+  gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
 
-  if (this->plt_ == NULL)
-    {
-      // Create the GOT sections first.
-      this->got_section(symtab, layout);
+  elfcpp::Ehdr<32, big_endian> ehdr(view);
+  unsigned char e_ident[elfcpp::EI_NIDENT];
+  memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
+
+  if (elfcpp::arm_eabi_version(this->processor_specific_flags())
+      == elfcpp::EF_ARM_EABI_UNKNOWN)
+    e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
+  else
+    e_ident[elfcpp::EI_OSABI] = 0;
+  e_ident[elfcpp::EI_ABIVERSION] = 0;
+
+  // FIXME: Do EF_ARM_BE8 adjustment.
 
-      this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
-      layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
-                                     (elfcpp::SHF_ALLOC
-                                      | elfcpp::SHF_EXECINSTR),
-                                     this->plt_);
+  elfcpp::Ehdr_write<32, big_endian> oehdr(view);
+  oehdr.put_e_ident(e_ident);
+}
+
+// do_make_elf_object to override the same function in the base class.
+// We need to use a target-specific sub-class of Sized_relobj<32, big_endian>
+// to store ARM specific information.  Hence we need to have our own
+// ELF object creation.
+
+template<bool big_endian>
+Object*
+Target_arm<big_endian>::do_make_elf_object(
+    const std::string& name,
+    Input_file* input_file,
+    off_t off, const elfcpp::Ehdr<32, big_endian>& ehdr)
+{
+  int et = ehdr.get_e_type();
+  if (et == elfcpp::ET_REL)
+    {
+      Arm_relobj<big_endian>* obj =
+        new Arm_relobj<big_endian>(name, input_file, off, ehdr);
+      obj->setup();
+      return obj;
+    }
+  else if (et == elfcpp::ET_DYN)
+    {
+      Sized_dynobj<32, big_endian>* obj =
+        new Arm_dynobj<big_endian>(name, input_file, off, ehdr);
+      obj->setup();
+      return obj;
+    }
+  else
+    {
+      gold_error(_("%s: unsupported ELF file type %d"),
+                 name.c_str(), et);
+      return NULL;
     }
-  this->plt_->add_entry(gsym);
 }
 
-// Report an unsupported relocation against a local symbol.
+// Read the architecture from the Tag_also_compatible_with attribute, if any.
+// Returns -1 if no architecture could be read.
+// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
 
 template<bool big_endian>
-void
-Target_arm<big_endian>::Scan::unsupported_reloc_local(
-    Sized_relobj<32, big_endian>* object,
-    unsigned int r_type)
+int
+Target_arm<big_endian>::get_secondary_compatible_arch(
+    const Attributes_section_data* pasd)
 {
-  gold_error(_("%s: unsupported reloc %u against local symbol"),
-            object->name().c_str(), r_type);
+  const Object_attribute *known_attributes =
+    pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
+
+  // Note: the tag and its argument below are uleb128 values, though
+  // currently-defined values fit in one byte for each.
+  const std::string& sv =
+    known_attributes[elfcpp::Tag_also_compatible_with].string_value();
+  if (sv.size() == 2
+      && sv.data()[0] == elfcpp::Tag_CPU_arch
+      && (sv.data()[1] & 128) != 128)
+   return sv.data()[1];
+
+  // This tag is "safely ignorable", so don't complain if it looks funny.
+  return -1;
 }
 
-// We are about to emit a dynamic relocation of type R_TYPE.  If the
-// dynamic linker does not support it, issue an error.  The GNU linker
-// only issues a non-PIC error for an allocated read-only section.
-// Here we know the section is allocated, but we don't know that it is
-// read-only.  But we check for all the relocation types which the
-// glibc dynamic linker supports, so it seems appropriate to issue an
-// error even if the section is not read-only.
+// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
+// The tag is removed if ARCH is -1.
+// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
 
 template<bool big_endian>
 void
-Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
-                                           unsigned int r_type)
+Target_arm<big_endian>::set_secondary_compatible_arch(
+    Attributes_section_data* pasd,
+    int arch)
 {
-  switch (r_type)
+  Object_attribute *known_attributes =
+    pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
+
+  if (arch == -1)
     {
-    // These are the relocation types supported by glibc for ARM.
-    case elfcpp::R_ARM_RELATIVE:
-    case elfcpp::R_ARM_COPY:
-    case elfcpp::R_ARM_GLOB_DAT:
-    case elfcpp::R_ARM_JUMP_SLOT:
-    case elfcpp::R_ARM_ABS32:
-    case elfcpp::R_ARM_PC24:
-    // FIXME: The following 3 types are not supported by Android's dynamic
-    // linker.
-    case elfcpp::R_ARM_TLS_DTPMOD32:
-    case elfcpp::R_ARM_TLS_DTPOFF32:
-    case elfcpp::R_ARM_TLS_TPOFF32:
+      known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
       return;
+    }
 
-    default:
-      // This prevents us from issuing more than one error per reloc
-      // section.  But we can still wind up issuing more than one
-      // error per object file.
-      if (this->issued_non_pic_error_)
-       return;
-      object->error(_("requires unsupported dynamic reloc; "
-                     "recompile with -fPIC"));
-      this->issued_non_pic_error_ = true;
-      return;
+  // Note: the tag and its argument below are uleb128 values, though
+  // currently-defined values fit in one byte for each.
+  char sv[3];
+  sv[0] = elfcpp::Tag_CPU_arch;
+  gold_assert(arch != 0);
+  sv[1] = arch;
+  sv[2] = '\0';
 
-    case elfcpp::R_ARM_NONE:
-      gold_unreachable();
-    }
+  known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
 }
 
-// Scan a relocation for a local symbol.
-// FIXME: This only handles a subset of relocation types used by Android
-// on ARM v5te devices.
+// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
+// into account.
+// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
 
 template<bool big_endian>
-inline void
-Target_arm<big_endian>::Scan::local(const General_options&,
-                                   Symbol_table* symtab,
-                                   Layout* layout,
-                                   Target_arm* target,
-                                   Sized_relobj<32, big_endian>* object,
-                                   unsigned int data_shndx,
-                                   Output_section* output_section,
-                                   const elfcpp::Rel<32, big_endian>& reloc,
-                                   unsigned int r_type,
-                                   const elfcpp::Sym<32, big_endian>&)
+int
+Target_arm<big_endian>::tag_cpu_arch_combine(
+    const char* name,
+    int oldtag,
+    int* secondary_compat_out,
+    int newtag,
+    int secondary_compat)
 {
-  r_type = get_real_reloc_type(r_type);
-  switch (r_type)
+#define T(X) elfcpp::TAG_CPU_ARCH_##X
+  static const int v6t2[] =
     {
-    case elfcpp::R_ARM_NONE:
-      break;
+      T(V6T2),   // PRE_V4.
+      T(V6T2),   // V4.
+      T(V6T2),   // V4T.
+      T(V6T2),   // V5T.
+      T(V6T2),   // V5TE.
+      T(V6T2),   // V5TEJ.
+      T(V6T2),   // V6.
+      T(V7),     // V6KZ.
+      T(V6T2)    // V6T2.
+    };
+  static const int v6k[] =
+    {
+      T(V6K),    // PRE_V4.
+      T(V6K),    // V4.
+      T(V6K),    // V4T.
+      T(V6K),    // V5T.
+      T(V6K),    // V5TE.
+      T(V6K),    // V5TEJ.
+      T(V6K),    // V6.
+      T(V6KZ),   // V6KZ.
+      T(V7),     // V6T2.
+      T(V6K)     // V6K.
+    };
+  static const int v7[] =
+    {
+      T(V7),     // PRE_V4.
+      T(V7),     // V4.
+      T(V7),     // V4T.
+      T(V7),     // V5T.
+      T(V7),     // V5TE.
+      T(V7),     // V5TEJ.
+      T(V7),     // V6.
+      T(V7),     // V6KZ.
+      T(V7),     // V6T2.
+      T(V7),     // V6K.
+      T(V7)      // V7.
+    };
+  static const int v6_m[] =
+    {
+      -1,        // PRE_V4.
+      -1,        // V4.
+      T(V6K),    // V4T.
+      T(V6K),    // V5T.
+      T(V6K),    // V5TE.
+      T(V6K),    // V5TEJ.
+      T(V6K),    // V6.
+      T(V6KZ),   // V6KZ.
+      T(V7),     // V6T2.
+      T(V6K),    // V6K.
+      T(V7),     // V7.
+      T(V6_M)    // V6_M.
+    };
+  static const int v6s_m[] =
+    {
+      -1,        // PRE_V4.
+      -1,        // V4.
+      T(V6K),    // V4T.
+      T(V6K),    // V5T.
+      T(V6K),    // V5TE.
+      T(V6K),    // V5TEJ.
+      T(V6K),    // V6.
+      T(V6KZ),   // V6KZ.
+      T(V7),     // V6T2.
+      T(V6K),    // V6K.
+      T(V7),     // V7.
+      T(V6S_M),  // V6_M.
+      T(V6S_M)   // V6S_M.
+    };
+  static const int v7e_m[] =
+    {
+      -1,      // PRE_V4.
+      -1,      // V4.
+      T(V7E_M),        // V4T.
+      T(V7E_M),        // V5T.
+      T(V7E_M),        // V5TE.
+      T(V7E_M),        // V5TEJ.
+      T(V7E_M),        // V6.
+      T(V7E_M),        // V6KZ.
+      T(V7E_M),        // V6T2.
+      T(V7E_M),        // V6K.
+      T(V7E_M),        // V7.
+      T(V7E_M),        // V6_M.
+      T(V7E_M),        // V6S_M.
+      T(V7E_M) // V7E_M.
+    };
+  static const int v4t_plus_v6_m[] =
+    {
+      -1,              // PRE_V4.
+      -1,              // V4.
+      T(V4T),          // V4T.
+      T(V5T),          // V5T.
+      T(V5TE),         // V5TE.
+      T(V5TEJ),                // V5TEJ.
+      T(V6),           // V6.
+      T(V6KZ),         // V6KZ.
+      T(V6T2),         // V6T2.
+      T(V6K),          // V6K.
+      T(V7),           // V7.
+      T(V6_M),         // V6_M.
+      T(V6S_M),                // V6S_M.
+      T(V7E_M),                // V7E_M.
+      T(V4T_PLUS_V6_M) // V4T plus V6_M.
+    };
+  static const int *comb[] =
+    {
+      v6t2,
+      v6k,
+      v7,
+      v6_m,
+      v6s_m,
+      v7e_m,
+      // Pseudo-architecture.
+      v4t_plus_v6_m
+    };
+
+  // Check we've not got a higher architecture than we know about.
+
+  if (oldtag >= elfcpp::MAX_TAG_CPU_ARCH || newtag >= elfcpp::MAX_TAG_CPU_ARCH)
+    {
+      gold_error(_("%s: unknown CPU architecture"), name);
+      return -1;
+    }
 
-    case elfcpp::R_ARM_ABS32:
-      // If building a shared library (or a position-independent
-      // executable), we need to create a dynamic relocation for
-      // this location. The relocation applied at link time will
-      // apply the link-time value, so we flag the location with
-      // an R_ARM_RELATIVE relocation so the dynamic loader can
-      // relocate it easily.
-      if (parameters->options().output_is_position_independent())
-       {
-         Reloc_section* rel_dyn = target->rel_dyn_section(layout);
-         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
-         // If we are to add more other reloc types than R_ARM_ABS32,
-         // we need to add check_non_pic(object, r_type) here.
-         rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
-                                     output_section, data_shndx,
-                                     reloc.get_r_offset());
-       }
-      break;
+  // Override old tag if we have a Tag_also_compatible_with on the output.
 
-    case elfcpp::R_ARM_REL32:
-    case elfcpp::R_ARM_THM_CALL:
-    case elfcpp::R_ARM_CALL:
-    case elfcpp::R_ARM_PREL31:
-    case elfcpp::R_ARM_JUMP24:
-    case elfcpp::R_ARM_PLT32:
-      break;
+  if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
+      || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
+    oldtag = T(V4T_PLUS_V6_M);
 
-    case elfcpp::R_ARM_GOTOFF32:
-      // We need a GOT section:
-      target->got_section(symtab, layout);
-      break;
+  // And override the new tag if we have a Tag_also_compatible_with on the
+  // input.
 
-    case elfcpp::R_ARM_BASE_PREL:
-      // FIXME: What about this?
-      break;
+  if ((newtag == T(V6_M) && secondary_compat == T(V4T))
+      || (newtag == T(V4T) && secondary_compat == T(V6_M)))
+    newtag = T(V4T_PLUS_V6_M);
 
-    case elfcpp::R_ARM_GOT_BREL:
-      {
-       // The symbol requires a GOT entry.
-       Output_data_got<32, big_endian>* got =
-         target->got_section(symtab, layout);
-       unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
-       if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
-         {
-           // If we are generating a shared object, we need to add a
-           // dynamic RELATIVE relocation for this symbol's GOT entry.
-           if (parameters->options().output_is_position_independent())
-             {
-               Reloc_section* rel_dyn = target->rel_dyn_section(layout);
-               unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
-               rel_dyn->add_local_relative(
-                   object, r_sym, elfcpp::R_ARM_RELATIVE, got,
-                   object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
-             }
-         }
-      }
-      break;
+  // Architectures before V6KZ add features monotonically.
+  int tagh = std::max(oldtag, newtag);
+  if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
+    return tagh;
 
-    case elfcpp::R_ARM_TARGET1:
-      // This should have been mapped to another type already.
-      // Fall through.
-    case elfcpp::R_ARM_COPY:
-    case elfcpp::R_ARM_GLOB_DAT:
-    case elfcpp::R_ARM_JUMP_SLOT:
-    case elfcpp::R_ARM_RELATIVE:
-      // These are relocations which should only be seen by the
-      // dynamic linker, and should never be seen here.
-      gold_error(_("%s: unexpected reloc %u in object file"),
-                object->name().c_str(), r_type);
-      break;
+  int tagl = std::min(oldtag, newtag);
+  int result = comb[tagh - T(V6T2)][tagl];
 
-    default:
-      unsupported_reloc_local(object, r_type);
-      break;
+  // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
+  // as the canonical version.
+  if (result == T(V4T_PLUS_V6_M))
+    {
+      result = T(V4T);
+      *secondary_compat_out = T(V6_M);
+    }
+  else
+    *secondary_compat_out = -1;
+
+  if (result == -1)
+    {
+      gold_error(_("%s: conflicting CPU architectures %d/%d"),
+                name, oldtag, newtag);
+      return -1;
     }
+
+  return result;
+#undef T
 }
 
-// Report an unsupported relocation against a global symbol.
+// Helper to print AEABI enum tag value.
 
 template<bool big_endian>
-void
-Target_arm<big_endian>::Scan::unsupported_reloc_global(
-    Sized_relobj<32, big_endian>* object,
-    unsigned int r_type,
-    Symbol* gsym)
+std::string
+Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
 {
-  gold_error(_("%s: unsupported reloc %u against global symbol %s"),
-            object->name().c_str(), r_type, gsym->demangled_name().c_str());
+  static const char *aeabi_enum_names[] =
+    { "", "variable-size", "32-bit", "" };
+  const size_t aeabi_enum_names_size =
+    sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
+
+  if (value < aeabi_enum_names_size)
+    return std::string(aeabi_enum_names[value]);
+  else
+    {
+      char buffer[100];
+      sprintf(buffer, "<unknown value %u>", value);
+      return std::string(buffer);
+    }
+}
+
+// Return the string value to store in TAG_CPU_name.
+
+template<bool big_endian>
+std::string
+Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
+{
+  static const char *name_table[] = {
+    // These aren't real CPU names, but we can't guess
+    // that from the architecture version alone.
+   "Pre v4",
+   "ARM v4",
+   "ARM v4T",
+   "ARM v5T",
+   "ARM v5TE",
+   "ARM v5TEJ",
+   "ARM v6",
+   "ARM v6KZ",
+   "ARM v6T2",
+   "ARM v6K",
+   "ARM v7",
+   "ARM v6-M",
+   "ARM v6S-M",
+   "ARM v7E-M"
+ };
+ const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
+
+  if (value < name_table_size)
+    return std::string(name_table[value]);
+  else
+    {
+      char buffer[100];
+      sprintf(buffer, "<unknown CPU value %u>", value);
+      return std::string(buffer);
+    } 
 }
 
-// Scan a relocation for a global symbol.
-// FIXME: This only handles a subset of relocation types used by Android
-// on ARM v5te devices.
+// Merge object attributes from input file called NAME with those of the
+// output.  The input object attributes are in the object pointed by PASD.
 
 template<bool big_endian>
-inline void
-Target_arm<big_endian>::Scan::global(const General_options&,
-                                    Symbol_table* symtab,
-                                    Layout* layout,
-                                    Target_arm* target,
-                                    Sized_relobj<32, big_endian>* object,
-                                    unsigned int data_shndx,
-                                    Output_section* output_section,
-                                    const elfcpp::Rel<32, big_endian>& reloc,
-                                    unsigned int r_type,
-                                    Symbol* gsym)
+void
+Target_arm<big_endian>::merge_object_attributes(
+    const char* name,
+    const Attributes_section_data* pasd)
 {
-  r_type = get_real_reloc_type(r_type);
-  switch (r_type)
+  // Return if there is no attributes section data.
+  if (pasd == NULL)
+    return;
+
+  // If output has no object attributes, just copy.
+  if (this->attributes_section_data_ == NULL)
     {
-    case elfcpp::R_ARM_NONE:
-      break;
+      this->attributes_section_data_ = new Attributes_section_data(*pasd);
+      return;
+    }
 
-    case elfcpp::R_ARM_ABS32:
-      {
-       // Make a dynamic relocation if necessary.
-       if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
+  const int vendor = Object_attribute::OBJ_ATTR_PROC;
+  const Object_attribute* in_attr = pasd->known_attributes(vendor);
+  Object_attribute* out_attr =
+    this->attributes_section_data_->known_attributes(vendor);
+
+  // This needs to happen before Tag_ABI_FP_number_model is merged.  */
+  if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
+      != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
+    {
+      // Ignore mismatches if the object doesn't use floating point.  */
+      if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
+       out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
+           in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
+      else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0)
+        gold_error(_("%s uses VFP register arguments, output does not"),
+                  name);
+    }
+
+  for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
+    {
+      // Merge this attribute with existing attributes.
+      switch (i)
+       {
+       case elfcpp::Tag_CPU_raw_name:
+       case elfcpp::Tag_CPU_name:
+         // These are merged after Tag_CPU_arch.
+         break;
+
+       case elfcpp::Tag_ABI_optimization_goals:
+       case elfcpp::Tag_ABI_FP_optimization_goals:
+         // Use the first value seen.
+         break;
+
+       case elfcpp::Tag_CPU_arch:
          {
-           if (target->may_need_copy_reloc(gsym))
-             {
-               target->copy_reloc(symtab, layout, object,
-                                  data_shndx, output_section, gsym, reloc);
-             }
-           else if (gsym->can_use_relative_reloc(false))
+           unsigned int saved_out_attr = out_attr->int_value();
+           // Merge Tag_CPU_arch and Tag_also_compatible_with.
+           int secondary_compat =
+             this->get_secondary_compatible_arch(pasd);
+           int secondary_compat_out =
+             this->get_secondary_compatible_arch(
+                 this->attributes_section_data_);
+           out_attr[i].set_int_value(
+               tag_cpu_arch_combine(name, out_attr[i].int_value(),
+                                    &secondary_compat_out,
+                                    in_attr[i].int_value(),
+                                    secondary_compat));
+           this->set_secondary_compatible_arch(this->attributes_section_data_,
+                                               secondary_compat_out);
+
+           // Merge Tag_CPU_name and Tag_CPU_raw_name.
+           if (out_attr[i].int_value() == saved_out_attr)
+             ; // Leave the names alone.
+           else if (out_attr[i].int_value() == in_attr[i].int_value())
              {
-               // If we are to add more other reloc types than R_ARM_ABS32,
-               // we need to add check_non_pic(object, r_type) here.
-               Reloc_section* rel_dyn = target->rel_dyn_section(layout);
-               rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
-                                            output_section, object,
-                                            data_shndx, reloc.get_r_offset());
+               // The output architecture has been changed to match the
+               // input architecture.  Use the input names.
+               out_attr[elfcpp::Tag_CPU_name].set_string_value(
+                   in_attr[elfcpp::Tag_CPU_name].string_value());
+               out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
+                   in_attr[elfcpp::Tag_CPU_raw_name].string_value());
              }
            else
              {
-               // If we are to add more other reloc types than R_ARM_ABS32,
-               // we need to add check_non_pic(object, r_type) here.
-               Reloc_section* rel_dyn = target->rel_dyn_section(layout);
-               rel_dyn->add_global(gsym, r_type, output_section, object,
-                                   data_shndx, reloc.get_r_offset());
+               out_attr[elfcpp::Tag_CPU_name].set_string_value("");
+               out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
              }
-         }
-      }
-      break;
 
-    case elfcpp::R_ARM_REL32:
-    case elfcpp::R_ARM_PREL31:
-      {
-       // Make a dynamic relocation if necessary.
-       int flags = Symbol::NON_PIC_REF;
-       if (gsym->needs_dynamic_reloc(flags))
-         {
-           if (target->may_need_copy_reloc(gsym))
-             {
-               target->copy_reloc(symtab, layout, object,
-                                  data_shndx, output_section, gsym, reloc);
-             }
-           else
+           // If we still don't have a value for Tag_CPU_name,
+           // make one up now.  Tag_CPU_raw_name remains blank.
+           if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
              {
-               check_non_pic(object, r_type);
-               Reloc_section* rel_dyn = target->rel_dyn_section(layout);
-               rel_dyn->add_global(gsym, r_type, output_section, object,
-                                   data_shndx, reloc.get_r_offset());
+               const std::string cpu_name =
+                 this->tag_cpu_name_value(out_attr[i].int_value());
+               // FIXME:  If we see an unknown CPU, this will be set
+               // to "<unknown CPU n>", where n is the attribute value.
+               // This is different from BFD, which leaves the name alone.
+               out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
              }
          }
-      }
-      break;
-
-    case elfcpp::R_ARM_JUMP24:
-    case elfcpp::R_ARM_THM_CALL:
-    case elfcpp::R_ARM_CALL:
-      {
-       if (Target_arm<big_endian>::Scan::symbol_needs_plt_entry(gsym))
-         target->make_plt_entry(symtab, layout, gsym);
-       // Make a dynamic relocation if necessary.
-       int flags = Symbol::NON_PIC_REF;
-       if (gsym->type() == elfcpp::STT_FUNC
-           || gsym->type() == elfcpp::STT_ARM_TFUNC)
-         flags |= Symbol::FUNCTION_CALL;
-       if (gsym->needs_dynamic_reloc(flags))
+         break;
+
+       case elfcpp::Tag_ARM_ISA_use:
+       case elfcpp::Tag_THUMB_ISA_use:
+       case elfcpp::Tag_WMMX_arch:
+       case elfcpp::Tag_Advanced_SIMD_arch:
+         // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
+       case elfcpp::Tag_ABI_FP_rounding:
+       case elfcpp::Tag_ABI_FP_exceptions:
+       case elfcpp::Tag_ABI_FP_user_exceptions:
+       case elfcpp::Tag_ABI_FP_number_model:
+       case elfcpp::Tag_VFP_HP_extension:
+       case elfcpp::Tag_CPU_unaligned_access:
+       case elfcpp::Tag_T2EE_use:
+       case elfcpp::Tag_Virtualization_use:
+       case elfcpp::Tag_MPextension_use:
+         // Use the largest value specified.
+         if (in_attr[i].int_value() > out_attr[i].int_value())
+           out_attr[i].set_int_value(in_attr[i].int_value());
+         break;
+
+       case elfcpp::Tag_ABI_align8_preserved:
+       case elfcpp::Tag_ABI_PCS_RO_data:
+         // Use the smallest value specified.
+         if (in_attr[i].int_value() < out_attr[i].int_value())
+           out_attr[i].set_int_value(in_attr[i].int_value());
+         break;
+
+       case elfcpp::Tag_ABI_align8_needed:
+         if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
+             && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
+                 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
+                     == 0)))
+           {
+             // This error message should be enabled once all non-conformant
+             // binaries in the toolchain have had the attributes set
+             // properly.
+             // gold_error(_("output 8-byte data alignment conflicts with %s"),
+             //            name);
+           }
+         // Fall through.
+       case elfcpp::Tag_ABI_FP_denormal:
+       case elfcpp::Tag_ABI_PCS_GOT_use:
          {
-           if (target->may_need_copy_reloc(gsym))
+           // These tags have 0 = don't care, 1 = strong requirement,
+           // 2 = weak requirement.
+           static const int order_021[3] = {0, 2, 1};
+
+           // Use the "greatest" from the sequence 0, 2, 1, or the largest
+           // value if greater than 2 (for future-proofing).
+           if ((in_attr[i].int_value() > 2
+                && in_attr[i].int_value() > out_attr[i].int_value())
+               || (in_attr[i].int_value() <= 2
+                   && out_attr[i].int_value() <= 2
+                   && (order_021[in_attr[i].int_value()]
+                       > order_021[out_attr[i].int_value()])))
+             out_attr[i].set_int_value(in_attr[i].int_value());
+         }
+         break;
+
+       case elfcpp::Tag_CPU_arch_profile:
+         if (out_attr[i].int_value() != in_attr[i].int_value())
+           {
+             // 0 will merge with anything.
+             // 'A' and 'S' merge to 'A'.
+             // 'R' and 'S' merge to 'R'.
+             // 'M' and 'A|R|S' is an error.
+             if (out_attr[i].int_value() == 0
+                 || (out_attr[i].int_value() == 'S'
+                     && (in_attr[i].int_value() == 'A'
+                         || in_attr[i].int_value() == 'R')))
+               out_attr[i].set_int_value(in_attr[i].int_value());
+             else if (in_attr[i].int_value() == 0
+                      || (in_attr[i].int_value() == 'S'
+                          && (out_attr[i].int_value() == 'A'
+                              || out_attr[i].int_value() == 'R')))
+               ; // Do nothing.
+             else
+               {
+                 gold_error
+                   (_("conflicting architecture profiles %c/%c"),
+                    in_attr[i].int_value() ? in_attr[i].int_value() : '0',
+                    out_attr[i].int_value() ? out_attr[i].int_value() : '0');
+               }
+           }
+         break;
+       case elfcpp::Tag_VFP_arch:
+           {
+             static const struct
              {
-               target->copy_reloc(symtab, layout, object,
-                                  data_shndx, output_section, gsym,
-                                  reloc);
-             }
-           else
+                 int ver;
+                 int regs;
+             } vfp_versions[7] =
+               {
+                 {0, 0},
+                 {1, 16},
+                 {2, 16},
+                 {3, 32},
+                 {3, 16},
+                 {4, 32},
+                 {4, 16}
+               };
+
+             // Values greater than 6 aren't defined, so just pick the
+             // biggest.
+             if (in_attr[i].int_value() > 6
+                 && in_attr[i].int_value() > out_attr[i].int_value())
+               {
+                 *out_attr = *in_attr;
+                 break;
+               }
+             // The output uses the superset of input features
+             // (ISA version) and registers.
+             int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
+                                vfp_versions[out_attr[i].int_value()].ver);
+             int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
+                                 vfp_versions[out_attr[i].int_value()].regs);
+             // This assumes all possible supersets are also a valid
+             // options.
+             int newval;
+             for (newval = 6; newval > 0; newval--)
+               {
+                 if (regs == vfp_versions[newval].regs
+                     && ver == vfp_versions[newval].ver)
+                   break;
+               }
+             out_attr[i].set_int_value(newval);
+           }
+         break;
+       case elfcpp::Tag_PCS_config:
+         if (out_attr[i].int_value() == 0)
+           out_attr[i].set_int_value(in_attr[i].int_value());
+         else if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
+           {
+             // It's sometimes ok to mix different configs, so this is only
+             // a warning.
+             gold_warning(_("%s: conflicting platform configuration"), name);
+           }
+         break;
+       case elfcpp::Tag_ABI_PCS_R9_use:
+         if (in_attr[i].int_value() != out_attr[i].int_value()
+             && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
+             && in_attr[i].int_value() != elfcpp::AEABI_R9_unused)
+           {
+             gold_error(_("%s: conflicting use of R9"), name);
+           }
+         if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
+           out_attr[i].set_int_value(in_attr[i].int_value());
+         break;
+       case elfcpp::Tag_ABI_PCS_RW_data:
+         if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
+             && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
+                 != elfcpp::AEABI_R9_SB)
+             && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
+                 != elfcpp::AEABI_R9_unused))
+           {
+             gold_error(_("%s: SB relative addressing conflicts with use "
+                          "of R9"),
+                        name);
+           }
+         // Use the smallest value specified.
+         if (in_attr[i].int_value() < out_attr[i].int_value())
+           out_attr[i].set_int_value(in_attr[i].int_value());
+         break;
+       case elfcpp::Tag_ABI_PCS_wchar_t:
+         // FIXME: Make it possible to turn off this warning.
+         if (out_attr[i].int_value()
+             && in_attr[i].int_value()
+             && out_attr[i].int_value() != in_attr[i].int_value())
+           {
+             gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
+                            "use %u-byte wchar_t; use of wchar_t values "
+                            "across objects may fail"),
+                          name, in_attr[i].int_value(),
+                          out_attr[i].int_value());
+           }
+         else if (in_attr[i].int_value() && !out_attr[i].int_value())
+           out_attr[i].set_int_value(in_attr[i].int_value());
+         break;
+       case elfcpp::Tag_ABI_enum_size:
+         if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
+           {
+             if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
+                 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
+               {
+                 // The existing object is compatible with anything.
+                 // Use whatever requirements the new object has.
+                 out_attr[i].set_int_value(in_attr[i].int_value());
+               }
+             // FIXME: Make it possible to turn off this warning.
+             else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
+                      && out_attr[i].int_value() != in_attr[i].int_value())
+               {
+                 unsigned int in_value = in_attr[i].int_value();
+                 unsigned int out_value = out_attr[i].int_value();
+                 gold_warning(_("%s uses %s enums yet the output is to use "
+                                "%s enums; use of enum values across objects "
+                                "may fail"),
+                              name,
+                              this->aeabi_enum_name(in_value).c_str(),
+                              this->aeabi_enum_name(out_value).c_str());
+               }
+           }
+         break;
+       case elfcpp::Tag_ABI_VFP_args:
+         // Aready done.
+         break;
+       case elfcpp::Tag_ABI_WMMX_args:
+         if (in_attr[i].int_value() != out_attr[i].int_value())
+           {
+             gold_error(_("%s uses iWMMXt register arguments, output does "
+                          "not"),
+                        name);
+           }
+         break;
+       case Object_attribute::Tag_compatibility:
+         // Merged in target-independent code.
+         break;
+       case elfcpp::Tag_ABI_HardFP_use:
+         // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
+         if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
+             || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
+           out_attr[i].set_int_value(3);
+         else if (in_attr[i].int_value() > out_attr[i].int_value())
+           out_attr[i].set_int_value(in_attr[i].int_value());
+         break;
+       case elfcpp::Tag_ABI_FP_16bit_format:
+         if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
+           {
+             if (in_attr[i].int_value() != out_attr[i].int_value())
+               gold_error(_("fp16 format mismatch between %s and output"),
+                          name);
+           }
+         if (in_attr[i].int_value() != 0)
+           out_attr[i].set_int_value(in_attr[i].int_value());
+         break;
+
+       case elfcpp::Tag_nodefaults:
+         // This tag is set if it exists, but the value is unused (and is
+         // typically zero).  We don't actually need to do anything here -
+         // the merge happens automatically when the type flags are merged
+         // below.
+         break;
+       case elfcpp::Tag_also_compatible_with:
+         // Already done in Tag_CPU_arch.
+         break;
+       case elfcpp::Tag_conformance:
+         // Keep the attribute if it matches.  Throw it away otherwise.
+         // No attribute means no claim to conform.
+         if (in_attr[i].string_value() != out_attr[i].string_value())
+           out_attr[i].set_string_value("");
+         break;
+
+       default:
+         {
+           const char* err_object = NULL;
+
+           // The "known_obj_attributes" table does contain some undefined
+           // attributes.  Ensure that there are unused.
+           if (out_attr[i].int_value() != 0
+               || out_attr[i].string_value() != "")
+             err_object = "output";
+           else if (in_attr[i].int_value() != 0
+                    || in_attr[i].string_value() != "")
+             err_object = name;
+
+           if (err_object != NULL)
              {
-               check_non_pic(object, r_type);
-               Reloc_section* rel_dyn = target->rel_dyn_section(layout);
-               rel_dyn->add_global(gsym, r_type, output_section, object,
-                                   data_shndx, reloc.get_r_offset());
+               // Attribute numbers >=64 (mod 128) can be safely ignored.
+               if ((i & 127) < 64)
+                 gold_error(_("%s: unknown mandatory EABI object attribute "
+                              "%d"),
+                            err_object, i);
+               else
+                 gold_warning(_("%s: unknown EABI object attribute %d"),
+                              err_object, i);
              }
-         }
-      }
-      break;
-
-    case elfcpp::R_ARM_PLT32:
-      // If the symbol is fully resolved, this is just a relative
-      // local reloc.  Otherwise we need a PLT entry.
-      if (gsym->final_value_is_known())
-       break;
-      // If building a shared library, we can also skip the PLT entry
-      // if the symbol is defined in the output file and is protected
-      // or hidden.
-      if (gsym->is_defined()
-         && !gsym->is_from_dynobj()
-         && !gsym->is_preemptible())
-       break;
-      target->make_plt_entry(symtab, layout, gsym);
-      break;
-
-    case elfcpp::R_ARM_GOTOFF32:
-      // We need a GOT section.
-      target->got_section(symtab, layout);
-      break;
 
-    case elfcpp::R_ARM_BASE_PREL:
-      // FIXME: What about this?
-      break;
-      
-    case elfcpp::R_ARM_GOT_BREL:
-      {
-       // The symbol requires a GOT entry.
-       Output_data_got<32, big_endian>* got =
-         target->got_section(symtab, layout);
-       if (gsym->final_value_is_known())
-         got->add_global(gsym, GOT_TYPE_STANDARD);
-       else
-         {
-           // If this symbol is not fully resolved, we need to add a
-           // GOT entry with a dynamic relocation.
-           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
-           if (gsym->is_from_dynobj()
-               || gsym->is_undefined()
-               || gsym->is_preemptible())
-             got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
-                                      rel_dyn, elfcpp::R_ARM_GLOB_DAT);
-           else
+           // Only pass on attributes that match in both inputs.
+           if (!in_attr[i].matches(out_attr[i]))
              {
-               if (got->add_global(gsym, GOT_TYPE_STANDARD))
-                 rel_dyn->add_global_relative(
-                     gsym, elfcpp::R_ARM_RELATIVE, got,
-                     gsym->got_offset(GOT_TYPE_STANDARD));
+               out_attr[i].set_int_value(0);
+               out_attr[i].set_string_value("");
              }
          }
-      }
-      break;
-
-    case elfcpp::R_ARM_TARGET1:
-      // This should have been mapped to another type already.
-      // Fall through.
-    case elfcpp::R_ARM_COPY:
-    case elfcpp::R_ARM_GLOB_DAT:
-    case elfcpp::R_ARM_JUMP_SLOT:
-    case elfcpp::R_ARM_RELATIVE:
-      // These are relocations which should only be seen by the
-      // dynamic linker, and should never be seen here.
-      gold_error(_("%s: unexpected reloc %u in object file"),
-                object->name().c_str(), r_type);
-      break;
+       }
 
-    default:
-      unsupported_reloc_global(object, r_type, gsym);
-      break;
+      // If out_attr was copied from in_attr then it won't have a type yet.
+      if (in_attr[i].type() && !out_attr[i].type())
+       out_attr[i].set_type(in_attr[i].type());
     }
-}
 
-// Process relocations for gc.
+  // Merge Tag_compatibility attributes and any common GNU ones.
+  this->attributes_section_data_->merge(name, pasd);
 
-template<bool big_endian>
-void
-Target_arm<big_endian>::gc_process_relocs(const General_options& options,
-                                         Symbol_table* symtab,
-                                         Layout* layout,
-                                         Sized_relobj<32, big_endian>* object,
-                                         unsigned int data_shndx,
-                                         unsigned int,
-                                         const unsigned char* prelocs,
-                                         size_t reloc_count,
-                                         Output_section* output_section,
-                                         bool needs_special_offset_handling,
-                                         size_t local_symbol_count,
-                                         const unsigned char* plocal_symbols)
-{
-  typedef Target_arm<big_endian> Arm;
-  typedef typename Target_arm<big_endian>::Scan Scan;
+  // Check for any attributes not known on ARM.
+  typedef Vendor_object_attributes::Other_attributes Other_attributes;
+  const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
+  Other_attributes::const_iterator in_iter = in_other_attributes->begin();
+  Other_attributes* out_other_attributes =
+    this->attributes_section_data_->other_attributes(vendor);
+  Other_attributes::iterator out_iter = out_other_attributes->begin();
 
-  gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan>(
-    options,
-    symtab,
-    layout,
-    this,
-    object,
-    data_shndx,
-    prelocs,
-    reloc_count,
-    output_section,
-    needs_special_offset_handling,
-    local_symbol_count,
-    plocal_symbols);
-}
+  while (in_iter != in_other_attributes->end()
+        || out_iter != out_other_attributes->end())
+    {
+      const char* err_object = NULL;
+      int err_tag = 0;
+
+      // The tags for each list are in numerical order.
+      // If the tags are equal, then merge.
+      if (out_iter != out_other_attributes->end()
+         && (in_iter == in_other_attributes->end()
+             || in_iter->first > out_iter->first))
+       {
+         // This attribute only exists in output.  We can't merge, and we
+         // don't know what the tag means, so delete it.
+         err_object = "output";
+         err_tag = out_iter->first;
+         int saved_tag = out_iter->first;
+         delete out_iter->second;
+         out_other_attributes->erase(out_iter); 
+         out_iter = out_other_attributes->upper_bound(saved_tag);
+       }
+      else if (in_iter != in_other_attributes->end()
+              && (out_iter != out_other_attributes->end()
+                  || in_iter->first < out_iter->first))
+       {
+         // This attribute only exists in input. We can't merge, and we
+         // don't know what the tag means, so ignore it.
+         err_object = name;
+         err_tag = in_iter->first;
+         ++in_iter;
+       }
+      else // The tags are equal.
+       {
+         // As present, all attributes in the list are unknown, and
+         // therefore can't be merged meaningfully.
+         err_object = "output";
+         err_tag = out_iter->first;
+
+         //  Only pass on attributes that match in both inputs.
+         if (!in_iter->second->matches(*(out_iter->second)))
+           {
+             // No match.  Delete the attribute.
+             int saved_tag = out_iter->first;
+             delete out_iter->second;
+             out_other_attributes->erase(out_iter);
+             out_iter = out_other_attributes->upper_bound(saved_tag);
+           }
+         else
+           {
+             // Matched.  Keep the attribute and move to the next.
+             ++out_iter;
+             ++in_iter;
+           }
+       }
 
-// Scan relocations for a section.
+      if (err_object)
+       {
+         // Attribute numbers >=64 (mod 128) can be safely ignored.  */
+         if ((err_tag & 127) < 64)
+           {
+             gold_error(_("%s: unknown mandatory EABI object attribute %d"),
+                        err_object, err_tag);
+           }
+         else
+           {
+             gold_warning(_("%s: unknown EABI object attribute %d"),
+                          err_object, err_tag);
+           }
+       }
+    }
+}
 
+// Return whether a relocation type used the LSB to distinguish THUMB
+// addresses.
 template<bool big_endian>
-void
-Target_arm<big_endian>::scan_relocs(const General_options& options,
-                                   Symbol_table* symtab,
-                                   Layout* layout,
-                                   Sized_relobj<32, big_endian>* object,
-                                   unsigned int data_shndx,
-                                   unsigned int sh_type,
-                                   const unsigned char* prelocs,
-                                   size_t reloc_count,
-                                   Output_section* output_section,
-                                   bool needs_special_offset_handling,
-                                   size_t local_symbol_count,
-                                   const unsigned char* plocal_symbols)
+bool
+Target_arm<big_endian>::reloc_uses_thumb_bit(unsigned int r_type)
 {
-  typedef typename Target_arm<big_endian>::Scan Scan;
-  if (sh_type == elfcpp::SHT_RELA)
+  switch (r_type)
     {
-      gold_error(_("%s: unsupported RELA reloc section"),
-                object->name().c_str());
-      return;
+    case elfcpp::R_ARM_PC24:
+    case elfcpp::R_ARM_ABS32:
+    case elfcpp::R_ARM_REL32:
+    case elfcpp::R_ARM_SBREL32:
+    case elfcpp::R_ARM_THM_CALL:
+    case elfcpp::R_ARM_GLOB_DAT:
+    case elfcpp::R_ARM_JUMP_SLOT:
+    case elfcpp::R_ARM_GOTOFF32:
+    case elfcpp::R_ARM_PLT32:
+    case elfcpp::R_ARM_CALL:
+    case elfcpp::R_ARM_JUMP24:
+    case elfcpp::R_ARM_THM_JUMP24:
+    case elfcpp::R_ARM_SBREL31:
+    case elfcpp::R_ARM_PREL31:
+    case elfcpp::R_ARM_MOVW_ABS_NC:
+    case elfcpp::R_ARM_MOVW_PREL_NC:
+    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
+    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
+    case elfcpp::R_ARM_THM_JUMP19:
+    case elfcpp::R_ARM_THM_ALU_PREL_11_0:
+    case elfcpp::R_ARM_ALU_PC_G0_NC:
+    case elfcpp::R_ARM_ALU_PC_G0:
+    case elfcpp::R_ARM_ALU_PC_G1_NC:
+    case elfcpp::R_ARM_ALU_PC_G1:
+    case elfcpp::R_ARM_ALU_PC_G2:
+    case elfcpp::R_ARM_ALU_SB_G0_NC:
+    case elfcpp::R_ARM_ALU_SB_G0:
+    case elfcpp::R_ARM_ALU_SB_G1_NC:
+    case elfcpp::R_ARM_ALU_SB_G1:
+    case elfcpp::R_ARM_ALU_SB_G2:
+    case elfcpp::R_ARM_MOVW_BREL_NC:
+    case elfcpp::R_ARM_MOVW_BREL:
+    case elfcpp::R_ARM_THM_MOVW_BREL_NC:
+    case elfcpp::R_ARM_THM_MOVW_BREL:
+      return true;
+    default:
+      return false;
     }
-
-  gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
-    options,
-    symtab,
-    layout,
-    this,
-    object,
-    data_shndx,
-    prelocs,
-    reloc_count,
-    output_section,
-    needs_special_offset_handling,
-    local_symbol_count,
-    plocal_symbols);
 }
 
-// Finalize the sections.
+// Stub-generation methods for Target_arm.
+
+// Make a new Arm_input_section object.
 
 template<bool big_endian>
-void
-Target_arm<big_endian>::do_finalize_sections(Layout* layout)
+Arm_input_section<big_endian>*
+Target_arm<big_endian>::new_arm_input_section(
+    Relobj* rel_obj,
+    unsigned int sec_shndx)
 {
-  // Fill in some more dynamic tags.
-  Output_data_dynamic* const odyn = layout->dynamic_data();
-  if (odyn != NULL)
-    {
-      if (this->got_plt_ != NULL)
-       odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
-
-      if (this->plt_ != NULL)
-       {
-         const Output_data* od = this->plt_->rel_plt();
-         odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
-         odyn->add_section_address(elfcpp::DT_JMPREL, od);
-         odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
-       }
-
-      if (this->rel_dyn_ != NULL)
-       {
-         const Output_data* od = this->rel_dyn_;
-         odyn->add_section_address(elfcpp::DT_REL, od);
-         odyn->add_section_size(elfcpp::DT_RELSZ, od);
-         odyn->add_constant(elfcpp::DT_RELENT,
-                            elfcpp::Elf_sizes<32>::rel_size);
-       }
+  Input_section_specifier iss(rel_obj, sec_shndx);
 
-      if (!parameters->options().shared())
-       {
-         // The value of the DT_DEBUG tag is filled in by the dynamic
-         // linker at run time, and used by the debugger.
-         odyn->add_constant(elfcpp::DT_DEBUG, 0);
-       }
-    }
+  Arm_input_section<big_endian>* arm_input_section =
+    new Arm_input_section<big_endian>(rel_obj, sec_shndx);
+  arm_input_section->init();
 
-  // Emit any relocs we saved in an attempt to avoid generating COPY
-  // relocs.
-  if (this->copy_relocs_.any_saved_relocs())
-    this->copy_relocs_.emit(this->rel_dyn_section(layout));
+  // Register new Arm_input_section in map for look-up.
+  std::pair<typename Arm_input_section_map::iterator, bool> ins =
+    this->arm_input_section_map_.insert(std::make_pair(iss, arm_input_section));
+
+  // Make sure that it we have not created another Arm_input_section
+  // for this input section already.
+  gold_assert(ins.second);
+
+  return arm_input_section; 
 }
 
-// Return whether a direct absolute static relocation needs to be applied.
-// In cases where Scan::local() or Scan::global() has created
-// a dynamic relocation other than R_ARM_RELATIVE, the addend
-// of the relocation is carried in the data, and we must not
-// apply the static relocation.
+// Find the Arm_input_section object corresponding to the SHNDX-th input
+// section of RELOBJ.
 
 template<bool big_endian>
-inline bool
-Target_arm<big_endian>::Relocate::should_apply_static_reloc(
-    const Sized_symbol<32>* gsym,
-    int ref_flags,
-    bool is_32bit,
-    Output_section* output_section)
+Arm_input_section<big_endian>*
+Target_arm<big_endian>::find_arm_input_section(
+    Relobj* rel_obj,
+    unsigned int sec_shndx) const
 {
-  // If the output section is not allocated, then we didn't call
-  // scan_relocs, we didn't create a dynamic reloc, and we must apply
-  // the reloc here.
-  if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
-      return true;
+  Input_section_specifier iss(rel_obj, sec_shndx);
+  typename Arm_input_section_map::const_iterator p =
+    this->arm_input_section_map_.find(iss);
+  return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
+}
 
-  // For local symbols, we will have created a non-RELATIVE dynamic
-  // relocation only if (a) the output is position independent,
-  // (b) the relocation is absolute (not pc- or segment-relative), and
-  // (c) the relocation is not 32 bits wide.
-  if (gsym == NULL)
-    return !(parameters->options().output_is_position_independent()
-            && (ref_flags & Symbol::ABSOLUTE_REF)
-            && !is_32bit);
+// Make a new stub table.
 
-  // For global symbols, we use the same helper routines used in the
-  // scan pass.  If we did not create a dynamic relocation, or if we
-  // created a RELATIVE dynamic relocation, we should apply the static
-  // relocation.
-  bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
-  bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
-                && gsym->can_use_relative_reloc(ref_flags
-                                                & Symbol::FUNCTION_CALL);
-  return !has_dyn || is_rel;
+template<bool big_endian>
+Stub_table<big_endian>*
+Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
+{
+  Stub_table<big_endian>* stubtable =
+    new Stub_table<big_endian>(owner);
+  this->stub_tables_.push_back(stubtable);
+
+  stubtable->set_address(owner->address() + owner->data_size());
+  stubtable->set_file_offset(owner->offset() + owner->data_size());
+  stubtable->finalize_data_size();
+
+  return stubtable;
 }
 
-// Perform a relocation.
+// Scan a relocation for stub generation.
 
 template<bool big_endian>
-inline bool
-Target_arm<big_endian>::Relocate::relocate(
-    const Relocate_info<32, big_endian>* /* relinfo */,
-    Target_arm* /* target */,
-    Output_section* /* output_section */,
-    size_t /* relnum */,
-    const elfcpp::Rel<32, big_endian>& /* rel */,
+void
+Target_arm<big_endian>::scan_reloc_for_stub(
+    const Relocate_info<32, big_endian>* relinfo,
     unsigned int r_type,
-    const Sized_symbol<32>* /* gsym */,
-    const Symbol_value<32>* /* psymval */,
-    unsigned char* /* view */,
-    elfcpp::Elf_types<32>::Elf_Addr /* address */,
-    section_size_type /* view_size */ )
+    const Sized_symbol<32>* gsym,
+    unsigned int r_sym,
+    const Symbol_value<32>* psymval,
+    elfcpp::Elf_types<32>::Elf_Swxword addend,
+    Arm_address address)
 {
+  typedef typename Target_arm<big_endian>::Relocate relocate;
+
+  const Arm_relobj<big_endian>* arm_relobj =
+    Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
+
+  bool target_is_thumb;
+  Symbol_value<32> symval;
+  if (gsym != NULL)
+    {
+      // This is a global symbol.  Determine if we use PLT and if the
+      // final target is THUMB.
+      if (gsym->use_plt_offset(relocate::reloc_is_non_pic(r_type)))
+       {
+         // This uses a PLT, change the symbol value.
+         symval.set_output_value(this->plt_section()->address()
+                                 + gsym->plt_offset());
+         psymval = &symval;
+         target_is_thumb = false;
+       }
+      else if (gsym->is_undefined())
+       // There is no need to generate a stub symbol is undefined.
+       return;
+      else
+       {
+         target_is_thumb =
+           ((gsym->type() == elfcpp::STT_ARM_TFUNC)
+            || (gsym->type() == elfcpp::STT_FUNC
+                && !gsym->is_undefined()
+                && ((psymval->value(arm_relobj, 0) & 1) != 0)));
+       }
+    }
+  else
+    {
+      // This is a local symbol.  Determine if the final target is THUMB.
+      target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
+    }
+
+  // Strip LSB if this points to a THUMB target.
+  if (target_is_thumb
+      && Target_arm<big_endian>::reloc_uses_thumb_bit(r_type)
+      && ((psymval->value(arm_relobj, 0) & 1) != 0))
+    {
+      Arm_address stripped_value =
+       psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
+      symval.set_output_value(stripped_value);
+      psymval = &symval;
+    } 
+
+  // Get the symbol value.
+  Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
+
+  // Owing to pipelining, the PC relative branches below actually skip
+  // two instructions when the branch offset is 0.
+  Arm_address destination;
   switch (r_type)
     {
-    case elfcpp::R_ARM_NONE:
+    case elfcpp::R_ARM_CALL:
+    case elfcpp::R_ARM_JUMP24:
+    case elfcpp::R_ARM_PLT32:
+      // ARM branches.
+      destination = value + addend + 8;
+      break;
+    case elfcpp::R_ARM_THM_CALL:
+    case elfcpp::R_ARM_THM_XPC22:
+    case elfcpp::R_ARM_THM_JUMP24:
+    case elfcpp::R_ARM_THM_JUMP19:
+      // THUMB branches.
+      destination = value + addend + 4;
       break;
-
     default:
       gold_unreachable();
     }
 
-  return true;
+  Stub_type stub_type =
+    Reloc_stub::stub_type_for_reloc(r_type, address, destination,
+                                   target_is_thumb);
+
+  // This reloc does not need a stub.
+  if (stub_type == arm_stub_none)
+    return;
+
+  // Try looking up an existing stub from a stub table.
+  Stub_table<big_endian>* stubtable = 
+    arm_relobj->stub_table(relinfo->data_shndx);
+  gold_assert(stubtable != NULL);
+   
+  // Locate stub by destination.
+  Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
+
+  // Create a stub if there is not one already
+  Reloc_stub* stub = stubtable->find_reloc_stub(stub_key);
+  if (stub == NULL)
+    {
+      // create a new stub and add it to stub table.
+      stub = this->stub_factory().make_reloc_stub(stub_type);
+      stubtable->add_reloc_stub(stub, stub_key);
+    }
+
+  // Record the destination address.
+  stub->set_destination_address(destination
+                               | (target_is_thumb ? 1 : 0));
 }
 
-// Relocate section data.
+// This function scans a relocation sections for stub generation.
+// The template parameter Relocate must be a class type which provides
+// a single function, relocate(), which implements the machine
+// specific part of a relocation.
+
+// BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
+// SHT_REL or SHT_RELA.
+
+// PRELOCS points to the relocation data.  RELOC_COUNT is the number
+// of relocs.  OUTPUT_SECTION is the output section.
+// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
+// mapped to output offsets.
+
+// VIEW is the section data, VIEW_ADDRESS is its memory address, and
+// VIEW_SIZE is the size.  These refer to the input section, unless
+// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
+// the output section.
 
 template<bool big_endian>
-void
-Target_arm<big_endian>::relocate_section(
+template<int sh_type>
+void inline
+Target_arm<big_endian>::scan_reloc_section_for_stubs(
     const Relocate_info<32, big_endian>* relinfo,
-    unsigned int sh_type,
     const unsigned char* prelocs,
     size_t reloc_count,
     Output_section* output_section,
     bool needs_special_offset_handling,
-    unsigned char* view,
-    elfcpp::Elf_types<32>::Elf_Addr address,
-    section_size_type view_size)
+    const unsigned char* view,
+    elfcpp::Elf_types<32>::Elf_Addr view_address,
+    section_size_type)
 {
-  typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
-  gold_assert(sh_type == elfcpp::SHT_REL);
+  typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
+  const int reloc_size =
+    Reloc_types<sh_type, 32, big_endian>::reloc_size;
 
-  gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
-                        Arm_relocate>(
-    relinfo,
-    this,
-    prelocs,
-    reloc_count,
-    output_section,
-    needs_special_offset_handling,
-    view,
-    address,
-    view_size);
-}
+  Arm_relobj<big_endian>* arm_object =
+    Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
+  unsigned int local_count = arm_object->local_symbol_count();
 
-// Return the size of a relocation while scanning during a relocatable
-// link.
+  Comdat_behavior comdat_behavior = CB_UNDETERMINED;
 
-template<bool big_endian>
-unsigned int
-Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
-    unsigned int r_type,
-    Relobj* object)
-{
-  r_type = get_real_reloc_type(r_type);
-  switch (r_type)
+  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
     {
-    case elfcpp::R_ARM_NONE:
-      return 0;
+      Reltype reloc(prelocs);
 
-    case elfcpp::R_ARM_ABS32:
-    case elfcpp::R_ARM_REL32:
-    case elfcpp::R_ARM_THM_CALL:
-    case elfcpp::R_ARM_GOTOFF32:
-    case elfcpp::R_ARM_BASE_PREL:
-    case elfcpp::R_ARM_GOT_BREL:
-    case elfcpp::R_ARM_PLT32:
-    case elfcpp::R_ARM_CALL:
-    case elfcpp::R_ARM_JUMP24:
-    case elfcpp::R_ARM_PREL31:
-      return 4;
+      typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
+      unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
+      unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
 
-    case elfcpp::R_ARM_TARGET1:
-      // This should have been mapped to another type already.
-      // Fall through.
-    case elfcpp::R_ARM_COPY:
-    case elfcpp::R_ARM_GLOB_DAT:
-    case elfcpp::R_ARM_JUMP_SLOT:
-    case elfcpp::R_ARM_RELATIVE:
-      // These are relocations which should only be seen by the
-      // dynamic linker, and should never be seen here.
-      gold_error(_("%s: unexpected reloc %u in object file"),
-                object->name().c_str(), r_type);
-      return 0;
+      r_type = this->get_real_reloc_type(r_type);
 
-    default:
-      object->error(_("unsupported reloc %u in object file"), r_type);
-      return 0;
+      // Only a few relocation types need stubs.
+      if ((r_type != elfcpp::R_ARM_CALL)
+         && (r_type != elfcpp::R_ARM_JUMP24)
+         && (r_type != elfcpp::R_ARM_PLT32)
+         && (r_type != elfcpp::R_ARM_THM_CALL)
+         && (r_type != elfcpp::R_ARM_THM_XPC22)
+         && (r_type != elfcpp::R_ARM_THM_JUMP24)
+         && (r_type != elfcpp::R_ARM_THM_JUMP19))
+       continue;
+
+      section_offset_type off =
+       convert_to_section_size_type(reloc.get_r_offset());
+
+      if (needs_special_offset_handling)
+       {
+         off = output_section->output_offset(relinfo->object,
+                                             relinfo->data_shndx,
+                                             off);
+         if (off == -1)
+           continue;
+       }
+
+      // Get the addend.
+      Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
+      elfcpp::Elf_types<32>::Elf_Swxword addend =
+       stub_addend_reader(r_type, view + off, reloc);
+
+      const Sized_symbol<32>* sym;
+
+      Symbol_value<32> symval;
+      const Symbol_value<32> *psymval;
+      if (r_sym < local_count)
+       {
+         sym = NULL;
+         psymval = arm_object->local_symbol(r_sym);
+
+          // If the local symbol belongs to a section we are discarding,
+          // and that section is a debug section, try to find the
+          // corresponding kept section and map this symbol to its
+          // counterpart in the kept section.  The symbol must not 
+          // correspond to a section we are folding.
+         bool is_ordinary;
+         unsigned int sec_shndx = psymval->input_shndx(&is_ordinary);
+         if (is_ordinary
+             && sec_shndx != elfcpp::SHN_UNDEF
+             && !arm_object->is_section_included(sec_shndx) 
+              && !(relinfo->symtab->is_section_folded(arm_object, sec_shndx)))
+           {
+             if (comdat_behavior == CB_UNDETERMINED)
+               {
+                 std::string name =
+                   arm_object->section_name(relinfo->data_shndx);
+                 comdat_behavior = get_comdat_behavior(name.c_str());
+               }
+             if (comdat_behavior == CB_PRETEND)
+               {
+                  bool found;
+                 typename elfcpp::Elf_types<32>::Elf_Addr value =
+                   arm_object->map_to_kept_section(sec_shndx, &found);
+                 if (found)
+                   symval.set_output_value(value + psymval->input_value());
+                  else
+                    symval.set_output_value(0);
+               }
+             else
+               {
+                  symval.set_output_value(0);
+               }
+             symval.set_no_output_symtab_entry();
+             psymval = &symval;
+           }
+       }
+      else
+       {
+         const Symbol* gsym = arm_object->global_symbol(r_sym);
+         gold_assert(gsym != NULL);
+         if (gsym->is_forwarder())
+           gsym = relinfo->symtab->resolve_forwards(gsym);
+
+         sym = static_cast<const Sized_symbol<32>*>(gsym);
+         if (sym->has_symtab_index())
+           symval.set_output_symtab_index(sym->symtab_index());
+         else
+           symval.set_no_output_symtab_entry();
+
+         // We need to compute the would-be final value of this global
+         // symbol.
+         const Symbol_table* symtab = relinfo->symtab;
+         const Sized_symbol<32>* sized_symbol =
+           symtab->get_sized_symbol<32>(gsym);
+         Symbol_table::Compute_final_value_status status;
+         Arm_address value =
+           symtab->compute_final_value<32>(sized_symbol, &status);
+
+         // Skip this if the symbol has not output section.
+         if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
+           continue;
+
+         symval.set_output_value(value);
+         psymval = &symval;
+       }
+
+      // If symbol is a section symbol, we don't know the actual type of
+      // destination.  Give up.
+      if (psymval->is_section_symbol())
+       continue;
+
+      this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
+                               addend, view_address + off);
     }
 }
 
-// Scan the relocs during a relocatable link.
+// Scan an input section for stub generation.
 
 template<bool big_endian>
 void
-Target_arm<big_endian>::scan_relocatable_relocs(
-    const General_options& options,
-    Symbol_table* symtab,
-    Layout* layout,
-    Sized_relobj<32, big_endian>* object,
-    unsigned int data_shndx,
+Target_arm<big_endian>::scan_section_for_stubs(
+    const Relocate_info<32, big_endian>* relinfo,
     unsigned int sh_type,
     const unsigned char* prelocs,
     size_t reloc_count,
     Output_section* output_section,
     bool needs_special_offset_handling,
-    size_t local_symbol_count,
-    const unsigned char* plocal_symbols,
-    Relocatable_relocs* rr)
+    const unsigned char* view,
+    Arm_address view_address,
+    section_size_type view_size)
 {
-  gold_assert(sh_type == elfcpp::SHT_REL);
+  if (sh_type == elfcpp::SHT_REL)
+    this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
+       relinfo,
+       prelocs,
+       reloc_count,
+       output_section,
+       needs_special_offset_handling,
+       view,
+       view_address,
+       view_size);
+  else if (sh_type == elfcpp::SHT_RELA)
+    // We do not support RELA type relocations yet.  This is provided for
+    // completeness.
+    this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
+       relinfo,
+       prelocs,
+       reloc_count,
+       output_section,
+       needs_special_offset_handling,
+       view,
+       view_address,
+       view_size);
+  else
+    gold_unreachable();
+}
 
-  typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
-    Relocatable_size_for_reloc> Scan_relocatable_relocs;
+// Group input sections for stub generation.
+//
+// We goup input sections in an output sections so that the total size,
+// including any padding space due to alignment is smaller than GROUP_SIZE
+// unless the only input section in group is bigger than GROUP_SIZE already.
+// Then an ARM stub table is created to follow the last input section
+// in group.  For each group an ARM stub table is created an is placed
+// after the last group.  If STUB_ALWATS_AFTER_BRANCH is false, we further
+// extend the group after the stub table.
 
-  gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
-      Scan_relocatable_relocs>(
-    options,
-    symtab,
-    layout,
-    object,
-    data_shndx,
-    prelocs,
-    reloc_count,
-    output_section,
-    needs_special_offset_handling,
-    local_symbol_count,
-    plocal_symbols,
-    rr);
+template<bool big_endian>
+void
+Target_arm<big_endian>::group_sections(
+    Layout* alayout,
+    section_size_type group_size,
+    bool stubs_always_after_branch)
+{
+  // Group input sections and insert stub table
+  Layout::Section_list section_list;
+  alayout->get_allocated_sections(&section_list);
+  for (Layout::Section_list::const_iterator p = section_list.begin();
+       p != section_list.end();
+       ++p)
+    {
+      Arm_output_section<big_endian>* output_section =
+       Arm_output_section<big_endian>::as_arm_output_section(*p);
+      output_section->group_sections(group_size, stubs_always_after_branch,
+                                    this);
+    }
 }
 
-// Relocate a section during a relocatable link.
+// Relaxation hook.  This is where we do stub generation.
+
+template<bool big_endian>
+bool
+Target_arm<big_endian>::do_relax(
+    int pass,
+    const Input_objects* input_objects,
+    Symbol_table* symtab,
+    Layout* alayout)
+{
+  // No need to generate stubs if this is a relocatable link.
+  gold_assert(!parameters->options().relocatable());
+
+  // If this is the first pass, we need to group input sections into
+  // stub groups.
+  if (pass == 1)
+    {
+      // Determine the stub group size.  The group size is the absolute
+      // value of the parameter --stub-group-size.  If --stub-group-size
+      // is passed a negative value, we restict stubs to be always after
+      // the stubbed branches.
+      int32_t stub_group_size_param =
+       parameters->options().stub_group_size();
+      bool stubs_always_after_branch = stub_group_size_param < 0;
+      section_size_type stub_group_size = abs(stub_group_size_param);
+
+      if (stub_group_size == 1)
+       {
+         // Default value.
+         // Thumb branch range is +-4MB has to be used as the default
+         // maximum size (a given section can contain both ARM and Thumb
+         // code, so the worst case has to be taken into account).
+         //
+         // This value is 24K less than that, which allows for 2025
+         // 12-byte stubs.  If we exceed that, then we will fail to link.
+         // The user will have to relink with an explicit group size
+         // option.
+         stub_group_size = 4170000;
+       }
+
+      group_sections(alayout, stub_group_size, stubs_always_after_branch);
+    }
+
+  // clear changed flags for all stub_tables
+  typedef typename Stub_table_list::iterator Stub_table_iterator;
+  for (Stub_table_iterator sp = this->stub_tables_.begin();
+       sp != this->stub_tables_.end();
+       ++sp)
+    (*sp)->set_has_been_changed(false);
+
+  // scan relocs for stubs
+  for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
+       op != input_objects->relobj_end();
+       ++op)
+    {
+      Arm_relobj<big_endian>* arm_relobj =
+       Arm_relobj<big_endian>::as_arm_relobj(*op);
+      arm_relobj->scan_sections_for_stubs(this, symtab, alayout);
+    }
+
+  bool any_stub_table_changed = false;
+  for (Stub_table_iterator sp = this->stub_tables_.begin();
+       (sp != this->stub_tables_.end()) && !any_stub_table_changed;
+       ++sp)
+    {
+      if ((*sp)->has_been_changed())
+       any_stub_table_changed = true;
+    }
+
+  return any_stub_table_changed;
+}
+
+// Relocate a stub.
 
 template<bool big_endian>
 void
-Target_arm<big_endian>::relocate_for_relocatable(
+Target_arm<big_endian>::relocate_stub(
+    Reloc_stub* stub,
     const Relocate_info<32, big_endian>* relinfo,
-    unsigned int sh_type,
-    const unsigned char* prelocs,
-    size_t reloc_count,
     Output_section* output_section,
-    off_t offset_in_output_section,
-    const Relocatable_relocs* rr,
     unsigned char* view,
-    elfcpp::Elf_types<32>::Elf_Addr view_address,
-    section_size_type view_size,
-    unsigned char* reloc_view,
-    section_size_type reloc_view_size)
+    Arm_address address,
+    section_size_type view_size)
 {
-  gold_assert(sh_type == elfcpp::SHT_REL);
-
-  gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
-    relinfo,
-    prelocs,
-    reloc_count,
-    output_section,
-    offset_in_output_section,
-    rr,
-    view,
-    view_address,
-    view_size,
-    reloc_view,
-    reloc_view_size);
+  Relocate relocate;
+  const Stub_template* stubtemplate = stub->stub_template();
+  for (size_t i = 0; i < stubtemplate->reloc_count(); i++)
+    {
+      size_t reloc_insn_index = stubtemplate->reloc_insn_index(i);
+      const Insn_template* insn = &stubtemplate->insns()[reloc_insn_index];
+
+      unsigned int r_type = insn->r_type();
+      section_size_type reloc_offset = stubtemplate->reloc_offset(i);
+      section_size_type reloc_size = insn->size();
+      gold_assert(reloc_offset + reloc_size <= view_size);
+
+      // This is the address of the stub destination.
+      Arm_address target = stub->reloc_target(i);
+      Symbol_value<32> symval;
+      symval.set_output_value(target);
+
+      // Synthesize a fake reloc just in case.  We don't have a symbol so
+      // we use 0.
+      unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
+      memset(reloc_buffer, 0, sizeof(reloc_buffer));
+      elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
+      reloc_write.put_r_offset(reloc_offset);
+      reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
+      elfcpp::Rel<32, big_endian> rel(reloc_buffer);
+
+      relocate.relocate(relinfo, this, output_section,
+                       this->fake_relnum_for_stubs, rel, r_type,
+                       NULL, &symval, view + reloc_offset,
+                       address + reloc_offset, reloc_size);
+    }
 }
 
-// Return the value to use for a dynamic symbol which requires special
-// treatment.  This is how we support equality comparisons of function
-// pointers across shared library boundaries, as described in the
-// processor specific ABI supplement.
+// Determine whether an object attribute tag takes an integer, a
+// string or both.
 
 template<bool big_endian>
-uint64_t
-Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
+int
+Target_arm<big_endian>::do_attribute_arg_type(int tag) const
 {
-  gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
-  return this->plt_section()->address() + gsym->plt_offset();
+  if (tag == Object_attribute::Tag_compatibility)
+    return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
+           | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
+  else if (tag == elfcpp::Tag_nodefaults)
+    return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
+           | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
+  else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
+    return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
+  else if (tag < 32)
+    return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
+  else
+    return ((tag & 1) != 0
+           ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
+           : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
 }
 
-// Map platform-specific relocs to real relocs
+// Reorder attributes.
 //
+// The ABI defines that Tag_conformance should be emitted first, and that
+// Tag_nodefaults should be second (if either is defined).  This sets those
+// two positions, and bumps up the position of all the remaining tags to
+// compensate.
+
 template<bool big_endian>
-unsigned int
-Target_arm<big_endian>::get_real_reloc_type (unsigned int r_type)
+int
+Target_arm<big_endian>::do_attributes_order(int num) const
 {
-  switch (r_type)
-    {
-    case elfcpp::R_ARM_TARGET1:
-      // This is either R_ARM_ABS32 or R_ARM_REL32;
-      return elfcpp::R_ARM_ABS32;
-
-    case elfcpp::R_ARM_TARGET2:
-      // This can be any reloc type but ususally is R_ARM_GOT_PREL
-      return elfcpp::R_ARM_GOT_PREL;
-
-    default:
-      return r_type;
-    }
+  // Reorder the known object attributes in output.  We want to move
+  // Tag_conformance to position 4 and Tag_conformance to position 5
+  // and shift eveything between 4 .. Tag_conformance - 1 to make room.
+  if (num == 4)
+    return elfcpp::Tag_conformance;
+  if (num == 5)
+    return elfcpp::Tag_nodefaults;
+  if ((num - 2) < elfcpp::Tag_nodefaults)
+    return num - 2;
+  if ((num - 1) < elfcpp::Tag_conformance)
+    return num - 1;
+  return num;
 }
 
-// The selector for arm object files.
-
 template<bool big_endian>
 class Target_selector_arm : public Target_selector
 {
This page took 0.178698 seconds and 4 git commands to generate.