From Craig Silverstein: Add support for compressing .debug_str section.
[deliverable/binutils-gdb.git] / gold / layout.cc
index 15843808e2b3835083b6b85411ea583eed1d5081..f7c1e40be3989946d90b48e825b881a7230bd45e 100644 (file)
@@ -1,77 +1,84 @@
 // layout.cc -- lay out output file sections for gold
 
+// Copyright 2006, 2007 Free Software Foundation, Inc.
+// Written by Ian Lance Taylor <iant@google.com>.
+
+// This file is part of gold.
+
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 3 of the License, or
+// (at your option) any later version.
+
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
+// MA 02110-1301, USA.
+
 #include "gold.h"
 
-#include <cassert>
 #include <cstring>
 #include <algorithm>
 #include <iostream>
 #include <utility>
 
+#include "parameters.h"
 #include "output.h"
+#include "symtab.h"
+#include "dynobj.h"
+#include "ehframe.h"
 #include "layout.h"
 
 namespace gold
 {
 
-// Layout_task methods.
-
-Layout_task::~Layout_task()
-{
-}
-
-// This task can be run when it is unblocked.
-
-Task::Is_runnable_type
-Layout_task::is_runnable(Workqueue*)
-{
-  if (this->this_blocker_->is_blocked())
-    return IS_BLOCKED;
-  return IS_RUNNABLE;
-}
-
-// We don't need to hold any locks for the duration of this task.  In
-// fact this task will be the only one running.
-
-Task_locker*
-Layout_task::locks(Workqueue*)
-{
-  return NULL;
-}
+// Layout_task_runner methods.
 
 // Lay out the sections.  This is called after all the input objects
 // have been read.
 
 void
-Layout_task::run(Workqueue*)
+Layout_task_runner::run(Workqueue* workqueue)
 {
-  Layout layout(this->options_);
-  layout.init();
-  for (Input_objects::Object_list::const_iterator p =
-        this->input_objects_->begin();
-       p != this->input_objects_->end();
-       ++p)
-    (*p)->layout(&layout);
-  layout.finalize(this->input_objects_);
+  off_t file_size = this->layout_->finalize(this->input_objects_,
+                                           this->symtab_);
+
+  // Now we know the final size of the output file and we know where
+  // each piece of information goes.
+  Output_file* of = new Output_file(this->options_,
+                                    this->input_objects_->target());
+  of->open(file_size);
+
+  // Queue up the final set of tasks.
+  gold::queue_final_tasks(this->options_, this->input_objects_,
+                         this->symtab_, this->layout_, workqueue, of);
 }
 
 // Layout methods.
 
 Layout::Layout(const General_options& options)
-  : options_(options), namepool_(), signatures_(),
+  : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
     section_name_map_(), segment_list_(), section_list_(),
-    data_list_()
-{
-}
-
-// Prepare for doing layout.
-
-void
-Layout::init()
+    unattached_section_list_(), special_output_list_(),
+    section_headers_(NULL), tls_segment_(NULL), symtab_section_(NULL),
+    dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
+    eh_frame_section_(NULL), output_file_size_(-1),
+    input_requires_executable_stack_(false),
+    input_with_gnu_stack_note_(false),
+    input_without_gnu_stack_note_(false)
 {
   // Make space for more than enough segments for a typical file.
   // This is just for efficiency--it's OK if we wind up needing more.
-  segment_list_.reserve(12);
+  this->segment_list_.reserve(12);
+
+  // We expect two unattached Output_data objects: the file header and
+  // the segment headers.
+  this->special_output_list_.reserve(2);
 }
 
 // Hash a key we use to look up an output section mapping.
@@ -79,14 +86,49 @@ Layout::init()
 size_t
 Layout::Hash_key::operator()(const Layout::Key& k) const
 {
- return reinterpret_cast<size_t>(k.first) + k.second.first + k.second.second;
+ return k.first + k.second.first + k.second.second;
+}
+
+// Return whether PREFIX is a prefix of STR.
+
+static inline bool
+is_prefix_of(const char* prefix, const char* str)
+{
+  return strncmp(prefix, str, strlen(prefix)) == 0;
+}
+
+// Returns whether the given section is in the list of
+// debug-sections-used-by-some-version-of-gdb.  Currently,
+// we've checked versions of gdb up to and including 6.7.1.
+
+static const char* gdb_sections[] =
+{ ".debug_abbrev",
+  // ".debug_aranges",   // not used by gdb as of 6.7.1
+  ".debug_frame",
+  ".debug_info",
+  ".debug_line",
+  ".debug_loc",
+  ".debug_macinfo",
+  // ".debug_pubnames",  // not used by gdb as of 6.7.1
+  ".debug_ranges",
+  ".debug_str",
+};
+
+static inline bool
+is_gdb_debug_section(const char* str)
+{
+  // We can do this faster: binary search or a hashtable.  But why bother?
+  for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
+    if (strcmp(str, gdb_sections[i]) == 0)
+      return true;
+  return false;
 }
 
 // Whether to include this section in the link.
 
 template<int size, bool big_endian>
 bool
-Layout::include_section(Object*, const char*,
+Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
                        const elfcpp::Shdr<size, big_endian>& shdr)
 {
   // Some section types are never linked.  Some are only linked when
@@ -105,144 +147,230 @@ Layout::include_section(Object*, const char*,
     case elfcpp::SHT_RELA:
     case elfcpp::SHT_REL:
     case elfcpp::SHT_GROUP:
-      return this->options_.is_relocatable();
+      return parameters->output_is_object();
+
+    case elfcpp::SHT_PROGBITS:
+      if (parameters->strip_debug()
+         && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
+       {
+         // Debugging sections can only be recognized by name.
+         if (is_prefix_of(".debug", name)
+             || is_prefix_of(".gnu.linkonce.wi.", name)
+             || is_prefix_of(".line", name)
+             || is_prefix_of(".stab", name))
+           return false;
+       }
+      if (parameters->strip_debug_gdb()
+         && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
+       {
+         // Debugging sections can only be recognized by name.
+         if (is_prefix_of(".debug", name)
+              && !is_gdb_debug_section(name))
+           return false;
+       }
+      return true;
 
     default:
-      // FIXME: Handle stripping debug sections here.
       return true;
     }
 }
 
-// Return the output section to use for input section NAME, with
-// header HEADER, from object OBJECT.  Set *OFF to the offset of this
-// input section without the output section.
+// Return an output section named NAME, or NULL if there is none.
 
-template<int size, bool big_endian>
 Output_section*
-Layout::layout(Object* object, const char* name,
-              const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
+Layout::find_output_section(const char* name) const
 {
-  if (!this->include_section(object, name, shdr))
-    return NULL;
-
-  // Unless we are doing a relocateable link, .gnu.linkonce sections
-  // are laid out as though they were named for the sections are
-  // placed into.
-  if (!this->options_.is_relocatable() && Layout::is_linkonce(name))
-    name = Layout::linkonce_output_name(name);
-
-  // FIXME: Handle SHF_OS_NONCONFORMING here.
+  for (Section_name_map::const_iterator p = this->section_name_map_.begin();
+       p != this->section_name_map_.end();
+       ++p)
+    if (strcmp(p->second->name(), name) == 0)
+      return p->second;
+  return NULL;
+}
 
-  // Canonicalize the section name.
-  name = this->namepool_.add(name);
+// Return an output segment of type TYPE, with segment flags SET set
+// and segment flags CLEAR clear.  Return NULL if there is none.
 
-  // Find the output section.  The output section is selected based on
-  // the section name, type, and flags.
+Output_segment*
+Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
+                           elfcpp::Elf_Word clear) const
+{
+  for (Segment_list::const_iterator p = this->segment_list_.begin();
+       p != this->segment_list_.end();
+       ++p)
+    if (static_cast<elfcpp::PT>((*p)->type()) == type
+       && ((*p)->flags() & set) == set
+       && ((*p)->flags() & clear) == 0)
+      return *p;
+  return NULL;
+}
 
-  // FIXME: If we want to do relaxation, we need to modify this
-  // algorithm.  We also build a list of input sections for each
-  // output section.  Then we relax all the input sections.  Then we
-  // walk down the list and adjust all the offsets.
+// Return the output section to use for section NAME with type TYPE
+// and section flags FLAGS.
 
-  elfcpp::Elf_Word type = shdr.get_sh_type();
-  elfcpp::Elf_Xword flags = shdr.get_sh_flags();
-  const Key key(name, std::make_pair(type, flags));
+Output_section*
+Layout::get_output_section(const char* name, Stringpool::Key name_key,
+                          elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
+{
+  // We should ignore some flags.
+  flags &= ~ (elfcpp::SHF_INFO_LINK
+             | elfcpp::SHF_LINK_ORDER
+             | elfcpp::SHF_GROUP
+             | elfcpp::SHF_MERGE
+             | elfcpp::SHF_STRINGS);
+
+  const Key key(name_key, std::make_pair(type, flags));
   const std::pair<Key, Output_section*> v(key, NULL);
   std::pair<Section_name_map::iterator, bool> ins(
     this->section_name_map_.insert(v));
 
-  Output_section* os;
   if (!ins.second)
-    os = ins.first->second;
+    return ins.first->second;
   else
     {
       // This is the first time we've seen this name/type/flags
       // combination.
-      os = this->make_output_section(name, type, flags);
+      Output_section* os = this->make_output_section(name, type, flags);
       ins.first->second = os;
+      return os;
     }
+}
+
+// Return the output section to use for input section SHNDX, with name
+// NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
+// index of a relocation section which applies to this section, or 0
+// if none, or -1U if more than one.  RELOC_TYPE is the type of the
+// relocation section if there is one.  Set *OFF to the offset of this
+// input section without the output section.  Return NULL if the
+// section should be discarded.  Set *OFF to -1 if the section
+// contents should not be written directly to the output file, but
+// will instead receive special handling.
+
+template<int size, bool big_endian>
+Output_section*
+Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
+              const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
+              unsigned int reloc_shndx, unsigned int, off_t* off)
+{
+  if (!this->include_section(object, name, shdr))
+    return NULL;
+
+  // If we are not doing a relocateable link, choose the name to use
+  // for the output section.
+  size_t len = strlen(name);
+  if (!parameters->output_is_object())
+    name = Layout::output_section_name(name, &len);
+
+  // FIXME: Handle SHF_OS_NONCONFORMING here.
+
+  // Canonicalize the section name.
+  Stringpool::Key name_key;
+  name = this->namepool_.add_prefix(name, len, &name_key);
+
+  // Find the output section.  The output section is selected based on
+  // the section name, type, and flags.
+  Output_section* os = this->get_output_section(name, name_key,
+                                               shdr.get_sh_type(),
+                                               shdr.get_sh_flags());
 
   // FIXME: Handle SHF_LINK_ORDER somewhere.
 
-  *off = os->add_input_section(object, name, shdr);
+  *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx);
 
   return os;
 }
 
-// Return whether SEG1 should be before SEG2 in the output file.  This
-// is based entirely on the segment type and flags.  When this is
-// called the segment addresses has normally not yet been set.
+// Special GNU handling of sections name .eh_frame.  They will
+// normally hold exception frame data as defined by the C++ ABI
+// (http://codesourcery.com/cxx-abi/).
 
-bool
-Layout::segment_precedes(const Output_segment* seg1,
-                        const Output_segment* seg2)
+template<int size, bool big_endian>
+Output_section*
+Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
+                       const unsigned char* symbols,
+                       off_t symbols_size,
+                       const unsigned char* symbol_names,
+                       off_t symbol_names_size,
+                       unsigned int shndx,
+                       const elfcpp::Shdr<size, big_endian>& shdr,
+                       unsigned int reloc_shndx, unsigned int reloc_type,
+                       off_t* off)
 {
-  elfcpp::Elf_Word type1 = seg1->type();
-  elfcpp::Elf_Word type2 = seg2->type();
+  gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
+  gold_assert(shdr.get_sh_flags() == elfcpp::SHF_ALLOC);
 
-  // The single PT_PHDR segment is required to precede any loadable
-  // segment.  We simply make it always first.
-  if (type1 == elfcpp::PT_PHDR)
-    {
-      assert(type2 != elfcpp::PT_PHDR);
-      return true;
-    }
-  if (type2 == elfcpp::PT_PHDR)
-    return false;
+  Stringpool::Key name_key;
+  const char* name = this->namepool_.add(".eh_frame", false, &name_key);
 
-  // The single PT_INTERP segment is required to precede any loadable
-  // segment.  We simply make it always second.
-  if (type1 == elfcpp::PT_INTERP)
-    {
-      assert(type2 != elfcpp::PT_INTERP);
-      return true;
-    }
-  if (type2 == elfcpp::PT_INTERP)
-    return false;
+  Output_section* os = this->get_output_section(name, name_key,
+                                               elfcpp::SHT_PROGBITS,
+                                               elfcpp::SHF_ALLOC);
 
-  // We then put PT_LOAD segments before any other segments.
-  if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
-    return true;
-  if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
-    return false;
+  if (this->eh_frame_section_ == NULL)
+    {
+      this->eh_frame_section_ = os;
+      this->eh_frame_data_ = new Eh_frame();
+      os->add_output_section_data(this->eh_frame_data_);
 
-  const elfcpp::Elf_Word flags1 = seg1->flags();
-  const elfcpp::Elf_Word flags2 = seg2->flags();
+      if (this->options_.create_eh_frame_hdr())
+       {
+         Stringpool::Key hdr_name_key;
+         const char* hdr_name = this->namepool_.add(".eh_frame_hdr",
+                                                     false,
+                                                    &hdr_name_key);
+         Output_section* hdr_os =
+           this->get_output_section(hdr_name, hdr_name_key,
+                                    elfcpp::SHT_PROGBITS,
+                                    elfcpp::SHF_ALLOC);
+
+         Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os, this->eh_frame_data_);
+         hdr_os->add_output_section_data(hdr_posd);
+
+         hdr_os->set_after_input_sections();
+
+         Output_segment* hdr_oseg =
+           new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
+         this->segment_list_.push_back(hdr_oseg);
+         hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
+
+         this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
+       }
+    }
 
-  // The order of non-PT_LOAD segments is unimportant.  We simply sort
-  // by the numeric segment type and flags values.  There should not
-  // be more than one segment with the same type and flags.
-  if (type1 != elfcpp::PT_LOAD)
+  gold_assert(this->eh_frame_section_ == os);
+
+  if (this->eh_frame_data_->add_ehframe_input_section(object,
+                                                     symbols,
+                                                     symbols_size,
+                                                     symbol_names,
+                                                     symbol_names_size,
+                                                     shndx,
+                                                     reloc_shndx,
+                                                     reloc_type))
+    *off = -1;
+  else
     {
-      if (type1 != type2)
-       return type1 < type2;
-      assert(flags1 != flags2);
-      return flags1 < flags2;
+      // We couldn't handle this .eh_frame section for some reason.
+      // Add it as a normal section.
+      *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx);
     }
 
-  // We sort PT_LOAD segments based on the flags.  Readonly segments
-  // come before writable segments.  Then executable segments come
-  // before non-executable segments.  Then the unlikely case of a
-  // non-readable segment comes before the normal case of a readable
-  // segment.  If there are multiple segments with the same type and
-  // flags, we require that the address be set, and we sort by
-  // virtual address and then physical address.
-  if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
-    return (flags1 & elfcpp::PF_W) == 0;
-  if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
-    return (flags1 & elfcpp::PF_X) != 0;
-  if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
-    return (flags1 & elfcpp::PF_R) == 0;
+  return os;
+}
 
-  uint64_t vaddr1 = seg1->vaddr();
-  uint64_t vaddr2 = seg2->vaddr();
-  if (vaddr1 != vaddr2)
-    return vaddr1 < vaddr2;
+// Add POSD to an output section using NAME, TYPE, and FLAGS.
 
-  uint64_t paddr1 = seg1->paddr();
-  uint64_t paddr2 = seg2->paddr();
-  assert(paddr1 != paddr2);
-  return paddr1 < paddr2;
+void
+Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
+                               elfcpp::Elf_Xword flags,
+                               Output_section_data* posd)
+{
+  // Canonicalize the name.
+  Stringpool::Key name_key;
+  name = this->namepool_.add(name, true, &name_key);
+
+  Output_section* os = this->get_output_section(name, name_key, type, flags);
+  os->add_output_section_data(posd);
 }
 
 // Map section flags to segment flags.
@@ -265,10 +393,11 @@ Output_section*
 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
                            elfcpp::Elf_Xword flags)
 {
-  Output_section* os = new Output_section(name, type, flags);
+  Output_section* os = new Output_section(this->options_, name, type, flags);
+  this->section_list_.push_back(os);
 
   if ((flags & elfcpp::SHF_ALLOC) == 0)
-    this->section_list_.push_back(os);
+    this->unattached_section_list_.push_back(os);
   else
     {
       // This output section goes into a PT_LOAD segment.
@@ -289,7 +418,7 @@ Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
          if ((*p)->type() == elfcpp::PT_LOAD
              && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
            {
-             (*p)->add_output_section(os);
+             (*p)->add_output_section(os, seg_flags);
              break;
            }
        }
@@ -299,7 +428,7 @@ Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
          Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
                                                    seg_flags);
          this->segment_list_.push_back(oseg);
-         oseg->add_output_section(os);
+         oseg->add_output_section(os, seg_flags);
        }
 
       // If we see a loadable SHT_NOTE section, we create a PT_NOTE
@@ -315,7 +444,7 @@ Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
                  && (((*p)->flags() & elfcpp::PF_W)
                      == (seg_flags & elfcpp::PF_W)))
                {
-                 (*p)->add_output_section(os);
+                 (*p)->add_output_section(os, seg_flags);
                  break;
                }
            }
@@ -325,46 +454,145 @@ Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
              Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
                                                        seg_flags);
              this->segment_list_.push_back(oseg);
-             oseg->add_output_section(os);
+             oseg->add_output_section(os, seg_flags);
            }
        }
 
       // If we see a loadable SHF_TLS section, we create a PT_TLS
-      // segment.
+      // segment.  There can only be one such segment.
       if ((flags & elfcpp::SHF_TLS) != 0)
        {
-         // See if we already have an equivalent PT_TLS segment.
-         for (p = this->segment_list_.begin();
-              p != segment_list_.end();
-              ++p)
-           {
-             if ((*p)->type() == elfcpp::PT_TLS
-                 && (((*p)->flags() & elfcpp::PF_W)
-                     == (seg_flags & elfcpp::PF_W)))
-               {
-                 (*p)->add_output_section(os);
-                 break;
-               }
-           }
-
-         if (p == this->segment_list_.end())
+         if (this->tls_segment_ == NULL)
            {
-             Output_segment* oseg = new Output_segment(elfcpp::PT_TLS,
-                                                       seg_flags);
-             this->segment_list_.push_back(oseg);
-             oseg->add_output_section(os);
+             this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
+                                                     seg_flags);
+             this->segment_list_.push_back(this->tls_segment_);
            }
+         this->tls_segment_->add_output_section(os, seg_flags);
        }
     }
 
   return os;
 }
 
-// Create the sections for the symbol table.
+// Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
+// is whether we saw a .note.GNU-stack section in the object file.
+// GNU_STACK_FLAGS is the section flags.  The flags give the
+// protection required for stack memory.  We record this in an
+// executable as a PT_GNU_STACK segment.  If an object file does not
+// have a .note.GNU-stack segment, we must assume that it is an old
+// object.  On some targets that will force an executable stack.
+
+void
+Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
+{
+  if (!seen_gnu_stack)
+    this->input_without_gnu_stack_note_ = true;
+  else
+    {
+      this->input_with_gnu_stack_note_ = true;
+      if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
+       this->input_requires_executable_stack_ = true;
+    }
+}
+
+// Create the dynamic sections which are needed before we read the
+// relocs.
+
+void
+Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
+                                       Symbol_table* symtab)
+{
+  if (parameters->doing_static_link())
+    return;
+
+  const char* dynamic_name = this->namepool_.add(".dynamic", false, NULL);
+  this->dynamic_section_ = this->make_output_section(dynamic_name,
+                                                    elfcpp::SHT_DYNAMIC,
+                                                    (elfcpp::SHF_ALLOC
+                                                     | elfcpp::SHF_WRITE));
+
+  symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
+                               this->dynamic_section_, 0, 0,
+                               elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
+                               elfcpp::STV_HIDDEN, 0, false, false);
+
+  this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
+
+  this->dynamic_section_->add_output_section_data(this->dynamic_data_);
+}
+
+// For each output section whose name can be represented as C symbol,
+// define __start and __stop symbols for the section.  This is a GNU
+// extension.
 
 void
-Layout::create_symtab_sections()
+Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
+{
+  for (Section_list::const_iterator p = this->section_list_.begin();
+       p != this->section_list_.end();
+       ++p)
+    {
+      const char* const name = (*p)->name();
+      if (name[strspn(name,
+                     ("0123456789"
+                      "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
+                      "abcdefghijklmnopqrstuvwxyz"
+                      "_"))]
+         == '\0')
+       {
+         const std::string name_string(name);
+         const std::string start_name("__start_" + name_string);
+         const std::string stop_name("__stop_" + name_string);
+
+         symtab->define_in_output_data(target,
+                                       start_name.c_str(),
+                                       NULL, // version
+                                       *p,
+                                       0, // value
+                                       0, // symsize
+                                       elfcpp::STT_NOTYPE,
+                                       elfcpp::STB_GLOBAL,
+                                       elfcpp::STV_DEFAULT,
+                                       0, // nonvis
+                                       false, // offset_is_from_end
+                                       false); // only_if_ref
+
+         symtab->define_in_output_data(target,
+                                       stop_name.c_str(),
+                                       NULL, // version
+                                       *p,
+                                       0, // value
+                                       0, // symsize
+                                       elfcpp::STT_NOTYPE,
+                                       elfcpp::STB_GLOBAL,
+                                       elfcpp::STV_DEFAULT,
+                                       0, // nonvis
+                                       true, // offset_is_from_end
+                                       false); // only_if_ref
+       }
+    }
+}
+
+// Find the first read-only PT_LOAD segment, creating one if
+// necessary.
+
+Output_segment*
+Layout::find_first_load_seg()
 {
+  for (Segment_list::const_iterator p = this->segment_list_.begin();
+       p != this->segment_list_.end();
+       ++p)
+    {
+      if ((*p)->type() == elfcpp::PT_LOAD
+         && ((*p)->flags() & elfcpp::PF_R) != 0
+         && ((*p)->flags() & elfcpp::PF_W) == 0)
+       return *p;
+    }
+
+  Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
+  this->segment_list_.push_back(load_seg);
+  return load_seg;
 }
 
 // Finalize the layout.  When this is called, we have created all the
@@ -383,13 +611,13 @@ Layout::create_symtab_sections()
 // 4) Determine the final file offset of all the SHF_ALLOC output
 // sections.
 
-// 5) Finalize the symbol table: set symbol values to their final
+// 5) Create the symbol table sections and the section name table
+// section.
+
+// 6) Finalize the symbol table: set symbol values to their final
 // value and make a final determination of which symbols are going
 // into the output symbol table.
 
-// 6) Create the symbol table sections and the section name table
-// section.
-
 // 7) Create the section table header.
 
 // 8) Determine the final file offset of all the output sections which
@@ -397,90 +625,1190 @@ Layout::create_symtab_sections()
 
 // 9) Finalize the ELF file header.
 
-void
-Layout::finalize(const Input_objects* input_objects)
+// This function returns the size of the output file.
+
+off_t
+Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
 {
-  if (input_objects->any_dynamic())
+  Target* const target = input_objects->target();
+
+  target->finalize_sections(this);
+
+  this->create_gold_note();
+  this->create_executable_stack_info(target);
+
+  Output_segment* phdr_seg = NULL;
+  if (!parameters->doing_static_link())
     {
-      // If there are any dynamic objects in the link, then we need
-      // some additional segments: PT_PHDRS, PT_INTERP, and
-      // PT_DYNAMIC.  We also need to finalize the dynamic symbol
-      // table and create the dynamic hash table.
-      abort();
+      // There was a dynamic object in the link.  We need to create
+      // some information for the dynamic linker.
+
+      // Create the PT_PHDR segment which will hold the program
+      // headers.
+      phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
+      this->segment_list_.push_back(phdr_seg);
+
+      // Create the dynamic symbol table, including the hash table.
+      Output_section* dynstr;
+      std::vector<Symbol*> dynamic_symbols;
+      unsigned int local_dynamic_count;
+      Versions versions;
+      this->create_dynamic_symtab(target, symtab, &dynstr,
+                                 &local_dynamic_count, &dynamic_symbols,
+                                 &versions);
+
+      // Create the .interp section to hold the name of the
+      // interpreter, and put it in a PT_INTERP segment.
+      if (!parameters->output_is_shared())
+        this->create_interp(target);
+
+      // Finish the .dynamic section to hold the dynamic data, and put
+      // it in a PT_DYNAMIC segment.
+      this->finish_dynamic_section(input_objects, symtab);
+
+      // We should have added everything we need to the dynamic string
+      // table.
+      this->dynpool_.set_string_offsets();
+
+      // Create the version sections.  We can't do this until the
+      // dynamic string table is complete.
+      this->create_version_sections(&versions, symtab, local_dynamic_count,
+                                   dynamic_symbols, dynstr);
     }
 
   // FIXME: Handle PT_GNU_STACK.
 
-  std::sort(this->segment_list_.begin(), this->segment_list_.end(),
-           Layout::Compare_segments());
+  Output_segment* load_seg = this->find_first_load_seg();
 
+  // Lay out the segment headers.
   Output_segment_headers* segment_headers;
   segment_headers = new Output_segment_headers(this->segment_list_);
-}
+  load_seg->add_initial_output_data(segment_headers);
+  this->special_output_list_.push_back(segment_headers);
+  if (phdr_seg != NULL)
+    phdr_seg->add_initial_output_data(segment_headers);
 
-// The mapping of .gnu.linkonce section names to real section names.
+  // Lay out the file header.
+  Output_file_header* file_header;
+  file_header = new Output_file_header(target, symtab, segment_headers);
+  load_seg->add_initial_output_data(file_header);
+  this->special_output_list_.push_back(file_header);
 
-#define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t }
-const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
-{
-  MAPPING_INIT("d.rel.ro", ".data.rel.ro"),    // Must be before "d".
-  MAPPING_INIT("t", ".text"),
-  MAPPING_INIT("r", ".rodata"),
-  MAPPING_INIT("d", ".data"),
-  MAPPING_INIT("b", ".bss"),
-  MAPPING_INIT("s", ".sdata"),
-  MAPPING_INIT("sb", ".sbss"),
-  MAPPING_INIT("s2", ".sdata2"),
-  MAPPING_INIT("sb2", ".sbss2"),
-  MAPPING_INIT("wi", ".debug_info"),
-  MAPPING_INIT("td", ".tdata"),
-  MAPPING_INIT("tb", ".tbss"),
-  MAPPING_INIT("lr", ".lrodata"),
-  MAPPING_INIT("l", ".ldata"),
-  MAPPING_INIT("lb", ".lbss"),
-};
-#undef MAPPING_INIT
+  // We set the output section indexes in set_segment_offsets and
+  // set_section_indexes.
+  unsigned int shndx = 1;
 
-const int Layout::linkonce_mapping_count =
-  sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
+  // Set the file offsets of all the segments, and all the sections
+  // they contain.
+  off_t off = this->set_segment_offsets(target, load_seg, &shndx);
 
-// Return the name of the output section to use for a .gnu.linkonce
-// section.  This is based on the default ELF linker script of the old
-// GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
-// to ".text".
+  // Create the symbol table sections.
+  this->create_symtab_sections(input_objects, symtab, &off);
 
-const char*
-Layout::linkonce_output_name(const char* name)
-{
-  const char* s = name + sizeof(".gnu.linkonce") - 1;
-  if (*s != '.')
-    return name;
-  ++s;
-  const Linkonce_mapping* plm = linkonce_mapping;
-  for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
-    {
-      if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
-       return plm->to;
-    }
-  return name;
-}
+  // Create the .shstrtab section.
+  Output_section* shstrtab_section = this->create_shstrtab();
 
-// Record the signature of a comdat section, and return whether to
-// include it in the link.  If GROUP is true, this is a regular
-// section group.  If GROUP is false, this is a group signature
-// derived from the name of a linkonce section.  We want linkonce
-// signatures and group signatures to block each other, but we don't
-// want a linkonce signature to block another linkonce signature.
+  // Set the file offsets of all the non-data sections which don't
+  // have to wait for the input sections.
+  off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
 
-bool
-Layout::add_comdat(const char* signature, bool group)
-{
-  std::string sig(signature);
-  std::pair<Signatures::iterator, bool> ins(
-    this->signatures_.insert(std::make_pair(signature, group)));
+  // Now that all sections have been created, set the section indexes.
+  shndx = this->set_section_indexes(shndx);
 
-  if (ins.second)
-    {
+  // Create the section table header.
+  this->create_shdrs(&off);
+
+  file_header->set_section_info(this->section_headers_, shstrtab_section);
+
+  // Now we know exactly where everything goes in the output file
+  // (except for non-allocated sections which require postprocessing).
+  Output_data::layout_complete();
+
+  this->output_file_size_ = off;
+
+  return off;
+}
+
+// Create a .note section for an executable or shared library.  This
+// records the version of gold used to create the binary.
+
+void
+Layout::create_gold_note()
+{
+  if (parameters->output_is_object())
+    return;
+
+  // Authorities all agree that the values in a .note field should
+  // be aligned on 4-byte boundaries for 32-bit binaries.  However,
+  // they differ on what the alignment is for 64-bit binaries.
+  // The GABI says unambiguously they take 8-byte alignment:
+  //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
+  // Other documentation says alignment should always be 4 bytes:
+  //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
+  // GNU ld and GNU readelf both support the latter (at least as of
+  // version 2.16.91), and glibc always generates the latter for
+  // .note.ABI-tag (as of version 1.6), so that's the one we go with
+  // here.
+#ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
+  const int size = parameters->get_size();
+#else
+  const int size = 32;
+#endif
+
+  // The contents of the .note section.
+  const char* name = "GNU";
+  std::string desc(std::string("gold ") + gold::get_version_string());
+  size_t namesz = strlen(name) + 1;
+  size_t aligned_namesz = align_address(namesz, size / 8);
+  size_t descsz = desc.length() + 1;
+  size_t aligned_descsz = align_address(descsz, size / 8);
+  const int note_type = 4;
+
+  size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
+
+  unsigned char buffer[128];
+  gold_assert(sizeof buffer >= notesz);
+  memset(buffer, 0, notesz);
+
+  bool is_big_endian = parameters->is_big_endian();
+
+  if (size == 32)
+    {
+      if (!is_big_endian)
+       {
+         elfcpp::Swap<32, false>::writeval(buffer, namesz);
+         elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
+         elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
+       }
+      else
+       {
+         elfcpp::Swap<32, true>::writeval(buffer, namesz);
+         elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
+         elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
+       }
+    }
+  else if (size == 64)
+    {
+      if (!is_big_endian)
+       {
+         elfcpp::Swap<64, false>::writeval(buffer, namesz);
+         elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
+         elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
+       }
+      else
+       {
+         elfcpp::Swap<64, true>::writeval(buffer, namesz);
+         elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
+         elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
+       }
+    }
+  else
+    gold_unreachable();
+
+  memcpy(buffer + 3 * (size / 8), name, namesz);
+  memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
+
+  const char* note_name = this->namepool_.add(".note", false, NULL);
+  Output_section* os = this->make_output_section(note_name,
+                                                elfcpp::SHT_NOTE,
+                                                0);
+  Output_section_data* posd = new Output_data_const(buffer, notesz,
+                                                   size / 8);
+  os->add_output_section_data(posd);
+}
+
+// Record whether the stack should be executable.  This can be set
+// from the command line using the -z execstack or -z noexecstack
+// options.  Otherwise, if any input file has a .note.GNU-stack
+// section with the SHF_EXECINSTR flag set, the stack should be
+// executable.  Otherwise, if at least one input file a
+// .note.GNU-stack section, and some input file has no .note.GNU-stack
+// section, we use the target default for whether the stack should be
+// executable.  Otherwise, we don't generate a stack note.  When
+// generating a object file, we create a .note.GNU-stack section with
+// the appropriate marking.  When generating an executable or shared
+// library, we create a PT_GNU_STACK segment.
+
+void
+Layout::create_executable_stack_info(const Target* target)
+{
+  bool is_stack_executable;
+  if (this->options_.is_execstack_set())
+    is_stack_executable = this->options_.is_stack_executable();
+  else if (!this->input_with_gnu_stack_note_)
+    return;
+  else
+    {
+      if (this->input_requires_executable_stack_)
+       is_stack_executable = true;
+      else if (this->input_without_gnu_stack_note_)
+       is_stack_executable = target->is_default_stack_executable();
+      else
+       is_stack_executable = false;
+    }
+
+  if (parameters->output_is_object())
+    {
+      const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
+      elfcpp::Elf_Xword flags = 0;
+      if (is_stack_executable)
+       flags |= elfcpp::SHF_EXECINSTR;
+      this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
+    }
+  else
+    {
+      int flags = elfcpp::PF_R | elfcpp::PF_W;
+      if (is_stack_executable)
+       flags |= elfcpp::PF_X;
+      Output_segment* oseg = new Output_segment(elfcpp::PT_GNU_STACK, flags);
+      this->segment_list_.push_back(oseg);
+    }
+}
+
+// Return whether SEG1 should be before SEG2 in the output file.  This
+// is based entirely on the segment type and flags.  When this is
+// called the segment addresses has normally not yet been set.
+
+bool
+Layout::segment_precedes(const Output_segment* seg1,
+                        const Output_segment* seg2)
+{
+  elfcpp::Elf_Word type1 = seg1->type();
+  elfcpp::Elf_Word type2 = seg2->type();
+
+  // The single PT_PHDR segment is required to precede any loadable
+  // segment.  We simply make it always first.
+  if (type1 == elfcpp::PT_PHDR)
+    {
+      gold_assert(type2 != elfcpp::PT_PHDR);
+      return true;
+    }
+  if (type2 == elfcpp::PT_PHDR)
+    return false;
+
+  // The single PT_INTERP segment is required to precede any loadable
+  // segment.  We simply make it always second.
+  if (type1 == elfcpp::PT_INTERP)
+    {
+      gold_assert(type2 != elfcpp::PT_INTERP);
+      return true;
+    }
+  if (type2 == elfcpp::PT_INTERP)
+    return false;
+
+  // We then put PT_LOAD segments before any other segments.
+  if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
+    return true;
+  if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
+    return false;
+
+  // We put the PT_TLS segment last, because that is where the dynamic
+  // linker expects to find it (this is just for efficiency; other
+  // positions would also work correctly).
+  if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
+    return false;
+  if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
+    return true;
+
+  const elfcpp::Elf_Word flags1 = seg1->flags();
+  const elfcpp::Elf_Word flags2 = seg2->flags();
+
+  // The order of non-PT_LOAD segments is unimportant.  We simply sort
+  // by the numeric segment type and flags values.  There should not
+  // be more than one segment with the same type and flags.
+  if (type1 != elfcpp::PT_LOAD)
+    {
+      if (type1 != type2)
+       return type1 < type2;
+      gold_assert(flags1 != flags2);
+      return flags1 < flags2;
+    }
+
+  // We sort PT_LOAD segments based on the flags.  Readonly segments
+  // come before writable segments.  Then executable segments come
+  // before non-executable segments.  Then the unlikely case of a
+  // non-readable segment comes before the normal case of a readable
+  // segment.  If there are multiple segments with the same type and
+  // flags, we require that the address be set, and we sort by
+  // virtual address and then physical address.
+  if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
+    return (flags1 & elfcpp::PF_W) == 0;
+  if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
+    return (flags1 & elfcpp::PF_X) != 0;
+  if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
+    return (flags1 & elfcpp::PF_R) == 0;
+
+  uint64_t vaddr1 = seg1->vaddr();
+  uint64_t vaddr2 = seg2->vaddr();
+  if (vaddr1 != vaddr2)
+    return vaddr1 < vaddr2;
+
+  uint64_t paddr1 = seg1->paddr();
+  uint64_t paddr2 = seg2->paddr();
+  gold_assert(paddr1 != paddr2);
+  return paddr1 < paddr2;
+}
+
+// Set the file offsets of all the segments, and all the sections they
+// contain.  They have all been created.  LOAD_SEG must be be laid out
+// first.  Return the offset of the data to follow.
+
+off_t
+Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
+                           unsigned int *pshndx)
+{
+  // Sort them into the final order.
+  std::sort(this->segment_list_.begin(), this->segment_list_.end(),
+           Layout::Compare_segments());
+
+  // Find the PT_LOAD segments, and set their addresses and offsets
+  // and their section's addresses and offsets.
+  uint64_t addr;
+  if (options_.user_set_text_segment_address())
+    addr = options_.text_segment_address();
+  else
+    addr = target->default_text_segment_address();
+  off_t off = 0;
+  bool was_readonly = false;
+  for (Segment_list::iterator p = this->segment_list_.begin();
+       p != this->segment_list_.end();
+       ++p)
+    {
+      if ((*p)->type() == elfcpp::PT_LOAD)
+       {
+         if (load_seg != NULL && load_seg != *p)
+           gold_unreachable();
+         load_seg = NULL;
+
+         // If the last segment was readonly, and this one is not,
+         // then skip the address forward one page, maintaining the
+         // same position within the page.  This lets us store both
+         // segments overlapping on a single page in the file, but
+         // the loader will put them on different pages in memory.
+
+         uint64_t orig_addr = addr;
+         uint64_t orig_off = off;
+
+         uint64_t aligned_addr = addr;
+         uint64_t abi_pagesize = target->abi_pagesize();
+
+          // FIXME: This should depend on the -n and -N options.
+          (*p)->set_minimum_addralign(target->common_pagesize());
+
+         if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
+           {
+             uint64_t align = (*p)->addralign();
+
+             addr = align_address(addr, align);
+             aligned_addr = addr;
+             if ((addr & (abi_pagesize - 1)) != 0)
+               addr = addr + abi_pagesize;
+           }
+
+         unsigned int shndx_hold = *pshndx;
+         off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
+         uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
+
+         // Now that we know the size of this segment, we may be able
+         // to save a page in memory, at the cost of wasting some
+         // file space, by instead aligning to the start of a new
+         // page.  Here we use the real machine page size rather than
+         // the ABI mandated page size.
+
+         if (aligned_addr != addr)
+           {
+             uint64_t common_pagesize = target->common_pagesize();
+             uint64_t first_off = (common_pagesize
+                                   - (aligned_addr
+                                      & (common_pagesize - 1)));
+             uint64_t last_off = new_addr & (common_pagesize - 1);
+             if (first_off > 0
+                 && last_off > 0
+                 && ((aligned_addr & ~ (common_pagesize - 1))
+                     != (new_addr & ~ (common_pagesize - 1)))
+                 && first_off + last_off <= common_pagesize)
+               {
+                 *pshndx = shndx_hold;
+                 addr = align_address(aligned_addr, common_pagesize);
+                 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
+                 new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
+               }
+           }
+
+         addr = new_addr;
+
+         if (((*p)->flags() & elfcpp::PF_W) == 0)
+           was_readonly = true;
+       }
+    }
+
+  // Handle the non-PT_LOAD segments, setting their offsets from their
+  // section's offsets.
+  for (Segment_list::iterator p = this->segment_list_.begin();
+       p != this->segment_list_.end();
+       ++p)
+    {
+      if ((*p)->type() != elfcpp::PT_LOAD)
+       (*p)->set_offset();
+    }
+
+  return off;
+}
+
+// Set the file offset of all the sections not associated with a
+// segment.
+
+off_t
+Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
+{
+  for (Section_list::iterator p = this->unattached_section_list_.begin();
+       p != this->unattached_section_list_.end();
+       ++p)
+    {
+      // The symtab section is handled in create_symtab_sections.
+      if (*p == this->symtab_section_)
+       continue;
+
+      if (pass == BEFORE_INPUT_SECTIONS_PASS
+          && (*p)->after_input_sections())
+        continue;
+      else if (pass == AFTER_INPUT_SECTIONS_PASS
+               && (!(*p)->after_input_sections()
+                   || (*p)->type() == elfcpp::SHT_STRTAB))
+        continue;
+      else if (pass == STRTAB_AFTER_INPUT_SECTIONS_PASS
+               && (!(*p)->after_input_sections()
+                   || (*p)->type() != elfcpp::SHT_STRTAB))
+        continue;
+
+      off = align_address(off, (*p)->addralign());
+      (*p)->set_file_offset(off);
+      (*p)->finalize_data_size();
+      off += (*p)->data_size();
+    }
+  return off;
+}
+
+// Allow any section not associated with a segment to change its
+// output section name at the last minute.
+
+void
+Layout::modify_section_names()
+{
+  for (Section_list::iterator p = this->unattached_section_list_.begin();
+       p != this->unattached_section_list_.end();
+       ++p)
+    if ((*p)->maybe_modify_output_section_name())
+      this->namepool_.add((*p)->name(), true, NULL);
+}
+
+// Set the section indexes of all the sections not associated with a
+// segment.
+
+unsigned int
+Layout::set_section_indexes(unsigned int shndx)
+{
+  for (Section_list::iterator p = this->unattached_section_list_.begin();
+       p != this->unattached_section_list_.end();
+       ++p)
+    {
+      (*p)->set_out_shndx(shndx);
+      ++shndx;
+    }
+  return shndx;
+}
+
+// Create the symbol table sections.  Here we also set the final
+// values of the symbols.  At this point all the loadable sections are
+// fully laid out.
+
+void
+Layout::create_symtab_sections(const Input_objects* input_objects,
+                              Symbol_table* symtab,
+                              off_t* poff)
+{
+  int symsize;
+  unsigned int align;
+  if (parameters->get_size() == 32)
+    {
+      symsize = elfcpp::Elf_sizes<32>::sym_size;
+      align = 4;
+    }
+  else if (parameters->get_size() == 64)
+    {
+      symsize = elfcpp::Elf_sizes<64>::sym_size;
+      align = 8;
+    }
+  else
+    gold_unreachable();
+
+  off_t off = *poff;
+  off = align_address(off, align);
+  off_t startoff = off;
+
+  // Save space for the dummy symbol at the start of the section.  We
+  // never bother to write this out--it will just be left as zero.
+  off += symsize;
+  unsigned int local_symbol_index = 1;
+
+  // Add STT_SECTION symbols for each Output section which needs one.
+  for (Section_list::iterator p = this->section_list_.begin();
+       p != this->section_list_.end();
+       ++p)
+    {
+      if (!(*p)->needs_symtab_index())
+       (*p)->set_symtab_index(-1U);
+      else
+       {
+         (*p)->set_symtab_index(local_symbol_index);
+         ++local_symbol_index;
+         off += symsize;
+       }
+    }
+
+  for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
+       p != input_objects->relobj_end();
+       ++p)
+    {
+      Task_lock_obj<Object> tlo(**p);
+      unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
+                                                       off,
+                                                       &this->sympool_);
+      off += (index - local_symbol_index) * symsize;
+      local_symbol_index = index;
+    }
+
+  unsigned int local_symcount = local_symbol_index;
+  gold_assert(local_symcount * symsize == off - startoff);
+
+  off_t dynoff;
+  size_t dyn_global_index;
+  size_t dyncount;
+  if (this->dynsym_section_ == NULL)
+    {
+      dynoff = 0;
+      dyn_global_index = 0;
+      dyncount = 0;
+    }
+  else
+    {
+      dyn_global_index = this->dynsym_section_->info();
+      off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
+      dynoff = this->dynsym_section_->offset() + locsize;
+      dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
+      gold_assert(static_cast<off_t>(dyncount * symsize)
+                 == this->dynsym_section_->data_size() - locsize);
+    }
+
+  off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
+                        dyncount, &this->sympool_);
+
+  if (!parameters->strip_all())
+    {
+      this->sympool_.set_string_offsets();
+
+      const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
+      Output_section* osymtab = this->make_output_section(symtab_name,
+                                                         elfcpp::SHT_SYMTAB,
+                                                         0);
+      this->symtab_section_ = osymtab;
+
+      Output_section_data* pos = new Output_data_fixed_space(off - startoff,
+                                                            align);
+      osymtab->add_output_section_data(pos);
+
+      const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
+      Output_section* ostrtab = this->make_output_section(strtab_name,
+                                                         elfcpp::SHT_STRTAB,
+                                                         0);
+
+      Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
+      ostrtab->add_output_section_data(pstr);
+
+      osymtab->set_file_offset(startoff);
+      osymtab->finalize_data_size();
+      osymtab->set_link_section(ostrtab);
+      osymtab->set_info(local_symcount);
+      osymtab->set_entsize(symsize);
+
+      *poff = off;
+    }
+}
+
+// Create the .shstrtab section, which holds the names of the
+// sections.  At the time this is called, we have created all the
+// output sections except .shstrtab itself.
+
+Output_section*
+Layout::create_shstrtab()
+{
+  // FIXME: We don't need to create a .shstrtab section if we are
+  // stripping everything.
+
+  const char* name = this->namepool_.add(".shstrtab", false, NULL);
+
+  Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
+
+  // We can't write out this section until we've set all the section
+  // names, and we don't set the names of compressed output sections
+  // until relocations are complete.
+  os->set_after_input_sections();
+
+  Output_section_data* posd = new Output_data_strtab(&this->namepool_);
+  os->add_output_section_data(posd);
+
+  return os;
+}
+
+// Create the section headers.  SIZE is 32 or 64.  OFF is the file
+// offset.
+
+void
+Layout::create_shdrs(off_t* poff)
+{
+  Output_section_headers* oshdrs;
+  oshdrs = new Output_section_headers(this,
+                                     &this->segment_list_,
+                                     &this->unattached_section_list_,
+                                     &this->namepool_);
+  off_t off = align_address(*poff, oshdrs->addralign());
+  oshdrs->set_address_and_file_offset(0, off);
+  off += oshdrs->data_size();
+  *poff = off;
+  this->section_headers_ = oshdrs;
+}
+
+// Create the dynamic symbol table.
+
+void
+Layout::create_dynamic_symtab(const Target* target, Symbol_table* symtab,
+                             Output_section **pdynstr,
+                             unsigned int* plocal_dynamic_count,
+                             std::vector<Symbol*>* pdynamic_symbols,
+                             Versions* pversions)
+{
+  // Count all the symbols in the dynamic symbol table, and set the
+  // dynamic symbol indexes.
+
+  // Skip symbol 0, which is always all zeroes.
+  unsigned int index = 1;
+
+  // Add STT_SECTION symbols for each Output section which needs one.
+  for (Section_list::iterator p = this->section_list_.begin();
+       p != this->section_list_.end();
+       ++p)
+    {
+      if (!(*p)->needs_dynsym_index())
+       (*p)->set_dynsym_index(-1U);
+      else
+       {
+         (*p)->set_dynsym_index(index);
+         ++index;
+       }
+    }
+
+  // FIXME: Some targets apparently require local symbols in the
+  // dynamic symbol table.  Here is where we will have to count them,
+  // and set the dynamic symbol indexes, and add the names to
+  // this->dynpool_.
+
+  unsigned int local_symcount = index;
+  *plocal_dynamic_count = local_symcount;
+
+  // FIXME: We have to tell set_dynsym_indexes whether the
+  // -E/--export-dynamic option was used.
+  index = symtab->set_dynsym_indexes(target, index, pdynamic_symbols,
+                                    &this->dynpool_, pversions);
+
+  int symsize;
+  unsigned int align;
+  const int size = parameters->get_size();
+  if (size == 32)
+    {
+      symsize = elfcpp::Elf_sizes<32>::sym_size;
+      align = 4;
+    }
+  else if (size == 64)
+    {
+      symsize = elfcpp::Elf_sizes<64>::sym_size;
+      align = 8;
+    }
+  else
+    gold_unreachable();
+
+  // Create the dynamic symbol table section.
+
+  const char* dynsym_name = this->namepool_.add(".dynsym", false, NULL);
+  Output_section* dynsym = this->make_output_section(dynsym_name,
+                                                    elfcpp::SHT_DYNSYM,
+                                                    elfcpp::SHF_ALLOC);
+
+  Output_section_data* odata = new Output_data_fixed_space(index * symsize,
+                                                          align);
+  dynsym->add_output_section_data(odata);
+
+  dynsym->set_info(local_symcount);
+  dynsym->set_entsize(symsize);
+  dynsym->set_addralign(align);
+
+  this->dynsym_section_ = dynsym;
+
+  Output_data_dynamic* const odyn = this->dynamic_data_;
+  odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
+  odyn->add_constant(elfcpp::DT_SYMENT, symsize);
+
+  // Create the dynamic string table section.
+
+  const char* dynstr_name = this->namepool_.add(".dynstr", false, NULL);
+  Output_section* dynstr = this->make_output_section(dynstr_name,
+                                                    elfcpp::SHT_STRTAB,
+                                                    elfcpp::SHF_ALLOC);
+
+  Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
+  dynstr->add_output_section_data(strdata);
+
+  dynsym->set_link_section(dynstr);
+  this->dynamic_section_->set_link_section(dynstr);
+
+  odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
+  odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
+
+  *pdynstr = dynstr;
+
+  // Create the hash tables.
+
+  // FIXME: We need an option to create a GNU hash table.
+
+  unsigned char* phash;
+  unsigned int hashlen;
+  Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
+                               &phash, &hashlen);
+
+  const char* hash_name = this->namepool_.add(".hash", false, NULL);
+  Output_section* hashsec = this->make_output_section(hash_name,
+                                                     elfcpp::SHT_HASH,
+                                                     elfcpp::SHF_ALLOC);
+
+  Output_section_data* hashdata = new Output_data_const_buffer(phash,
+                                                              hashlen,
+                                                              align);
+  hashsec->add_output_section_data(hashdata);
+
+  hashsec->set_link_section(dynsym);
+  hashsec->set_entsize(4);
+
+  odyn->add_section_address(elfcpp::DT_HASH, hashsec);
+}
+
+// Create the version sections.
+
+void
+Layout::create_version_sections(const Versions* versions,
+                               const Symbol_table* symtab,
+                               unsigned int local_symcount,
+                               const std::vector<Symbol*>& dynamic_symbols,
+                               const Output_section* dynstr)
+{
+  if (!versions->any_defs() && !versions->any_needs())
+    return;
+
+  if (parameters->get_size() == 32)
+    {
+      if (parameters->is_big_endian())
+        {
+#ifdef HAVE_TARGET_32_BIG
+          this->sized_create_version_sections
+              SELECT_SIZE_ENDIAN_NAME(32, true)(
+                 versions, symtab, local_symcount, dynamic_symbols, dynstr
+                  SELECT_SIZE_ENDIAN(32, true));
+#else
+          gold_unreachable();
+#endif
+        }
+      else
+        {
+#ifdef HAVE_TARGET_32_LITTLE
+          this->sized_create_version_sections
+              SELECT_SIZE_ENDIAN_NAME(32, false)(
+                 versions, symtab, local_symcount, dynamic_symbols, dynstr
+                  SELECT_SIZE_ENDIAN(32, false));
+#else
+          gold_unreachable();
+#endif
+        }
+    }
+  else if (parameters->get_size() == 64)
+    {
+      if (parameters->is_big_endian())
+        {
+#ifdef HAVE_TARGET_64_BIG
+          this->sized_create_version_sections
+              SELECT_SIZE_ENDIAN_NAME(64, true)(
+                  versions, symtab, local_symcount, dynamic_symbols, dynstr
+                  SELECT_SIZE_ENDIAN(64, true));
+#else
+          gold_unreachable();
+#endif
+        }
+      else
+        {
+#ifdef HAVE_TARGET_64_LITTLE
+          this->sized_create_version_sections
+              SELECT_SIZE_ENDIAN_NAME(64, false)(
+                  versions, symtab, local_symcount, dynamic_symbols, dynstr
+                  SELECT_SIZE_ENDIAN(64, false));
+#else
+          gold_unreachable();
+#endif
+        }
+    }
+  else
+    gold_unreachable();
+}
+
+// Create the version sections, sized version.
+
+template<int size, bool big_endian>
+void
+Layout::sized_create_version_sections(
+    const Versions* versions,
+    const Symbol_table* symtab,
+    unsigned int local_symcount,
+    const std::vector<Symbol*>& dynamic_symbols,
+    const Output_section* dynstr
+    ACCEPT_SIZE_ENDIAN)
+{
+  const char* vname = this->namepool_.add(".gnu.version", false, NULL);
+  Output_section* vsec = this->make_output_section(vname,
+                                                  elfcpp::SHT_GNU_versym,
+                                                  elfcpp::SHF_ALLOC);
+
+  unsigned char* vbuf;
+  unsigned int vsize;
+  versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
+      symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
+      SELECT_SIZE_ENDIAN(size, big_endian));
+
+  Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
+
+  vsec->add_output_section_data(vdata);
+  vsec->set_entsize(2);
+  vsec->set_link_section(this->dynsym_section_);
+
+  Output_data_dynamic* const odyn = this->dynamic_data_;
+  odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
+
+  if (versions->any_defs())
+    {
+      const char* vdname = this->namepool_.add(".gnu.version_d", false, NULL);
+      Output_section *vdsec;
+      vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
+                                       elfcpp::SHF_ALLOC);
+
+      unsigned char* vdbuf;
+      unsigned int vdsize;
+      unsigned int vdentries;
+      versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
+          &this->dynpool_, &vdbuf, &vdsize, &vdentries
+          SELECT_SIZE_ENDIAN(size, big_endian));
+
+      Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
+                                                                vdsize,
+                                                                4);
+
+      vdsec->add_output_section_data(vddata);
+      vdsec->set_link_section(dynstr);
+      vdsec->set_info(vdentries);
+
+      odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
+      odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
+    }
+
+  if (versions->any_needs())
+    {
+      const char* vnname = this->namepool_.add(".gnu.version_r", false, NULL);
+      Output_section* vnsec;
+      vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
+                                       elfcpp::SHF_ALLOC);
+
+      unsigned char* vnbuf;
+      unsigned int vnsize;
+      unsigned int vnentries;
+      versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
+        (&this->dynpool_, &vnbuf, &vnsize, &vnentries
+         SELECT_SIZE_ENDIAN(size, big_endian));
+
+      Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
+                                                                vnsize,
+                                                                4);
+
+      vnsec->add_output_section_data(vndata);
+      vnsec->set_link_section(dynstr);
+      vnsec->set_info(vnentries);
+
+      odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
+      odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
+    }
+}
+
+// Create the .interp section and PT_INTERP segment.
+
+void
+Layout::create_interp(const Target* target)
+{
+  const char* interp = this->options_.dynamic_linker();
+  if (interp == NULL)
+    {
+      interp = target->dynamic_linker();
+      gold_assert(interp != NULL);
+    }
+
+  size_t len = strlen(interp) + 1;
+
+  Output_section_data* odata = new Output_data_const(interp, len, 1);
+
+  const char* interp_name = this->namepool_.add(".interp", false, NULL);
+  Output_section* osec = this->make_output_section(interp_name,
+                                                  elfcpp::SHT_PROGBITS,
+                                                  elfcpp::SHF_ALLOC);
+  osec->add_output_section_data(odata);
+
+  Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
+  this->segment_list_.push_back(oseg);
+  oseg->add_initial_output_section(osec, elfcpp::PF_R);
+}
+
+// Finish the .dynamic section and PT_DYNAMIC segment.
+
+void
+Layout::finish_dynamic_section(const Input_objects* input_objects,
+                              const Symbol_table* symtab)
+{
+  Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
+                                           elfcpp::PF_R | elfcpp::PF_W);
+  this->segment_list_.push_back(oseg);
+  oseg->add_initial_output_section(this->dynamic_section_,
+                                  elfcpp::PF_R | elfcpp::PF_W);
+
+  Output_data_dynamic* const odyn = this->dynamic_data_;
+
+  for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
+       p != input_objects->dynobj_end();
+       ++p)
+    {
+      // FIXME: Handle --as-needed.
+      odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
+    }
+
+  // FIXME: Support --init and --fini.
+  Symbol* sym = symtab->lookup("_init");
+  if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
+    odyn->add_symbol(elfcpp::DT_INIT, sym);
+
+  sym = symtab->lookup("_fini");
+  if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
+    odyn->add_symbol(elfcpp::DT_FINI, sym);
+
+  // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
+
+  // Add a DT_RPATH entry if needed.
+  const General_options::Dir_list& rpath(this->options_.rpath());
+  if (!rpath.empty())
+    {
+      std::string rpath_val;
+      for (General_options::Dir_list::const_iterator p = rpath.begin();
+           p != rpath.end();
+           ++p)
+        {
+          if (rpath_val.empty())
+            rpath_val = p->name();
+          else
+            {
+              // Eliminate duplicates.
+              General_options::Dir_list::const_iterator q;
+              for (q = rpath.begin(); q != p; ++q)
+               if (q->name() == p->name())
+                  break;
+              if (q == p)
+                {
+                  rpath_val += ':';
+                  rpath_val += p->name();
+                }
+            }
+        }
+
+      odyn->add_string(elfcpp::DT_RPATH, rpath_val);
+    }
+
+  // Look for text segments that have dynamic relocations.
+  bool have_textrel = false;
+  for (Segment_list::const_iterator p = this->segment_list_.begin();
+       p != this->segment_list_.end();
+       ++p)
+    {
+      if (((*p)->flags() & elfcpp::PF_W) == 0
+         && (*p)->dynamic_reloc_count() > 0)
+       {
+         have_textrel = true;
+         break;
+       }
+    }
+
+  // Add a DT_FLAGS entry. We add it even if no flags are set so that
+  // post-link tools can easily modify these flags if desired.
+  unsigned int flags = 0;
+  if (have_textrel)
+    flags |= elfcpp::DF_TEXTREL;
+  odyn->add_constant(elfcpp::DT_FLAGS, flags);
+}
+
+// The mapping of .gnu.linkonce section names to real section names.
+
+#define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
+const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
+{
+  MAPPING_INIT("d.rel.ro", ".data.rel.ro"),    // Must be before "d".
+  MAPPING_INIT("t", ".text"),
+  MAPPING_INIT("r", ".rodata"),
+  MAPPING_INIT("d", ".data"),
+  MAPPING_INIT("b", ".bss"),
+  MAPPING_INIT("s", ".sdata"),
+  MAPPING_INIT("sb", ".sbss"),
+  MAPPING_INIT("s2", ".sdata2"),
+  MAPPING_INIT("sb2", ".sbss2"),
+  MAPPING_INIT("wi", ".debug_info"),
+  MAPPING_INIT("td", ".tdata"),
+  MAPPING_INIT("tb", ".tbss"),
+  MAPPING_INIT("lr", ".lrodata"),
+  MAPPING_INIT("l", ".ldata"),
+  MAPPING_INIT("lb", ".lbss"),
+};
+#undef MAPPING_INIT
+
+const int Layout::linkonce_mapping_count =
+  sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
+
+// Return the name of the output section to use for a .gnu.linkonce
+// section.  This is based on the default ELF linker script of the old
+// GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
+// to ".text".  Set *PLEN to the length of the name.  *PLEN is
+// initialized to the length of NAME.
+
+const char*
+Layout::linkonce_output_name(const char* name, size_t *plen)
+{
+  const char* s = name + sizeof(".gnu.linkonce") - 1;
+  if (*s != '.')
+    return name;
+  ++s;
+  const Linkonce_mapping* plm = linkonce_mapping;
+  for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
+    {
+      if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
+       {
+         *plen = plm->tolen;
+         return plm->to;
+       }
+    }
+  return name;
+}
+
+// Choose the output section name to use given an input section name.
+// Set *PLEN to the length of the name.  *PLEN is initialized to the
+// length of NAME.
+
+const char*
+Layout::output_section_name(const char* name, size_t* plen)
+{
+  if (Layout::is_linkonce(name))
+    {
+      // .gnu.linkonce sections are laid out as though they were named
+      // for the sections are placed into.
+      return Layout::linkonce_output_name(name, plen);
+    }
+
+  // gcc 4.3 generates the following sorts of section names when it
+  // needs a section name specific to a function:
+  //   .text.FN
+  //   .rodata.FN
+  //   .sdata2.FN
+  //   .data.FN
+  //   .data.rel.FN
+  //   .data.rel.local.FN
+  //   .data.rel.ro.FN
+  //   .data.rel.ro.local.FN
+  //   .sdata.FN
+  //   .bss.FN
+  //   .sbss.FN
+  //   .tdata.FN
+  //   .tbss.FN
+
+  // The GNU linker maps all of those to the part before the .FN,
+  // except that .data.rel.local.FN is mapped to .data, and
+  // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
+  // beginning with .data.rel.ro.local are grouped together.
+
+  // For an anonymous namespace, the string FN can contain a '.'.
+
+  // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
+  // GNU linker maps to .rodata.
+
+  // The .data.rel.ro sections enable a security feature triggered by
+  // the -z relro option.  Section which need to be relocated at
+  // program startup time but which may be readonly after startup are
+  // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
+  // segment.  The dynamic linker will make that segment writable,
+  // perform relocations, and then make it read-only.  FIXME: We do
+  // not yet implement this optimization.
+
+  // It is hard to handle this in a principled way.
+
+  // These are the rules we follow:
+
+  // If the section name has no initial '.', or no dot other than an
+  // initial '.', we use the name unchanged (i.e., "mysection" and
+  // ".text" are unchanged).
+
+  // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
+
+  // Otherwise, we drop the second '.' and everything that comes after
+  // it (i.e., ".text.XXX" becomes ".text").
+
+  const char* s = name;
+  if (*s != '.')
+    return name;
+  ++s;
+  const char* sdot = strchr(s, '.');
+  if (sdot == NULL)
+    return name;
+
+  const char* const data_rel_ro = ".data.rel.ro";
+  if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
+    {
+      *plen = strlen(data_rel_ro);
+      return data_rel_ro;
+    }
+
+  *plen = sdot - name;
+  return name;
+}
+
+// Record the signature of a comdat section, and return whether to
+// include it in the link.  If GROUP is true, this is a regular
+// section group.  If GROUP is false, this is a group signature
+// derived from the name of a linkonce section.  We want linkonce
+// signatures and group signatures to block each other, but we don't
+// want a linkonce signature to block another linkonce signature.
+
+bool
+Layout::add_comdat(const char* signature, bool group)
+{
+  std::string sig(signature);
+  std::pair<Signatures::iterator, bool> ins(
+    this->signatures_.insert(std::make_pair(sig, group)));
+
+  if (ins.second)
+    {
       // This is the first time we've seen this signature.
       return true;
     }
@@ -493,7 +1821,7 @@ Layout::add_comdat(const char* signature, bool group)
   else if (group)
     {
       // This is a real section group, and we've already seen a
-      // linkonce section with tihs signature.  Record that we've seen
+      // linkonce section with this signature.  Record that we've seen
       // a section group, and don't include this section group.
       ins.first->second = true;
       return false;
@@ -507,28 +1835,346 @@ Layout::add_comdat(const char* signature, bool group)
     }
 }
 
+// Write out the Output_sections.  Most won't have anything to write,
+// since most of the data will come from input sections which are
+// handled elsewhere.  But some Output_sections do have Output_data.
+
+void
+Layout::write_output_sections(Output_file* of) const
+{
+  for (Section_list::const_iterator p = this->section_list_.begin();
+       p != this->section_list_.end();
+       ++p)
+    {
+      if (!(*p)->after_input_sections())
+       (*p)->write(of);
+    }
+}
+
+// Write out data not associated with a section or the symbol table.
+
+void
+Layout::write_data(const Symbol_table* symtab, Output_file* of) const
+{
+  if (!parameters->strip_all())
+    {
+      const Output_section* symtab_section = this->symtab_section_;
+      for (Section_list::const_iterator p = this->section_list_.begin();
+          p != this->section_list_.end();
+          ++p)
+       {
+         if ((*p)->needs_symtab_index())
+           {
+             gold_assert(symtab_section != NULL);
+             unsigned int index = (*p)->symtab_index();
+             gold_assert(index > 0 && index != -1U);
+             off_t off = (symtab_section->offset()
+                          + index * symtab_section->entsize());
+             symtab->write_section_symbol(*p, of, off);
+           }
+       }
+    }
+
+  const Output_section* dynsym_section = this->dynsym_section_;
+  for (Section_list::const_iterator p = this->section_list_.begin();
+       p != this->section_list_.end();
+       ++p)
+    {
+      if ((*p)->needs_dynsym_index())
+       {
+         gold_assert(dynsym_section != NULL);
+         unsigned int index = (*p)->dynsym_index();
+         gold_assert(index > 0 && index != -1U);
+         off_t off = (dynsym_section->offset()
+                      + index * dynsym_section->entsize());
+         symtab->write_section_symbol(*p, of, off);
+       }
+    }
+
+  // Write out the Output_data which are not in an Output_section.
+  for (Data_list::const_iterator p = this->special_output_list_.begin();
+       p != this->special_output_list_.end();
+       ++p)
+    (*p)->write(of);
+}
+
+// Write out the Output_sections which can only be written after the
+// input sections are complete.
+
+void
+Layout::write_sections_after_input_sections(Output_file* of)
+{
+  // Determine the final section offsets, and thus the final output
+  // file size.  Note we finalize the .shstrab last, to allow the
+  // after_input_section sections to modify their section-names before
+  // writing.
+  off_t off = this->output_file_size_;
+  off = this->set_section_offsets(off, AFTER_INPUT_SECTIONS_PASS);
+
+  // Determine the final section names as well (at least, for sections
+  // that we haven't written yet).
+  this->modify_section_names();
+
+  // Now that we've finalized the names, we can finalize the shstrab.
+  off = this->set_section_offsets(off, STRTAB_AFTER_INPUT_SECTIONS_PASS);
+
+  if (off > this->output_file_size_)
+    {
+      of->resize(off);
+      this->output_file_size_ = off;
+    }
+
+  for (Section_list::const_iterator p = this->section_list_.begin();
+       p != this->section_list_.end();
+       ++p)
+    {
+      if ((*p)->after_input_sections())
+       (*p)->write(of);
+    }
+
+  for (Section_list::const_iterator p = this->unattached_section_list_.begin();
+       p != this->unattached_section_list_.end();
+       ++p)
+    {
+      if ((*p)->after_input_sections())
+       (*p)->write(of);
+    }
+
+  this->section_headers_->write(of);
+}
+
+// Write_sections_task methods.
+
+// We can always run this task.
+
+Task::Is_runnable_type
+Write_sections_task::is_runnable(Workqueue*)
+{
+  return IS_RUNNABLE;
+}
+
+// We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
+// when finished.
+
+class Write_sections_task::Write_sections_locker : public Task_locker
+{
+ public:
+  Write_sections_locker(Task_token& output_sections_blocker,
+                       Task_token& final_blocker,
+                       Workqueue* workqueue)
+    : output_sections_block_(output_sections_blocker, workqueue),
+      final_block_(final_blocker, workqueue)
+  { }
+
+ private:
+  Task_block_token output_sections_block_;
+  Task_block_token final_block_;
+};
+
+Task_locker*
+Write_sections_task::locks(Workqueue* workqueue)
+{
+  return new Write_sections_locker(*this->output_sections_blocker_,
+                                  *this->final_blocker_,
+                                  workqueue);
+}
+
+// Run the task--write out the data.
+
+void
+Write_sections_task::run(Workqueue*)
+{
+  this->layout_->write_output_sections(this->of_);
+}
+
+// Write_data_task methods.
+
+// We can always run this task.
+
+Task::Is_runnable_type
+Write_data_task::is_runnable(Workqueue*)
+{
+  return IS_RUNNABLE;
+}
+
+// We need to unlock FINAL_BLOCKER when finished.
+
+Task_locker*
+Write_data_task::locks(Workqueue* workqueue)
+{
+  return new Task_locker_block(*this->final_blocker_, workqueue);
+}
+
+// Run the task--write out the data.
+
+void
+Write_data_task::run(Workqueue*)
+{
+  this->layout_->write_data(this->symtab_, this->of_);
+}
+
+// Write_symbols_task methods.
+
+// We can always run this task.
+
+Task::Is_runnable_type
+Write_symbols_task::is_runnable(Workqueue*)
+{
+  return IS_RUNNABLE;
+}
+
+// We need to unlock FINAL_BLOCKER when finished.
+
+Task_locker*
+Write_symbols_task::locks(Workqueue* workqueue)
+{
+  return new Task_locker_block(*this->final_blocker_, workqueue);
+}
+
+// Run the task--write out the symbols.
+
+void
+Write_symbols_task::run(Workqueue*)
+{
+  this->symtab_->write_globals(this->input_objects_, this->sympool_,
+                              this->dynpool_, this->of_);
+}
+
+// Write_after_input_sections_task methods.
+
+// We can only run this task after the input sections have completed.
+
+Task::Is_runnable_type
+Write_after_input_sections_task::is_runnable(Workqueue*)
+{
+  if (this->input_sections_blocker_->is_blocked())
+    return IS_BLOCKED;
+  return IS_RUNNABLE;
+}
+
+// We need to unlock FINAL_BLOCKER when finished.
+
+Task_locker*
+Write_after_input_sections_task::locks(Workqueue* workqueue)
+{
+  return new Task_locker_block(*this->final_blocker_, workqueue);
+}
+
+// Run the task.
+
+void
+Write_after_input_sections_task::run(Workqueue*)
+{
+  this->layout_->write_sections_after_input_sections(this->of_);
+}
+
+// Close_task_runner methods.
+
+// Run the task--close the file.
+
+void
+Close_task_runner::run(Workqueue*)
+{
+  this->of_->close();
+}
+
 // Instantiate the templates we need.  We could use the configure
 // script to restrict this to only the ones for implemented targets.
 
+#ifdef HAVE_TARGET_32_LITTLE
 template
 Output_section*
-Layout::layout<32, false>(Object* object, const char* name,
-                         const elfcpp::Shdr<32, false>& shdr, off_t*);
+Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
+                         const char* name,
+                         const elfcpp::Shdr<32, false>& shdr,
+                         unsigned int, unsigned int, off_t*);
+#endif
 
+#ifdef HAVE_TARGET_32_BIG
 template
 Output_section*
-Layout::layout<32, true>(Object* object, const char* name,
-                        const elfcpp::Shdr<32, true>& shdr, off_t*);
+Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
+                        const char* name,
+                        const elfcpp::Shdr<32, true>& shdr,
+                        unsigned int, unsigned int, off_t*);
+#endif
 
+#ifdef HAVE_TARGET_64_LITTLE
 template
 Output_section*
-Layout::layout<64, false>(Object* object, const char* name,
-                         const elfcpp::Shdr<64, false>& shdr, off_t*);
+Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
+                         const char* name,
+                         const elfcpp::Shdr<64, false>& shdr,
+                         unsigned int, unsigned int, off_t*);
+#endif
 
+#ifdef HAVE_TARGET_64_BIG
 template
 Output_section*
-Layout::layout<64, true>(Object* object, const char* name,
-                        const elfcpp::Shdr<64, true>& shdr, off_t*);
+Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
+                        const char* name,
+                        const elfcpp::Shdr<64, true>& shdr,
+                        unsigned int, unsigned int, off_t*);
+#endif
 
+#ifdef HAVE_TARGET_32_LITTLE
+template
+Output_section*
+Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
+                                  const unsigned char* symbols,
+                                  off_t symbols_size,
+                                  const unsigned char* symbol_names,
+                                  off_t symbol_names_size,
+                                  unsigned int shndx,
+                                  const elfcpp::Shdr<32, false>& shdr,
+                                  unsigned int reloc_shndx,
+                                  unsigned int reloc_type,
+                                  off_t* off);
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+Output_section*
+Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
+                                  const unsigned char* symbols,
+                                  off_t symbols_size,
+                                 const unsigned char* symbol_names,
+                                 off_t symbol_names_size,
+                                 unsigned int shndx,
+                                 const elfcpp::Shdr<32, true>& shdr,
+                                 unsigned int reloc_shndx,
+                                 unsigned int reloc_type,
+                                 off_t* off);
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+Output_section*
+Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
+                                  const unsigned char* symbols,
+                                  off_t symbols_size,
+                                  const unsigned char* symbol_names,
+                                  off_t symbol_names_size,
+                                  unsigned int shndx,
+                                  const elfcpp::Shdr<64, false>& shdr,
+                                  unsigned int reloc_shndx,
+                                  unsigned int reloc_type,
+                                  off_t* off);
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+Output_section*
+Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
+                                  const unsigned char* symbols,
+                                  off_t symbols_size,
+                                 const unsigned char* symbol_names,
+                                 off_t symbol_names_size,
+                                 unsigned int shndx,
+                                 const elfcpp::Shdr<64, true>& shdr,
+                                 unsigned int reloc_shndx,
+                                 unsigned int reloc_type,
+                                 off_t* off);
+#endif
 
 } // End namespace gold.
This page took 0.065208 seconds and 4 git commands to generate.